Nothing Special   »   [go: up one dir, main page]

WO2017024988A1 - 信息处理方法、装置及系统 - Google Patents

信息处理方法、装置及系统 Download PDF

Info

Publication number
WO2017024988A1
WO2017024988A1 PCT/CN2016/093426 CN2016093426W WO2017024988A1 WO 2017024988 A1 WO2017024988 A1 WO 2017024988A1 CN 2016093426 W CN2016093426 W CN 2016093426W WO 2017024988 A1 WO2017024988 A1 WO 2017024988A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs
lbt
subframe
location
cca
Prior art date
Application number
PCT/CN2016/093426
Other languages
English (en)
French (fr)
Inventor
杨玲
苟伟
赵亚军
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP16834612.0A priority Critical patent/EP3334111B1/en
Priority to US15/751,138 priority patent/US10743354B2/en
Publication of WO2017024988A1 publication Critical patent/WO2017024988A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0006Assessment of spectral gaps suitable for allocating digitally modulated signals, e.g. for carrier allocation in cognitive radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex

Definitions

  • the present invention relates to the field of communications, and in particular to an information processing method, apparatus, and system.
  • the unlicensed carrier is used to share the data traffic in the authorized carrier to become the Long Term Evolution (LTE) system.
  • LTE Long Term Evolution
  • the 5 GHz and 2.4 GHz bands in the unlicensed band can be used, so it has the feature of large available bandwidth.
  • the unlicensed carrier has the characteristics of shared resources, that is, when multiple different systems are operating or when different operators of the same system are operating, some ways of sharing resources may be considered to improve spectrum efficiency.
  • M2M Machine to Machine
  • V2V Vehicle to Vehicle
  • the LTE system can use the existing unlicensed carrier, the potential spectrum resources of the LTE system will be greatly improved, and the LTE system can obtain lower spectrum cost.
  • LTE Long Term Evolution
  • UE User Equipment
  • LBT Listen Before Talk
  • 3GPP 3rd Generation Partnership Project
  • LAA Licensed Assisted Access
  • the basic functions of the uplink include: an uplink (Uplink, abbreviated as UL) LBT process before data transmission, a Sounding Reference Signal (SRS) for measuring the uplink channel, and physical random access.
  • UL uplink
  • SRS Sounding Reference Signal
  • Physical Random Access Channel Physical Random Access Channel, abbreviated as PRACH.
  • PRACH Physical Random Access Channel
  • SRS is mainly used to maintain uplink timing and implement uplink and downlink scheduling of the base station (due to channel reciprocity)
  • the following problems need to be considered: First, uplink transmission The previous LBT is implemented to successfully transmit the SRS; the second is how to transmit the SRS after the LBT is successfully executed; and if the LBT and the SRS are coexistent in an Orthogonal Frequency Division Multiplexing (OFDM) symbol, How to deal with collision problems between LBT and SRS.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the embodiments of the present invention are directed to providing an information processing method, apparatus, and system, which can solve the collision problem when both the LBT detection position and the SRS transmission position are on the last OFDM symbol of the subframe, and can improve the UE access channel.
  • the probability of increasing the chances of sending SRS is provided.
  • An embodiment of the present invention provides an information processing method, which is applied to a user equipment UE side, where the method includes: acquiring first information; performing contention access according to the first information, and sending a sounding reference signal SRS;
  • the first information includes at least one of the following: a frame structure, an LBT execution location, an SRS transmission location, and a proprietary indication signaling.
  • the acquiring the first information includes: obtaining the first information by using predefined information; or obtaining the first information based on the configuration of the base station side; or obtaining the first information based on the UE side configuration.
  • the frame structure includes one of the following: a frequency division duplex FDD frame structure all used for uplink; a time division duplex TDD structure; and a dynamic uplink and downlink configuration frame structure.
  • the LBT execution location includes: an uplink subframe; or a special subframe; or a downlink subframe.
  • the location where the LBT is performed includes: the last orthogonal frequency division multiplexing OFDM symbol in the uplink subframe; or the last M OFDM symbols in the uplink subframe; or , the last M OFDM symbols in the uplink subframe and the first L OFDM symbols in the next subframe; or all OFDM symbols in the uplink subframe; wherein, M and L are both positive integers; determining M and L
  • the way is: through base station configuration or predefined settings.
  • the location where the LBT is performed includes: the last OFDM symbol of the guard interval GP in the special subframe; or the last S OFDM symbols of the GP in the special subframe; or, special The last S OFDM symbols of the GP in the subframe and the t OFDM symbols in the uplink pilot time slot UpPTS; or the symbols of all OFDM in the GP in the special subframe; or, all OFDM in the GP in the special subframe Symbols and symbols in UpPTS; where S, t are positive integers; M and t are determined by means of base station configuration or predefined settings.
  • the location where the LBT is performed includes: the last OFDM symbol in the downlink subframe; or the last OFDM in the downlink subframe a specific resource particle RE on a symbol; or a symbol occupied by a downlink pilot time slot DwPTS in a special subframe; or a last M OFDM symbol in a DwPTS in a special subframe; or a DwPTS in a special subframe
  • the specific RE on the OFDM symbol when the LBT execution location is in the downlink subframe, the location where the LBT is performed includes: the last OFDM symbol in the downlink subframe; or the last OFDM in the downlink subframe a specific resource particle RE on a symbol; or a symbol occupied by a downlink pilot time slot DwPTS in a special subframe; or a last M OFDM symbol in a DwPTS in a special subframe; or a DwPTS in a special subframe
  • the specific RE on the OFDM symbol when the LBT execution location is in the downlink sub
  • the sending of the SRS includes: periodically sending an SRS; or sending an SRS aperiodically; or transmitting a SRS in combination with periodic and aperiodic; or transmitting an SRS according to an LBT execution success; or, demodulating The SRS is transmitted in the time domain position of the reference signal DMRS.
  • the periodically sending the SRS includes: sending an SRS according to an existing SRS sending period; or sending an SRS after modifying an existing SRS sending period.
  • the aperiodic sending of the SRS includes: triggering sending the aperiodic SRS by using the downlink control information DCI information; or triggering sending the aperiodic SRS by the LBT execution success time.
  • the location of the SRS transmission includes: at least one of the last k OFDM symbols in the downlink subframe; or a gap between the downlink subframe and the uplink subframe. At least one of the symbols; or at least one of the last p OFDM symbols in the uplink subframe; or, an SRS transmission window; or a location of a DMRS in an uplink subframe; or a subframe or a subframe in a scheduling subframe.
  • the sending the SRS according to the LBT execution success condition includes: sending the SRS on the first available OFDM symbol after the LBT successfully acquires the channel; or, after performing the LBT successfully acquiring the channel after the channel is successfully acquired Sending the SRS on the last OFDM symbol; or transmitting the SRS on the first or j OFDM symbols after the LBT successfully acquires the channel, where j is a positive integer; or, after performing the LBT successfully acquiring the channel Sending an SRS to a resource on a symbol boundary; or transmitting an SRS in an SRS transmission window after the LBT successfully acquires the channel.
  • the SRS transmission window and/or the SRS transmission location in the SRS transmission window may be determined by at least one of: a starting position of the SRS transmission window; a size of the SRS transmission window; and an SRS transmission location within the SRS transmission window. interval.
  • the SRS transmission location and/or the SRS transmission location in the SRS transmission window and/or the SRS transmission window may be determined by one of the following: configured by a base station; or, predefined; or, by higher layer signaling.
  • the configuration of the SRS transmission window includes: a start position of the SRS transmission window is related to an LBT execution success time or a configured transmission window position; and the size of the SRS transmission window is composed of Q OFDM symbols or is less than an integer. Multiple OFDM symbol components; wherein Q is a positive integer; wherein the manner of determining the size of the SRS transmission window includes: by base station configuration, or predefined, or by higher layer signaling.
  • the frequency domain location of the SRS transmission location includes: transmitting the SRS over the entire frequency domain bandwidth; or transmitting the SRS according to the specific SRS frequency domain pattern.
  • the method includes: sending the SRS and performing the LBT by using a frequency division manner. There is one symbol; or, the SRS transmission and the LBT execution process coexist in one symbol by time division.
  • the sending location of the SRS and the location in the next subframe for scheduling the UE to perform the LBT are coexistent on the symbol by using a frequency division manner, including: the SRS that the UE notifies according to the base station on the last OFDM symbol of the scheduling subframe.
  • the frequency domain pattern is sent by the SRS; the UE performs CCA detection according to the idle channel evaluation CCA pattern notified by the base station on the last OFDM symbol of the previous subframe of the scheduling subframe; wherein, the SRS is transmitted and the frequency domain resource corresponding to the CCA detection is allowed.
  • Reserve the frequency domain protection interval including: the SRS that the UE notifies according to the base station on the last OFDM symbol of the scheduling subframe.
  • the frequency domain pattern is sent by the SRS; the UE performs CCA detection according to the idle channel evaluation CCA pattern notified by the base station on the last OFDM symbol of the previous subframe of the scheduling subframe; wherein, the SRS is transmitted and the frequency domain resource corresponding to the CCA detection is allowed
  • the method before the sending, by the UE, the SRS and the performing CCA on the last OFDM symbol of the scheduling subframe, the method further includes: receiving a notification message sent by the base station; where the notification message includes at least the following information: a time domain in which the UE sends the SRS Position, frequency domain pattern of SRS, resource block index number without signal energy, pattern for executing LBT, LBT execution position.
  • the sending of the SRS and the performing process of the LBT are performed on a symbol by using a time division manner, including: performing, by the UE, an LBT execution process on a part of resources of a last OFDM symbol of a previous subframe of the scheduling subframe; If the UE performs LBT on the part of the resources Work, then send SRS on the remaining resources.
  • the LBT execution location is on the last OFDM symbol of the previous subframe of the scheduling subframe
  • the SRS transmission location is on the first OFDM symbol of the scheduling subframe, including: the UE is within the duration of one OFDM symbol.
  • Performing a corresponding LBT operation if the UE performs CCA detection successfully on the last OFDM symbol of the previous subframe of the scheduling subframe, but the time when the CCA detection succeeds is less than the symbol boundary, then a reserved signal of the non-complete symbol needs to be sent.
  • the sending of the SRS includes: in the M OFDM symbols, when the symbol used to perform the LBT success only accounts for a part of the M symbols, at the M
  • the SRS is transmitted on the remaining symbols in the symbols or the remaining symbols are transmitted as the SRS transmission window; or, in the M OFDM symbols, the symbols used to perform the LBT success only occupy a part of the M symbols, at M
  • the reserved signal is transmitted on the remaining symbols in the symbols, and the SRS is transmitted on the configured SRS resource; or, in the M OFDM symbols, the LBT process is performed to detect that the channel idle occupies all M symbols, and the SRS is in the configured SRS.
  • the SRS resource is configured to be the first OFDM symbol after the LBT resource location is configured or the last OFDM symbol of the next subframe where the LBT resource location is configured or the SRS transmission window after the LBT resource location is configured. .
  • the sending method of the SRS further includes: sending the DMRS to replace the SRS at the 4th OFDM symbol position of the subframe; or multiplexing the DMRS resource for sending the SRS; or The SRS is transmitted at the last symbol position of the first slot of the subframe.
  • the dedicated indication signaling includes: an enabling condition of each function of the LBT configured by the base station and an LBT parameter; or an enabling condition of each function of the LBT configured by the UE side and an LBT parameter.
  • the LBT functions include: a contention free fallback window; or, there is a fixed contention fallback window; or, a dynamically variable exponential competition fallback window.
  • the LBT parameter includes at least one of: a first CCA; or a second CCA; wherein, the duration configuration of the second CCA is smaller than a duration configuration of the first CCA; or, a delay period; Or, N; wherein N represents a backoff value, and the value of N is obtained by pre-defining or base station configuration or randomly generated.
  • the manner in which the UE performs the LBT process according to the enabling status of each function of the LBT and the LBT parameter includes: mode 1: performing the first CCA detection only once; mode 2: performing Y first CCA detections; wherein, Y is A positive integer greater than or equal to 2; mode 3: idle channel estimation eCCA detection directly extended; mode 4: performing first CCA detection and eCCA detection.
  • the number Y of performing the first CCA detection in the mode 2 is determined according to the duration of the first CCA detection and the number of symbols used to perform the LBT.
  • the method 3 includes: the eCCA is composed of W second CCA detections; wherein, W is a positive integer; in the eCCA process, if the second CCA detects that the channel is busy, entering a delay period; If the channel is idle during the delay period, the N value is decremented by the preset value or the N value is not decremented by the preset value; the N value is obtained by pre-defining or base station configuration or randomly generated; The preset value is configured by the base station or pre-defined in advance; or, in the eCCA process, if the second CCA detects that the channel is busy, the delay period is not entered, and the next second CCA detection is entered.
  • determining that the UE uses the right to use the unlicensed carrier includes: criterion 1: the first CCA detects that the channel is idle, and considers that the UE acquires the use right of the unlicensed carrier; and criterion 2: detecting the first CCA multiple times If the channel is idle, the UE is considered to acquire the use right of the unlicensed carrier; and criterion 3: the N value is decremented to 0, and the UE is considered to acquire the use right of the unlicensed carrier.
  • the embodiment of the present invention further provides an information processing method, which is applied to a base station side, where the method includes: sending notification information to the UE, so that the UE can acquire the first information based on the notification information and perform according to the first information.
  • the first information includes at least one of: a frame structure, an LBT execution location, an SRS transmission location, and proprietary indication signaling; wherein the notification message includes at least the following information : the time domain location where the UE transmits the SRS, the frequency domain pattern of the SRS, the resource block index number without signal energy, or the pattern for executing the LBT, LBT Execution location.
  • An embodiment of the present invention further provides an information processing apparatus, which is applied to a UE side, where the apparatus includes: an acquiring unit configured to acquire first information; and a processing unit configured to perform contention access and SRS according to the first information
  • the first information includes at least one of the following: a frame structure, an LBT execution location, an SRS transmission location, and proprietary indication signaling.
  • the acquiring unit is further configured to: obtain the first information by using predefined information; or obtain the first information based on the configuration of the base station side; or obtain the first information based on the UE side configuration.
  • the frame structure includes: an FDD frame structure for all uplinks, a TDD structure, and a dynamic uplink and downlink proportioning frame structure.
  • the LBT execution location includes: an uplink subframe; or a special subframe; or a downlink subframe.
  • the processing unit when the LBT execution location is in the uplink subframe, performs the location of the LBT, including: the last OFDM symbol in the uplink subframe; or the last M OFDM symbols in the uplink subframe; or, uplink The last M OFDM symbols in the subframe and the first L OFDM symbols in the next subframe; or all OFDM symbols in the uplink subframe; wherein, M and L are both positive integers; the manner of determining M and L is : Through base station configuration or predefined settings.
  • the location where the processing unit performs the LBT includes: the last OFDM symbol of the GP in the special subframe; or the last S OFDM symbols of the GP in the special subframe; or , the last S OFDM symbols of the GP in the special subframe and the t OFDM symbols in the UpPTS; or the symbols of all OFDM in the GP in the special subframe; or, the symbols of all OFDM in the GP in the special subframe and the UpPTS
  • S, t is a positive integer
  • the way to determine M and t is: through base station configuration or predefined settings.
  • the location where the processing unit performs the LBT includes: the last OFDM symbol in the downlink subframe; or, in the downlink subframe a specific RE on the last OFDM symbol; or a symbol occupied by the DwPTS in the special subframe; or the last M OFDM symbols in the DwPTS in the special subframe; or an OFDM symbol in the DwPTS in the special subframe Specific RE on.
  • the processing unit performs the sending of the SRS, including: periodically sending the SRS; or sending the SRS aperiodically; or transmitting the SRS in combination with the periodic and aperiodic; or sending the SRS according to the LBT execution success; or
  • the SRS is transmitted at the time domain location of the DMRS.
  • the periodically sending the SRS includes: sending an SRS according to an existing SRS sending period; or sending an SRS after modifying an existing SRS sending period.
  • the aperiodic sending of the SRS includes: triggering sending an aperiodic SRS by using the DCI information; or triggering sending the aperiodic SRS by performing a successful moment of the LBT.
  • the location of the SRS transmission includes: at least one of the last k OFDM symbols in the downlink subframe; or a gap between the downlink subframe and the uplink subframe. At least one symbol; or at least one of the last p OFDM symbols in the uplink subframe; or, an SRS transmission window; or a location of the DMRS in the uplink subframe; or a first one of the subframe or the scheduling subframe.
  • the determining, according to the performing the LBT result, the sending the SRS includes: sending the SRS on the first available OFDM symbol after the LBT successfully acquires the channel; or, after performing the LBT, successfully acquiring the subframe after the channel is successfully obtained. Sending the SRS on the last OFDM symbol; or transmitting the SRS on the first or j OFDM symbols after the LBT successfully acquires the channel, j is a positive integer; or, after performing the LBT successfully, the channel is successfully acquired.
  • the SRS is transmitted on the resource of the symbol boundary; or the SRS is transmitted in the SRS transmission window after the LBT successfully acquires the channel.
  • the configuration of the SRS transmission window includes: a start position of the SRS transmission window is related to an LBT execution success time or a configured transmission window position; and the size of the SRS transmission window is composed of Q OFDM symbols or is less than an integer. Multiple OFDM symbols; where Q is a positive integer.
  • the method for determining the size of the SRS transmission window includes: being configured by a base station, or pre-defined, or notified by higher layer signaling.
  • the processing unit performs the frequency domain location of the SRS transmission, including: sending the SRS over the entire bandwidth; or sending the SRS according to the specific SRS frequency domain pattern.
  • the SRS transmission window and/or the SRS transmission location in the SRS transmission window may be determined by at least one of: a starting position of the SRS transmission window; a size of the SRS transmission window; and an SRS transmission location within the SRS transmission window. interval.
  • the SRS transmission location and/or the SRS transmission location in the SRS transmission window and/or the SRS transmission window may be determined by one of the following: configured by a base station; or, predefined; or, by higher layer signaling.
  • the processing unit is further configured to: when the LBT execution location is on the last OFDM symbol of the scheduling subframe, and the location of the SRS transmission is also on the last OFDM symbol of the subframe, the SRS is implemented by frequency division.
  • the transmission and the execution process of the LBT coexist in one symbol; or, the transmission of the SRS and the execution process of the LBT are coexisted on one symbol by a time division manner.
  • the processing unit is further configured to: send, according to the SRS frequency domain pattern notified by the base station, the SRS on the last OFDM symbol of the scheduling subframe; and follow the last OFDM symbol of the previous subframe of the scheduling subframe.
  • the CCA pattern notified by the base station performs CCA detection; wherein the frequency domain protection interval is allowed to be reserved between the frequency domain resources corresponding to the SRS and the CCA detection.
  • the processing unit is further configured to: before sending the SRS and performing the CCA on the last OFDM symbol of the scheduling subframe, receiving a notification message sent by the base station; where the notification message includes at least the following information: The time domain location of the SRS, the frequency domain pattern of the SRS, the resource block index number without signal energy, or the pattern of the LBT execution, and the LBT execution location.
  • the processing unit is further configured to: perform an LBT execution process on a part of resources of a last OFDM symbol of a previous subframe of the scheduling subframe; if the LBT is successfully performed on the part of the resources, The SRS is sent on the remaining resources.
  • the processing unit is further configured to: the LBT execution location is on a last OFDM symbol of a previous subframe of the scheduling subframe, and the SRS transmission location is in a scheduling subframe.
  • the corresponding LBT operation is performed within the duration of one OFDM symbol; if the CCA detection is successful on the last OFDM symbol of the previous subframe of the scheduling subframe, but the CCA detection succeeds at a time less than the symbol boundary Then, a reserved signal of a non-complete symbol needs to be sent, and the SRS is transmitted on the first SOFDM frequency domain pattern on the first OFDM symbol of the scheduling subframe or the SRS is transmitted on the entire frequency domain bandwidth.
  • the processing unit is further configured to: when the LBT execution location is on the last M OFDM symbols of the subframe, in the M OFDM symbols, the symbol used to perform the LBT success only accounts for the M symbols.
  • the SRS is transmitted on the remaining symbols of the M symbols or the remaining symbols are used as the SRS transmission window for SRS transmission; or, in the M OFDM symbols, the symbols used to perform the LBT success only occupy the M symbols.
  • the reserved signal is sent on the remaining symbols of the M symbols, and the SRS is sent on the configured SRS resource; or, in the M OFDM symbols, the LBT process is performed to detect that the channel is idle and all M symbols are occupied.
  • the SRS is sent on the configured SRS resource, where the configured SRS resource is the first OFDM symbol after the configured LBT resource location or the last OFDM symbol of the next subframe in which the LBT resource location is configured or the LBT resource location is configured. After the SRS transmission window.
  • the processing unit is further configured to: when the performing LBT process detects that the channel is idle, send the DMRS in the fourth OFDM symbol position of the subframe to replace the SRS; or: multiplex the DMRS resource to send the SRS. Or, the SRS is transmitted at the last symbol position of the first slot of the subframe.
  • the proprietary indication signaling includes: an enabling condition of each function of the LBT configured by the base station and an LBT parameter; or an enabling situation of the LBT function and an LBT parameter configured by the UE side.
  • the LBT functions include: a contention free fallback window; or, there is a fixed contention rewind window; or, a dynamically variable exponential back window.
  • the LBT parameter specifically includes at least one of: a first CCA; or a second CCA; wherein a duration configuration of the second CCA is less than a duration of the first CCA Configuration; or, a delay period; or, N; where N represents a backoff value, and the value of N is obtained by pre-defining or base station configuration or randomly generated.
  • the processing unit performs the LBT process according to the enabling status of each function of the LBT and the LBT parameter, including: mode 1: performing the first CCA detection only once; and mode 2: performing Y first CCA detections; Y is a positive integer greater than or equal to 2; mode 3: idle channel estimation eCCA detection directly extended; mode 4: performing first CCA detection and eCCA detection.
  • the number Y of performing the first CCA detection in the mode 2 is determined according to the duration of the first CCA detection and the number of symbols used to perform the LBT.
