WO2017014406A1 - 단층 촬영 장치 및 그에 따른 단층 영상 처리 방법 - Google Patents
단층 촬영 장치 및 그에 따른 단층 영상 처리 방법 Download PDFInfo
- Publication number
- WO2017014406A1 WO2017014406A1 PCT/KR2016/003299 KR2016003299W WO2017014406A1 WO 2017014406 A1 WO2017014406 A1 WO 2017014406A1 KR 2016003299 W KR2016003299 W KR 2016003299W WO 2017014406 A1 WO2017014406 A1 WO 2017014406A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- tomography
- psf
- map
- noise component
- Prior art date
Links
- 238000003672 processing method Methods 0.000 title claims description 21
- 238000012545 processing Methods 0.000 claims abstract description 17
- 238000003325 tomography Methods 0.000 claims description 220
- 238000000034 method Methods 0.000 claims description 69
- 229920013655 poly(bisphenol-A sulfone) Polymers 0.000 claims description 68
- 238000003384 imaging method Methods 0.000 claims description 27
- 238000001914 filtration Methods 0.000 claims description 21
- 238000013213 extrapolation Methods 0.000 claims description 7
- 238000010586 diagram Methods 0.000 description 25
- 238000002591 computed tomography Methods 0.000 description 24
- 230000008569 process Effects 0.000 description 22
- 238000004891 communication Methods 0.000 description 18
- 230000006870 function Effects 0.000 description 13
- 230000005855 radiation Effects 0.000 description 7
- 239000002131 composite material Substances 0.000 description 6
- 238000003745 diagnosis Methods 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 201000010099 disease Diseases 0.000 description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 4
- 238000013170 computed tomography imaging Methods 0.000 description 3
- 238000002059 diagnostic imaging Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 210000004204 blood vessel Anatomy 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000007781 pre-processing Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical group [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 238000003759 clinical diagnosis Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 210000002216 heart Anatomy 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229920005589 poly(ferrocenylsilane) Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 210000004291 uterus Anatomy 0.000 description 1
- 208000019553 vascular disease Diseases 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/52—Devices using data or image processing specially adapted for radiation diagnosis
- A61B6/5258—Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise
- A61B6/5264—Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise due to motion
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/003—Reconstruction from projections, e.g. tomography
- G06T11/006—Inverse problem, transformation from projection-space into object-space, e.g. transform methods, back-projection, algebraic methods
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/52—Devices using data or image processing specially adapted for radiation diagnosis
- A61B6/5258—Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/003—Reconstruction from projections, e.g. tomography
- G06T11/005—Specific pre-processing for tomographic reconstruction, e.g. calibration, source positioning, rebinning, scatter correction, retrospective gating
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/73—Deblurring; Sharpening
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
- A61B6/032—Transmission computed tomography [CT]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10081—Computed x-ray tomography [CT]
Definitions
- the disclosed embodiments relate to a tomography apparatus and a tomography image processing method thereof.
- the medical imaging apparatus is a device for acquiring an internal structure of an object as an image.
- the medical image processing apparatus is a non-invasive inspection apparatus, which photographs and processes structural details, internal tissues, and fluid flow in the body and shows them to the user.
- a user such as a doctor may diagnose a health state and a disease of a patient by using the medical image output from the medical image processing apparatus.
- a device for photographing an object by radiating X-rays to a patient is typically a computed tomography (CT) device.
- CT computed tomography
- Computed tomography (CT) apparatus which is a tomography apparatus of the medical image processing apparatus, may provide a cross-sectional image of an object, and an internal structure of the subject (for example, an organ such as a kidney or lung) compared to a general X-ray apparatus Because it can be expressed not overlapping, it is widely used for precise diagnosis of the disease.
- CT Computed tomography
- the medical image acquired by the tomography apparatus is called a tomography image.
- tomography imaging of an object is performed by using a tomography apparatus, and raw data is obtained.
- the tomography image is reconstructed using the obtained raw data.
- the raw data may be projection data obtained by projecting X-rays to an object, or a sinogram that is a set of projection data.
- Bluring artifacts may occur when the tomography image is reconstructed due to the movement of the tomography apparatus or the target object of the tomography imaging or the performance of the tomography apparatus.
- the tomography apparatus may have its own shake during operation, and blurring artifacts in the image may occur due to the shake.
- the outermost edge of the object may not be clearly displayed but overlapped in the reconstructed tomography image, and the inner boundary of the object is displayed in the tomography image by blurring.
- the blurring artifacts in the tomographic image degrade the quality of the tomographic image. For this reason, when a user, such as a doctor, reads an image and diagnoses a disease, the accuracy of reading and a diagnosis falls.
- the disclosed embodiments aim to provide a tomography apparatus and a tomography image processing method capable of reducing blurring artifacts that may occur in a reconstructed tomography image.
- the tomography apparatus comprises: a controller for obtaining a PSF map indicating a PSF that changes according to a position in a field of view (FOV) formed in a gantry, and a blurring of the tomography image based on the PSF map, It may include an image processor for obtaining a final tomography image.
- a controller for obtaining a PSF map indicating a PSF that changes according to a position in a field of view (FOV) formed in a gantry, and a blurring of the tomography image based on the PSF map
- It may include an image processor for obtaining a final tomography image.
- the disclosed embodiments can effectively improve blurring artifacts occurring in an image by debluring based on a PSF map that changes according to the position of the FOV formed in the gantry of the tomography apparatus.
- the disclosed embodiments may prevent the noise component from being emphasized by filtering and debluring the noise component present in the image.
- FIG. 1 is a schematic diagram of a general CT system.
- FIG. 2 is a view showing the structure of a CT system according to the disclosed embodiment.
- 3 is a diagram illustrating a configuration of a communication unit.
- 4A and 4B are diagrams for explaining the necessity of accurate PSF estimation and noise filtering.
- 5A is a block diagram illustrating a configuration of a tomography apparatus according to the disclosed embodiment.
- 5B is a diagram illustrating a field of view (FOV) portion in detail.
- 6A and 6B are diagrams for explaining the PSF.
- 7A to 7C are diagrams for describing the PSF.
- FIG. 8 is a diagram for explaining a process of estimating a PSF.
- FIG. 9 is a diagram for describing a process of generating a PSF map.
- FIG. 10 is a diagram illustrating a configuration of a tomography apparatus according to the disclosed embodiment.
- FIG. 11 is a diagram illustrating an embodiment of a process of obtaining a final tomography image from a tomography apparatus according to the disclosed embodiment.
- FIG. 12 is a diagram illustrating an embodiment of a process of obtaining a final tomography image from a tomography apparatus according to the disclosed embodiment.
- FIG. 13 is a diagram illustrating an example of a process of acquiring a final tomography image from a tomography apparatus according to the disclosed embodiment.
- FIG. 14 is a flowchart illustrating a method of generating a PSF map according to the disclosed embodiment.
- 15 is a flowchart illustrating a tomography image processing method according to the disclosed embodiment.
- FIG. 16 illustrates an improvement in blurring artifacts from a tomography image according to the disclosed embodiment.
- a tomography apparatus is a control unit for obtaining a PSF map indicating a PSF that changes according to a position in a field of view (FOV) formed in a gantry, and deburring a tomographic image based on the PSF map.
- an image processor to obtain a final tomography image by ringing.
- the controller estimates a plurality of PSFs respectively corresponding to the plurality of positions based on the plurality of sample images obtained by tomography the sample object at a plurality of different positions, respectively, and based on the estimated PSF. To generate a PSF map.
- the controller according to the disclosed embodiment may estimate the PSF in the form of a Gaussian function according to a position, based on the plurality of sample images.
- the controller according to the disclosed embodiment may generate an PSF map by applying interpolation to a plurality of PSFs.
- the controller according to the disclosed embodiment may generate an PSF map by applying extrapolation to the plurality of PSFs.
- the tomography apparatus may further include a data acquirer configured to acquire tomography data by tomography the object, and the image processor may reconstruct the tomography image based on the acquired tomography data and based on the PSF map.
- the tomography image can be deblotted to obtain a final tomography image.
- the image processor may filter the noise component from the tomography image, and deblur the image from which the noise component is filtered based on the generated PSF map.
- the image processor generates a difference image of a tomographic image and an image from which noise components are filtered, obtains a noise component, and adds the obtained noise component to a deblurred image, thereby combining the image.
- the sum image may be acquired as a final tomography image.
- the tomography apparatus may further include a storage unit which stores a plurality of PSFs.
- a method of generating a PSF map includes estimating a plurality of PSFs respectively corresponding to a plurality of positions, based on a plurality of sample images obtained by tomography photographing a sample object at a plurality of different positions, and Based on the plurality of PSFs, generating a PSF map representing a PSF that changes depending on a location in the FOV formed in the gantry.
- Estimating the PSF according to the disclosed embodiment may include estimating the PSF in the form of a Gaussian distribution according to the position, based on the plurality of sample images.
- Generating the PSF map according to the disclosed embodiment may include generating a PSF map by applying interpolation to a plurality of PSFs.
- Generating the PSF map according to the disclosed embodiment may include generating a PSF map by applying extrapolation to the plurality of PSFs.
- obtaining a PSF map indicating a PSF that changes according to a position in a FOV formed in the gantry, and deblotted the tomography image based on the PSF map to obtain a final tomography image may include the step of obtaining.
- the acquiring of the PSF map according to the disclosed embodiment may include estimating a plurality of PSFs respectively corresponding to the plurality of positions, based on the plurality of sample images obtained by tomography the sample object at a plurality of different positions. And dibbling a tomography image based on the plurality of PSFs to obtain a final tomography image.
- the acquiring the final tomography image may include reconstructing the tomography image based on the tomography data obtained by the tomography imaging of the object, and debluring the tomography image based on the PSF map. It may include obtaining a tomography image.
- Acquiring the final tomography image may include filtering the noise component from the tomography image, and debleaching the image from which the noise component is filtered based on the generated PSF map. .
- the acquiring the final tomography image may include generating a difference image between the tomography image and the image from which the noise component is filtered, obtaining a noise component, and adding the obtained noise component to the deblurred image.
- the method may include acquiring a combined image as a final tomography image.
- the tomography image processing method according to the disclosed embodiment may further include storing a plurality of PSFs.
- part refers to a hardware component, such as software, FPGA or ASIC, and “part” plays certain roles. But wealth is not limited to software or hardware.
- the 'unit' may be configured to be in an addressable storage medium, or may be configured to play one or more processors.
- a “part” refers to components such as software components, object-oriented software components, class components, and task components, processes, functions, properties, procedures, Subroutines, segments of program code, drivers, firmware, microcode, circuits, data, databases, data structures, tables, arrays and variables.
- the functionality provided within the components and “parts” may be combined into a smaller number of components and “parts” or further separated into additional components and “parts”.
- image may mean multi-dimensional data composed of discrete image elements (eg, pixels in a 2D image and voxels in a 3D image).
- the image may include a medical image of the object obtained by the CT imaging apparatus.
- a “Computed Tomography (CT) image” may mean a composite image of a plurality of X-ray images obtained by rotating about at least one axis of an object and photographing the object.
- an "object” may be a person or an animal, or part or all of a person or an animal.
- the subject may include at least one of organs such as the liver, heart, uterus, brain, breast, abdomen, and blood vessels.
- the "object” may be a phantom. Phantom means a material having a volume very close to the density and effective atomic number of an organism, and may include a sphere phantom having properties similar to the body.
- a "user” may be a doctor, a nurse, a clinical pathologist, a medical imaging professional, or the like, and may be a technician who repairs a medical device, but is not limited thereto.
- the CT system may provide a cross-sectional image of the object, an internal structure of the object (for example, an organ such as a kidney and a lung) may be overlapped with each other, compared to a general X-ray imaging apparatus.
- an internal structure of the object for example, an organ such as a kidney and a lung
- the tomography system 100 may include all tomography devices such as a computed tomography (CT) device, an optical coherenc tomography (OCT) device, or a positive emission tomography (PET) -CT device.
- CT computed tomography
- OCT optical coherenc tomography
- PET positive emission tomography
- CT system will be described as the tomography system 100 as an example.
- the CT system can provide a relatively accurate cross-sectional image of an object by, for example, acquiring and processing hundreds of times per second of image data having a thickness of 2 mm or less.
- image reconstruction techniques include the following techniques.
- SSD Shade surface display
- VR volume rendering
- Virtual endoscopy A technique that allows endoscopic observation in three-dimensional images reconstructed by the VR or SSD technique.
- MPR multi planar reformation
- VOI voxel of interest
- Computed tomography (CT) system 100 can be described with reference to FIG. 3.
- CT system 100 according to the disclosed embodiments may include various types of devices.
- FIG. 1 is a schematic diagram of a CT system 100.
- the CT system 100 may include a gantry 102, a table 105, an X-ray generator 106, and an X-ray detector 108.
- the gantry 102 may include an X-ray generator 106 and an X-ray detector 108.
- the object 10 may be located on the table 105.
- the table 105 may move in a predetermined direction (eg, at least one of up, down, left, and right) during the CT imaging process.
- a predetermined direction eg, at least one of up, down, left, and right
- the table 105 may be tilted or rotated by a predetermined angle in a predetermined direction.
- the gantry 102 may also be inclined by a predetermined angle in a predetermined direction.
- FIG. 2 is a diagram illustrating a structure of a CT system 100 according to the disclosed embodiment.
- the CT system 100 includes a gantry 102, a table 105, a controller 118, a storage unit 124, an image processor 126, an input unit 128, a display unit 130, and a communication unit. 132 may include.
- the object 10 may be located on the table 105.
- the table 105 according to the disclosed embodiment may be moved in a predetermined direction (eg, at least one of up, down, left, and right), and the movement may be controlled by the controller 118.
- the gantry 102 includes a rotation frame 104, an X-ray generator 106, an X-ray detector 108, a rotation driver 110, a data acquisition circuit 116, and a data transmitter 120. ) May be included.
- the gantry 102 may include a rotatable frame 104 which is rotatable based on a predetermined rotation axis (RA).
- the rotating frame 104 may also be in the form of a disc.
- the rotation frame 104 may include an X-ray generator 106 and an X-ray detector 108 disposed to face each other to have a predetermined field of view (FOV).
- the rotating frame 104 can also include an anti-scatter grid 114.
- the anti-scattering grid 114 may be located between the X-ray generator 106 and the X-ray detector 108.
- X-ray radiation that reaches the detector includes attenuated primary radiation that forms a useful image, as well as scattered radiation that degrades the image. This is included.
- An anti-scattering grid can be placed between the patient and the detector (or photosensitive film) in order to transmit most of the main radiation and attenuate the scattered radiation.
- anti-scatter grids include strips of lead foil, solid polymer materials or solid polymers and fiber composite materials. It may be configured in the form of alternately stacked space filling material (interspace material) of. However, the shape of the anti-scattering grid is not necessarily limited thereto.
- the rotation frame 104 may receive a driving signal from the rotation driver 110 and rotate the X-ray generator 106 and the X-ray detector 108 at a predetermined rotation speed.
- the rotation frame 104 may receive a driving signal and power from the rotation driver 110 in a contact manner through a slip ring (not shown).
- the rotation frame 104 may receive a drive signal and power from the rotation driver 110 through wireless communication.
- the X-ray generator 106 generates an X-ray by receiving a voltage and a current through a high voltage generator (not shown) through a slip ring (not shown) in a power distribution unit (PDU) (not shown). Can be released.
- a high voltage generator applies a predetermined voltage (hereinafter referred to as a tube voltage)
- the X-ray generator 106 may generate X-rays having a plurality of energy spectra corresponding to the predetermined tube voltage.
- the X-rays generated by the X-ray generator 106 may be emitted in a predetermined form by the collimator 112.
- the X-ray detector 108 may be positioned to face the X-ray generator 106.
- the X-ray detector 108 may include a plurality of X-ray detection elements.
- the single X-ray detection element may form a single channel, but is not necessarily limited thereto.
- the X-ray detector 108 may detect an X-ray generated from the X-ray generator 106 and transmitted through the object 10 and generate an electric signal corresponding to the detected intensity of the X-ray.
- the X-ray detector 108 may include an indirect method of detecting radiation by converting it into light and a direct method detector for converting and detecting radiation into direct charge. Indirect X-ray detector can use Scintillator. In addition, the direct X-ray detector can use a photon counting detector.
