Nothing Special   »   [go: up one dir, main page]

WO2017010471A1 - White-reflecting film for large-scale display - Google Patents

White-reflecting film for large-scale display Download PDF

Info

Publication number
WO2017010471A1
WO2017010471A1 PCT/JP2016/070505 JP2016070505W WO2017010471A1 WO 2017010471 A1 WO2017010471 A1 WO 2017010471A1 JP 2016070505 W JP2016070505 W JP 2016070505W WO 2017010471 A1 WO2017010471 A1 WO 2017010471A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
thermoplastic resin
layer
particles
calcium carbonate
Prior art date
Application number
PCT/JP2016/070505
Other languages
French (fr)
Japanese (ja)
Inventor
浅井 真人
倉垣 雅弘
真一郎 岡田
利洋 大澤
Original Assignee
帝人フィルムソリューション株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015142209A external-priority patent/JP2017026676A/en
Priority claimed from JP2015167587A external-priority patent/JP2017044886A/en
Priority claimed from JP2016077384A external-priority patent/JP6837285B2/en
Application filed by 帝人フィルムソリューション株式会社 filed Critical 帝人フィルムソリューション株式会社
Priority to CN201680037837.0A priority Critical patent/CN107710032B/en
Priority to KR1020187002780A priority patent/KR20180030855A/en
Publication of WO2017010471A1 publication Critical patent/WO2017010471A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/28Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by coatings
    • F21V7/30Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by coatings the coatings comprising photoluminescent substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/416Reflective

Definitions

  • the present invention relates to a white reflective film for large displays that can be suitably used as a reflector.
  • the surface light source is provided with a reflector on the back, and the light from the light source is reflected to the front by the reflector to improve the light extraction efficiency and improve the brightness.
  • a direct type including a light source and a reflective film on the back surface of the liquid crystal display panel, and a reflective plate on the back surface of the liquid crystal display panel.
  • a light guide plate is provided and a light source is provided on a side surface of the light guide plate.
  • a CCFL has been often used in the past, but in recent years, a light emitting diode (hereinafter sometimes referred to as an LED) is used to reduce power consumption and thickness, and an edge light type LED backlight or a direct light source is used.
  • Type LED backlights are the mainstream.
  • the edge light type backlight has an advantage that the LCD can be made thinner, while the direct type LED backlight is low in cost because it does not use a light guide plate.
  • Surface light sources are also used for lighting to brighten indoors and outdoors.
  • the reflector for example, a void-containing film in which voids are formed inside by adding inorganic particles or an incompatible resin to a thermoplastic resin such as polyester and stretching it (Patent Literature). 1-5).
  • such a reflector may be deformed and bent due to heat or humidity from the light source or the external environment (hereinafter, such a bend may be referred to as “heat bend”). If the reflector is bent, it becomes a luminance spot of a surface light source, and for example, an LCD brightness spot.
  • Patent Document 6 proposes a concept of making a reflective surface in which a metal layer is formed on an uneven surface made of particles, so that it does not easily become a luminance spot even if it is bent.
  • a protrusion is formed on the bottom surface member of the LCD to support the reflector (Patent Document 7), or a slit that absorbs the deflection is inserted into the reflector (Patent Document 8), thereby bending the reflector. Consideration for improvement has been made. However, both of these processes are expensive.
  • a large display has a recess to provide a circuit board or the like on the back chassis.
  • the present inventors have found out that heat tends to stay in such a depression, and the heat deflection problem becomes more noticeable due to such heat, and have focused on this.
  • an object of the present invention is to provide a white reflective film that has excellent reflection characteristics and is difficult to bend even when used in a large display.
  • the inventors of the present invention have focused on the fact that the presence of voids in the void-containing film makes it easier for heat deflection to occur. However, simply reducing the void is not preferable because it is in the direction of reducing the reflection characteristics. In addition, the inventors focused on the fact that heat distortion tends to occur when the inorganic particles as the void forming agent are heavy.
  • a white reflective film having a reflective layer A is a.
  • the thermoplastic resin A is composed of a thermoplastic resin composition A1 containing calcium carbonate particles, and the content of the calcium carbonate particles is 10% by mass or more and 70% by mass or less with respect to the mass of the thermoplastic resin composition A1. is there, Or b.
  • the thermoplastic resin A comprises a thermoplastic resin composition A2 containing calcium carbonate particles and a resin incompatible with the thermoplastic resin A, and the content of the calcium carbonate particles is in the mass of the thermoplastic resin composition A2.
  • the content of the incompatible resin is 5% by mass to 69% by mass with respect to the mass of the thermoplastic resin composition A2, and the calcium carbonate is 1% by mass to 40% by mass. Satisfying either a or b in which the total content of the particles and the incompatible resin is 10% by mass or more and 70% by mass or less with respect to the mass of the thermoplastic resin composition A2,
  • the calcium carbonate particles have an average particle diameter of 0.1 ⁇ m or more and 1.2 ⁇ m or less, and 10% volume particle diameter D10, 50% volume particle diameter D50 and 90% volume particle diameter D90 accumulated from the small particle diameter side are (D90 ⁇ D10) /D50 ⁇ 1.6 is satisfied,
  • the reflective layer A has a.
  • the thermoplastic resin A is composed of a thermoplastic resin composition A1 containing calcium carbonate particles, and the content of the calcium carbonate particles is 10% by mass or more and 70% by mass or less with respect to the mass of the thermoplastic resin composition A1.
  • the reflective layer A is b.
  • the thermoplastic resin A comprises a thermoplastic resin composition A2 containing calcium carbonate particles and a resin incompatible with the thermoplastic resin A, and the content of the calcium carbonate particles is in the mass of the thermoplastic resin composition A2.
  • the content of the incompatible resin is 5% by mass to 69% by mass with respect to the mass of the thermoplastic resin composition A2, and the calcium carbonate is 1% by mass to 40% by mass. 2.
  • the reflective layer A and further has a surface layer C on at least one surface,
  • the surface layer C is composed of a thermoplastic resin composition C containing surface layer particles, and the surface layer particles have an average particle size of 2.0 ⁇ m or more and 50.0 ⁇ m or less, and the content thereof is the thermoplastic resin. 4.
  • Patent Document 1 uses barium sulfate having a small standard deviation of the particle size distribution, and barium sulfate has a heavy specific gravity and thus is susceptible to thermal deflection.
  • Patent Documents 2 to 5 use calcium carbonate particles and disclose the ratio D90 / D10 between the 90% volume particle diameter D90 and the 10% volume particle diameter D10, but in fact, as narrow as the present invention. No investigation has been made up to the region of particle size distribution. Furthermore, none of them recognizes the problem of heat deflection, and no examination is made from such a viewpoint.
  • the present invention it is possible to provide a white reflective film that has excellent reflection characteristics and is difficult to bend even when used in a large display.
  • the white reflective film of the present invention is (Aspect a)
  • the thermoplastic resin A has a reflective layer A composed of a thermoplastic resin composition A1 containing calcium carbonate particles of a specific aspect, or (Aspect b) A thermoplastic resin composition containing the calcium carbonate particles of a specific aspect in the thermoplastic resin A and a resin incompatible with the thermoplastic resin A (hereinafter sometimes referred to as incompatible resin).
  • the reflective layer A made of the object A2 is included.
  • the reflective layer A in the present invention is composed of a thermoplastic resin composition A1 containing calcium carbonate particles in the thermoplastic resin A, or a thermoplastic resin composition containing calcium carbonate particles and an incompatible resin in the thermoplastic resin A.
  • This is a layer made of the product A2, in which the calcium carbonate particles and / or the incompatible resin function as a void forming agent, contain voids in the layer, and exhibit a white color.
  • the thermoplastic resin composition A1 and the thermoplastic resin composition A2 may be collectively referred to as the thermoplastic resin composition A.
  • the reflective layer A exhibits a reflective function due to such voids.
  • the reflectance of the reflective layer A at a wavelength of 550 nm is preferably 80% or more, more preferably 90% or more, and particularly preferably 95% or more. Thereby, it becomes easy to make the reflectance of a white reflective film into a preferable range.
  • the reflection layer A has voids in the layer as described above, but the ratio of the void volume to the volume of the reflection layer A, that is, the void volume ratio is 15 volume% or more and 70 volume% or less. It is preferable that By setting it as such a range, the improvement effect of a reflectance can be made high and it becomes easy to obtain the above reflectances. Moreover, the improvement effect of stretch film forming property can be made high. When the void volume ratio is too low, a preferable reflectance tends to be difficult to obtain. From such a viewpoint, the void volume ratio in the reflective layer A is more preferably 30% by volume or more, and particularly preferably 40% by volume or more.
  • the void volume ratio in the reflective layer A is more preferably 65% by volume or less, and particularly preferably 60% by volume or less.
  • the void volume ratio can be achieved by adjusting the size and amount of calcium carbonate particles in the reflective layer A and the type and amount of incompatible resin.
  • thermoplastic resin A examples include thermoplastic resins made of polyester, polyolefin, polystyrene, and acrylic. Among these, polyester is preferable from the viewpoint of obtaining a white reflective film excellent in mechanical properties and thermal stability.
  • a polyester comprising a dicarboxylic acid component and a diol component.
  • the dicarboxylic acid component include a terephthalic acid component, an isophthalic acid component, a 2,6-naphthalenedicarboxylic acid component, a 4,4'-diphenyldicarboxylic acid component, an adipic acid component, and a sebacic acid component.
  • the diol component include an ethylene glycol component, a 1,4-butanediol component, a 1,4-cyclohexanedimethanol component, and a 1,6-hexanediol component.
  • polyesters aromatic polyesters are preferable, and polyethylene terephthalate is particularly preferable.
  • Polyester and preferably polyethylene terephthalate may be a homopolymer. However, when the film is stretched uniaxially or biaxially, crystallization is suppressed and the effect of improving the stretched film-forming property is enhanced. And more preferably copolymerized polyethylene terephthalate.
  • the copolymer component include the dicarboxylic acid component and the diol component described above. From the viewpoint of high heat resistance and a high effect of improving the stretched film forming property, an isophthalic acid component and a 2,6-naphthalenedicarboxylic acid component are used. preferable.
  • the content of the copolymerization component is, for example, 1 mol% or more, preferably 2 mol% or more, more preferably 3 mol% or more, particularly preferably 7 mol% or more, based on 100 mol% of all dicarboxylic acid components of the polyester. For example, it is 20 mol% or less, preferably 18 mol% or less, more preferably 15 mol% or less, and particularly preferably 11 mol% or less.
  • By making the ratio of a copolymerization component into this range it is excellent in the improvement effect of stretch film forming property. Moreover, it is excellent in thermal dimensional stability. Furthermore, the effect of suppressing thermal deflection can be further improved.
  • the thermoplastic resin A has a melting point of preferably 200 ° C. or higher and 280 ° C. or lower. This makes it easier to suppress thermal deflection. If it is too low, the effect of suppressing heat deflection tends to be low, and if it is too high, handling tends to be difficult. From this viewpoint, it is more preferably 205 ° C or higher, further preferably 210 ° C or higher, more preferably 275 ° C or lower, and further preferably 265 ° C or lower.
  • thermoplastic resin A which comprises the reflection layer A in this invention
  • the mixture of polyester which is a preferable thermoplastic resin, and another thermoplastic resin different from this polyester may be sufficient.
  • the reflection layer A contains the calcium carbonate particle which comprises a specific aspect as a void formation agent.
  • the calcium carbonate particles have an average particle size of 0.1 ⁇ m or more and 1.2 ⁇ m or less, and (D90-D10) / D50 is 1.6 or less.
  • D10, D50, and D90 are a 10% volume particle diameter, a 50% volume particle diameter, and a 90% volume particle diameter, respectively, integrated from the small particle diameter side of the calcium carbonate particles.
  • micro voids there may be relatively small voids (hereinafter referred to as micro voids). .) Is present in the form of a film in which many exist, and thermal deflection due to coarse voids is suppressed. When the particle size distribution is broad, coarse particles are present, whereby coarse voids are easily formed. At the same time, the reduction in the amount of the interface between the void and the thermoplastic resin can be suppressed, and a high reflectance can be obtained. Furthermore, since the calcium carbonate particles have a relatively small specific gravity, the mass difference or density difference between the particles and the thermoplastic resin is small, so that local density differences are unlikely to occur in portions other than the voids. This also suppresses thermal deflection.
  • the average particle diameter of the calcium carbonate particles is preferably 1.1 ⁇ m or less, more preferably 1.0 ⁇ m or less, still more preferably 0.95 ⁇ m or less, and particularly preferably 0.9 ⁇ m or less.
  • the average particle diameter is preferably 0.3 ⁇ m or more, more preferably 0.5 ⁇ m or more, and further preferably 0.6 ⁇ m or more.
  • the average particle size of the calcium carbonate particles is too large, it becomes difficult to suppress thermal deflection, but if it is too small, coarse voids are easily formed due to aggregation, and thermal deflection is difficult to suppress. In some cases, there is a point of balance between suppression of thermal deflection and improvement of reflectance, and a point of cost.
  • the average particle diameter of the calcium carbonate particles is preferably 1.2 ⁇ m or less, more preferably 1.18 ⁇ m or less, still more preferably 1.15 ⁇ m or less, and preferably 0.6 ⁇ m or more, More preferably, it is 0.8 ⁇ m or more, more preferably 1.01 ⁇ m or more, particularly preferably 1.02 ⁇ m or more, and most preferably 1.05 ⁇ m or more.
  • (D90-D10) / D50 is preferably smaller from the above viewpoint, more preferably 1.5 or less, and still more preferably 1.4 or less.
  • the lower limit is theoretically 0, and is preferably 0.1 or more in practice.
  • the present invention it is particularly preferable in the present invention to employ particles made of synthetic calcium carbonate (hereinafter sometimes referred to as synthetic calcium carbonate particles) as the calcium carbonate particles.
  • synthetic calcium carbonate particles there are particles made of natural calcium carbonate (hereinafter sometimes referred to as natural calcium carbonate particles) and synthetic calcium carbonate particles, and natural calcium carbonate particles are usually used.
  • natural calcium carbonate particles it tends to be difficult to satisfy the above aspect, and it is difficult to achieve the object of the present invention.
  • Typical methods include the following methods.
  • (A) A method of adding after the esterification stage or the transesterification reaction at the time of synthesizing the polyester resin.
  • (A) A method of adding to the obtained polyester resin and melt-kneading.
  • (C) A master pellet obtained by adding a large amount of calcium carbonate particles to a polyester resin in the method (a) or (b) above is manufactured, and this is mixed with a polyester resin as a diluting polymer, and a predetermined amount of carbonic acid is added to the polyester resin.
  • a method of containing calcium particles A method of containing calcium particles.
  • (D) A method of using the master pellet of (c) as it is.
  • the calcium carbonate particles in the present invention are preferably subjected to a surface treatment with a surface treatment agent.
  • a surface treatment agent for preventing Ca activity on the surface of calcium carbonate particles from being deactivated, and calcium carbonate particles with deactivated surface Ca activity can be obtained, and generation of gas marks can be further suppressed.
  • surface treatment agents include phosphorous compounds such as phosphoric acid, phosphorous acid, phosphonic acid, or derivatives thereof, fatty acids such as stearic acid, silane coupling agents, and the like.
  • surface treatment with a phosphorus compound is particularly preferable.
  • phosphorus compounds include phosphoric acid, phosphorous acid, phosphoric acid trimethyl ester, phosphoric acid tributyl ester, phosphoric acid triphenyl ester, and phosphoric acid.
  • Preferable examples include mono- or dimethyl ester, trimethyl phosphite, methylphosphonic acid, methylsulfonic acid diethylester, phenylphosphonic acid dimethylester, and phenylphosphonic acid diethylester.
  • phosphoric acid, phosphorous acid, and ester molding derivatives thereof are preferable.
  • the surface treatment with trimethyl phosphate is most preferred.
  • These phosphorus compounds can be used alone or in combination of two or more.
  • the surface treatment method of the calcium carbonate particles is not particularly limited, and a conventionally known method can be employed.
  • a method physical mixing method in which the phosphorus compound and calcium carbonate particles are physically mixed.
  • the physical mixing method is not particularly limited.
  • various types of pulverizers such as a roll rolling mill, a high-speed rotary pulverizer, a ball mill, and a jet mill can be used to pulverize calcium carbonate while using a phosphorus compound.
  • Examples include a surface treatment method, or a container rotation type mixer in which the container itself rotates, a surface treatment method using a container fixed type mixer that has a rotating blade in a fixed container or blows an air flow, etc. it can.
  • a mixer such as a nauta mixer, a ribbon mixer, or a Henschel mixer is preferable.
  • the treatment conditions at that time are not particularly limited, and the treatment temperature is preferably 30 ° C. or higher, from the viewpoint of dispersibility of the calcium carbonate particles with respect to the polyester, generation of foreign matters during high-temperature residence of the polyester, and foaming, and further 50 C. or higher, particularly 90.degree. C. or higher is preferable.
  • the treatment time is preferably within 5 hours, more preferably within 3 hours, particularly preferably within 2 hours.
  • the phosphorus compound may be mixed simultaneously with the calcium carbonate particles, or the phosphorus compound may be added after the calcium carbonate particles are previously charged. At that time, the phosphorus compound may be dropped or sprayed, or may be dissolved or dispersed in water or alcohol.
  • the surface treatment of calcium carbonate can be performed by adding and blending a surface treatment agent for calcium carbonate particles to the polyester, and then adding calcium carbonate particles thereto.
  • the surface treatment agent can be added at any stage until the polyester is produced, that is, until the polymerization reaction is completed, or at the stage after the completion of the polymerization reaction until melt kneading.
  • the addition amount of the surface treatment agent in the surface treatment step may be an amount that sufficiently deactivates the Ca activity on the surface of the calcium carbonate particles.
  • the amount of the phosphorus element is 0.00 with respect to the mass of the calcium carbonate particles.
  • the amount is 1% by mass or more.
  • if too much is added a large amount of phosphorus compound remains in the film, which is not preferable from the viewpoint of the environment, and from the viewpoint that the calcium carbonate particles can be prevented from aggregating in the extruder or the like. 5 mass% or less is preferable, 2 mass% or less is more preferable, 1 mass% or less is more preferable, 0.5 mass% or less is especially preferable.
  • the reflective layer A contains an incompatible resin as a void forming agent.
  • Such an incompatible resin is not particularly limited as long as it is incompatible with the thermoplastic resin A constituting the reflective layer A.
  • the thermoplastic resin A is polyester
  • polyolefin resin such as polyethylene, polypropylene, polymethylpentene, cycloolefin resin, polystyrene resin, polyacrylate resin, polycarbonate resin, polyacrylonitrile resin, polyphenylene sulfide resin, fluorine resin Etc.
  • these may be used alone or in combination of two or more. Further, it may be a homopolymer or a copolymer.
  • the difference in critical surface tension between the thermoplastic resin A and the thermoplastic resin A is preferably polyester.
  • polyolefin resin is preferable.
  • the polyolefin resin include polyolefin resins such as polyethylene, polypropylene, and polymethylpentene, and copolymers thereof.
  • the glass transition temperature of the incompatible resin is preferably 180 ° C. or higher and 220 ° C. or lower, more preferably 190 ° C. or higher and 220 ° C. or lower.
  • the glass transition temperature is lower than 180 ° C.
  • voids developed during stretching are deformed in the heat treatment step in the film production process, causing void size non-uniformity, and coarse voids tend to be easily formed.
  • the improvement effect of bending suppression to become low.
  • the incompatible resin is not sufficiently melted, and it tends to be difficult to promote fine dispersion.
  • the method for controlling the glass transition temperature of the incompatible resin is, for example, a linear olefin part, such an olefin part is, for example, an ethylene part, and a cycloolefin part, such a cycloolefin part is, for example, a methylene-norbornene part. It can be arbitrarily changed by controlling the copolymerization ratio of, for example, to increase the glass transition temperature, it can be achieved by increasing the copolymerization ratio of the cycloolefin part.
  • Preferably used incompatible resins include TOPAS (registered trademark) COC series of Polyplastics, for example, grade 6017S-04.
  • the reflective layer A is made of the thermoplastic resin composition A1 containing calcium carbonate particles.