  • the method 3 includes: the eCCA is composed of W second CCA detections; wherein, W is a positive integer; in the eCCA process, if the second CCA detects that the channel is busy, entering a delay period; If the channel is idle during the delay period, the N value is decremented by the preset value or the N value is not decremented by the preset value; the N value is obtained by pre-defining or base station configuration or randomly generated; The preset value is configured by the base station or pre-defined in advance; or, in the eCCA process, if the second CCA detects that the channel is busy, it does not enter the delay period, but enters the next second CCA detection.
  • the processing unit is further configured to: determine that the UE uses the right to use the unlicensed carrier criteria: the criterion 1: the first CCA detects that the channel is idle, and considers that the use right of the unlicensed carrier is obtained; criterion 2: multiple times When the first CCA detects that the channel is idle, it considers that the right to use the unlicensed carrier is obtained; and criterion 3: the value of N is decremented to 0, and the right to use the unlicensed carrier is considered to be acquired.
  • the criterion 1 the first CCA detects that the channel is idle, and considers that the use right of the unlicensed carrier is obtained
  • criterion 2 multiple times When the first CCA detects that the channel is idle, it considers that the right to use the unlicensed carrier is obtained
  • criterion 3 the value of N is decremented to 0, and the right to use the unlicensed carrier is considered to be acquired.
  • the embodiment of the present invention further provides an information processing apparatus, which is applied to a base station side, where the apparatus includes: a configuration unit configured to set configuration information; and a sending unit configured to send a notification message carrying the configuration information to the UE, And enabling the UE to acquire the first information according to the notification message, and perform contention access and SRS transmission according to the first information, where the first information includes at least one of: a frame structure, an LBT execution location, and an SRS. Transmitting a location, the proprietary indication signaling, where the notification message includes at least the following information: a time domain location at which the UE sends the SRS, The frequency domain pattern of the SRS, the resource block index number without signal energy, or the pattern in which the LBT is executed, and the LBT execution position.
  • An embodiment of the present invention further provides an information processing system, where the system includes the information processing device applied to the base station side, and the information processing device applied to the UE side of the user equipment.
  • a storage medium is also provided.
  • the storage medium is configured to store program code for performing the following steps: acquiring first information; performing contention access according to the first information; and transmitting the sounding reference signal SRS; wherein the first information includes at least the following One: frame structure, first listen to LBT execution position, SRS transmission position, and proprietary indication signaling.
  • the first information is obtained according to the embodiment of the present invention; the contention access and the SRS are sent according to the first information; wherein the first information includes at least one of the following: a frame structure, an LBT execution location, and an SRS sending location. , proprietary indication signaling.
  • the collision problem when both the LBT detection position and the SRS transmission position are on the last OFDM symbol of the subframe can be solved, the probability of the UE accessing the channel can be improved, and the transmission opportunity of the SRS can be increased.
  • FIG. 1 is a schematic flowchart of an information processing method according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of coexistence of SRS and LBT in a frequency division manner in the same OFDM symbol according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of coexistence of SRS and LBT in a time division manner in the same OFDM symbol according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of an LBT and an SRS position respectively located in a last OFDM symbol of an adjacent subframe according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of an LBT performing a first OFDM symbol in a subframe of a last OFDM symbol of a subframe and a SRS position according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of an LBT execution position in a last OFDM symbol of a subframe and an end of an SRS transmission window is located at a subframe boundary according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of an LBT execution position in a last few OFDM symbols of a subframe and a start of an SRS transmission window at a start of a subframe according to an embodiment of the present disclosure
  • FIG. 8 is a schematic diagram of an LBT execution position being transmitted in a last OFDM symbol of a subframe and an SRS being transmitted on a transmission symbol of a DMRS according to an embodiment of the present disclosure
  • FIG. 9 is a schematic structural diagram of a structure of an information processing apparatus according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of another information processing apparatus according to an embodiment of the present invention.
  • FIG. 1 is a schematic flowchart of an information processing method according to an embodiment of the present disclosure.
  • the information processing method is applied to a UE side. As shown in FIG. 1 , the information processing method mainly includes the following steps:
  • Step 101 Acquire first information.
  • the first information includes at least one of the following:
  • Frame structure LBT execution location, SRS transmission location, proprietary indication signaling, and the like.
  • the obtaining the first information may include:
  • Knowing the first information through predefined information or,
  • the first information is learned based on the UE side configuration.
  • the frame structure may include: a pure uplink structure, a Time Division Duplexing (TDD) structure, and a dynamic uplink and downlink configuration frame structure.
  • TDD Time Division Duplexing
  • the pure uplink structure may be a frequency division duplex frequency division duplex (FDD) frame structure all used for uplink;
  • FDD frequency division duplex frequency division duplex
  • the LBT execution location may include:
  • the location where the LBT is performed includes:
  • M and L are both positive integers; the way to determine M and L is: through base station configuration or predefined settings.
  • the location where the LBT is performed includes:
  • UpPTS Uplink Pilot Time Slot
  • S is a positive integer; the way to determine M and t is: through base station configuration or predefined settings.
  • the location where the LBT is performed includes:
  • RE resource Element
  • DwPTS Downlink Pilot Time Slot
  • a specific RE on an OFDM symbol in a DwPTS in a special subframe is a specific RE on an OFDM symbol in a DwPTS in a special subframe.
  • the sending of the SRS includes:
  • the SRS is transmitted at a time domain position of the demodulation reference signal DMRS.
  • the periodically sending the SRS includes:
  • the SRS is sent after the existing SRS transmission period is modified.
  • the SRS transmission period is shortened to 1 ms.
  • the aperiodic sending SRS includes:
  • DCI Downlink Control Information
  • the LBT When the LBT is successfully executed, it triggers sending an aperiodic SRS.
  • the location of the SRS transmission includes: at least one of the last k OFDM symbols in the downlink subframe; or at least a gap between the downlink subframe and the uplink subframe.
  • One of the symbols; or at least one of the last p OFDM symbols in the uplink subframe; or, the SRS transmission window; or the location of the DMRS in the uplink subframe; or the first one of the subframe or the scheduling subframe The last OFDM symbol position of the slot;
  • k, p are positive integers; the way to determine k and p is: through base station configuration or predefined settings; k, p includes at least one of the following: 1, 2, 3, 4, 5.
  • the sending the SRS according to the success of performing the LBT includes:
  • the SRS can be sent after performing the first available OFDM symbol after the LBT successfully acquires the channel, without waiting for the SRS of the configured SRS transmission resource;
  • SRS is transmitted on the first or j OFDM symbols after the LBT successfully acquires the channel, and j is a positive integer;
  • the SRS is transmitted in an SRS transmission window after the LBT successfully acquires the channel.
  • the SRS transmission window and/or the SRS transmission position in the SRS transmission window may be determined by at least one of: a starting position of the SRS transmission window; a size of the SRS transmission window; and an interval between SRS transmission positions in the SRS transmission window. .
  • the SRS transmission location and/or the SRS transmission location in the SRS transmission window and/or the SRS transmission window may be determined by one of the following: configured by the base station; or, predefined; or, by higher layer signaling.
  • the configured SRS transmission window may include:
  • the starting position of the SRS transmission window is related to the LBT execution success time or the configured transmission window position
  • the size of the SRS transmission window is composed of Q OFDM symbols or less than an integer multiple of OFDM symbols; wherein Q is a positive integer;
  • the manner of determining the size of the SRS transmission window includes: configuring by a base station, or pre-defining, or notifying by high layer signaling.
  • the frequency domain location of the SRS sending location may include:
  • the SRS is transmitted in accordance with a specific SRS frequency domain pattern.
  • the proprietary indication signaling includes:
  • the enabling status of the LBT functions and the LBT parameters independently configured by the UE side;
  • each function of the LBT includes: a non-competitive retreat window, a fixed competition retreat window, and a dynamically variable exponential back-off window;
  • the LBT parameter specifically includes at least one of the following: a Clear Channel Assessment (CCA), a second CCA, a defer period, and N; wherein N represents a backoff value, and the N value may be passed in advance.
  • CCA Clear Channel Assessment
  • N represents a backoff value, and the N value may be passed in advance.
  • the definition is either obtained by the base station configuration or randomly generated.
  • Step 102 Perform contention access and SRS transmission according to the first information.
  • the method may include:
  • the SRS transmission and the LBT execution process coexist in a symbol by frequency division, or
  • the SRS transmission and the LBT execution process coexist in one symbol by time division.
  • the sending of the SRS and the execution process of the LBT coexist in a frequency division manner, including:
  • the UE performs CCA detection according to the CCA pattern notified by the base station on the last OFDM symbol of the previous subframe of the scheduling subframe;
  • the frequency domain protection interval is allowed to be reserved between the frequency domain resources corresponding to the sending SRS and the performing CCA detection.
  • the UE may further include:
  • the notification message includes at least the following information: a time domain location where the UE sends the SRS, a frequency domain pattern of the SRS, a resource block index number without signal energy, or a pattern for executing the LBT, and an LBT execution location.
  • the sending of the SRS and the execution process of the LBT are coexisted on a symbol by a time division manner, including:
  • the UE performs an LBT execution process on a part of resources of the last OFDM symbol of the previous subframe of the scheduling subframe;
  • the SRS is sent on the remaining resources.
  • the LBT execution location is on a last OFDM symbol of a previous subframe of the scheduling subframe
  • the SRS transmission location is on the first OFDM symbol of the scheduling subframe, including:
  • the UE performs a corresponding LBT operation within a duration of one OFDM symbol
  • the first OFDM symbol performs SRS transmission on a specific SRS frequency domain pattern or transmits SRS on the entire frequency domain bandwidth.
  • the sending of the SRS includes:
  • the SRS is transmitted on the remaining symbols of the M symbols (excluding the symbols used to perform the LBT) (or the remaining symbols are used as SRS) Transmission window for SRS transmission); or,
  • the SRS is in the configured SRS. Send on the resource.
  • the LBT process is performed to detect that the channel is idle and all M symbols are occupied, and then the SRS is sent on the configured SRS resource;
  • the configured SRS resource may be the first OFDM symbol after the LBT resource location is configured or the last OFDM symbol of the next subframe where the LBT resource location is configured or the SRS transmission window after the LBT resource location is configured.
  • the method further includes:
  • the SRS is transmitted at the last symbol position of the first slot of the subframe.
  • the manner in which the UE performs the LBT process according to the enabling status of the LBT functions and the LBT parameters includes:
  • Method 1 Perform CCA (eg, first CCA) detection only once;
  • Manner 2 performing Y CCA (eg, first CCA) detection; wherein, Y is a positive integer greater than or equal to 2;
  • Mode 3 directly performing extended idle channel evaluation eCCA detection
  • Mode 4 Perform first CCA detection and eCCA detection.
  • the number Y of performing the first CCA detection in the mode 2 is determined according to the duration of the first CCA detection and the number of symbols used to perform the LBT.
  • the mode 3 includes:
  • the eCCA is composed of W second CCA detections; wherein W is a positive integer;
  • N values can be obtained by pre-defined or base station configuration or randomly generated.
  • the preset value is configured by a base station or predefined in advance; or
  • the second CCA detects that the channel is busy, it does not enter the delay period. Instead, proceed to the next second CCA test.
  • the criterion for determining the right to use the UE to acquire the unlicensed carrier includes:
  • Criterion 1 The first CCA detects that the channel is idle, and considers that the UE acquires the use right of the unlicensed carrier;
  • Criterion 2 If the channel is idle once detected in the first CCA, the UE is considered to acquire the use right of the unlicensed carrier;
  • Criterion 3 The value of N is decremented to 0, and the UE is considered to acquire the right to use the unlicensed carrier.
  • the predefined X long time domain resource before the transmission of the SRS is configured to send the CSA detection by the SRS.
  • the CSA process corresponding to the periodic transmission SRS and the aperiodic transmission SRS is different.
  • the non-scheduled SRS has a higher CCA detection priority than the periodically transmitted SRS, such as only adopting Multiple CCA checks either configure a shorter random backoff N value or lower the threshold.
  • the SRS transmission may be sent using a short control signal.
  • the transmitting node continues to perform CCA detection, or, at intervals of CCA detection, or at the next predetermined time.
  • the transmitted SRS frequency domain interval may be adjusted from 2 to 3, 4, 6, 8, and 12.
  • the information processing method of the embodiment of the present invention acquires the first information, and performs contention access and SRS transmission according to the first information.
  • the first information includes at least one of the following: a frame structure, an LBT execution location, SRS transmission location, proprietary indication signaling, etc.; thus, the collision problem when the LBT detection location and the SRS transmission location are both on the last OFDM symbol of the subframe can be solved, the probability of the UE accessing the channel can be improved, and the SRS is increased. Send an opportunity.
  • the present invention further provides an information processing method, which is applied to a base station side, and the method includes:
  • the first information includes at least one of the following:
  • the notification message includes at least the following information: a time domain location in which the UE transmits the SRS, a frequency domain pattern of the SRS, a resource block index number without signal energy, or a pattern in which the LBT is executed, and an LBT execution location.
  • the UE can obtain the first information based on the configuration information, perform contention access according to the first information, and send the SRS, improve the probability of the UE accessing the channel, and increase the transmission opportunity of the SRS.
  • FIG. 2 is a schematic diagram of coexistence of SRS and LBT in a frequency division manner in the same OFDM symbol according to an embodiment of the present invention
  • This embodiment mainly introduces a processing procedure when the UE side performs the LBT position and the SRS transmission position is the same as the last OFDM symbol of the subframe. As shown in FIG. 2, when the SRS and the LBT are in the same OFDM symbol, the collision problem between them can be solved by frequency division.
  • UE1 and UE2 are scheduled in two consecutive subframes, for example, UE1 is scheduled in uplink subframe #1, and UE2 is scheduled in uplink subframe #2, and each UE performs
  • the location of the LBT is located on the last OFDM symbol of the uplink subframe (only 13 OFDM symbols are used for data transmission in one subframe).
  • the specific processing is as follows:
  • the base station sends a notification message to the UE.
  • the notification message includes: a time domain location where the UE sends the SRS, a frequency domain pattern of the SRS, and a Resource Blocks (RB) index number or execution without signal energy.
  • LBT detection pattern, LBT execution position and other information are included in the SRS.
  • the UE that receives the base station notification message performs channel busy detection and SRS transmission at the respective execution LBT locations according to the indication information.
  • the UE1 learns from the base station that the location where the SRS is transmitted is located at the last OFDM symbol position of the scheduling subframe and the frequency domain pattern is an odd number of frequency domain resource index numbers (or The resource location of the even number; it should be noted that the resource here may be a resource pattern of a subcarrier level or a resource pattern of a resource block (Resource Blocks, RB for short).
  • the UE1 learns from the base station that the location where the LBT is performed is located in the last OFDM symbol of the previous subframe of the scheduling subframe and the frequency domain pattern in which the LBT process is performed is the resource location where the frequency domain resource index number is even (or odd) (the resource here) It can be a resource pattern at the subcarrier level or a resource pattern at the RB level).
  • UE2 also learns information similar to UE1 from its own base station (ie, learns the SRS transmission location and performs the LBT specific location).
  • the UE 2 Based on the above-mentioned learned information, the UE 2 performs channel access detection of the unlicensed carrier on the corresponding frequency domain resource in the last OFDM of the previous subframe of the self-scheduling subframe (that is, the specific frequency domain resource of the last OFDM symbol in the scheduling of the UE1).
  • Upper UE2 performs LBT detection). While the UE2 performs the time-frequency domain LBT process, the UE1 also transmits the SRS according to the learned SRS transmission pattern frequency domain position on the last symbol of the self-scheduling subframe. Specifically, UE2 or UE1 may perform the UL LBT process in one of the following manners in the last OFDM symbol:
  • Method 1 Perform CCA (eg, first CCA) detection only once.
  • the frequency domain of the last OFDM symbol is matched to the resource whose index index number is even, and the time domain performs the first CCA detection according to the duration of one OFDM symbol.
  • the duration of the first CCA detection can be configured by 34 microseconds ( ⁇ s) (current default duration), 25 ⁇ s (PIFS duration), 20 ⁇ s, 18 ⁇ s, 16 ⁇ s (SIFS duration), or even 9 ⁇ s or 10 ⁇ s configured for one eCCA backoff.
  • ⁇ s current default duration
  • PIFS duration 25 ⁇ s
  • SIFS duration 16 ⁇ s
  • 9 ⁇ s or 10 ⁇ s configured for one eCCA backoff.
  • SIFS is the abbreviation of Short Interframe Space
  • PIFS is the English abbreviation of Point Interframe Space
  • its Chinese name is dot interframe space.
  • the duration of the first CCA detection is configured to be 25 ⁇ s, 20 ⁇ s or 18 ⁇ s (Note: these durations are greater than the ACK feedback duration (16 us) in the Wi-Fi system, thus facilitating the fairness of the coexistence of the Wi-Fi system and the LAA system) .
  • the first CCA duration is 34 ⁇ s, wherein the first CCA duration is separated by an idle duration (for some receiving delays or MAC processing delays, etc.) and multiple detection duration groups. Cheng (Note: the duration of each component of the first CCA duration can be flexibly adjusted within the total duration).
  • a detection duration is composed of a reception duration, a detection duration, and a transmission conversion duration; wherein the reception duration is used to receive signal energy; and the detection duration is used to detect whether the received signal energy reaches a channel idle threshold, thereby determining that the channel is busy. Condition; the transceiving conversion duration is used for a conversion time of the device from the detection state to the reception state or from the reception state to the detection state.
  • MAC is the English abbreviation of Media Access Control
  • its Chinese name is the media access control layer.
  • Case 1 If the channel is busy at some time during the 34 ⁇ s time of the first CCA, such as between 18 ⁇ s and 27 ⁇ s, the first CCA detection is considered to have failed. Conversely, if it is detected that the channel is idle for the entire 34 ⁇ s, the first CCA detection is considered successful.
  • Case 3 If the channel is busy at a certain time in the 34 ⁇ s time of the first CCA, such as between 18 ⁇ s and 27 ⁇ s, the detection can be continued until the channel is busy to idle (here from busy to idle as the first The starting point of a CCA), and the continuous idle time lasts for 34 ⁇ s. It is also considered that the initial CCA detection of the device is successful. Note: The starting moment of the first CCA detection here is dynamic.
  • Mode 2 Perform multiple CCA (eg, first CCA) detection.
  • mode 2 is similar to mode 1, except that the UE can perform multiple CCA detections on the last OFDM symbol of the previous subframe of the scheduling subframe.
  • the number of times of the first CCA is related to the duration of the first CCA detection, that is, the number of times of the first CCA is equal to the value obtained by dividing the time length that can be used to perform the LBT process by the time length of the first CCA detection. For example, if the first CCA duration is 34 ⁇ s, the first CCA detection can be performed twice in one symbol.
  • mode 2 and mode 1 determine whether the first CCA is successfully detected. The difference is that if the channel is busy according to one of the three conditions, the next time can be continued.
  • the first CCA detection wherein the first CCA detection has two starting positions: one is that the first CCA detection position is fixed each time, and the other is that each time the first CCA detection position is sliding (ie, a certain moment)
  • the first CCA detection start position is slid until the channel starts from busy to idle.
  • the eCCA is composed of a plurality of second CCA detections.
  • Case 1 If the channel is detected to be busy during the eCCA detection process, a defer period is entered. There are two more treatments for Case 1:
  • Process 1 During the delay period, the N value decrement cannot be performed when the channel is detected to be idle.
  • the second CCA detection duration in the eCCA process is configured to be 9 ⁇ s or 10 ⁇ s (the default duration of each company).
  • the delay period can be: 34 ⁇ s (corresponding to the delay duration of the Wi-Fi system), 25 ⁇ s, 20 ⁇ s, 18 ⁇ s, 16 ⁇ s, 9 ⁇ s or 10 ⁇ s, or 0 ⁇ s (delay configuration is 0); Note: detected within the delay period The channel is idle and no N value is decremented.
  • N The value of N is randomly generated in a fixed window (within the duration of one symbol).
  • the difference from the process 1 is that the channel idle is detected during the delay period, and N is allowed to perform the decrement operation of the preset value.
  • the eCCA detection single time duration may be the same as or different from the second CCA detection duration in the eCCA fallback process. If the channel is detected to be idle during the delay period or N is decremented to zero during the delay period, then the device is considered to be able to use the unlicensed carrier.
  • the process of direct eCCA is simplified to allow multiple random backoffs within one symbol time. That is, the second CCA detection duration is configured to be 9 ⁇ s or 10 ⁇ s (the default duration of each company).
  • Mode 4 First CCA and eCCA process.
  • the duration of the first CCA is the same as that of Mode 1, but you need to choose the shortest possible duration, such as 25 ⁇ s (PIFS duration) (one symbol remaining time 46 ⁇ s), 20 ⁇ s (one symbol remaining duration 51 ⁇ s), 18 ⁇ s (one symbol remaining duration 53 ⁇ s) ), 16 ⁇ s (one symbol remaining time 55 ⁇ s) can even be configured to be 9 ⁇ s or 10 ⁇ s (one symbol remaining time 62 ⁇ s) for one eCCA backoff.
  • the eCCA process is the same as mode 3.
  • the first CCA is configured to be 16 ⁇ s, and the backed-off N value randomly generates a value in [0, 3]. Different N values are configured according to different first CCA durations.
  • the configuration delay period is 0 or the channel is idle during the delay period, and the N value is decremented by the preset value.
  • the criteria for determining the right to use the unlicensed carrier by the UE include:
  • Criterion 1 The first CCA detects that the channel is idle, and considers that the UE acquires the use right of the unlicensed carrier;
  • Criterion 2 If the channel is idle once in the first CCA, the UE is considered to be not Authorization carrier usage rights;
  • Criterion 3 The value of N is decremented to 0, and the UE is considered to acquire the right to use the unlicensed carrier.
  • the reserved signal may be a Preamble, a Primary Synchronization Signal (PSS), a Secondary Synchronization Signal (SSS), a preset signal, etc., and the reserved signal may be used.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • FIG. 3 is a schematic diagram of coexistence of SRS and LBT in a time division manner in the same OFDM symbol according to an embodiment of the present invention
