WO2017017903A1 - Vehicle collision detection device - Google Patents
Vehicle collision detection device Download PDFInfo
- Publication number
- WO2017017903A1 WO2017017903A1 PCT/JP2016/003194 JP2016003194W WO2017017903A1 WO 2017017903 A1 WO2017017903 A1 WO 2017017903A1 JP 2016003194 W JP2016003194 W JP 2016003194W WO 2017017903 A1 WO2017017903 A1 WO 2017017903A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pressure
- sensor
- vehicle
- collision detection
- collision
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R19/00—Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
- B60R19/02—Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
- B60R19/48—Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects combined with, or convertible into, other devices or objects, e.g. bumpers combined with road brushes, bumpers convertible into beds
- B60R19/483—Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects combined with, or convertible into, other devices or objects, e.g. bumpers combined with road brushes, bumpers convertible into beds with obstacle sensors of electric or electronic type
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L5/00—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
- G01L5/0052—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes measuring forces due to impact
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R19/00—Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
- B60R19/02—Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
- B60R19/18—Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects characterised by the cross-section; Means within the bumper to absorb impact
- B60R2019/186—Additional energy absorbing means supported on bumber beams, e.g. cellular structures or material
Definitions
- the present disclosure relates to a vehicle collision detection device for detecting a collision with a pedestrian or the like of a vehicle.
- a pedestrian protection device for reducing the impact on the pedestrian when the pedestrian collides with the vehicle.
- a bumper unit is provided with a collision detection device, and when this sensor detects that a pedestrian or the like has collided with the vehicle, the pedestrian protection device is activated to reduce the impact on the pedestrian.
- An example of a pedestrian protection device is a pop-up hood. The pop-up hood raises the rear end of the engine hood when a vehicle collision is detected, increases the clearance between the pedestrian and hard parts such as the engine, and absorbs collision energy to the pedestrian's head using that space. And reduce the impact on the head.
- a chamber member having a chamber space is disposed in front of a bumper reinforcement in the bumper of the vehicle, and the pressure in the chamber space is detected by a pressure sensor. There is something. When an object such as a pedestrian collides with the bumper cover, the chamber member is deformed with the deformation of the bumper cover, and a pressure change is generated in the chamber space. The pressure sensor detects this pressure change to detect a pedestrian collision.
- This vehicle collision detection device includes a bumper absorber disposed in a bumper of a vehicle, a hollow tube member mounted in a groove formed in the bumper absorber along the vehicle width direction, and a pressure in the tube member.
- a pressure sensor to detect, and a collision detection unit to detect occurrence of a collision based on a pressure detection value detected by the pressure sensor.
- the pressure sensor used in the above-described vehicle collision detection device includes a sensor main body provided with a sensing unit for pressure detection, and a pressure introduction pipe for introducing pressure into the sensor main body.
- the pressure introducing tube is inserted inside the end of the detection tube member, and introduces the pressure in the tube member into the sensor body.
- a pressure wave is generated in the tube member with a collision with a pedestrian or the like of the vehicle, and the pressure wave propagates from the tube member to the sensor body through the pressure introducing pipe.
- the amplitude of the pressure wave detected by the sensing unit may increase due to an increase in the propagation speed of the pressure wave.
- the pressure output from the pressure sensor is mixed with a negative value (that is, the pressure value when the pressure decreases), or the pressure wave accuracy is large, which affects the accuracy of the pressure value acquired by the collision detection unit. There is a problem that it is necessary to improve collision detection accuracy.
- This disclosure is intended to provide a vehicle collision detection device that improves the accuracy of collision detection by adjusting the output of a pressure sensor at the time of a collision.
- a vehicle collision detection device includes a detection tube member that is disposed in a bumper of a vehicle and has a hollow portion formed therein, and a pressure that detects a pressure in the hollow portion of the detection tube member.
- a sensor, and a collision detection unit that detects a collision of an object with the bumper based on a pressure detection result by the pressure sensor.
- the pressure sensor has a sensor main body provided with a sensing unit for pressure detection, and a pressure introduction pipe for introducing pressure into the sensor main body.
- the pressure introducing tube is inserted inside the end of the detection tube member to introduce the pressure in the hollow portion into the sensor body.
- the pressure introducing pipe has a speed reducing portion that reduces the propagation speed of the pressure wave generated in the hollow portion due to the collision.
- the velocity of the pressure wave detected by the sensing unit is reduced by reducing the propagation speed of the pressure wave generated in the hollow part due to the collision by the speed reducing unit provided in the pressure introduction pipe of the pressure sensor.
- it can suppress that a negative value is mixed with the pressure detection value from a pressure sensor, and the pressure detection value output from a pressure sensor can be correctly acquired by a collision detection part. Therefore, the collision detection accuracy of the vehicle collision detection device can be improved.
- FIG. 1 is a diagram illustrating an overall configuration of a vehicle collision detection device according to a first embodiment. It is an enlarged view of the bumper part of FIG.
- FIG. 3 is a III-III cross-sectional view of the bumper portion of FIG. 2. It is sectional drawing which shows the internal structure of a pressure sensor. It is a graph which shows the waveform of the pressure wave which arises with a collision. It is a graph which shows the waveform of the pressure wave in a reference example. It is sectional drawing which shows the internal structure of the pressure sensor in 2nd Embodiment.
- FIG. 8 is a VIII-VIII cross-sectional view of the pressure introducing pipe of FIG. It is sectional drawing which shows the internal structure of the pressure sensor in 3rd Embodiment.
- FIG. 10 is a cross-sectional view of the pressure introducing pipe of FIG. 9 taken along the line XX.
- the vehicle collision detection device 1 of this embodiment includes a hollow detection tube member 2, a pressure sensor 3, a speed sensor 4, a collision detection ECU 5 (corresponding to a collision detection unit), and the like. It is prepared for.
- the vehicle collision detection device 1 detects a collision of an object (that is, a pedestrian or the like) with a bumper 6 provided in front of the vehicle.
- the bumper 6 is mainly composed of a bumper cover 7, a bumper absorber 8, and a bumper reinforcement 9.
- the detection tube member 2 is a tube-shaped member having a hollow portion 2a formed therein and extending in the vehicle width direction (that is, the vehicle left-right direction).
- the tube member 2 for detection is arrange
- the tube member for detection 2 has a circular cross-sectional shape and is made of synthetic rubber, for example, silicone rubber.
- the outer diameter of the detection tube member 2 is about 7 mm to 10 mm.
- the thickness of the peripheral wall of the detection tube member 2 is about 1 mm to 3 mm.
- the outer dimensions of the detection tube member 2 are set to an outer diameter of 8 mm and a wall thickness of 2 mm.
- the material of the detection tube member 2 may be ethylene propylene rubber (EPDM) or the like.
- the pressure sensor 3 is disposed on the vehicle rear side of the front surface 9a of the bumper reinforcement 9. Specifically, two pressure sensors 3 are installed on the left and right ends of the bumper cover 7, and are fixedly attached to the rear surface 9 b of the bumper reinforcement 9 by fastening with a bolt or the like (not shown). In this embodiment, redundancy and detection accuracy are ensured by installing two pressure sensors 3 in this way.
- the pressure sensor 3 is connected to both left and right ends of the detection tube member 2 and is configured to detect the pressure in the hollow portion 2a of the detection tube member 2.
- the pressure sensor 3 is a sensor device that detects a change in the pressure of gas, and detects a change in the pressure of air in the hollow portion 2 a of the tube member 2 for detection.
- the pressure sensor 3 is electrically connected to a collision detection ECU (Electronic Control Unit) 6 via a signal line, and outputs a signal proportional to the pressure to the collision detection ECU 5.
- the collision detection ECU 5 detects a pedestrian collision with the bumper cover 7 based on the pressure detection result by the pressure sensor 3. Further, the collision detection ECU 5 is electrically connected to the pedestrian protection device 10.
- the pressure sensor 3 includes a sensor main body 30, a sensing unit 31 for pressure detection, a pressure introduction pipe 32, and a connector unit 33.
- the sensor body 30 is a box-shaped case for accommodating the sensing unit 31.
- the sensing unit 31 includes a substrate on which a sensor element for detecting pressure and the like are provided.
- the sensing unit 31 detects a pressure change in the hollow portion 2 a of the detection tube member 2 through the pressure introduction tube 32.
- the sensing unit 31 is electrically connected to a connector 34 provided in the connector unit 33, and transmits a pressure signal proportional to the pressure to the collision detection ECU 5 via the connector 34 and the signal line (see FIG. 1). .
- the pressure introducing tube 32 is a substantially cylindrical tube that is inserted inside the end portion of the detection tube member 2 and introduces the pressure in the hollow portion 2 a into the sensing unit 31 provided in the sensor body 30. is there.
- the pressure introduction pipe 32 has a pressure inlet 32 a that communicates with the hollow portion 2 a of the detection tube member 2 and a pressure discharge port 32 b that communicates with the sensor body 30 of the pressure sensor 3.
- the cross-sectional shape of the pressure introducing tube 32 is similar to the cross-sectional shape of the detection tube member 2 and is circular in this case.
- the outer diameter of the pressure introducing tube 32 is set larger than the inner diameter of the detection tube member 2.
- a speed reduction portion 321 is provided in the middle of a pressure propagation path formed inside the pressure introduction pipe 32.
- the deceleration part 321 reduces the propagation speed of the pressure wave which arises with a collision in the hollow part 2a.
- the deceleration portion 321 is configured to include an expanded portion 321a and a bent portion 321b.
- the cross-sectional area of the internal space of the pressure introducing tube 32 is larger on the sensor body 30 side than on the hollow portion 2a side.
- the expanding portion 321a is formed in a tapered shape whose inner wall surface gradually increases in the cross-sectional area of the internal space of the pressure introducing tube 32 along the direction from the hollow portion 2a toward the sensor body 30. .
- the bent portion 321b has a shape in which the propagation path of the pressure wave in the internal space of the pressure introducing pipe 32 is bent at a substantially right angle.
- the bent portion 321b is formed between the expanded portion 321a and the pressure discharge port 32b.
- the cross-sectional area of the internal space of the pressure introduction pipe 32 is larger than that of the pressure intake port 32a.
- the speed sensor 4 is a sensor device that detects the speed of the vehicle, and is electrically connected to the collision detection ECU 5 via a signal line.
- the speed sensor 4 transmits a speed signal proportional to the vehicle speed to the collision detection ECU 5.
- the collision detection ECU 5 is composed mainly of a CPU and controls the overall operation of the vehicle collision detection apparatus 1, and is electrically connected to each of the pressure sensor 3, the speed sensor 4, and the pedestrian protection apparatus 10. (See FIG. 1).
- the collision detection ECU 5 receives a pressure signal from the pressure sensor 3, a speed signal from the speed sensor 4, and the like.
- the collision detection ECU 5 executes a predetermined collision determination process based on the pressure signal from the pressure sensor 3 and the speed signal from the speed sensor 4, and detects a collision of an object such as a pedestrian on the bumper cover 7. Is output to activate the pedestrian protection device 10.
- the bumper 6 is for reducing a shock at the time of a vehicle collision, and includes a bumper cover 7, a bumper absorber 8, a bumper reinforcement 9, and the like.
- the bumper cover 7 is provided so as to cover the components of the bumper 6 and is a resin member such as polypropylene.
- the bumper cover 7 constitutes the appearance of the bumper 6 and at the same time constitutes a part of the appearance of the entire vehicle.
- the bumper absorber 8 is disposed at a position facing the front surface 9a of the bumper reinforcement 9 (that is, the vehicle front side).
- the bumper absorber 8 is a member responsible for shock absorption in the bumper 6, and is made of, for example, foamed polypropylene.
- a groove 8a for mounting the detection tube member 2 is formed in the rear surface 8b of the bumper absorber 8 along the vehicle width direction.
- the groove 8a has a rectangular cross-sectional shape and extends in the vehicle width direction.
- the length of the groove portion 8a in the vehicle vertical direction is set to be longer than the length of the detection tube member 2 in the vehicle vertical direction (that is, the length of the outer diameter).
- the vertical length of the groove 8a of this embodiment is set to about 10 mm.
- the length of the groove portion 8a in the vehicle front-rear direction is set to the same length as the length of the detection tube member 2 in the vehicle front-rear direction (that is, the length of the outer diameter).