- the data acquisitino system (DAS) 116 may be connected to the X-ray detector 108. The electrical signal generated by the X-ray detector 108 may be collected by the DAS 116. The electrical signal generated by the X-ray detector 108 may be collected by the DAS 116 by wire or wirelessly. In addition, the electrical signal generated by the X-ray detector 108 may be provided to an analog / digital converter (not shown) through an amplifier (not shown).
- Only some data collected from the X-ray detector 108 may be provided to the image processor 126 according to the slice thickness or the number of slices, or only some data may be selected by the image processor 126.
- the digital signal may be provided to the image processor 126 through the data transmitter 120.
- the digital signal may be transmitted to the image processor 126 by wire or wirelessly through the data transmitter 120.
- the controller 118 may control the operation of each module of the CT system 100.
- the controller 118 may include a table 105, a rotation driver 110, a collimator 112, a DAS 116, a storage unit 124, an image processor 126, an input unit 128, and a display unit ( 130, operations of the communication unit 132 and the like may be controlled.
- the image processor 126 may receive data (eg, raw data before processing) from the DAS 116 through the data transmitter 120 to perform a process of pre-processing. .
- the preprocessing may include, for example, a process of correcting the sensitivity nonuniformity between the channels, a sharp reduction in signal strength or a process of correcting the loss of the signal due to an X-ray absorber such as metal.
- the output data of the image processor 126 may be referred to as raw data or projection data.
- Such projection data may be stored in the storage unit 124 together with photographing conditions (eg, tube voltage, photographing angle, etc.) at the time of data acquisition.
- the projection data may be a set of data values corresponding to the intensity of X-rays passing through the object.
- a set of projection data acquired simultaneously at the same photographing angle for all channels is referred to as a projection data set.
- the storage unit 124 may include a flash memory type, a hard disk type, a multimedia card micro type, a card type memory (SD, XD memory, etc.) and a RAM. ; Random Access Memory (Static Random Access Memory), ROM (Read-Only Memory), EEPROM (Electrically Erasable Programmable Read-Only Memory), PROM (Programmable Read-Only Memory) magnetic memory, magnetic disk, optical disk It may include at least one type of storage medium.
- the image processor 126 may reconstruct a cross-sectional image of the object by using the obtained projection data set.
- the cross-sectional image may be a 3D image.
- the image processor 126 may generate a 3D image of the object by using a cone beam reconstruction method or the like based on the obtained projection data set.
- An external input for an X-ray tomography condition, an image processing condition, or the like may be received through the input unit 128.
- X-ray tomography conditions may include a plurality of tube voltages, energy values of a plurality of X-rays, imaging protocol selection, image reconstruction method selection, FOV region setting, number of slices, slice thickness, post-image Processing parameter settings, and the like.
- the image processing condition may include a resolution of an image, attenuation coefficient setting for the image, a combination ratio setting of the image, and the like.
- the input unit 128 may include a device for receiving a predetermined input from the outside.
- the input unit 128 may include a microphone, a keyboard, a mouse, a joystick, a touch pad, a touch fan, a voice, a gesture recognition device, and the like.
- the display 130 may display an X-ray photographed image reconstructed by the image processor 126.
- the transmission and reception of data, power, and the like between the above-described elements may be performed using at least one of wired, wireless, and optical communication.
- the communication unit 132 may communicate with an external device, an external medical device, or the like through the server 134. This will be described later with reference to FIG. 3.
- 3 is a diagram illustrating a configuration of a communication unit.
- the communication unit 132 may be connected to the network 301 by wire or wirelessly to perform communication with the external server 134, the medical device 136, or the portable device 138.
- the communicator 132 may exchange data with a hospital server or another medical device in the hospital connected through a PACS (Picture Archiving and Communication System).
- the communication unit 132 may perform data communication with the portable device 138 or the like according to the Digital Imaging and Communications in Medicine (DICOM) standard.
- DICOM Digital Imaging and Communications in Medicine
- the communication unit 132 may transmit / receive data related to diagnosis of the object through the network 301.
- the communication unit 132 may transmit and receive a medical image obtained from the medical device 136, such as an MRI device, an X-ray device.
- the communication unit 132 may receive a diagnosis history or a treatment schedule of the patient from the server 134 and use it for clinical diagnosis of the patient.
- the communication unit 132 may perform data communication with the server 134 or the medical device 136 in the hospital, as well as the portable device 138 of the user or patient.
- Every imaging device has a spatial resolution.
- the spatial resolution refers to the precision of the captured image when the imaging apparatus is photographed by driving the imaging apparatus. Images obtained from the imaging apparatus may not fully represent the state of the object at the time of photographing without blurring due to the characteristics of the apparatus. That is, due to the shaking of the imaging apparatus itself generated while the imaging apparatus is driven, the shaking may also appear in the captured image itself. That is, the spatial resolution is determined according to the degree of blurring that occurs in the imaged image. For example, an imaging device having a high spatial resolution has less blurring in the image than an imaging device having a low spatial resolution.
- Tomography devices also have spatial resolution.
- the limitation of the spatial resolution of the tomography apparatus causes blurring artifacts in the tomography image.
- the blurring artifacts in the tomographic image degrade the quality of the tomographic image. For this reason, when a user, such as a doctor, reads an image and diagnoses a disease, the accuracy of reading and a diagnosis falls. For example, when a blurring artifact occurs in a portion of the calcium region in the image, it may appear that a blood vessel that is not actually blocked is blocked. Thus, this may lower the diagnostic accuracy of vascular disease.
- the blurring artifact can be improved by estimating a point spread function (PSF) and de-blurring the image based on the estimated PSF.
- the PSF will vary depending on the tomography apparatus. Specifically, the PSF may vary depending on product specifications and / or performance of the tomography apparatus.
- the PSF has a complex shape and may vary depending on the position of the FOV formed in the gantry and the tube current measured in milliamperes for X-ray generation.
- correcting the blurring artifact may be referred to as de-blurring or de-blooming.
- correcting blurring artifacts will be collectively referred to as deblurring.
- the video display device estimates and uses one PSF. That is, the specific imaging device applies a specified PSF to deblur the captured image. However, if the image is deblured based on the same PSF at all positions, an incorrect PSF may be applied at some positions. Thus, an image in which blurring is not completely removed may be obtained, or artifacts such as undershooting or overshooting may occur in the image.
- the disclosed embodiment predicts and uses the PSF which changes according to the position of the FOV formed in the gantry of the tomography apparatus. That is, the tomography apparatus according to the disclosed embodiment estimates the PSF that changes according to the position of the FOV in order to estimate the correct PSF.
- the reconstructed image may include a noise component as well as a portion representing an object to be photographed. If the tomography apparatus deblurs the image without separately processing the noise component, the noise component may also be deblured together with the portion representing the object. As a result, the noise component may be rather boosted. Therefore, by filtering the noise component from the image, a process of distinguishing the noise component from a portion representing the object is required.
- 4A and 4B are diagrams for explaining the necessity of accurate PSF estimation and noise filtering.
- the initial images 401 and 411 illustrated in FIGS. 4A and 4B show an image before deblur.
- portions of the initial images 401 and 411 that represent the outline of the object appear blurry.
- the outline of the object is not represented as a clear gray level, but is represented as a plurality of gray levels having similar values, so that the outline portion is clear. It is not imaged.
- the deblured image 402 in FIG. 4A is a deblurred image based on an incorrect PSF.
- a portion representing the outline of the object 403 in the deblurred image 402 appears more clearly than the initial image 401.
- artifacts having a white band form occur in the portion 404 representing the outermost edge of the object 403.
- the deblurred image 412 of FIG. 4B is an image obtained by debluring the initial image 411 without filtering the noise component. In this case, blurring artifacts can be improved, but noise components can be emphasized. Accordingly, in the deblurred image 412, not only the portion representing the object but also the noise component 413 are clearly displayed.
- the disclosed embodiments can effectively improve blurring artifacts occurring in an image by debluring based on a PSF map that changes according to the position of the FOV formed in the gantry of the tomography apparatus.
- by filtering and debluring the noise components present in the image it is possible to prevent the noise components from being emphasized.
- 5A is a block diagram illustrating a configuration of a tomography apparatus according to the disclosed embodiment.
- the tomography apparatus 500 includes a controller 510 and an image processor 520.
- the tomography apparatus 500 refers to any electronic device capable of performing tomography to acquire, to restore and / or display a tomography image.
- the tomography apparatus 500 may be included in the CT system 100 described with reference to FIGS. 1 and 2.
- the controller 510 and the image processor 520 may correspond to the controller 118 and the image processor 126 illustrated in FIG. 2.
- the tomography apparatus 500 may be included in the medical apparatus 136 or the portable apparatus 138 described with reference to FIG. 3, and may be connected to the CT system 100 to operate.
- the controller 510 may acquire a PSF map indicating a PSF that changes according to a position in a field of view (FOV) formed in the gantry.
- FOV field of view
- the PSF map may be generated based on a plurality of PSFs corresponding to the plurality of locations.
- a plurality of PSFs can be retrieved from the outside of the tomography apparatus.
- the tomography apparatus may acquire a plurality of sample images by tomography each of the sample objects at a plurality of different positions, and estimate a plurality of PSFs corresponding to the plurality of positions, respectively.
- FIG. 5B is a diagram illustrating in detail the FOV portion illustrated in FIG. 2.
- Fig. 5B the configuration overlapping with that in Fig. 2 is shown with the same reference numerals.
- tomography is performed by placing a sample object at each of a plurality of different positions 511, 512, 513, 514, and 515 included in the FOV 501. Accordingly, the tomography apparatus 500 acquires a plurality of sample images corresponding to each of the plurality of positions 511, 512, 513, 514, and 515.
- the illustrated positions 511, 512, 513, 514, and 515 are described as an example, but a plurality of different positions may be set to various positions in addition to the illustrated positions.
- FIG. 5B the illustrated positions 511, 512, 513, 514, and 515 are described as an example, but a plurality of different positions may be set to various positions in addition to the illustrated positions.
- FIG. 5B the illustrated positions 511, 512, 513, 514, and 515 are described as an example, but a plurality of different positions may be set to various positions in addition to the illustrated positions.
- FIG. 5B the illustrated positions 511, 512, 513
- 5B illustrates a case where the plurality of positions 511, 512, 513, 514, and 515 on which the sample object is located do not overlap with each other, the plurality of positions 511, 512, 513, 514, and 515 are illustrated. May overlap each other for some or all.
- the controller 510 may estimate a plurality of PSFs respectively corresponding to the plurality of positions based on the plurality of sample images.
- the controller 510 may estimate the first PSF by using the first sample image acquired by positioning the sample object at the position 511 and performing tomography imaging.
- the controller 510 may estimate the second PSF using the second sample image acquired by positioning the sample object at the location 512 and performing tomography imaging.
- the controller 510 may estimate a plurality of PFSs corresponding to each of the plurality of positions 511, 512, 513, 514, and 515.
- the controller 510 may estimate the PSF in the form of a Gaussian function according to the position.
- the method of estimating the PSF is not limited to the method of estimating in the form of a Gaussian function. A detailed description of the method of estimating the PSF will be described later with reference to FIG. 8.
- the controller 510 may generate a PSF map corresponding to the position of the FOV formed in the gantry based on the estimated plurality of PSFs.
- the PSF map may vary depending on the location of the FOV.
- the PSF map may be composed of one PSF corresponding to the center of the FOV, or may be composed of a plurality of PSFs respectively corresponding to a plurality of pixel positions of the image.
- the number of PSFs constituting the PSF map may be changed according to the setting. As the number of PSFs constituting the PSF map increases, the image processing unit 520 may deblur an image based on an accurate PSF according to a position.
- the controller 510 may generate an PSF map by applying interpolation or extrapolation to a plurality of PSFs. A detailed description of the PSF map generation will be given later with reference to FIG. 9.
- the image processor 520 may acquire a final tomography image by debluning the tomography image based on the generated PSF map.
- the image processor 520 may deblur the tomography image by deconvolution of the tomography image based on the generated PSF map. Deconvolution of an image is well known to those skilled in the art, and thus a detailed description thereof will be omitted.
- the image processor 520 may filter the noise component from the tomography image, and deblur the image from which the noise component is filtered based on the PSF map.
- the process of filtering the noise component may be performed before debluring or after debluring.
- the image processor 520 may obtain a noise component by generating a difference image between the tomography image and the image from which the noise component is filtered, in order to acquire a more natural image from the user's side.
- the image processor 520 may generate a composite image by adding the obtained noise component to the deblurred image, and obtain the composite image as a final tomography image.
- PSF Point Spread Function
- 6A and 6B are diagrams for explaining the PSF.
- the point spread function is a function representing the spatial response of the imaging system to a point.
- the PSF corresponds to an impulse response in space of the image capturing system.
- the PSF may be approximated by a Gaussian function.
- a wave may be transmitted for imaging a point 611 of the object on the object plane 612 (shown in a straight line for convenience).
- the wave may radiate from one point 611 of the object into the sphere 613.
- the wave may be an ultrasound.
- the wave may be light.
- the wave may be an X-ray.
- the imaging system 620 may acquire a portion 630 of the wave of the sphere 613.
- a point 611 on the object plane 612 may appear at a point 641 on the image plane 642.
- one point 651 on the object plane 650 may appear at one point 661 of the image plane 660.
- an artifact 662 may appear on the image plane 660.
- Artifact 662 may be a blurring artifact, and artifact 662 may appear circular.
- 7A to 7C are diagrams for describing the PSF.
- FIG. 7A is an image 700 illustrating an object displayed on a plane.
- An arbitrary Cartesian coordinate axis may be set in the image 700.
- the x-axis may be set to cross the object 706, and the y-axis may be set to contact the object 706.
- the x axis represents the position of each point and the v axis represents the pixel value for each point.
- the graph 710 illustrated in FIG. 7B shows pixel values for the one-dimensional straight line 704 included in the image 700 when no blurring artifacts occur in the image 700.
- the negative x coordinate corresponds to the left area 702, and the positive x coordinate corresponds to the right area 703. Also, the origin corresponds to the point 705 included in the surface 701.
- the pixel value is 0 when the x coordinate is negative in the graph 710 and the pixel value is a when the x coordinate is positive. Thus, when the x coordinate is 0, it can be seen that the image has a clear outline.
- the graph 720 shown in FIG. 7B converts the graph 710 based on a predetermined PSF.
- the predetermined PSF may represent the PSF existing in the tomography apparatus.
- the pixel value may gradually change in the vicinity of the x coordinate of 0 due to the PSF of the tomography apparatus. Therefore, the tomography apparatus may have difficulty obtaining contours in the 1D image 720.
- 7C is a diagram illustrating a two-dimensional image.
- an image 730 is an image representing an object in a 2D space, and there is no blurring artifact in the image 730.
- the image 740 illustrated in FIG. 7C represents the PSF of the tomography apparatus.
- the image 740 has blurring artifacts and appears in a vertical shape.
- the PSF of the tomography apparatus may be applied to acquire an image 750 having blurring artifacts.
- the tomography apparatus 500 may acquire the image 750 having the blurring artifact by convolving the image 730 and the image 740.
- the tomography apparatus 500 may obtain the PSF of the tomography apparatus 500 by acquiring an image 730 without blurring artifacts and an image 750 to which the PSF is applied.
- the tomography apparatus 500 may deblur an image based on the PSF.
- the tomography apparatus 500 may mathematically calculate an inverse PSF of the PSF based on the obtained PSF.
- the tomography apparatus 500 may estimate the image 730 without the blurring artifact by convolving the inverse of the PSF with the image 750 having the blurring artifact.
- the tomography apparatus 500 may deconvolution the image 750 with the blurring artifact and the PSF to estimate the image 730 without the blurring artifact.
- the tomography apparatus 500 may store information about the original shape of the contour of the object. However, it is not limited thereto.
- the tomography apparatus 500 may receive information regarding the original shape of the object contour from the outside of the tomography apparatus.
- the information about the original shape of the contour may be information in which the pixel value changes abruptly at the portion where the x coordinate is zero, as shown in the graph 710.
- the tomography apparatus 500 may acquire an entire image of the object.
- the tomography apparatus 500 may acquire a first area with less movement in the entire image.
- the tomography apparatus 500 may acquire information about an outline of the object photographed in the first area.