  • the content of the calcium carbonate particles in the thermoplastic resin composition A1 is such a thermoplastic resin composition A1. 10 mass% or more and 70 mass% or less based on the mass of Thereby, it becomes easy to set it as the preferable void volume ratio mentioned above, and it can be set as a high reflectance by it. Further, thermal deflection is suppressed. Furthermore, the effect of improving the stretch film forming property can be increased. If the content is too small, the reflectance will be low. On the other hand, when there is too much content rate, a void will increase too much and heat deflection cannot be suppressed. From these viewpoints, the content is preferably 15% by mass or more, more preferably 20% by mass or more, and preferably 60% by mass or less, more preferably 50% by mass or less.
  • the content of calcium carbonate particles in the thermoplastic resin composition A2 constituting the reflective layer A is 5% by mass or more and 69% by mass or less based on the mass of the thermoplastic resin composition A2.
  • the content is preferably 10% by mass or more, more preferably 15% by mass or more, and preferably 60% by mass or less, more preferably 50% by mass or less.
  • the content of the incompatible resin in the thermoplastic resin composition A2 constituting the reflective layer A is 1% by mass or more and 40% by mass or less based on the mass of the thermoplastic resin composition A2.
  • the preferred void volume ratio described above can be easily obtained while suppressing thermal deflection, thereby achieving a high reflectance.
  • the effect of improving the stretch film forming property can be increased. If the content is too small, the reflectance will be low. On the other hand, when there is too much content rate, a void will increase too much and heat deflection cannot be suppressed.
  • the content is preferably 5% by mass or more, more preferably 10% by mass or more, and preferably 35% by mass or less, more preferably 30% by mass or less.
  • the total content of the calcium carbonate particles and the incompatible resin in the thermoplastic resin composition A2 constituting the reflective layer A is 10% by mass or more based on the mass of the thermoplastic resin composition A2, 70% by mass or less.
  • the content is preferably 15% by mass or more, more preferably 20% by mass or more, and preferably 65% by mass or less, more preferably 60% by mass or less.
  • the reflective layer A which can be the thermoplastic resin composition A constituting the reflective layer A, is a component that does not impair the object of the present invention, such as an ultraviolet absorber, an antioxidant, and an antistatic agent. Agents, fluorescent brighteners, and waxes. Moreover, as long as the objective of this invention is not inhibited, void forming agents, such as particle
  • the white reflective film of this invention can have the support layer B which consists of the thermoplastic resin composition B which adds the particle
  • Such support layer B can improve the stretch film-forming property and further suppress the thermal deflection.
  • local deformation due to heat can be further suppressed by providing a support layer B having a composition with less voids or higher heat resistance as much as possible on the reflective layer A, and thermal deformation can be further suppressed. Can be further suppressed.
  • thermoplastic resin B As the thermoplastic resin B constituting the support layer B in the present invention, the same thermoplastic resin as the thermoplastic resin A constituting the reflective layer A described above can be used. Among these, polyester is preferable from the viewpoint of obtaining a white reflective film excellent in mechanical properties and thermal stability.
  • polyester the same polyester as the polyester in the reflection layer A described above can be used.
  • aromatic polyesters are preferable, and polyethylene terephthalate is particularly preferable from the viewpoint of obtaining a white reflective film excellent in mechanical properties and thermal stability.
  • Polyester and preferably polyethylene terephthalate may be a homopolymer. However, when the film is stretched uniaxially or biaxially, crystallization is suppressed, and the copolyester and Furthermore, copolymerized polyethylene terephthalate is preferable.
  • the copolymer component include the dicarboxylic acid component and the diol component described above in the section of the reflective layer A.
  • the isophthalic acid component, 2, A 6-naphthalenedicarboxylic acid component is preferred.
  • the content of the copolymerization component is, for example, 1 mol% or more, preferably 2 mol% or more, more preferably 3 mol% or more, particularly preferably 12 mol% or more, based on 100 mol% of all dicarboxylic acid components of the polyester. For example, it is 20 mol% or less, preferably 18 mol% or less, more preferably 17 mol% or less, and particularly preferably 16 mol% or less.
  • thermoplastic resin B preferably has a melting point of 190 ° C. or higher and 280 ° C. or lower. This makes it easier to suppress thermal deflection. If it is too low, the effect of suppressing heat deflection tends to be low, and if it is too high, handling tends to be difficult. From this viewpoint, it is more preferably 195 ° C. or higher, further preferably 200 ° C. or higher, more preferably 275 ° C. or lower, further preferably 270 ° C. or lower.
  • thermoplastic resin B which comprises the support layer B in this invention
  • the mixture of polyester which is a preferable thermoplastic resin, and another thermoplastic resin different from this polyester may be sufficient.
  • the support layer B may be composed of the thermoplastic resin composition B containing the optional component in the above-described thermoplastic resin B within a range not impairing the object of the present invention.
  • optional components include ultraviolet absorbers, antioxidants, antistatic agents, fluorescent brighteners, and waxes.
  • the support layer B may contain the void forming agent mentioned in the reflective layer A as an optional component as long as the object of the present invention is not impaired. Can be high.
  • the void volume ratio in the support layer B which is the ratio of the void volume in the support layer B to the volume of the support layer B, is 0% by volume or more and less than 15% by volume. Is preferable, more preferably 5% by volume or less, and particularly preferably 3% by volume or less.
  • the preferred void volume ratio in the reflective layer A and the preferred void volume ratio in the support layer B are simultaneously employed. It is particularly preferred.
  • the white reflective film of the present invention can have a surface layer C made of a thermoplastic resin composition C containing surface layer particles on at least one surface of the film.
  • a surface layer C can provide a function of imparting diffusibility to the reflected light, ensuring a gap with the light guide plate when in contact with the light guide plate, and suppressing damage to the light guide plate.
  • the surface layer C is on the reflective surface side in the film, and is on the light source side or the light guide plate side in the backlight unit.
  • the average particle diameter of the surface layer particles is 2.0 ⁇ m or more and 50.0 ⁇ m or less, and the content is 3 volumes with respect to the volume of the thermoplastic resin composition C. % Or more and 50% by volume or less.
  • protrusions are formed by the surface layer particles on the surface of the surface layer C and on the surface opposite to the reflective layer A.
  • the center line average roughness Ra is preferably in the range of 0.1 ⁇ m to 6.0 ⁇ m
  • the ten-point average roughness Rz is preferably in the range of 3.0 ⁇ m to 40.0 ⁇ m. Both Ra and Rz are preferably within such a range.
  • thermoplastic resin C As the thermoplastic resin C constituting the surface layer C in the present invention, the same thermoplastic resin as the thermoplastic resin A constituting the reflective layer A described above can be used. Among these, polyester is preferable from the viewpoint of obtaining a white reflective film excellent in mechanical properties and thermal stability.
  • polyester the same polyester as the polyester in the reflection layer A described above can be used.
  • aromatic polyesters are preferable, and polyethylene terephthalate is particularly preferable from the viewpoint of obtaining a white reflective film excellent in mechanical properties and thermal stability.
  • Polyester and preferably polyethylene terephthalate may be a homopolymer. However, when the film is stretched uniaxially or biaxially, crystallization is suppressed, and the copolyester and Furthermore, copolymerized polyethylene terephthalate is preferable.
  • the copolymer component include the dicarboxylic acid component and the diol component described above in the section of the reflective layer A.
  • the isophthalic acid component, 2, A 6-naphthalenedicarboxylic acid component is preferred.
  • the content of the copolymerization component is, for example, 1 mol% or more, preferably 2 mol% or more, more preferably 3 mol% or more, particularly preferably 12 mol% or more, based on 100 mol% of all dicarboxylic acid components of the polyester. For example, it is 20 mol% or less, preferably 18 mol% or less, more preferably 17 mol% or less, and particularly preferably 16 mol% or less.
  • the thermoplastic resin C preferably has a melting point of 225 ° C. or higher and 260 ° C. or lower. This makes it easier to suppress thermal deflection. If it is too low, the effect of suppressing heat deflection tends to be low, and if it is too high, handling tends to be difficult. From this viewpoint, it is more preferably 230 ° C. or higher, further preferably 235 ° C. or higher, more preferably 258 ° C. or lower, and further preferably 256 ° C. or lower.
  • thermoplastic resin C which comprises the surface layer C in this invention
  • the mixture of polyester which is a preferable thermoplastic resin, and another thermoplastic resin different from this polyester may be sufficient.
  • This aspect is suitable for a direct type backlight unit, and particularly suitable for a direct type backlight unit having a light source including a lens cap, and such a light source is preferably an LED light source.
  • the outer surface of the surface layer C preferably has an Ra of 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more, and 3.0 ⁇ m or less. It is preferable that the thickness is 2.7 ⁇ m or less.
  • Rz is preferably 3.0 ⁇ m or more, more preferably 4.0 ⁇ m or more, and preferably 15.0 ⁇ m or less, more preferably 13.0 ⁇ m or less.
  • Such a surface mode can be achieved by appropriately adjusting the surface particle diameter and content of the surface layer particles described later.
  • the surface layer particles used for the surface layer C preferably have an average particle size of 2.0 ⁇ m or more and 40.0 ⁇ m or less.
  • the diffusibility of reflected light becomes easy to improve. If the average particle size is too small, it tends to be difficult to form protrusions, and the diffusibility of reflected light tends to be small.
  • the average particle diameter of the surface layer particles is more preferably 2.5 ⁇ m or more, further preferably 3.0 ⁇ m or more, further preferably 3.5 ⁇ m or more, and particularly preferably 4.0 ⁇ m or more.
  • the filter or the like tends to be clogged when producing a film, and the surface layer particles tend to drop off from the surface layer C.
  • it is more preferably 35.0 ⁇ m or less, further preferably 30.0 ⁇ m or less, further preferably 25.0 ⁇ m or less, and particularly preferably 20.0 ⁇ m or less.
  • the content of the surface layer particles in the surface layer C is the surface layer C, that is, the thermoplastic resin composition C constituting the surface layer C. It is preferable that it is 3 volume% or more and 50 volume% or less on the basis of the volume of obtained.
  • the content is too small, the diffusibility of reflected light tends to be small.
  • the amount is too large, the filter tends to be clogged, and the surface layer particles tend to fall off.
  • the content is more preferably 5% by volume or more, further preferably 6% by volume or more, particularly preferably 10% by volume or more, more preferably 45% by volume or less, still more preferably 40% by volume.
  • it is more preferably 35% by volume or less, particularly preferably 30% by volume or less.
  • the surface layer particles used for the surface layer C in the present invention may be organic particles, inorganic particles, or organic-inorganic composite particles regardless of the type. More specifically, a particularly preferred embodiment will be described.
  • Preferred organic particles include, for example, fluorine-containing resin particles such as polytetrafluoroethylene, high heat-resistant nylon particles, and high heat-resistant acrylic particles.
  • Preferred inorganic particles include titanium oxide particles, barium sulfate, calcium carbonate, zinc oxide particles, zirconium oxide particles, aluminum oxide particles, silica particles, and the like.
  • aggregated particles are preferable, aggregated inorganic particles are preferable, and aggregated silica particles are particularly preferable.
  • preferable surface layer particles By adopting such preferable surface layer particles, more preferable diffusibility can be obtained. This is because, in the present invention, by employing aggregated particles as the surface layer particles of the surface layer C, light diffusion can be expected even in the aggregated particles, so that the diffusibility of reflected light can be further improved. Conceivable and preferred.
  • the use of aggregated particles also has the effect of further suppressing breakage failure at the time of film-forming stretching, and suppressing breakage failure during film production using self-collecting raw materials and influence on optical properties.
  • the above inorganic particles, high heat resistant nylon particles, and high heat resistant acrylic particles have an effect that they are hardly melted or gas generated even if they are heated. Furthermore, it is preferable from the viewpoint that the particle size distribution and the shape hardly change when the surface layer C is formed.
  • the outer surface of the surface layer C preferably has an Ra of 1.0 ⁇ m or more, more preferably 1.5 ⁇ m or more, and 6.0 ⁇ m or less. It is preferable that it is 5.5 ⁇ m or less.
  • Rz is preferably 6.0 ⁇ m or more, more preferably 6.5 ⁇ m or more, and preferably 40.0 ⁇ m or less, more preferably 35.0 ⁇ m or less.
  • Such a surface mode can be achieved by appropriately adjusting the surface particle diameter and content of the surface layer particles described later.
  • the surface layer particles used for the surface layer C preferably have an average particle size of 3.0 ⁇ m or more and 50.0 ⁇ m or less.
  • the average particle diameter of the surface layer particles is more preferably 3.5 ⁇ m or more, further preferably 4.0 ⁇ m or more, further preferably 4.5 ⁇ m or more, and particularly preferably 5.0 ⁇ m or more.
  • the filter tends to be clogged when the film is produced, and the surface layer particles are liable to fall off and the light guide plate is easily damaged.
  • it is more preferably 48.0 ⁇ m or less, further preferably 46.0 ⁇ m or less, further preferably 44.0 ⁇ m or less, and particularly preferably 42.0 ⁇ m or less.
  • the content of the surface layer particles in the surface layer C is the surface layer C, that is, the thermoplastic resin composition constituting the surface layer C. It is preferably 3% by volume or more and 50% by volume or less based on the volume of C.
  • the content is too small, it tends to be difficult to ensure a gap with the light guide plate and to suppress damage to the light guide plate.
  • the amount is too large, the filter tends to be clogged, and the surface layer particles tend to fall off.
  • the content is more preferably 5% by volume or more, further preferably 6% by volume or more, particularly preferably 10% by volume or more, more preferably 45% by volume or less, still more preferably 40% by volume.
  • it is more preferably 35% by volume or less, particularly preferably 30% by volume or less.
  • the surface layer particles used for the surface layer C in the present invention may be organic particles, inorganic particles, or organic-inorganic composite particles regardless of the type. More specifically, a particularly preferred embodiment will be described.
  • Preferred organic particles include, for example, fluorine-containing resin particles such as polytetrafluoroethylene, high heat-resistant nylon particles, and high heat-resistant acrylic particles.
  • an aggregated inorganic particle is preferable.
  • the aggregated inorganic particles include aggregated titanium oxide particles, aggregated barium sulfate particles, aggregated calcium carbonate particles, aggregated zinc oxide particles, aggregated zirconium oxide particles, aggregated aluminum oxide particles, and aggregated silica particles. Among these, agglomerated silica particles are preferable.
  • the effect of securing a gap with the light guide plate and suppressing damage to the light guide plate is excellent.
  • the surface layer particles become moderately soft, and the effect of suppressing damage to the light guide plate is further improved while ensuring a gap with the light guide plate. It is thought that it can be possible and is preferable.
  • the use of aggregated particles also has the effect of further suppressing breakage failure at the time of film-forming stretching, and suppressing breakage failure during film production using self-collecting raw materials and influence on optical properties.
  • the above inorganic particles, high heat resistant nylon particles, and high heat resistant acrylic particles have an effect that they are hardly melted or gas generated even if they are heated. Furthermore, it is preferable from the viewpoint that the particle size distribution and the shape hardly change when the surface layer C is formed.
  • the surface layer C may be composed of the thermoplastic resin composition C containing the optional components in the above-described thermoplastic resin C within a range not impairing the object of the present invention.
  • optional components include ultraviolet absorbers, antioxidants, antistatic agents, fluorescent brighteners, and waxes.
  • the surface layer C may contain the void forming agent mentioned in the reflective layer A as an optional component as long as the object of the present invention is not hindered. Can be high.
  • the void volume ratio in the surface layer C which is the ratio of the void volume in the surface layer C to the volume of the surface layer C, is 0% by volume or more and less than 15% by volume. Is preferable, more preferably 5% by volume or less, and particularly preferably 3% by volume or less.
  • the preferred void volume ratio in the reflective layer A and the preferred void volume ratio in the surface layer C are simultaneously employed. It is particularly preferred.
  • the thickness of the white reflective film is preferably 155 ⁇ m or more and 350 ⁇ m or less.
  • the thickness is the thickness of the reflective layer A when the white reflective film is composed of only the reflective layer A.
  • it is more preferably 160 ⁇ m or more, further preferably 170 ⁇ m or more, particularly preferably 180 ⁇ m or more, more preferably 340 ⁇ m or less, still more preferably 330 ⁇ m or less, particularly preferably 320 ⁇ m or less.
  • the thickness ratio of the reflective layer A when the thickness of the entire white reflective film is 100% is preferably 50% or more, more preferably 60% or more, and even more preferably 70% or more. More preferably it is 95% or less, and still more preferably 90% or less.
  • the thickness ratio is the ratio of the total thickness when a plurality of reflective layers A are provided.
  • the thickness ratio is preferably 5% or more, more preferably 10% or more, preferably 50% or less, more preferably 40% or less, and even more preferably 30% or less. It is.
  • the thickness ratio is the ratio of the total thickness when a plurality of support layers B are provided.
  • the thickness of the support layer B in the present invention is preferably 2 ⁇ m or more and 80 ⁇ m or less.
  • this thickness is the total thickness when the film has a plurality of support layers B.
  • stretching film forming property can be made high, and the suppression effect of heat deflection can be made high.
  • thermal shrinkage can be reduced.
  • the thickness (total thickness) of the support layer B is more preferably 5 ⁇ m or more, further preferably 10 ⁇ m or more, more preferably 70 ⁇ m or less, and further preferably 65 ⁇ m or less.
  • the thickness of the support layer B affects the reflectance. That is, when the thickness of the support layer B on the reflective surface side of the reflective layer A is too thick, the effect of improving the reflectance tends to be low. On the other hand, if it is too thin, the effect of suppressing the falling of calcium carbonate particles in the reflective layer A and the effect of suppressing the damage of the device and other members due to the calcium carbonate of the reflective layer A tend to be low.
  • the thickness of the support layer B is preferably 1 ⁇ m or more and 40 ⁇ m or less, more preferably 2.5 ⁇ m or more, further preferably 5 ⁇ m or more, more preferably 35 ⁇ m or less, and further preferably 32. 5 ⁇ m or less.
  • the thickness is the thickness of one layer of the support layer B.
  • the laminated structure is a two-layer structure of B / A when the reflective layer A is represented by A and the support layer B is represented by B, A / B / A three-layer structure of A and B / A / B, a four-layer structure of B / A / B / A and B / A / B ′ / A, and a multilayer structure of five or more layers having A and B similarly.
  • B ′ has the same configuration as that of the support layer B and represents a support layer B ′ having a different configuration.
  • a two-layer structure of B / A and a three-layer structure of A / B / A and B / A / B are particularly preferred.
  • it has a three-layer structure of B / A / B, and is excellent in stretch film forming properties.
  • problems such as curling are unlikely to occur.
  • a layer for providing functions such as antistatic property, electroconductivity, and ultraviolet durability.
  • a layer is preferably a coating layer.
  • a bead layer containing beads for imparting diffusibility to the reflected light or securing a gap with the light guide plate can be provided on at least one outermost surface on the reflective surface side.
  • the surface layer C is a preferred embodiment of the bead layer.
  • the thickness of the surface layer C in the present invention is preferably 5 ⁇ m or more and 70 ⁇ m or less.
  • the thickness is a thickness of one layer on the light source side or the light guide plate side when a plurality of surface layers C are included in the film.
  • the laminated structure is a two-layer structure of C / A when the reflective layer A is represented by A and the surface layer C is represented by C, C / A / Examples thereof include a three-layer structure of C, a four-layer structure of C / A / C / A and C / A / C ′ / A, and a multilayer structure of five or more layers having A and C.
  • C not on the surface represents an inner surface layer C having the same configuration as the surface layer C.
  • C ′ has the same configuration as the surface layer C and represents a surface layer C ′ having a different configuration.
  • a two-layer structure of C / A and a three-layer structure of C / A / C are particularly preferred.
  • it has a three-layer structure of C / A / C, and is excellent in stretch film formation. Further, when the front and back surface layers C are in the close thickness range, problems such as curling hardly occur.
  • the laminated structure is C / B / A or C / A / B 3 Layer structure, 4 layer structure of C / A / B / A and C / B / A / B, 5 layer structure of C / B / A / B / A and C / B / A / B '/ A, and the like
  • B ′ has the same configuration as that of the support layer B and represents a support layer B ′ having a different configuration.