- the vertical length of the groove part 8a should just be more than the length of the outer diameter of the tube member 2 for a detection, and can be changed suitably.
- the bumper reinforcement 9 is a rigid member made of metal such as aluminum which is disposed in the bumper cover 7 and extends in the vehicle width direction. As shown in FIG. It is.
- the bumper reinforcement 9 has a front surface 9a which is a surface on the vehicle front side and a rear surface 9b which is a surface on the vehicle rear side. As shown in FIGS. 1 and 2, the bumper reinforcement 9 is attached to the front end of a side member 11 that is a pair of metal members extending in the vehicle front-rear direction.
- the pressure sensor 3 is disposed on the rear surface 9b of the bumper reinforcement 9, and a bumper cover 7 provided with an impact caused by a collision with a pedestrian or vehicle in front of the vehicle is provided in front of the vehicle.
- the presence of the bumper reinforcement 9 protects the direct transmission to the pressure sensor 3.
- the fitting convex portion provided on the rear surface 8b of the bumper absorber 8 is fitted into the fitting concave portion provided on the front surface 9a of the bumper reinforcement 9, so that the bumper rain of the bumper absorber 8 is provided. Assembly to the force 9 is performed.
- a pop-up hood is used as the pedestrian protection device 10.
- the pop-up hood raises the rear end of the engine hood instantly after detecting the collision of the vehicle, increases the clearance between the pedestrian and hard parts such as the engine, and uses that space to impact energy on the pedestrian's head. Absorbs and reduces the impact on the pedestrian's head.
- a cowl airbag or the like that cushions a pedestrian's impact by deploying the airbag from the engine hood outside the vehicle body to the lower part of the front window may be used.
- the operation at the time of collision of the vehicle collision detection apparatus 1 in the present embodiment will be described.
- the bumper cover 7 of the bumper 6 is deformed by an impact caused by the collision with the pedestrian.
- the bumper absorber 8 is deformed while absorbing the impact, and at the same time, the detection tube member 2 is also deformed.
- the pressure in the hollow part 2a of the tube member 2 for detection rises rapidly. That is, a pressure wave is generated in the hollow portion 2a with the collision. This pressure wave propagates from the hollow portion 2 a through the pressure introduction pipe 32 to the sensor body 30 of the pressure sensor 3.
- the spreading part 321a is provided in the speed reduction part 321, when the pressure wave passes through the spreading part 321a, the propagation speed of the pressure wave decreases. That is, the following continuous equation is established for the fluid flowing through the pipeline, so that the fluid velocity decreases as the sectional area of the pipeline increases.
- Equation 1 ⁇ is the density of the fluid, v is the velocity of the fluid, and A is the cross-sectional area of the pipe.
- ⁇ is the density of the fluid
- v is the velocity of the fluid
- A is the cross-sectional area of the pipe.
- the speed reducing portion 321 since the speed reducing portion 321 is provided with the bent portion 321b, the propagation speed of the pressure wave further decreases when passing through the bent portion 321b. This is because the bending portion 321b has a bending loss due to the generation of vortices in the air flow in the pipe.
- bending loss means that the mechanical energy of the fluid is lost due to the presence of a bent portion in the air flow path. Specifically, the amount corresponding mechanical energy loss head h b in the following equation is lost.
- Equation 2 ⁇ b ⁇ (v m 2 / 2g) ⁇ ( Equation 2)
- ⁇ b is a loss factor
- v m is the fluid velocity at the bend
- g is the gravitational acceleration.
- the bent portion 321b which corresponds to the bent portion with the fact that the pressure wave passes, an amount corresponding mechanical energy loss head h b is lost. Thereby, the propagation speed of the pressure wave on the sensor body 30 side after passing through the bent portion 321b further decreases.
- the pressure discharge port 32b communicating with the sensor body 30 has a larger cross-sectional area of the internal space of the pressure introducing pipe 32 than the pressure intake port 32a communicating with the hollow portion 2a. For this reason, the propagation velocity of the pressure wave is more reliably reduced by the above-described formula 1.
- the pressure wave generated in the hollow portion 2a due to the collision is introduced into the sensor body 30 of the pressure sensor 3 after the propagation speed of the pressure wave is reduced by the speed reduction portion 321.
- the pressure value is detected by the sensing unit 31.
- the sensing unit 31 outputs a pressure signal proportional to the pressure value to the collision detection ECU 5 via the connector 34 and the signal line.
- the collision detection ECU 5 executes a predetermined collision determination process based on acquiring the pressure detection value from the pressure sensor 3 at a predetermined sampling period.
- a negative value may be mixed with the pressure detection value of the pressure sensor 3 (see FIG. 6), and the calculation of the effective mass of the collision object described later may not be performed accurately.
- the pressure detection value output from the pressure sensor 3 may not be accurately acquired by the collision detection ECU 5. Therefore, in the present embodiment, the collision determination processing by the collision detection ECU 5 can be performed accurately by reducing the propagation speed of the pressure wave and reducing the amplitude of the pressure wave.
- the effective mass of the collision object is calculated based on the detection results of the pressure sensor 3 and the speed sensor 4, and when this effective mass is larger than a predetermined threshold, the collision with the pedestrian is detected. It is determined that it has occurred. Furthermore, when the vehicle speed is within a predetermined range (for example, a range of 25 km to 55 km / h), it is determined that a collision with a pedestrian requiring the operation of the pedestrian protection device 10 has occurred.
- a predetermined range for example, a range of 25 km to 55 km / h
- Effective mass refers to the mass calculated from the detected value of the pressure sensor 3 at the time of collision using the relationship between momentum and impulse.
- the value of the detected pressure sensor 3 is different for a collision object having a mass different from that of a pedestrian. For this reason, by setting a threshold value between the effective mass of the human body and the mass of another assumed collision object, it is possible to classify the types of the collision object.
- the effective mass is calculated by dividing the constant integral value of the pressure value detected by the pressure sensor 3 at a predetermined time by the vehicle speed detected by the speed sensor 4 as shown in the following equation.
- M ( ⁇ P (t) dt) / V (Equation 3)
- M is an effective mass
- P is a value detected by the pressure sensor 3 at a predetermined time
- t is a predetermined time (for example, several ms to several tens of ms)
- V is a vehicle speed at the time of collision detected by the speed sensor 4.
- E 1/2 ⁇ MV 2 representing the kinetic energy E of the collided object.
- the collision detection ECU 5 determines that a collision has occurred with a pedestrian that requires the operation of the pedestrian protection device 10.
- the collision detection ECU 5 outputs a control signal for operating the pedestrian protection device 10 to operate the pedestrian protection device 10. As described above, the impact on the pedestrian is reduced.
- the vehicle collision detection device 1 includes the detection tube member 2 disposed in the vehicle bumper 6 and having the hollow portion 2a formed therein, and the detection tube member.
- the pressure sensor 3 includes a sensor main body 30 provided with a sensing unit 31 for pressure detection, and a pressure introduction pipe 32 for introducing pressure into the sensor main body 30, and the pressure introduction pipe 32 is the detection tube member 2.
- the pressure inside the hollow portion 2 a is introduced into the sensor body 30 by being inserted inside the end portion.
- the pressure introducing pipe 32 is provided with a speed reducing portion 321 for reducing the propagation speed of the pressure wave generated in the hollow portion 2a due to the collision.
- the sensing unit 31 detects the propagation speed of the pressure wave generated in the hollow portion 2a due to the collision by the speed reducing unit 321 provided in the pressure introduction pipe 32 of the pressure sensor 3.
- the pressure wave amplitude can be reduced. Thereby, it can suppress that a negative value is mixed with the pressure detection value from the pressure sensor 3, and the pressure detection value output from the pressure sensor 3 can be correctly acquired by the collision detection ECU 5. Therefore, the collision detection accuracy of the vehicle collision detection apparatus 1 can be improved.
- the speed reduction part 321 has an expanded part 321a in which the cross-sectional area of the internal space of the pressure introduction pipe 32 is larger on the sensor body 30 side than on the hollow part 2a side.
- the expanded portion 321a causes the cross-sectional area of the internal space of the pressure introduction pipe 32 to be larger on the sensor body 30 side than on the hollow portion 2a side, so that the pressure wave is based on the above-described continuous equation. The propagation speed of can be effectively reduced.
- the inner wall surface of the pressure introducing pipe 32 is formed in a tapered shape in which the cross-sectional area of the internal space of the pressure introducing pipe 32 gradually increases along the direction from the hollow portion 2a to the sensor body 30 in the expanded portion 321a.
- the expanding portion 321a is formed in a tapered shape in which the cross-sectional area of the internal space of the pressure introducing tube 32 gradually increases along the direction from the hollow portion 2a toward the sensor body 30.
- the speed reduction part 321 has a bent part 321b in which the propagation path of the pressure wave in the internal space of the pressure introduction pipe 32 is bent. According to this configuration, when the pressure wave propagates through the bent portion 321b, a bending loss due to the generation of vortices or the like occurs in the air flow in the pipe, so that the propagation speed of the pressure wave can be reliably reduced. .
- cross-sectional area of the internal space of the pressure introducing pipe 32 is larger in the pressure discharge port 32b communicating with the sensor body 30 than in the pressure intake port 32a communicating with the hollow portion 2a.
- the cross-sectional shape of the pressure introducing tube 32 is similar to the cross-sectional shape of the detection tube member 2. According to this configuration, since the cross-sectional shape of the pressure introduction tube 32 is similar to the cross-sectional shape of the detection tube member 2, it is possible to ensure the sealing property of the connection portion between the pressure introduction tube 32 and the detection tube member 2. it can.
- the outer diameter of the pressure introducing pipe 32 is set larger than the inner diameter of the detection tube member 2. According to this configuration, since the outer diameter of the pressure introduction tube 32 is set larger than the inner diameter of the detection tube member 2, the hermeticity of the connection portion between the pressure introduction tube 32 and the detection tube member 2 is improved. Can do.
- the speed reducing portion 322 is configured to have a plurality of protruding portions 322 a on the inner wall surface of the pressure introducing pipe 32.
- the protrusions 322a are formed integrally with the pressure introduction pipe 32, and as shown in FIG. 7, a plurality of protrusions 322a are provided at predetermined intervals in the longitudinal direction of the inner wall surface of the pressure introduction pipe 32. In this case, a total of six projecting portions 322 a are provided in each of three on the vehicle upper side and the lower side on the inner wall surface of the pressure introducing pipe 32. Further, as shown in FIG. 8, the protruding portion 322a protrudes radially inward from the inner wall surface of the pressure introducing tube 32 by a predetermined length (for example, several mm).
- the speed reduction portion 322 has a bent portion 322b.
- the bent portion 322b has a shape in which the propagation path of the pressure wave in the internal space of the pressure introducing tube 32 is bent at a substantially right angle.
- the bent portion 322b is formed in the vicinity of the pressure discharge port 32b. Further, in the pressure discharge port 32b, the cross-sectional area of the internal space of the pressure introduction pipe 32 is larger than that of the pressure intake port 32a.
- the speed reduction portion 322 has at least one protrusion 322a that protrudes radially inward from the inner wall surface of the pressure introduction pipe 32 by a predetermined length. is doing.
- the speed reduction part 322 has at least one or more protrusions 322a that protrude inward in the radial direction by a predetermined length from the inner wall surface of the pressure introduction pipe 32, so that the pressure wave collides with the protrusions 322a.
- the propagation speed of the pressure wave can be reliably reduced, and the amplitude of the pressure wave can be reliably reduced.
- FIGS. 9 and 10 A third embodiment will be described with reference to FIGS. 9 and 10.
- the speed reducing portion 323 is provided on the inner wall surface of the pressure introducing pipe 32 with a filter member 323 a that reduces the propagation speed of the pressure wave below a predetermined speed.
- the frictional resistance of the inner wall surface of the pressure introduction pipe 32 is larger than the other portions.
- the filter member 323 a is configured to have a breathable mesh filter, and is attached to the inner wall surface of the pressure introduction pipe 32 on the pressure inlet 32 a side.
- This filter is designed so that the flow velocity of air is a predetermined velocity (for example, 40 m / s) or less.