- the information about the contour of the photographed object may be information in which the pixel value is changed gently in the portion where the x coordinate is 0, as shown in the graph 720.
- the tomography apparatus 500 may estimate the PSF based on the information about the contour of the photographed object and the information about the original shape of the contour.
- the tomography apparatus 500 may estimate the PSF by convolving the inverse of the image 730, which is information on the original shape of the contour, and the image 750, which is information about the contour of the photographed object.
- the image 800 illustrated in FIG. 8 is a CT cross-sectional image obtained by tomography imaging a phantom 803 having a ball shape as a sample object.
- the horizontal axis and the vertical axis represent positions of respective pixels constituting the image 800.
- the image 800 may correspond to the two-dimensional plane that is the plane of the FOV 501 described with reference to FIG. 5B.
- blurring artifacts may occur in the image 800 due to the PSF of the tomography apparatus.
- the controller 510 may measure a distribution 812 of brightness values based on the position 802 of a specific pixel existing on the reference line 801 set in the image 800.
- the brightness value may be represented by a Hounsfield Unit (HU) value.
- the distribution 812 of the HU value may be represented in the form of a Gaussian function.
- the controller 510 may estimate the PSF 811 at the specific position 802 based on the distribution 812 of the HU values.
- the estimated PSF 811 may also appear in the form of a Gaussian function.
- the control unit 510 may acquire a plurality of sample images by tomography each of the sample objects at a plurality of different positions within the gantry of the tomography apparatus. Images captured at different locations may have different blurring artifacts in the image. Accordingly, the distribution of HU values also appears differently, and the PSF estimated based on the distribution of HU values may also appear differently depending on the location.
- the controller 510 may generate a PSF map corresponding to the position of the FOV formed in the gantry based on the plurality of PSFs respectively corresponding to the plurality of positions.
- FIG. 9 is a diagram for describing generation of a PSF map based on a plurality of PSFs.
- the plurality of points 901 displayed on the graph 900 indicate positions corresponding to the plurality of PSFs estimated by the controller 510.
- the horizontal axis and the left vertical axis represent positions on the FOV, which are positions within the gantry of the tomography apparatus.
- the two-dimensional space shown in FIG. 9 corresponds to the two-dimensional space including the FOV, and a position corresponding to (0,0) represents the center of the FOV in the gantry.
- a plurality of PSFs may be estimated for various positions in the gantry. As the estimated PSF increases, the controller 510 may generate a more accurate PSF map based on the PSF.
- the positions at which the PSF is estimated may change depending on the setting.
- the locations from which the PSF is estimated may be selected such that as many areas as possible within the gantry are covered.
- the video 902 displayed on the graph 900 represents a PSF map corresponding to the FOV.
- the vertical axis displayed on the right side of the graph 900 indicates that the brightness information of the image 902 is digitized.
- the position of the image 902 in the graph 900 represents the position of the FOV formed in the gantry.
- the controller 510 may generate a PSF map corresponding to the position of the FOV based on the plurality of sample PSFs.
- the PSF map may be considered as a set of PSFs corresponding to the position of the FOV.
- the controller 510 may acquire PSFs corresponding to all pixel positions of the image 902 based on the plurality of PSFs.
- the PSF map may be a set of PSFs corresponding to all pixel positions, respectively.
- the controller 510 may acquire a PSF corresponding to the center of the FOV based on the plurality of PSFs.
- the PSF corresponding to the center of the FOV may be a representative PSF applied when the image 902 is deblured.
- the PSF map may be a PSF corresponding to the center of the FOV.
- the controller 510 may generate an PSF map by applying interpolation or extrapolation to a plurality of PSFs located near the position of the FOV, but is not limited thereto.
- the controller 510 may generate one PSF map by interpolating a plurality of PSFs. Since the method of applying the interpolation method or the extrapolation method is well known to those skilled in the art, a detailed description thereof will be omitted.
- FIG. 10 is a block diagram showing a configuration of a tomography apparatus according to the disclosed embodiment.
- the tomography apparatus 1000 may include the controller 1010, the image processor 1020, the data acquirer 1030, the storage 1040, and the display 1050. It may include.
- the control unit 1010 and the image processing unit 1020 correspond to the control unit 510 and the image processing unit 520 shown in FIG. 5A, overlapping descriptions thereof will be omitted.
- the data acquirer 1030 may acquire tomography data by tomography the object.
- the tomography data may be raw data.
- the raw data may be projection data obtained by projecting X-rays to an object or a sinogram that is a set of projection data.
- the raw data may be an image generated by filtering the projection data or the sinogram and back-projection (Filtered Backprojection).
- the data acquisition unit 1030 may include a gantry tomography the object included in the FOV.
- the image processor 1020 may reconstruct a tomography image based on the tomography data acquired by the data acquirer.
- the image processor 1020 may use a full reconstruction method in which the X-ray generator 106 reconstructs one tomography image by using the tomography data obtained by rotating one revolution.
- the image processor 1020 may use a half reconstruction method in which the X-ray generator 106 reconstructs one tomography image by using the tomography data obtained by rotating at least one half of the wheel. Can be.
- the tomographic image restoration method is not limited to the above-described method.
- the image processor 1020 may filter the noise component from the tomography image, and deblock the tomography image from which the noise component is filtered based on the generated PSF map.
- the image processing unit 1020 may adjust the size of the PSF map according to the FOV of the tomographic image to be reconstructed, and perform debluring using the tomographic image having the same size and the PSF map. Specifically, if the FOV of the tomographic image to be restored has a size of 512 * 512 matrix, the image processor 1020 may adjust the size of the PSF map to have a size of 512 * 512 matrix based on the center of the FOV. have. In addition, the image processor 1020 may perform a deblurring process on the tomography image using the PSF map having the adjusted size.
- the filtering of the noise component may apply noise filtering methods generally known to those skilled in the art, and a detailed description thereof will be omitted.
- the image processor 1020 may deblur the image from which the noise component is filtered based on the generated PSF map.
- the image processor 1020 may acquire an image with blurring by convolving the image and the PSF. Therefore, debluring an image with blurring may be referred to as deconvolution of the image with blurring and the PSF.
- the image processor 1020 may filter the noise component to distinguish and process the noise component and the portion representing the object. For this reason, the tomography apparatus 1000 can prevent the noise component from being highlighted in the image.
- the image processor 1020 may obtain a noise component by generating a difference image between the tomographic image and the image from which the noise component is filtered.
- the image processor 1020 may generate a sum image by adding the acquired noise component to the deblurred image, and may acquire the generated sum image as a final tomography image. Accordingly, the tomography apparatus 1000 may acquire a more natural tomography image from the user's side.
- the tomography apparatus 1000 may obtain a more natural image from the user's perspective.
- the storage unit 1040 may store a plurality of PSFs estimated by the controller 1010.
- the tomography apparatus 1000 may store the plurality of PSFs in the storage 1040 in advance.
- the controller 1010 may generate a PSF map according to the position of the FOV based on the plurality of PSFs stored in the storage 1040.
- the process of estimating and storing the plurality of PSFs in the storage unit 1040 may be performed in an initial process of the tomography apparatus 1000.
- the internal component of the tomography apparatus 1000 may be replaced, and then the calibration may be performed. However, it is not limited to this.
- the storage unit 1040 may store a plurality of PSFs in the form of a table, but is not limited thereto.
- the display unit 1050 may output a screen including the final tomography image acquired by the image processor 1020.
- the display unit 1050 may display a user interface screen necessary to perform tomography imaging.
- 11 to 13 are diagrams illustrating embodiments of a process of obtaining a final tomography image from a tomography apparatus according to the disclosed embodiment.
- the image processor 1020 may filter the noise before debluring the image, or may filter the noise after debluring the image. Alternatively, the image processor 1020 may deblur the image while filtering noise using a regularization term.
- the regular term is one of the methods of filtering noise, and since it is well known to those skilled in the art, a detailed description thereof will be omitted. In general, a known noise filtering method may be applied and is not limited to the normal term.
- FIG. 11 illustrates a case of filtering noise before debluring an image.
- the controller 1010 may generate a PSF map corresponding to the position of the FOV based on the plurality of sample PSFs.
- the image processor 1020 may first filter 1112 the noise from the tomography image 1121, and generate a difference image 1123 between the tomography image 1121 and the image from which the noise is filtered.
- the generated difference image may be a noise component present in the tomography image 1121.
- the image processor 1020 may deblur the image from which the noise is filtered based on the PSF map generated by the controller 1010.
- the image processor 1020 may generate a summation image by adding a noise component to the deblurred image in order to obtain a more natural image from the user's side (1125).
- the image processor 1020 may acquire 1126 the acquired composite image as the final tomography image.
- the image processor 1020 may filter the noise after deblocking the tomographic image.
- the image processor 1020 may deblur the tomographic image 1221 based on the PSF map (1222).
- the image processor 1020 may filter the noise on the deblurred image (1223) and acquire a final tomographic image (1224).
- the image processor 1020 may perform noise filtering while deblocking the tomographic image 1321.
- FIG. 14 is a flowchart illustrating a method of generating a PSF map according to the disclosed embodiment.
- the tomography apparatus acquires a plurality of sample images by tomography each of a sample object at a plurality of different positions, and acquires a plurality of sample images based on the obtained plurality of sample images.
- Each of the plurality of PSFs corresponding to each other may be estimated (S1410).
- the tomography apparatus may estimate the PSF in the form of a Gaussian function according to the position based on the plurality of sample images.
- the tomography apparatus may generate a PSF map indicating the PSF that changes according to the position of the FOV formed in the gantry based on the plurality of PSFs (1420).
- the tomography apparatus may generate a PSF map by applying interpolation or extrapolation to a plurality of PSFs, but is not limited thereto.
- 15 is a flowchart illustrating a tomography image processing method according to the disclosed embodiment.
- the operation configuration of the tomography image processing method according to the disclosed embodiment is the same as the operation configuration of the tomography apparatuses 500 and 1000 according to the disclosed embodiment described with reference to FIGS. 1 to 13. Therefore, in describing the tomography method, the description overlapping with those in FIGS. 1 to 13 will be omitted.
- a plurality of sample images corresponding to the plurality of positions are based on a plurality of sample images obtained by tomography imaging a sample object at a plurality of different positions, respectively.
- the PSF is estimated (S1510). Operation of step S1510 may be performed by the controller 510 of the tomography apparatus 500 according to the disclosed embodiment.
- the tomographic image processing method generates a PSF map indicating a PSF that changes depending on a position, based on the plurality of PSFs (S1520).
- the tomography image is deblured based on the generated PSF map to obtain a final tomography image (S1530).
- deconvolution of the tomographic image based on the generated PSF map may improve blurring artifacts present in the tomographic image.
- Operation of step S1530 may be performed by the image processor 520 of the tomography apparatus 500 according to the disclosed embodiment.
- the noise component may be filtered from the tomography image, and the image from which the noise component is filtered based on the PSF map may be deblured.
- a noise image may be obtained by generating a difference image between the tomography image and the image from which the noise component is filtered.
- the sum image generated by adding the obtained noise component to the deblurred image may be obtained as a final tomography image.
- the filtering of the noise component may be performed before debluring the image or after debluring the image.
- the tomographic image processing method may deblur an image while filtering a noise component using a regularization term or the like.
- FIG. 16 illustrates an improvement in blurring artifacts from a tomography image according to the tomography apparatus and the tomography image processing method according to the disclosed embodiments.
- the image 1600 illustrated on the left side is an example of a tomographic image reconstructed by a general method.
- the image 1600 may be an image reconstructed by a filtered backprojection method after filtration.
- the image 1600 since the blurring artifacts exist, the outline of the object appears blurry.
- the image 1610 illustrated on the right is an example of an image in which blurring artifacts are improved according to the tomography apparatus and the tomography image processing method according to the disclosed embodiment.
- blurring artifacts are effectively improved, so that the outline of the object appears clearly, and the noise component is not emphasized.
- the tomography apparatus and the tomography image processing method according to the disclosed embodiments can more effectively improve blurring artifacts present in the tomography image by generating different PSF maps according to the position of the FOV. .
- the noise component and a portion representing an object in the image it is possible to prevent the noise from being highlighted when the image is deblured.
- the above-described embodiments of the present invention can be written as a program that can be executed in a computer, and can be implemented in a general-purpose digital computer that operates the program using a computer-readable recording medium.
- the computer-readable recording medium may be a magnetic storage medium (for example, a ROM, a floppy disk, a hard disk, etc.), an optical reading medium (for example, a CD-ROM, a DVD, etc.) and a carrier wave (for example, the Internet). Storage medium).
- a magnetic storage medium for example, a ROM, a floppy disk, a hard disk, etc.
- an optical reading medium for example, a CD-ROM, a DVD, etc.
- carrier wave for example, the Internet.
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- Physics & Mathematics (AREA)
- Surgery (AREA)
- Pathology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Biophysics (AREA)
- High Energy & Nuclear Physics (AREA)
- Molecular Biology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Optics & Photonics (AREA)
- Heart & Thoracic Surgery (AREA)
- Radiology & Medical Imaging (AREA)
- Biomedical Technology (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Mathematical Physics (AREA)
- Algebra (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Pulmonology (AREA)
Abstract
갠트리 내에 형성되는 FOV(Field Of View) 내의 위치에 따라서 변화하는 PSF를 나타내는 PSF 맵을 획득하는 제어부, 및 상기 PSF 맵에 기초하여 단층 영상을 디블러링 하여, 최종 단층 영상을 획득하는, 영상 처리부를 포함하는 단층 촬영 장치가 개시된다.
Description
개시된 실시예들은 단층 촬영 장치 및 그에 따른 단층 영상 처리 방법에 관한 것이다.
의료 영상 장치는 대상체의 내부 구조를 영상으로 획득하기 위한 장비이다. 의료 영상 처리 장치는 비침습 검사 장치로서, 신체 내의 구조적 세부사항, 내부 조직 및 유체의 흐름 등을 촬영 및 처리하여 사용자에게 보여준다. 의사 등의 사용자는 의료 영상 처리 장치에서 출력되는 의료 영상을 이용하여 환자의 건강 상태 및 질병을 진단할 수 있다.
환자에게 X선을 조사하여 대상체를 촬영하기 위한 장치로는 대표적으로 컴퓨터 단층 촬영(CT: Computed Tomography) 장치가 있다.
의료 영상 처리 장치 중 단층 촬영 장치인 컴퓨터 단층 촬영(CT) 장치는 대상체에 대한 단면 영상을 제공할 수 있고, 일반적인 X-ray 장치에 비하여 대상체의 내부 구조(예컨대, 신장, 폐 등의 장기 등)가 겹치지 않게 표현할 수 있다는 장점이 있어서, 질병의 정밀한 진단을 위하여 널리 이용된다. 이하에서는 단층 촬영 장치에 의해서 획득된 의료 영상을 단층 영상이라 한다.
단층 영상을 획득하는데 있어서, 단층 촬영 장치를 이용하여 대상체에 대한 단층 촬영을 수행하고, 로 데이터(raw data)를 획득한다. 그리고, 획득한 로 데이터를 이용하여 단층 영상을 복원(reconstruction)한다. 여기서, 로 데이터는 X선을 대상체로 조사(projection)하여 획득한 프로젝션 데이터(projection data), 또는 프로젝션 데이터의 집합인 사이노그램(sinogram)이 될 수 있다.
단층 촬영 장치 또는 단층 촬영의 대상이 되는 대상체가 움직이거나, 단층 촬영 장치의 성능 등으로 인하여, 단층 영상을 복원할 때 블러링 아티팩트(blurring artifact)가 발생할 수 있다. 예를 들어, 단층 촬영 장치는 동작 시 자체적인 흔들림을 가질 수 있으며, 이러한 흔들림으로 인하여 영상 내의 블러링 아티팩트가 발생할 수 있다.
블러링 아티팩트가 발생하면, 복원된 단층 영상에서 대상체의 최외곽 경계(edge)가 선명하지 않고 중첩적으로 표시될 수 있으며, 단층 영상 내에 대상체의 내부 경계가 블러링(blurring)되어 표시된다.
이러한 단층 영상 내의 블러링 아티팩트는 단층 영상의 화질을 저하시킨다. 이로 인해, 의사 등의 사용자가 영상을 판독하여 질병을 진단하는데 있어서, 판독 및 진단의 정확성을 저하시킨다.