  • the reflective layer A is preferably formed by a melt extrusion method.
  • the white reflective film has a laminated structure of the reflective layer A and the support layer B, or a laminated structure of the reflective layer A and the surface layer C, or the reflective layer A, the support layer B, and the surface layer C.
  • these layers are laminated by a coextrusion method.
  • the reflective layer A and the support layer B, or the reflective layer A and the surface layer C, or the reflective layer A, the support layer B, and the surface layer C are preferably directly laminated by a coextrusion method.
  • the present invention is not limited to this production method, and other embodiments can be similarly produced with reference to the following.
  • the following “melt extrusion temperature” may be read as, for example, “melt temperature”.
  • the melting point of the polyester used is Tm (unit: ° C)
  • the glass transition temperature is Tg (unit: ° C).
  • thermoplastic resin A constituting the reflective layer A and the thermoplastic resin B constituting the support layer B is adopted as the thermoplastic resin A constituting the reflective layer A and the thermoplastic resin B constituting the support layer B, and a coextrusion method is adopted as the laminating method.
  • the thermoplastic resin composition A for forming the reflective layer A which is also referred to as the polyester composition A when the polyester is used as the thermoplastic resin A, the polyester and calcium carbonate particles And when it contains incompatible resin, what mixed cycloolefin and another arbitrary component as incompatible resin is prepared.
  • a thermoplastic resin composition B for forming the support layer B which is also referred to as a polyester composition B when a polyester is employed as the thermoplastic resin B, is mixed with polyester and other optional components.
  • the thermoplastic resin B may be used without adding other optional components, and the thermoplastic resin B may be polyester, for example. These polyester compositions are used after drying to sufficiently remove moisture.
  • thermoplastic resin A constituting the reflective layer A and the thermoplastic resin C constituting the surface layer C is adopted as the thermoplastic resin A constituting the reflective layer A and the thermoplastic resin C constituting the surface layer C, and a coextrusion method is used as a laminating method.
  • a thermoplastic resin composition A for forming the reflective layer A which is also referred to as a polyester composition A when a polyester is used as the thermoplastic resin A, is polyester and carbonic acid.
  • a thermoplastic resin composition C for forming the surface layer C which is also referred to as a polyester composition C when polyester is used as the thermoplastic resin C, polyester, surface layer particles, and other Prepare a mixture of optional ingredients.
  • polyester compositions are used after drying to sufficiently remove moisture.
  • the melt extrusion temperature needs to be Tm or higher, and may be about Tm + 40 ° C.
  • the polyester composition used for the production of the film particularly the polyester composition A used for the reflective layer A, uses a nonwoven fabric type filter having an average opening of 10 ⁇ m or more and 100 ⁇ m or less made of stainless steel fine wires having a wire diameter of 15 ⁇ m or less. It is preferable to perform filtration. By performing this filtration, it is possible to suppress aggregation of particles that normally tend to aggregate into coarse aggregated particles, and to obtain a film with few coarse foreign matters. And by suppressing the aggregated particles, it becomes easier to form microvoids, and thermal deflection is further suppressed.
  • the average opening of the nonwoven fabric is preferably 15 ⁇ m or more, more preferably 20 ⁇ m or more, and preferably 50 ⁇ m or less, more preferably 40 ⁇ m or less.
  • the thermoplastic resin composition C is preferably 35 ⁇ m or more, more preferably 40 ⁇ m or more, and preferably 70 ⁇ m or less, more preferably 60 ⁇ m or less.
  • the filtered polyester composition is extruded in a multilayer state from a die by a simultaneous multilayer extrusion method using a feed block in a molten state, that is, a co-extrusion method, to produce an unstretched laminated sheet.
  • the unstretched laminated sheet extruded from the die is cooled and solidified with a casting drum to obtain an unstretched laminated film.
  • this unstretched laminated film is heated by roll heating, infrared heating or the like, and stretched in the film forming machine axial direction (hereinafter sometimes referred to as the longitudinal direction or the longitudinal direction or MD) to obtain a longitudinally stretched film.
  • This stretching is preferably performed by utilizing the difference in peripheral speed between two or more rolls.
  • the film after the longitudinal stretching is then guided to a tenter and stretched in a direction perpendicular to the longitudinal direction and the thickness direction (hereinafter sometimes referred to as a transverse direction or a width direction or TD) to be biaxially stretched.
  • a transverse direction or a width direction or TD thickness direction
  • the stretching temperature is preferably Tg or higher of the polyester, preferably Tg of the polyester constituting the reflective layer A and Tg + 30 ° C. or lower, and is excellent in stretch film-forming properties, and voids are preferably formed.
  • the stretching ratio is preferably 2.5 to 4.3 times, more preferably 2.7 to 4.2 times in both the longitudinal direction and the transverse direction. If the draw ratio is too low, uneven thickness of the film tends to be worsened, and voids tend not to be formed. On the other hand, if it is too high, breakage tends to occur during film formation.
  • the second stage that is, in this case, transverse stretching, is about 10 to 50 ° C. than the first stage stretching temperature. Higher is preferable. This is due to the fact that the Tg as a uniaxial film is increased due to the orientation in the first stage of stretching.
  • the pre-heat treatment for transverse stretching is preferably started from a temperature higher than Tg + 5 ° C. of polyester, which is preferably the polyester constituting the reflective layer A, and gradually raised.
  • the temperature increase in the transverse stretching process may be continuous or stepwise (also referred to as sequential), but the temperature is generally increased sequentially.
  • the transverse stretching zone of the tenter is divided into a plurality along the film running direction, and the temperature is raised by flowing a heating medium having a predetermined temperature for each zone.
  • the film after biaxial stretching is subsequently subjected to heat-fixing and heat-relaxing treatments in order to obtain a biaxially oriented film.
  • heat-fixing and heat-relaxing treatments in order to obtain a biaxially oriented film.
  • these treatments can also be performed while the film is running. it can.
  • the film after biaxial stretching is 0.01% with a constant width or a decrease in width of 10% or less with the melting point of the polyester being Tm (Tm-10 ° C) to (Tm-100 ° C) while holding both ends with clips. It is preferable to heat-fix for ⁇ 100 seconds to reduce heat shrinkage.
  • the melting point is preferably the melting point of the polyester constituting the reflective layer A.
  • both ends of the film being gripped can be cut off, the film take-up speed in the vertical direction can be adjusted, and the film can be relaxed in the vertical direction.
  • the speed of the roll group on the tenter exit side is adjusted.
  • the rate of relaxation the speed of the roll group is reduced with respect to the film line speed of the tenter, preferably 0.1 to 2.5%, more preferably 0.2 to 2.3%, particularly preferably 0.3.
  • Adjust the thermal shrinkage in the longitudinal direction by controlling the relaxation rate by relaxing the film by reducing the speed by ⁇ 2.0% (hereinafter this value may be referred to as "relaxation rate"). .
  • this value may be referred to as "relaxation rate").
  • this can further improve the effect of suppressing thermal deflection.
  • the width can be reduced in the process until both ends are cut off, and a desired heat shrinkage rate can be obtained.
  • a lateral-longitudinal sequential biaxial stretching method in addition to the above-described longitudinal-lateral sequential biaxial stretching method, a lateral-longitudinal sequential biaxial stretching method may be used. Moreover, it can form into a film using a simultaneous biaxial stretching method.
  • the stretching ratio is, for example, 2.7 to 4.3 times, preferably 2.8 to 4.2 times in both the longitudinal direction and the transverse direction.
  • the white reflective film of the present invention can be obtained.
  • the reflectance of the white reflective film of the present invention is 60% or more. Preferably it is 70% or more, more preferably 80% or more, still more preferably 90% or more, particularly preferably 95% or more, and most preferably 97% or more.
  • Such reflectivity is preferably a mode in which the void volume ratio of the reflective layer A is increased, the thickness of the reflective layer A is increased, or when the support layer B and the surface layer C are provided, voids are formed in these layers. This can be achieved by adding an agent, or by reducing the thickness of the support layer B or the surface layer C closer to the reflective surface than the reflective layer A, or by making the mode of each layer a preferred mode.
  • the front luminance is determined by a measuring method described below is preferably 2000 cd / m 2 or more, more preferably 3000 cd / m 2 or more, more preferably 4000 cd / m 2 or more, 4400cd / m 2 or more is particularly preferable.
  • a reflectance and front luminance are the values about the surface used as a reflective surface of a white reflective film.
  • the object of the present invention is to suppress thermal deflection.
  • heat deflection is caused by an electric circuit for driving a display device such as a liquid crystal display, heat generated from a backlight unit or a light source, or heat and humidity from a use environment. This is a phenomenon in which the white reflective film is bent or distorted. When heat deflection occurs in the white reflective film, it causes brightness spots, which directly leads to a decrease in image quality.
  • the white reflective film of the present invention is for a large display.
  • the large display means a liquid crystal display of 30 inches or more, preferably 32 inches or more, more preferably 40 inches or more, and further preferably 42 inches or more.
  • Such a large display is provided with a recess or partition for incorporating an electric circuit or the like into the back chassis. For this reason, the heat generated by the above-described causes or the like is locally retained in the depression, and thermal deflection is more likely to occur.
  • the size of the display increases, the number of light sources necessary to ensure the luminance increases, so that the circuit and the like are complicated, so that the accumulated heat increases and thermal deflection tends to occur more easily. For this reason, it has been difficult for the conventional technology to suppress thermal deflection in such a large display.
  • the present invention can satisfactorily suppress thermal deflection even in such a large display.
  • the particle size was measured using a laser scattering particle size distribution analyzer SALD-7000 manufactured by Shimadzu Corporation. Before the measurement, the dispersion in ethylene glycol was measured such that the particle powder was equivalent to a 5% by mass slurry concentration, stirred with a mixer for 10 minutes, cooled to room temperature, and then supplied to a flow cell type supply device.
  • the mixer for example, National MXV253 type cooking mixer is used. Then, the sample was subjected to ultrasonic treatment for 30 seconds for defoaming in the supply device and then subjected to measurement.
  • strength of the ultrasonic wave in this ultrasonic processing set the knob of the ultrasonic processing apparatus to the position of 60% from the position which shows a MAX value.
  • the 50% volume particle size (D50) was determined from the particle size distribution measurement result, and this was used as the average particle size.
  • 10% volume particle size (D10) and 90% volume particle size (D90) were determined.
  • the peak area intensity of absorption peculiar to each component is obtained, and the molar ratio of the blend is calculated from the ratio and the number of protons. Further, the mass ratio is calculated from the formula amount corresponding to the unit unit of the polymer. Thus, the mass fraction and structure of each component were specified.
  • the content of the particles in each layer in the laminate was determined by performing the above operation after separating each layer.
  • Void volume fraction 100 ⁇ (1 ⁇ (actual density / calculated density))
  • the density of isophthalic acid copolymerized polyethylene terephthalate after biaxial stretching is 1.39 g / cm 3
  • the density of calcium carbonate particles is 2.7 g / cm 3
  • the density of barium sulfate particles is 4.5 g / cm 3
  • the volume was calculated as an area ⁇ thickness by taking an average value obtained by cutting a sample into an area of 3 cm 2 and measuring the thickness at that point with an electric micrometer (K-402B manufactured by Anritsu) at 10 points. The mass was weighed with an electronic balance.
  • the value of bulk specific gravity obtained by the following graduated cylinder method was used as the specific gravity of other particles including aggregated particles. Fill a 1000 ml measuring cylinder with completely dry particles, measure the total weight, subtract the weight of the measuring cylinder from the total weight to obtain the weight of the particle, and measure the volume of the measuring cylinder. , By dividing the weight (g) of the particles by the volume (cm 3 ).
  • Front brightness (7-1) Front brightness 1 The reflective film was taken out from the edge light type LED liquid crystal television (LG42LE5310AKR) (42 inches) manufactured by LG, and instead the various reflective films obtained in the examples were installed so that the reflective surface side was the screen side.
  • the luminance was measured using a luminance meter (Model MC-940 manufactured by Otsuka Electronics Co., Ltd.) in the state of the backlight unit with the diffusion film and prism sheet provided.
  • the reflective film is taken out from the LG LED liquid crystal television (LG LN5400) (42 inches) manufactured by LG, and instead the various reflective films obtained in the examples are installed so that the reflective surface side is the screen side, Luminance was measured using a luminance meter (Model MC-940, manufactured by Otsuka Electronics Co., Ltd.) in the state of a backlight unit with the diffusion film and prism sheet originally provided.
  • LG LED liquid crystal television LG LED liquid crystal television (LG LN5400) (42 inches) manufactured by LG, and instead the various reflective films obtained in the examples are installed so that the reflective surface side is the screen side
  • Luminance was measured using a luminance meter (Model MC-940, manufactured by Otsuka Electronics Co., Ltd.) in the state of a backlight unit with the diffusion film and prism sheet originally provided.
  • Stretching film forming property The film forming stability when the film described in the example was formed by a continuous film forming method using a tenter was observed and evaluated according to the following criteria.
  • Luminance spot evaluation 1 Luminance spots were visually determined and evaluated according to the following criteria: ⁇ : No brightness spots were observed. ⁇ : Luminance spots are barely recognized. X: A remarkable brightness spot is seen.
  • Luminance spot evaluation 2 Luminance meter (CA-2000 manufactured by Konica Minolta Co., Ltd.) averaged the luminance of 10 arbitrary points in the screen, and evaluated the value of [(maximum luminance ⁇ lowest luminance) / average luminance] in the screen.
  • the above-mentioned value is 5% or less, it can be determined that there is little luminance unevenness due to thermal deflection and that the state is good.
  • it is 4% or less, More preferably, it is 3% or less.
  • the chassis is taken out from an LED liquid crystal television (LG42LE5310AKR) manufactured by LG, placed on a horizontal desk so that the inside of the television is facing upward, and a reflective film of approximately the same size as the chassis is placed thereon. Is placed so that the surface layer surface is facing upward, and further on that, the light guide plate and three optical sheets originally provided in the television, the three optical sheets are two diffusion films and one prism, Placed. Next, an equilateral triangular base having three columnar legs with a diameter of 5 mm as shown in FIG. 1 is placed in the area including the most severely uneven portion of the chassis in the plane, and a weight of 15 kg is further placed thereon.
  • LG42LE5310AKR LED liquid crystal television
  • the region surrounded by the three legs was visually observed, and if there was no abnormally bright part, “no adhesion spots”, that is, evaluation “ ⁇ ” was given. If there is an abnormally bright part, place the DBEF sheet originally provided on the television on top of the three optical sheets and observe it in the same manner. “Spots”, ie, evaluation ⁇ , and when there were no abnormally bright parts, “there was almost no adhesion spots”, ie, evaluation ⁇ .
  • the area surrounded by the three legs was a substantially equilateral triangle having a side length of 10 cm.
  • ⁇ Production Example 1 Synthesis of isophthalic acid copolymerized polyethylene terephthalate 1> 136.5 parts by mass of dimethyl terephthalate and 13.5 parts by mass of dimethyl isophthalate, that is, the isophthalic acid component is 9 mol% with respect to 100 mol% of the total acid component of the obtained polyester, 98 parts by mass of ethylene glycol, diethylene glycol 1 0.0 part by mass, 0.05 part by mass of manganese acetate, and 0.012 part by mass of lithium acetate were charged into a flask equipped with a rectifying column and a distillation condenser, and heated to 150 to 240 ° C. with stirring to distill methanol. A transesterification reaction was performed.
  • ⁇ Production Example 2 Synthesis of isophthalic acid copolymerized polyethylene terephthalate 2> Except for the change to 129.0 parts by weight of dimethyl terephthalate and 21.0 parts by weight of dimethyl isophthalate, that is, the isophthalic acid component is 14 mole% with respect to 100 mole% of the total acid component of the polyester obtained, In the same manner as in Example 1, isophthalic acid copolymerized polyethylene terephthalate 2 was obtained. The melting point of this polymer was 215 ° C.
  • ⁇ Production Example 3 Preparation of particle master chip 1> Using a part of the isophthalic acid copolymerized polyethylene terephthalate 1 obtained above and synthetic calcium carbonate particles having an average particle size of 0.9 ⁇ m and (D90-D10) / D50 of 1.4 as a void forming agent, Kobe Steel In a NEX-T60 tandem type extruder manufactured by the company, mixing is performed so that the content of the synthetic calcium carbonate particles is 60% by mass with respect to the mass of the obtained master chip, and the mixture is extruded at a resin temperature of 260 ° C. A particle-containing particle master chip 1 was prepared. The synthetic calcium carbonate particles are surface-treated with phosphoric acid trimethyl ester.
  • ⁇ Production Example 4 Preparation of particle master chip 2> A particle master chip 2 containing synthetic calcium carbonate particles was prepared in the same manner as in Production Example 3 except that the isophthalic acid copolymerized polyethylene terephthalate 2 obtained above was used instead of the isophthalic acid copolymerized polyethylene terephthalate 1.
  • ⁇ Production Example 5 Creation of particle master chip 3> To the isophthalic acid copolymerized polyethylene terephthalate 2 obtained above, as particles A, AY-601 manufactured by Tosoh Silica Co., Ltd., which is an agglomerated silica, was subjected to air classification to obtain particles having an average particle size of 6.5 ⁇ m. The mixture was mixed by a twin screw extruder so that the concentration in the obtained particle master chip was 8% by mass, and extruded at a melting temperature of 250 ° C. to prepare a particle master chip 3.
  • ⁇ Production Example 6 Creation of particle 1 used for bead layer> 150 parts by mass of dimethyl terephthalate, 98 parts by mass of ethylene glycol, 1.0 part by mass of diethylene glycol, 0.05 part by mass of manganese acetate, 0.012 part by mass of lithium acetate were charged into a rectifying column and a flask equipped with a distillation condenser. While stirring, the mixture was heated to 150 to 240 ° C. to distill methanol to conduct a transesterification reaction. After methanol was distilled, 0.03 parts by mass of trimethyl phosphate and 0.04 parts by mass of germanium dioxide were added, and the reaction product was transferred to the reactor.
  • the pressure in the reactor was gradually reduced to 0.3 mmHg while stirring, and the temperature was raised to 292 ° C. to carry out a polycondensation reaction, whereby polyethylene terephthalate 3 was obtained.
  • the obtained polyethylene terephthalate 3 was extruded from a strand die and cut after cooling to form a pellet.
  • the shape of the pellet was substantially a rectangular parallelepiped shape, and the average shape was 4 mm ⁇ 3 mm ⁇ 2 mm.
  • the obtained pellets were dried and crystallized by heating in an oven at 170 ° C.
  • Polyester particles having a particle size of 60 ⁇ m were obtained. Further, the polyester particles were subjected to air classification to obtain particles 1 having an average particle size of 43 ⁇ m, which are non-spherical particles.
  • Example 1-1 Manufacture of white reflective film
  • the isophthalic acid copolymerized polyethylene terephthalate 1 and the particle master chip 1 obtained above were used as the raw material for the reflective layer (A layer), and the isophthalic acid copolymerized polyethylene terephthalate 2 and the particle master chip 2 were used as the support layer (B layer). )) And mixed so that each layer has the structure described in Table 1, and put into an extruder.
  • Layer A is melt-extruded at a temperature of 255 ° C. through a nonwoven fabric type filter having an average opening of 30 ⁇ m.
  • the layer B has a layer constitution of layer B / layer A / layer B as shown in Table 1 at a melt extrusion temperature of 230 ° C. through a nonwoven fabric type filter having an average opening of 30 ⁇ m.
  • the sheet was merged and formed into a sheet from a die while maintaining the laminated state. At this time, it adjusted with the discharge amount of each extruder so that the thickness ratio of B layer / A layer / B layer might become 10/80/10 after biaxial stretching. Further, this sheet was an unstretched film cooled and solidified with a cooling drum having a surface temperature of 25 ° C. This unstretched film is led to a longitudinal stretching zone maintained at 92 ° C.
  • the width of the film was then cut, and both ends of the film were cut off, heat relaxed at a longitudinal relaxation rate of 2.5%, and cooled to room temperature to obtain a film having a thickness of 300 ⁇ m.
  • the evaluation results of the obtained film are shown in Table 1.