- the propagation speed of the pressure wave is reduced to a predetermined speed (for example, 40 m / s) or less.
- positioning position of the filter member 323a can be changed suitably, for example, may be provided in the inner wall surface by the side of the pressure discharge port 32b of the pressure introduction pipe 32.
- the inner wall surface of the speed reducing portion 323 is formed to have a rougher surface than other portions. Thereby, in the deceleration part 323, the flow of air receives friction loss, and the propagation speed of a pressure wave reduces gradually. In addition, you may make it the frictional resistance of the inner wall surface of the deceleration part 323 become larger than the other part by making the inner wall surface of the deceleration part 323 into an uneven shape.
- the speed reduction portion 323 has a bent portion 323b.
- the bent portion 323b has a shape in which the propagation path of the pressure wave in the internal space of the pressure introducing tube 32 is bent at a substantially right angle.
- the bent portion 323b is formed in the vicinity of the pressure discharge port 32b. Further, in the pressure discharge port 32b, the cross-sectional area of the internal space of the pressure introduction pipe 32 is larger than that of the pressure intake port 32a.
- the speed reduction unit 323 includes the filter member 323a that is provided on the inner wall surface of the pressure introduction pipe and reduces the propagation speed of the pressure wave to a predetermined speed or less.
- the frictional resistance of the inner wall surface of the pressure introducing pipe 32 is larger than that of the other portions.
- the speed reduction part 323 has a filter member 323a provided on the inner wall surface of the pressure introducing pipe to reduce the pressure wave propagation speed to a predetermined speed or less, so that the pressure wave propagation speed is predetermined by the filter member 323a. It can be reliably reduced below the speed. Moreover, since the frictional resistance of the inner wall surface of the pressure introducing pipe 32 is larger than that of the other portions of the speed reducing portion 323, the speed wave propagation speed can be gradually reduced by the speed reducing portion 323. In this way, the amplitude of the pressure wave detected by the sensing unit 31 of the pressure sensor 3 can be reduced more reliably.
- the present disclosure is not limited to the above-described embodiments, and various modifications or expansions can be made without departing from the spirit of the present disclosure.
- the pressure introducing pipe 32 is provided with the bent portions 321b to 323b.
- the present invention is not limited to this, and the bent portions 321b to 323b may not be provided.
- the protruding portion 322 a may not be integrally formed with the pressure introducing tube 32, and the protruding portion 322 a made of another member may be integrated with the pressure introducing tube 32.
- the effective mass is calculated based on the pressure detection result, and when the effective mass exceeds the collision determination threshold in the collision determination process, the collision with the pedestrian that requires the operation of the pedestrian protection device 10 is performed.
- the pressure detection result may be used as it is.
- a configuration may be used in which the collision determination is performed by comparing the pressure detection result with the respective collision determination thresholds using a pressure value, a pressure change rate, or the like.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Force Measurement Appropriate To Specific Purposes (AREA)
- Measuring Fluid Pressure (AREA)
Abstract
A vehicle collision detection device comprises: a detection tube member (2) having a hollow section (2a) formed in the interior thereof; a pressure sensor (3) that detects the pressure within the hollow section; and a collision detection unit that detects a collision of a physical object with a bumper on the basis of the pressure detection results from the pressure sensor. The pressure sensor has a sensor body (30) provided with a sensing unit (31), and a pressure introduction tube (32) for introducing pressure into the sensor body. The pressure introduction tube is inserted into the inner side of an end section of the detection tube member and introduces the pressure within the hollow section into the sensor body. The pressure introduction tube is provided with a deceleration section (321) for reducing the propagation velocity of pressure waves generated within the hollow section as a result of a collision.
Description
本出願は、2015年7月28日に出願された日本特許出願2015-148701号に基づくもので、ここにその記載内容を援用する。
This application is based on Japanese Patent Application No. 2015-148701 filed on July 28, 2015, the contents of which are incorporated herein by reference.
本開示は、車両の歩行者等との衝突を検知するための車両用衝突検知装置に関する。
The present disclosure relates to a vehicle collision detection device for detecting a collision with a pedestrian or the like of a vehicle.
従来、歩行者が車両に衝突した際、歩行者への衝撃を軽減するための歩行者保護装置を備えた車両がある。この車両では、バンパ部にセンサを備えた衝突検知装置を設け、このセンサにより車両に歩行者等が衝突したことが検知された場合、歩行者保護装置を作動させ、歩行者への衝撃を和らげる。歩行者保護装置には、例えばポップアップフードと呼ばれるものがある。ポップアップフードは、車両の衝突検知時に、エンジンフードの後端を上昇させ、歩行者とエンジン等の硬い部品とのクリアランスを増加させ、そのスペースを用いて歩行者の頭部への衝突エネルギーを吸収し、頭部への衝撃を低減させる。
Conventionally, there are vehicles equipped with a pedestrian protection device for reducing the impact on the pedestrian when the pedestrian collides with the vehicle. In this vehicle, a bumper unit is provided with a collision detection device, and when this sensor detects that a pedestrian or the like has collided with the vehicle, the pedestrian protection device is activated to reduce the impact on the pedestrian. . An example of a pedestrian protection device is a pop-up hood. The pop-up hood raises the rear end of the engine hood when a vehicle collision is detected, increases the clearance between the pedestrian and hard parts such as the engine, and absorbs collision energy to the pedestrian's head using that space. And reduce the impact on the head.
上記した車両用衝突検知装置には、車両のバンパ内におけるバンパレインフォースメントの前面に、チャンバ空間を内部に有するチャンバ部材を配設し、チャンバ空間内の圧力を圧力センサにより検出するようにしたものがある。バンパカバーへ歩行者等の物体が衝突すると、バンパカバーの変形に伴ってチャンバ部材が変形し、チャンバ空間に圧力変化が発生する。この圧力変化を圧力センサが検出することで歩行者の衝突を検知している。
In the above-described vehicle collision detection device, a chamber member having a chamber space is disposed in front of a bumper reinforcement in the bumper of the vehicle, and the pressure in the chamber space is detected by a pressure sensor. There is something. When an object such as a pedestrian collides with the bumper cover, the chamber member is deformed with the deformation of the bumper cover, and a pressure change is generated in the chamber space. The pressure sensor detects this pressure change to detect a pedestrian collision.
近年、上記したチャンバ式の車両用衝突検知装置よりも、小型で搭載性に優れたチューブ部材を用いて衝突を検知するチューブ式の車両用衝突検知装置が提案されている。この車両用衝突検知装置は、車両のバンパ内に配設されたバンパアブソーバと、バンパアブソーバに車幅方向に沿って形成された溝部に装着される中空のチューブ部材と、チューブ部材内の圧力を検出する圧力センサと、圧力センサにより検出される圧力検出値に基づいて衝突発生を検知する衝突検知部とを備える。車両前方に歩行者等が衝突した際には、バンパアブソーバが衝撃を吸収しながら変形すると同時にチューブ部材も変形する。このとき、チューブ部材内の圧力が上昇し、この圧力変化が圧力センサにより検出される。衝突検知部は、圧力センサによる圧力検出値に基づいて、車両の歩行者との衝突を検知する。
In recent years, a tube-type vehicle collision detection device that detects a collision using a tube member that is smaller and more easily mounted than the above-described chamber-type vehicle collision detection device has been proposed. This vehicle collision detection device includes a bumper absorber disposed in a bumper of a vehicle, a hollow tube member mounted in a groove formed in the bumper absorber along the vehicle width direction, and a pressure in the tube member. A pressure sensor to detect, and a collision detection unit to detect occurrence of a collision based on a pressure detection value detected by the pressure sensor. When a pedestrian or the like collides with the front of the vehicle, the bumper absorber is deformed while absorbing the impact, and at the same time, the tube member is also deformed. At this time, the pressure in the tube member rises, and this pressure change is detected by the pressure sensor. A collision detection part detects the collision with the pedestrian of a vehicle based on the pressure detection value by a pressure sensor.
ここで、上記した車両用衝突検知装置に用いられる圧力センサは、圧力検出用のセンシング部が設けられるセンサ本体と、センサ本体へ圧力を導入するための圧力導入管とを有して構成される。圧力導入管は、検出用チューブ部材の端部の内側に差し込まれ、チューブ部材内の圧力をセンサ本体へ導入する。
Here, the pressure sensor used in the above-described vehicle collision detection device includes a sensor main body provided with a sensing unit for pressure detection, and a pressure introduction pipe for introducing pressure into the sensor main body. . The pressure introducing tube is inserted inside the end of the detection tube member, and introduces the pressure in the tube member into the sensor body.
車両の歩行者等との衝突に伴ってチューブ部材内で圧力波が生じ、この圧力波がチューブ部材内から圧力導入管を通ってセンサ本体へ伝搬する。このとき圧力波の伝搬速度が大きくなることで、センシング部により検出される圧力波の振幅が大きくなる場合がある。この場合、圧力センサによる圧力の出力に負の値(即ち、圧力が減少するときの圧力値)が混じることや、圧力波の振幅が大きいため衝突検知部により取得される圧力値の精度に影響が及ぶおそれがあり、衝突検知精度の向上が必要であるという課題がある。
A pressure wave is generated in the tube member with a collision with a pedestrian or the like of the vehicle, and the pressure wave propagates from the tube member to the sensor body through the pressure introducing pipe. At this time, the amplitude of the pressure wave detected by the sensing unit may increase due to an increase in the propagation speed of the pressure wave. In this case, the pressure output from the pressure sensor is mixed with a negative value (that is, the pressure value when the pressure decreases), or the pressure wave accuracy is large, which affects the accuracy of the pressure value acquired by the collision detection unit. There is a problem that it is necessary to improve collision detection accuracy.
本開示は、衝突時における圧力センサの出力を調節して衝突検知精度を向上させた車両用衝突検知装置を提供することを目的とする。
This disclosure is intended to provide a vehicle collision detection device that improves the accuracy of collision detection by adjusting the output of a pressure sensor at the time of a collision.
本開示の一態様において、車両用衝突検知装置は、車両のバンパ内に配設されて内部に中空部が形成された検出用チューブ部材と、検出用チューブ部材の中空部内の圧力を検出する圧力センサと、圧力センサによる圧力検出結果に基づいてバンパへの物体の衝突を検知する衝突検知部と、を有している。圧力センサは、圧力検出用のセンシング部が設けられるセンサ本体と、センサ本体へ圧力を導入するための圧力導入管とを有する。圧力導入管は、検出用チューブ部材の端部の内側に差し込まれて中空部内の圧力をセンサ本体へ導入する。圧力導入管は、中空部内において衝突に伴って生じる圧力波の伝搬速度を減少させる減速部を有する。
In one aspect of the present disclosure, a vehicle collision detection device includes a detection tube member that is disposed in a bumper of a vehicle and has a hollow portion formed therein, and a pressure that detects a pressure in the hollow portion of the detection tube member. A sensor, and a collision detection unit that detects a collision of an object with the bumper based on a pressure detection result by the pressure sensor. The pressure sensor has a sensor main body provided with a sensing unit for pressure detection, and a pressure introduction pipe for introducing pressure into the sensor main body. The pressure introducing tube is inserted inside the end of the detection tube member to introduce the pressure in the hollow portion into the sensor body. The pressure introducing pipe has a speed reducing portion that reduces the propagation speed of the pressure wave generated in the hollow portion due to the collision.
この構成によれば、圧力センサの圧力導入管に設けられた減速部によって、衝突に伴って中空部内に生じる圧力波の伝搬速度を減少させることで、センシング部により検出される圧力波の振幅を小さくすることができる。これにより、圧力センサからの圧力検出値に負の値が混じることを抑制できると共に、圧力センサから出力される圧力検出値を衝突検知部により正確に取得することができる。従って、車両用衝突検知装置の衝突検知精度を向上させることができる。
According to this configuration, the velocity of the pressure wave detected by the sensing unit is reduced by reducing the propagation speed of the pressure wave generated in the hollow part due to the collision by the speed reducing unit provided in the pressure introduction pipe of the pressure sensor. Can be small. Thereby, it can suppress that a negative value is mixed with the pressure detection value from a pressure sensor, and the pressure detection value output from a pressure sensor can be correctly acquired by a collision detection part. Therefore, the collision detection accuracy of the vehicle collision detection device can be improved.