따라서, 단층 촬영에 있어서, 단층 영상의 블러링 아티팩트를 최소화 하는 것이 무엇보다 중요하다.
개시된 실시예들은 복원된 단층 영상 내에 발생할 수 있는 블러링 아티팩트를 감소시킬 수 있는 단층 촬영 장치 및 그에 따른 단층 영상 처리 방법의 제공을 목적으로 한다.
개시된 실시예에 따른 단층 촬영 장치는, 갠트리 내에 형성되는 FOV(Field Of View) 내의 위치에 따라서 변화하는 PSF를 나타내는 PSF 맵을 획득하는 제어부, 및 PSF 맵에 기초하여 단층 영상을 디블러링 하여, 최종 단층 영상을 획득하는, 영상 처리부를 포함할 수 있다.
개시된 실시예들은, 단층 촬영 장치의 갠트리 내에 형성되는 FOV의 위치에 따라 변화하는 PSF 맵에 기초하여 디블러링 함으로써, 영상 내에 발생하는 블러링 아티팩트를 효과적으로 개선할 수 있다.
또한, 개시된 실시예들은, 영상 내에 존재하는 노이즈 성분을 필터링하여 디블러링 함으로써, 노이즈 성분이 강조되는 것을 방지할 수 있다.
도 1은 일반적인 CT 시스템의 개략도이다.
도 2는 개시된 실시예에 따른 CT 시스템의 구조를 나타내는 도면이다.
도 3은 통신부의 구성을 나타내는 도면이다.
도 4a 및 도 4b는 정확한 PSF 추정과 노이즈 필터링의 필요성을 설명하기 위한 도면이다.
도 5a는 개시된 실시예에 따른 단층 촬영 장치의 구성을 나타내는 블록도이다.
도 5b는 FOV(Field Of View) 부분을 상세히 나타내는 도면이다.
도 6a 및 도 6b는 PSF를 설명하기 위한 도면이다.
도 7a 내지 도 7c는 PSF를 설명하기 위한 도면이다.
도 8은 PSF를 추정하는 과정을 설명하기 위한 도면이다.
도 9는 PSF 맵을 생성하는 과정을 설명하기 위한 도면이다.
도 10은 개시된 실시예에 따른 단층 촬영 장치의 구성을 나타내는 도면이다.
도 11은 개시된 실시예에 따른 단층 촬영 장치로부터 최종 단층 영상을 획득하는 과정의 실시예를 나타내는 도면이다.
도 12는 개시된 실시예에 따른 단층 촬영 장치로부터 최종 단층 영상을 획득하는 과정의 실시예를 나타내는 도면이다.
도 13은 개시된 실시예에 따른 단층 촬영 장치로부터 최종 단층 영상을 획득하는 과정의 실시예를 나타내는 도면이다.
도 14는 개시된 실시예에 따른 PSF 맵 생성 방법을 나타내는 흐름도이다.
도 15는 개시된 실시예에 따른 단층 영상 처리 방법을 나타내는 흐름도이다.
도 16은 개시된 실시예에 따라 단층 영상으로부터 블러링 아티팩트가 개선된 것을 설명하기 위한 도면이다.
개시된 실시예에 따른 단층 촬영 장치는, 갠트리 내에 형성되는 FOV(Field Of View, 시야면) 내의 위치에 따라 변화하는 PSF를 나타내는 PSF 맵을 획득하는 제어부, 및 PSF 맵에 기초하여 단층 영상을 디블러링 하여, 최종 단층 영상을 획득하는 영상 처리부를 포함한다.
개시된 실시예에 따른 제어부는, 샘플 객체를 서로 다른 복수개의 위치에서 각각 단층 촬영하여 획득된 복수개의 샘플 영상에 기초하여, 복수개의 위치에 각각 대응되는 복수개의 PSF를 추정하고, 추정된 PSF에 기초하여 PSF 맵을 생성할 수 있다.
개시된 실시예에 따른 제어부는, 복수개의 샘플 영상에 기초하여, 위치에 따른 가우시안 함수(Gaussian function)의 형태로 PSF를 추정할 수 있다.
개시된 실시예에 따른 제어부는, 복수개의 PSF에 보간법(interpolation)을 적용하여 PSF 맵을 생성할 수 있다.
개시된 실시예에 따른 제어부는, 복수개의 PSF에 보외법(extrapolation)을 적용하여 PSF 맵을 생성할 수 있다.
개시된 실시예에 따른 단층 촬영 장치는, 대상체를 단층 촬영하여 단층 데이터를 획득하는 데이터 획득부를 더 포함할 수 있고, 영상 처리부는, 획득된 단층 데이터에 기초하여 단층 영상을 복원하고, PSF 맵에 기초하여 단층 영상을 디블러링 하여, 최종 단층 영상을 획득할 수 있다.
개시된 실시예에 따른 영상 처리부는, 단층 영상으로부터 노이즈 성분을 필터링하고, 생성된 PSF 맵에 기초하여, 노이즈 성분이 필터링된 영상을 디블러링 할 수 있다.
개시된 실시예에 따른 영상 처리부는, 단층 영상과 노이즈 성분이 필터링된 영상의 차영상(difference image)을 생성하여, 노이즈 성분을 획득하고, 획득된 노이즈 성분을 디블러링 처리된 영상에 더하여 합영상(sum image)을 최종 단층 영상으로 획득할 수 있다.
개시된 실시예에 따른 단층 촬영 장치는, 복수개의 PSF를 저장하는 저장부를 더 포함할 수 있다.
개시된 실시예에 따른 PSF 맵 생성 방법은, 샘플 객체를 서로 다른 복수개의 위치에서 각각 단층 촬영하여 획득된 복수개의 샘플 영상에 기초하여, 복수개의 위치에 각각 대응되는 복수개의 PSF를 추정하는 단계, 및 복수개의 PSF에 기초하여, 갠트리 내에 형성되는 FOV 내의 위치에 따라서 변화하는 PSF를 나타내는 PSF 맵을 생성하는 단계를 포함할 수 있다.
개시된 실시예에 따른 PSF를 추정하는 단계는, 복수개의 샘플 영상에 기초하여, 위치에 따른 가우시안 분포의 형태로 PSF를 추정하는 단계를 포함할 수 있다.
개시된 실시예에 따른 PSF 맵을 생성하는 단계는, 복수개의 PSF에 보간법을 적용하여 PSF 맵을 생성하는 단계를 포함할 수 있다.
개시된 실시예에 따른 PSF 맵을 생성하는 단계는, 복수개의 PSF에 보외법을 적용하여 PSF 맵을 생성하는 단계를 포함할 수 있다.
개시된 실시예에 따른 단층 영상 처리 방법은, 갠트리 내에 형성되는 FOV 내의 위치에 따라서 변화하는 PSF를 나타내는 PSF 맵을 획득하는 단계, 및 PSF 맵에 기초하여 단층 영상을 디블러링 하여, 최종 단층 영상을 획득하는 단계를 포함할 수 있다.
개시된 실시예에 따른 PSF 맵을 획득하는 단계는, 샘플 객체를 서로 다른 복수개의 위치에서 각각 단층 촬영하여 획득된 복수개의 샘플 영상에 기초하여, 복수개의 위치에 각각 대응되는 복수개의 PSF를 추정하는 단계, 및 복수개의 PSF에 기초하여 단층 영상을 디블러링 하여, 최종 단층 영상을 획득하는 단계를 포함할 수 있다.
개시된 실시예에 따른 최종 단층 영상을 획득하는 단계는, 대상체를 단층 촬영하여 획득된 단층 데이터에 기초하여, 단층 영상을 복원하는 단계, 및 PSF 맵에 기초하여, 단층 영상을 디블러링 하여, 최종 단층 영상을 획득하는 단계를 포함할 수 있다.
개시된 실시예에 따른 최종 단층 영상을 획득하는 단계는, 단층 영상으로부터 노이즈 성분을 필터링하는 단계, 및 생성된 PSF 맵에 기초하여, 노이즈 성분이 필터링된 영상을 디블러링 하는 단계를 포함할 수 있다.
개시된 실시예에 따른 최종 단층 영상을 획득하는 단계는, 단층 영상과 노이즈 성분이 필터링된 영상의 차영상을 생성하여, 노이즈 성분을 획득하는 단계, 및 획득된 노이즈 성분을 디블러링된 영상에 더하여 합영상을 최종 단층 영상으로 획득하는 단계를 포함할 수 있다.
개시된 실시예에 따른 단층 영상 처리 방법은, 복수개의 PSF를 저장하는 단계를 더 포함할 수 있다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐, 동일 참조 부호는 동일 구성 요소를 지칭한다.
본 명세서에서 사용되는 용어에 대해 간략히 설명하고, 본 발명에 대해 구체적으로 설명하기로 한다.
본 발명에서 사용되는 용어는 본 발명에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 당 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서 본 발명에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 발명의 전반에 걸친 내용을 토대로 정의되어야 한다.
명세서 전체에서 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다. 또한, 명세서에서 사용되는 "부"라는 용어는 소프트웨어, FPGA 또는 ASIC과 같은 하드웨어 구성요소를 의미하며, "부"는 어떤 역할들을 수행한다. 그렇지만 '부'는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. '부'는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고, 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일 예로서 "부"는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로 코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들 및 변수들을 포함한다. 구성요소들과 "부"들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 "부"들로 결합되거나, 추가적인 구성요소들과 "부"들로 더 분리될 수 있다.
아래에서는, 첨부한 도면을 참고하여 개시된 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나, 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 여기에서 설명하는 실시예들에 한정되지 않는다. 그리고, 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략한다.
본 명세서에서 "영상"은 이산적인 영상 요소들(예를 들어, 2차원 영상에 있어서의 픽셀들 및 3차원 영상에 있어서의 복셀들)로 구성된 다차원(multi-dimensional) 데이터를 의미할 수 있다. 예를 들어, 영상은 CT 촬영 장치에 의해 획득된 대상체의 의료 영상 등을 포함할 수 있다.
본 명세서에서 "CT(Computed Tomography) 영상"이란 대상체에 대한 적어도 하나의 축을 중심으로 회전하며, 대상체를 촬영함으로써 획득된 복수개의 X-ray 영상들의 합성 영상을 의미할 수 있다.
본 명세서에서 "대상체(object)"는 사람 또는 동물, 또는 사람 또는 동물의 일부 또는 전부일 수 있다. 예를 들어, 대상체는 간, 심장, 자궁, 뇌, 유방, 복부 등의 장기, 및 혈관 중 적어도 하나를 포함할 수 있다. 또한, "대상체"는 팬텀(phantom)일 수도 있다. 팬텀은 생물의 밀도와 실효 원자 번호에 아주 근사한 부피를 갖는 물질을 의미하는 것으로, 신체와 유사한 성질을 갖는 구형(sphere)의 팬텀을 포함할 수 있다.
본 명세서에서 "사용자"는 의료 전문가로서 의사, 간호사, 임상 병리사, 의료 영상 전문가 등이 될 수 있으며, 의료 장치를 수리하는 기술자가 될 수 있으나, 이에 한정되지 않는다.
CT 시스템은 대상체에 대하여 단면 영상을 제공할 수 있으므로, 일반적인 X-ray 촬영 기기에 비하여 대상체의 내부 구조(예컨대, 신장, 폐 등의 장기 등)가 겹치지 않게 표현할 수 있다는 장점이 있다.
구체적으로, 단층 촬영 시스템(100)은 CT(computed Tomography) 장치, OCT(Optical Coherenc Tomography), 또는 PET(positron emission tomography)-CT 장치 등과 같은 모든 단층 촬영 장치들을 포함할 수 있다.
이하에서는, 단층 촬영 시스템(100)으로 CT 시스템을 예로 들어 설명한다.
CT 시스템은, 예를 들어, 2mm 두께 이하의 영상 데이터를 초당 수백 회 획득하여 가공함으로써 대상체에 대하여 비교적 정확한 단면 영상을 제공할 수 있다. 종래에는 대상체의 가로 단면만으로 표현된다는 문제점이 있었지만, 다음과 같은 여러 가지 영상 재구성 기법의 등장에 의하여 극복되었다. 3차원 재구성 영상 기법들로는 다음과 같은 기법들이 있다.
- SSD(Shade surface display): 초기 3차원 영상 기법으로 일정 HU 값을 가지는 복셀들만 나타내도록 하는 기법.
- MIP(maximum intensity projection)/MinIP(minimum intensity projection): 영상을 구성하는 복셀 중에서 가장 높은 또는 낮은 HU 값을 가지는 것들만 나타내는 3D 기법.
- VR(volume rendering): 영상을 구성하는 복셀들을 관심 영역별로 색 및 투과도를 조절할 수 있는 기법.
- 가상내시경(Virtual endoscopy): VR 또는 SSD 기법으로 재구성한 3차원 영상에서 내시경적 관찰이 가능한 기법.
- MPR(multi planar reformation): 다른 단면 영상으로 재구성하는 영상 기법. 사용자가 원하는 방향으로의 자유 자재의 재구성이 가능하다.
- Editing: VR에서 관심 부위를 보다 쉽게 관찰하도록 주변 복셀들을 정리하는 여러 가지 기법.
- VOI(voxel of interest): 선택 영역만을 VR로 표현하는 기법.
개시된 실시예에 따른 컴퓨터 단층촬영(CT) 시스템(100)은 첨부된 도 3을 참조하여 설명될 수 있다. 개시된 실시예에 따른 CT 시스템(100)은 다양한 형태의 장치들을 포함할 수 있다.
도 1은 CT 시스템(100)의 개략도이다.
도 1을 참조하면, CT 시스템(100)은 갠트리(102), 테이블(105), X-ray 생성부(106) 및 X-ray 검출부(108)를 포함할 수 있다.
갠트리(102)는 X-ray 생성부(106) 및 X-ray 검출부(108)를 포함할 수 있다.
대상체(10)는 테이블(105) 상에 위치될 수 있다.
테이블(105)은 CT 촬영 과정에서 소정의 방향(예컨대, 상, 하, 좌, 우 중 적어도 한 방향)으로 이동할 수 있다. 또한, 테이블(105)은 소정의 방향으로 소정의 각도만큼 기울어질 수 있거나(tilting) 또는 회전(rotating)될 수 있다.
또한, 갠트리(102)도 소정의 방향으로 소정의 각도만큼 기울어질 수 있다.
도 2는 개시된 실시예에 따른 CT 시스템(100)의 구조를 나타낸 도면이다.
개시된 실시예에 따른 CT 시스템(100)은 갠트리(102), 테이블(105), 제어부(118), 저장부(124), 영상 처리부(126), 입력부(128), 디스플레이부(130), 통신부(132)를 포함할 수 있다.
전술한 바와 같이, 대상체(10)는 테이블(105) 상에 위치할 수 있다. 개시된 실시예에 따른 테이블(105)은 소정의 방향(예컨대, 상, 하, 좌, 우 중 적어도 한 방향)으로 이동 가능하고, 제어부(118)에 의하여 움직임이 제어될 수 있다.
개시된 실시예에 따른 갠트리(102)는 회전 프레임(104), X-ray 생성부(106), X-ray 검출부(108), 회전 구동부(110), 데이터 획득 회로(116), 데이터 송신부(120)을 포함할 수 있다.
개시된 실시예에 따른 갠트리(102)는 소정의 회전축(RA; Rotation Axis)에 기초하여 회전 가능한 고리 형태의 회전 프레임(104)을 포함할 수 있다. 또한, 회전 프레임(104)는 디스크의 형태일 수도 있다.
회전 프레임(104)은 소정의 FOV(Field Of View)를 갖도록 각각 대향하여 배치된 X-ray 생성부(106) 및 X-ray 검출부(108)를 포함할 수 있다. 또한, 회전 프레임(104)은 산란 방지 그리드(anti-scatter grid, 114)를 포함할 수 있다. 산란 방지 그리드(114)는 X-ray 생성부(106)와 X-ray 검출부(108)의 사이에서 위치할 수 있다.