  • This embodiment mainly introduces a process in which the location of the LBT performed by the UE side and the SRS transmission location are the same as the last OFDM symbol of the subframe.
  • the collision problem between them can be solved in a time division manner.
  • the UE within this symbol needs to send its own SRS on the remaining resources to complete the channel access operation, that is, whether the SRS can successfully send the LBT-dependent process and the configured or set parameters to determine. Therefore, in the embodiment, the preferred LBT process or process is as follows:
  • Mode 1 Perform CCA (eg, first CCA) detection only once. This method is the same as LBT mode 1 in the second embodiment.
  • Mode 2 Perform multiple CCA (eg, first CCA) detections.
  • first CCA eg, first CCA
  • This method is different from the LBT mode 2 in the second embodiment in that if the duration of the first CCA is 34 ⁇ s, the first CCA can be executed only once in one symbol. Thus, if the first CCA detection fails, the SRS cannot be transmitted. Therefore, it is necessary to select a relatively short first CCA duration, such as 18 ⁇ s, the number of times of the first CCA can be configured to be 2 times, and the sum of the plurality of first CCA detection durations cannot exceed about half of a symbol duration. Since the SRS energy is mainly concentrated in the middle of 30 ⁇ s or 40 ⁇ s, the duration of the remaining SRS transmission cannot be less than 30 ⁇ s or 40 ⁇ s, This will result in inaccurate channel conditions for the probe.
  • Method 3 Directly perform a short eCCA process.
  • This method differs from the LBT mode 3 in the second embodiment in that the value of N is only a positive integer within 4 or less. And preferably, the delay period duration is 0, or the operation of the N value is decremented by a preset value when the channel idle is detected within the delay period. This facilitates the UE accessing the channel as soon as possible, thereby transmitting the SRS within the remaining partial symbols.
  • the mode 4 in the second embodiment can also be used in the LBT channel access process in this embodiment, but the shorter first CCA duration needs to be further selected, and the N value of the random backoff is also selected as small as possible, or mode 4
  • the direction of change is equivalent to the delay period + eCCA process.
  • the UE needs to access the channel as fast as possible, and the remaining part of the resources are used for transmitting the SRS. At this point, only one truncated SRS sequence can be sent on the remaining resources.
  • the frequency domain pattern used in the CCA detection may be a frequency domain pattern of a full bandwidth and a narrowband bandwidth, and a resource corresponding to both ends of the detection frequency domain (ie, the energy set is on the resources at both ends of the frequency domain). And detecting intermediate resources in the frequency domain (that is, the energy collection is on the resources in the middle of the frequency domain).
  • FIG. 4 is a schematic diagram of an LBT and an SRS position respectively located in a last OFDM symbol of an adjacent subframe according to an embodiment of the present invention
  • This embodiment mainly introduces that the location where the UE performs the LBT process is on the last OFDM symbol of the previous subframe of the scheduling subframe, and the transmission of the SRS is the last OFDM symbol of the scheduling subframe. Therefore, the UE side data and the SRS can be successfully transmitted depending on the execution of the LBT procedure within one OFDM symbol.
  • the specific LBT process that can be used is one of the following:
  • the LBT implementation manner can adopt one of the four LBT methods introduced in the second embodiment.
  • Different The implementation of the LBT process in the second embodiment is performed according to a certain frequency domain pattern.
  • the execution of the LBT process may be performed on the frequency domain resource corresponding to the specific pattern in the frequency domain, or Perform CCA detection on the full bandwidth corresponding frequency domain resource.
  • the manner of transmitting the SRS is performed without changing the original SRS transmission position, so that there is no standardization effect.
  • the priority of performing the LBT should be higher than the transmission of the SRS or the method of Embodiment 2 or 3 can also be adopted.
  • FIG. 5 is a schematic diagram of an LBT performing a first OFDM symbol in a subframe of a last OFDM symbol of a subframe and a SRS position according to an embodiment of the present invention
  • This embodiment mainly introduces a case where an SRS is transmitted at a first OFDM symbol position of a scheduling subframe.
  • the LBT execution location is still located on the last OFDM symbol of the previous subframe of the UE scheduling subframe.
  • the execution of the LBT is the same as that described in Embodiment 4.
  • the UE needs to send a reserved signal of the non-complete symbol. Used to occupy the channel and prevent it from being preempted by other nodes.
  • the transmission reservation signal may be a signal that can be used for identification by other UEs, such as Preamble, PSS/SSS, preset signal, and the like.
  • the reserved signal may be transmitted in full bandwidth or in a frequency domain specific pattern.
  • the CCA detection may be performed in the frequency domain, or may perform CCA detection according to a preset specific frequency domain pattern, or may perform CCA detection on the entire bandwidth to determine whether the channel is idle, thereby using an unlicensed carrier.
  • the UE capable of performing the reserved signal identification performs the SRS transmission on the first OFDM symbol of the next subframe, and each UE can perform SRS transmission in a symbol by time division, frequency division, and code division. This helps the associated base station to perform corresponding channel measurements in advance.
  • FIG. 6 is a schematic diagram of an LBT execution position in a last OFDM symbol of a subframe and an end of an SRS transmission window is located at a subframe boundary according to an embodiment of the present disclosure
  • the symbol allocated to the UE for the LBT is the last four OFDM symbols of the previous subframe of the scheduling subframe, and the manner in which the UE performs the LBT may be one of the four manners introduced in the second embodiment.
  • the LBT process with the first CCA plus the random backoff is taken as an example to illustrate the SRS transmission process in the LBT process and the SRS transmission window.
  • the LBT parameters configured by the base station to the UE are as follows:
  • the first CCA detection duration is 34 ⁇ s
  • the delay period is 34 ⁇ s
  • the second CCA detection is 9 ⁇ s
  • the decrement function is enabled during the delay period.
  • the N value is 5 (if N is randomly generated, it is also required to be as long as possible in a fixed window length. A random number N is generated for a period of 2 symbols, and the value is as small as possible). Then, the LBT process is performed in accordance with the above parameters in 4 OFDM symbols: the duration of 4 OFDM symbols is about 284 ⁇ s.
  • step 1 the UE1 performs the first CCA detection. If the first CCA detects that the channel is idle, it considers that the UE competes for the use right of the unlicensed carrier, and then sends the reservation of the non-complete symbol on the remaining resources in the fourth last symbol. The signal, and the starting position of the SRS transmission window starts from the third last symbol. On the third last symbol, the UE transmits its own SRS, and can transmit according to the frequency domain specific pattern.
  • the advantage is that: in the same cell When the other UE continues the CCA detection, the pattern can be identified, so that the SRS can also be transmitted in the SRS transmission window, and the competing resources can be reused.
  • the process proceeds to step 2.
  • Step 2 If the UE detects that the channel is busy, enters the delay period, and detects that the channel is idle during the delay period, the N value can be used as a preset value decrementing operation. For example, if the UE detects that the channel is idle during the delay period, the value of N is decremented by 4. The N value at this time is 1.
  • Step 3 Enter the eCCA process.
  • N is decremented by one.
  • the UE proceeds to step 2. Until the value of N is decremented to zero.
  • the SRS transmission window size is the last OFDM symbol of the subframe or from the LBT execution success time.
  • the subframe boundary or the available resources after the LBT is successfully executed.
  • the SRS may be transmitted according to a specific pattern in the frequency domain, so that the UE that can be multiplexed can identify and multiplex the competing resources for data transmission.
  • multiple UEs that have successfully contending for the channel in the SRS transmission window may transmit the SRS in the SRS transmission window together by frequency division, time division or code division.
  • the frequency domain resource that sends the SRS is a frequency domain resource other than the Physical Uplink Control CHannel (PUCCH) resource, that is, the Physical Uplink Shared Channel (P ⁇ SCH). resource of.
  • PUCCH Physical Uplink Control CHannel
  • P ⁇ SCH Physical Uplink Shared Channel
  • FIG. 7 is a schematic diagram of an LBT execution position in a last few OFDM symbols of a subframe and a start of an SRS transmission window at a start of a subframe according to an embodiment of the present disclosure
  • the symbol allocated to the UE for LBT is the last 4 OFDM symbols of the previous subframe of the scheduling subframe.
  • the manner in which the UE performs the LBT may be competitively accessed according to one of the modes 3 and 4 (that is, the LBT mode with random backoff) introduced in the second embodiment.
  • the specific LBT process refers to the second embodiment.
  • the UE may send the reserved signal of the non-complete symbol and/or the reserved signal of the complete symbol, and the reserved signal may be a full bandwidth transmission, or Is the frequency domain specific pattern sent.
  • the reserved signal may be Preamble, PSS/SSS, or the like.
  • the reserved signal is transmitted according to the frequency domain specific pattern, so that other UEs in the same cell are identified, so that the respective SRSs are transmitted in the SRS transmission window of the next subframe.
  • the reserved signal may also be sent in full bandwidth, and may carry information such as a cell identifier or a group identifier for other UEs to identify.
  • the UE that successfully contends can perform SRS transmission in the configured SRS transmission window.
  • the SRS transmission window is 1 OFDM symbol, and the SRS transmission window may be at most one subframe (ie, the first subframe after the LBT position).
  • the SRS transmission in this embodiment is the first three OFDM symbols of the subframe.
  • the location and size of the SRS transmission window may be a base station configuration, or may be pre-agreed.
  • the frequency domain resource for transmitting the SRS is a frequency domain resource other than the PUCCH resource, that is, a resource for multiplexing the PUSCH.
  • the process is:
  • the current N value of the UE may be frozen; in another aspect, the UE continues to perform the LBT procedure until N is decremented to zero, which is equivalent to the start of the SRS and/or data transmission.
  • the SRS transmission may be performed in the uplink/downlink conversion time or in the GP or UpPTS of the special subframe or on the last OFDM symbol or the first OFDM symbol of the uplink subframe.
  • the SRS transmission window size is a fixed value, and the LBT execution success time does not reach the subframe boundary, and the start position of the SRS transmission window is the LBT execution success time, and the SRS is performed within a fixed SRS transmission window length.
  • the SRS may be transmitted according to a specific pattern in the frequency domain, so that the UE that can be multiplexed can be identified, and the resources that are contending for the multiplex are used for data transmission. At this time, the starting position of the data transmission may not be the beginning of the subframe boundary.
  • FIG. 8 is a schematic diagram of an LBT execution location in a last OFDM symbol of a subframe and a DMRS transmission location to replace a SRS function according to an embodiment of the present invention; wherein the DMRS is an abbreviation of a demodulation reference signal, and the Chinese name is: Demodulation reference signal".
  • the LBT execution location is located in the last OFDM symbol of the scheduling subframe, and the LBT mode can be in the manner of Embodiment 2.
  • the SRS can be replaced by the DMRS signal. Since the DMRS also has a channel measurement function and is more accurate than the measurement of the SRS channel, in order to enable the base station to advance the base station channel measurement, the DMRS can be transmitted using the fourth symbol of the P ⁇ SCH resource. Instead of transmitting the SRS; or, the SRS is also transmitted at the location of the DMRS; or the SRS is transmitting on the last OFDM symbol of the first slot of the scheduling subframe.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.
  • an information processing device is provided, which is used to implement the above-mentioned embodiments and preferred embodiments, and has not been described again.
  • the term "unit" may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 9 is a schematic structural diagram of an information processing apparatus according to an embodiment of the present invention.
  • the base station includes:
  • the obtaining unit 91 is configured to acquire the first information.
  • the processing unit 92 is configured to perform contention access and SRS transmission according to the first information. give away;
  • the first information includes at least one of the following:
  • the obtaining unit 91 is further configured to:
  • Knowing the first information through predefined information or,
  • the first information is learned based on the UE side configuration.
  • the frame structure includes: an FDD frame structure for all uplinks, a TDD structure, and a dynamic uplink and downlink proportioning frame structure.
  • the LBT execution location comprises:
  • the processing unit performs the location of the LBT, including:
  • M and L are both positive integers; the way to determine M and L is: through base station configuration or predefined settings.
  • the processing unit performs the location of the LBT, including:
  • S is a positive integer; the way to determine M and t is: through base station configuration or predefined settings.
  • the processing unit performs the location of the LBT, including:
  • a specific RE on an OFDM symbol in a DwPTS in a special subframe is a specific RE on an OFDM symbol in a DwPTS in a special subframe.
  • the processing unit 92 performs the sending of the SRS, including:
  • the SRS is transmitted at the time domain location of the DMRS.
  • the periodically sending the SRS includes:
  • the SRS is sent after the existing SRS transmission period is modified.
  • the SRS transmission period is shortened to 1 ms.
  • the aperiodic sending SRS includes:
  • Trigger sending aperiodic SRS through DCI information
  • the LBT When the LBT is successfully executed, it triggers sending an aperiodic SRS.
  • the location of the SRS transmission includes: at least one of the last k OFDM symbols in the downlink subframe; or at least a gap between the downlink subframe and the uplink subframe.
  • One of the symbols; or at least one of the last p OFDM symbols in the uplink subframe; or, the SRS transmission window; or the location of the DMRS in the uplink subframe; or the first one of the subframe or the scheduling subframe The last OFDM symbol position of the time slot; where k, p are positive integers; the way to determine k and p is: through base station configuration or predefined settings; k, p includes at least one of the following: 1, 2, 3, 4, 5.
  • the determining, according to the LBT result, the sent SRS includes:
  • the SRS can be sent after the first available OFDM symbol after the LBT detection successfully acquires the channel, without waiting for the SRS of the configured SRS transmission resource;
  • SRS is transmitted on the first or j OFDM symbols after the LBT detection succeeds in acquiring the channel, and j is a positive integer;
  • the SRS is transmitted in an SRS transmission window after the LBT detection successfully acquires the channel.
  • the SRS transmission window and/or the SRS transmission position in the SRS transmission window may be determined by at least one of: a starting position of the SRS transmission window; a size of the SRS transmission window; and an interval between SRS transmission positions in the SRS transmission window. .
  • the SRS transmission location and/or the SRS transmission location in the SRS transmission window and/or the SRS transmission window may be determined by one of the following: configured by the base station; or, predefined; or, by higher layer signaling.
  • the configured SRS transmission window includes:
  • the starting position of the SRS transmission window is related to the LBT execution success time or the configured transmission window position
  • the size of the SRS transmission window is composed of Q OFDM symbols or less than an integer multiple of OFDM symbols; wherein Q is a positive integer;
  • the manner of determining the size of the SRS transmission window includes: configuring by a base station, or pre-defining, or notifying by high layer signaling.
  • the processing unit 92 performs the frequency domain location of the SRS transmission, including:
  • the SRS is transmitted in accordance with a specific SRS frequency domain pattern.
  • the processing unit 92 is further configured to:
  • the LBT position is on the last OFDM symbol of the subframe, and the transmission position of the SRS is also on the last OFDM symbol of the subframe.
  • the SRS transmission and the LBT execution process coexist in one symbol by frequency division, or
  • the transmission of the SRS and the execution of the LBT are coexisted on one symbol by the time division method.
  • the processing unit 92 is further configured to:
  • the frequency domain protection interval is allowed to be reserved between the frequency domain resources corresponding to the sending SRS and the performing CCA detection.
  • the processing unit 92 is further configured to:
  • the notification message includes at least the following information: The time domain location of the SRS, the frequency domain pattern of the SRS, the resource block index number without signal energy, or the pattern of the LBT execution, and the LBT execution location.
  • the processing unit 92 is further configured to:
  • the SRS is transmitted on the remaining resources.
  • the processing unit 92 is further configured to:
  • the LBT execution location is on the last OFDM symbol of the previous subframe of the scheduling subframe
  • the SRS transmission location is on the first OFDM symbol of the scheduling subframe
  • the SRS is transmitted on a OFDM symbol according to a specific SRS frequency domain pattern or the SRS is transmitted over the entire frequency domain bandwidth.
  • the processing unit 92 is further configured to:
  • the SRS is transmitted on the remaining symbols of the M symbols (excluding the symbols used to perform the LBT) (or the remaining symbols are used as SRS) Transmission window for SRS transmission); or,
  • the SRS is in the configured SRS. Send on the resource.
  • the LBT process is performed to detect that the channel is idle and all M symbols are occupied, and then the SRS is sent on the configured SRS resource;
  • the configured SRS resource may be the first OFDM symbol after the configured LBT resource location or the last OFDM symbol or the next subframe in which the LBT resource location is configured. Set the SRS transmission window after the LBT resource location.
  • the processing unit 92 is further configured to:
  • the SRS is transmitted at the last symbol position of the first slot of the subframe.
  • the proprietary indication signaling includes:
  • the base station configures the enabling status of each function of the LBT and the LBT parameter;
  • the UE side configures the enabling status of each function of the LBT and the LBT parameters.
  • each function of the LBT includes: a non-competitive retreat window, a fixed competition retreat window, and a dynamically variable exponential back-off window;
  • the LBT parameter specifically includes at least one of the following: a first CCA, a second CCA, a Defer period, and an N; the N value is pre-configured or randomly generated.
  • the processing unit 92 performs the LBT process according to the enabling status of each function of the LBT and the LBT parameter, including:
  • Method 1 Perform the first CCA test only once
  • Manner 2 performing Y first CCA detections; wherein Y is a positive integer greater than or equal to 2;
  • Method 3 Directly perform eCCA detection
  • Mode 4 Perform first CCA detection and eCCA detection.
  • the number Y of performing the first CCA detection in the mode 2 is determined according to the duration of the first CCA detection and the number of symbols used to perform the LBT.
  • the mode 3 includes:
  • the eCCA is composed of W second CCA detections; wherein W is a positive integer;
  • the second CCA detects that the channel is busy, it enters a delay period; wherein if the channel is idle during the delay period,
  • the N value is decremented by the preset value or the N value is not decremented by the preset value; the N value can be obtained by pre-defining or base station configuration or randomly generated.
  • the preset value is configured by a base station or predefined in advance; or
  • the second CCA detects that the channel is busy, it does not enter the delay period, but proceeds to the next second CCA detection.
  • the processing unit 92 is further configured to:
  • the criteria for determining the right to use the UE to obtain an unlicensed carrier include:
  • Criterion 1 The first CCA detects that the channel is idle, and considers that the UE acquires the use right of the unlicensed carrier;
  • Criterion 2 If the channel is idle once detected in the first CCA, the UE is considered to acquire the use right of the unlicensed carrier;
  • Criterion 3 The value of N is decremented to 0, and the UE is considered to acquire the right to use the unlicensed carrier.
  • the above information processing apparatus can be applied to a UE.
  • the obtaining unit 91 and the processing unit 92 may be a central processing unit (CPU), a microprocessor (MPU, a Micro Processor Unit) in a user equipment to which the information processing device belongs.
  • CPU central processing unit
  • MPU Microprocessor
  • FPGA Field Programmable Gate Array
  • FIG. 10 is a schematic structural diagram of another information processing apparatus according to an embodiment of the present invention. As shown in FIG. 10, the apparatus includes:
  • the configuration unit 11 is configured to set configuration information
  • the sending unit 12 is configured to send a notification message carrying the configuration information to the UE, so that the UE can acquire the first information based on the notification message and compete for the content according to the first information.
  • the first information includes at least one of the following:
  • the notification message includes at least the following information: a time domain location in which the UE transmits the SRS, a frequency domain pattern of the SRS, a resource block index number without signal energy, or a pattern in which the LBT is executed, and an LBT execution location.
  • the above information processing apparatus can be applied to a base station.
  • the configuration unit 11 may be implemented by an information processing device or a CPU, an MPU, a DSP, an FPGA, or the like in a base station to which the information processing device belongs; the transmitting unit 12 may be implemented by a transmitter.
  • the embodiment of the invention further describes a computer storage medium, wherein the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the foregoing information processing method.
  • the storage medium is configured to store program code for performing the following steps: acquiring first information; performing contention access according to the first information; and transmitting the sounding reference signal SRS; wherein the first information includes the following At least one of: a frame structure, an LBT execution location, an SRS transmission location, and a proprietary indication signaling.
  • the storage medium setting may also be a program code for storing other steps of the information processing method involved in the embodiment of the present invention, and details are not described herein again.
  • the embodiment of the present invention further describes an information processing system, where the system includes a UE and a base station, wherein the UE includes an information processing apparatus as shown in FIG. 9, and the base station includes an information processing apparatus as shown in FIG. , will not repeat them here.
  • the disclosed apparatus and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner such as: multiple units or components may be combined, or Can be integrated into another system, or some features can be ignored or not executed.
  • the coupling, or direct coupling, or communication connection of the components shown or discussed may be indirect coupling or communication connection through some interfaces, devices or units, and may be electrical, mechanical or other forms. of.
  • the units described above as separate components may or may not be physically separated, and the components displayed as the unit may or may not be physical units, that is, may be located in one place or distributed to multiple network units; Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may be separately used as one unit, or two or more units may be integrated into one unit;
  • the unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing storage device includes the following steps:
  • the foregoing storage medium includes: a removable storage device, a read-only memory (ROM), a magnetic disk, or an optical disk, and the like, which can store program codes.
  • the above-described integrated unit of the present invention may be stored in a computer readable storage medium if it is implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product stored in a storage medium, including a plurality of instructions.
  • a computer device (which may be a personal computer, server, or network device, etc.) is caused to perform all or part of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes various media that can store program codes, such as a mobile storage device, a ROM, a magnetic disk, or an optical disk.
  • the first information includes at least one of the following: a frame structure, an LBT execution location, and an SRS transmission Location, proprietary indication signaling.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种信息处理方法、装置及系统,其中,该方法包括:获取第一信息;根据第一信息进行竞争接入以及探测参考信号(SRS)的发送;其中,第一信息包括下述至少之一:帧结构、先听后说(LBT)执行位置、(SRS)发送位置、专有指示信令。通过本发明,解决了相关技术中LBT检测位置和SRS发送位置均在子帧的最后一个OFDM符号上时的碰撞问题,达到了能提升UE接入信道的概率,以及增加SRS的发送机会的效果。