[第1の実施形態]
第1の実施形態の車両用衝突検知装置について、図1~図6を参照して説明する。図1及び図2に示すように、本実施形態の車両用衝突検知装置1は、中空の検出用チューブ部材2、圧力センサ3、速度センサ4、衝突検知ECU5(衝突検知部に相当)等を備えて構成される。車両用衝突検知装置1は、車両前方に設けられたバンパ6への物体(即ち、歩行者等)の衝突を検知する。バンパ6は、図3に示すように、バンパカバー7、バンパアブソーバ8、バンパレインフォースメント9を主体として構成されている。 [First Embodiment]
A vehicle collision detection apparatus according to a first embodiment will be described with reference to FIGS. As shown in FIGS. 1 and 2, the vehiclecollision detection device 1 of this embodiment includes a hollow detection tube member 2, a pressure sensor 3, a speed sensor 4, a collision detection ECU 5 (corresponding to a collision detection unit), and the like. It is prepared for. The vehicle collision detection device 1 detects a collision of an object (that is, a pedestrian or the like) with a bumper 6 provided in front of the vehicle. As shown in FIG. 3, the bumper 6 is mainly composed of a bumper cover 7, a bumper absorber 8, and a bumper reinforcement 9.
第1の実施形態の車両用衝突検知装置について、図1~図6を参照して説明する。図1及び図2に示すように、本実施形態の車両用衝突検知装置1は、中空の検出用チューブ部材2、圧力センサ3、速度センサ4、衝突検知ECU5(衝突検知部に相当)等を備えて構成される。車両用衝突検知装置1は、車両前方に設けられたバンパ6への物体(即ち、歩行者等)の衝突を検知する。バンパ6は、図3に示すように、バンパカバー7、バンパアブソーバ8、バンパレインフォースメント9を主体として構成されている。 [First Embodiment]
A vehicle collision detection apparatus according to a first embodiment will be described with reference to FIGS. As shown in FIGS. 1 and 2, the vehicle
検出用チューブ部材2は、図1及び図2に示すように、内部に中空部2aが形成され、車幅方向(即ち、車両左右方向)に延びているチューブ状の部材である。検出用チューブ部材2は、車両のバンパ6内においてバンパレインフォースメント9の前面9aに対向する位置、即ち車両前方側に配設される。検出用チューブ部材2の両端部は、バンパレインフォースメント9の車幅方向左右の外側で湾曲して後述する圧力センサ3に接続される。
As shown in FIGS. 1 and 2, the detection tube member 2 is a tube-shaped member having a hollow portion 2a formed therein and extending in the vehicle width direction (that is, the vehicle left-right direction). The tube member 2 for detection is arrange | positioned in the bumper 6 of a vehicle in the position facing the front surface 9a of the bumper reinforcement 9, ie, the vehicle front side. Both ends of the tube member for detection 2 are curved on the left and right outer sides of the bumper reinforcement 9 in the vehicle width direction and connected to a pressure sensor 3 described later.
検出用チューブ部材2は、図3に示すように、円形の断面形状を有し、合成ゴム、例えばシリコーンゴムからなる。検出用チューブ部材2の外径は、7mm~10mm程度である。また、検出用チューブ部材2の周壁の肉厚は、1mm~3mm程度である。本実施形態では、検出用チューブ部材2の外形寸法は、外径8mm、肉厚2mmに設定されている。なお、検出用チューブ部材2の材質としては、他にもエチレンプロピレンゴム(EPDM)等でもよい。
As shown in FIG. 3, the tube member for detection 2 has a circular cross-sectional shape and is made of synthetic rubber, for example, silicone rubber. The outer diameter of the detection tube member 2 is about 7 mm to 10 mm. Further, the thickness of the peripheral wall of the detection tube member 2 is about 1 mm to 3 mm. In this embodiment, the outer dimensions of the detection tube member 2 are set to an outer diameter of 8 mm and a wall thickness of 2 mm. The material of the detection tube member 2 may be ethylene propylene rubber (EPDM) or the like.
圧力センサ3は、図1及び図2に示すように、バンパレインフォースメント9の前面9aよりも車両後方側に配置される。具体的には、圧力センサ3は、バンパカバー7内の左右両端部側に2つ設置され、バンパレインフォースメント9の後面9bに図示しないボルト等で締結することにより固定されて取り付けられる。本実施形態では、このように圧力センサ3を2つ設置することにより、冗長性及び検出精度を確保している。
1 and 2, the pressure sensor 3 is disposed on the vehicle rear side of the front surface 9a of the bumper reinforcement 9. Specifically, two pressure sensors 3 are installed on the left and right ends of the bumper cover 7, and are fixedly attached to the rear surface 9 b of the bumper reinforcement 9 by fastening with a bolt or the like (not shown). In this embodiment, redundancy and detection accuracy are ensured by installing two pressure sensors 3 in this way.
また、圧力センサ3は、検出用チューブ部材2の左右両端部に接続され、検出用チューブ部材2の中空部2a内の圧力を検出するように構成される。具体的には、圧力センサ3は、気体の圧力変化を検出するセンサ装置であり、検出用チューブ部材2の中空部2a内の空気の圧力変化を検出する。圧力センサ3は、図1に示すように、衝突検知ECU(Electronic Control Unit)6に信号線を介して電気的に接続され、圧力に比例した信号を衝突検知ECU5へ出力する。衝突検知ECU5は、圧力センサ3による圧力検出結果に基づいて、バンパカバー7への歩行者の衝突を検知する。また、衝突検知ECU5は、歩行者保護装置10に電気的に接続されている。
The pressure sensor 3 is connected to both left and right ends of the detection tube member 2 and is configured to detect the pressure in the hollow portion 2a of the detection tube member 2. Specifically, the pressure sensor 3 is a sensor device that detects a change in the pressure of gas, and detects a change in the pressure of air in the hollow portion 2 a of the tube member 2 for detection. As shown in FIG. 1, the pressure sensor 3 is electrically connected to a collision detection ECU (Electronic Control Unit) 6 via a signal line, and outputs a signal proportional to the pressure to the collision detection ECU 5. The collision detection ECU 5 detects a pedestrian collision with the bumper cover 7 based on the pressure detection result by the pressure sensor 3. Further, the collision detection ECU 5 is electrically connected to the pedestrian protection device 10.
圧力センサ3は、図4に示すように、センサ本体30と、圧力検出用のセンシング部31と、圧力導入管32と、コネクタ部33とを備える。センサ本体30は、センシング部31を収容するための箱状のケースである。
As shown in FIG. 4, the pressure sensor 3 includes a sensor main body 30, a sensing unit 31 for pressure detection, a pressure introduction pipe 32, and a connector unit 33. The sensor body 30 is a box-shaped case for accommodating the sensing unit 31.
センシング部31は、圧力を検出するセンサ素子等が設けられた基板等を有して構成される。センシング部31は、圧力導入管32を介して検出用チューブ部材2の中空部2a内の圧力変化を検出する。センシング部31は、コネクタ部33内に設けられたコネクタ34に電気的に接続されており、圧力に比例した圧力信号をコネクタ34及び信号線を介して衝突検知ECU5へ送信する(図1参照)。
The sensing unit 31 includes a substrate on which a sensor element for detecting pressure and the like are provided. The sensing unit 31 detects a pressure change in the hollow portion 2 a of the detection tube member 2 through the pressure introduction tube 32. The sensing unit 31 is electrically connected to a connector 34 provided in the connector unit 33, and transmits a pressure signal proportional to the pressure to the collision detection ECU 5 via the connector 34 and the signal line (see FIG. 1). .
圧力導入管32は、検出用チューブ部材2の端部の内側に差し込まれて、中空部2a内の圧力をセンサ本体30内に設けられたセンシング部31に導入するための略円筒状の管である。圧力導入管32は、検出用チューブ部材2の中空部2aに連通する圧力取入口32aと、圧力センサ3のセンサ本体30に連通する圧力吐出口32bとを有している。圧力導入管32の断面形状は、検出用チューブ部材2の断面形状と相似であり、この場合円形である。また、圧力導入管32の外径は、検出用チューブ部材2の内径よりも大きく設定されている。
The pressure introducing tube 32 is a substantially cylindrical tube that is inserted inside the end portion of the detection tube member 2 and introduces the pressure in the hollow portion 2 a into the sensing unit 31 provided in the sensor body 30. is there. The pressure introduction pipe 32 has a pressure inlet 32 a that communicates with the hollow portion 2 a of the detection tube member 2 and a pressure discharge port 32 b that communicates with the sensor body 30 of the pressure sensor 3. The cross-sectional shape of the pressure introducing tube 32 is similar to the cross-sectional shape of the detection tube member 2 and is circular in this case. The outer diameter of the pressure introducing tube 32 is set larger than the inner diameter of the detection tube member 2.
本実施形態では、圧力導入管32の内部に形成された圧力の伝搬経路の途中に、減速部321が設けられている。減速部321は、中空部2a内において衝突に伴って生じる圧力波の伝搬速度を減少させる。
In the present embodiment, a speed reduction portion 321 is provided in the middle of a pressure propagation path formed inside the pressure introduction pipe 32. The deceleration part 321 reduces the propagation speed of the pressure wave which arises with a collision in the hollow part 2a.
減速部321は、拡がり部321aと、屈曲部321bとを有して構成される。拡がり部321aは、中空部2a側よりもセンサ本体30側の方が圧力導入管32の内部空間の断面積が大きくなっている。具体的には、拡がり部321aは、その内壁面が中空部2aからセンサ本体30へ向かう方向に沿って、圧力導入管32の内部空間の断面積が徐々に大きくなるテーパ状に形成されている。
The deceleration portion 321 is configured to include an expanded portion 321a and a bent portion 321b. In the expanded portion 321a, the cross-sectional area of the internal space of the pressure introducing tube 32 is larger on the sensor body 30 side than on the hollow portion 2a side. Specifically, the expanding portion 321a is formed in a tapered shape whose inner wall surface gradually increases in the cross-sectional area of the internal space of the pressure introducing tube 32 along the direction from the hollow portion 2a toward the sensor body 30. .
屈曲部321bは、圧力導入管32の内部空間における圧力波の伝搬経路が、略直角に屈曲した形状になっている。この屈曲部321bは、拡がり部321aと圧力吐出口32bとの間に形成されている。圧力吐出口32bにおいては、圧力導入管32の内部空間の断面積が圧力取入口32aよりも大きくなっている。
The bent portion 321b has a shape in which the propagation path of the pressure wave in the internal space of the pressure introducing pipe 32 is bent at a substantially right angle. The bent portion 321b is formed between the expanded portion 321a and the pressure discharge port 32b. In the pressure discharge port 32b, the cross-sectional area of the internal space of the pressure introduction pipe 32 is larger than that of the pressure intake port 32a.
速度センサ4は、車両の速度を検出するセンサ装置であり、衝突検知ECU5に信号線を介して電気的に接続されている。速度センサ4は、車両速度に比例した速度信号を衝突検知ECU5へ送信する。
The speed sensor 4 is a sensor device that detects the speed of the vehicle, and is electrically connected to the collision detection ECU 5 via a signal line. The speed sensor 4 transmits a speed signal proportional to the vehicle speed to the collision detection ECU 5.
衝突検知ECU5は、CPUを主体として構成され、車両用衝突検知装置1の動作全般を制御するものであり、圧力センサ3、速度センサ4、歩行者保護装置10のそれぞれに電気的に接続されている(図1参照)。衝突検知ECU5には、圧力センサ3からの圧力信号、速度センサ4からの速度信号等が入力される。衝突検知ECU5は、圧力センサ3による圧力信号及び速度センサ4による速度信号に基づいて、所定の衝突判定処理を実行し、バンパカバー7への歩行者等の物体の衝突を検知した場合、制御信号を出力して歩行者保護装置10を作動させる。
The collision detection ECU 5 is composed mainly of a CPU and controls the overall operation of the vehicle collision detection apparatus 1, and is electrically connected to each of the pressure sensor 3, the speed sensor 4, and the pedestrian protection apparatus 10. (See FIG. 1). The collision detection ECU 5 receives a pressure signal from the pressure sensor 3, a speed signal from the speed sensor 4, and the like. The collision detection ECU 5 executes a predetermined collision determination process based on the pressure signal from the pressure sensor 3 and the speed signal from the speed sensor 4, and detects a collision of an object such as a pedestrian on the bumper cover 7. Is output to activate the pedestrian protection device 10.