의료용 영상 시스템에 있어서, 검출기(또는 감광성 필름)에 도달하는 X-선 방사선에는, 유용한 영상을 형성하는 감쇠된 주 방사선 (attenuated primary radiation) 뿐만 아니라 영상의 품질을 떨어뜨리는 산란 방사선(scattered radiation) 등이 포함되어 있다. 주 방사선은 대부분 투과시키고 산란 방사선은 감쇠시키기 위해, 환자와 검출기(또는 감광성 필름)와의 사이에 산란 방지 그리드를 위치시킬 수 있다.
예를 들어, 산란 방지 그리드는, 납 박편의 스트립(strips of lead foil)과, 중공이 없는 폴리머 물질(solid polymer material)이나 중공이 없는 폴리머(solid polymer) 및 섬유 합성 물질(fiber composite material) 등의 공간 충전 물질(interspace material)을 교대로 적층한 형태로 구성될 수 있다. 그러나, 산란 방지 그리드의 형태는 반드시 이에 제한되는 것은 아니다.
회전 프레임(104)은 회전 구동부(110)로부터 구동 신호를 수신하고, X-ray 생성부(106)와 X-ray 검출부(108)를 소정의 회전 속도로 회전시킬 수 있다. 회전 프레임(104)은 슬립 링(미도시)을 통하여 접촉 방식으로 회전 구동부(110)로부터 구동 신호, 파워를 수신할 수 있다. 또한, 회전 프레임(104)은 무선 통신을 통하여 회전 구동부(110)로부터 구동 신호, 파워를 수신할 수 있다.
X-ray 생성부(106)는 파워 분배부(PDU; Power Distribution Unit, 미도시)에서 슬립 링(미도시)을 거쳐 고전압 생성부(미도시)를 통하여 전압, 전류를 인가 받아 X선을 생성하여 방출할 수 있다. 고전압 생성부가 소정의 전압(이하에서 튜브 전압으로 지칭함)을 인가할 때, X-ray 생성부(106)는 이러한 소정의 튜브 전압에 상응하게 복수의 에너지 스펙트럼을 갖는 X선들을 생성할 수 있다.
X-ray 생성부(106)에 의하여 생성되는 X선은, 콜리메이터(collimator, 112)에 의하여 소정의 형태로 방출될 수 있다.
X-ray 검출부(108)는 X-ray 생성부(106)와 마주하여 위치할 수 있다. X-ray 검출부(108)는 복수의 X선 검출 소자들을 포함할 수 있다. 단일 X선 검출 소자는 단일 채널을 형성할 수 있지만, 반드시 이에 제한되는 것은 아니다.
X-ray 검출부(108)는 X-ray 생성부(106)로부터 생성되고 대상체(10)를 통하여 전송된 X선을 감지하고, 감지된 X선의 강도에 상응하게 전기 신호를 생성할 수 있다.
X-ray 검출부(108)는 방사선을 광으로 전환하여 검출하는 간접 방식과 방사선을 직접 전하로 변환하여 검출하는 직접 방식 검출기를 포함할 수 있다. 간접방식의 X-ray 검출부는 Scintillator를 사용할 수 있다. 또한, 직접 방식의 X-ray 검출부는 photon counting detector를 사용할 수 있다. 데이터 획득 회로(DAS; Data Acquisitino System)(116)는 X-ray 검출부(108)와 연결될 수 있다. X-ray 검출부(108)에 의하여 생성된 전기 신호는 DAS(116)에서 수집될 수 있다. X-ray 검출부(108)에 의하여 생성된 전기 신호는 유선 또는 무선으로 DAS(116)에서 수집될 수 있다. 또한, X-ray 검출부(108)에 의하여 생성된 전기 신호는 증폭기(미도시)를 거쳐 아날로그/디지털 컨버터(미도시)로 제공될 수 있다.
슬라이스 두께(slice thickness)나 슬라이스 개수에 따라 X-ray 검출부(108)로부터 수집된 일부 데이터만이 영상 처리부(126)에 제공될 수 있고, 또는 영상 처리부(126)에서 일부 데이터만을 선택할 수 있다.
이러한 디지털 신호는 데이터 송신부(120)를 통하여 영상 처리부(126)로 제공될 수 있다. 이러한 디지털 신호는 데이터 송신부(120)를 통하여 유선 또는 무선으로 영상 처리부(126)로 송신될 수 있다.
개시된 실시예에 따른 제어부(118)는 CT 시스템(100)의 각각의 모듈의 동작을 제어할 수 있다. 예를 들어, 제어부(118)는 테이블(105), 회전 구동부(110), 콜리메이터(112), DAS(116), 저장부(124), 영상 처리부(126), 입력부(128), 디스플레이부(130), 통신부(132) 등의 동작들을 제어할 수 있다.
영상 처리부(126)는 DAS(116)로부터 획득된 데이터(예컨대, 가공 전인 로 데이터(raw data))를 데이터 송신부(120)을 통하여 수신하여, 전처리(pre-processing)하는 과정을 수행할 수 있다.
전처리는, 예를 들면, 채널들 사이의 감도 불균일 정정 프로세스, 신호 세기의 급격한 감소 또는 금속 같은 X선 흡수재로 인한 신호의 유실 정정 프로세스 등을 포함할 수 있다.
영상 처리부(126)의 출력 데이터는 로 데이터(raw data) 또는 프로젝션(projection) 데이터로 지칭될 수 있다. 이러한 프로젝션 데이터는, 데이터 획득시의 촬영 조건(예컨대, 튜브 전압, 촬영 각도 등)등과 함께 저장부(124)에 저장될 수 있다.
프로젝션 데이터는 대상체를 통과한 X선의 세기에 상응하는 데이터 값의 집합일 수 있다. 설명의 편의를 위해, 모든 채널들에 대하여 동일한 촬영 각도로 동시에 획득된 프로젝션 데이터의 집합을 프로젝션 데이터 세트로 지칭한다.
저장부(124)는 플래시 메모리 타입(flash memory type), 하드디스크 타입(hard disk type), 멀티미디어 카드 마이크로 타입(multimedia card micro type), 카드 타입의 메모리(SD, XD 메모리 등), 램(RAM; Random Access Memory) SRAM(Static Random Access Memory), 롬(ROM; Read-Only Memory), EEPROM(Electrically Erasable Programmable Read-Only Memory), PROM(Programmable Read-Only Memory) 자기 메모리, 자기 디스크, 광디스크 중 적어도 하나의 타입의 저장매체를 포함할 수 있다.
또한, 영상 처리부(126)는, 획득된 프로젝션 데이터 세트를 이용하여 대상체에 대한 단면 영상을 재구성할 수 있다. 이러한 단면 영상은 3차원 영상일 수 있다. 다시 말해서, 영상 처리부(126)는 획득된 프로젝션 데이터 세트에 기초하여 콘 빔 재구성(cone beam reconstruction) 방법 등을 이용하여 대상체에 대한 3차원 영상을 생성할 수 있다.
입력부(128)를 통하여 X선 단층 촬영 조건, 영상 처리 조건 등에 대한 외부 입력이 수신될 수 있다. 예를 들면, X선 단층 촬영 조건은, 복수의 튜브 전압, 복수의 X선들의 에너지 값 설정, 촬영 프로토콜 선택, 영상재구성 방법 선택, FOV 영역 설정, 슬라이스 개수, 슬라이스 두께(slice thickness), 영상 후처리 파라미터 설정 등을 포함할 수 있다. 또한 영상 처리 조건은 영상의 해상도, 영상에 대한 감쇠 계수 설정, 영상의 조합 비율 설정 등을 포함할 수 있다.
입력부(128)는 외부로부터 소정의 입력을 인가 받기 위한 디바이스 등을 포함할 수 있다. 예컨대, 입력부(128)는 마이크로폰, 키보드, 마우스, 조이스틱, 터치 패드, 터치팬, 음성, 제스처 인식장치 등을 포함할 수 있다.
디스플레이부(130)는 영상 처리부(126)에 의해 재구성된 X선 촬영 영상을 디스플레이할 수 있다.
전술한 엘리먼트들 사이의 데이터, 파워 등의 송수신은 유선, 무선 및 광통신 중 적어도 하나를 이용하여 수행될 수 있다.
통신부(132)는 서버(134) 등을 통하여 외부 디바이스, 외부 의료 장치 등과의 통신을 수행할 수 있다. 이와 관련하여서는, 도 3을 참조하여 후술한다.
도 3은 통신부의 구성을 도시하는 도면이다.
통신부(132)는, 유선 또는 무선으로 네트워크(301)와 연결되어 외부 서버(134), 의료 장치(136) 또는 휴대용 장치(138) 와의 통신을 수행할 수 있다. 통신부(132)는, 의료 영상 정보 시스템(PACS, Picture Archiving and Communication System)을 통해 연결된 병원 서버나 병원 내의 다른 의료 장치와 데이터를 주고 받을 수 있다.
또한, 통신부(132)는 의료용 디지털 영상 및 통신(DICOM, Digital Imaging and Communications in Medicine) 표준에 따라 휴대용 장치 (138) 등과 데이터 통신을 수행할 수 있다.
통신부(132)는 네트워크(301)를 통해 대상체의 진단과 관련된 데이터를 송수신할 수 있다. 또한 통신부(132)는 MRI 장치, X-ray 장치 등 의료 장치(136)에서 획득된 의료 영상 등을 송수신할 수 있다.
나아가, 통신부(132)는 서버(134)로부터 환자의 진단 이력이나 치료 일정 등을 수신하여 환자의 임상적 진단 등에 활용할 수도 있다. 또한, 통신부(132)는 병원 내의 서버(134)나 의료 장치(136)뿐만 아니라, 사용자나 환자의 휴대용 장치(138) 등과 데이터 통신을 수행할 수도 있다.
또한, 장비의 이상 유무 및 품질 관리 현황 정보를 네트워크를 통해 시스템 관리자나 서비스 담당자에게 송신하고 그에 대한 feedback을 수신할 수 있다.
모든 영상 장치는 공간 해상도(spatial resolution)를 가진다. 공간 해상도는, 영상 장치를 구동시켜 공간 상의 대상체를 촬영할 때, 촬영된 영상의 정밀도를 의미한다. 영상 장치로부터 획득된 영상은, 장치의 특성으로 인하여, 촬영 시점에서의 대상체의 상태를 블러링(blurring)없이 완벽하게 나타낼 수 없다. 즉, 영상 장치가 구동되는 과정에서 발생하는 영상 장치 자체의 흔들림으로 인하여, 촬영된 영상 자체에도 흔들림이 나타날 수 있다. 즉, 공간 해상도는 이미징된 영상 내에서 발생한 블러링의 정도에 따라서 결정된다. 예를 들어, 높은 공간 해상도를 가지는 영상 장치는, 낮은 공간 해상도를 가지는 영상 장치에 비하여, 영상 내에서 블러링의 정도가 적다.
단층 촬영 장치도 공간 해상도를 가진다. 그리고, 단층 촬영 장치의 공간 해상도의 제한은 단층 영상 내에 블러링 이티팩트를 야기한다. 이러한 단층 영상 내의 블러링 아티팩트는 단층 영상의 화질을 저하시킨다. 이로 인해, 의사 등의 사용자가 영상을 판독하여 질병을 진단하는데 있어서, 판독 및 진단의 정확성을 저하시킨다. 예를 들어, 영상에서 칼슘 영역을 나타내는 부분에 블러링 아티팩트가 발생한 경우, 실제로 막히지 않은 혈관이 막혀 있는 것처럼 보일 수 있다. 따라서, 이것은 혈관 질환의 진단 정확도를 낮출 수 있다.
블러링 아티팩트는, PSF(Point Spread Function)를 추정하고, 추정된 PSF에 기초하여 영상을 디블러링(De-Blurring) 함으로써 개선될 수 있다. 여기서, PSF 는 단층 촬영 장치에 따라서 달라지게 된다. 구체적으로, PSF 는 단층 촬영 장치의 제품 사양 및/또는 성능 등에 따라서 달라질 수 있다. PSF는 복잡한 형태를 가지며, 갠트리 내에 형성되는 FOV의 위치 및 X선 생성을 위한 관전류(tube current measured in milliamperes)에 따라 달라질 수 있다. 여기서, 블러링 아티팩트를 보정하는 것을 디블러링(De-blurring), 또는 디블루밍(De-blooming)이라고 칭할 수 있다. 이하에서는, 설명의 편의를 위하여, 블러링 아티팩트를 보정하는 것을 디블러링으로 통일하여 칭하기로 한다.
PSF에 기초하여 영상을 디블러링 할 때, PSF가 정확하게 추정되지 않으면, 블러링이 완전히 제거되지 않은 영상이 획득될 수 있다. 또한, 디블러링된 영상에서 언더슈팅(undershooting)이나 오버슈팅(overshooting) 등의 아티팩트가 발생할 수 있다.
일반적으로, PSF 를 추정할 때, 영상 표시 장치는 하나의 PSF를 추정하여 이용한다. 즉, 특정 영상 장치는 특정된 하나의 PSF를 적용하여, 촬영된 영상을 디블러링한다. 그러나, 모든 위치에서 동일한 PSF에 기초하여 영상을 디블러링 하면, 일부 위치에서는 정확하지 않은 PSF가 적용될 수 있다. 따라서, 블러링이 완전히 제거되지 않은 영상이 획득되거나, 영상에 언더슈팅 또는 오버슈팅과 같은 아티팩트가 발생할 수 있다.
그러나, 특정 단층 촬영 장치의 FOV 내에서도, FOV의 위치에 따라서 PSF 가 달라질 수 있다. 그러므로, 개시된 실시예에서는 단층 촬영 장치의 갠트리 내에 형성되는 FOV의 위치에 따라서 변화하는 PSF를 예측하여 이용한다. 즉, 개시된 실시예에 따른 단층 촬영 장치는, 정확한 PSF를 추정하기 위해서, FOV의 위치에 따라서 변화하는 PSF를 추정한다.
또한, 복원된 영상은, 촬영하려는 대상체를 나타내는 부분뿐만 아니라 노이즈 성분을 포함할 수 있다. 단층 촬영 장치에서 노이즈 성분을 별도로 처리하지 않고 영상을 디블러링 하면, 대상체를 나타내는 부분과 함께 노이즈 성분 또한 디블러링 될 수 있다. 이로 인해, 노이즈 성분이 오히려 강조(boosting)될 수 있다. 따라서, 영상으로부터 노이즈 성분을 필터링함으로써, 노이즈 성분을 대상체를 나타내는 부분과 구분하여 처리하는 과정이 필요하다.
도 4a 및 도 4b는 정확한 PSF 추정과 노이즈 필터링의 필요성을 설명하기 위한 도면이다.
도 4a 및 도 4b를 참조하면, 도 4a 및 도 4b에 도시된 초기 영상(401, 411)은 디블러링 하기 전 영상을 나타낸다. 여기서, 초기 영상(401, 411) 내의 블러링 아티팩트로 인해, 초기 영상(401, 411)에서 대상체의 윤곽을 나타내는 부분이 흐릿하게 나타난다. 도 4a에 도시된 영역(421)을 참조하면, 대상체의 윤곽이 선명한 그레이 레벨(gray level)로 표현되지 못하고, 서로 유사한 값을 갖는 복수개의 그레이 레벨(gray level)로 표현되어, 윤곽 부분이 명확하지 않게 이미징되어 있다.
도 4a에서 디블러링된 영상(402)은, 정확하지 않은 PSF에 기초하여 디블러링된 영상이다. 이 경우, 디블러링된 영상(402)에서 대상체(403)의 윤곽을 나타내는 부분은, 초기 영상(401)에 비해 선명하게 나타난다. 그러나, 대상체(403)의 최외곽 경계(edge)를 나타내는 부분(404)에 흰 밴드 형태를 갖는 아티팩트가 발생한다.
도 4b에서 디블러링된 영상(412)은, 노이즈 성분에 대한 필터링 없이 초기 영상(411)을 디블러링한 영상이다. 이 경우, 블러링 아티팩트가 개선될 수 있으나, 노이즈 성분이 강조될 수 있다. 이에 따라, 디블러링된 영상(412)에서는, 대상체를 나타내는 부분뿐만 아니라 노이즈 성분(413)도 함께 선명하게 나타난다.
따라서, 대상체를 단층 촬영할 때 블러링 아티팩트를 효과적으로 개선하기 위해서는, 정확하게 추정된 PSF에 기초하여 영상을 디블러링하고, 대상체를 나타내는 부분과 노이즈 성분을 구별하여 처리하는 과정이 필요하다.