Description

信息处理方法、装置及系统 技术领域
本发明涉及通信领域,具体而言,涉及一种信息处理方法、装置及系统。
背景技术
随着数据业务的快速增长,授权载波上承受的数据传输压力也越来越大,因此,通过非授权载波来分担授权载波中的数据流量成为后续长期演进(Long Term Evolution,简称为LTE)系统发展的一个重要的演进方向。其中,非授权载波具有以下特征:
1、非授权频谱不需要购买,频谱资源零成本,因此,它具有免费/低费用的特征。
2、个人、企业都可以参与部署,设备商的设备可以任意部署,因此,它具有准入要求低,成本低的特征。
3、非授权频段中的5GHz、2.4GHz等频段都可以使用,因此,它具有可用带宽大的特征。
4、非授权载波具有共享资源的特征,即多个不同系统都运营其中时或者同一系统的不同运营商运营其中时,可以考虑一些共享资源的方式,提高频谱效率。
5、它具有无线接入技术多的特征,即跨不同的通信标准,协作难,网络拓扑多样。
6、它具有无线接入站点多的特征,即用户数量大,协作难度大,集中式管理开销大。
7、它具有应用多的特征,即多业务被提及可以在其中运营,例如机器到机器(Machine to Machine,简称为M2M)、车辆到车辆(Vehicle to Vehicle,简称为V2V)。
可见,如果LTE系统能够使用目前存在的非授权载波,将大大提升LTE系统的潜在频谱资源,将使LTE系统能够获得更低的频谱成本。
但是,LTE系统中的设备如基站或用户设备(User Equipment,简称为UE)等,在使用非授权载波资源之前,必须满足非授权载波的管制要求,即,设备在使用非授权载波进行信息传输之前,必须执行先听后说(Listen Before Talk,简称为LBT)机制。进一步的,由于第三代合作伙伴计划(3rd Generation Partnership Project,简称为3GPP)授权频谱辅助接入(Licensed Assisted Access,简称为LAA)会议进展,目前对于上行而言,仅要求基本的上行功能以保证上行可以正常运行即可。其中,上行的基本功能包括:数据传输之前的上行链路(Uplink,简称为UL)LBT过程、用于对上行信道进行测量的信道探测参考信号(Sounding Reference Signal,简称SRS)、物理随机接入信道(Physical Random Access Channel,简称为PRACH)等。其中,对于SRS传输,由于SRS主要用于保持上行定时和实现基站的上下行调度(由于信道的互易性),因此,如果上行传输被允许,则需要考虑下面几个问题:一是上行传输之前的LBT如何执行,才能成功发送SRS;二是LBT执行成功之后,如何发送SRS;以及如果LBT和SRS共存在一个正交频分复用(Orthogonal Frequency Division Multiplexing,简称为OFDM)符号内时,如何处理LBT和SRS的碰撞问题。也就是说,必须解决上述问题,才能保证上行传输定时以及保证基站的上行频率选择行调度(将信道状况较好的资源分配给上行链路传输)、调制与编码策略(Modulation and Coding Scheme,简称为MCS)的确定等。
发明内容
有鉴于此,本发明实施例期望提供一种信息处理方法、装置及系统,能解决LBT检测位置和SRS发送位置均在子帧的最后一个OFDM符号上时的碰撞问题,能提升UE接入信道的概率,以及增加SRS的发送机会。
为达到上述目的,本发明实施例的技术方案是这样实现的:
本发明实施例提供了一种信息处理方法,应用于用户设备UE侧,所述方法包括:获取第一信息;根据所述第一信息进行竞争接入以及探测参考信号SRS的发送;其中,所述第一信息包括下述至少之一:帧结构、先听后说LBT执行位置、SRS发送位置、专有指示信令。
可选地,所述获取第一信息,包括:通过预定义信息获知第一信息;或者,基于基站侧配置获知第一信息;或者,基于UE侧配置获知第一信息。
可选地,所述帧结构包括以下之一:全部用于上行的频分双工FDD帧结构;时分双工TDD结构;动态上下行配置帧结构。
可选地,所述LBT执行位置包括:上行子帧;或者,特殊子帧;或者,下行子帧。
可选地,当LBT执行位置位于上行子帧时,执行LBT的位置包括:上行子帧中的最后一个正交频分复用OFDM符号;或者,上行子帧中的最后M个OFDM符号;或者,上行子帧中的最后M个OFDM符号和下一子帧中的前L个OFDM符号;或者,上行子帧中的所有OFDM符号;其中,M与L均为正整数;确定M和L的方式为:通过基站配置或是预定义设置。
可选地,当LBT执行位置位于特殊子帧时,执行LBT的位置包括:特殊子帧中保护间隔GP的最后一个OFDM符号;或者,特殊子帧中GP的最后S个OFDM符号;或者,特殊子帧中GP的最后S个OFDM符号和上行导频时隙UpPTS中的t个OFDM符号;或者,特殊子帧中的GP中所有OFDM的符号;或者,特殊子帧中的GP中所有OFDM的符号和UpPTS中的符号;其中,S,t为正整数;确定M和t的方式为:通过基站配置或是预定义设置。
可选地,当LBT执行位置位于下行子帧时,执行LBT的位置包括:下行子帧中的最后一个OFDM符号;或者,下行子帧中的最后一个OFDM 符号上的特定资源粒子RE;或者,特殊子帧中的下行导频时隙DwPTS所占用的符号;或者,特殊子帧中的DwPTS中的最后M个OFDM符号;或者,特殊子帧中的DwPTS中的OFDM符号上的特定RE。
可选地,所述SRS的发送,包括:周期性发送SRS;或者,非周期性发送SRS;或者,周期和非周期结合发送SRS;或者,根据LBT执行成功情况发送SRS;或者,在解调参考信号DMRS的时域位置发送SRS。
可选地,所述周期性发送SRS,包括:根据现有的SRS发送周期发送SRS;或者,修改现有SRS发送周期后发送SRS。
可选地,所述非周期性发送SRS,包括:通过下行控制信息DCI信息触发发送非周期的SRS;或者,LBT执行成功时刻触发发送非周期的SRS。
可选地,在触发非周期性SRS传输之后,所述SRS发送的位置,包括:下行子帧中的最后k个OFDM符号中至少之一;或者,下行子帧与上行子帧之间的gap中至少之一个符号;或者,上行子帧中的最后p个OFDM符号中至少之一;或者,SRS传输窗;或者,上行子帧中DMRS的位置;或者,子帧或调度子帧中的第一个时隙的最后一个OFDM符号位置;其中,k,p为正整数;确定k和p的方式为:通过基站配置或是预定义设置;k,p至少包括以下之一:1,2,3,4,5。
可选地,所述根据LBT执行成功情况发送SRS,包括:在执行LBT成功获取到信道后的第一个可用的OFDM符号上发送SRS;或者,在执行LBT成功获取到信道后的子帧的最后一个OFDM符号上发送SRS;或者,在执行LBT成功获取到信道后的第一个或j个OFDM符号上发送SRS,其中,j为正整数;或者,在执行LBT成功获取到信道后的未到一个符号边界的资源上发送SRS;或者,在执行LBT成功获取到信道后的SRS传输窗内发送SRS。
可选地,所述SRS传输窗和/或SRS传输窗内的SRS发送位置可由以下至少之一确定:SRS传输窗的起始位置;SRS传输窗的大小;SRS传输窗内SRS传输位置间的间隔。
可选地,所述SRS传输窗和/或SRS传输窗内的SRS发送位置和/或SRS发送位置可以通过以下之一确定:通过基站配置;或者,预先定义;或者,通过高层信令通知。
可选地,所述SRS传输窗的配置,包括:SRS传输窗的起始位置与LBT执行成功时刻或是配置的传输窗位置有关;SRS传输窗的大小由Q个OFDM符号组成或是不足整数倍个OFDM符号组成;其中,Q为正整数;其中,确定SRS传输窗的大小的方式包括:通过基站配置、或预先定义、或通过高层信令通知。
可选地,所述SRS发送位置的频域位置,包括:在整个频域带宽上发送SRS;或者,按照特定SRS频域图样发送SRS。
可选地,LBT执行位置在调度子帧的最后一个OFDM符号上,且SRS发送位置也在调度子帧的最后一个OFDM符号上时,包括:SRS的发送和LBT的执行过程通过频分方式共存在一个符号上;或者,SRS的发送和LBT的执行过程通过时分方式共存在一个符号上。
可选地,所述SRS的发送位置和下一子帧中调度UE执行LBT的位置通过频分方式共存在一个符号上,包括:UE在调度子帧的最后一个OFDM符号上按照基站通知的SRS频域图样发送SRS;UE在调度子帧的前一子帧的最后一个OFDM符号上按照基站通知的空闲信道评估CCA图样执行CCA检测;其中,发送SRS和执行CCA检测对应的频域资源间允许预留频域保护间隔。
可选地,UE在调度子帧的最后一个OFDM符号上发送SRS和执行CCA之前,还包括:接收基站发送的通知消息;其中,所述通知消息至少包括下述信息:UE发送SRS的时域位置、SRS的频域图样、无信号能量的资源块索引号或执行LBT的图样、LBT执行位置。
可选地,所述SRS的发送和LBT的执行过程通过时分方式共存在一个符号上,包括:UE在调度子帧的前一子帧的最后一个OFDM符号的部分资源上进行LBT的执行过程;如果UE在所述部分资源上执行LBT成 功,则在剩余的资源上发送SRS。
可选地,LBT执行位置在调度子帧的前一子帧的最后一个OFDM符号上,且SRS发送位置在调度子帧的第一个OFDM符号上时,包括:UE在一个OFDM符号的时长内执行对应的LBT操作;如果UE在调度子帧的前一子帧的最后一个OFDM符号上执行CCA检测成功,但CCA检测成功的时刻不到符号边界,则需要发送一个非完整符号的预留信号,在调度子帧的第一个OFDM符号上按照特定的SRS频域图样上进行SRS的发送或在整个频域带宽上发送SRS。
可选地,LBT执行位置在调度子帧的最后M个OFDM符号上时,SRS的发送包括:在M个OFDM符号内,执行LBT成功所用的符号仅占M个符号中的一部分时,在M个符号中剩余的符号上发送SRS或将剩余的符号作为SRS传输窗进行SRS的发送;或者,在M个OFDM符号内,执行LBT成功所用的符号仅占M个符号中的一部分时,在M个符号中剩余的符号上发送预留信号,SRS在配置的SRS资源上进行发送;或者,在M个OFDM符号内,执行LBT过程检测到信道空闲占用所有M个符号,则SRS在配置的SRS资源上进行发送;其中,配置的SRS资源是配置的执行LBT资源位置后的第一个OFDM符号或配置LBT资源位置的下一子帧的最后一个OFDM符号或配置LBT资源位置后的SRS传输窗。
可选地,当执行LBT过程检测到信道空闲时,SRS的发送方法还包括:在子帧的第4个OFDM符号位置上发送DMRS以替代SRS;或者,复用DMRS资源进行SRS的发送;或者,在子帧的第一个时隙的最后一个符号位置发送SRS。
可选地,所述专有指示信令,包括:由基站配置的LBT各功能的使能情况以及LBT参数;或者,UE侧自主配置的LBT各功能的使能情况以及LBT参数。
可选地,所述LBT各功能包括:无竞争回退窗;或者,有固定的竞争回退窗;或者,有动态可变的指数竞争回退窗。
可选地,所述LBT参数包括下述至少之一:第一CCA;或者,第二CCA;其中,所述第二CCA的时长配置小于所述第一CCA的时长配置;或者,延迟期;或者,N;其中,N表示回退值,N值通过预先定义或是基站配置或是随机产生的方式获得。
可选地,UE根据LBT各功能的使能情况以及LBT参数执行LBT过程的方式,包括:方式1:仅执行一次第一CCA检测;方式2:执行Y个第一CCA检测;其中,Y为大于等于2的正整数;方式3:直接进行扩展的空闲信道评估eCCA检测;方式4:进行第一CCA检测和eCCA检测。
可选地,所述方式2中执行第一CCA检测的次数Y根据第一CCA检测的时长以及用于执行LBT的符号数确定。
可选地,所述方式3,具体包括:所述eCCA由W个第二CCA检测组成;其中,W为正整数;在eCCA过程中,如果第二CCA检测到信道忙,则进入延迟周期;其中,若在延迟周期内检测到信道空闲,则进行N值递减预设数值或是N值不进行递减预设数值的操作;N值通过预先定义或是基站配置或是随机产生的方式获得;所述预设数值通过基站配置或是事先预定义;或者,在eCCA过程中,如果第二CCA检测到信道忙,则不进入延迟周期,而进入到下一次的第二CCA检测。
可选地,判断UE获取非授权载波的使用权准则包括:准则1:第一CCA检测信道空闲,则认为UE获取非授权载波的使用权;准则2:多次第一CCA中有一次检测到信道空闲,则认为UE获取非授权载波的使用权;准则3:N值递减到0,则认为UE获取非授权载波的使用权。
本发明实施例还提供了一种信息处理方法,应用于基站侧,所述方法包括:向UE发送通知信息,以使UE能基于所述通知信息获取第一信息并根据所述第一信息进行竞争接入以及SRS的发送;其中,所述第一信息包括下述至少之一:帧结构、LBT执行位置、SRS发送位置、专有指示信令;其中,所述通知消息至少包括下述信息:UE发送SRS的时域位置、SRS的频域图样、无信号能量的资源块索引号或执行LBT的图样、LBT 执行位置。
本发明实施例还提供了一种信息处理装置,应用于UE侧,所述装置包括:获取单元,配置为获取第一信息;处理单元,配置为根据所述第一信息进行竞争接入以及SRS的发送;其中,所述第一信息包括下述至少之一:帧结构、LBT执行位置、SRS发送位置、专有指示信令。
可选地,所述获取单元,还配置为:通过预定义信息获知第一信息;或者,基于基站侧配置获知第一信息;或者,基于UE侧配置获知第一信息。
可选地,所述帧结构包括:全部用于上行的FDD帧结构、TDD结构、动态上下行配比帧结构。
可选地,所述LBT执行位置包括:上行子帧;或者,特殊子帧;或者,下行子帧。
可选地,当LBT执行位置位于上行子帧时,所述处理单元执行LBT的位置包括:上行子帧中的最后一个OFDM符号;或者,上行子帧中的最后M个OFDM符号;或者,上行子帧中的最后M个OFDM符号和下一子帧中的前L个OFDM符号;或者,上行子帧中的所有OFDM符号;其中,M与L均为正整数;确定M和L的方式为:通过基站配置或是预定义设置。
可选地,当LBT执行位置位于特殊子帧时,所述处理单元执行LBT的位置包括:特殊子帧中GP的最后一个OFDM符号;或者,特殊子帧中GP的最后S个OFDM符号;或者,特殊子帧中GP的最后S个OFDM符号和UpPTS中的t个OFDM符号;或者,特殊子帧中的GP中所有OFDM的符号;或者,特殊子帧中的GP中所有OFDM的符号和UpPTS中的符号;其中,S,t为正整数;确定M和t的方式为:通过基站配置或是预定义设置。
可选地,当LBT执行位置位于下行子帧时,所述处理单元执行LBT的位置包括:下行子帧中的最后一个OFDM符号;或者,下行子帧中的 最后一个OFDM符号上的特定RE;或者,特殊子帧中的DwPTS所占用的符号;或者,特殊子帧中的DwPTS中的最后M个OFDM符号;或者,特殊子帧中的DwPTS中的OFDM符号上的特定RE。
可选地,所述处理单元进行SRS的发送,包括:周期性发送SRS;或者,非周期性发送SRS;或者,周期和非周期结合发送SRS;或者,根据LBT执行成功情况发送SRS;或者,在DMRS的时域位置发送SRS。
可选地,所述周期性发送SRS,包括:根据现有的SRS发送周期发送SRS;或者,修改现有SRS发送周期后发送SRS。
可选地,所述非周期性发送SRS,包括:通过DCI信息触发发送非周期的SRS;或者,通过LBT执行成功时刻触发发送非周期的SRS。
可选地,触发非周期性SRS传输之后,所述SRS发送的位置,包括:下行子帧中的最后k个OFDM符号中至少之一;或者,下行子帧与上行子帧之间的gap中至少之一个符号;或者,上行子帧中的最后p个OFDM符号中至少之一;或者,SRS传输窗;或者,上行子帧中DMRS的位置;或者,子帧或调度子帧中的第一个时隙的最后一个OFDM符号位置;其中,k,p为正整数;确定k和p的方式为:通过基站配置或是预定义设置;k,p至少包括以下之一:1,2,3,4,5。
可选地,所述根据执行LBT结果确定发送SRS,包括:在执行LBT成功获取到信道后的第一个可用的OFDM符号上发送SRS;或者,在执行LBT成功获取到信道后的子帧的最后一个OFDM符号上发送SRS;或者,在执行LBT成功获取到信道后的第一个或j个OFDM符号上发送SRS,j为正整数;或者,在执行LBT成功获取到信道后的未到一个符号边界的资源上发送SRS;或者,在执行LBT成功获取到信道后的SRS传输窗内发送SRS。
可选地,所述SRS传输窗的配置,包括:SRS传输窗的起始位置与LBT执行成功时刻或是配置的传输窗位置有关;SRS传输窗的大小由Q个OFDM符号组成或是不足整数倍个OFDM符号组成;其中,Q为正整 数;其中,确定SRS传输窗的大小的方式包括:通过基站配置、或预先定义、或通过高层信令通知。
可选地,所述处理单元进行SRS发送的频域位置,包括:在整个带宽上发送SRS;或者,按照特定SRS频域图样发送SRS。
可选地,所述SRS传输窗和/或SRS传输窗内的SRS发送位置可由以下至少之一确定:SRS传输窗的起始位置;SRS传输窗的大小;SRS传输窗内SRS传输位置间的间隔。
可选地,所述SRS传输窗和/或SRS传输窗内的SRS发送位置和/或SRS发送位置可以通过以下之一确定:通过基站配置;或者,预先定义;或者,通过高层信令通知。
可选地,所述处理单元,还配置为:LBT执行位置在调度子帧的最后一个OFDM符号上,且SRS发送的位置也在子帧的最后一个OFDM符号上时,通过频分方式使SRS的发送和LBT的执行过程共存在一个符号上;或者,通过时分方式使SRS的发送和LBT的执行过程共存在一个符号上。
可选地,所述处理单元,还配置为:在调度子帧的最后一个OFDM符号上按照基站通知的SRS频域图样发送SRS;在调度子帧的前一子帧的最后一个OFDM符号上按照基站通知的CCA图样执行CCA检测;其中,发送SRS和执行CCA检测对应的频域资源间允许预留频域保护间隔。
可选地,所述处理单元,还配置为:在调度子帧的最后一个OFDM符号上发送SRS和执行CCA之前,接收基站发送的通知消息;其中,所述通知消息至少包括下述信息:UE发送SRS的时域位置、SRS的频域图样、无信号能量的资源块索引号或执行LBT的图样、LBT执行位置。
可选地,所述处理单元,还配置为:在调度子帧的前一子帧的最后一个OFDM符号的部分资源上进行LBT的执行过程;如果在所述部分资源上执行LBT成功,则在剩余的资源上发送SRS。
可选地,所述处理单元,还配置为:所述LBT执行位置在调度子帧的前一子帧的最后一个OFDM符号上,且SRS发送位置在调度子帧的第 一个OFDM符号上时,在一个OFDM符号的时长内执行对应的LBT操作;如果在调度子帧的前一子帧的最后一个OFDM符号上执行CCA检测成功,但CCA检测成功的时刻不到符号边界,则需要发送一个非完整符号的预留信号,在调度子帧的第一个OFDM符号上按照特定的SRS频域图样上进行SRS的发送或在整个频域带宽上发送SRS。
可选地,所述处理单元,还配置为:所述LBT执行位置在子帧的最后M个OFDM符号上时,在M个OFDM符号内,执行LBT成功所用的符号仅占M个符号中的一部分时,在M个符号中剩余的符号上发送SRS或将剩余的符号作为SRS传输窗进行SRS的发送;或者,在M个OFDM符号内,执行LBT成功所用的符号仅占M个符号中的一部分时,在M个符号中剩余的符号上发送预留信号,SRS在配置的SRS资源上进行发送;或者,在M个OFDM符号内,执行LBT过程检测到信道空闲占用所有M个符号,则SRS在配置的SRS资源上进行发送;其中,配置的SRS资源是配置的执行LBT资源位置后的第一个OFDM符号或配置LBT资源位置的下一子帧的最后一个OFDM符号或配置LBT资源位置后的SRS传输窗。
可选地,所述处理单元,还配置为:当执行LBT过程检测到信道空闲时,在子帧的第4个OFDM符号位置上发送DMRS以替代SRS;或者,复用DMRS资源进行SRS的发送;或者,在子帧的第一个时隙的最后一个符号位置发送SRS。
可选地,所述专有指示信令,包括:基站配置LBT各功能的使能情况以及LBT参数;或者,UE侧自主配置LBT各功能的使能情况以及LBT参数。
可选地,所述LBT各功能包括:无竞争回退窗;或者,有固定的竞争回退窗;或者,有动态可变的指数回退窗。
可选地,所述LBT参数具体包括下述至少之一:第一CCA;或者,第二CCA;其中,所述第二CCA的时长配置小于所述第一CCA的时长 配置;或者,延迟期;或者,N;其中,N表示回退值,N值通过预先定义或是基站配置或是随机产生的方式获得。
可选地,所述处理单元根据LBT各功能的使能情况以及LBT参数执行LBT过程的方式,包括:方式1:仅执行一次第一CCA检测;方式2:执行Y个第一CCA检测;其中,Y为大于等于2的正整数;方式3:直接进行扩展的空闲信道评估eCCA检测;方式4:进行第一CCA检测和eCCA检测。
可选地,所述方式2中执行第一CCA检测的次数Y根据第一CCA检测的时长以及用于执行LBT的符号数确定。
可选地,所述方式3,具体包括:所述eCCA由W个第二CCA检测组成;其中,W为正整数;在eCCA过程中,如果第二CCA检测到信道忙,则进入延迟周期;其中,若在延迟周期内检测到信道空闲,则进行N值递减预设数值或是N值不进行递减预设数值的操作;N值通过预先定义或是基站配置或是随机产生的方式获得;所述预设数值通过基站配置或是事先预定义;或者,在eCCA过程中,如果第二CCA检测到信道忙,则不进入延迟周期,而是进入到下一次的第二CCA检测。
可选地,所述处理单元,还配置为:判断UE获取非授权载波的使用权准则包括:准则1:第一CCA检测信道空闲,则认为获取非授权载波的使用权;准则2:多次第一CCA中有一次检测到信道空闲,则认为获取非授权载波的使用权;准则3:N值递减到0,则认为获取非授权载波的使用权。
本发明实施例还提供了一种信息处理装置,应用基站侧,所述装置包括:配置单元,配置为设置配置信息;发送单元,配置为向UE发送携带有所述配置信息的通知消息,以使UE能基于所述通知消息获取第一信息并根据所述第一信息进行竞争接入以及SRS的发送;其中,所述第一信息包括下述至少之一:帧结构、LBT执行位置、SRS发送位置、专有指示信令;其中,所述通知消息至少包括下述信息:UE发送SRS的时域位置、 SRS的频域图样、无信号能量的资源块索引号或执行LBT的图样、LBT执行位置。
本发明实施例还提供了一种信息处理系统,所述系统包括上述应用于基站侧的信息处理装置,以及上述应用于用户设备UE侧的信息处理装置。
根据本发明的又一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行以下步骤的程序代码:获取第一信息;根据所述第一信息进行竞争接入以及探测参考信号SRS的发送;其中,所述第一信息包括下述至少之一:帧结构、先听后说LBT执行位置、SRS发送位置、专有指示信令。