バンパ6は、車両の衝突時における衝撃を和らげるためのものであり、バンパカバー7、バンパアブソーバ8、バンパレインフォースメント9等から構成される。バンパカバー7は、バンパ6の構成部品を覆うように設けられ、ポリプロピレン等の樹脂製の部材である。バンパカバー7は、バンパ6の外観を構成すると同時に、車両全体の外観の一部を構成する。
The bumper 6 is for reducing a shock at the time of a vehicle collision, and includes a bumper cover 7, a bumper absorber 8, a bumper reinforcement 9, and the like. The bumper cover 7 is provided so as to cover the components of the bumper 6 and is a resin member such as polypropylene. The bumper cover 7 constitutes the appearance of the bumper 6 and at the same time constitutes a part of the appearance of the entire vehicle.
バンパアブソーバ8は、バンパレインフォースメント9の前面9aに対向する位置(即ち、車両前方側)に配設される。このバンパアブソーバ8は、バンパ6において衝撃吸収の作用を受け持つ部材であり、例えば発泡ポリプロピレン等からなる。バンパアブソーバ8の後面8bには、図3に示すように、検出用チューブ部材2を装着するための溝部8aが車幅方向に沿って形成されている。溝部8aは、矩形の断面形状を有し、車幅方向に延びている。
The bumper absorber 8 is disposed at a position facing the front surface 9a of the bumper reinforcement 9 (that is, the vehicle front side). The bumper absorber 8 is a member responsible for shock absorption in the bumper 6, and is made of, for example, foamed polypropylene. As shown in FIG. 3, a groove 8a for mounting the detection tube member 2 is formed in the rear surface 8b of the bumper absorber 8 along the vehicle width direction. The groove 8a has a rectangular cross-sectional shape and extends in the vehicle width direction.
溝部8aの車両上下方向の長さは、検出用チューブ部材2の車両上下方向の長さ(即ち、外径の長さ)よりも長く設定されている。本実施形態の溝部8aの上下長さは、10mm程度に設定されている。また、溝部8aの車両前後方向の長さは、検出用チューブ部材2の車両前後方向の長さ(即ち、外径の長さ)と同じ程度の長さに設定されている。なお、溝部8aの上下長さは、検出用チューブ部材2の外径の長さ以上であればよく、適宜変更可能である。
The length of the groove portion 8a in the vehicle vertical direction is set to be longer than the length of the detection tube member 2 in the vehicle vertical direction (that is, the length of the outer diameter). The vertical length of the groove 8a of this embodiment is set to about 10 mm. Further, the length of the groove portion 8a in the vehicle front-rear direction is set to the same length as the length of the detection tube member 2 in the vehicle front-rear direction (that is, the length of the outer diameter). In addition, the vertical length of the groove part 8a should just be more than the length of the outer diameter of the tube member 2 for a detection, and can be changed suitably.
バンパレインフォースメント9は、バンパカバー7内に配設されて車幅方向に延びるアルミニウム等の金属製の剛性部材であって、図3に示すように、内部中央に梁が設けられた中空部材である。バンパレインフォースメント9は、車両前方側の面である前面9aと、車両後方側の面である後面9bとを有している。バンパレインフォースメント9は、図1及び図2に示すように、車両前後方向に延びる一対の金属製部材であるサイドメンバ11の前端に取り付けられる。
The bumper reinforcement 9 is a rigid member made of metal such as aluminum which is disposed in the bumper cover 7 and extends in the vehicle width direction. As shown in FIG. It is. The bumper reinforcement 9 has a front surface 9a which is a surface on the vehicle front side and a rear surface 9b which is a surface on the vehicle rear side. As shown in FIGS. 1 and 2, the bumper reinforcement 9 is attached to the front end of a side member 11 that is a pair of metal members extending in the vehicle front-rear direction.
通常、車両の衝突事故においては、車両の進行方向、即ち車両前方に存在する歩行者や車両と衝突する場合が多い。このため、本実施形態では、圧力センサ3をバンパレインフォースメント9の後面9bに配設して、車両前方の歩行者や車両との衝突に伴う衝撃が、車両前方に設けられたバンパカバー7等から圧力センサ3に直接伝わることをバンパレインフォースメント9の存在によって保護している。
Usually, in a vehicle collision accident, there are many cases where the vehicle collides with a pedestrian or vehicle existing in the traveling direction of the vehicle, that is, in front of the vehicle. For this reason, in this embodiment, the pressure sensor 3 is disposed on the rear surface 9b of the bumper reinforcement 9, and a bumper cover 7 provided with an impact caused by a collision with a pedestrian or vehicle in front of the vehicle is provided in front of the vehicle. The presence of the bumper reinforcement 9 protects the direct transmission to the pressure sensor 3.
なお、図示しないが、バンパアブソーバ8の後面8bに設けられた嵌合凸部が、バンパレインフォースメント9の前面9aに設けられた嵌合凹部に嵌め合わされることにより、バンパアブソーバ8のバンパレインフォースメント9への組付けが行われる。
Although not shown, the fitting convex portion provided on the rear surface 8b of the bumper absorber 8 is fitted into the fitting concave portion provided on the front surface 9a of the bumper reinforcement 9, so that the bumper rain of the bumper absorber 8 is provided. Assembly to the force 9 is performed.
歩行者保護装置10としては、例えばポップアップフードを用いる。ポップアップフードは、車両の衝突検知後瞬時に、エンジンフードの後端を上昇させ、歩行者とエンジン等の硬い部品とのクリアランスを増加させ、そのスペースを用いて歩行者の頭部への衝突エネルギーを吸収し、歩行者の頭部への衝撃を低減させる。なお、ポップアップフードの代わりに、車体外部のエンジンフード上からフロントウインド下部にかけてエアバッグを展開させて歩行者の衝撃を緩衝するカウルエアバッグ等を用いてもよい。
For example, a pop-up hood is used as the pedestrian protection device 10. The pop-up hood raises the rear end of the engine hood instantly after detecting the collision of the vehicle, increases the clearance between the pedestrian and hard parts such as the engine, and uses that space to impact energy on the pedestrian's head. Absorbs and reduces the impact on the pedestrian's head. Instead of the pop-up hood, a cowl airbag or the like that cushions a pedestrian's impact by deploying the airbag from the engine hood outside the vehicle body to the lower part of the front window may be used.
次に、本実施形態における車両用衝突検知装置1の衝突時の動作について説明する。車両前方に歩行者等の物体が衝突した際には、バンパ6のバンパカバー7が歩行者との衝突による衝撃により変形する。続いて、バンパアブソーバ8が衝撃を吸収しながら変形すると同時に、検出用チューブ部材2も変形する。このとき、検出用チューブ部材2の中空部2a内の圧力が急上昇する。即ち、衝突に伴って中空部2a内において圧力波が生じる。この圧力波が、中空部2a内から圧力導入管32を通って、圧力センサ3のセンサ本体30へ伝搬する。
Next, the operation at the time of collision of the vehicle collision detection apparatus 1 in the present embodiment will be described. When an object such as a pedestrian collides with the front of the vehicle, the bumper cover 7 of the bumper 6 is deformed by an impact caused by the collision with the pedestrian. Subsequently, the bumper absorber 8 is deformed while absorbing the impact, and at the same time, the detection tube member 2 is also deformed. At this time, the pressure in the hollow part 2a of the tube member 2 for detection rises rapidly. That is, a pressure wave is generated in the hollow portion 2a with the collision. This pressure wave propagates from the hollow portion 2 a through the pressure introduction pipe 32 to the sensor body 30 of the pressure sensor 3.
ここで、本実施形態では、減速部321に拡がり部321aが設けられていることにより、圧力波が拡がり部321aを通過する際に、圧力波の伝搬速度が減少する。即ち、管路を流れる流体には、以下に示す連続の式が成立するので、管路の断面積が大きくなると、流体の速度は小さくなる。
Here, in this embodiment, since the spreading part 321a is provided in the speed reduction part 321, when the pressure wave passes through the spreading part 321a, the propagation speed of the pressure wave decreases. That is, the following continuous equation is established for the fluid flowing through the pipeline, so that the fluid velocity decreases as the sectional area of the pipeline increases.
ρvA=一定・・・(式1)
式1において、ρは流体の密度、vは流体の速度、Aは管路の断面積を表している。この場合、流体である空気の密度ρは一定であるとし、拡がり部321aにおいて管路断面積Aを大きくすることで、圧力波の伝搬速度vを減少させている。 ρvA = constant (Formula 1)
InEquation 1, ρ is the density of the fluid, v is the velocity of the fluid, and A is the cross-sectional area of the pipe. In this case, it is assumed that the density ρ of air, which is a fluid, is constant, and the propagation velocity v of the pressure wave is reduced by increasing the pipe cross-sectional area A in the spread portion 321a.
式1において、ρは流体の密度、vは流体の速度、Aは管路の断面積を表している。この場合、流体である空気の密度ρは一定であるとし、拡がり部321aにおいて管路断面積Aを大きくすることで、圧力波の伝搬速度vを減少させている。 ρvA = constant (Formula 1)
In
更に、本実施形態では、減速部321に屈曲部321bが設けられていることにより、圧力波が屈曲部321bを通過する際に、その伝搬速度が更に減少する。これは、屈曲部321bにおいて、管路内の空気の流れに渦の発生等に伴う曲がり損失が生じることによる。ここで、「曲がり損失」とは、空気の流れの経路に曲がり部があることにより、流体のもつ機械的エネルギーが損なわれることをいう。具体的には、次式に示す損失ヘッドhbの分だけ機械的エネルギーが失われる。
Further, in the present embodiment, since the speed reducing portion 321 is provided with the bent portion 321b, the propagation speed of the pressure wave further decreases when passing through the bent portion 321b. This is because the bending portion 321b has a bending loss due to the generation of vortices in the air flow in the pipe. Here, “bending loss” means that the mechanical energy of the fluid is lost due to the presence of a bent portion in the air flow path. Specifically, the amount corresponding mechanical energy loss head h b in the following equation is lost.
hb=ζb・(vm
2/2g)・・・(式2)
式2において、ζbは損失係数、vmは曲がり部における流体の速度、gは重力加速度を表す。本実施形態では、曲がり部に相当する屈曲部321bを圧力波が通過することに伴って、損失ヘッドhbの分だけ機械的エネルギーが失われる。これにより、屈曲部321bを通過後のセンサ本体30側における圧力波の伝搬速度が更に減少する。 h b = ζ b · (vm 2 / 2g) ··· ( Equation 2)
InEquation 2, ζ b is a loss factor, v m is the fluid velocity at the bend, and g is the gravitational acceleration. In the present embodiment, the bent portion 321b which corresponds to the bent portion with the fact that the pressure wave passes, an amount corresponding mechanical energy loss head h b is lost. Thereby, the propagation speed of the pressure wave on the sensor body 30 side after passing through the bent portion 321b further decreases.
式2において、ζbは損失係数、vmは曲がり部における流体の速度、gは重力加速度を表す。本実施形態では、曲がり部に相当する屈曲部321bを圧力波が通過することに伴って、損失ヘッドhbの分だけ機械的エネルギーが失われる。これにより、屈曲部321bを通過後のセンサ本体30側における圧力波の伝搬速度が更に減少する。 h b = ζ b · (v
In
また、本実施形態では、センサ本体30に連通する圧力吐出口32bの方が、中空部2aに連通する圧力取入口32aに比べ、圧力導入管32の内部空間の断面積が大きくなっている。このため、上述した式1により、圧力波の伝搬速度がより確実に減少するようになっている。
In this embodiment, the pressure discharge port 32b communicating with the sensor body 30 has a larger cross-sectional area of the internal space of the pressure introducing pipe 32 than the pressure intake port 32a communicating with the hollow portion 2a. For this reason, the propagation velocity of the pressure wave is more reliably reduced by the above-described formula 1.