개시된 실시예들은, 단층 촬영 장치의 갠트리 내에 형성되는 FOV의 위치에 따라 변화하는 PSF 맵에 기초하여 디블러링 함으로써, 영상 내에 발생하는 블러링 아티팩트를 효과적으로 개선할 수 있다. 또한, 영상 내에 존재하는 노이즈 성분을 필터링하여 디블러링 함으로써, 노이즈 성분이 강조되는 것을 방지할 수 있다.
도 5a는 개시된 실시예에 따른 단층 촬영 장치의 구성을 나타내는 블록도이다.
도 5a를 참조하면, 개시된 실시예에 따른 단층 촬영 장치(500)는, 제어부(510)와 영상 처리부(520)를 포함한다. 단층 촬영 장치(500)는 단층 촬영을 진행하여 단층 영상을 획득하고, 복원 및/또는 디스플레이 할 수 있는 모든 전자기기를 뜻한다.
단층 촬영 장치(500)는 도 1 및 도 2에서 설명한 CT 시스템(100) 내에 포함될 수 있다. 이 경우, 제어부(510) 및 영상 처리부(520)는 도 2에 도시된 제어부(118) 및 영상 처리부(126)에 동일하게 대응될 수 있다. 또한, 단층 촬영 장치(500)는 도 3에서 설명한 의료 장치(136) 또는 휴대용 장치(138) 내에 포함되어, CT 시스템(100)과 연결되어 동작할 수도 있다.
개시된 실시예에 따른 제어부(510)는, 갠트리 내에 형성되는 FOV(Field Of View) 내의 위치에 따라서 변화하는 PSF를 나타내는 PSF 맵을 획득할 수 있다.
PSF 맵은, 복수개의 위치에 대응되는 복수개의 PSF에 기초하여 생성될 수 있다. 여기서, 복수개의 PSF는, 단층 촬영 장치의 외부로부터 불러올 수 있다. 또는, 단층 촬영 장치는, 샘플 객체를 서로 다른 복수개의 위치에서 각각 단층 촬영하여 복수개의 샘플 영상을 획득하고, 복수개의 위치에 각각 대응되는 복수개의 PSF를 추정할 수 있다.
도 5b는 도 2에 도시된 FOV 부분을 상세히 나타내는 도면이다. 도 5b에서, 도 2에서와 중복되는 구성은 동일한 도면 기호로 도시한다.
도 5b를 참조하면, 개시된 실시예에서는 FOV(501) 에 포함되는 서로 다른 복수개의 위치(511, 512, 513, 514, 515) 각각에 샘플 객체를 위치시켜 단층 촬영을 진행한다. 그에 따라서, 단층 촬영 장치(500)는 복수개의 위치(511, 512, 513, 514, 515) 각각에 대응되는 복수개의 샘플 영상을 획득한다. 도 5b에서는, 도시된 위치(511, 512, 513, 514, 515)를 예로 들어 설명하였으나, 서로 다른 복수개의 위치는 도시된 위치 이외에도 다양한 위치로 설정될 수 있다. 또한, 도 5b에서는 샘플 객체가 위치하는 복수개의 위치(511, 512, 513, 514, 515)가 상호 중첩되지 않는 경우를 예로 들어 도시하였으나, 복수개의 위치(511, 512, 513, 514, 515)는 일부 또는 전부에 대하여 상호 중첩될 수 있다.
제어부(510)는, 복수개의 샘플 영상에 기초하여, 복수개의 위치에 각각 대응되는 복수개의 PSF를 추정할 수 있다.
예를 들어, 제어부(510)는, 위치(511)에 샘플 객체를 위치시키고 단층 촬영을 하여 획득한 제 1 샘플 영상을 이용하여, 제 1 PSF 를 추정할 수 있다. 그리고, 제어부(510)는, 위치(512)에 샘플 객체를 위치시키고 단층 촬영을 하여 획득한 제 2 샘플 영상을 이용하여, 제 2 PSF 를 추정할 수 있다. 동일한 방식으로, 제어부(510)는 복수개의 위치(511, 512, 513, 514, 515) 각각에 대응되는 복수개의 PFS 를 추정할 수 있다.
또한, 제어부(510)는 PSF를 추정할 때, 위치에 따른 가우시안 함수(Gaussian function)의 형태로 PSF를 추정할 수 있다. 그러나, PSF를 추정하는 방법은, 가우시안 함수의 형태로 추정하는 방법에 한정되지 않는다. PSF를 추정하는 방법에 대한 상세한 설명은 도 8을 참조하여 후술한다.
개시된 실시예에 따른 제어부(510)는, 추정된 복수개의 PSF에 기초하여, 갠트리 내에 형성되는 FOV의 위치에 대응되는 PSF 맵을 생성할 수 있다. 여기서, PSF 맵은 FOV의 위치에 따라 달라질 수 있다. 또한, PSF 맵은, FOV의 중심에 대응되는 한 개의 PSF로 구성되거나, 또는 영상의 복수개의 픽셀 위치에 각각 대응되는 복수개의 PSF로 구성될 수 있다. PSF 맵을 구성하는 PSF 개수는 설정에 따라 변경될 수 있다. PSF 맵을 구성하는 PSF 개수가 많을수록, 영상 처리부(520)는, 위치에 따른 정확한 PSF에 기초하여 영상을 디블러링할 수 있다.
개시된 실시예에 따른 제어부(510)는, 복수개의 PSF에 보간법(interpolation) 또는 보외법(extrapolation)을 적용하여, PSF 맵을 생성할 수 있다. PSF 맵 생성에 대한 상세한 설명은 도 9를 참조하여 후술한다.
개시된 실시예에 따른 영상 처리부(520)는, 생성된 PSF 맵에 기초하여 단층 영상을 디블러링 하여, 최종 단층 영상을 획득할 수 있다. 구체적으로, 영상 처리부(520)는, 생성된 PSF 맵에 기초하여 단층 영상을 디컨볼루션(deconvolution)함으로써, 단층 영상을 디블러링 할 수 있다. 영상을 디컨볼루션 하는 것에 대해서는 당업자에게 널리 알려져 있으므로, 상세한 설명은 생략한다.
개시된 실시예에 따른 영상 처리부(520)는, 단층 영상으로부터 노이즈 성분을 필터링하고, PSF 맵에 기초하여 노이즈 성분이 필터링된 영상을 디블러링 할 수 있다. 노이즈 성분을 필터링하는 과정은, 디블러링하기 전에 수행되거나 또는 디블러링한 후에 수행될 수 있다.
또한, 영상 처리부(520)는, 사용자 측면에서 보다 자연스러운 영상을 획득하기 위하여, 단층 영상과 노이즈 성분이 필터링된 영상의 차영상을 생성하여, 노이즈 성분을 획득할 수 있다. 그리고, 영상 처리부(520)는, 획득된 노이즈 성분을 디블러링된 영상에 더하여 합영상을 생성하고, 합영상을 최종 단층 영상으로 획득할 수 있다.
이하에서는, 도 6a 내지 도 7c를 참조하여 PSF(Point Spread Function)에 대하여 더 상세하게 설명한다.
도 6a 및 도 6b는 PSF를 설명하기 위한 도면이다.
PSF(Point Spread Function)는, 점(point)에 대한 영상 촬영 시스템의 공간 상의 응답을 나타낸 함수이다. 즉, PSF는 영상 촬영 시스템의 공간 상의 임펄스 응답(Impulse Response)에 해당한다. 여기서, PSF는 가우시안 함수(Gaussian function)로 근사될 수 있다.
도 6a를 참조하면, 대상체 평면(612)(편의상 직선으로 도시) 상의 대상체의 일 지점(611)을 이미징하기 위한 파(wave)가 전달될 수 있다. 예를 들어, 파는 대상체의 일 지점(611)로부터 구형(613)으로 방사될 수 있다. 초음파 시스템의 경우, 파는 초음파일 수 있다. 현미경과 같은 광학 장치의 경우, 파는 빛일 수 있다. CT 촬영 장치 또는 X-ray 촬영 장치의 경우, 파는 X 선일 수 있다. 영상 촬영 시스템(620)은 구형(613)의 파의 일부(630)를 획득할 수 있다.
또한, 영상 촬영 시스템(620)에서, 대상체 평면(612) 상의 일 지점(611)은, 영상 평면(642) 상의 일 지점(641)에 나타날 수 있다.
도 6b를 참조하면, 대상체 평면(650) 상의 일 지점(651)은, 영상 평면(660)의 일 지점(661)에 나타날 수 있다. 또한, 영상 평면(660)에는, 아티팩트(662)가 나타날 수 있다. 아티팩트(662)는 블러링 아티팩트일 수 있고, 아티팩트(662)는 원형으로 나타날 수 있다.
도 7a 내지 도 7c는 PSF를 설명하기 위한 도면이다.
도 7a는 평명 상에 나타난 대상체를 나타낸 영상(700)이다. 영상(700)에는 임의의 직교 좌표축이 설정될 수 있다. 예를 들어, x축은 대상체(706)를 가로지르도록 설정될 수 있으며, y축은 대상체(706)에 접하도록 설정될 수 있다.
도 7b를 참조하면, x축은 각 지점의 위치를 나타내며, v축은 각 지점에 대한 픽셀값을 나타낸다. 도 7b에 도시된 그래프(710)는, 영상(700) 내에 블러링 아티팩트가 발생하지 않을 때, 영상(700) 내에 포함되는 1차원 직선(704)에 대한 픽셀값들을 나타낸다.
도 7b에 도시된 그래프(710)에서, x 좌표가 음수인 경우는 좌측 영역(702)에 대응되고, x 좌표가 양수인 경우는 우측 영역(703)에 대응된다. 또한, 원점은 표면(701)에 포함되는 지점(705)에 대응된다. 전술한 예에서, 그래프(710)에서 x 좌표가 음수인 경우에 픽셀값이 0이고, x 좌표가 양수인 경우에 픽셀값이 a이다. 따라서, x 좌표가 0일 때, 영상은 명확한 윤곽을 가진다는 것을 알 수 있다.
또한, 도 7b에 도시된 그래프(720)는, 그래프(710)를 소정의 PSF에 기초하여 변환한 것이다. 여기서, 소정의 PSF는 단층 촬영 장치 내에 존재하는 PSF를 나타낼 수 있다.
그래프(720)는, 단층 촬영 장치의 PSF로 인하여, x 좌표가 0인 부근에서 픽셀값이 서서히 변할 수 있다. 따라서, 단층 촬영 장치는, 1차원 영상(720)에서 윤곽을 획득하기 어려울 수 있다.
도 7c는 2 차원 영상을 나타내는 도면이다.
도 7c를 참조하면, 영상(730)은 2차원 공간 상의 대상체를 나타내는 영상이고, 영상(730)에는 블러링 아티팩트가 없다.
또한, 도 7c에 도시된 영상(740)은 단층 촬영 장치의 PSF를 나타낸다. 영상(740)은 블러링 아티팩트가 있으며, 세로로 긴 형태로 나타난다.
단층 촬영 장치가 대상체를 촬영하면, 단층 촬영 장치의 PSF가 적용되어 블러링 아티팩트가 있는 영상(750)이 획득될 수 있다. 구체적으로, 단층 촬영 장치(500)는, 영상(730)과 영상(740)을 컨볼루션(convolution)하여 블러링 아티팩트가 있는 영상(750)을 획득할 수 있다.
대상체인 두 개의 원을 포함하는 영상(730)에 PSF가 적용되면, 블러링이 있으면서 세로로 길어진 두 개의 원을 포함하는 영상(750)이 획득될 수 있다. 단층 촬영 장치(500)는, 블러링 아티팩트가 없는 영상(730)과 PSF가 적용된 영상(750)을 획득하여, 단층 촬영 장치(500)의 PSF 를 획득할 수 있다.
단층 촬영 장치(500)는, PSF 에 기초하여 영상을 디블러링할 수 있다.
구체적으로, 단층 촬영 장치(500)는, 획득된 PSF에 기초하여 PSF의 역(inverse PSF)을 수학적으로 계산할 수 있다. 단층 촬영 장치(500)는, PSF의 역을 블러링 아티팩트가 있는 영상(750)과 컨볼루션하여, 블러링 아티팩트가 없는 영상(730)을 추정할 수 있다.
또는, 단층 촬영 장치(500)는 블러링 아티팩트가 있는 영상(750)과 PSF를 디컨볼루션(deconvolution)하여, 블러링 아티팩트가 없는 영상(730)을 추정할 수 있다.
PSF를 추정하는 방법에는 다양한 방법이 있다. 예를 들어, 단층 촬영 장치(500)는, 대상체의 윤곽선의 원래 형태에 관한 정보를 저장하고 있을 수 있다. 하지만, 이에 한정되는 것은 아니다.
단층 촬영 장치(500)는, 단층 촬영 장치의 외부로부터 대상체 윤곽선의 원래 형태에 관한 정보를 수신할 수 있다. 윤곽선의 원래 형태에 관한 정보는, 그래프(710)에 나타난 바와 같이, x 좌표가 0인 부분에서 픽셀값이 급격히 변하는 정보일 수 있다. 또한, 단층 촬영 장치(500)는 대상체를 촬영한 전체 영상을 획득할 수 있다. 단층 촬영 장치(500)는 전체 영상에서 움직임이 적은 제 1 영역을 획득할 수 있다. 단층 촬영 장치(500)는, 제 1 영역에서 촬영된 대상체의 윤곽선에 관한 정보를 획득할 수 있다. 예를 들어, 촬영된 대상체의 윤곽선에 관한 정보는, 그래프(720)에 나타난 바와 같이, x 좌표가 0인 부분에서 픽셀값이 완만하게 변하는 정보일 수 있다. 단층 촬영 장치(500)는, 촬영된 대상체의 윤곽선에 관한 정보 및 윤곽선의 원래 형태에 관한 정보에 기초하여, PSF를 추정할 수 있다. 구체적으로, 단층 촬영 장치(500)는, 윤곽선의 원래 형태에 관한 정보인 영상(730)의 역과 촬영된 대상체의 윤곽선에 관한 정보인 영상(750)을 컨볼루션 하여, PSF를 추정할 수 있다.
이하에서는, 도 8을 참조하여, PSF를 추정하는 방법에 대하여 상세하게 설명하기로 한다.
도 8을 참조하면, 도 8에 도시된 영상(800)은, 샘플 객체(sample object)인 볼 형태를 갖는 팬텀(803)을 단층 촬영하여 획득한 CT 단면 영상이다. 영상(800)에서 가로축과 세로축은, 영상(800)을 구성하는 각 픽셀의 위치를 나타낸다. 예를 들어, 영상(800)은 도 5b에서 설명한 FOV(501) 면인 2차원 평면에 대응될 수 있다. 여기서, 단층 촬영 장치의 PSF로 인하여, 영상(800) 내에 블러링 아티팩트가 발생할 수 있다.
개시된 실시예에 따른 제어부(510)는, 영상(800) 내에서 설정한 기준선(801) 상에 존재하는 특정 픽셀의 위치(802)를 중심으로, 밝기값의 분포(812)를 측정할 수 있다. 구체적으로, 밝기값은 HU(Hounsfield Unit) 값으로 나타낼 수 있다. 여기서, HU 값의 분포(812)는 가우시안 함수의 형태로 나타날 수 있다.
제어부(510)는, HU 값의 분포(812)에 기초하여 특정 위치(802)에서의 PSF(811)를 추정할 수 있다. 여기서, 추정된 PSF(811) 또한 가우시안 함수의 형태로 나타날 수 있다.
개시된 실시예에 따른 제어부(510)는, 단층 촬영 장치의 갠트리 내의 서로 다른 복수개의 위치에서 샘플 객체를 각각 단층 촬영하여, 복수개의 샘플 영상을 획득할 수 있다. 서로 다른 위치에서 촬영된 영상은, 영상 내의 블러링 아티팩트가 다른 형태로 발생할 수 있다. 따라서, HU 값의 분포도 다르게 나타나고, HU 값의 분포에 기초하여 추정된 PSF 또한 위치에 따라서 다르게 나타날 수 있다.
제어부(510)는, 복수개의 위치에 각각 대응되는 복수개의 PSF에 기초하여, 갠트리 내에 형성되는 FOV의 위치에 대응되는 PSF 맵을 생성할 수 있다.