通过本发明实施例,获取第一信息;根据所述第一信息进行竞争接入以及SRS的发送;其中,所述第一信息包括下述至少之一:帧结构、LBT执行位置、SRS发送位置、专有指示信令。如此,能解决LBT检测位置和SRS发送位置均在子帧的最后一个OFDM符号上时的碰撞问题,能提升UE接入信道的概率,以及增加SRS的发送机会。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明实施例提供的一种信息处理方法的流程示意图;
图2为本发明实施例提供的在同一OFDM符号中SRS和LBT通过频分方式共存的示意图;
图3为本发明实施例提供的在同一OFDM符号中SRS和LBT通过时分方式共存的示意图;
图4为本发明实施例提供的LBT和SRS位置分别位于相邻子帧的最后一个OFDM符号的示意图;
图5为本发明实施例提供的LBT执行位置在子帧的最后一个OFDM符号且SRS位置下一子帧的第一个OFDM符号的示意图;
图6为本发明实施例提供的LBT执行位置在子帧的最后几个OFDM符号且SRS传输窗的结束位于子帧边界的示意图;
图7为本发明实施例提供的LBT执行位置在子帧的最后几个OFDM符号且SRS传输窗的起始位于子帧开始的示意图;
图8为本发明实施例提供的LBT执行位置在子帧的最后一个OFDM符号且SRS在DMRS的发送符号上发送的示意图;
图9为本发明实施例提供的一种信息处理装置的组成结构示意图;
图10为本发明实施例提供的另一种信息处理装置的组成结构示意图。
具体实施方式
下面结合附图和具体实施例对本发明的技术方案进一步详细阐述。
实施例一
图1为本发明实施例提供的一种信息处理方法的流程示意图,所述信息处理方法应用于UE侧,如图1所示,该信息处理方法主要包括以下步骤:
步骤101:获取第一信息。
其中,所述第一信息包括下述至少之一:
帧结构、LBT执行位置、SRS发送位置、专有指示信令等。
优选地,所述获取第一信息,可以包括:
通过预定义信息获知第一信息;或者,
基于基站侧配置获知第一信息;或者,
基于UE侧配置获知第一信息。
具体地,所述帧结构可以包括:纯上行结构、时分双工(Time Division Duplexing,简称为TDD)结构、动态上下行配置帧结构。
这里,所述纯上行结构可以是全部用于上行的频分双工频分双工(Frequency Division Duplex,简称为FDD)帧结构;
具体地,所述LBT执行位置可以包括:
上行子帧;或者,
特殊子帧;或者,
下行子帧。
优选地,当LBT执行位置位于上行子帧时,执行LBT的位置包括:
上行子帧中的最后一个OFDM符号;或者,
上行子帧中的最后M个OFDM符号;或者,
上行子帧中的最后M个OFDM符号和下一子帧中的前L个OFDM符号;或者,
上行子帧中的所有OFDM符号;
其中,M与L均为正整数;确定M和L的方式为:通过基站配置或是预定义设置。
优选地,当LBT执行位置位于特殊子帧时,执行LBT的位置包括:
特殊子帧中保护间隔(Guard period,简称为GP)的最后一个OFDM符号,或者
特殊子帧中GP的最后M个OFDM符号;或者,
特殊子帧中GP的最后S个OFDM符号和上行导频时隙(Uplink Pilot Time Slot,简称为UpPTS)中的t个OFDM符号;或者,
特殊子帧中的GP中所有OFDM的符号;或者,
特殊子帧中的GP中所有OFDM的符号和UpPTS中的符号;
其中,S,t为正整数;确定M和t的方式为:通过基站配置或是预定义设置。
优选地,当LBT执行位置位于下行子帧时,执行LBT的位置包括:
下行子帧中的最后一个OFDM符号;或者,
下行子帧中的最后一个OFDM符号上的特定资源粒子(Resource Element,简称为RE);或者,
特殊子帧中的下行导频时隙(Downlink Pilot Time Slot,简称为DwPTS)所占用的符号;或者,
特殊子帧中的DwPTS中的最后M个OFDM符号;或者,
特殊子帧中的DwPTS中的OFDM符号上的特定RE。
优选地,所述SRS的发送,包括:
周期性发送SRS;或者,
非周期性发送SRS;或者,
周期和非周期结合发送SRS;或者,
根据LBT执行成功情况发送SRS;或者,
在解调参考信号DMRS的时域位置发送SRS。
优选地,所述周期性发送SRS,包括:
根据现有的SRS发送周期发送SRS;或者,
修改现有SRS发送周期后发送SRS,如,缩短SRS发送周期为1ms。
优选地,所述非周期性发送SRS,包括:
通过下行控制信息(Downlink Control Information,简称为DCI)信息触发发送非周期的SRS;或者,
LBT执行成功时时触发发送非周期的SRS。
优选地,触发非周期性SRS传输之后,所述SRS发送的位置,包括:下行子帧中的最后k个OFDM符号中至少之一;或者,下行子帧与上行子帧之间的gap中至少之一个符号;或者,上行子帧中的最后p个OFDM符号中至少之一;或者,SRS传输窗;或者,上行子帧中DMRS的位置;或者,子帧或调度子帧中的第一个时隙的最后一个OFDM符号位置;其 中,k,p为正整数;确定k和p的方式为:通过基站配置或是预定义设置;k,p至少包括以下之一:1,2,3,4,5。
优选地,所述根据执行LBT成功情况发送SRS,包括:
在执行LBT成功获取到信道后的第一个可用的OFDM符号就可以发送SRS,无需等到配置的SRS发送资源上SRS;或者,
在执行LBT成功获取到信道后的子帧的最后一个OFDM符号上发送SRS;或者,
在执行LBT成功获取到信道后的第一个或j个OFDM符号上发送SRS,j为正整数;或者,
在执行LBT成功获取到信道后的未到一个符号边界的资源上发送SRS;或者,
在执行LBT成功获取到信道后的SRS传输窗内发送SRS。
优选地,所述SRS传输窗和/或SRS传输窗内的SRS发送位置可由以下至少之一确定:SRS传输窗的起始位置;SRS传输窗的大小;SRS传输窗内SRS传输位置间的间隔。
优选地,所述SRS传输窗和/或SRS传输窗内的SRS发送位置和/或SRS发送位置可以通过以下之一确定:通过基站配置;或者,预先定义;或者,通过高层信令通知。
优选地,所述配置的SRS传输窗,可以包括:
SRS传输窗的起始位置与LBT执行成功时刻或是配置的传输窗位置有关;
SRS传输窗的大小由Q个OFDM符号组成或是不足整数倍个OFDM符号组成;其中,Q为正整数;
其中,确定SRS传输窗的大小的方式包括:通过基站配置、或预先定义、或通过高层信令通知。
具体地,所述SRS发送位置的频域位置,可以包括:
在整个频域带宽上发送SRS;或者,
按照特定SRS频域图样发送SRS。
优选地,所述专有指示信令,包括:
由基站配置的LBT各功能的使能情况以及LBT参数;或者
UE侧自主配置的LBT各功能的使能情况以及LBT参数;
其中,LBT各功能包括:无竞争回退窗,有固定的竞争回退窗,有动态可变的指数回退窗;
LBT参数具体包括下述至少之一:第一空闲信道评估(Clear Channel Assessment,简称CCA)、第二CCA、延迟期(defer period)和N;其中,N表示回退值,N值可以通过预先定义或是基站配置或是随机产生的方式获得。
步骤102:根据所述第一信息进行竞争接入以及SRS的发送。
优选地,所述LBT执行位置在调度子帧的最后一个OFDM符号上,且SRS的发送位置也在调度子帧的最后一个OFDM符号上时,可以包括:
SRS的发送和LBT的执行过程通过频分方式共存在一个符号上,或者
SRS的发送和LBT的执行过程通过时分方式共存在一个符号上。
优选地,所述SRS的发送和LBT的执行过程通过频分方式共存,包括:
UE在调度子帧的最后一个OFDM符号上按照基站通知的SRS频域图样发送SRS;
UE在调度子帧的前一子帧的最后一个OFDM符号上按照基站通知的CCA图样执行CCA检测;
其中,发送SRS和执行CCA检测对应的频域资源间允许预留频域保护间隔。
优选地,UE在调度子帧的最后一个OFDM符号上发送SRS和执行CCA之前,还可以包括:
接收基站发送的通知消息;其中,所述通知消息至少包括下述信息:UE发送SRS的时域位置、SRS的频域图样、无信号能量的资源块索引号或执行LBT的图样、LBT执行位置。
优选地,所述SRS的发送和LBT的执行过程通过时分方式共存在一个符号上,包括:
UE在调度子帧的前一子帧的最后一个OFDM符号的部分资源上进行LBT的执行过程;
如果UE在所述部分资源上执行LBT成功,则在剩余的资源上发送SRS。
优选地,所述LBT执行位置在调度子帧的前一子帧的最后一个OFDM符号上,且SRS发送位置在调度子帧的第一个OFDM符号上,包括:
UE在一个OFDM符号的时长内执行对应的LBT操作;
如果UE在调度子帧的前一子帧的最后一个OFDM符号上执行CCA检测成功,但CCA检测成功的时刻不到符号边界,则需要发送一个非完整符号的预留信号,在调度子帧的第一个OFDM符号上按照特定的SRS频域图样上进行SRS的发送或在整个频域带宽上发送SRS。
优选地,所述LBT执行位置在子帧的最后M个OFDM符号上时,SRS的发送包括:
在M个OFDM符号内,执行LBT成功所用的符号仅占M个符号中的一部分时,在M个符号中剩余的符号(除去执行LBT所用的符号)上发送SRS(或将剩余的符号作为SRS传输窗进行SRS发送);或者,
在M个OFDM符号内,执行LBT成功所用的符号仅占M个符号中的一部分时,在M个符号中剩余的符号(除去执行LBT所用的符号)上发送预留信号,SRS在配置的SRS资源上进行发送。或者,
在M个OFDM符号内,执行LBT过程检测到信道空闲占用所有M个符号,则SRS在配置的SRS资源上进行发送;
其中,配置的SRS资源可以是配置的执行LBT资源位置后的第一个OFDM符号或配置LBT资源位置的下一子帧的最后一个OFDM符号或配置LBT资源位置后的SRS传输窗。
优选地,当执行LBT过程检测到信道空闲时,所述方法还包括:
在子帧的第4个OFDM符号位置上发送DMRS以替代SRS;或者
复用DMRS资源进行SRS的发送;或者
在子帧的第一个时隙的最后一个符号位置发送SRS。
优选地,UE根据LBT各功能的使能情况以及LBT参数执行LBT过程的方式,包括:
方式1:仅执行一次CCA(如:第一CCA)检测;
方式2:执行Y个CCA(如:第一CCA)检测;其中,Y为大于等于2的正整数;
方式3:直接进行扩展的空闲信道评估eCCA检测;
方式4:进行第一CCA检测和eCCA检测。
优选地,所述方式2中执行第一CCA检测的次数Y根据第一CCA检测的时长以及用于执行LBT的符号数确定。
优选地,所述方式3,具体包括:
所述eCCA由W个第二CCA检测组成;其中,W为正整数;
在eCCA过程中,如果第二CCA检测到信道忙,则进入延迟周期;其中,若在延迟周期内检测到信道空闲,则进行N值递减预设数值或是N值不进行递减预设数值的操作;N值可以通过预先定义或是基站配置或是随机产生的方式获得。所述预设数值通过基站配置或是事先预定义;或者,
在eCCA过程中,如果第二CCA检测到信道忙,则不进入延迟周期, 而是进入到下一次的第二CCA检测。
优选地,判断UE获取非授权载波的使用权准则包括:
准则1:第一CCA检测信道空闲,则认为UE获取非授权载波的使用权;
准则2:多次第一CCA中有一次检测到信道空闲,则认为UE获取非授权载波的使用权;
准则3:N值递减到0,则认为UE获取非授权载波的使用权。
优选地,配置传输SRS前的预定义的X长时域资源用于发送SRS进行的CCA检测。
优选地,所述周期性发送SRS和非周期性发送SRS对应的CCA过程是不同的,例如,非周期性发送的SRS具有比周期性发送的SRS有更高的CCA检测优先级,如仅采用多次CCA检测或是配置更短的随机回退N值或是降低门限。
优选地,如果CCA检测不成功,则SRS传输可采用短控制信号发送。或者,传输节点继续执行CCA检测,或者,间隔CCA检测,或者,在下一个预定时刻检测。
优选地,所述发送的SRS频域间隔可以由2,调整到3、4、6、8、12。
本发明实施例所信息处理方法,获取第一信息;根据所述第一信息进行竞争接入以及SRS的发送;其中,所述第一信息包括下述至少之一:帧结构、LBT执行位置、SRS发送位置、专有指示信令等;如此,能解决LBT检测位置和SRS发送位置均在子帧的最后一个OFDM符号上时的碰撞问题,能提升UE接入信道的概率,以及增加SRS的发送机会。
对应地,本发明还提供了一种信息处理方法,应用于基站侧,所述方法包括:
向UE发送通知消息,以使UE能基于所述通知消息获取第一信息并根据所述第一信息进行竞争接入以及SRS的发送;
其中,所述第一信息包括下述至少之一:
帧结构、LBT执行位置、SRS发送位置、专有指示信令;
其中,所述通知消息至少包括下述信息:UE发送SRS的时域位置、SRS的频域图样、无信号能量的资源块索引号或执行LBT的图样、LBT执行位置。
如此,方便于UE能基于所述配置信息获取第一信息并根据所述第一信息进行竞争接入以及SRS的发送,提高UE接入信道的概率,以及增加SRS的发送机会。
实施例二
图2为本发明实施例提供的在同一OFDM符号中SRS和LBT通过频分方式共存的示意图;
本实施例主要介绍UE侧执行LBT位置和SRS发送位置同在子帧的最后一个OFDM符号时的处理过程。如图2所示,SRS和LBT同在一个OFDM符号时可通过频分方式解决彼此之间碰撞问题。
这里,假定有两个UE(UE1和UE2)分别在连续的两个子帧被调度,如:UE1在上行子帧#1被调度,而UE2在上行子帧#2被调度,且每个UE执行LBT的位置位于上行子帧的最后一个OFDM符号上(一个子帧中仅有13个OFDM符号用于进行数据传输)。而此时,恰好在调度子帧的最后一个符号上也是SRS的发送位置时,具体的处理如下所述:
首先,基站要向UE发送通知消息;其中,所述通知消息中包括:UE发送SRS的时域位置、SRS的频域图样、无信号能量的资源块(Resource Blocks,简称RB)索引号或执行LBT检测的图样、LBT执行位置等信息。
其次,接收到基站通知消息的UE,按照指示信息在各自的执行LBT位置进行信道忙闲检测和SRS的发送。
具体到本实施例,UE1从所属基站处获知发送SRS的位置位于调度子帧的最后一个OFDM符号位置且频域图样为频域资源索引号为奇数(或 偶数)的资源位置;需要说明的是,这里的资源可以是子载波级的资源图样,也可以是资源块(Resource Blocks,简称RB)级的资源图样。UE1从所属基站处获知执行LBT的位置位于调度子帧前一子帧的最后一个OFDM符号且执行LBT过程的频域图样为频域资源索引号为偶数(或奇数)的资源位置(这里的资源可以是子载波级的资源图样,也可以是RB级的资源图样)。同理,UE2同样也从自身所属基站处获知到与UE1相类似的信息(即获知SRS发送位置和执行LBT具体位置)。
基于上述获知信息,UE2在自身调度子帧的前一子帧中最后一个OFDM上对应频域资源上进行非授权载波的信道接入检测(即UE1的调度中最后一个OFDM符号的特定频域资源上UE2执行LBT检测)。在UE2进行时频域LBT过程的同时,UE1也在自身调度子帧的最后一个符号上按照获知的SRS发送图样频域位置进行SRS的发送。具体地,UE2或UE1在最后一个OFDM符号内可通过下述方式之一执行UL LBT过程:
方式1:仅执行一次CCA(如:第一CCA)检测。
换言之,在UE调度子帧的前一个子帧中最后一个OFDM符号上频域按照资源索引号对应为偶数的资源上,时域按照一个OFDM符号的时长进行一次第一CCA检测。
其中,第一CCA检测的时长可配置34微妙(μs)(目前默认时长)、25μs(PIFS时长)、20μs、18μs、16μs(SIFS时长)、甚至可以配置为一次eCCA回退的时长9μs或10μs。其中,SIFS是Short Interframe Space的英文缩写,其中文名称是短帧间间隔;PIFS是Point Interframe Space的英文缩写,其中文名称是点帧间间隔。
优选地,第一CCA检测的时长配置为25μs、20μs或18μs(注:这些时长均大于Wi-Fi系统中ACK反馈时长(16us),因此有利于Wi-Fi系统和LAA系统共存的公平性)。
以第一CCA时长为34μs为例,其中,第一CCA时长由一段空闲时长(用于一些接收延时或是MAC处理延迟等的时间)和多个检测时长组 成(注:第一CCA时长的各组成部分时长可在总时长内灵活调整)。这里,一个检测时长又由接收时长、检测时长和收发转换时长组成;其中,接收时长用于接收信号能量;检测时长用于检测接收到的信号能量是否达到信道空闲门限,从而判断信道的忙闲状况;收发转换时长用于设备从检测状态到接收状态或是从接收状态到检测状态的一个转换时间。其中,MAC是Media Access Control的英文缩写,其中文名称是介质访问控制层。
进一步地,判断CCA(如:第一CCA)检测是否成功有下面三种情况:
情况1:如果在第一CCA的34μs时间内的某个时刻,如18μs~27μs之间检测到信道忙,则认为第一CCA检测失败。反之,如果在整个34μs内检测到均检测到信道空闲,则认为第一CCA检测成功。
情况2:如果在第一CCA的34μs时间内检测到一次信道空闲,则认为第一CCA成功检测到信道空闲。
情况3:如果在第一CCA的34μs时间内的某个时刻,如18μs~27μs之间检测到信道忙,则可以继续检测,直到信道从忙到闲(这里从忙到闲的时刻即作为第一CCA的起点),且连续空闲的时间持续34μs,也认为设备初次CCA检测成功。注意:这里第一CCA检测的起始时刻是动态的。
方式2:执行多个CCA(如:第一CCA)检测。
具体地,方式2与方式1相类似,其不同之处在于,UE在调度子帧的前一子帧的最后一个OFDM符号上可执行多个CCA检测。其中,第一CCA的次数和第一CCA检测的时长有关,即第一CCA的次数等于配置可用于执行LBT过程的时长除以一次第一CCA检测的时长所得值进行取整后的值。比如,第一CCA时长为34μs,则一个符号内可以执行2次第一CCA检测。
进一步地,方式2与方式1判断第一CCA是否检测成功情况类似,不同之处,如果按照三种情况之一检测信道忙之后,可继续执行下一次的 第一CCA检测,其中第一CCA检测的起始位置有两种:一种是每次的第一CCA检测位置固定,另一种是每次的第一CCA检测位置是滑动的(即某时刻检测信道忙,则第一CCA检测起始位置则滑动到信道从忙到闲的时刻开始算起)。
方式3:直接进行扩展(extend)eCCA过程。
其中,eCCA由多个第二CCA检测组成。
对于方式3又分为两种情况:
情况1:如果在eCCA检测过程中检测到信道忙,则进入延迟期(defer period)。对于情况1中又有两种处理:
处理1:延迟期时间内,检测到信道空闲也不可以进行N值递减。
eCCA过程中的第二CCA检测时长配置为9μs或10μs(各公司默认时长)。第二CCA检测信道忙,则设备进入延迟期。其中,延迟期时长可为:34μs(与Wi-Fi系统的延迟时长对应)、25μs、20μs、18μs、16μs、9μs或10μs,或0μs(延迟期配置为0);注意:延迟周期内检测到信道空闲,也不进行N值递减。
N值在固定窗(一个符号的时长内)随机产生。
同样,也可以预先设定N值,不进行随机产生。比如:一个符号时长约71μs,如果延迟期时长配置为0,第二CCA检测时长配置为9μs或10μs,则N可取的最大值为71μs/9μs=7。则N尽可能在0到7之间选择较小的数值。由于延迟期内不可进行N递减操作,则对于处理1方式尽量配置延迟期为0,但不限于此配置。
处理2:延迟期时间内,可以进行随机回退值递减。
与处理1不同之处在于,在延迟期内检测到信道空闲,则允许N进行预设数值的递减操作。其中,延迟期时长可为:34μs、25μs、20μs、18μs、16μs、9μs或10μs,或配置为eCCA检测单次时长的倍数,同样可以根据延迟期时长、eCCA检测单次时长确定延迟期内可以执行信道检 测的次数。如:Q=延迟期时长/eCCA检测单次时长。
这里,eCCA检测单次时长可同eCCA回退过程中的第二CCA检测时长相同,或是不同。如果在延迟期期间检测到信道空闲或者在延迟期内N递减到0等情况,则认为设备可以使用非授权载波。
情况2:如果在eCCA检测过程中检测到信道忙,则不进入延迟期。
对于情况2来说,直接eCCA的过程简化为在一个符号时间内可以进行多次随机回退。即第二CCA检测时长配置为9μs或10μs(各公司默认时长)。根据一个符号的时长和第二CCA检测的时长计算可得N可取的最大值(即一个符号的时长/第二CCA检测的时长=N可取的最大值)。根据公式可知,N最大可取到7,如果通过随机产生或是预先配置N值为4,则在一个符号内如果N值能递减到0,则认为设备成功竞争到非授权载波。其中,检测到一次信道空闲,则可按照预设数值进行递减操作。通常情况下,预设数值为1。
方式4:第一CCA和eCCA过程。
第一CCA的时长同方式1中配置,但需要选择尽可能短的时长,如25μs(PIFS时长)(一个符号剩余时长46μs)、20μs(一个符号剩余时长51μs)、18μs(一个符号剩余时长53μs)、16μs(一个符号剩余时长55μs)甚至可以配置为一次eCCA回退的时长9μs或10μs(一个符号剩余时长62μs)。eCCA过程同方式3。从上述可选第一CCA时长,再结合引入随机回退,优选的,第一CCA配置为16μs,回退的N值在[0,3]中随机产生一个值。根据不同的第一CCA时长,配置不同的N值。其中,检测到信道忙时,可选的,配置延迟期时长为0或者在延迟期内检测到信道空闲,可以进行N值递减预设数值的操作。
基于上述四种方式,判断UE获取非授权载波的使用权准则包括:
准则1:第一CCA检测信道空闲,则认为UE获取非授权载波的使用权;
准则2:多次第一CCA中有一次检测到信道空闲,则认为UE获取非 授权载波的使用权;
准则3:N值递减到0,则认为UE获取非授权载波的使用权。
进一步地,如果LBT成功时刻未到一个符号边界,则剩余的符号内发送一个非完整符号的预留信号。
其中,预留信号可以是前导码(Preamble)、主同步信号(Primary Synchronization Signal,简称为PSS)/辅同步信号(secondary synchronization signal,简称为SSS)、预设信号等,所述预留信号可用于其他UE进行识别的信号。
实施例三
图3为本发明实施例提供的在同一OFDM符号中SRS和LBT通过时分方式共存的示意图;
本实施例主要介绍UE侧执行LBT的位置和SRS发送位置同在子帧的最后一个OFDM符号时的处理过程。如图3所示,SRS和LBT同在一个OFDM符号时可通过时分方式解决彼此之间碰撞问题。其中,这一个符号内UE要完成信道接入操作还要在剩余的资源上发送自身的SRS,即SRS能否成功发送依赖于LBT的流程以及配置或是设定的参数来确定。因此,具体到本实施例中,优选的LBT流程或是过程如下之一:
方式1:仅执行一次CCA(如,第一CCA)检测。此方式同实施例二中的LBT方式1。