このように本実施形態では、衝突に伴って中空部2a内に生じた圧力波を、減速部321によって、圧力波の伝搬速度を減少させた後、圧力センサ3のセンサ本体30内へ導入し、センシング部31により圧力値を検出する。センシング部31は、コネクタ34及び信号線を介して、圧力値に比例した圧力信号を衝突検知ECU5へ出力する。
As described above, in the present embodiment, the pressure wave generated in the hollow portion 2a due to the collision is introduced into the sensor body 30 of the pressure sensor 3 after the propagation speed of the pressure wave is reduced by the speed reduction portion 321. The pressure value is detected by the sensing unit 31. The sensing unit 31 outputs a pressure signal proportional to the pressure value to the collision detection ECU 5 via the connector 34 and the signal line.
圧力波の伝搬速度を減少させると、図5に示すように、センシング部31により検出される圧力波の振幅を小さくすることが可能となる。一方、圧力波の伝搬速度が大きい場合、図6の参考例に示すように、センシング部31により検出される圧力波の振幅が大きくなる。ここで、衝突検知ECU5は、所定のサンプリング周期で、圧力センサ3から圧力検出値を取得することに基づいて、所定の衝突判定処理を実行する。圧力波の振幅が大きい場合、圧力センサ3の圧力検出値に負の値が混じることがあり(図6参照)、後述する衝突物の有効質量の算出が正確に行われない可能性がある。また、圧力センサ3から出力される圧力検出値を、衝突検知ECU5により正確に取得できない可能性がある。そこで、本実施形態では、圧力波の伝搬速度を減少させて、圧力波の振幅を小さくすることで、衝突検知ECU5による衝突判定処理が正確に行えるようにした。
When the propagation speed of the pressure wave is decreased, the amplitude of the pressure wave detected by the sensing unit 31 can be reduced as shown in FIG. On the other hand, when the propagation speed of the pressure wave is large, the amplitude of the pressure wave detected by the sensing unit 31 is large as shown in the reference example of FIG. Here, the collision detection ECU 5 executes a predetermined collision determination process based on acquiring the pressure detection value from the pressure sensor 3 at a predetermined sampling period. When the amplitude of the pressure wave is large, a negative value may be mixed with the pressure detection value of the pressure sensor 3 (see FIG. 6), and the calculation of the effective mass of the collision object described later may not be performed accurately. Moreover, the pressure detection value output from the pressure sensor 3 may not be accurately acquired by the collision detection ECU 5. Therefore, in the present embodiment, the collision determination processing by the collision detection ECU 5 can be performed accurately by reducing the propagation speed of the pressure wave and reducing the amplitude of the pressure wave.
衝突検知ECU5による衝突判定処理では、例えば圧力センサ3及び速度センサ4の検出結果に基づいて、衝突物の有効質量を算出し、この有効質量が所定の閾値より大きい場合、歩行者との衝突が発生したと判定する。更に、車両速度が所定の範囲(例えば時速25km~55kmの範囲)内である場合に、歩行者保護装置10の作動を要する歩行者との衝突が発生したと判定する。
In the collision determination process by the collision detection ECU 5, for example, the effective mass of the collision object is calculated based on the detection results of the pressure sensor 3 and the speed sensor 4, and when this effective mass is larger than a predetermined threshold, the collision with the pedestrian is detected. It is determined that it has occurred. Furthermore, when the vehicle speed is within a predetermined range (for example, a range of 25 km to 55 km / h), it is determined that a collision with a pedestrian requiring the operation of the pedestrian protection device 10 has occurred.
「有効質量」とは、衝突時における圧力センサ3の検出値より、運動量と力積の関係を利用して算出する質量をいう。車両と物体との衝突が発生した場合、歩行者とは質量の異なる衝突物では、検知される圧力センサ3の値が異なる。このため、人体の有効質量と、想定される他の衝突物の質量との間に閾値を設定することにより、衝突物の種類を切り分けることが可能となる。有効質量は、次式に示すように、圧力センサ3により検出される圧力の値の所定時間における定積分値を、速度センサ4により検出される車両速度で割ることにより算出される。
“Effective mass” refers to the mass calculated from the detected value of the pressure sensor 3 at the time of collision using the relationship between momentum and impulse. When a collision between a vehicle and an object occurs, the value of the detected pressure sensor 3 is different for a collision object having a mass different from that of a pedestrian. For this reason, by setting a threshold value between the effective mass of the human body and the mass of another assumed collision object, it is possible to classify the types of the collision object. The effective mass is calculated by dividing the constant integral value of the pressure value detected by the pressure sensor 3 at a predetermined time by the vehicle speed detected by the speed sensor 4 as shown in the following equation.
M=(∫P(t)dt)/V・・・(式3)
なお、Mは有効質量、Pは所定時間における圧力センサ3による検出値、tは所定時間(例えば、数ms~数十ms)、Vは速度センサ4により検出される衝突時の車両速度を示している。有効質量を算出する方法には、他にも、衝突した物体の運動エネルギーEを表す式E=1/2・MV2を用いて算出することが可能である。この場合、有効質量は、M=2・E/V2により算出される。 M = (∫P (t) dt) / V (Equation 3)
M is an effective mass, P is a value detected by thepressure sensor 3 at a predetermined time, t is a predetermined time (for example, several ms to several tens of ms), and V is a vehicle speed at the time of collision detected by the speed sensor 4. ing. As another method for calculating the effective mass, it is possible to calculate using an equation E = 1/2 · MV 2 representing the kinetic energy E of the collided object. In this case, the effective mass is calculated by M = 2 · E / V 2 .
なお、Mは有効質量、Pは所定時間における圧力センサ3による検出値、tは所定時間(例えば、数ms~数十ms)、Vは速度センサ4により検出される衝突時の車両速度を示している。有効質量を算出する方法には、他にも、衝突した物体の運動エネルギーEを表す式E=1/2・MV2を用いて算出することが可能である。この場合、有効質量は、M=2・E/V2により算出される。 M = (∫P (t) dt) / V (Equation 3)
M is an effective mass, P is a value detected by the
衝突検知ECU5は、歩行者保護装置10の作動を要する歩行者との衝突が発生したと判定した場合、歩行者保護装置10を作動させる制御信号を出力し、歩行者保護装置10を作動させて、上述したように歩行者への衝撃を低減させる。
When the collision detection ECU 5 determines that a collision has occurred with a pedestrian that requires the operation of the pedestrian protection device 10, the collision detection ECU 5 outputs a control signal for operating the pedestrian protection device 10 to operate the pedestrian protection device 10. As described above, the impact on the pedestrian is reduced.
以上説明したように、第1の実施形態の車両用衝突検知装置1は、車両のバンパ6内に配設されて内部に中空部2aが形成された検出用チューブ部材2と、検出用チューブ部材2の中空部2a内の圧力を検出する圧力センサ3と、圧力センサ3による圧力検出結果に基づいてバンパ6への物体の衝突を検知する衝突検知部としての衝突検知ECU5と、を有している。圧力センサ3は、圧力検出用のセンシング部31が設けられるセンサ本体30と、センサ本体30へ圧力を導入するための圧力導入管32とを有し、圧力導入管32が検出用チューブ部材2の端部の内側に差し込まれて中空部2a内の圧力をセンサ本体30へ導入する。圧力導入管32には、中空部2a内において衝突に伴って生じる圧力波の伝搬速度を減少させるための減速部321が設けられる。
As described above, the vehicle collision detection device 1 according to the first embodiment includes the detection tube member 2 disposed in the vehicle bumper 6 and having the hollow portion 2a formed therein, and the detection tube member. A pressure sensor 3 for detecting the pressure in the hollow portion 2a of the two, and a collision detection ECU 5 as a collision detection unit for detecting a collision of an object with the bumper 6 based on a pressure detection result by the pressure sensor 3. Yes. The pressure sensor 3 includes a sensor main body 30 provided with a sensing unit 31 for pressure detection, and a pressure introduction pipe 32 for introducing pressure into the sensor main body 30, and the pressure introduction pipe 32 is the detection tube member 2. The pressure inside the hollow portion 2 a is introduced into the sensor body 30 by being inserted inside the end portion. The pressure introducing pipe 32 is provided with a speed reducing portion 321 for reducing the propagation speed of the pressure wave generated in the hollow portion 2a due to the collision.
この構成によれば、圧力センサ3の圧力導入管32に設けられた減速部321によって、衝突に伴って中空部2a内に生じる圧力波の伝搬速度を減少させることで、センシング部31により検出される圧力波の振幅を小さくすることができる。これにより、圧力センサ3からの圧力検出値に負の値が混じることを抑制できると共に、圧力センサ3から出力される圧力検出値を衝突検知ECU5により正確に取得することができる。従って、車両用衝突検知装置1の衝突検知精度を向上させることができる。
According to this configuration, the sensing unit 31 detects the propagation speed of the pressure wave generated in the hollow portion 2a due to the collision by the speed reducing unit 321 provided in the pressure introduction pipe 32 of the pressure sensor 3. The pressure wave amplitude can be reduced. Thereby, it can suppress that a negative value is mixed with the pressure detection value from the pressure sensor 3, and the pressure detection value output from the pressure sensor 3 can be correctly acquired by the collision detection ECU 5. Therefore, the collision detection accuracy of the vehicle collision detection apparatus 1 can be improved.
また、減速部321は、中空部2a側よりもセンサ本体30側の方が圧力導入管32の内部空間の断面積が大きくなった拡がり部321aを有している。この構成によれば、拡がり部321aにより、圧力導入管32の内部空間の断面積が中空部2a側よりもセンサ本体30側の方が大きくすることで、上述の連続の式に基づいて圧力波の伝搬速度を効果的に減少させることができる。
Further, the speed reduction part 321 has an expanded part 321a in which the cross-sectional area of the internal space of the pressure introduction pipe 32 is larger on the sensor body 30 side than on the hollow part 2a side. According to this configuration, the expanded portion 321a causes the cross-sectional area of the internal space of the pressure introduction pipe 32 to be larger on the sensor body 30 side than on the hollow portion 2a side, so that the pressure wave is based on the above-described continuous equation. The propagation speed of can be effectively reduced.
また、圧力導入管32の内壁面は、拡がり部321aにおいて中空部2aからセンサ本体30へ向かう方向に沿って圧力導入管32の内部空間の断面積が徐々に大きくなるテーパ状に形成される。
Further, the inner wall surface of the pressure introducing pipe 32 is formed in a tapered shape in which the cross-sectional area of the internal space of the pressure introducing pipe 32 gradually increases along the direction from the hollow portion 2a to the sensor body 30 in the expanded portion 321a.
この構成によれば、拡がり部321aは、中空部2aからセンサ本体30へ向かう方向に沿って圧力導入管32の内部空間の断面積が徐々に大きくなるテーパ状に形成されているので、圧力導入管32の内部空間の断面積が急激に大きくなることで、圧力波の流れが乱れることを抑制して、圧力波の振幅を効果的に小さくすることができる。
According to this configuration, the expanding portion 321a is formed in a tapered shape in which the cross-sectional area of the internal space of the pressure introducing tube 32 gradually increases along the direction from the hollow portion 2a toward the sensor body 30. By rapidly increasing the cross-sectional area of the internal space of the tube 32, the flow of the pressure wave can be prevented from being disturbed, and the amplitude of the pressure wave can be effectively reduced.
また、減速部321は、圧力導入管32の内部空間における圧力波の伝搬経路が屈曲した屈曲部321bを有している。この構成によれば、圧力波が屈曲部321bを伝搬する際に、管路内の空気の流れに渦の発生等による曲がり損失が生じるので、圧力波の伝搬速度を確実に減少させることができる。
Further, the speed reduction part 321 has a bent part 321b in which the propagation path of the pressure wave in the internal space of the pressure introduction pipe 32 is bent. According to this configuration, when the pressure wave propagates through the bent portion 321b, a bending loss due to the generation of vortices or the like occurs in the air flow in the pipe, so that the propagation speed of the pressure wave can be reliably reduced. .
また、圧力導入管32の内部空間の断面積は、中空部2aに連通する圧力取入口32aよりも、センサ本体30に連通する圧力吐出口32bの方が大きくなっている。
Further, the cross-sectional area of the internal space of the pressure introducing pipe 32 is larger in the pressure discharge port 32b communicating with the sensor body 30 than in the pressure intake port 32a communicating with the hollow portion 2a.