  • Examples 1-2 to 1-9, 1-11, Comparative Examples 1-1 to 1-6 A white reflective film was obtained in the same manner as in Example 1-1 except that the form of the particles and the composition of the film were as shown in Table 1. The evaluation results of the obtained film are shown in Table 1.
  • the used synthetic calcium carbonate particles are surface-treated with trimethyl phosphate.
  • Example 1-11 the total thickness of the film was 188 ⁇ m.
  • a particle master chip was prepared in the same manner as in Production Examples 3 and 4 except that barium sulfate particles having an average particle size of 0.9 ⁇ m and (D90-D10) / D50 of 1.4 were used instead of calcium carbonate particles as a void forming agent.
  • a white reflective film was obtained in the same manner as in Example 1-1 except that the film configuration was as shown in Table 1. The evaluation results of the obtained film are shown in Table 1. Such barium sulfate particles were obtained by repeating air classification.
  • Example 1-10 On one side of the biaxially stretched film obtained in the same manner as in Example 1-1, a coating liquid having the composition shown in Coating liquid 1 for forming the following bead layer with a direct gravure coating apparatus, After apply
  • the evaluation results of the obtained film are shown in Table 1. In the evaluation, the bead layer side was used as the reflecting surface.
  • Example 2-1 Manufacture of white reflective film
  • the A layer is melt-extruded through a non-woven filter having an average opening of 30 ⁇ m at a melt extrusion temperature of 255 ° C.
  • the B layer is passed through a non-woven filter having an average opening of 30 ⁇ m at a melt-extruding temperature of 230 ° C.
  • this sheet was an unstretched film cooled and solidified with a cooling drum having a surface temperature of 25 ° C.
  • This unstretched film is led to a longitudinal stretching zone maintained at 92 ° C. through a preheating zone at 73 ° C., followed by a preheating zone at 75 ° C., stretched 3.0 times in the longitudinal direction, and cooled by a roll group at 25 ° C. did.
  • the film was led to a transverse stretching zone maintained at 130 ° C. through a preheating zone at 115 ° C. and stretched 3.6 times in the transverse direction.
  • heat treatment at 155 ° C. for 10 seconds, heat setting at 200 ° C.
  • Example 2-2 to 2-17 Comparative examples 2-1 to 2-6
  • a white reflective film was obtained in the same manner as in Example 2-1, except that the aspect of the particles and the incompatible resin and the configuration of the film were as shown in Table 2.
  • the evaluation results of the obtained film are shown in Table 2.
  • the used synthetic calcium carbonate particles are surface-treated with trimethyl phosphate.
  • Example 2-17 the total thickness of the film was 188 ⁇ m.
  • Example 2-18 On one side of the biaxially stretched film obtained in the same manner as in Example 2-1, a coating liquid having the composition shown in the coating liquid 1 for forming the above-described bead layer was formed using a direct gravure coating apparatus. After apply
  • a particle master chip was prepared in the same manner as in Production Examples 3 and 4 except that barium sulfate particles having an average particle size of 0.9 ⁇ m and (D90-D10) / D50 of 1.4 were used instead of calcium carbonate particles as a void forming agent.
  • a white reflective film was obtained in the same manner as in Example 2-1, except that the composition of the film was as shown in Table 2. The evaluation results of the obtained film are shown in Table 2. Such barium sulfate particles were obtained by repeating air classification.
  • Example 3-1 Manufacture of white reflective film
  • the isophthalic acid copolymerized polyethylene terephthalate 1 and particle master chip 1 obtained above were used as the raw material for the reflective layer (A layer), and the isophthalic acid copolymerized polyethylene terephthalate 2 and particle master chip 3 were used as the surface layer (C layer). )) And mixed so that each layer has the structure described in Table 3, and put into an extruder.
  • Layer A is melt extruded through a nonwoven fabric type filter having an average aperture of 30 ⁇ m at a temperature of 255 ° C.
  • the C layer is passed through a nonwoven fabric type filter having an average opening of 50 ⁇ m at a melt extrusion temperature of 230 ° C., using a three layer feed block device so as to have a layer configuration of C layer / A layer / C layer as shown in Table 3.
  • the sheet was merged and formed into a sheet from a die while maintaining the laminated state. At this time, it adjusted with the discharge amount of each extruder so that the thickness ratio of C layer / A layer / C layer might become 10/80/10 after biaxial stretching. Further, this sheet was an unstretched film cooled and solidified with a cooling drum having a surface temperature of 25 ° C. This unstretched film is led to a longitudinal stretching zone maintained at 92 ° C.
  • the width of the film was then cut, and both ends of the film were cut off, heat relaxed at a longitudinal relaxation rate of 2.5%, and cooled to room temperature to obtain a film having a thickness of 300 ⁇ m.
  • the evaluation results of the obtained film are shown in Table 3.
  • Examples 3-2 to 3-15, Comparative examples 3-1 to 3-10 A white reflective film was obtained in the same manner as in Example 3-1, except that the form of the particles and the composition of the film were as shown in Table 3. The evaluation results of the obtained film are shown in Table 3.
  • the used synthetic calcium carbonate particles are surface-treated with trimethyl phosphate.
  • Example 3-10 the total thickness of the film was 188 ⁇ m.
  • grain used for the surface layer C is shown below. It was used as a particle master chip in the same manner as in Production Example 5.
  • a particle master chip was prepared in the same manner as in Production Example 3 except that barium sulfate particles having an average particle size of 0.9 ⁇ m and (D90-D10) / D50 of 1.4 were used instead of calcium carbonate particles as a void forming agent.
  • a white reflective film was obtained in the same manner as in Example 3-1, except that the composition of the film was as shown in Table 3. The evaluation results of the obtained film are shown in Table 3. Such barium sulfate particles were obtained by repeating air classification.
  • the white reflective film of the present invention suppresses heat deflection caused by heat generated from an electric circuit or a light source, heat from the use environment, or humidity even when used in a large display while having excellent reflection characteristics. be able to. Thereby, since the brightness spot which arises when a white reflective film bends can be suppressed, industrial applicability is high.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laminated Bodies (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

The present invention addresses the problem of providing a white-reflecting film that resists deflecting under heat while having exceptional reflection characteristics. The problem is overcome by a white-reflecting film that has a reflective layer A, wherein the white-reflecting film satisfies either condition (a) or condition (b) that the reflective layer A (a) comprises a thermoplastic resin composition A1 containing calcium carbonate particles in a thermoplastic resin A, the content of the calcium carbonate particles being 10─70% by mass with respect to the mass of the thermoplastic resin composition A1, or (b) comprises a thermoplastic resin composition A2 containing calcium carbonate particles in the thermoplastic resin A, and a resin that is incompatible with the thermoplastic resin A, the content of the calcium carbonate particles being 5─69% by mass with respect to the mass of the thermoplastic resin composition A2, the content of the incompatible resin being 1─40% by mass with respect to the mass of the thermoplastic resin composition A2, and the combined content of the calcium carbonate particles and the incompatible resin being 10─70% by mass with respect to the mass of the thermoplastic resin composition A2. The calcium carbonate particles have an average grain size of 0.1─1.2 μm. The relationship (D90 ‒ D10)/D50 ≤ 1.6 is satisfied, where D10, D50, and D90 are the 10%-, 50%-, and 90%-volume grain sizes, respectively, integrated from the small grain size side. The white-reflecting film has a reflectivity of at least 60%.

Description

大型ディスプレイ用白色反射フィルムWhite reflective film for large displays
 本発明は、反射板として好適に用いることのできる大型ディスプレイ用白色反射フィルムに関する。 The present invention relates to a white reflective film for large displays that can be suitably used as a reflector.
 面光源は、背面に反射板を配し、かかる反射板によって光源からの光を前面に反射させて光の取り出し効率を高め、輝度を向上している。 The surface light source is provided with a reflector on the back, and the light from the light source is reflected to the front by the reflector to improve the light extraction efficiency and improve the brightness.
 例えば、液晶表示装置(以下、LCDという場合がある。)のバックライトユニットでは、液晶表示パネルの背面に光源および反射フィルムを備える直下型と、液晶表示パネルの背面に、背面に反射板を備えた導光板を配し、かかる導光板の側面に光源を備えるエッジライト型とがある。光源としては、従来はCCFLがよく用いられていたが、近年は少電力化や薄型化のために発光ダイオード(以下、LEDという場合がある。)が用いられ、エッジライト型LEDバックライトや直下型LEDバックライトが主流である。エッジライト型バックライトは、LCDをより薄型化できるメリットがあり、他方直下型LEDバックライトは、導光板を用いない点で低コストである。 For example, in a backlight unit of a liquid crystal display device (hereinafter sometimes referred to as LCD), a direct type including a light source and a reflective film on the back surface of the liquid crystal display panel, and a reflective plate on the back surface of the liquid crystal display panel. There is an edge light type in which a light guide plate is provided and a light source is provided on a side surface of the light guide plate. As a light source, a CCFL has been often used in the past, but in recent years, a light emitting diode (hereinafter sometimes referred to as an LED) is used to reduce power consumption and thickness, and an edge light type LED backlight or a direct light source is used. Type LED backlights are the mainstream. The edge light type backlight has an advantage that the LCD can be made thinner, while the direct type LED backlight is low in cost because it does not use a light guide plate.
 面光源は、他にも屋内外を明るくするための照明用としても用いられている。 Surface light sources are also used for lighting to brighten indoors and outdoors.
 反射板としては、例えばポリエステル等の熱可塑性樹脂に無機粒子や非相溶樹脂を添加し、それを延伸製膜することで内部にボイドを形成したボイド含有フィルムがよく用いられている(特許文献1~5)。 As the reflector, for example, a void-containing film in which voids are formed inside by adding inorganic particles or an incompatible resin to a thermoplastic resin such as polyester and stretching it (Patent Literature). 1-5).
 しかしながらこのような反射板は、光源や外部環境からの熱や湿度により変形して撓んでしまう場合がある(以下、かかる撓みを「熱撓み」と呼称する場合がある。)。反射板が撓んでしまうと面光源の輝度斑となり、例えばLCDにおいては画面の明るさ斑となる。 However, such a reflector may be deformed and bent due to heat or humidity from the light source or the external environment (hereinafter, such a bend may be referred to as “heat bend”). If the reflector is bent, it becomes a luminance spot of a surface light source, and for example, an LCD brightness spot.
 そこでかかる熱撓みの問題を解決すべく、特許文献6では粒子による凹凸面の上に金属層を形成した反射面とすることで、撓んでも輝度斑になり難くする思想が提唱されている。また、LCDの底面部材に突起部を形成して反射板を支持したり(特許文献7)、反射板に撓みを吸収するスリットを入れたり(特許文献8)することで、反射板の撓みを改善する検討がなされている。しかしながらこれらの加工はいずれもコストのかかることである。
特開2004-330727号公報 特開2011-11370号公報 特開2011-232369号公報 特開2013-88715号公報 特開2013-88716号公報 特開2002-100227号公報 特開2013-229185号公報 特開2014-22060号公報
Therefore, in order to solve the problem of such thermal deflection, Patent Document 6 proposes a concept of making a reflective surface in which a metal layer is formed on an uneven surface made of particles, so that it does not easily become a luminance spot even if it is bent. In addition, a protrusion is formed on the bottom surface member of the LCD to support the reflector (Patent Document 7), or a slit that absorbs the deflection is inserted into the reflector (Patent Document 8), thereby bending the reflector. Consideration for improvement has been made. However, both of these processes are expensive.
JP 2004-330727 A JP 2011-11370 A JP 2011-232369 A JP 2013-88715 A JP2013-88716A JP 2002-100227 A JP 2013-229185 A Japanese Unexamined Patent Publication No. 2014-22060
 大型のディスプレイは、バックシャーシに回路基板等を備えるために、窪みを有している。本発明者らは、かかる窪みに熱が滞留しやすく、かかる熱によって熱撓みの問題がさらに顕著になることを見出し、これに着目した。 A large display has a recess to provide a circuit board or the like on the back chassis. The present inventors have found out that heat tends to stay in such a depression, and the heat deflection problem becomes more noticeable due to such heat, and have focused on this.
 上記背景技術に鑑み、本発明は、優れた反射特性を有しながら、大型のディスプレイに用いたとしても熱撓みし難い白色反射フィルムを提供することを課題とする。 In view of the above-described background art, an object of the present invention is to provide a white reflective film that has excellent reflection characteristics and is difficult to bend even when used in a large display.
 本発明者らは、ボイド含有フィルムにおけるボイドの存在が、熱撓みをより生じ易くしていることに着目した。しかしながら、単にボイドを低減させることは、反射特性が低減する方向であり好ましくない。また、ボイド形成剤としての無機粒子の重さによっても、それが重いと熱撓みが生じ易くなることに着目した。 The inventors of the present invention have focused on the fact that the presence of voids in the void-containing film makes it easier for heat deflection to occur. However, simply reducing the void is not preferable because it is in the direction of reducing the reflection characteristics. In addition, the inventors focused on the fact that heat distortion tends to occur when the inorganic particles as the void forming agent are heavy.
 すなわち本発明は、上記課題を達成するために、以下の構成を採用するものである。
1.反射層Aを有する白色反射フィルムであって、
 前記反射層Aが、
a.熱可塑性樹脂Aに炭酸カルシウム粒子を含有する熱可塑性樹脂組成物A1からなり、該炭酸カルシウム粒子の含有量が前記熱可塑性樹脂組成物A1の質量に対して10質量%以上、70質量%以下である、
あるいは、
b.熱可塑性樹脂Aに炭酸カルシウム粒子および該熱可塑性樹脂Aに非相溶な樹脂を含有する熱可塑性樹脂組成物A2からなり、該炭酸カルシウム粒子の含有量が前記熱可塑性樹脂組成物A2の質量に対して5質量%以上、69質量%以下であり、該非相溶な樹脂の含有量が前記熱可塑性樹脂組成物A2の質量に対して1質量%以上、40質量%以下であり、前記炭酸カルシウム粒子と前記非相溶な樹脂の含有量の合計が前記熱可塑性樹脂組成物A2の質量に対して10質量%以上、70質量%以下である、のa、bいずれかを満足し、
 前記炭酸カルシウム粒子は、平均粒径が0.1μm以上、1.2μm以下であり、小粒径側から積算した10%体積粒径D10、50%体積粒径D50および90%体積粒径D90が(D90-D10)/D50≦1.6を満たし、
 フィルムの反射率が60%以上である、大型ディスプレイ用白色反射フィルム。
2.上記反射層Aが、a.熱可塑性樹脂Aに炭酸カルシウム粒子を含有する熱可塑性樹脂組成物A1からなり、該炭酸カルシウム粒子の含有量が前記熱可塑性樹脂組成物A1の質量に対して10質量%以上、70質量%以下である、上記1に記載の白色反射フィルム。
3.上記反射層Aが、b.熱可塑性樹脂Aに炭酸カルシウム粒子および該熱可塑性樹脂Aに非相溶な樹脂を含有する熱可塑性樹脂組成物A2からなり、該炭酸カルシウム粒子の含有量が前記熱可塑性樹脂組成物A2の質量に対して5質量%以上、69質量%以下であり、該非相溶な樹脂の含有量が前記熱可塑性樹脂組成物A2の質量に対して1質量%以上、40質量%以下であり、前記炭酸カルシウム粒子と前記非相溶な樹脂の含有量の合計が前記熱可塑性樹脂組成物A2の質量に対して10質量%以上、70質量%以下である、上記1に記載の白色反射フィルム。
4.上記反射層Aと、さらに少なくとも一方の表面に表面層Cを有し、
 前記表面層Cは、表面層粒子を含有する熱可塑性樹脂組成物Cからなり、該表面層粒子は、平均粒径が2.0μm以上、50.0μm以下であり、含有量が該熱可塑性樹脂組成物Cの体積に対して3体積%以上、50体積%以下である、上記1~3のいずれか1に記載の大型ディスプレイ用白色反射フィルム。
5.上記熱可塑性樹脂Aが、共重合ポリエチレンテレフタレートである、上記1~4のいずれか1に記載の白色反射フィルム。
6.上記共重合ポリエチレンテレフタレートの共重合量が、該共重合ポリエチレンテレフタレートの全酸成分100モル%に対して1モル%以上、20モル%以下である、上記5に記載の白色反射フィルム。
7.白色反射フィルムの厚み100%に対する上記反射層Aの厚み比率が50%以上である、上記1~6のいずれか1に記載の白色反射フィルム。
8.さらに熱可塑性樹脂Bまたは熱可塑性樹脂組成物Bからなる支持層Bを有する、上記1~7のいずれか1に記載の白色反射フィルム。
9.上記1~8のいずれか1に記載の白色反射フィルムを用いた、面光源。
That is, the present invention employs the following configuration in order to achieve the above-described problems.
1. A white reflective film having a reflective layer A,
The reflective layer A is
a. The thermoplastic resin A is composed of a thermoplastic resin composition A1 containing calcium carbonate particles, and the content of the calcium carbonate particles is 10% by mass or more and 70% by mass or less with respect to the mass of the thermoplastic resin composition A1. is there,
Or
b. The thermoplastic resin A comprises a thermoplastic resin composition A2 containing calcium carbonate particles and a resin incompatible with the thermoplastic resin A, and the content of the calcium carbonate particles is in the mass of the thermoplastic resin composition A2. The content of the incompatible resin is 5% by mass to 69% by mass with respect to the mass of the thermoplastic resin composition A2, and the calcium carbonate is 1% by mass to 40% by mass. Satisfying either a or b in which the total content of the particles and the incompatible resin is 10% by mass or more and 70% by mass or less with respect to the mass of the thermoplastic resin composition A2,
The calcium carbonate particles have an average particle diameter of 0.1 μm or more and 1.2 μm or less, and 10% volume particle diameter D10, 50% volume particle diameter D50 and 90% volume particle diameter D90 accumulated from the small particle diameter side are (D90−D10) /D50≦1.6 is satisfied,
A white reflective film for large displays, wherein the reflectance of the film is 60% or more.
2. The reflective layer A has a. The thermoplastic resin A is composed of a thermoplastic resin composition A1 containing calcium carbonate particles, and the content of the calcium carbonate particles is 10% by mass or more and 70% by mass or less with respect to the mass of the thermoplastic resin composition A1. The white reflective film as described in 1 above.
3. The reflective layer A is b. The thermoplastic resin A comprises a thermoplastic resin composition A2 containing calcium carbonate particles and a resin incompatible with the thermoplastic resin A, and the content of the calcium carbonate particles is in the mass of the thermoplastic resin composition A2. The content of the incompatible resin is 5% by mass to 69% by mass with respect to the mass of the thermoplastic resin composition A2, and the calcium carbonate is 1% by mass to 40% by mass. 2. The white reflective film as described in 1 above, wherein the total content of the particles and the incompatible resin is 10% by mass or more and 70% by mass or less with respect to the mass of the thermoplastic resin composition A2.
4). The reflective layer A, and further has a surface layer C on at least one surface,
The surface layer C is composed of a thermoplastic resin composition C containing surface layer particles, and the surface layer particles have an average particle size of 2.0 μm or more and 50.0 μm or less, and the content thereof is the thermoplastic resin. 4. The white reflective film for large displays according to any one of 1 to 3 above, which is 3% by volume to 50% by volume with respect to the volume of the composition C.
5). 5. The white reflective film as described in any one of 1 to 4 above, wherein the thermoplastic resin A is copolymerized polyethylene terephthalate.
6). 6. The white reflective film as described in 5 above, wherein the copolymerized polyethylene terephthalate has a copolymerization amount of 1 mol% or more and 20 mol% or less with respect to 100 mol% of the total acid component of the copolymer polyethylene terephthalate.
7). 7. The white reflective film as described in any one of 1 to 6 above, wherein the thickness ratio of the reflective layer A with respect to 100% of the thickness of the white reflective film is 50% or more.
8). 8. The white reflective film as described in any one of 1 to 7 above, further comprising a support layer B made of the thermoplastic resin B or the thermoplastic resin composition B.