方式2:执行多个CCA(如,第一CCA)检测。此方式与实施例二中的LBT方式2不同之处在于:如果一次第一CCA的时长为34μs,则一个符号中仅能执行一次第一CCA。这样如果第一CCA检测失败,则无法发送SRS。因此,需要选择一个相对短的第一CCA时长,如18μs,则第一CCA的次数可以配置为2次,且多次第一CCA检测时长总和不能超过一个符号时长的一半左右。由于SRS能量主要集中在中间的30μs或40μs左右,因此,剩余给SRS发送的时长不能低于30μs或40μs,否 则会导致探测的信道状况不准确。
方式3:直接进行短的eCCA过程。此方式与实施例二中的LBT方式3的不同之处在于:N的取值最大仅可选4以内的正整数。且优选的,延迟期时长为0,或者在延迟期时长内检测到信道空闲则N值进行递减预设数值的操作。这样有利于UE尽快的接入信道,从而在剩余的部分符号内发送SRS。
实施例二中的方式4也可用于本实施例中的LBT信道接入过程,但需要进一步选择较短的第一CCA时长,随机回退的N值也选择尽可能小的数,或者方式4变向等效于延迟期+eCCA过程。
对于本实施例这种情况,需要UE尽可能的快速接入信道,剩余一部分资源用于进行SRS的发送。此时,在剩余的资源上只能发送一个截断的SRS序列。
进一步地,如图3所示,CCA检测时所采用频域图样可以是全带宽、窄带带宽的频域图样、检测频域的两端对应的资源(即能量集合在频域两端资源上)、检测频域的中间资源(即能量集合在频域中间的资源上)。
实施例四
图4为本发明实施例提供的LBT和SRS位置分别位于相邻子帧的最后一个OFDM符号的示意图;
本实施例主要介绍UE执行LBT过程的位置在调度子帧的前一子帧的最后一个OFDM符号上,而SRS的发送则在调度子帧的最后一个OFDM符号。因此,UE侧数据以及SRS能够成功发送取决于一个OFDM符号内的LBT过程的执行。
因此,需要尽可能的提供一个信道接入机会多的LBT方式。具体的可使用的LBT过程如下述之一:
其LBT执行方式可采用实施例二中介绍的四种LBT方式之一。不同 之处在于:实施例二中LBT执行是按照一定频域图样来进行信道检测的,而本实施例中,LBT过程的执行可以在频域上特定图样对应的频域资源上进行检测,也可以在全带宽对应频域资源上进行CCA检测。
本实施例中,发送SRS的方式是在不改变原有的SRS发送位置的基础上进行的,从而没有任何标准化影响。
进一步地,如果在SRS发送的位置存在下一个子帧的UE的LBT时,则执行LBT的优先级应该高于SRS的发送或者也可以采用实施例二或三的方法。
实施例五
图5为本发明实施例提供的LBT执行位置在子帧的最后一个OFDM符号且SRS位置下一子帧的第一个OFDM符号的示意图;
本实施例主要介绍SRS在调度子帧的第一个OFDM符号位置进行发送的情况。其中LBT执行位置依然位于UE调度子帧的前一子帧的最后一个OFDM符号上,同样,其LBT的执行同实施例四中所述。
按照实施例二中介绍到四种LBT方式之一进行非授权载波的竞争接入,如果检测到信道空闲的时刻未到子帧边界,则此时UE需要发送一个非完整符号的预留信号,用于占住信道,防止被其他节点抢占。此时,发送预留信号可以是Preamble、PSS/SSS、预设信号等可用于其他UE进行识别的信号。此外,预留信号可以是全带宽发送,也可以是按照频域特定图样进行发送。同样的,CCA检测在频域上,也可以是按照预设特定频域图样进行CCA检测,也可以是在整个带宽上进行CCA检测来判断信道是否空闲,从而进行非授权载波的使用。
进一步地,能够进行预留信号识别的UE,在下一个子帧的第一个OFDM符号上进行各自的SRS发送,其各UE在一个符号内可通过时分、频分和码分的方式进行SRS发送,这样有助于所属基站提前进行相应的信道测量。
实施例六
图6为本发明实施例提供的LBT执行位置在子帧的最后几个OFDM符号且SRS传输窗的结束位于子帧边界的示意图;
具体到本实施例,假设分配给UE进行LBT的符号为调度子帧的前一子帧的最后4个OFDM符号,且UE执行LBT的方式可按照实施例二中介绍的四种方式中的一种执行。为了使UE能以高的概率接入信道,这里以第一CCA加随机回退的LBT过程为例说明LBT过程和SRS传输窗内的SRS发送过程。其中,假定基站配置给UE的LBT参数如下:
第一CCA检测时长34μs,延迟期时长34μs,第二CCA检测的时长为9μs,且延迟期内递减功能使能,N值为5(如果N是随机产生,则也需要尽可能在固定窗长为2个符号的时间内产生随机数N,以及值尽可能的小)。则在4个OFDM符号内按照上述参数执行LBT过程:4个OFDM符号的时长约为284μs。
步骤1,UE1执行第一CCA检测,如果第一CCA检测到信道空闲,则认为UE竞争到非授权载波的使用权,则在倒数第4个符号中的剩余资源上发送非完整符号的预留信号,且SRS传输窗的起始位置从倒数第三个符号开始,在倒数第三个符号上UE发送自身的SRS,且可以按照频域特定图样进行发送,这样的好处在于:同小区中的其他UE在继续CCA检测时,可识别该图样,从而可以在SRS传输窗内也发送自身的SRS,进而也可以复用竞争到的资源。反之,如果第一CCA检测失败,则进入步骤2。
步骤2:如果UE检测信道忙,进入到延迟期,且在延迟期内检测到信道空闲,则N值可以做预设数值的递减操作。比如:如果在延迟期内UE检测到信道空闲,则N值就递减4。此时的N值为1。
步骤3:进入eCCA过程。执行第二CCA检测到信道空闲,则将N递减1。反之,如果检测信道忙,则UE进入步骤2。直到N值递减到0。
假如经过步骤1到3的过程后,UE成功竞争到非授权载波的时刻在子帧的倒数第二个符号,则SRS传输窗大小为子帧的最后一个OFDM符号或是从LBT执行成功时刻到子帧边界或是LBT执行成功后的可用资源。同样SRS可以是按照频域特定图样进行发送,便于可以复用的UE进行识别,复用竞争到的资源进行数据传输。
如果有多个UE同时检测到信道空闲,则在SRS传输窗内竞争信道成功的多个UE可以通过频分、时分或码分的方式一起在SRS传输窗内发送SRS。
注意:发送SRS的频域资源为除物理上行链路控制信道(Physical Uplink Control CHannel,简称为PUCCH)资源外的频域资源,即复用物理上行共享信道(Physical Uplink Shared Channel,简称为PΜSCH)的资源。
实施例七
图7为本发明实施例提供的LBT执行位置在子帧的最后几个OFDM符号且SRS传输窗的起始位于子帧开始的示意图;
具体到本实施例,假设分配给UE进行LBT的符号为调度子帧的前一子帧的最后4个OFDM符号。且UE执行LBT的方式可按照实施例二中介绍的方式3和4(即有随机回退的LBT方式)中的一个进行竞争接入。具体LBT过程参考实施例二。
其中,对于CCA检测到信道空闲的时刻不到子帧边界的情况,UE可以发送非完整符号的预留信号和/或完整符号的预留信号,且预留信号可以是全带宽发送,也可以是频域特定图样发送。进一步地,预留信号可以是Preamble、PSS/SSS等。优选的,预留信号按照频域特定图样进行发送,便于同小区中的其他UE进行识别,从而在下一子帧的SRS传输窗内发送各自的SRS。次选的,预留信号也可以全带宽发送,则可携带小区标识或组标识等用于其他UE识别的信息。
进一步地,如果CCA检测到信道空闲的时刻恰到子帧边界,则竞争成功的UE可以在配置的SRS传输窗内进行SRS的发送。优选的,SRS传输窗为1个OFDM符号,SRS传输窗最大可为一个子帧(即LBT位置后的第一个子帧)。从图7可知,本实施例中的SRS传输为子帧的前三个OFDM符号。其中,SRS传输窗的位置和大小可以是基站配置,也可以是预先约定的。
注意:发送SRS的频域资源为除PUCCH资源外的频域资源,即复用PUSCH的资源。
进一步地,如果UE在给定的符号上执行LBT不成功,或者说在规定的执行LBT位置N值没有递减到0的处理为:
一方面,可以冻结该UE的当前N值;另一个方面,UE继续执行LBT过程直到N递减到0,此时相当于顺延SRS和/或数据发送的起始位置。
另一个特殊实例为,如果UE执行LBT的位置位于下行子帧中最后一个OFDM符号或是某些特定的RE上,则LBT过程依然可以采用实施例二中无随机回退或有随机回退LBT方式中之一。而SRS的发送可以在上下行转换时间内或是特殊子帧的GP或UpPTS中或是在上行子帧的最后一个OFDM符号或是第一个OFDM符号上进行发送。
另一个特殊实例为,SRS传输窗大小为固定值,而LBT执行成功时刻未到子帧边界,则SRS传输窗的起始位置为LBT执行成功时刻开始,在固定的SRS传输窗长内进行SRS的发送,SRS可以是按照频域特定图样进行发送,便于可以复用的UE进行识别,以及复用竞争到的资源进行数据传输。则此时,数据传输的起始位置可能不是子帧边界开始。
实施例八
图8为本发明实施例提供的LBT执行位置在子帧的最后一个OFDM符号且DMRS的发送位置发送DMRS来替代SRS功能的示意图;其中,DMRS是demodulation reference signal的缩写,其中文名称是:“解调参考 信号”。
对于本实施例,LBT执行位置位于调度子帧的最后一个OFDM符号,其LBT方式可按照实施例二中方式。而SRS可以用DMRS信号来替代,由于DMRS也具有信道测量功能,且比SRS信道的测量更精准些,因此,为了使基站提前基站信道测量,可以利用在PΜSCH资源的第4个符号发送DMRS来代替SRS的发送;或者,在DMRS的位置也发送SRS;或者SRS在调度子帧的第一个时隙的最后一个OFDM符号上进行发送。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
实施例九
在本实施例中还提供了一种信息处理装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“单元”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图9为本发明实施例提供的一种信息处理装置的组成结构示意图,如图9所示,所述基站包括:
获取单元91,配置为获取第一信息;
处理单元92,配置为根据所述第一信息进行竞争接入以及SRS的发 送;
其中,所述第一信息包括下述至少之一:
帧结构、LBT执行位置、SRS发送位置、专有指示信令。
优选地,所述获取单元91,还配置为:
通过预定义信息获知第一信息;或者,
基于基站侧配置获知第一信息;或者,
基于UE侧配置获知第一信息。
优选地,所述帧结构包括:全部用于上行的FDD帧结构、TDD结构、动态上下行配比帧结构。
优选地,所述LBT执行位置包括:
上行子帧,或者
特殊子帧,或者
下行子帧。
优选地,当LBT执行位置位于上行子帧时,所述处理单元执行LBT的位置包括:
上行子帧中的最后一个OFDM符号,或者
上行子帧中的最后M个OFDM符号,或者
上行子帧中的最后M个OFDM符号和下一子帧中的前L个OFDM符号;或者,
上行子帧中的所有OFDM符号;
其中,M与L均为正整数;确定M和L的方式为:通过基站配置或是预定义设置。
优选地,当LBT执行位置位于特殊子帧时,所述处理单元执行LBT的位置包括:
特殊子帧中GP的最后一个OFDM符号,或者
特殊子帧中GP的最后S个OFDM符号,或者
特殊子帧中GP的最后S个OFDM符号和UpPTS中的t个OFDM符号,或者
特殊子帧中的GP中所有OFDM的符号;或者,
特殊子帧中的GP中所有OFDM的符号和UpPTS中的符号;
其中,S,t为正整数;确定M和t的方式为:通过基站配置或是预定义设置。
优选地,当LBT执行位置位于下行子帧时,所述处理单元执行LBT的位置包括:
下行子帧中的最后一个OFDM符号,或者
下行子帧中的最后一个OFDM符号上的特定RE,或者
特殊子帧中的DwPTS所占用的符号,或者,
特殊子帧中的DwPTS中的最后M个OFDM符号,或者,
特殊子帧中的DwPTS中的OFDM符号上的特定RE。
优选地,所述处理单元92进行SRS的发送,包括:
周期性发送SRS;或者,
非周期性发送SRS;或者,
周期和非周期结合发送SRS;或者,
根据LBT执行成功情况发送SRS;或者,
在DMRS的时域位置发送SRS。
优选地,所述周期性发送SRS,包括:
根据现有的SRS发送周期发送SRS;或者,
修改现有SRS发送周期后发送SRS,如,缩短SRS发送周期为1ms。
优选地,所述非周期性发送SRS,包括:
通过DCI信息触发发送非周期SRS;或者,
LBT执行成功时时触发发送非周期的SRS。
优选地,触发非周期性SRS传输之后,所述SRS发送的位置,包括:下行子帧中的最后k个OFDM符号中至少之一;或者,下行子帧与上行子帧之间的gap中至少之一个符号;或者,上行子帧中的最后p个OFDM符号中至少之一;或者,SRS传输窗;或者,上行子帧中DMRS的位置;或者,子帧或调度子帧中的第一个时隙的最后一个OFDM符号位置;其中,k,p为正整数;确定k和p的方式为:通过基站配置或是预定义设置;k,p至少包括以下之一:1,2,3,4,5。
优选地,所述根据执行LBT结果确定发送的SRS,包括:
在执行LBT检测成功获取到信道后的第一个可用的OFDM符号就可以发送SRS,无需等到配置的SRS发送资源上SRS;或者,
在执行LBT检测成功获取到信道后的子帧的最后一个OFDM符号上发送SRS;或者,
在执行LBT检测成功获取到信道后的第一个或j个OFDM符号上发送SRS,j为正整数;或者,
在执行LBT检测成功获取到信道后的未到一个符号边界的资源上发送SRS;或者,
在执行LBT检测成功获取到信道后的SRS传输窗内发送SRS。
优选地,所述SRS传输窗和/或SRS传输窗内的SRS发送位置可由以下至少之一确定:SRS传输窗的起始位置;SRS传输窗的大小;SRS传输窗内SRS传输位置间的间隔。
优选地,所述SRS传输窗和/或SRS传输窗内的SRS发送位置和/或SRS发送位置可以通过以下之一确定:通过基站配置;或者,预先定义;或者,通过高层信令通知。
优选地,所述配置的SRS传输窗,包括:
SRS传输窗的起始位置与LBT执行成功时刻或是配置的传输窗位置有关;
SRS传输窗的大小由Q个OFDM符号组成或是不足整数倍个OFDM符号组成;其中,Q为正整数;
其中,确定SRS传输窗的大小的方式包括:通过基站配置、或预先定义、或通过高层信令通知。
优选地,所述处理单元92进行SRS发送的频域位置,包括:
在整个带宽上发送,或者
按照特定SRS频域图样发送SRS。
优选地,所述处理单元92,还配置为:
LBT位置在子帧的最后一个OFDM符号上,且SRS的发送位置也在子帧的最后一个OFDM符号上时,
通过频分方式使SRS的发送和LBT的执行过程共存在一个符号上,或者
通过时分方式使SRS的发送和LBT的执行过程共存在一个符号上。
优选地,所述处理单元92,还配置为:
在调度子帧的最后一个OFDM符号上按照基站通知的SRS频域图样发送SRS;
在调度子帧的前一子帧的最后一个OFDM符号上按照基站通知的CCA图样执行信道忙闲检测;
其中,发送SRS和执行CCA检测对应的频域资源间允许预留频域保护间隔。
优选地,所述处理单元92,还配置为:
在调度子帧的最后一个OFDM符号上发送SRS和执行CCA之前,接收基站发送的通知消息;其中,所述通知消息至少包括下述信息:UE发 送SRS的时域位置、SRS的频域图样、无信号能量的资源块索引号或执行LBT的图样、LBT执行位置。
优选地,所述处理单元92,还配置为:
在调度子帧的前一子帧的最后一个OFDM符号的部分资源上进行LBT的执行过程;
如果在所述部分资源上执行LBT成功,则在剩余的资源上发送SRS。
优选地,所述处理单元92,还配置为:
所述LBT执行位置在调度子帧的前一子帧的最后一个OFDM符号上,且SRS发送位置在调度子帧的第一个OFDM符号上时,
在一个OFDM符号的时长内执行对应的LBT操作;
如果在调度子帧的前一子帧的最后一个OFDM符号上执行CCA检测成功,但CCA检测成功的时刻不到符号边界,则需要发送一个非完整符号的预留信号,在调度子帧的第一个OFDM符号上按照特定的SRS频域图样上进行SRS的发送或在整个频域带宽上发送SRS。
优选地,所述处理单元92,还配置为:
所述LBT执行位置在子帧的最后M个OFDM符号上时,
在M个OFDM符号内,执行LBT成功所用的符号仅占M个符号中的一部分时,在M个符号中剩余的符号(除去执行LBT所用的符号)上发送SRS(或将剩余的符号作为SRS传输窗进行SRS发送);或者,
在M个OFDM符号内,执行LBT成功所用的符号仅占M个符号中的一部分时,在M个符号中剩余的符号(除去执行LBT所用的符号)上发送预留信号,SRS在配置的SRS资源上进行发送。或者,
在M个OFDM符号内,执行LBT过程检测到信道空闲占用所有M个符号,则SRS在配置的SRS资源上进行发送;
其中,配置的SRS资源可以是配置的执行LBT资源位置后的第一个OFDM符号或配置LBT资源位置的下一子帧的最后一个OFDM符号或配 置LBT资源位置后的SRS传输窗。
优选地,所述处理单元92,还配置为:
执行LBT过程检测到信道空闲时,
在子帧的第4个OFDM符号位置上发送DMRS以替代SRS;或者
复用DMRS资源进行SRS的发送;或者
在子帧的第一个时隙的最后一个符号位置发送SRS。
优选地,所述专有指示信令,包括:
基站配置LBT各功能的使能情况以及LBT参数;或者
UE侧自主配置LBT各功能的使能情况以及LBT参数;
其中,LBT各功能包括:无竞争回退窗,有固定的竞争回退窗,有动态可变的指数回退窗;
LBT参数具体包括下述至少之一:第一CCA、第二CCA、Defer period(延迟期)和N;N值通过预先配置或是随机产生。
优选地,所述处理单元92根据LBT各功能的使能情况以及LBT参数执行LBT过程的方式,包括:
方式1:仅执行一次第一CCA检测;
方式2:执行Y个第一CCA检测;其中,Y为大于等于2的正整数;
方式3:直接进行eCCA检测;
方式4:进行第一CCA检测和eCCA检测。
优选地,所述方式2中执行第一CCA检测的次数Y根据第一CCA检测的时长以及用于执行LBT的符号数确定。
优选地,所述方式3,具体包括:
所述eCCA由W个第二CCA检测组成;其中,W为正整数;
在eCCA过程中,如果第二CCA检测到信道忙,则进入延迟周期;其中,若在延迟周期内检测到信道空闲,
则进行N值递减预设数值或是N值不进行递减预设数值的操作;N值可以通过预先定义或是基站配置或是随机产生的方式获得。所述预设数值通过基站配置或是事先预定义;或者,
在eCCA过程中,如果第二CCA检测到信道忙,则不进入延迟周期,而是进入到下一次的第二CCA检测。
优选地,所述处理单元92,还配置为:
判断UE获取非授权载波的使用权准则包括:
准则1:第一CCA检测信道空闲,则认为UE获取非授权载波的使用权;
准则2:多次第一CCA中有一次检测到信道空闲,则认为UE获取非授权载波的使用权;
准则3:N值递减到0,则认为UE获取非授权载波的使用权。
本领域技术人员应当理解,图9所示的信息处理装置中的各单元的实现功能可参照前述信息处理方法的相关描述而理解。
上述信息处理装置可应用于UE中。
实际应用中,所述获取单元91、处理单元92可由信息处理装置或所述信息处理装置所属用户设备中的中央处理器(CPU,Central Processing Unit)、微处理器(MPU,Micro Processor Unit)、数字信号处理器(DSP,Digital Signal Processor)或现场可编程门阵列(FPGA,Field Programmable Gate Array)等实现。
实施例十
图10为本发明实施例提供的另一种信息处理装置的组成结构示意图,如图10所示,所述装置包括:
配置单元11,配置为设置配置信息;
发送单元12,配置为向UE发送携带有所述配置信息的通知消息,以使UE能基于所述通知消息获取第一信息并根据所述第一信息进行竞争接 入以及SRS的发送;
其中,所述第一信息包括下述至少之一:
帧结构、LBT执行位置、SRS发送位置、专有指示信令;
其中,所述通知消息至少包括下述信息:UE发送SRS的时域位置、SRS的频域图样、无信号能量的资源块索引号或执行LBT的图样、LBT执行位置。
本领域技术人员应当理解,图10所示的信息处理装置中的各单元的实现功能可参照前述信息处理方法的相关描述而理解。
上述信息处理装置可应用于基站中。
实际应用中,所述配置单元11可由信息处理装置或所述信息处理装置所属基站中的CPU、MPU、DSP或FPGA等实现;所述发送单元12可以由发射机实现。
本发明实施例还记载了一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行前述的信息处理方法。
如,该存储介质设置为存储用于执行以下步骤的程序代码:获取第一信息;根据所述第一信息进行竞争接入以及探测参考信号SRS的发送;其中,所述第一信息包括下述至少之一:帧结构、先听后说LBT执行位置、SRS发送位置、专有指示信令。
当然上述仅仅是用来举例说明,该存储介质设置还可以为存储用于执行本发明实施例中涉及到的信息处理方法的其他步骤的程序代码,在此不再赘述。
本发明实施例还记载了一种信息处理系统,所述系统包括UE和基站,其中,所述UE包括如图9所示的信息处理装置,所述基站包括如图10所示的信息处理装置,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法, 可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元,即可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
另外,在本发明各实施例中的各功能单元可以全部集成在一个处理单元中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:移动存储设备、只读存储器(ROM,Read-Only Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
或者,本发明上述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、服务器、或者网络设备等)执行本发明各个实施例所述方法的全部或部分。而前述的存储介质包括:移动存储设备、ROM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
工业实用性
在信息处理的过程中,获取第一信息;根据所述第一信息进行竞争接入以及SRS的发送;其中,所述第一信息包括下述至少之一:帧结构、LBT执行位置、SRS发送位置、专有指示信令。如此,能解决LBT检测位置和SRS发送位置均在子帧的最后一个OFDM符号上时的碰撞问题,能提升UE接入信道的概率,以及增加SRS的发送机会。