PSF 맵을 생성하는 과정은, 이하에서 도 9를 참조하여 상세하게 설명한다.
도 9는 복수개의 PSF에 기초하여 PSF 맵을 생성하는 것을 설명하기 위한 도면이다.
도 9를 참조하면, 그래프(900)에 표시된 복수개의 점(901)들은, 제어부(510)에서 추정된 복수개의 PSF에 대응되는 위치들을 나타낸다. 그래프(900)에서 가로축과 좌측의 세로축은, 단층 촬영 장치의 갠트리 내의 위치인 FOV 상에서의 위치를 나타낸다. 구체적으로, 도 9에 도시된 2차원 공간은 FOV를 포함하는 2차원 공간에 대응되며, (0,0)에 해당하는 위치가 갠트리 내의 FOV의 중앙을 나타낸다.
도 9를 참조하면, 갠트리 내의 다양한 위치에 대하여 복수개의 PSF가 추정될 수 있다. 추정된 PSF가 많을수록, 제어부(510)는 PSF에 기초하여 보다 정확한 PSF 맵을 생성할 수 있다.
PSF가 추정되는 위치들은 설정에 따라 변경될 수 있다. 또한, PSF가 추정되는 위치들은, 갠트리 내의 가능한 많은 영역이 커버되도록 선택될 수 있다.
또한, 그래프(900)에 표시된 영상(902)은, FOV에 대응되는 PSF 맵을 나타낸다. 또한, 그래프(900)의 우측에 표시된 세로축은 영상(902)의 밝기 정보를 수치화 한 것을 나타낸다. 여기서, 그래프(900) 내의 영상(902)의 위치는, 갠트리 내에 형성되는 FOV의 위치를 나타낸다.
제어부(510)는, 복수개의 샘플 PSF에 기초하여, FOV의 위치에 대응되는 PSF 맵을 생성할 수 있다. 여기서, PSF 맵은, FOV의 위치에 대응되는 PSF들의 집합으로 생각할 수 있다.
예를 들어, 제어부(510)는, 복수개의 PSF에 기초하여, 영상(902)의 모든 픽셀 위치에 각각 대응되는 PSF들을 획득할 수 있다. 이 경우, PSF 맵은 모든 픽셀 위치에 각각 대응되는 PSF들의 집합일 수 있다.
다른 예를 들면, 제어부(510)는, 복수개의 PSF에 기초하여, FOV의 중심에 대응되는 PSF를 획득할 수 있다. 그리고, FOV의 중심에 대응되는 PSF는, 영상(902)을 디블러링할 때 적용되는 대표 PSF가 될 수 있다. 여기서, PSF 맵은, FOV의 중심에 대응되는 PSF가 될 수 있다. 그러나, 전술한 바와 같이, 블러링 아티팩트를 효과적으로 개선하기 위해서는, 위치에 따라 변화하는 PSF를 정확하게 추정하는 것이 필요하다. 따라서, PSF 맵을 구성하는 PSF가 많을수록, 영상에 존재하는 블러링 아티팩트가 효과적으로 개선될 수 있다.
개시된 실시예에 따른 제어부(510)는, FOV의 위치 인근에 있는 복수개의 PSF에 보간법(interpolation) 또는 보외법(extrapolation)을 적용하여 PSF 맵을 생성할 수 있으나, 이에 한정되지 않는다. 예를 들어, 제어부(510)는, 복수개의 PSF 상호간을 보간(interpolation)하여, 하나의 PSF 맵을 생성할 수 있다. 보간법 또는 보외법을 적용하는 방법은 당업자에게 널리 알려져 있으므로, 자세한 설명은 생략한다.
도 10은 개시된 실시예에 따른 단층 촬영 장치의 구성을 나타내는 블록도이다.
도 10을 참조하면, 개시된 실시예에 따른 단층 촬영 장치(1000)는, 제어부(1010), 영상 처리부(1020), 데이터 획득부(1030), 저장부(1040), 및 디스플레이부(1050)를 포함할 수 있다. 여기서, 제어부(1010), 영상 처리부(1020)는 도 5a에 개시된 제어부(510), 영상 처리부(520)와 동일하게 대응되므로, 중복되는 설명은 생략한다.
개시된 실시예에 따른 데이터 획득부(1030)는, 대상체를 단층 촬영하여 단층 데이터를 획득할 수 있다. 구체적으로, 단층 데이터는 로 데이터(raw data)가 될 수 있다. 여기서, 로 데이터는 X선을 대상체로 조사(projection)하여 획득한 프로젝션 데이터, 또는 프로젝션 데이터의 집합인 사이노그램이 될 수 있다. 또한, 로 데이터는 프로젝션 데이터 또는 사이노그램을 여과 후 역투영(Filtered Backprojection)하여 생성한 영상이 될 수 있다.
또한, 개시된 실시예에 따른 데이터 획득부(1030)는, FOV에 포함되는 대상체를 단층 촬영하는 갠트리를 포함할 수 있다.
개시된 실시예에 따른 영상 처리부(1020)는, 데이터 획득부에서 획득된 단층 데이터에 기초하여, 단층 영상을 복원할 수 있다. 여기서, 영상 처리부(1020)는, X-ray 생성부(106)가 한 바퀴 회전하여 획득된 단층 데이터를 이용하여 하나의 단층 영상을 복원하는 전체 복원(full reconstruction) 방식을 사용할 수 있다. 또한, 영상 처리부(1020)는, X-ray 생성부(106)가 반 바퀴 이상 한 바퀴 미만을 회전하여 획득된 단층 데이터를 이용하여 하나의 단층 영상을 복원하는 절반 복원(half reconstruction) 방식을 사용할 수 있다. 그러나, 단층 영상 복원 방식은, 전술한 방법에 한정되지 않는다.
개시된 실시예에 따른 영상 처리부(1020)는, 단층 영상으로부터 노이즈 성분을 필터링(filtering)하고, 생성된 PSF 맵에 기초하여, 노이즈 성분이 필터링된 단층 영상을 디블러링 할 수 있다.
여기서, 영상 처리부(1020)는 복원하고자 하는 단층 영상의 FOV에 맞춰 PSF 맵의 크기를 조절하고, 동일한 크기를 갖는 단층 영상과 PSF 맵을 이용하여 디블러링을 수행할 수 있다. 구체적으로, 복원의 대상이 되는 단층 영상의 FOV 가 512 * 512 matrix 의 크기를 갖는다면, 영상 처리부(1020)는 PSF 맵의 크기를 FOV의 중심을 기준으로 512 * 512 matrix의 크기를 갖도록 조절할 수 있다. 그리고, 영상 처리부(1020)는, 조절된 크기를 갖는 PSF 맵을 이용하여 단층 영상의 디블러링 처리를 수행할 수 있다.
여기서, 노이즈 성분을 필터링하는 것은, 당업자에게 일반적으로 알려진 노이즈 필터링 방법들을 적용할 수 있으며, 이에 대한 상세한 설명은 생략한다.
영상 처리부(1020)는, 생성된 PSF 맵에 기초하여, 노이즈 성분이 필터링된 영상을 디블러링 할 수 있다.
전술한 바와 같이, 영상 처리부(1020)는, 영상과 PSF를 컨볼루션(convolution)함으로써, 블러링이 있는 영상을 획득할 수 있다. 따라서, 블러링이 있는 영상을 디블러링 하는 것은, 블러링이 있는 영상과 PSF를 디컨볼루션(deconvolution)하는 것으로 나타낼 수 있다.
개시된 실시예에 따른 영상 처리부(1020)는, 노이즈 성분을 필터링함으로써, 노이즈 성분과 대상체를 나타내는 부분을 구분하여 처리할 수 있다. 이로 인해, 단층 촬영 장치(1000)는, 영상에서 노이즈 성분이 강조되어 나타나는 것을 방지할 수 있다.
개시된 실시예에 따른 영상 처리부(1020)는, 단층 영상과 노이즈 성분이 필터링된 영상의 차영상(difference image)를 생성하여, 노이즈 성분을 획득할 수 있다. 그리고, 영상 처리부(1020)는, 디블러링된 영상에 획득된 노이즈 성분을 더하여 합영상(sum image)을 생성하고, 생성된 합영상을 최종 단층 영상으로 획득할 수 있다. 이에 따라, 단층 촬영 장치(1000)는, 사용자 측면에서 보다 자연스러운 단층 영상을 획득할 수 있다.
노이즈 성분이 필터링된 영상을 디블러링 하면, 영상에서 노이즈 성분이 많이 제거되기 때문에, 단층 영상의 화질 측면에서는 더 좋은 품질의 영상을 획득할 수 있다. 그러나, 사용자가 획득된 최종 영상으로 대상체를 진단할 때, 사용자는 노이즈 성분이 필터링되고 디블러링된 영상을 부자연스럽다고 느낄 수 있다. 따라서, 노이즈 성분이 필터링된 후 디블러링 한 영상에 획득된 노이즈 성분을 더하여 합영상을 생성하게 되면, 단층 촬영 장치(1000)는 사용자 측면에서 보다 자연스러운 영상을 획득할 수 있다.
개시된 실시예에 따른 저장부(1040)는, 제어부(1010)에서 추정된 복수개의 PSF를 저장할 수 있다. 구체적으로, 단층 촬영 장치(1000)는 사전에 복수개의 PSF를 저장부(1040)에 저장할 수 있다. 이 경우, 제어부(1010)는 저장부(1040)에 저장된 복수개의 PSF에 기초하여, FOV의 위치에 따른 PSF 맵을 생성할 수 있다. 저장부(1040)에 복수개의 PSF를 추정하여 저장하는 과정은, 단층 촬영 장치(1000)의 초기 공정 과정에서 진행될 수 있다. 또는, 단층 촬영 장치(1000)의 내부 부품을 교체한 후, 교정(calibration)하는 과정에서 진행될 수 있다. 그러나, 이에 한정되는 것은 아니다.
개시된 실시예에 따른 저장부(1040)는, 복수개의 PSF를 테이블의 형태로 저장할 수 있으나, 이에 한정되는 것은 아니다.
개시된 실시예에 따른 디스플레이부(1050)는, 영상 처리부(1020)에서 획득된 최종 단층 영상을 포함하는 화면을 출력할 수 있다. 또한, 디스플레이부(1050)는 단층 촬영을 진행하는데 필요한 사용자 인터페이스 화면을 디스플레이 할 수 있다.
도 11 내지 도 13은 개시된 실시예에 따른 단층 촬영 장치로부터 최종 단층 영상을 획득하는 과정의 실시예들을 나타내는 도면이다.
영상 처리부(1020)는, 영상을 디블러링 하기 전에 노이즈를 필터링하거나, 또는 영상을 디블러링 한 후에 노이즈를 필터링할 수 있다. 또는, 영상 처리부(1020)는, 정규항(regularization term)을 이용하여 노이즈를 필터링하면서 영상을 디블러링할 수 있다. 정규항은 노이즈를 필터링하는 방법 중 하나이며, 이에 대해서는 당업자에게 널리 알려져 있으므로 상세한 설명은 생략한다. 일반적으로 알려진 노이즈 필터링 방법을 적용할 수 있으며, 정규항에 한정되지 않는다.
도 11은 영상을 디블러링 하기 전에, 노이즈를 필터링하는 경우를 설명하기 위한 도면이다.
도 11을 참조하면, 제어부(1010)는, 복수개의 샘플 PSF에 기초하여 FOV의 위치에 대응되는 PSF 맵을 생성할 수 있다.
영상 처리부(1020)는, 단층 영상(1121)에서 먼저 노이즈를 필터링(1122)할 수 있고, 단층 영상(1121)과 노이즈가 필터링된 영상의 차영상(difference image)을 생성(1123)할 수 있다. 여기서, 생성된 차영상은 단층 영상(1121)에 존재하는 노이즈 성분일 수 있다.
그러면, 영상 처리부(1020)는, 제어부(1010)에서 생성된 PSF 맵에 기초하여, 노이즈가 필터링된 영상을 디블러링(1124) 할 수 있다. 또한, 영상 처리부(1020)는, 사용자 측면에서 보다 자연스러운 영상을 획득하기 위하여, 디블러링된 영상에 노이즈 성분을 더하여 합영상을 생성(1125)할 수 있다. 영상 처리부(1020)는, 획득된 합영상을 최종 단층 영상으로 획득(1126)할 수 있다.
그러나, 도 11에서 설명한 바와 달리, 영상 처리부(1020)는, 단층 영상을 디블러링한 후에 노이즈를 필터링할 수 있다.
도 12를 참조하면, 영상 처리부(1020)는, PSF 맵에 기초하여 단층 영상(1221)을 디블러링할 수 있다(1222).
영상 처리부(1020)는, 디블러링된 영상에 노이즈를 필터링하여(1223), 최종 단층 영상을 획득할 수 있다(1224).
도 13을 참조하면, 영상 처리부(1020)는, 도 11 또는 도 12와 달리, 단층 영상(1321)을 디블러링하면서 노이즈 필터링을 함께 수행할 수 있다.
도 14는 개시된 실시예에 따른 PSF 맵 생성 방법을 나타내는 흐름도이다.
도 14를 참조하면, 단층 촬영 장치는, 샘플 객체(sample object)를 서로 다른 복수개의 위치에서 각각 단층 촬영하여 복수개의 샘플 영상을 획득하고, 획득된 복수개의 샘플 영상에 기초하여, 복수개의 위치에 각각 대응되는 복수개의 PSF를 추정할 수 있다(S1410). 여기서, 단층 촬영 장치는, 복수개의 샘플 영상에 기초하여, 위치에 따른 가우시안 함수(Gaussian function)의 형태로 PSF를 추정할 수 있다.
단층 촬영 장치는, 복수개의 PSF에 기초하여, 갠트리 내에 형성되는 FOV의 위치에 따라서 변화하는 PSF를 나타내는 PSF 맵을 생성할 수 있다(1420).
예를 들어, 단층 촬영 장치는, 복수개의 PSF에 보간법 또는 보외법을 적용하여 PSF 맵을 생성할 수 있으나, 이에 한정되지 않는다.
도 15는 개시된 실시예에 따른 단층 영상 처리 방법을 나타내는 흐름도이다.
개시된 실시예에 따른 단층 영상 처리 방법의 동작 구성은, 도 1 내지 도 13을 참조하여 설명한 개시된 실시예에 따른 단층 촬영 장치(500, 1000)의 동작 구성과 동일하다. 따라서, 단층 촬영 방법을 설명하는데 있어서, 도 1 내지 도 13과 중복되는 설명은 생략한다.
도 15를 참조하면, 개시된 실시예에 따른 단층 영상 처리 방법은, 샘플 객체를 서로 다른 복수개의 위치에서 각각 단층 촬영하여 획득된 복수개의 샘플 영상에 기초하여, 상기 복수개의 위치에 각각 대응되는 복수개의 PSF를 추정한다(S1510). S1510 단계의 동작은, 개시된 실시예에 따른 단층 촬영 장치(500)의 제어부(510)에서 수행될 수 있다.
개시된 실시예에 따른 단층 영상 처리 방법은, 상기 복수개의 PSF에 기초하여, 위치에 따라 변화하는 PSF를 나타내는 PSF 맵을 생성한다(S1520).
개시된 실시예에 따른 단층 영상 처리 방법은, 생성된 PSF 맵에 기초하여 단층 영상을 디블러링하여, 최종 단층 영상을 획득한다(S1530). 구체적으로, 생성된 PSF 맵에 기초하여 단층 영상을 디컨볼루션하면, 단층 영상에 존재하는 블러링 아티팩트를 개선할 수 있다. S1530 단계의 동작은, 개시된 실시예에 따른 단층 촬영 장치(500)의 영상 처리부(520)에서 수행될 수 있다.
개시된 실시예에 따른 단층 영상 처리 방법은, 단층 영상으로부터 노이즈 성분을 필터링하고, PSF 맵에 기초하여 노이즈 성분이 필터링된 영상을 디블러링 할 수 있다.