9. A surface light source using the white reflective film described in any one of 1 to 8 above.
 これに対して特許文献1は、粒度分布の標準偏差の小さな硫酸バリウムを用いており、硫酸バリウムは比重が重いため熱撓みが生じ易い態様である。また、特許文献2~5は、炭酸カルシウム粒子を用い、その90%体積粒径D90と10%体積粒径D10との比D90/D10について開示があるものの、実際には本発明のように狭い粒度分布の領域までは検討がなされていない。さらにいずれも熱撓みの課題について認識がなく、そのような観点での検討はなされていない。 On the other hand, Patent Document 1 uses barium sulfate having a small standard deviation of the particle size distribution, and barium sulfate has a heavy specific gravity and thus is susceptible to thermal deflection. Patent Documents 2 to 5 use calcium carbonate particles and disclose the ratio D90 / D10 between the 90% volume particle diameter D90 and the 10% volume particle diameter D10, but in fact, as narrow as the present invention. No investigation has been made up to the region of particle size distribution. Furthermore, none of them recognizes the problem of heat deflection, and no examination is made from such a viewpoint.
 本発明によれば、優れた反射特性を有しながら、大型のディスプレイに用いたとしても熱撓みし難い白色反射フィルムを提供することができる。 According to the present invention, it is possible to provide a white reflective film that has excellent reflection characteristics and is difficult to bend even when used in a large display.
本発明における貼り付き評価に用いる構成体を示す模式図である。It is a schematic diagram which shows the structure used for sticking evaluation in this invention.
図面の符号Drawing reference
1 シャーシ
2 白色反射フィルム、導光板、光学シートの積層物
3 正三角形型の台
4 重り
DESCRIPTION OF SYMBOLS 1 Chassis 2 White reflection film, light-guide plate, optical sheet laminate 3 Equilateral triangle type base 4 Weight
 本発明の白色反射フィルムは、
(態様a)熱可塑性樹脂Aに特定の態様の炭酸カルシウム粒子を含有する熱可塑性樹脂組成物A1からなる反射層Aを有するか、あるいは、
(態様b)熱可塑性樹脂Aに特定の態様の炭酸カルシウム粒子および該熱可塑性樹脂Aに非相溶な樹脂(以下、非相溶樹脂と呼称する場合がある。)を含有する熱可塑性樹脂組成物A2からなる反射層Aを有する。
The white reflective film of the present invention is
(Aspect a) The thermoplastic resin A has a reflective layer A composed of a thermoplastic resin composition A1 containing calcium carbonate particles of a specific aspect, or
(Aspect b) A thermoplastic resin composition containing the calcium carbonate particles of a specific aspect in the thermoplastic resin A and a resin incompatible with the thermoplastic resin A (hereinafter sometimes referred to as incompatible resin). The reflective layer A made of the object A2 is included.
 以下、本発明を構成する各構成成分について詳細に説明する。 Hereinafter, each component constituting the present invention will be described in detail.
 [反射層A]
 本発明における反射層Aは、熱可塑性樹脂Aに炭酸カルシウム粒子を含有する熱可塑性樹脂組成物A1からなるか、熱可塑性樹脂Aに炭酸カルシウム粒子と非相溶樹脂とを含有する熱可塑性樹脂組成物A2からなり、かかる炭酸カルシウム粒子および/または非相溶樹脂がボイド形成剤として機能し層中にボイドを含有し、白色を呈するようにした層である。なお、熱可塑性樹脂組成物A1と熱可塑性樹脂組成物A2とをまとめて熱可塑性樹脂組成物Aという場合がある。反射層Aは、かかるボイドにより反射機能を奏する。反射層Aの波長550nmにおける反射率は、好ましくは80%以上、さらに好ましくは90%以上、特に好ましくは95%以上である。これにより白色反射フィルムの反射率を好ましい範囲としやすくなる。
[Reflection layer A]
The reflective layer A in the present invention is composed of a thermoplastic resin composition A1 containing calcium carbonate particles in the thermoplastic resin A, or a thermoplastic resin composition containing calcium carbonate particles and an incompatible resin in the thermoplastic resin A. This is a layer made of the product A2, in which the calcium carbonate particles and / or the incompatible resin function as a void forming agent, contain voids in the layer, and exhibit a white color. In addition, the thermoplastic resin composition A1 and the thermoplastic resin composition A2 may be collectively referred to as the thermoplastic resin composition A. The reflective layer A exhibits a reflective function due to such voids. The reflectance of the reflective layer A at a wavelength of 550 nm is preferably 80% or more, more preferably 90% or more, and particularly preferably 95% or more. Thereby, it becomes easy to make the reflectance of a white reflective film into a preferable range.
 反射層Aは、上述のとおり層中にボイドを有するものであるが、かかるボイドの体積が反射層Aの体積に対して占める割合、すなわちボイド体積率は、15体積%以上、70体積%以下であることが好ましい。このような範囲とすることで反射率の向上効果を高くすることができ、上記のような反射率が得やすくなる。また、延伸製膜性の向上効果を高くすることができる。ボイド体積率が低すぎる場合は、好ましい反射率が得難くなる傾向にある。このような観点から、反射層Aにおけるボイド体積率は、さらに好ましくは30体積%以上、特に好ましくは40体積%以上である。他方、高すぎる場合は、延伸製膜性の向上効果が低くなる傾向にある。このような観点から、反射層Aにおけるボイド体積率は、さらに好ましくは65体積%以下、特に好ましくは60体積%以下である。 The reflection layer A has voids in the layer as described above, but the ratio of the void volume to the volume of the reflection layer A, that is, the void volume ratio is 15 volume% or more and 70 volume% or less. It is preferable that By setting it as such a range, the improvement effect of a reflectance can be made high and it becomes easy to obtain the above reflectances. Moreover, the improvement effect of stretch film forming property can be made high. When the void volume ratio is too low, a preferable reflectance tends to be difficult to obtain. From such a viewpoint, the void volume ratio in the reflective layer A is more preferably 30% by volume or more, and particularly preferably 40% by volume or more. On the other hand, when too high, there exists a tendency for the improvement effect of extending | stretching film forming property to become low. From such a viewpoint, the void volume ratio in the reflective layer A is more preferably 65% by volume or less, and particularly preferably 60% by volume or less.
 ボイド体積率は、反射層Aにおける炭酸カルシウム粒子の大きさや量、非相溶樹脂の種類や量を調整することにより達成することができる。 The void volume ratio can be achieved by adjusting the size and amount of calcium carbonate particles in the reflective layer A and the type and amount of incompatible resin.
 (熱可塑性樹脂A)
 反射層Aを構成する熱可塑性樹脂Aとしては、例えばポリエステル、ポリオレフィン、ポリスチレン、アクリルからなる熱可塑性樹脂を挙げることができる。中でも、機械的特性および熱安定性に優れた白色反射フィルムを得る観点から、ポリエステルが好ましい。
(Thermoplastic resin A)
Examples of the thermoplastic resin A constituting the reflective layer A include thermoplastic resins made of polyester, polyolefin, polystyrene, and acrylic. Among these, polyester is preferable from the viewpoint of obtaining a white reflective film excellent in mechanical properties and thermal stability.
 かかるポリエステルとしては、ジカルボン酸成分とジオール成分とからなるポリエステルを用いることが好ましい。このジカルボン酸成分としては、テレフタル酸成分、イソフタル酸成分、2,6-ナフタレンジカルボン酸成分、4,4’-ジフェニルジカルボン酸成分、アジピン酸成分、セバシン酸成分を挙げることができる。ジオール成分としては、エチレングリコール成分、1,4-ブタンジオール成分、1,4-シクロヘキサンジメタノール成分、1,6-ヘキサンジオール成分を挙げることができる。これらのポリエステルのなかでも芳香族ポリエステルが好ましく、特にポリエチレンテレフタレートが好ましい。ポリエステルおよび好ましくはポリエチレンテレフタレートはホモポリマーであってもよいが、フィルムを1軸あるいは2軸に延伸する際に結晶化が抑制されて延伸製膜性の向上効果が高くなる点から、共重合ポリエステルおよびさらには共重合ポリエチレンテレフタレートが好ましい。共重合成分としては、上記のジカルボン酸成分やジオール成分が挙げられるが、耐熱性が高く、延伸製膜性の向上効果が高いという観点から、イソフタル酸成分、2,6-ナフタレンジカルボン酸成分が好ましい。共重合成分の含有割合は、ポリエステルの全ジカルボン酸成分100モル%を基準として、例えば1モル%以上、好ましくは2モル%以上、さらに好ましくは3モル%以上、特に好ましくは7モル%以上であり、また、例えば20モル%以下、好ましくは18モル%以下、さらに好ましくは15モル%以下、特に好ましくは11モル%以下である。共重合成分の割合をこの範囲とすることによって、延伸製膜性の向上効果に優れる。また、熱寸法安定性に優れる。さらに、熱撓みの抑制効果をより向上できる。 As such a polyester, it is preferable to use a polyester comprising a dicarboxylic acid component and a diol component. Examples of the dicarboxylic acid component include a terephthalic acid component, an isophthalic acid component, a 2,6-naphthalenedicarboxylic acid component, a 4,4'-diphenyldicarboxylic acid component, an adipic acid component, and a sebacic acid component. Examples of the diol component include an ethylene glycol component, a 1,4-butanediol component, a 1,4-cyclohexanedimethanol component, and a 1,6-hexanediol component. Among these polyesters, aromatic polyesters are preferable, and polyethylene terephthalate is particularly preferable. Polyester and preferably polyethylene terephthalate may be a homopolymer. However, when the film is stretched uniaxially or biaxially, crystallization is suppressed and the effect of improving the stretched film-forming property is enhanced. And more preferably copolymerized polyethylene terephthalate. Examples of the copolymer component include the dicarboxylic acid component and the diol component described above. From the viewpoint of high heat resistance and a high effect of improving the stretched film forming property, an isophthalic acid component and a 2,6-naphthalenedicarboxylic acid component are used. preferable. The content of the copolymerization component is, for example, 1 mol% or more, preferably 2 mol% or more, more preferably 3 mol% or more, particularly preferably 7 mol% or more, based on 100 mol% of all dicarboxylic acid components of the polyester. For example, it is 20 mol% or less, preferably 18 mol% or less, more preferably 15 mol% or less, and particularly preferably 11 mol% or less. By making the ratio of a copolymerization component into this range, it is excellent in the improvement effect of stretch film forming property. Moreover, it is excellent in thermal dimensional stability. Furthermore, the effect of suppressing thermal deflection can be further improved.
 かかる熱可塑性樹脂Aは、融点が好ましくは200℃以上、280℃以下である。これにより熱撓みがより抑制し易くなる。低すぎると熱撓みの抑制効果が低くなる傾向にあり、高すぎると取扱いがし難くなる傾向にある。かかる観点から、より好ましくは205℃以上、さらに好ましくは210℃以上であり、また、より好ましくは275℃以下、さらに好ましくは265℃以下である。 The thermoplastic resin A has a melting point of preferably 200 ° C. or higher and 280 ° C. or lower. This makes it easier to suppress thermal deflection. If it is too low, the effect of suppressing heat deflection tends to be low, and if it is too high, handling tends to be difficult. From this viewpoint, it is more preferably 205 ° C or higher, further preferably 210 ° C or higher, more preferably 275 ° C or lower, and further preferably 265 ° C or lower.
 なお、本発明における反射層Aを構成する熱可塑性樹脂Aとしては、好ましい熱可塑性樹脂であるポリエステルと該ポリエステルとは異なる他の熱可塑性樹脂との混合物であってもよい。 In addition, as the thermoplastic resin A which comprises the reflection layer A in this invention, the mixture of polyester which is a preferable thermoplastic resin, and another thermoplastic resin different from this polyester may be sufficient.
 (炭酸カルシウム粒子)
 本発明においては、反射層Aがボイド形成剤として特定の態様を具備する炭酸カルシウム粒子を含有する。
(Calcium carbonate particles)
In this invention, the reflection layer A contains the calcium carbonate particle which comprises a specific aspect as a void formation agent.
 本発明における炭酸カルシウム粒子は、平均粒径が0.1μm以上、1.2μm以下であり、また、(D90-D10)/D50が1.6以下である。ここでD10、D50およびD90は、それぞれ炭酸カルシウム粒子の小粒径側から積算した10%体積粒径、50%体積粒径および90%体積粒径である。このような態様の炭酸カルシウム粒子を採用することによって、高い反射率を有しながら熱撓みを抑制することができる。すなわち、粗大ボイドが存在するとそれにより熱撓みが生じ易くなるところ、平均粒径が小さくかつ粒度分布がシャープな炭酸カルシウム粒子を採用することによって内部に比較的小さなボイド(以下、ミクロボイドという場合がある。)が多数存在するフィルムの態様とし、粗大ボイドによる熱撓みを抑制するのである。粒度分布がブロードであると粗大粒子が存在することとなり、それにより粗大ボイドが形成され易い。また同時に、ボイドと熱可塑性樹脂との界面の量についてはその低減を抑制し、高い反射率を得ることができる。さらに、炭酸カルシウム粒子は比較的小さい比重であるため、粒子と熱可塑性樹脂の質量差または密度差が小さいため、ボイド以外の部分で局所的な密度差が生じにくい。それによっても熱撓みが抑制される。 In the present invention, the calcium carbonate particles have an average particle size of 0.1 μm or more and 1.2 μm or less, and (D90-D10) / D50 is 1.6 or less. Here, D10, D50, and D90 are a 10% volume particle diameter, a 50% volume particle diameter, and a 90% volume particle diameter, respectively, integrated from the small particle diameter side of the calcium carbonate particles. By adopting the calcium carbonate particles of such an aspect, thermal deflection can be suppressed while having a high reflectance. In other words, when there are coarse voids, heat deflection is likely to occur, but by using calcium carbonate particles having a small average particle size and a sharp particle size distribution, there may be relatively small voids (hereinafter referred to as micro voids). .) Is present in the form of a film in which many exist, and thermal deflection due to coarse voids is suppressed. When the particle size distribution is broad, coarse particles are present, whereby coarse voids are easily formed. At the same time, the reduction in the amount of the interface between the void and the thermoplastic resin can be suppressed, and a high reflectance can be obtained. Furthermore, since the calcium carbonate particles have a relatively small specific gravity, the mass difference or density difference between the particles and the thermoplastic resin is small, so that local density differences are unlikely to occur in portions other than the voids. This also suppresses thermal deflection.
 炭酸カルシウム粒子の平均粒径は、大きすぎると粗大ボイドが形成され易くなる傾向にあり、熱撓みが抑制できない。よって平均粒径は、好ましくは1.1μm以下、より好ましくは1.0μm以下、さらに好ましくは0.95μm以下、特に好ましくは0.9μm以下である。他方、小さすぎても粒子どうしが凝集してしまい粗大ボイドを形成する原因となるし、そのような炭酸カルシウム粒子を得ることは非常に困難である。かかる観点からは、平均粒径は、好ましくは0.3μm以上、より好ましくは0.5μm以上、さらに好ましくいは0.6μm以上である。 If the average particle diameter of the calcium carbonate particles is too large, coarse voids tend to be formed, and thermal deflection cannot be suppressed. Therefore, the average particle diameter is preferably 1.1 μm or less, more preferably 1.0 μm or less, still more preferably 0.95 μm or less, and particularly preferably 0.9 μm or less. On the other hand, if the particle size is too small, the particles are aggregated to form coarse voids, and it is very difficult to obtain such calcium carbonate particles. From this viewpoint, the average particle diameter is preferably 0.3 μm or more, more preferably 0.5 μm or more, and further preferably 0.6 μm or more.
 また、別の態様においては、炭酸カルシウム粒子の平均粒径は、大きすぎると熱撓みが抑制し難くなる反面、小さすぎても凝集により粗大ボイドを形成し易くなり、熱撓みが抑制し難くなる場合があり、熱撓み抑制と反射率向上のバランスの点、およびコストの点もあり、ある程度大きい方が好ましい場合もある。このような観点からは、炭酸カルシウム粒子の平均粒径は、好ましくは1.2μm以下、より好ましくは1.18μm以下、さらに好ましくは1.15μm以下であり、また、好ましくは0.6μm以上、より好ましくは0.8μm以上、さらに好ましくは1.01μm以上、特に好ましくは1.02μm以上、最も好ましくは1.05μm以上である。 In another aspect, if the average particle size of the calcium carbonate particles is too large, it becomes difficult to suppress thermal deflection, but if it is too small, coarse voids are easily formed due to aggregation, and thermal deflection is difficult to suppress. In some cases, there is a point of balance between suppression of thermal deflection and improvement of reflectance, and a point of cost. From such a viewpoint, the average particle diameter of the calcium carbonate particles is preferably 1.2 μm or less, more preferably 1.18 μm or less, still more preferably 1.15 μm or less, and preferably 0.6 μm or more, More preferably, it is 0.8 μm or more, more preferably 1.01 μm or more, particularly preferably 1.02 μm or more, and most preferably 1.05 μm or more.
 (D90-D10)/D50は、上述の観点から小さい方が好ましく、より好ましくは1.5以下、さらに好ましくは1.4以下である。下限は理論的には0であり、実際的には0.1以上であることが好ましい。 (D90-D10) / D50 is preferably smaller from the above viewpoint, more preferably 1.5 or less, and still more preferably 1.4 or less. The lower limit is theoretically 0, and is preferably 0.1 or more in practice.
 上記のような態様を満足させるために、本発明においては炭酸カルシウム粒子として、合成炭酸カルシウムからなる粒子(以下、合成炭酸カルシウム粒子という場合がある。)を採用することが特に好ましい。炭酸カルシウム粒子としては、天然炭酸カルシウムからなる粒子(以下、天然炭酸カルシウム粒子という場合がある。)と合成炭酸カルシウム粒子とがあり、通常は天然炭酸カルシウム粒子が用いられる。しかしながら、天然炭酸カルシウム粒子では上記態様を満足させることが困難な傾向にあり、本発明の課題を達成することが困難な傾向にある。 In order to satisfy the above aspects, it is particularly preferable in the present invention to employ particles made of synthetic calcium carbonate (hereinafter sometimes referred to as synthetic calcium carbonate particles) as the calcium carbonate particles. As the calcium carbonate particles, there are particles made of natural calcium carbonate (hereinafter sometimes referred to as natural calcium carbonate particles) and synthetic calcium carbonate particles, and natural calcium carbonate particles are usually used. However, with natural calcium carbonate particles, it tends to be difficult to satisfy the above aspect, and it is difficult to achieve the object of the present invention.
 炭酸カルシウム粒子をポリエステル樹脂に含有させる方法としては、従来公知の各種の方法を用いることができる。その代表的な方法として、下記のような方法が挙げられる。
(ア)ポリエステル樹脂の合成時のエステル化の段階もしくはエステル交換反応終了後に添加する方法。
(イ)得られたポリエステル樹脂に添加し、溶融混練する方法。
(ウ)上記(ア)または(イ)の方法においてポリエステル樹脂に炭酸カルシウム粒子を多量添加したマスターペレットを製造し、これと希釈ポリマーとしてのポリエステル樹脂とを混練してポリエステル樹脂に所定量の炭酸カルシウム粒子を含有させる方法。
(エ)上記(ウ)のマスターペレットをそのまま使用する方法。
As a method for incorporating the calcium carbonate particles into the polyester resin, various conventionally known methods can be used. Typical methods include the following methods.
(A) A method of adding after the esterification stage or the transesterification reaction at the time of synthesizing the polyester resin.
(A) A method of adding to the obtained polyester resin and melt-kneading.
(C) A master pellet obtained by adding a large amount of calcium carbonate particles to a polyester resin in the method (a) or (b) above is manufactured, and this is mixed with a polyester resin as a diluting polymer, and a predetermined amount of carbonic acid is added to the polyester resin. A method of containing calcium particles.
(D) A method of using the master pellet of (c) as it is.