この構成によれば、圧力取入口32aよりも圧力吐出口32bの方が、圧力導入管32の内部空間の断面積が大きくなっているので、上述の連続の式に基づいて圧力波の伝搬速度を確実に減少させることができる。
According to this configuration, since the cross-sectional area of the internal space of the pressure introduction pipe 32 is larger in the pressure discharge port 32b than in the pressure intake port 32a, the propagation speed of the pressure wave based on the above-described continuous equation. Can be reliably reduced.
また、圧力導入管32の断面形状は、検出用チューブ部材2の断面形状と相似である。この構成によれば、圧力導入管32の断面形状が検出用チューブ部材2の断面形状と相似であるので、圧力導入管32と検出用チューブ部材2との接続部分の密閉性を確保することができる。
Further, the cross-sectional shape of the pressure introducing tube 32 is similar to the cross-sectional shape of the detection tube member 2. According to this configuration, since the cross-sectional shape of the pressure introduction tube 32 is similar to the cross-sectional shape of the detection tube member 2, it is possible to ensure the sealing property of the connection portion between the pressure introduction tube 32 and the detection tube member 2. it can.
また、圧力導入管32の外径は、検出用チューブ部材2の内径よりも大きく設定されている。この構成によれば、圧力導入管32の外径が検出用チューブ部材2の内径よりも大きく設定されているので、圧力導入管32と検出用チューブ部材2との接続部分の密閉性を高めることができる。
Further, the outer diameter of the pressure introducing pipe 32 is set larger than the inner diameter of the detection tube member 2. According to this configuration, since the outer diameter of the pressure introduction tube 32 is set larger than the inner diameter of the detection tube member 2, the hermeticity of the connection portion between the pressure introduction tube 32 and the detection tube member 2 is improved. Can do.
[第2の実施形態]
第2の実施形態について、図7及び図8を参照して説明する。なお、図7及び図8において上記第1の実施形態と同一部分には同一の符号を付して説明を省略し、異なる部分についてだけ説明する。この第2の実施形態においては、図7及び図8に示すように、減速部322は、圧力導入管32の内壁面に複数の突出部322aを有して構成されている。 [Second Embodiment]
A second embodiment will be described with reference to FIGS. 7 and 8, the same parts as those in the first embodiment are denoted by the same reference numerals, description thereof is omitted, and only different parts are described. In the second embodiment, as shown in FIGS. 7 and 8, thespeed reducing portion 322 is configured to have a plurality of protruding portions 322 a on the inner wall surface of the pressure introducing pipe 32.
第2の実施形態について、図7及び図8を参照して説明する。なお、図7及び図8において上記第1の実施形態と同一部分には同一の符号を付して説明を省略し、異なる部分についてだけ説明する。この第2の実施形態においては、図7及び図8に示すように、減速部322は、圧力導入管32の内壁面に複数の突出部322aを有して構成されている。 [Second Embodiment]
A second embodiment will be described with reference to FIGS. 7 and 8, the same parts as those in the first embodiment are denoted by the same reference numerals, description thereof is omitted, and only different parts are described. In the second embodiment, as shown in FIGS. 7 and 8, the
突出部322aは、圧力導入管32と一体成形されたものであって図7に示すように、圧力導入管32の内壁面の長手方向に、所定の間隔をあけて複数設けられている。この場合、突出部322aは、圧力導入管32の内壁面における車両上方側と下方側とに交互に3つずつ計6つ設けられている。また、図8に示すように、突出部322aは、圧力導入管32の内壁面から所定長さ(例えば数mm)だけ径方向内側に突出している。
The protrusions 322a are formed integrally with the pressure introduction pipe 32, and as shown in FIG. 7, a plurality of protrusions 322a are provided at predetermined intervals in the longitudinal direction of the inner wall surface of the pressure introduction pipe 32. In this case, a total of six projecting portions 322 a are provided in each of three on the vehicle upper side and the lower side on the inner wall surface of the pressure introducing pipe 32. Further, as shown in FIG. 8, the protruding portion 322a protrudes radially inward from the inner wall surface of the pressure introducing tube 32 by a predetermined length (for example, several mm).
また、上記第1の実施形態と同様に、減速部322は、屈曲部322bを有している。屈曲部322bは、圧力導入管32の内部空間における圧力波の伝搬経路が略直角に屈曲した形状になっている。屈曲部322bは、圧力吐出口32bの付近に形成されている。また、圧力吐出口32bにおいては、圧力導入管32の内部空間の断面積が圧力取入口32aよりも大きくなっている。
Further, similarly to the first embodiment, the speed reduction portion 322 has a bent portion 322b. The bent portion 322b has a shape in which the propagation path of the pressure wave in the internal space of the pressure introducing tube 32 is bent at a substantially right angle. The bent portion 322b is formed in the vicinity of the pressure discharge port 32b. Further, in the pressure discharge port 32b, the cross-sectional area of the internal space of the pressure introduction pipe 32 is larger than that of the pressure intake port 32a.
以上説明した第2の実施形態の車両用衝突検知装置1では、減速部322は、圧力導入管32の内壁面から所定長さだけ径方向内側に突出した少なくとも1つ以上の突出部322aを有している。
In the vehicle collision detection apparatus 1 according to the second embodiment described above, the speed reduction portion 322 has at least one protrusion 322a that protrudes radially inward from the inner wall surface of the pressure introduction pipe 32 by a predetermined length. is doing.
この第2の実施形態においても、第1の実施形態と同様の効果を得ることができる。即ち、減速部322は、圧力導入管32の内壁面から所定長さだけ径方向内側に突出した少なくとも1つ以上の突出部322aを有しているので、圧力波が突出部322aに衝突することで、圧力波の伝搬速度を確実に減速させることができ、圧力波の振幅を確実に小さくできる。
In the second embodiment, the same effect as that of the first embodiment can be obtained. That is, the speed reduction part 322 has at least one or more protrusions 322a that protrude inward in the radial direction by a predetermined length from the inner wall surface of the pressure introduction pipe 32, so that the pressure wave collides with the protrusions 322a. Thus, the propagation speed of the pressure wave can be reliably reduced, and the amplitude of the pressure wave can be reliably reduced.
[第3の実施形態]
第3の実施形態について、図9及び図10を参照して説明する。なお、図9及び図10において上記第1の実施形態と同一部分には同一の符号を付して説明を省略し、異なる部分についてだけ説明する。この第3の実施形態においては、図9及び図10に示すように、減速部323は、圧力導入管32の内壁面に設けられ圧力波の伝搬速度を所定速度以下に減少させるフィルタ部材323aを有している。また、減速部323は、圧力導入管32の内壁面の摩擦抵抗がそれ以外の部分よりも大きくなっている。 [Third Embodiment]
A third embodiment will be described with reference to FIGS. 9 and 10. 9 and 10, the same parts as those in the first embodiment are denoted by the same reference numerals, description thereof is omitted, and only different parts are described. In the third embodiment, as shown in FIGS. 9 and 10, thespeed reducing portion 323 is provided on the inner wall surface of the pressure introducing pipe 32 with a filter member 323 a that reduces the propagation speed of the pressure wave below a predetermined speed. Have. Further, in the speed reduction portion 323, the frictional resistance of the inner wall surface of the pressure introduction pipe 32 is larger than the other portions.
第3の実施形態について、図9及び図10を参照して説明する。なお、図9及び図10において上記第1の実施形態と同一部分には同一の符号を付して説明を省略し、異なる部分についてだけ説明する。この第3の実施形態においては、図9及び図10に示すように、減速部323は、圧力導入管32の内壁面に設けられ圧力波の伝搬速度を所定速度以下に減少させるフィルタ部材323aを有している。また、減速部323は、圧力導入管32の内壁面の摩擦抵抗がそれ以外の部分よりも大きくなっている。 [Third Embodiment]
A third embodiment will be described with reference to FIGS. 9 and 10. 9 and 10, the same parts as those in the first embodiment are denoted by the same reference numerals, description thereof is omitted, and only different parts are described. In the third embodiment, as shown in FIGS. 9 and 10, the
フィルタ部材323aは、図10に示すように、通気性のある網目状のフィルタを有して構成され、圧力導入管32の圧力取入口32a側の内壁面に取り付けられている。このフィルタは、空気の流速を所定速度(例えば40m/s)以下にするように設計されたものである。第3の実施形態では、圧力波がフィルタ部材323aを通過することにより、圧力波の伝搬速度が所定速度(例えば40m/s)以下に減少される。なお、フィルタ部材323aの配設位置は適宜変更可能であり、例えば、圧力導入管32の圧力吐出口32b側の内壁面に設けられていてもよい。
As shown in FIG. 10, the filter member 323 a is configured to have a breathable mesh filter, and is attached to the inner wall surface of the pressure introduction pipe 32 on the pressure inlet 32 a side. This filter is designed so that the flow velocity of air is a predetermined velocity (for example, 40 m / s) or less. In the third embodiment, when the pressure wave passes through the filter member 323a, the propagation speed of the pressure wave is reduced to a predetermined speed (for example, 40 m / s) or less. In addition, the arrangement | positioning position of the filter member 323a can be changed suitably, for example, may be provided in the inner wall surface by the side of the pressure discharge port 32b of the pressure introduction pipe 32. FIG.
また、図示しないが、減速部323の内壁面は、それ以外の部分よりも表面が粗く形成されている。これにより、減速部323では、空気の流れが摩擦損失を受け、圧力波の伝搬速度が徐々に減少するようになっている。なお、減速部323の内壁面を凹凸のある形状とすることにより、減速部323の内壁面の摩擦抵抗がそれ以外の部分よりも大きくなるようにしてもよい。
Although not shown, the inner wall surface of the speed reducing portion 323 is formed to have a rougher surface than other portions. Thereby, in the deceleration part 323, the flow of air receives friction loss, and the propagation speed of a pressure wave reduces gradually. In addition, you may make it the frictional resistance of the inner wall surface of the deceleration part 323 become larger than the other part by making the inner wall surface of the deceleration part 323 into an uneven shape.
また、上記第1の実施形態と同様に、減速部323は、屈曲部323bを有している。屈曲部323bは、圧力導入管32の内部空間における圧力波の伝搬経路が略直角に屈曲した形状になっている。屈曲部323bは、圧力吐出口32bの付近に形成されている。また、圧力吐出口32bにおいては、圧力導入管32の内部空間の断面積が圧力取入口32aよりも大きくなっている。
Further, similarly to the first embodiment, the speed reduction portion 323 has a bent portion 323b. The bent portion 323b has a shape in which the propagation path of the pressure wave in the internal space of the pressure introducing tube 32 is bent at a substantially right angle. The bent portion 323b is formed in the vicinity of the pressure discharge port 32b. Further, in the pressure discharge port 32b, the cross-sectional area of the internal space of the pressure introduction pipe 32 is larger than that of the pressure intake port 32a.
以上説明した第3の実施形態の車両用衝突検知装置1では、減速部323は、圧力導入管の内壁面に設けられ圧力波の伝搬速度を所定速度以下に減少させるフィルタ部材323aを有しているとともに、圧力導入管32の内壁面の摩擦抵抗がそれ以外の部分よりも大きくなっている。
In the vehicle collision detection apparatus 1 according to the third embodiment described above, the speed reduction unit 323 includes the filter member 323a that is provided on the inner wall surface of the pressure introduction pipe and reduces the propagation speed of the pressure wave to a predetermined speed or less. In addition, the frictional resistance of the inner wall surface of the pressure introducing pipe 32 is larger than that of the other portions.