또한, 단층 영상 처리 방법은, 단층 영상과 노이즈 성분이 필터링된 영상의 차영상(difference image)를 생성하여, 노이즈 성분을 획득할 수 있다. 그리고, 획득된 노이즈 성분을 디블러링된 영상에 더하여 생성된 합영상(sum image)을 최종 단층 영상으로 획득할 수 있다. 여기서, 노이즈 성분의 필터링은, 영상을 디블러링 하기 전에 수행되거나, 또는 영상을 디블러링 한 후에 수행될 수 있다. 또한, 단층 영상 처리 방법은, 정규항(regularization term) 등을 이용하여 노이즈 성분을 필터링하면서, 영상을 디블러링할 수 있다.
도 16은 개시된 실시예들에 따른 단층 촬영 장치 및 단층 영상 처리 방법에 따라, 단층 영상으로부터 블러링 아티팩트가 개선된 것을 설명하기 위한 도면이다.
도 16을 참조하면, 좌측에 도시된 영상(1600)은, 일반적인 방법에 의해 복원된 단층 영상의 일 예이다. 예를 들어, 영상(1600)은 여과 후 역투사(Filtered Backprojection) 방법에 의해 복원된 영상일 수 있다. 여기서, 영상(1600)은 블러링 아티팩트가 존재하기 때문에, 대상체의 윤곽이 흐릿하게 나타난다.
우측에 도시된 영상(1610)은, 개시된 실시예에 따른 단층 촬영 장치 및 단층 영상 처리 방법에 따라, 블러링 아티팩트가 개선된 영상의 일 예이다. 영상(1610)은, 블러링 아티팩트가 효과적으로 개선되어 대상체의 윤곽이 뚜렷하게 나타나고, 노이즈 성분이 강조되어 나타나지 않는다.
전술한 바와 같이, 개시된 실시예들에 따른 단층 촬영 장치 및 그에 따른 단층 영상 처리 방법은, FOV의 위치에 따라 다른 PSF 맵을 생성함으로써, 단층 영상에 존재하는 블러링 아티팩트를 보다 효과적으로 개선할 수 있다. 또한, 영상에서 대상체를 나타내는 부분과 노이즈 성분을 구별하여 처리함으로써, 영상을 디블러링할 때 노이즈가 강조되어 나타나는 것을 방지할 수 있다.
한편, 상술한 본 발명의 실시예들은 컴퓨터에서 실행될 수 있는 프로그램으로 작성가능하고, 컴퓨터로 읽을 수 있는 기록매체를 이용하여 상기 프로그램을 동작시키는 범용 디지털 컴퓨터에서 구현될 수 있다.
상기 컴퓨터로 읽을 수 있는 기록매체는 마그네틱 저장매체(예를 들면, 롬, 플로피 디스크, 하드디스크 등), 광학적 판독 매체(예를 들면, 시디롬, 디브이디 등) 및 캐리어 웨이브(예를 들면, 인터넷을 통한 전송)와 같은 저장매체를 포함한다.
이상과 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
Claims (15)
- 갠트리 내에 형성되는 FOV(Field Of View) 내의 위치에 따라서 변화하는 PSF를 나타내는 PSF 맵을 획득하는 제어부; 및상기 PSF 맵에 기초하여 단층 영상을 디블러링 하여, 최종 단층 영상을 획득하는, 영상 처리부;를 포함하는, 단층 촬영 장치.
- 제 1항에 있어서, 상기 제어부는,샘플 객체를 서로 다른 복수개의 위치에서 각각 단층 촬영하여 획득된 복수개의 샘플 영상에 기초하여, 상기 복수개의 위치에 각각 대응되는 복수개의 PSF를 추정하고, 상기 추정된 PSF에 기초하여 상기 PSF 맵을 생성하는, 단층 촬영 장치.
- 제 2항에 있어서, 상기 제어부는,상기 복수개의 샘플 영상에 기초하여 위치에 따른 가우시안 함수(Gaussian function)의 형태로 PSF를 추정하는, 단층 촬영 장치.
- 제 2항에 있어서, 상기 제어부는,상기 복수개의 PSF에 보간법(interpolation)을 적용하여 상기 PSF 맵을 생성하는, 단층 촬영 장치.
- 제 2항에 있어서, 상기 제어부는,상기 복수개의 PSF에 보외법(extrapolation)을 적용하여 상기 PSF 맵을 생성하는, 단층 촬영 장치.
- 제 1항에 있어서, 상기 단층 촬영 장치는,대상체를 단층 촬영하여 단층 데이터를 획득하는, 데이터 획득부를 더 포함하고,상기 영상 처리부는,상기 획득된 단층 데이터에 기초하여 상기 단층 영상을 복원하고, 상기 PSF 맵에 기초하여 상기 단층 영상을 디블러링 하여, 상기 최종 단층 영상을 획득하는, 단층 촬영 장치.
- 제 1항에 있어서, 상기 영상 처리부는,상기 단층 영상으로부터 노이즈 성분을 필터링하고, 상기 획득된 PSF 맵에 기초하여, 상기 노이즈 성분이 필터링된 영상을 디블러링 하는, 단층 촬영 장치.
- 제 7항에 있어서, 상기 영상 처리부는,상기 단층 영상과 상기 노이즈 성분이 필터링된 영상의 차영상을 생성하여, 노이즈 성분을 획득하고, 상기 획득된 노이즈 성분을 상기 디블러링된 영상에 더한 합영상을 상기 최종 단층 영상으로 획득하는, 단층 촬영 장치.
- 제 1항에 있어서, 상기 단층 촬영 장치는,상기 복수개의 PSF를 저장하는 저장부를 더 포함하는, 단층 촬영 장치.
- 갠트리 내에 형성되는 FOV 내의 위치에 따라서 변화되는 PSF를 나타내는 PSF 맵을 획득하는 단계; 및상기 PSF 맵에 기초하여 단층 영상을 디블러링 하여, 최종 단층 영상을 획득하는 단계;를 포함하는, 단층 영상 처리 방법.
- 제 10항에 있어서, 상기 PSF 맵을 획득하는 단계는,샘플 객체를 서로 다른 복수개의 위치에서 각각 단층 촬영하여 획득된 복수개의 샘플 영상에 기초하여, 상기 복수개의 위치에 각각 대응되는 복수개의 PSF를 추정하는 단계; 및상기 추정된 복수개의 PSF에 기초하여 상기 PSF 맵을 생성하는 단계를 포함하는, 단층 영상 처리 방법.
- 제 11항에 있어서, 상기 PSF를 추정하는 단계는,상기 복수개의 샘플 영상에 기초하여, 위치에 따른 가우시안 함수 (Gaussian function)의 형태로 PSF를 추정하는 단계를 포함하는, 단층 영상 처리 방법.
- 제 10항에 있어서, 상기 최종 단층 영상을 획득하는 단계는,대상체를 단층 촬영하여 획득된 단층 데이터에 기초하여, 상기 단층 영상을 복원하는 단계; 및상기 PSF 맵에 기초하여, 상기 단층 영상을 디블러링 하여, 상기 최종 단층 영상을 획득하는 단계;를 포함하는, 단층 영상 처리 방법.
- 제 10항에 있어서, 상기 최종 단층 영상을 획득하는 단계는,상기 단층 영상으로부터 노이즈 성분을 필터링하는 단계; 및상기 생성된 PSF 맵에 기초하여, 상기 노이즈 성분이 필터링된 영상을 디블러링 하는 단계;를 포함하는, 단층 영상 처리 방법.
- 제 10항에 있어서, 상기 최종 단층 영상을 획득하는 단계는,상기 단층 영상과 노이즈 성분이 필터링된 영상의 차영상을 생성하여, 노이즈 성분을 획득하는 단계; 및상기 획득된 노이즈 성분을 상기 디블러링된 영상에 더하여 합영상을 상기 최종 단층 영상으로 획득하는 단계;를 포함하는, 단층 영상 처리 방법.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16827910.7A EP3326533B1 (en) | 2015-07-17 | 2016-03-31 | Tomographic device and tomographic image processing method according to same |
US15/745,706 US20180211420A1 (en) | 2015-07-17 | 2016-03-31 | Tomographic device and tomographic image processing method according to same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2015-0101910 | 2015-07-17 | ||
KR1020150101910A KR20170009601A (ko) | 2015-07-17 | 2015-07-17 | 단층 촬영 장치 및 그에 따른 단층 영상 처리 방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017014406A1 true WO2017014406A1 (ko) | 2017-01-26 |
Family
ID=57834051
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2016/003299 WO2017014406A1 (ko) | 2015-07-17 | 2016-03-31 | 단층 촬영 장치 및 그에 따른 단층 영상 처리 방법 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20180211420A1 (ko) |
EP (1) | EP3326533B1 (ko) |
KR (1) | KR20170009601A (ko) |
WO (1) | WO2017014406A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210125384A1 (en) * | 2018-06-11 | 2021-04-29 | Samsung Electronics Co., Ltd. | Method for generating tomographic image and x-ray imaging apparatus according to same |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170032818A (ko) * | 2015-09-15 | 2017-03-23 | 삼성전자주식회사 | 단층 촬영 장치 및 단층 촬영 장치의 제어 방법 |
US10825210B2 (en) * | 2017-11-30 | 2020-11-03 | Canon Medical Systems Corporation | Method and apparatus for projection domain truncation correction in computed-tomography (CT) |
JP6716765B1 (ja) * | 2018-12-28 | 2020-07-01 | キヤノン株式会社 | 画像処理装置、画像処理システム、画像処理方法、プログラム |
US11575865B2 (en) | 2019-07-26 | 2023-02-07 | Samsung Electronics Co., Ltd. | Processing images captured by a camera behind a display |
US11721001B2 (en) | 2021-02-16 | 2023-08-08 | Samsung Electronics Co., Ltd. | Multiple point spread function based image reconstruction for a camera behind a display |
US11722796B2 (en) | 2021-02-26 | 2023-08-08 | Samsung Electronics Co., Ltd. | Self-regularizing inverse filter for image deblurring |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140024646A (ko) * | 2012-08-20 | 2014-03-03 | 삼성전자주식회사 | 선형 감마선원을 이용하여 고해상도의 pet(양전자 방출 단층 촬영) 영상을 생성하는 방법 및 장치 |
KR20140102515A (ko) * | 2013-02-14 | 2014-08-22 | 삼성전자주식회사 | 영상 처리 장치 및 그 제어 방법 |
KR20140130786A (ko) * | 2013-05-02 | 2014-11-12 | 한국과학기술원 | 콘-빔 기반 반응선 재구성을 이용한 초고해상도 pet 영상 재구성 장치 및 그 방법 |
KR20150021231A (ko) * | 2013-08-20 | 2015-03-02 | 주식회사바텍 | 스캔 영상의 복원 방법, 장치 및 이를 저장하는 기록매체 |
US20150063716A1 (en) * | 2012-11-12 | 2015-03-05 | Adobe Systems Incorporated | De-noising image content using directional filters for image deblurring |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7492967B2 (en) * | 2003-09-24 | 2009-02-17 | Kabushiki Kaisha Toshiba | Super-resolution processor and medical diagnostic imaging apparatus |
US8648918B2 (en) * | 2010-02-18 | 2014-02-11 | Sony Corporation | Method and system for obtaining a point spread function using motion information |
CH702961A2 (de) * | 2010-04-08 | 2011-10-14 | Universitaetsklinik Fuer Nuklearmedizin | Verfahren zum Abgleich von mit unterschiedlichen Systemen, z.B. Tomografen, aufgenommenen Bilddaten. |
KR20140074098A (ko) * | 2012-12-07 | 2014-06-17 | 삼성전자주식회사 | 영상 촬영 장치의 검출기의 시스템 응답을 생성하는 방법 및 장치 |
US9142009B2 (en) * | 2013-07-30 | 2015-09-22 | Adobe Systems Incorporated | Patch-based, locally content-adaptive image and video sharpening |
PL412832A1 (pl) * | 2015-06-24 | 2017-01-02 | Politechnika Poznańska | Sposób renderowania w oparciu o obraz głębi i system do renderowania w oparciu o obraz głębi |
-
2015
- 2015-07-17 KR KR1020150101910A patent/KR20170009601A/ko not_active Application Discontinuation
-
2016
- 2016-03-31 WO PCT/KR2016/003299 patent/WO2017014406A1/ko active Application Filing
- 2016-03-31 EP EP16827910.7A patent/EP3326533B1/en active Active
- 2016-03-31 US US15/745,706 patent/US20180211420A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140024646A (ko) * | 2012-08-20 | 2014-03-03 | 삼성전자주식회사 | 선형 감마선원을 이용하여 고해상도의 pet(양전자 방출 단층 촬영) 영상을 생성하는 방법 및 장치 |
US20150063716A1 (en) * | 2012-11-12 | 2015-03-05 | Adobe Systems Incorporated | De-noising image content using directional filters for image deblurring |
KR20140102515A (ko) * | 2013-02-14 | 2014-08-22 | 삼성전자주식회사 | 영상 처리 장치 및 그 제어 방법 |
KR20140130786A (ko) * | 2013-05-02 | 2014-11-12 | 한국과학기술원 | 콘-빔 기반 반응선 재구성을 이용한 초고해상도 pet 영상 재구성 장치 및 그 방법 |
KR20150021231A (ko) * | 2013-08-20 | 2015-03-02 | 주식회사바텍 | 스캔 영상의 복원 방법, 장치 및 이를 저장하는 기록매체 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210125384A1 (en) * | 2018-06-11 | 2021-04-29 | Samsung Electronics Co., Ltd. | Method for generating tomographic image and x-ray imaging apparatus according to same |
US11972510B2 (en) * | 2018-06-11 | 2024-04-30 | Samsung Electronics Co., Ltd. | Method for generating tomographic image and X-ray imaging apparatus according to same |
Also Published As
Publication number | Publication date |
---|---|
KR20170009601A (ko) | 2017-01-25 |
EP3326533A4 (en) | 2018-08-08 |
EP3326533B1 (en) | 2020-03-11 |
EP3326533A1 (en) | 2018-05-30 |
US20180211420A1 (en) | 2018-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017014406A1 (ko) | 단층 촬영 장치 및 그에 따른 단층 영상 처리 방법 | |
WO2015122698A1 (en) | Computed tomography apparatus and method of reconstructing a computed tomography image by the computed tomography apparatus | |
KR101576703B1 (ko) | 화상 처리 장치, 화상 처리 방법 및 컴퓨터 판독 가능 저장 매체 | |
WO2015076607A1 (en) | Apparatus and method for processing a medical image of a body lumen | |
WO2015126217A2 (en) | Diagnostic imaging method and apparatus, and recording medium thereof | |
WO2017179866A1 (en) | Apparatus and method of processing computed tomography image | |
WO2016117906A1 (en) | Tomography imaging apparatus and method | |
KR20170025096A (ko) | 단층 영상 복원 장치 및 그에 따른 단층 영상 복원 방법 | |
US6751284B1 (en) | Method and system for tomosynthesis image enhancement using transverse filtering | |
KR20170088681A (ko) | 단층 촬영 장치 및 그에 따른 단층 영상 복원 방법 | |
JP6293713B2 (ja) | 画像処理装置、放射線断層撮影装置並びにプログラム | |
WO2017155177A1 (en) | Tomography apparatus and method of reconstructing tomography image thereof | |
WO2016163719A1 (en) | Tomography apparatus and method of reconstructing tomography image by using the tomography apparatus | |
US20200226800A1 (en) | Tomographic imaging apparatus and method of generating tomographic image | |
WO2016076525A1 (en) | Tomography apparatus and method of reconstructing tomography image thereof | |
EP3373817A1 (en) | Apparatus and method of processing computed tomography image | |
WO2017135686A1 (ko) | 단층 영상 처리 장치, 방법, 및 그 방법에 관련된 기록매체 | |
WO2017126772A1 (en) | Tomography apparatus and method for reconstructing tomography image thereof | |
WO2016089071A1 (en) | Medical imaging apparatus and method for processing medical image | |
JP2019058607A (ja) | 画像処理装置、画像処理方法、及び画像処理プログラム | |
EP3349655B1 (en) | Tomography apparatus and controlling method for the same | |
WO2016047989A1 (en) | Apparatus for processing medical image and method of processing medical image thereof | |
US20110280463A1 (en) | Image processing method and radiographic apparatus using the same | |
JP5196801B2 (ja) | デジタル断層撮影の結像処理装置 | |
WO2017047893A1 (en) | Tomography apparatus and controlling method for the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16827910 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016827910 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15745706 Country of ref document: US |