 (炭酸カルシウム粒子の表面処理)
 本発明における炭酸カルシウム粒子は、表面処理剤により表面処理が施されていることが好ましい。それにより、炭酸カルシウム粒子表面のCa活性を失活させ、表面のCa活性が失活した炭酸カルシウム粒子とすることができ、ガスマークの発生をより抑制することができる。かかる表面処理剤としては、リン酸、亜リン酸、ホスホン酸、あるいはこれらの誘導体などのリン化合物、および、ステアリン酸などの脂肪酸、シランカップリング剤等が挙げられる。本発明においては、中でもリン化合物による表面処理が好ましく、かかるリン化合物としては、具体的には、リン酸、亜リン酸、リン酸トリメチルエステル、リン酸トリブチルエステル、リン酸トリフェニルエステル、リン酸モノあるいはジメチルエステル、亜リン酸トリメチルエステル、メチルホスホン酸、メチルスルホン酸ジエチルエステル、フェニルホスホン酸ジメチルエステル、フェニルホスホン酸ジエチルエステルなどが好ましく挙げられる。中でもリン酸、亜リン酸およびそれらのエステル成形誘導体が好ましい。本発明においては、リン酸トリメチルで表面処理されていることが最も好ましい。これらリン化合物は、単独で用いることができ、また2種以上を併用してもよい。
(Surface treatment of calcium carbonate particles)
The calcium carbonate particles in the present invention are preferably subjected to a surface treatment with a surface treatment agent. Thereby, Ca activity on the surface of calcium carbonate particles can be deactivated, and calcium carbonate particles with deactivated surface Ca activity can be obtained, and generation of gas marks can be further suppressed. Examples of such surface treatment agents include phosphorous compounds such as phosphoric acid, phosphorous acid, phosphonic acid, or derivatives thereof, fatty acids such as stearic acid, silane coupling agents, and the like. In the present invention, surface treatment with a phosphorus compound is particularly preferable. Specific examples of such phosphorus compounds include phosphoric acid, phosphorous acid, phosphoric acid trimethyl ester, phosphoric acid tributyl ester, phosphoric acid triphenyl ester, and phosphoric acid. Preferable examples include mono- or dimethyl ester, trimethyl phosphite, methylphosphonic acid, methylsulfonic acid diethylester, phenylphosphonic acid dimethylester, and phenylphosphonic acid diethylester. Of these, phosphoric acid, phosphorous acid, and ester molding derivatives thereof are preferable. In the present invention, the surface treatment with trimethyl phosphate is most preferred. These phosphorus compounds can be used alone or in combination of two or more.
 炭酸カルシウム粒子の表面処理方法は特に限定されるものではなく、従来公知の方法を採用することができる。例えばリン化合物によって表面処理を施す場合は、リン化合物と炭酸カルシウム粒子とを物理的に混合する方法(物理的混合方法)を採用することが好ましい。かかる物理的混合方法としては特に限定されるものではなく、例えばロール転動ミル、高速回転式粉砕機、ボールミル、ジェトミルなどの各種の粉砕機を使用して、炭酸カルシウムを粉砕しながらリン化合物で表面処理する方法、あるいは容器自身が回転する容器回転型混合機、固定容器内に回転翼を有したり、あるいは気流を吹き込む容器固定型混合機等を使用して表面処理する方法を挙げることができる。具体的にはナウタミキサー、リボンミキサー、ヘンシェルミキサー等の混合機が好ましい。 The surface treatment method of the calcium carbonate particles is not particularly limited, and a conventionally known method can be employed. For example, when the surface treatment is performed with a phosphorus compound, it is preferable to employ a method (physical mixing method) in which the phosphorus compound and calcium carbonate particles are physically mixed. The physical mixing method is not particularly limited. For example, various types of pulverizers such as a roll rolling mill, a high-speed rotary pulverizer, a ball mill, and a jet mill can be used to pulverize calcium carbonate while using a phosphorus compound. Examples include a surface treatment method, or a container rotation type mixer in which the container itself rotates, a surface treatment method using a container fixed type mixer that has a rotating blade in a fixed container or blows an air flow, etc. it can. Specifically, a mixer such as a nauta mixer, a ribbon mixer, or a Henschel mixer is preferable.
 またその際の処理条件は特に限定されるものではなく、炭酸カルシウム粒子のポリエステルに対する分散性、ポリエステルの高温滞留時の異物発生、発泡の観点から、処理温度は30℃以上が好ましく、さらには50℃以上、特には90℃以上が好ましい。処理時間は5時間以内とすることが好ましく、さらには3時間以内、特には2時間以内が好ましい。また、リン化合物は炭酸カルシウム粒子と同時に混合してもよく、また予め炭酸カルシウム粒子を仕込んだ後にリン化合物を添加してもよい。その際に、リン化合物は滴下させても、噴霧させてもよく、さらには水あるいはアルコール等に溶解もしくは分散させたものであってもよい。 Further, the treatment conditions at that time are not particularly limited, and the treatment temperature is preferably 30 ° C. or higher, from the viewpoint of dispersibility of the calcium carbonate particles with respect to the polyester, generation of foreign matters during high-temperature residence of the polyester, and foaming, and further 50 C. or higher, particularly 90.degree. C. or higher is preferable. The treatment time is preferably within 5 hours, more preferably within 3 hours, particularly preferably within 2 hours. Further, the phosphorus compound may be mixed simultaneously with the calcium carbonate particles, or the phosphorus compound may be added after the calcium carbonate particles are previously charged. At that time, the phosphorus compound may be dropped or sprayed, or may be dissolved or dispersed in water or alcohol.
 また、本発明においては、炭酸カルシウム粒子の表面処理剤をポリエステルに添加、配合して、次いでそこに炭酸カルシウム粒子を添加して、炭酸カルシウムの表面処理を行なうこともできる。例えば、ポリエステルの製造、すなわち重合反応が完了するまでの任意の段階で、あるいは重合反応完了後から溶融混練を行なうまでの段階で、表面処理剤を添加することができる。 In the present invention, the surface treatment of calcium carbonate can be performed by adding and blending a surface treatment agent for calcium carbonate particles to the polyester, and then adding calcium carbonate particles thereto. For example, the surface treatment agent can be added at any stage until the polyester is produced, that is, until the polymerization reaction is completed, or at the stage after the completion of the polymerization reaction until melt kneading.
 上記表面処理工程における表面処理剤の添加量は、炭酸カルシウム粒子表面のCa活性が十分に失活される量であればよいが、例えば炭酸カルシウム粒子の質量に対してリン元素の量が0.1質量%以上となる量である。他方、添加しすぎるとフィルム中にリン化合物が多量に残存してしまい、環境の観点から好ましくなく、また押出機内などにおいて炭酸カルシウム粒子同士が凝集してしまうのを抑制することができるという観点から、5質量%以下が好ましく、2質量%以下がより好ましく、1質量%以下がさらに好ましく、0.5質量%以下が特に好ましい。 The addition amount of the surface treatment agent in the surface treatment step may be an amount that sufficiently deactivates the Ca activity on the surface of the calcium carbonate particles. For example, the amount of the phosphorus element is 0.00 with respect to the mass of the calcium carbonate particles. The amount is 1% by mass or more. On the other hand, if too much is added, a large amount of phosphorus compound remains in the film, which is not preferable from the viewpoint of the environment, and from the viewpoint that the calcium carbonate particles can be prevented from aggregating in the extruder or the like. 5 mass% or less is preferable, 2 mass% or less is more preferable, 1 mass% or less is more preferable, 0.5 mass% or less is especially preferable.
 (非相溶樹脂)
 本発明における態様bにおいては、反射層Aがボイド形成剤として非相溶樹脂を含有する。
(Incompatible resin)
In the embodiment b in the present invention, the reflective layer A contains an incompatible resin as a void forming agent.
 かかる非相溶樹脂としては、反射層Aを構成する熱可塑性樹脂Aと非相溶であれば特に限定されない。例えば、熱可塑性樹脂Aがポリエステルである場合は、ポリエチレン、ポリプロピエレン、ポリメチルペンテン等のポリオレフィン樹脂、シクロオレフィン樹脂、ポリスチレン樹脂、ポリアクリレート樹脂、ポリカーボネート樹脂、ポリアクリロニトリル樹脂、ポリフェニレンスルフィド樹脂、フッ素樹脂などが好ましい。これらは、単独で用いてもよく、2種類以上を併用してもよい。また、単独重合体であっても共重合体であってもよい。特に、熱可塑性樹脂A、かかる熱可塑性樹脂Aとしては好ましくはポリエステルである、との臨界表面張力差が大きい方が好ましい。また、延伸後の熱処理によって変形しにくい樹脂が好ましい。具体的には、ポリオレフィン系樹脂が好ましい。ポリオレフィン系樹脂としては、ポリエチレン、ポリプロピレン、ポリメチルペンテン等のポリオレフィン樹脂、および、これらの共重合体を挙げることができる。これらの中でも特にシクロオレフィン共重合体であるエチレンとビシクロアルケンの共重合体が好ましい。 Such an incompatible resin is not particularly limited as long as it is incompatible with the thermoplastic resin A constituting the reflective layer A. For example, when the thermoplastic resin A is polyester, polyolefin resin such as polyethylene, polypropylene, polymethylpentene, cycloolefin resin, polystyrene resin, polyacrylate resin, polycarbonate resin, polyacrylonitrile resin, polyphenylene sulfide resin, fluorine resin Etc. are preferable. These may be used alone or in combination of two or more. Further, it may be a homopolymer or a copolymer. In particular, it is preferable that the difference in critical surface tension between the thermoplastic resin A and the thermoplastic resin A is preferably polyester. Further, a resin that is not easily deformed by heat treatment after stretching is preferred. Specifically, polyolefin resin is preferable. Examples of the polyolefin resin include polyolefin resins such as polyethylene, polypropylene, and polymethylpentene, and copolymers thereof. Among these, a copolymer of ethylene and bicycloalkene, which is a cycloolefin copolymer, is particularly preferable.
 また、非相溶樹脂のガラス転移温度は、180℃以上、220℃以下が好ましく、さらに好ましくは190℃以上、220℃以下である。ガラス転移温度が180℃よりも低い領域では、フィルム製造工程における熱処理工程において、延伸時に発現したボイドが変形し、ボイドサイズの不均一性を引き起こし、粗大ボイドが形成され易くなる傾向にあり、熱撓み抑制の向上効果が低くなる傾向にある。また、220℃よりも高い領域では、反射層Aを構成する熱可塑性樹脂Aと溶融混練する際、非相溶樹脂が十分に溶融せずに微分散化が促進され難くなる傾向にあり、これによっても熱撓み抑制の向上効果が低くなる傾向にある。なお、非相溶樹脂のガラス転移温度を制御する方法は、例えば直鎖のオレフィン部、かかるオレフィン部としては例えばエチレン部である、とシクロオレフィン部、かかるシクロオレフィン部としては例えばメチレン-ノルボルネン部である、の共重合比率を制御することによって、任意に変更することができ、例えばガラス転移温度を上げるためには、シクロオレフィン部の共重合比率を上げることによって達成できる。 The glass transition temperature of the incompatible resin is preferably 180 ° C. or higher and 220 ° C. or lower, more preferably 190 ° C. or higher and 220 ° C. or lower. In the region where the glass transition temperature is lower than 180 ° C., voids developed during stretching are deformed in the heat treatment step in the film production process, causing void size non-uniformity, and coarse voids tend to be easily formed. There exists a tendency for the improvement effect of bending suppression to become low. In the region higher than 220 ° C., when melt kneading with the thermoplastic resin A constituting the reflective layer A, the incompatible resin is not sufficiently melted, and it tends to be difficult to promote fine dispersion. Also, the effect of suppressing thermal deflection tends to be low. The method for controlling the glass transition temperature of the incompatible resin is, for example, a linear olefin part, such an olefin part is, for example, an ethylene part, and a cycloolefin part, such a cycloolefin part is, for example, a methylene-norbornene part. It can be arbitrarily changed by controlling the copolymerization ratio of, for example, to increase the glass transition temperature, it can be achieved by increasing the copolymerization ratio of the cycloolefin part.
 好ましく用いられる非相溶樹脂として、ポリプラスチックス社のTOPAS(登録商標)COCシリーズ、例えばグレード6017S-04などを挙げることができる。 Preferably used incompatible resins include TOPAS (registered trademark) COC series of Polyplastics, for example, grade 6017S-04.
 (態様aにおける炭酸カルシウム粒子の含有量)
 態様aにおいて、反射層Aは炭酸カルシウム粒子を含有する熱可塑性樹脂組成物A1からなるものであるが、かかる熱可塑性樹脂組成物A1における炭酸カルシウム粒子の含有量は、かかる熱可塑性樹脂組成物A1の質量を基準として10質量%以上、70質量%以下である。これにより上述した好ましいボイド体積率とし易くなり、それにより高い反射率とすることができる。また、熱撓みが抑制される。さらに、延伸製膜性の向上効果を高くすることができる。含有量が少なすぎると反射率が低くなる。他方、含有率が多すぎるとボイドが多くなり過ぎ熱撓みが抑制できない。これら観点から含有量は、好ましくは15質量%以上、より好ましくは20質量%以上であり、また、好ましくは60質量%以下、より好ましくは50質量%以下である。
(Content of calcium carbonate particles in embodiment a)
In the aspect a, the reflective layer A is made of the thermoplastic resin composition A1 containing calcium carbonate particles. The content of the calcium carbonate particles in the thermoplastic resin composition A1 is such a thermoplastic resin composition A1. 10 mass% or more and 70 mass% or less based on the mass of Thereby, it becomes easy to set it as the preferable void volume ratio mentioned above, and it can be set as a high reflectance by it. Further, thermal deflection is suppressed. Furthermore, the effect of improving the stretch film forming property can be increased. If the content is too small, the reflectance will be low. On the other hand, when there is too much content rate, a void will increase too much and heat deflection cannot be suppressed. From these viewpoints, the content is preferably 15% by mass or more, more preferably 20% by mass or more, and preferably 60% by mass or less, more preferably 50% by mass or less.
 (態様bにおける炭酸カルシウム粒子と非相溶樹脂の含有量)
 態様bにおいて、反射層Aを構成する熱可塑性樹脂組成物A2における炭酸カルシウム粒子の含有量は、かかる熱可塑性樹脂組成物A2の質量を基準として5質量%以上、69質量%以下である。これにより上述した好ましいボイド体積率とし易くなり、それにより高い反射率とすることができる。また、熱撓みが抑制される。さらに、延伸製膜性の向上効果を高くすることができる。含有量が少なすぎると反射率が低くなる。他方、含有率が多すぎるとボイドが多くなり過ぎ熱撓みが抑制できない。これら観点から含有量は、好ましくは10質量%以上、より好ましくは15質量%以上であり、また、好ましくは60質量%以下、より好ましくは50質量%以下である。
(Content of calcium carbonate particles and incompatible resin in embodiment b)
In aspect b, the content of calcium carbonate particles in the thermoplastic resin composition A2 constituting the reflective layer A is 5% by mass or more and 69% by mass or less based on the mass of the thermoplastic resin composition A2. Thereby, it becomes easy to set it as the preferable void volume ratio mentioned above, and it can be set as a high reflectance by it. Further, thermal deflection is suppressed. Furthermore, the effect of improving the stretch film forming property can be increased. If the content is too small, the reflectance will be low. On the other hand, when there is too much content rate, a void will increase too much and heat deflection cannot be suppressed. From these viewpoints, the content is preferably 10% by mass or more, more preferably 15% by mass or more, and preferably 60% by mass or less, more preferably 50% by mass or less.
 態様bにおいて、反射層Aを構成する熱可塑性樹脂組成物A2における非相溶樹脂の含有量は、かかる熱可塑性樹脂組成物A2の質量を基準として1質量%以上、40質量%以下である。これにより熱撓みを抑制したまま上述した好ましいボイド体積率とし易くなり、それにより高い反射率とすることができる。さらに、延伸製膜性の向上効果を高くすることができる。含有量が少なすぎると反射率が低くなる。他方、含有率が多すぎるとボイドが多くなり過ぎ熱撓みが抑制できない。また、比較的耐熱性の低い非相溶樹脂がフィルム中に多く存在することとなり、それによっても熱撓みが抑制し難い傾向にある。これら観点から含有量は、好ましくは5質量%以上、より好ましくは10質量%以上であり、また、好ましくは35質量%以下、より好ましくは30質量%以下である。 In embodiment b, the content of the incompatible resin in the thermoplastic resin composition A2 constituting the reflective layer A is 1% by mass or more and 40% by mass or less based on the mass of the thermoplastic resin composition A2. As a result, the preferred void volume ratio described above can be easily obtained while suppressing thermal deflection, thereby achieving a high reflectance. Furthermore, the effect of improving the stretch film forming property can be increased. If the content is too small, the reflectance will be low. On the other hand, when there is too much content rate, a void will increase too much and heat deflection cannot be suppressed. In addition, many incompatible resins having relatively low heat resistance are present in the film, which also tends to make it difficult to suppress thermal deflection. From these viewpoints, the content is preferably 5% by mass or more, more preferably 10% by mass or more, and preferably 35% by mass or less, more preferably 30% by mass or less.
 態様bにおいて、反射層Aを構成する熱可塑性樹脂組成物A2中の炭酸カルシウム粒子と非相溶樹脂の含有量の合計は、かかる熱可塑性樹脂組成物A2の質量を基準として10質量%以上、70質量%以下である。これにより熱撓みを抑制したまま、上述した好ましいボイド体積率とし易くなり、それにより高い反射率とすることができる。さらに、延伸製膜性の向上効果を高くすることができる。合計含有量が少なすぎると反射率が低くなる。他方、合計含有率が多すぎると、上述した炭酸カルシウム粒子の含有量が多すぎる場合や非相溶樹脂の含有量が多すぎる場合と同様の理由により、熱撓みが抑制できない。これら観点から含有量は、好ましくは15質量%以上、より好ましくは20質量%以上であり、また、好ましくは65質量%以下、より好ましくは60質量%以下である。 In aspect b, the total content of the calcium carbonate particles and the incompatible resin in the thermoplastic resin composition A2 constituting the reflective layer A is 10% by mass or more based on the mass of the thermoplastic resin composition A2, 70% by mass or less. Thereby, it becomes easy to set it as the preferable void volume ratio mentioned above, suppressing heat deflection, and it can be set as a high reflectance by it. Furthermore, the effect of improving the stretch film forming property can be increased. If the total content is too small, the reflectance will be low. On the other hand, if the total content is too high, thermal deflection cannot be suppressed for the same reason as the case where the content of the calcium carbonate particles described above is too high or the content of the incompatible resin is too high. From these viewpoints, the content is preferably 15% by mass or more, more preferably 20% by mass or more, and preferably 65% by mass or less, more preferably 60% by mass or less.
 (その他の成分)
 反射層A、これはすなわち反射層Aを構成する熱可塑性樹脂組成物Aであり得る、は、本発明の目的を阻害しない範囲において、その他の成分、例えば紫外線吸収剤、酸化防止剤、帯電防止剤、蛍光増白剤、ワックスを含有することができる。また、本発明の目的を阻害しない限りにおいて、上述した炭酸カルシウム粒子や非相溶樹脂とは異なる粒子や樹脂等のボイド形成剤を含有することができる。
(Other ingredients)
The reflective layer A, which can be the thermoplastic resin composition A constituting the reflective layer A, is a component that does not impair the object of the present invention, such as an ultraviolet absorber, an antioxidant, and an antistatic agent. Agents, fluorescent brighteners, and waxes. Moreover, as long as the objective of this invention is not inhibited, void forming agents, such as particle | grains and resin different from the calcium carbonate particle | grains mentioned above or incompatible resin, can be contained.
 [支持層B]
 本発明の白色反射フィルムは、上述した反射層Aに、さらに熱可塑性樹脂Bまたは熱可塑性樹脂Bに粒子等を添加したものである熱可塑性樹脂組成物Bからなる支持層Bを有することができる。かかる支持層Bにより延伸製膜性を向上したり、熱撓みをさらに抑制したりすることができる。好ましくは、反射層Aよりもボイドの少ない、あるいは、できるだけ耐熱性の高い組成となる支持層Bを反射層Aの少なくとも片面に設けることにより、熱による局所的な変形をさらに抑制でき、熱撓みをさらに抑制できる。
[Support layer B]
The white reflective film of this invention can have the support layer B which consists of the thermoplastic resin composition B which adds the particle | grains etc. to the thermoplastic resin B or the thermoplastic resin B further to the reflective layer A mentioned above. . Such support layer B can improve the stretch film-forming property and further suppress the thermal deflection. Preferably, local deformation due to heat can be further suppressed by providing a support layer B having a composition with less voids or higher heat resistance as much as possible on the reflective layer A, and thermal deformation can be further suppressed. Can be further suppressed.