この第3の実施形態の車両用衝突検知装置1においても、第1の実施形態と同様の効果を得ることができる。即ち、減速部323は、圧力導入管の内壁面に設けられ圧力波の伝搬速度を所定速度以下に減少させるフィルタ部材323aを有しているので、フィルタ部材323aにより、圧力波の伝搬速度を所定速度以下に確実に減少できる。また、減速部323は、圧力導入管32の内壁面の摩擦抵抗がそれ以外の部分よりも大きくなっているので、圧力波の伝搬速度を減速部323により徐々に減少させることができる。このようにして、圧力センサ3のセンシング部31により検出される圧力波の振幅をより確実に小さくできる。
In the vehicle collision detection apparatus 1 of the third embodiment, the same effect as that of the first embodiment can be obtained. That is, the speed reduction part 323 has a filter member 323a provided on the inner wall surface of the pressure introducing pipe to reduce the pressure wave propagation speed to a predetermined speed or less, so that the pressure wave propagation speed is predetermined by the filter member 323a. It can be reliably reduced below the speed. Moreover, since the frictional resistance of the inner wall surface of the pressure introducing pipe 32 is larger than that of the other portions of the speed reducing portion 323, the speed wave propagation speed can be gradually reduced by the speed reducing portion 323. In this way, the amplitude of the pressure wave detected by the sensing unit 31 of the pressure sensor 3 can be reduced more reliably.
[その他の実施形態]
本開示は、上記した実施形態に限定されるものではなく、主旨を逸脱しない範囲で種々の変形又は拡張を施すことができる。例えば、上記実施形態では、圧力導入管32に屈曲部321b~323bが設けられているものとしたが、これに限られず、屈曲部321b~323bはなくてもよい。 [Other Embodiments]
The present disclosure is not limited to the above-described embodiments, and various modifications or expansions can be made without departing from the spirit of the present disclosure. For example, in the above embodiment, thepressure introducing pipe 32 is provided with the bent portions 321b to 323b. However, the present invention is not limited to this, and the bent portions 321b to 323b may not be provided.
本開示は、上記した実施形態に限定されるものではなく、主旨を逸脱しない範囲で種々の変形又は拡張を施すことができる。例えば、上記実施形態では、圧力導入管32に屈曲部321b~323bが設けられているものとしたが、これに限られず、屈曲部321b~323bはなくてもよい。 [Other Embodiments]
The present disclosure is not limited to the above-described embodiments, and various modifications or expansions can be made without departing from the spirit of the present disclosure. For example, in the above embodiment, the
また、第2の実施形態における突出部322aの配置位置や個数、突出長さは、適宜変更可能であるとする。更に、突出部322aは、圧力導入管32と一体成形されたものでなくてもよく、別部材からなる突出部322aを圧力導入管32に一体化させてもよい。
In addition, it is assumed that the arrangement position, the number, and the protrusion length of the protrusions 322a in the second embodiment can be changed as appropriate. Further, the protruding portion 322 a may not be integrally formed with the pressure introducing tube 32, and the protruding portion 322 a made of another member may be integrated with the pressure introducing tube 32.
また、上記実施形態では、圧力検出結果に基づいて有効質量を算出し、衝突判定処理において有効質量が衝突判定閾値以上になった場合に、歩行者保護装置10の作動を要する歩行者との衝突が発生したと判定するとしたが、これには限られない。即ち、圧力検出結果をそのまま用いてもよく、例えば、圧力値、圧力変化率等を用いてそれぞれの衝突判定閾値と比較し、衝突判定を行う構成としてもよい。
In the above embodiment, the effective mass is calculated based on the pressure detection result, and when the effective mass exceeds the collision determination threshold in the collision determination process, the collision with the pedestrian that requires the operation of thepedestrian protection device 10 is performed. However, the present invention is not limited to this. That is, the pressure detection result may be used as it is. For example, a configuration may be used in which the collision determination is performed by comparing the pressure detection result with the respective collision determination thresholds using a pressure value, a pressure change rate, or the like.
In the above embodiment, the effective mass is calculated based on the pressure detection result, and when the effective mass exceeds the collision determination threshold in the collision determination process, the collision with the pedestrian that requires the operation of the
Claims (8)
- 車両のバンパ(6)内に配設されて内部に中空部(2a)が形成された検出用チューブ部材(2)と、前記検出用チューブ部材の前記中空部内の圧力を検出する圧力センサ(3)と、前記圧力センサによる圧力検出結果に基づいて前記バンパへの物体の衝突を検知する衝突検知部(5)と、を有する車両用衝突検知装置(1)において、
前記圧力センサは、圧力検出用のセンシング部(31)が設けられるセンサ本体(30)と、前記センサ本体へ圧力を導入するための圧力導入管(32)とを有し、前記圧力導入管が前記検出用チューブ部材の端部の内側に差し込まれて前記中空部内の圧力を前記センサ本体へ導入するものであって、
前記圧力導入管には、前記中空部内において衝突に伴って生じる圧力波の伝搬速度を減少させる減速部(321,322,323)が設けられた車両用衝突検知装置。 A detection tube member (2) disposed in a vehicle bumper (6) and having a hollow portion (2a) formed therein, and a pressure sensor (3) for detecting the pressure in the hollow portion of the detection tube member And a collision detection unit (5) for detecting a collision of an object with the bumper based on a pressure detection result by the pressure sensor,
The pressure sensor includes a sensor body (30) provided with a sensing unit (31) for pressure detection, and a pressure introduction pipe (32) for introducing pressure into the sensor body. Inserting the pressure in the hollow part into the sensor body by being inserted inside the end of the tube member for detection,
The vehicle collision detection device, wherein the pressure introduction pipe is provided with a speed reduction portion (321, 322, 323) for reducing a propagation speed of a pressure wave generated in the hollow portion due to a collision. - 前記減速部(321)は、前記中空部側よりも前記センサ本体側の方が前記圧力導入管の内部空間の断面積が大きくなった拡がり部(321a)を有している請求項1に記載の車両用衝突検知装置。 The said deceleration part (321) has the expansion part (321a) from which the cross-sectional area of the internal space of the said pressure introduction pipe | tube became larger at the said sensor main body side rather than the said hollow part side. Vehicle collision detection device.
- 前記圧力導入管の内壁面は、前記拡がり部において前記中空部から前記センサ本体へ向かう方向に沿って前記圧力導入管の内部空間の断面積が徐々に大きくなるテーパ状に形成された請求項2に記載の車両用衝突検知装置。 The inner wall surface of the pressure introduction pipe is formed in a tapered shape in which the cross-sectional area of the internal space of the pressure introduction pipe gradually increases along the direction from the hollow portion toward the sensor body in the expanded portion. The vehicle collision detection device according to claim 1.
- 前記減速部(322)は、前記圧力導入管の内壁面から所定長さだけ径方向内側に突出した少なくとも1つ以上の突出部(322a)を有している請求項1から3のいずれか一項に記載の車両用衝突検知装置。 The said deceleration part (322) has at least 1 or more protrusion part (322a) which protruded in the radial direction inner side only predetermined length from the inner wall face of the said pressure introduction pipe | tube. The vehicle collision detection device according to the item.
- 前記減速部(323)は、前記圧力導入管の内壁面の摩擦抵抗がそれ以外の部分よりも大きくなっている請求項1から4のいずれか一項に記載の車両用衝突検知装置。 The vehicular collision detection device according to any one of claims 1 to 4, wherein the deceleration portion (323) has a frictional resistance of an inner wall surface of the pressure introducing pipe larger than that of the other portion.
- 前記減速部(323)は、前記圧力導入管の内壁面に設けられ前記圧力波の伝搬速度を所定速度以下に減少させるフィルタ部材(323a)を有している請求項1から5のいずれか一項に記載の車両用衝突検知装置。 The said deceleration part (323) has the filter member (323a) which is provided in the inner wall face of the said pressure introduction pipe | tube, and reduces the propagation speed of the said pressure wave below to predetermined speed. The vehicle collision detection device according to the item.
- 前記減速部は、前記圧力導入管の内部空間における前記圧力波の伝搬経路が屈曲した屈曲部(321b,322b,323b)を有している請求項1から6のいずれか一項に記載の車両用衝突検知装置。 The vehicle according to any one of claims 1 to 6, wherein the speed reducing portion includes a bent portion (321b, 322b, 323b) in which a propagation path of the pressure wave in the internal space of the pressure introducing pipe is bent. Collision detection device.
- 前記圧力導入管の内部空間の断面積は、前記中空部に連通する圧力取入口(32a)よりも、前記センサ本体に連通する圧力吐出口(32b)の方が大きくなっている請求項1から7のいずれか一項に記載の車両用衝突検知装置。
The cross-sectional area of the internal space of the pressure introduction pipe is larger in the pressure discharge port (32b) communicating with the sensor body than in the pressure intake port (32a) communicating with the hollow portion. The vehicle collision detection device according to claim 7.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112016003398.2T DE112016003398T5 (en) | 2015-07-28 | 2016-07-05 | Collision detection device for vehicle |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-148701 | 2015-07-28 | ||
JP2015148701A JP6323722B2 (en) | 2015-07-28 | 2015-07-28 | Vehicle collision detection device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017017903A1 true WO2017017903A1 (en) | 2017-02-02 |
Family
ID=57884443
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/003194 WO2017017903A1 (en) | 2015-07-28 | 2016-07-05 | Vehicle collision detection device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6323722B2 (en) |
DE (1) | DE112016003398T5 (en) |
WO (1) | WO2017017903A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113483930A (en) * | 2021-06-28 | 2021-10-08 | 北京京东乾石科技有限公司 | Collision detection device, split type distribution robot and collision detection method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7404963B2 (en) | 2020-03-24 | 2023-12-26 | 株式会社デンソー | Tube type collision detection sensor |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009083846A (en) * | 2007-09-28 | 2009-04-23 | Korea Advanced Inst Of Science & Technology | Module for detecting vehicle crash and airbag deploying system including the same |
JP2015093579A (en) * | 2013-11-12 | 2015-05-18 | 株式会社デンソー | Collision detection device for vehicle |
WO2016088328A1 (en) * | 2014-12-02 | 2016-06-09 | 株式会社デンソー | Vehicle collision detection device |
-
2015
- 2015-07-28 JP JP2015148701A patent/JP6323722B2/en active Active
-
2016
- 2016-07-05 DE DE112016003398.2T patent/DE112016003398T5/en not_active Ceased
- 2016-07-05 WO PCT/JP2016/003194 patent/WO2017017903A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009083846A (en) * | 2007-09-28 | 2009-04-23 | Korea Advanced Inst Of Science & Technology | Module for detecting vehicle crash and airbag deploying system including the same |
JP2015093579A (en) * | 2013-11-12 | 2015-05-18 | 株式会社デンソー | Collision detection device for vehicle |
WO2016088328A1 (en) * | 2014-12-02 | 2016-06-09 | 株式会社デンソー | Vehicle collision detection device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113483930A (en) * | 2021-06-28 | 2021-10-08 | 北京京东乾石科技有限公司 | Collision detection device, split type distribution robot and collision detection method |
CN113483930B (en) * | 2021-06-28 | 2023-08-04 | 北京京东乾石科技有限公司 | Collision detection device, split-type dispensing robot, and collision detection method |
Also Published As
Publication number | Publication date |
---|---|
DE112016003398T5 (en) | 2018-04-12 |
JP2017024685A (en) | 2017-02-02 |
JP6323722B2 (en) | 2018-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6467355B2 (en) | Vehicle collision detection device | |
JP6375978B2 (en) | Vehicle collision detection device | |
JP5967056B2 (en) | Vehicle collision detection device | |
JP6233651B2 (en) | Vehicle collision detection device | |
WO2016088328A1 (en) | Vehicle collision detection device | |
JP6201909B2 (en) | Vehicle collision detection device | |
WO2016163095A1 (en) | Collision detection device for vehicle | |
JP6372691B2 (en) | Vehicle collision detection device | |
WO2016084362A1 (en) | Vehicle collision sensing device | |
WO2017017903A1 (en) | Vehicle collision detection device | |
JP6376402B2 (en) | Vehicle collision detection device | |
WO2017159158A1 (en) | Collision detection device for vehicle | |
JP6500532B2 (en) | Vehicle collision detector | |
JP6432376B2 (en) | Vehicle collision detection device | |
JP2016120867A (en) | Collision detection device for vehicle | |
WO2016181613A1 (en) | Vehicular collision detection device | |
WO2016092793A1 (en) | Vehicle collision detecting device | |
JP6447303B2 (en) | Vehicle collision detection device | |
JP6443686B2 (en) | Vehicle collision detection device | |
JP6443272B2 (en) | Vehicle collision detection device | |
WO2016157734A1 (en) | Vehicle collision detection device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16830011 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112016003398 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16830011 Country of ref document: EP Kind code of ref document: A1 |