Claims (63)

  1. 一种信息处理方法,应用于用户设备UE侧,所述方法包括:
    获取第一信息;
    根据所述第一信息进行竞争接入以及探测参考信号SRS的发送;
    其中,所述第一信息包括下述至少之一:
    帧结构、先听后说LBT执行位置、SRS发送位置、专有指示信令。
  2. 根据权利要求1所述的方法,其中,所述获取第一信息,包括:
    通过预定义信息获知第一信息;或者,
    基于基站侧配置获知第一信息;或者,
    基于UE侧配置获知第一信息。
  3. 根据权利要求1所述的方法,其中,所述帧结构包括以下之一:频分双工FDD帧结构;时分双工TDD结构;动态上下行配置帧结构。
  4. 根据权利要求1所述的方法,其中,所述LBT执行位置包括:
    上行子帧;或者,
    特殊子帧;或者,
    下行子帧。
  5. 根据权利要求4所述的方法,其中,当LBT执行位置位于 上行子帧时,执行LBT的位置包括:
    上行子帧中的最后一个正交频分复用OFDM符号;或者,
    上行子帧中的最后M个OFDM符号;或者,
    上行子帧中的最后M个OFDM符号和下一子帧中的前L个OFDM符号;或者,
    上行子帧中的所有OFDM符号;
    其中,M与L均为正整数;确定M和L的方式为:通过基站配置或是预定义设置。
  6. 根据权利要求4所述的方法,其中,当LBT执行位置位于特殊子帧时,执行LBT的位置包括:
    特殊子帧中保护间隔GP的最后一个OFDM符号;或者,
    特殊子帧中GP的最后S个OFDM符号;或者,
    特殊子帧中GP的最后S个OFDM符号和上行导频时隙UpPTS中的t个OFDM符号;或者,
    特殊子帧中的GP中所有OFDM的符号;或者,
    特殊子帧中的GP中所有OFDM的符号和UpPTS中的符号;
    其中,S,t为正整数;确定M和t的方式为:通过基站配置或是预定义设置。
  7. 根据权利要求4所述的方法,其中,当LBT执行位置位于下行子帧时,执行LBT的位置包括:
    下行子帧中的最后一个OFDM符号;或者,
    下行子帧中的最后一个OFDM符号上的特定资源粒子RE;或者,
    特殊子帧中的下行导频时隙DwPTS所占用的符号;或者,
    特殊子帧中的DwPTS中的最后M个OFDM符号;或者,
    特殊子帧中的DwPTS中的OFDM符号上的特定RE。
  8. 根据权利要求1所述的方法,其中,所述SRS的发送,包括:
    周期性发送SRS;或者,
    非周期性发送SRS;或者,
    周期和非周期结合发送SRS;或者,
    根据LBT执行成功情况发送SRS;或者,
    在解调参考信号DMRS的时域位置发送SRS。
  9. 根据权利要求8所述的方法,其中,所述周期性发送SRS,包括:
    根据现有的SRS发送周期发送SRS;或者,
    修改现有SRS发送周期后发送SRS。
  10. 根据权利要求8所述的方法,其中,所述非周期性发送SRS,包括:
    通过下行控制信息DCI信息触发发送非周期的SRS;或者,
    LBT执行成功时刻触发发送非周期的SRS。
  11. 根据权利要求10所述的方法,其中,在触发非周期性SRS传输之后,所述SRS发送的位置,包括:
    下行子帧中的最后k个OFDM符号中至少之一;或者,
    下行子帧与上行子帧之间的gap中至少之一个符号;或者,
    上行子帧中的最后p个OFDM符号中至少之一;或者,
    SRS传输窗;或者,
    上行子帧中DMRS的位置;或者,
    子帧或调度子帧中的第一个时隙的最后一个OFDM符号位置;
    其中,k,p为正整数;确定k和p的方式为:通过基站配置或是预定义设置;k,p至少包括以下之一:1,2,3,4,5。
  12. 根据权利要求8所述的方法,其中,所述根据LBT执行成功情况发送SRS,包括:
    在执行LBT成功获取到信道后的第一个可用的OFDM符号上发送SRS;或者,
    在执行LBT成功获取到信道后的子帧的最后一个OFDM符号上发送SRS;或者,
    在执行LBT成功获取到信道后的第一个或j个OFDM符号上发送SRS,其中,j为正整数;或者,
    在执行LBT成功获取到信道后的未到一个符号边界的资源上发送SRS;或者,
    在执行LBT成功获取到信道后的SRS传输窗内发送SRS。
  13. 根据权利要求11或12所述的方法,其中,所述SRS传输窗和/或SRS传输窗内的SRS发送位置可由以下至少之一确定:
    SRS传输窗的起始位置;SRS传输窗的大小;SRS传输窗内SRS传输位置间的间隔。
  14. 根据权利要求13所述的方法,其中,所述SRS传输窗和/或SRS传输窗内的SRS发送位置和/或SRS发送位置可以通过以下之一确定:
    通过基站配置;或者,预先定义;或者,通过高层信令通知。
  15. 根据权利要求11或12所述的方法,其中,所述SRS传输窗的配置,包括:
    SRS传输窗的起始位置与LBT执行成功时刻或是配置的传输窗位置有关;
    SRS传输窗的大小由Q个OFDM符号组成或是不足整数倍个OFDM符号组成;其中,Q为正整数;
    其中,确定SRS传输窗的大小的方式包括:通过基站配置、或预先定义、或通过高层信令通知。
  16. 根据权利要求1所述的方法,其中,所述SRS发送位置的频域位置,包括:
    在整个频域带宽上发送SRS;或者,
    按照特定SRS频域图样发送SRS。
  17. 根据权利要求1所述的方法,其中,LBT执行位置在调度子帧的最后一个OFDM符号上,且SRS发送位置也在调度子帧的最后一个OFDM符号上时,包括:
    SRS的发送和LBT的执行过程通过频分方式共存在一个符号上; 或者,
    SRS的发送和LBT的执行过程通过时分方式共存在一个符号上。
  18. 根据权利要求17所述的方法,其中,所述SRS的发送位置和下一子帧中调度UE执行LBT的位置通过频分方式共存在一个符号上,包括:
    UE在调度子帧的最后一个OFDM符号上按照基站通知的SRS频域图样发送SRS;
    UE在调度子帧的前一子帧的最后一个OFDM符号上按照基站通知的空闲信道评估CCA图样执行CCA检测;
    其中,发送SRS和执行CCA检测对应的频域资源间允许预留频域保护间隔。
  19. 根据权利要求17所述的方法,其中,UE在调度子帧的最后一个OFDM符号上发送SRS和执行CCA之前,还包括:
    接收基站发送的通知消息;其中,所述通知消息至少包括下述信息:UE发送SRS的时域位置、SRS的频域图样、无信号能量的资源块索引号或执行LBT的图样、LBT执行位置。
  20. 根据权利要求17所述的方法,其中,所述SRS的发送和LBT的执行过程通过时分方式共存在一个符号上,包括:
    UE在调度子帧的前一子帧的最后一个OFDM符号的部分资源上进行LBT的执行过程;
    如果UE在所述部分资源上执行LBT成功,则在剩余的资源上发送SRS。
  21. 根据权利要求1所述的方法,其中,LBT执行位置在调度子帧的前一子帧的最后一个OFDM符号上,且SRS发送位置在调度子帧的第一个OFDM符号上时,包括:
    UE在一个OFDM符号的时长内执行对应的LBT操作;
    如果UE在调度子帧的前一子帧的最后一个OFDM符号上执行CCA检测成功,但CCA检测成功的时刻不到符号边界,则需要发送一个非完整符号的预留信号,在调度子帧的第一个OFDM符号上按照特定的SRS频域图样上进行SRS的发送或在整个频域带宽上发送SRS。
  22. 根据权利要求1所述的方法,其中,LBT执行位置在调度子帧的最后M个OFDM符号上时,SRS的发送包括:
    在M个OFDM符号内,执行LBT成功所用的符号仅占M个符号中的一部分时,在M个符号中剩余的符号上发送SRS或将剩余的符号作为SRS传输窗进行SRS的发送;或者,
    在M个OFDM符号内,执行LBT成功所用的符号仅占M个符号中的一部分时,在M个符号中剩余的符号上发送预留信号,SRS在配置的SRS资源上进行发送;或者,
    在M个OFDM符号内,执行LBT过程检测到信道空闲占用所有M个符号,则SRS在配置的SRS资源上进行发送;
    其中,配置的SRS资源是配置的执行LBT资源位置后的第一个OFDM符号或配置LBT资源位置的下一子帧的最后一个OFDM符号或配置LBT资源位置后的SRS传输窗。
  23. 根据权利要求1所述的方法,其中,当执行LBT过程检测到信道空闲时,SRS的发送方法还包括:
    在子帧的第4个OFDM符号位置上发送DMRS以替代SRS;或者,
    复用DMRS资源进行SRS的发送;或者,
    在子帧的第一个时隙的最后一个符号位置发送SRS。
  24. 根据权利要求1所述的方法,其中,所述专有指示信令,包括:
    由基站配置的LBT各功能的使能情况以及LBT参数;或者,
    UE侧自主配置的LBT各功能的使能情况以及LBT参数。
  25. 根据权利要求24所述的方法,其中,所述LBT各功能包括:
    无竞争回退窗;或者,
    有固定的竞争回退窗;或者,
    有动态可变的指数竞争回退窗。
  26. 根据权利要求24所述的方法,其中,所述LBT参数包括下述至少之一:
    第一CCA;或者,
    第二CCA;其中,所述第二CCA的时长配置小于所述第一CCA的时长配置;或者,
    延迟期;或者,
    N;其中,N表示回退值,N值通过预先定义或是基站配置或是随机产生的方式获得。
  27. 根据权利要求24所述的方法,其中,UE根据LBT各功能的使能情况以及LBT参数执行LBT过程的方式,包括:
    方式1:仅执行一次第一CCA检测;
    方式2:执行Y个第一CCA检测;其中,Y为大于等于2的正整数;
    方式3:直接进行扩展的空闲信道评估eCCA检测;
    方式4:进行第一CCA检测和eCCA检测。
  28. 根据权利要求27所述的方法,其中,所述方式2中执行第一CCA检测的次数Y根据第一CCA检测的时长以及用于执行LBT的符号数确定。
  29. 根据权利要求27所述的方法,其中,所述方式3,具体包括:
    所述eCCA由W个第二CCA检测组成;其中,W为正整数;
    在eCCA过程中,如果第二CCA检测到信道忙,则进入延迟周期;其中,若在延迟周期内检测到信道空闲,则进行N值递减预设数值或是N值不进行递减预设数值的操作;N值通过预先定义或是基站配置或是随机产生的方式获得;所述预设数值通过基站配置或是事先预定义;或者,
    在eCCA过程中,如果第二CCA检测到信道忙,则不进入延迟周期,而进入到下一次的第二CCA检测。
  30. 根据权利要求27所述的方法,其中,判断UE获取非授权载波的使用权准则包括:
    准则1:第一CCA检测信道空闲,则认为UE获取非授权载波的 使用权;
    准则2:多次第一CCA中有一次检测到信道空闲,则认为UE获取非授权载波的使用权;
    准则3:N值递减到0,则认为UE获取非授权载波的使用权。
  31. 一种信息处理方法,应用于基站侧,所述方法包括:
    向UE发送通知信息,以使UE能基于所述通知信息获取第一信息并根据所述第一信息进行竞争接入以及SRS的发送;
    其中,所述第一信息包括下述至少之一:
    帧结构、LBT执行位置、SRS发送位置、专有指示信令;
    其中,所述通知消息至少包括下述信息:UE发送SRS的时域位置、SRS的频域图样、无信号能量的资源块索引号或执行LBT的图样、LBT执行位置。
  32. 一种信息处理装置,应用于UE侧,所述装置包括:
    获取单元,配置为获取第一信息;
    处理单元,配置为根据所述第一信息进行竞争接入以及SRS的发送;
    其中,所述第一信息包括下述至少之一:
    帧结构、LBT执行位置、SRS发送位置、专有指示信令。
  33. 根据权利要求32所述的装置,其中,所述获取单元,还配置为:
    通过预定义信息获知第一信息;或者,
    基于基站侧配置获知第一信息;或者,
    基于UE侧配置获知第一信息。
  34. 根据权利要求33所述的装置,其中,所述帧结构包括:全部用于上行的FDD帧结构、TDD结构、动态上下行配比帧结构。
  35. 根据权利要求32所述的装置,其中,所述LBT执行位置包括:
    上行子帧;或者,
    特殊子帧;或者,
    下行子帧。
  36. 根据权利要求35所述的装置,其中,当LBT执行位置位于上行子帧时,所述处理单元执行LBT的位置包括:
    上行子帧中的最后一个OFDM符号;或者,
    上行子帧中的最后M个OFDM符号;或者,
    上行子帧中的最后M个OFDM符号和下一子帧中的前L个OFDM符号;或者,
    上行子帧中的所有OFDM符号;
    其中,M与L均为正整数;确定M和L的方式为:通过基站配置或是预定义设置。
  37. 根据权利要求35所述的装置,其中,当LBT执行位置位于特殊子帧时,所述处理单元执行LBT的位置包括:
    特殊子帧中GP的最后一个OFDM符号;或者,
    特殊子帧中GP的最后S个OFDM符号;或者,
    特殊子帧中GP的最后S个OFDM符号和UpPTS中的t个OFDM符号;或者,
    特殊子帧中的GP中所有OFDM的符号;或者,
    特殊子帧中的GP中所有OFDM的符号和UpPTS中的符号;
    其中,S,t为正整数;确定M和t的方式为:通过基站配置或是预定义设置。
  38. 根据权利要求35所述的装置,其中,当LBT执行位置位于下行子帧时,所述处理单元执行LBT的位置包括:
    下行子帧中的最后一个OFDM符号;或者,
    下行子帧中的最后一个OFDM符号上的特定RE;或者,
    特殊子帧中的DwPTS所占用的符号;或者,
    特殊子帧中的DwPTS中的最后M个OFDM符号;或者,
    特殊子帧中的DwPTS中的OFDM符号上的特定RE。
  39. 根据权利要求32所述的装置,其中,所述处理单元进行SRS的发送,包括:
    周期性发送SRS;或者,
    非周期性发送SRS;或者,
    周期和非周期结合发送SRS;或者,
    根据LBT执行成功情况发送SRS;或者,
    在DMRS的时域位置发送SRS。
  40. 根据权利要求39所述的装置,其中,所述周期性发送SRS,包括:
    根据现有的SRS发送周期发送SRS;或者,
    修改现有SRS发送周期后发送SRS。
  41. 根据权利要求39所述的装置,其中,所述非周期性发送SRS,包括:
    通过DCI信息触发发送非周期的SRS;或者,
    通过LBT执行成功时刻触发发送非周期的SRS。
  42. 根据权利要求41所述的装置,其特征在于,触发非周期性SRS传输之后,所述SRS发送的位置,包括:
    下行子帧中的最后k个OFDM符号中至少之一;或者,
    下行子帧与上行子帧之间的gap中至少之一个符号;或者,
    上行子帧中的最后p个OFDM符号中至少之一;或者,
    SRS传输窗;或者,
    上行子帧中DMRS的位置;或者,
    子帧或调度子帧中的第一个时隙的最后一个OFDM符号位置;
    其中,k,p为正整数;确定k和p的方式为:通过基站配置或是预定义设置;k,p至少包括以下之一:1,2,3,4,5。
  43. 根据权利要求39所述的装置,其中,所述根据执行LBT结 果确定发送SRS,包括:
    在执行LBT成功获取到信道后的第一个可用的OFDM符号上发送SRS;或者,
    在执行LBT成功获取到信道后的子帧的最后一个OFDM符号上发送SRS;或者,
    在执行LBT成功获取到信道后的第一个或j个OFDM符号上发送SRS,j为正整数;或者,
    在执行LBT成功获取到信道后的未到一个符号边界的资源上发送SRS;或者,
    在执行LBT成功获取到信道后的SRS传输窗内发送SRS。
  44. 根据权利要求42或43所述的装置,其特征在于,所述SRS传输窗和/或SRS传输窗内的SRS发送位置可由以下至少之一确定:
    SRS传输窗的起始位置;SRS传输窗的大小;SRS传输窗内SRS传输位置间的间隔。
  45. 根据权利要求44所述的装置,其特征在于,所述SRS传输窗和/或SRS传输窗内的SRS发送位置和/或SRS发送位置可以通过以下之一确定:
    通过基站配置;或者,预先定义;或者,通过高层信令通知。
  46. 根据权利要求42或43所述的装置,其中,所述SRS传输窗的配置,包括:
    SRS传输窗的起始位置与LBT执行成功时刻或是配置的传输窗位置有关;
    SRS传输窗的大小由Q个OFDM符号组成或是不足整数倍个OFDM符号组成;其中,Q为正整数;
    其中,确定SRS传输窗的大小的方式包括:通过基站配置、或预先定义、或通过高层信令通知。
  47. 根据权利要求32所述的装置,其中,所述处理单元进行SRS发送的频域位置,包括:
    在整个带宽上发送SRS;或者,
    按照特定SRS频域图样发送SRS。
  48. 根据权利要求33所述的装置,其中,所述处理单元,还用于:
    LBT执行位置在调度子帧的最后一个OFDM符号上,且SRS发送的位置也在子帧的最后一个OFDM符号上时,
    通过频分方式使SRS的发送和LBT的执行过程共存在一个符号上;或者,
    通过时分方式使SRS的发送和LBT的执行过程共存在一个符号上。
  49. 根据权利要求48所述的装置,其中,所述处理单元,还用于:
    在调度子帧的最后一个OFDM符号上按照基站通知的SRS频域图样发送SRS;
    在调度子帧的前一子帧的最后一个OFDM符号上按照基站通知的CCA图样执行CCA检测;
    其中,发送SRS和执行CCA检测对应的频域资源间允许预留频域保护间隔。
  50. 根据权利要求48所述的装置,其中,所述处理单元,还配置为:
    在调度子帧的最后一个OFDM符号上发送SRS和执行CCA之前,接收基站发送的通知消息;其中,所述通知消息至少包括下述信息:UE发送SRS的时域位置、SRS的频域图样、无信号能量的资源块索引号或执行LBT的图样、LBT执行位置。
  51. 根据权利要求48所述的装置,其中,所述处理单元,还配置为:
    在调度子帧的前一子帧的最后一个OFDM符号的部分资源上进行LBT的执行过程;
    如果在所述部分资源上执行LBT成功,则在剩余的资源上发送SRS。
  52. 根据权利要求32所述的装置,其中,所述处理单元,还用于:
    所述LBT执行位置在调度子帧的前一子帧的最后一个OFDM符号上,且SRS发送位置在调度子帧的第一个OFDM符号上时,
    在一个OFDM符号的时长内执行对应的LBT操作;
    如果在调度子帧的前一子帧的最后一个OFDM符号上执行CCA检测成功,但CCA检测成功的时刻不到符号边界,则需要发送一个非完整符号的预留信号,在调度子帧的第一个OFDM符号上按照特定的SRS频域图样上进行SRS的发送或在整个频域带宽上发送SRS。
  53. 根据权利要求32所述的装置,其中,所述处理单元,还配置为:
    所述LBT执行位置在子帧的最后M个OFDM符号上时,
    在M个OFDM符号内,执行LBT成功所用的符号仅占M个符号中的一部分时,在M个符号中剩余的符号上发送SRS或将剩余的符号作为SRS传输窗进行SRS的发送;或者,
    在M个OFDM符号内,执行LBT成功所用的符号仅占M个符号中的一部分时,在M个符号中剩余的符号上发送预留信号,SRS在配置的SRS资源上进行发送;或者,
    在M个OFDM符号内,执行LBT过程检测到信道空闲占用所有M个符号,则SRS在配置的SRS资源上进行发送;
    其中,配置的SRS资源是配置的执行LBT资源位置后的第一个OFDM符号或配置LBT资源位置的下一子帧的最后一个OFDM符号或配置LBT资源位置后的SRS传输窗。
  54. 根据权利要求32所述的装置,其中,所述处理单元,还配置为:
    当执行LBT过程检测到信道空闲时,
    在子帧的第4个OFDM符号位置上发送DMRS以替代SRS;或者,
    复用DMRS资源进行SRS的发送;或者,
    在子帧的第一个时隙的最后一个符号位置发送SRS。
  55. 根据权利要求32所述的装置,其中,所述专有指示信令, 包括:
    基站配置LBT各功能的使能情况以及LBT参数;或者,
    UE侧自主配置LBT各功能的使能情况以及LBT参数。
  56. 根据权利要求52所述的装置,其中,所述LBT各功能包括:
    无竞争回退窗;或者,
    有固定的竞争回退窗;或者,
    有动态可变的指数回退窗。
  57. 根据权利要求55所述的装置,其中,所述LBT参数具体包括下述至少之一:
    第一CCA;或者,
    第二CCA;其中,所述第二CCA的时长配置小于所述第一CCA的时长配置;或者,
    延迟期;或者,
    N;其中,N表示回退值,N值通过预先定义或是基站配置或是随机产生的方式获得。
  58. 根据权利要求55所述的装置,其中,所述处理单元根据LBT各功能的使能情况以及LBT参数执行LBT过程的方式,包括:
    方式1:仅执行一次第一CCA检测;
    方式2:执行Y个第一CCA检测;其中,Y为大于等于2的正整数;
    方式3:直接进行扩展的空闲信道评估eCCA检测;
    方式4:进行第一CCA检测和eCCA检测。
  59. 根据权利要求58所述的装置,其中,所述方式2中执行第一CCA检测的次数Y根据第一CCA检测的时长以及用于执行LBT的符号数确定。
  60. 根据权利要求58所述的装置,其中,所述方式3,具体包括:
    所述eCCA由W个第二CCA检测组成;其中,W为正整数;
    在eCCA过程中,如果第二CCA检测到信道忙,则进入延迟周期;其中,若在延迟周期内检测到信道空闲,则进行N值递减预设数值或是N值不进行递减预设数值的操作;N值通过预先定义或是基站配置或是随机产生的方式获得;所述预设数值通过基站配置或是事先预定义;或者,
    在eCCA过程中,如果第二CCA检测到信道忙,则不进入延迟周期,而是进入到下一次的第二CCA检测。
  61. 根据权利要求58所述的装置,其中,所述处理单元,还配置为:
    判断UE获取非授权载波的使用权准则包括:
    准则1:第一CCA检测信道空闲,则认为获取非授权载波的使用权;
    准则2:多次第一CCA中有一次检测到信道空闲,则认为获取非授权载波的使用权;
    准则3:N值递减到0,则认为获取非授权载波的使用权。
  62. 一种信息处理装置,应用基站侧,所述装置包括:
    配置单元,配置为设置配置信息;
    发送单元,配置为向UE发送携带有所述配置信息的通知消息,以使UE能基于所述通知消息获取第一信息并根据所述第一信息进行竞争接入以及SRS的发送;
    其中,所述第一信息包括下述至少之一:
    帧结构、LBT执行位置、SRS发送位置、专有指示信令;
    其中,所述通知消息至少包括下述信息:UE发送SRS的时域位置、SRS的频域图样、无信号能量的资源块索引号或执行LBT的图样、LBT执行位置。
  63. 一种信息处理系统,所述系统包括权32至61任一项所述的信息处理装置,以及权62所述的信息处理装置。
PCT/CN2016/093426 2015-08-07 2016-08-05 信息处理方法、装置及系统 WO2017024988A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16834612.0A EP3334111B1 (en) 2015-08-07 2016-08-05 Information processing method, apparatus and system
US15/751,138 US10743354B2 (en) 2015-08-07 2016-08-05 Information processing method, apparatus and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510484416.X 2015-08-07
CN201510484416.XA CN106453181B (zh) 2015-08-07 2015-08-07 一种信息处理方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2017024988A1 true WO2017024988A1 (zh) 2017-02-16