 以下、本発明における支持層Bについて詳述する。 Hereinafter, the support layer B in the present invention will be described in detail.
 (熱可塑性樹脂B)
 本発明における支持層Bを構成する熱可塑性樹脂Bとしては、上述した反射層Aを構成する熱可塑性樹脂Aと同様の熱可塑性樹脂を用いることができる。中でも、機械的特性および熱安定性に優れた白色反射フィルムを得る観点から、ポリエステルが好ましい。
(Thermoplastic resin B)
As the thermoplastic resin B constituting the support layer B in the present invention, the same thermoplastic resin as the thermoplastic resin A constituting the reflective layer A described above can be used. Among these, polyester is preferable from the viewpoint of obtaining a white reflective film excellent in mechanical properties and thermal stability.
 かかるポリエステルとしては、上述の反射層Aにおけるポリエステルと同様のポリエステルを用いることができる。これらのポリエステルのなかでも、機械的特性および熱安定性に優れる白色反射フィルムを得る観点から、芳香族ポリエステルが好ましく、特にポリエチレンテレフタレートが好ましい。ポリエステルおよび好ましくはポリエチレンテレフタレートはホモポリマーであってもよいが、フィルムを1軸あるいは2軸に延伸する際に結晶化が抑制されて延伸製膜性の向上効果が高くなる点から共重合ポリエステルおよびさらには共重合ポリエチレンテレフタレートが好ましい。かかる共重合成分としては、反射層Aの項で上記したジカルボン酸成分やジオール成分が挙げられるが、耐熱性が高く、延伸製膜性の向上効果が高いという観点から、イソフタル酸成分、2,6-ナフタレンジカルボン酸成分が好ましい。共重合成分の含有割合は、ポリエステルの全ジカルボン酸成分100モル%を基準として、例えば1モル%以上、好ましくは2モル%以上、さらに好ましくは3モル%以上、特に好ましくは12モル%以上であり、また、例えば20モル%以下、好ましくは18モル%以下、さらに好ましくは17モル%以下、特に好ましくは16モル%以下である。共重合成分の割合をこの範囲とすることによって、延伸製膜性の向上効果に優れる。また、熱寸法安定性に優れる。さらに、熱撓みの抑制効果をより向上できる。 As such polyester, the same polyester as the polyester in the reflection layer A described above can be used. Among these polyesters, aromatic polyesters are preferable, and polyethylene terephthalate is particularly preferable from the viewpoint of obtaining a white reflective film excellent in mechanical properties and thermal stability. Polyester and preferably polyethylene terephthalate may be a homopolymer. However, when the film is stretched uniaxially or biaxially, crystallization is suppressed, and the copolyester and Furthermore, copolymerized polyethylene terephthalate is preferable. Examples of the copolymer component include the dicarboxylic acid component and the diol component described above in the section of the reflective layer A. From the viewpoint of high heat resistance and a high effect of improving the stretched film forming property, the isophthalic acid component, 2, A 6-naphthalenedicarboxylic acid component is preferred. The content of the copolymerization component is, for example, 1 mol% or more, preferably 2 mol% or more, more preferably 3 mol% or more, particularly preferably 12 mol% or more, based on 100 mol% of all dicarboxylic acid components of the polyester. For example, it is 20 mol% or less, preferably 18 mol% or less, more preferably 17 mol% or less, and particularly preferably 16 mol% or less. By making the ratio of a copolymerization component into this range, it is excellent in the improvement effect of stretch film forming property. Moreover, it is excellent in thermal dimensional stability. Furthermore, the effect of suppressing thermal deflection can be further improved.
 かかる熱可塑性樹脂Bは、融点が好ましくは190℃以上、280℃以下である。これにより熱撓みがより抑制し易くなる。低すぎると熱撓みの抑制効果が低くなる傾向にあり、高すぎると取扱いがし難くなる傾向にある。かかる観点から、より好ましくは195℃以上、さらに好ましくは200℃以上であり、また、より好ましくは275℃以下、さらに好ましくは270℃以下である。 Such thermoplastic resin B preferably has a melting point of 190 ° C. or higher and 280 ° C. or lower. This makes it easier to suppress thermal deflection. If it is too low, the effect of suppressing heat deflection tends to be low, and if it is too high, handling tends to be difficult. From this viewpoint, it is more preferably 195 ° C. or higher, further preferably 200 ° C. or higher, more preferably 275 ° C. or lower, further preferably 270 ° C. or lower.
 なお、本発明における支持層Bを構成する熱可塑性樹脂Bとしては、好ましい熱可塑性樹脂であるポリエステルと該ポリエステルとは異なる他の熱可塑性樹脂との混合物であってもよい。 In addition, as the thermoplastic resin B which comprises the support layer B in this invention, the mixture of polyester which is a preferable thermoplastic resin, and another thermoplastic resin different from this polyester may be sufficient.
 (その他の成分)
 支持層Bは、上記の熱可塑性樹脂Bに、本発明の目的を阻害しない範囲において任意成分を含有した熱可塑性樹脂組成物Bからなるものであってもよい。かかる任意成分としては、例えば紫外線吸収剤、酸化防止剤、帯電防止剤、蛍光増白剤、ワックス等を挙げることができる。
(Other ingredients)
The support layer B may be composed of the thermoplastic resin composition B containing the optional component in the above-described thermoplastic resin B within a range not impairing the object of the present invention. Examples of such optional components include ultraviolet absorbers, antioxidants, antistatic agents, fluorescent brighteners, and waxes.
 また、支持層Bは、本発明の目的を阻害しない範囲において、反射層Aにおいて挙げたボイド形成剤を任意成分として含有していてもよく、そのような態様とすることで反射率の向上効果を高くすることができる。その反面、支持層Bにおけるボイド形成剤の含有量を少なくするか、ボイド形成剤を含有しないと、延伸製膜性の向上効果を高くすることができる。これらの観点から、支持層Bにおけるボイド体積率、かかるボイド体積率は支持層Bの体積に対する支持層Bにおけるボイドの体積の割合である、は、0体積%以上、15体積%未満であることが好ましく、さらに好ましくは5体積%以下、特に好ましくは3体積%以下である。特に本発明においては、反射特性と延伸製膜性の向上効果を同時に高めることができることから、上述した反射層Aにおける好ましいボイド体積率と、かかる支持層Bにおける好ましいボイド体積率とを同時に採用することが特に好ましい。 Further, the support layer B may contain the void forming agent mentioned in the reflective layer A as an optional component as long as the object of the present invention is not impaired. Can be high. On the other hand, if the content of the void forming agent in the support layer B is reduced or if no void forming agent is contained, the effect of improving the stretch film forming property can be increased. From these viewpoints, the void volume ratio in the support layer B, which is the ratio of the void volume in the support layer B to the volume of the support layer B, is 0% by volume or more and less than 15% by volume. Is preferable, more preferably 5% by volume or less, and particularly preferably 3% by volume or less. In particular, in the present invention, since the effect of improving the reflection characteristics and stretched film forming properties can be enhanced at the same time, the preferred void volume ratio in the reflective layer A and the preferred void volume ratio in the support layer B are simultaneously employed. It is particularly preferred.
 [表面層C]
 本発明の白色反射フィルムは、フィルムの少なくとも一方の表面に、表面層粒子を含有する熱可塑性樹脂組成物Cからなる表面層Cを有することができる。かかる表面層Cにより、反射光に拡散性を付与したり、導光板と接した時に導光板とのギャップを確保したり、導光板の傷付きを抑制したりする機能を付与できる。このような効果を奏するために、表面層Cはフィルムにおいて反射面側となり、バックライトユニットにおいて光源側または導光板側となる。また、このような効果を奏するために、かかる表面層粒子の平均粒径は2.0μm以上、50.0μm以下であり、また、含有量は熱可塑性樹脂組成物Cの体積に対して3体積%以上、50体積%以下である。
[Surface layer C]
The white reflective film of the present invention can have a surface layer C made of a thermoplastic resin composition C containing surface layer particles on at least one surface of the film. Such a surface layer C can provide a function of imparting diffusibility to the reflected light, ensuring a gap with the light guide plate when in contact with the light guide plate, and suppressing damage to the light guide plate. In order to achieve such an effect, the surface layer C is on the reflective surface side in the film, and is on the light source side or the light guide plate side in the backlight unit. In order to achieve such an effect, the average particle diameter of the surface layer particles is 2.0 μm or more and 50.0 μm or less, and the content is 3 volumes with respect to the volume of the thermoplastic resin composition C. % Or more and 50% by volume or less.
 また、上記効果を奏するために、表面層Cの表面であって反射層Aとは反対側の表面においては上記表面層粒子により突起が形成されていることが好ましく、かかる表面の態様としては、中心線平均粗さRaで0.1μm以上、6.0μm以下の範囲にあることが好ましく、十点平均粗さRzで3.0μm以上、40.0μm以下の範囲にあることが好ましい。かかるRaとRzとは、両方かかる範囲内にあることが好ましい。 Further, in order to achieve the above effect, it is preferable that protrusions are formed by the surface layer particles on the surface of the surface layer C and on the surface opposite to the reflective layer A. The center line average roughness Ra is preferably in the range of 0.1 μm to 6.0 μm, and the ten-point average roughness Rz is preferably in the range of 3.0 μm to 40.0 μm. Both Ra and Rz are preferably within such a range.
 以下、本発明における表面層Cについて詳述する。 Hereinafter, the surface layer C in the present invention will be described in detail.
 (熱可塑性樹脂C)
 本発明における表面層Cを構成する熱可塑性樹脂Cとしては、上述した反射層Aを構成する熱可塑性樹脂Aと同様の熱可塑性樹脂を用いることができる。中でも、機械的特性および熱安定性に優れた白色反射フィルムを得る観点から、ポリエステルが好ましい。
(Thermoplastic resin C)
As the thermoplastic resin C constituting the surface layer C in the present invention, the same thermoplastic resin as the thermoplastic resin A constituting the reflective layer A described above can be used. Among these, polyester is preferable from the viewpoint of obtaining a white reflective film excellent in mechanical properties and thermal stability.
 かかるポリエステルとしては、上述の反射層Aにおけるポリエステルと同様のポリエステルを用いることができる。これらのポリエステルのなかでも、機械的特性および熱安定性に優れる白色反射フィルムを得る観点から、芳香族ポリエステルが好ましく、特にポリエチレンテレフタレートが好ましい。ポリエステルおよび好ましくはポリエチレンテレフタレートはホモポリマーであってもよいが、フィルムを1軸あるいは2軸に延伸する際に結晶化が抑制されて延伸製膜性の向上効果が高くなる点から共重合ポリエステルおよびさらには共重合ポリエチレンテレフタレートが好ましい。かかる共重合成分としては、反射層Aの項で上記したジカルボン酸成分やジオール成分が挙げられるが、耐熱性が高く、延伸製膜性の向上効果が高いという観点から、イソフタル酸成分、2,6-ナフタレンジカルボン酸成分が好ましい。共重合成分の含有割合は、ポリエステルの全ジカルボン酸成分100モル%を基準として、例えば1モル%以上、好ましくは2モル%以上、さらに好ましくは3モル%以上、特に好ましくは12モル%以上であり、また、例えば20モル%以下、好ましくは18モル%以下、さらに好ましくは17モル%以下、特に好ましくは16モル%以下である。共重合成分の割合をこの範囲とすることによって、延伸製膜性の向上効果に優れる。また、熱寸法安定性に優れる。さらに、熱撓みの抑制効果をより向上できる。 As such polyester, the same polyester as the polyester in the reflection layer A described above can be used. Among these polyesters, aromatic polyesters are preferable, and polyethylene terephthalate is particularly preferable from the viewpoint of obtaining a white reflective film excellent in mechanical properties and thermal stability. Polyester and preferably polyethylene terephthalate may be a homopolymer. However, when the film is stretched uniaxially or biaxially, crystallization is suppressed, and the copolyester and Furthermore, copolymerized polyethylene terephthalate is preferable. Examples of the copolymer component include the dicarboxylic acid component and the diol component described above in the section of the reflective layer A. From the viewpoint of high heat resistance and a high effect of improving the stretched film forming property, the isophthalic acid component, 2, A 6-naphthalenedicarboxylic acid component is preferred. The content of the copolymerization component is, for example, 1 mol% or more, preferably 2 mol% or more, more preferably 3 mol% or more, particularly preferably 12 mol% or more, based on 100 mol% of all dicarboxylic acid components of the polyester. For example, it is 20 mol% or less, preferably 18 mol% or less, more preferably 17 mol% or less, and particularly preferably 16 mol% or less. By making the ratio of a copolymerization component into this range, it is excellent in the improvement effect of stretch film forming property. Moreover, it is excellent in thermal dimensional stability. Furthermore, the effect of suppressing thermal deflection can be further improved.
 かかる熱可塑性樹脂Cは、融点が好ましくは225℃以上、260℃以下である。これにより熱撓みがより抑制し易くなる。低すぎると熱撓みの抑制効果が低くなる傾向にあり、高すぎると取扱いがし難くなる傾向にある。かかる観点から、より好ましくは230℃以上、さらに好ましくは235℃以上であり、また、より好ましくは258℃以下、さらに好ましくは256℃以下である。 The thermoplastic resin C preferably has a melting point of 225 ° C. or higher and 260 ° C. or lower. This makes it easier to suppress thermal deflection. If it is too low, the effect of suppressing heat deflection tends to be low, and if it is too high, handling tends to be difficult. From this viewpoint, it is more preferably 230 ° C. or higher, further preferably 235 ° C. or higher, more preferably 258 ° C. or lower, and further preferably 256 ° C. or lower.
 なお、本発明における表面層Cを構成する熱可塑性樹脂Cとしては、好ましい熱可塑性樹脂であるポリエステルと該ポリエステルとは異なる他の熱可塑性樹脂との混合物であってもよい。 In addition, as the thermoplastic resin C which comprises the surface layer C in this invention, the mixture of polyester which is a preferable thermoplastic resin, and another thermoplastic resin different from this polyester may be sufficient.
 (表面層粒子)
 本発明においては、表面層Cを有することにより、反射光に拡散性を付与することができる。また、導光板と接して用いるに際しては、導光板とのギャップを確保したり、導光板の傷付きを抑制したりする効果を付与することができる。
(Surface layer particles)
In the present invention, by having the surface layer C, it is possible to impart diffusibility to the reflected light. Moreover, when using it in contact with a light guide plate, the effect of ensuring the gap with a light guide plate or suppressing the damage | wound of a light guide plate can be provided.
 まず、反射光に拡散性を付与する場合の好ましい表面層粒子の態様について説明する。本態様は、直下型バックライトユニットに好適であり、特にレンズキャップを備える光源、かかる光源としては好ましくはLED光源である、を有する直下型バックライトユニットに好適である。 First, a preferable aspect of the surface layer particles in the case of imparting diffusibility to the reflected light will be described. This aspect is suitable for a direct type backlight unit, and particularly suitable for a direct type backlight unit having a light source including a lens cap, and such a light source is preferably an LED light source.
 この場合において、上記効果をより良く奏するために、表面層Cの外側表面は、Raが0.1μm以上であることが好ましく、より好ましくは0.2μm以上であり、また、3.0μm以下であることが好ましく、より好ましくは2.7μm以下である。Rzは、好ましくは3.0μm以上、より好ましくは4.0μm以上であり、また、好ましくは15.0μm以下、より好ましくは13.0μm以下である。なお、かかる表面の態様は、後述する表面層粒子の平均粒径や含有量を参照して適宜調整すれば達成可能である。 In this case, in order to achieve the above effect better, the outer surface of the surface layer C preferably has an Ra of 0.1 μm or more, more preferably 0.2 μm or more, and 3.0 μm or less. It is preferable that the thickness is 2.7 μm or less. Rz is preferably 3.0 μm or more, more preferably 4.0 μm or more, and preferably 15.0 μm or less, more preferably 13.0 μm or less. Such a surface mode can be achieved by appropriately adjusting the surface particle diameter and content of the surface layer particles described later.
 このときに表面層Cに用いる表面層粒子としては、平均粒径が2.0μm以上、40.0μm以下であることが好ましい。このような態様とすることで、反射光の拡散性が向上し易くなる。平均粒径が小さすぎると突起が形成し難くなる傾向にあり、反射光の拡散性が小さくなる傾向にある。かかる観点から、表面層粒子の平均粒径は、より好ましくは2.5μm以上、さらに好ましくは3.0μm以上、さらに好ましくは3.5μm以上、特に好ましくは4.0μm以上である。他方、使用する表面層粒子が大きすぎるとフィルムを生産する際にフィルター等を閉塞し易くなる傾向にあり、また、表面層Cから表面層粒子が脱落し易くなる傾向にある。かかる観点から、より好ましくは35.0μm以下、さらに好ましくは30.0μm以下、さらに好ましくは25.0μm以下、特に好ましくは20.0μm以下である。 At this time, the surface layer particles used for the surface layer C preferably have an average particle size of 2.0 μm or more and 40.0 μm or less. By setting it as such an aspect, the diffusibility of reflected light becomes easy to improve. If the average particle size is too small, it tends to be difficult to form protrusions, and the diffusibility of reflected light tends to be small. From this viewpoint, the average particle diameter of the surface layer particles is more preferably 2.5 μm or more, further preferably 3.0 μm or more, further preferably 3.5 μm or more, and particularly preferably 4.0 μm or more. On the other hand, if the surface layer particles used are too large, the filter or the like tends to be clogged when producing a film, and the surface layer particles tend to drop off from the surface layer C. From this viewpoint, it is more preferably 35.0 μm or less, further preferably 30.0 μm or less, further preferably 25.0 μm or less, and particularly preferably 20.0 μm or less.
 また、表面層Cの上述した機能をより奏し易くするために、表面層Cにおける表面層粒子の含有量は、表面層C、これはすなわち表面層Cを構成する熱可塑性樹脂組成物Cであり得る、の体積を基準として3体積%以上、50体積%以下であることが好ましい。含有量が少なすぎると反射光の拡散性が小さくなる傾向にある。他方、多すぎるとフィルターの目詰まりがし易くなる傾向にあり、また表面層粒子が脱落し易くなる傾向にある。かかる観点から、含有量は、より好ましくは5体積%以上、さらに好ましくは6体積%以上、特に好ましくは10体積%以上であり、また、より好ましくは45体積%以下、さらに好ましくは40体積%以下、さらに好ましくは35体積%以下、特に好ましくは30体積%以下である。 Further, in order to make the above-mentioned function of the surface layer C easier to perform, the content of the surface layer particles in the surface layer C is the surface layer C, that is, the thermoplastic resin composition C constituting the surface layer C. It is preferable that it is 3 volume% or more and 50 volume% or less on the basis of the volume of obtained. When the content is too small, the diffusibility of reflected light tends to be small. On the other hand, if the amount is too large, the filter tends to be clogged, and the surface layer particles tend to fall off. From this point of view, the content is more preferably 5% by volume or more, further preferably 6% by volume or more, particularly preferably 10% by volume or more, more preferably 45% by volume or less, still more preferably 40% by volume. Hereinafter, it is more preferably 35% by volume or less, particularly preferably 30% by volume or less.
 本発明において表面層Cに用いられる表面層粒子は、その種類を問わず有機粒子であっても、無機粒子であっても、有機無機複合粒子であってもよい。より具体的に、特に好ましい態様について説明すると、好ましい有機粒子としては、例えばポリテトラフルオロエチレンのようなフッ素含有樹脂粒子、高耐熱ナイロン粒子、高耐熱アクリル粒子等が挙げられる。また、好ましい無機粒子としては、酸化チタン粒子、硫酸バリウム、炭酸カルシウム、酸化亜鉛粒子、酸化ジルコニウム粒子、酸化アルミニウム粒子、シリカ粒子等が挙げられる。 The surface layer particles used for the surface layer C in the present invention may be organic particles, inorganic particles, or organic-inorganic composite particles regardless of the type. More specifically, a particularly preferred embodiment will be described. Preferred organic particles include, for example, fluorine-containing resin particles such as polytetrafluoroethylene, high heat-resistant nylon particles, and high heat-resistant acrylic particles. Preferred inorganic particles include titanium oxide particles, barium sulfate, calcium carbonate, zinc oxide particles, zirconium oxide particles, aluminum oxide particles, silica particles, and the like.