Family

ID=57983108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/093426 WO2017024988A1 (zh) 2015-08-07 2016-08-05 信息处理方法、装置及系统

Country Status (4)

Country Link
US (1) US10743354B2 (zh)
EP (1) EP3334111B1 (zh)
CN (1) CN106453181B (zh)
WO (1) WO2017024988A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170055293A1 (en) * 2015-08-17 2017-02-23 Mediatek Inc. Methods of Distributed Control Achieving Fair Radio Resource Access
WO2018025493A1 (ja) * 2016-08-05 2018-02-08 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 基地局、端末及び通信方法
JP7091316B2 (ja) * 2016-09-23 2022-06-27 オッポ広東移動通信有限公司 Srsを伝送する方法、ネットワーク機器及び端末装置
JP6953519B2 (ja) * 2016-11-04 2021-10-27 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. 通信方法、端末及びネットワーク機器
US11071143B2 (en) 2017-02-27 2021-07-20 Huawei Technologies Co., Ltd. Data sending method and user equipment
CN108632790B (zh) * 2017-03-24 2023-06-13 中兴通讯股份有限公司 一种资源配置方法及装置
US11917419B2 (en) * 2017-07-21 2024-02-27 Nec Corporation Methods and devices for uplink data transmission and scheduling
CN110535581B (zh) * 2018-08-10 2022-11-08 中兴通讯股份有限公司 上行信号的资源确定方法、设备和计算机可读存储介质
WO2020065041A1 (en) * 2018-09-28 2020-04-02 Telefonaktiebolaget Lm Ericsson (Publ) Srs transmission methodologies in unlicensed spectrum
JP7377863B2 (ja) 2019-10-17 2023-11-10 オッポ広東移動通信有限公司 チャネルアクセス指示方法及び装置
US20230199832A1 (en) * 2020-05-12 2023-06-22 Beijing Xiaomi Mobile Software Co., Ltd. Channel detection method, communication device, and storage medium
WO2022099438A1 (en) * 2020-11-10 2022-05-19 Qualcomm Incorporated Sounding reference signal based uplink to downlink channel occupancy time sharing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101483915A (zh) * 2008-01-07 2009-07-15 三星电子株式会社 传输随机接入前导信号的设备和方法
CN101772180A (zh) * 2008-12-31 2010-07-07 中兴通讯股份有限公司 随机接入方法和系统
US20120300712A1 (en) * 2011-05-24 2012-11-29 Renesas Mobile Corporation Channel Access Control
CN104333902A (zh) * 2014-11-06 2015-02-04 东莞宇龙通信科技有限公司 数据同步方法、同步系统、具有基站功能的设备和终端

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010140859A2 (ko) * 2009-06-03 2010-12-09 엘지전자 주식회사 사운딩 기준 신호를 전송하는 방법 및 장치
US8155102B1 (en) 2011-05-24 2012-04-10 Renesas Mobile Corporation Channel access control
EP2792179B1 (en) * 2011-12-15 2017-08-16 Nokia Solutions and Networks Oy Radio operations in a carrier aggregation system
WO2013167748A1 (en) * 2012-05-11 2013-11-14 Nokia Siemens Networks Oy Wireless communication scheduling on shared spectra
WO2014017866A1 (ko) * 2012-07-26 2014-01-30 엘지전자 주식회사 하향링크 신호 수신 방법 및 사용자기기와, 하향링크 신호 전송 방법 및 기지국
CN104519576A (zh) * 2013-09-27 2015-04-15 北京三星通信技术研究有限公司 一种移动终端及其在无线小区中的数据传输方法
US9814093B2 (en) * 2014-01-15 2017-11-07 Electronics And Telecommunications Research Institute Data frame structure and operation method for sharing unlicensed spectrum in wireless communication system and apparatus thereof
EP3166245B1 (en) * 2014-07-03 2020-08-12 LG Electronics Inc. New uplink reference signal transmission method and device in millimetre-wave-supporting wireless access system
CN111510928A (zh) * 2014-07-11 2020-08-07 株式会社Ntt都科摩 无线基站、用户终端以及无线通信方法
CN104540158B (zh) * 2015-01-12 2018-12-25 宇龙计算机通信科技(深圳)有限公司 信道检测通知方法、系统和基站
EP3259950B1 (en) * 2015-02-20 2019-09-18 Telefonaktiebolaget LM Ericsson (publ) Lbt patterns for wireless communication
US9930654B2 (en) * 2015-03-17 2018-03-27 Motorola Mobility Llc Method and apparatus for scheduling user equipment uplink transmissions on an unlicensed carrier

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101483915A (zh) * 2008-01-07 2009-07-15 三星电子株式会社 传输随机接入前导信号的设备和方法
CN101772180A (zh) * 2008-12-31 2010-07-07 中兴通讯股份有限公司 随机接入方法和系统
US20120300712A1 (en) * 2011-05-24 2012-11-29 Renesas Mobile Corporation Channel Access Control
CN104333902A (zh) * 2014-11-06 2015-02-04 东莞宇龙通信科技有限公司 数据同步方法、同步系统、具有基站功能的设备和终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3334111A4 *

Also Published As

Publication number Publication date
CN106453181A (zh) 2017-02-22
EP3334111A1 (en) 2018-06-13
EP3334111A4 (en) 2019-04-17
US10743354B2 (en) 2020-08-11
US20180242372A1 (en) 2018-08-23
EP3334111B1 (en) 2022-01-12
CN106453181B (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
WO2017024988A1 (zh) 信息处理方法、装置及系统
CN106453182B (zh) 前导发送方法和装置
WO2017125009A1 (zh) 一种探测参考信号的发送方法和装置
JP6617141B2 (ja) ライセンスされていないキャリアを使用して信号を送信及び受信する方法及び装置
CN106993335B (zh) 前导码发送、接收方法、装置、用户设备及基站
CN106559882B (zh) 一种授权协助接入设备竞争接入参数配置的方法及装置
CN105992347B (zh) 一种上行信号的发送方法、用户设备和基站
US20180213563A1 (en) Method and device for competing for access
WO2016183941A1 (zh) 配置方法、配置系统、设备、接收方法、接收系统和终端
WO2017167304A1 (zh) 探测参考信号发送、接收方法、设备、系统及存储介质
WO2020227829A1 (en) Sensing and resource selection for sidelink grant-free transmissions
CN114731706A (zh) Nr-u中的基于帧的设备(fbe)
WO2017121097A1 (zh) 非授权频谱上指示上行子帧的方法及装置
KR20180074689A (ko) Lbt 모드를 결정하기 위한 방법과 장치, 및 lbt 모드 전환 방법
EP4132191A1 (en) Method and apparatus for urllc in unlicensed band
EP3858071A1 (en) User equipment and base station involved in transmission of uplink control data
EP3285435B1 (en) Method for detecting signal of license exempt frequency spectrum channel and base station
KR20170098891A (ko) 메시지 전송 방법 및 장치
CN107370589A (zh) 信号传输方法、装置及用户设备
WO2017025004A1 (zh) 一种竞争接入方法和装置
CN116097839A (zh) 共享频谱上的无线通信中的ue发起的信道接入过程
KR20170093371A (ko) 비면허 대역을 지원하는 무선 통신 시스템에서 상향링크 예약 신호 전송 방법 및 장치
KR102722009B1 (ko) 개방형 스펙트럼에서의 전송 매체 액세스 제어
CN107148801B (zh) 一种通信信号的处理方法、装置及通信服务器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16834612

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15751138

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016834612

Country of ref document: EP