 中でも、凝集粒子が好ましく、さらに凝集無機粒子が好ましく、特に凝集シリカ粒子が好ましい。このような好ましい表面層粒子の採用によってより好ましい拡散性とすることができる。これは、本発明においては、表面層Cの表面層粒子として凝集粒子を採用することで、凝集粒子中においても光の拡散が望めることから、反射光の拡散性をより向上することができると考えられ、好ましい。また、凝集粒子の採用によって、製膜延伸時の破断不良をより抑制したり、自己回収原料を利用してフィルム生産する際の破断不良や光学特性への影響を抑制したりする効果もある。 Among these, aggregated particles are preferable, aggregated inorganic particles are preferable, and aggregated silica particles are particularly preferable. By adopting such preferable surface layer particles, more preferable diffusibility can be obtained. This is because, in the present invention, by employing aggregated particles as the surface layer particles of the surface layer C, light diffusion can be expected even in the aggregated particles, so that the diffusibility of reflected light can be further improved. Conceivable and preferred. In addition, the use of aggregated particles also has the effect of further suppressing breakage failure at the time of film-forming stretching, and suppressing breakage failure during film production using self-collecting raw materials and influence on optical properties.
 また、上記の無機粒子および高耐熱ナイロン粒子、高耐熱アクリル粒子は、加熱加工しても溶融やガス発生しにくいという効果も有する。さらに、表面層Cの形成の際に粒度分布や形状に変化が生じ難いという点からも好ましい。 Also, the above inorganic particles, high heat resistant nylon particles, and high heat resistant acrylic particles have an effect that they are hardly melted or gas generated even if they are heated. Furthermore, it is preferable from the viewpoint that the particle size distribution and the shape hardly change when the surface layer C is formed.
 次いで、導光板とのギャップ確保、導光板の傷付き抑制の機能を付与する場合の好ましい表面層粒子の態様について説明する。本態様は、特に導光板を備えるエッジライト型バックライトユニットに好適である。 Next, a preferable aspect of the surface layer particles in the case of providing a function of ensuring a gap with the light guide plate and suppressing damage to the light guide plate will be described. This aspect is particularly suitable for an edge light type backlight unit including a light guide plate.
 この場合において、上記効果をより良く奏するために、表面層Cの外側表面は、Raが1.0μm以上であることが好ましく、より好ましくは1.5μm以上であり、また、6.0μm以下であることが好ましく、より好ましくは5.5μm以下である。Rzは、好ましくは6.0μm以上、より好ましくは6.5μm以上であり、また、好ましくは40.0μm以下、より好ましくは35.0μm以下である。なお、かかる表面の態様は、後述する表面層粒子の平均粒径や含有量を参照して適宜調整すれば達成可能である。 In this case, in order to achieve the above effect better, the outer surface of the surface layer C preferably has an Ra of 1.0 μm or more, more preferably 1.5 μm or more, and 6.0 μm or less. It is preferable that it is 5.5 μm or less. Rz is preferably 6.0 μm or more, more preferably 6.5 μm or more, and preferably 40.0 μm or less, more preferably 35.0 μm or less. Such a surface mode can be achieved by appropriately adjusting the surface particle diameter and content of the surface layer particles described later.
 このときに表面層Cに用いる表面層粒子としては、平均粒径が3.0μm以上、50.0μm以下であることが好ましい。このような態様とすることで、導光板とのギャップ確保および導光板の傷付き抑制がし易い。平均粒径が小さすぎると突起が形成し難くなる傾向にあり、導光板とのギャップ確保がし難くなる傾向にある。また、導光板に傷が付き易くなる傾向にある。かかる観点から、表面層粒子の平均粒径は、より好ましくは3.5μm以上、さらに好ましくは4.0μm以上、さらに好ましくは4.5μm以上、特に好ましくは5.0μm以上である。他方、使用する表面層粒子が大きすぎるとフィルムを生産する際にフィルターを閉塞し易くなる傾向にあり、また、表面層粒子の脱落やそれによる導光板の傷つきがし易くなる傾向にある。かかる観点から、より好ましくは48.0μm以下、さらに好ましくは46.0μm以下、さらに好ましくは44.0μm以下、特に好ましくは42.0μm以下である。 At this time, the surface layer particles used for the surface layer C preferably have an average particle size of 3.0 μm or more and 50.0 μm or less. By setting it as such an aspect, it is easy to secure a gap with the light guide plate and to suppress damage to the light guide plate. If the average particle size is too small, it tends to be difficult to form protrusions, and it is difficult to secure a gap with the light guide plate. Further, the light guide plate tends to be easily damaged. From this viewpoint, the average particle diameter of the surface layer particles is more preferably 3.5 μm or more, further preferably 4.0 μm or more, further preferably 4.5 μm or more, and particularly preferably 5.0 μm or more. On the other hand, if the surface layer particles to be used are too large, the filter tends to be clogged when the film is produced, and the surface layer particles are liable to fall off and the light guide plate is easily damaged. From this viewpoint, it is more preferably 48.0 μm or less, further preferably 46.0 μm or less, further preferably 44.0 μm or less, and particularly preferably 42.0 μm or less.
 また、表面層C表面における上記表面の態様をより満足し易くするために、表面層Cにおける表面層粒子の含有量は、表面層C、これはすなわち表面層Cを構成する熱可塑性樹脂組成物Cであり得る、の体積を基準として3体積%以上、50体積%以下であることが好ましい。含有量が少なすぎると導光板とのギャップ確保や導光板の傷付き抑制がし難くなる傾向にある。他方、多すぎるとフィルターの目詰まりがし易くなる傾向にあり、また表面層粒子が脱落し易くなる傾向にある。かかる観点から、含有量は、より好ましくは5体積%以上、さらに好ましくは6体積%以上、特に好ましくは10体積%以上であり、また、より好ましくは45体積%以下、さらに好ましくは40体積%以下、さらに好ましくは35体積%以下、特に好ましくは30体積%以下である。 Moreover, in order to make the surface aspect of the surface layer C more satisfactory, the content of the surface layer particles in the surface layer C is the surface layer C, that is, the thermoplastic resin composition constituting the surface layer C. It is preferably 3% by volume or more and 50% by volume or less based on the volume of C. When the content is too small, it tends to be difficult to ensure a gap with the light guide plate and to suppress damage to the light guide plate. On the other hand, if the amount is too large, the filter tends to be clogged, and the surface layer particles tend to fall off. From this point of view, the content is more preferably 5% by volume or more, further preferably 6% by volume or more, particularly preferably 10% by volume or more, more preferably 45% by volume or less, still more preferably 40% by volume. Hereinafter, it is more preferably 35% by volume or less, particularly preferably 30% by volume or less.
 本発明において表面層Cに用いられる表面層粒子は、その種類を問わず有機粒子であっても、無機粒子であっても、有機無機複合粒子であってもよい。より具体的に、特に好ましい態様について説明すると、好ましい有機粒子としては、例えばポリテトラフルオロエチレンのようなフッ素含有樹脂粒子、高耐熱ナイロン粒子、高耐熱アクリル粒子等が挙げられる。また、好ましい無機粒子としては、凝集無機粒子が好ましい。該凝集無機粒子としては、凝集酸化チタン粒子、凝集硫酸バリウム粒子、凝集炭酸カルシウム粒子、凝集酸化亜鉛粒子、凝集酸化ジルコニウム粒子、凝集酸化アルミニウム粒子、凝集シリカ粒子等が挙げられる。中でも、凝集シリカ粒子が好ましい。 The surface layer particles used for the surface layer C in the present invention may be organic particles, inorganic particles, or organic-inorganic composite particles regardless of the type. More specifically, a particularly preferred embodiment will be described. Preferred organic particles include, for example, fluorine-containing resin particles such as polytetrafluoroethylene, high heat-resistant nylon particles, and high heat-resistant acrylic particles. Moreover, as a preferable inorganic particle, an aggregated inorganic particle is preferable. Examples of the aggregated inorganic particles include aggregated titanium oxide particles, aggregated barium sulfate particles, aggregated calcium carbonate particles, aggregated zinc oxide particles, aggregated zirconium oxide particles, aggregated aluminum oxide particles, and aggregated silica particles. Among these, agglomerated silica particles are preferable.
 このような好ましい表面層粒子の採用によって導光板とのギャップ確保および導光板の傷付き抑制の効果により優れる。これは、本発明においては、無機粒子として凝集粒子を採用することで、表面層粒子が適度な柔らかさとなり、導光板とのギャップ確保をしながら、導光板の傷付き抑制効果をより向上することができると考えられ、好ましい。また、凝集粒子の採用によって、製膜延伸時の破断不良をより抑制したり、自己回収原料を利用してフィルム生産する際の破断不良や光学特性への影響を抑制したりする効果もある。 By adopting such preferable surface layer particles, the effect of securing a gap with the light guide plate and suppressing damage to the light guide plate is excellent. In the present invention, by adopting aggregated particles as inorganic particles, the surface layer particles become moderately soft, and the effect of suppressing damage to the light guide plate is further improved while ensuring a gap with the light guide plate. It is thought that it can be possible and is preferable. In addition, the use of aggregated particles also has the effect of further suppressing breakage failure at the time of film-forming stretching, and suppressing breakage failure during film production using self-collecting raw materials and influence on optical properties.
 また、上記の無機粒子および高耐熱ナイロン粒子、高耐熱アクリル粒子は、加熱加工しても溶融やガス発生しにくいという効果も有する。さらに、表面層Cの形成の際に粒度分布や形状に変化が生じ難いという点からも好ましい。 Also, the above inorganic particles, high heat resistant nylon particles, and high heat resistant acrylic particles have an effect that they are hardly melted or gas generated even if they are heated. Furthermore, it is preferable from the viewpoint that the particle size distribution and the shape hardly change when the surface layer C is formed.
 (その他の成分)
 表面層Cは、上記の熱可塑性樹脂Cに、本発明の目的を阻害しない範囲において任意成分を含有した熱可塑性樹脂組成物Cからなるものであってもよい。かかる任意成分としては、例えば紫外線吸収剤、酸化防止剤、帯電防止剤、蛍光増白剤、ワックス等を挙げることができる。
(Other ingredients)
The surface layer C may be composed of the thermoplastic resin composition C containing the optional components in the above-described thermoplastic resin C within a range not impairing the object of the present invention. Examples of such optional components include ultraviolet absorbers, antioxidants, antistatic agents, fluorescent brighteners, and waxes.
 また、表面層Cは、本発明の目的を阻害しない範囲において、反射層Aにおいて挙げたボイド形成剤を任意成分として含有していてもよく、そのような態様とすることで反射率の向上効果を高くすることができる。その反面、表面層Cにおけるボイド形成剤の含有量を少なくするか、ボイド形成剤を含有しないと、延伸製膜性の向上効果を高くすることができる。これらの観点から、表面層Cにおけるボイド体積率、かかるボイド体積率は表面層Cの体積に対する表面層Cにおけるボイドの体積の割合である、は、0体積%以上、15体積%未満であることが好ましく、さらに好ましくは5体積%以下、特に好ましくは3体積%以下である。特に本発明においては、反射特性と延伸製膜性の向上効果を同時に高めることができることから、上述した反射層Aにおける好ましいボイド体積率と、かかる表面層Cにおける好ましいボイド体積率とを同時に採用することが特に好ましい。 Further, the surface layer C may contain the void forming agent mentioned in the reflective layer A as an optional component as long as the object of the present invention is not hindered. Can be high. On the other hand, if the content of the void forming agent in the surface layer C is reduced or if no void forming agent is contained, the effect of improving the stretch film forming property can be increased. From these viewpoints, the void volume ratio in the surface layer C, which is the ratio of the void volume in the surface layer C to the volume of the surface layer C, is 0% by volume or more and less than 15% by volume. Is preferable, more preferably 5% by volume or less, and particularly preferably 3% by volume or less. In particular, in the present invention, since the effect of improving the reflection characteristics and stretched film forming properties can be enhanced at the same time, the preferred void volume ratio in the reflective layer A and the preferred void volume ratio in the surface layer C are simultaneously employed. It is particularly preferred.
 [層構成]
 本発明において白色反射フィルムの厚みは、155μm以上、350μm以下であることが好ましい。ここでかかる厚みは、白色反射フィルムが反射層Aのみからなる場合は反射層Aの厚みである。これにより反射率の向上効果を高くすることができる。また、熱撓み抑制の向上効果を高くできる。薄すぎると反射率の向上効果が低く、また、熱撓み抑制の向上効果が低く、他方厚すぎることは非効率である。このような観点から、より好ましくは160μm以上、さらに好ましくは170μm以上、特に好ましくは180μm以上であり、また、より好ましくは340μm以下、さらに好ましくは330μm以下、特に好ましくは320μm以下である。
[Layer structure]
In the present invention, the thickness of the white reflective film is preferably 155 μm or more and 350 μm or less. Here, the thickness is the thickness of the reflective layer A when the white reflective film is composed of only the reflective layer A. Thereby, the improvement effect of a reflectance can be made high. Moreover, the improvement effect of heat deflection suppression can be made high. If it is too thin, the effect of improving the reflectivity is low, and the effect of suppressing thermal deflection is low, while if it is too thick, it is inefficient. From such a viewpoint, it is more preferably 160 μm or more, further preferably 170 μm or more, particularly preferably 180 μm or more, more preferably 340 μm or less, still more preferably 330 μm or less, particularly preferably 320 μm or less.
 反射層Aは、白色反射フィルム全体の厚みを100%とした際の厚み比率が、好ましくは50%以上であればよく、より好ましくは60%以上、さらに好ましくは70%以上であり、また、より好ましくは95%以下、さらに好ましくは90%以下である。ここでかかる厚み比率は、反射層Aを複数有する場合は合計厚みの比率である。また、支持層Bを有する場合、その厚み比率は、好ましくは5%以上、より好ましくは10%以上であり、また、好ましくは50%以下、より好ましくは40%以下、さらに好ましくは30%以下である。ここでかかる厚み比率は、支持層Bを複数有する場合は合計厚みの比率である。これにより、反射特性や延伸製膜性等の各特性のバランスをより良くすることができる。また、これらのバランスをより良くしながら熱撓み抑制の向上効果をより高くできる。 The thickness ratio of the reflective layer A when the thickness of the entire white reflective film is 100% is preferably 50% or more, more preferably 60% or more, and even more preferably 70% or more. More preferably it is 95% or less, and still more preferably 90% or less. Here, the thickness ratio is the ratio of the total thickness when a plurality of reflective layers A are provided. Moreover, when it has the support layer B, the thickness ratio is preferably 5% or more, more preferably 10% or more, preferably 50% or less, more preferably 40% or less, and even more preferably 30% or less. It is. Here, the thickness ratio is the ratio of the total thickness when a plurality of support layers B are provided. Thereby, the balance of each characteristic, such as a reflection characteristic and extending | stretching film forming property, can be improved. Moreover, the improvement effect of thermal deflection suppression can be made higher while improving these balances.
 本発明における支持層Bの厚みは、2μm以上、80μm以下であることが好ましい。ここでかかる厚みは、フィルム中に支持層Bを複数有する場合は合計厚みである。これにより、延伸製膜性の向上効果を高くでき、また、熱撓みの抑制効果を高くできる。さらに熱収縮を小さくできる。支持層Bが薄すぎると、延伸製膜性の向上効果が低くなる傾向にある。また、熱撓みの抑制効果が低くなる傾向にある。他方、厚すぎても上記効果はそれほど変わらず、非効率である。これら観点から、支持層Bの厚み(合計厚み)は、より好ましくは5μm以上、さらに好ましくは10μm以上であり、また、より好ましくは70μm以下、さらに好ましくは65μm以下である。 The thickness of the support layer B in the present invention is preferably 2 μm or more and 80 μm or less. Here, this thickness is the total thickness when the film has a plurality of support layers B. Thereby, the improvement effect of extending | stretching film forming property can be made high, and the suppression effect of heat deflection can be made high. Furthermore, thermal shrinkage can be reduced. When the support layer B is too thin, the effect of improving the stretch film forming property tends to be low. In addition, the effect of suppressing thermal deflection tends to be low. On the other hand, even if it is too thick, the above effect does not change so much and is inefficient. From these viewpoints, the thickness (total thickness) of the support layer B is more preferably 5 μm or more, further preferably 10 μm or more, more preferably 70 μm or less, and further preferably 65 μm or less.
 また、反射層Aの反射面側に支持層Bを有する場合は、該支持層Bの厚みが反射率に影響する。すなわち、反射層Aの反射面側の支持層Bの厚みが厚すぎる場合は、反射率の向上効果が低くなる傾向にある。他方、薄すぎると反射層Aの炭酸カルシウム粒子脱落の抑制効果や、反射層Aの炭酸カルシウムによる装置や他部材の傷付きを抑制する効果が低くなる傾向にある。これら観点から、支持層Bの厚みは、好ましくは1μm以上、40μm以下であり、より好ましくは2.5μm以上、さらに好ましくは5μm以上であり、また、より好ましくは35μm以下、さらに好ましくは32.5μm以下である。ここでかかる厚みは、支持層Bの1層の厚みである。 Further, when the support layer B is provided on the reflection surface side of the reflection layer A, the thickness of the support layer B affects the reflectance. That is, when the thickness of the support layer B on the reflective surface side of the reflective layer A is too thick, the effect of improving the reflectance tends to be low. On the other hand, if it is too thin, the effect of suppressing the falling of calcium carbonate particles in the reflective layer A and the effect of suppressing the damage of the device and other members due to the calcium carbonate of the reflective layer A tend to be low. From these viewpoints, the thickness of the support layer B is preferably 1 μm or more and 40 μm or less, more preferably 2.5 μm or more, further preferably 5 μm or more, more preferably 35 μm or less, and further preferably 32. 5 μm or less. Here, the thickness is the thickness of one layer of the support layer B.
 白色反射フィルムが反射層Aと支持層Bとを有する場合、その積層構成は、反射層AをA、支持層BをBと表わした際に、B/Aの2層構成、A/B/AやB/A/Bの3層構成、B/A/B/AやB/A/B’/Aの4層構成、また同様にAとBとを有する5層以上の多層構成を挙げることができる。なお、上記においてB’は、支持層Bと同様の構成であり別の構成の支持層B’を表わす。特に好ましくはB/Aの2層構成、A/B/A、B/A/Bの3層構成である。最も好ましくはB/A/Bの3層構成であり、延伸製膜性により優れる。また、表裏の支持層Bが近い厚み範囲であると、カール等の問題が生じ難い。 When the white reflective film has the reflective layer A and the support layer B, the laminated structure is a two-layer structure of B / A when the reflective layer A is represented by A and the support layer B is represented by B, A / B / A three-layer structure of A and B / A / B, a four-layer structure of B / A / B / A and B / A / B ′ / A, and a multilayer structure of five or more layers having A and B similarly. be able to. In the above, B ′ has the same configuration as that of the support layer B and represents a support layer B ′ having a different configuration. Particularly preferred are a two-layer structure of B / A and a three-layer structure of A / B / A and B / A / B. Most preferably, it has a three-layer structure of B / A / B, and is excellent in stretch film forming properties. Moreover, when the support layers B on the front and back sides are in the close thickness range, problems such as curling are unlikely to occur.
 本発明においては、反射層Aと支持層B以外に、本発明の目的を損なわない限りにおいて他の層を有していてもよい。例えば、帯電防止性や導電性、紫外線耐久性等の機能を付与するための層を有していてもよい。かかる層は、好ましくは塗布層である。また、反射光に拡散性を付与するため、もしくは導光板とのギャップを確保するための、ビーズを含有するビーズ層を、反射面側の少なくとも片面の最表面に有することもできる。なお、表面層Cはビーズ層の好ましい一態様である。 In the present invention, in addition to the reflective layer A and the support layer B, other layers may be provided as long as the object of the present invention is not impaired. For example, you may have the layer for providing functions, such as antistatic property, electroconductivity, and ultraviolet durability. Such a layer is preferably a coating layer. Further, a bead layer containing beads for imparting diffusibility to the reflected light or securing a gap with the light guide plate can be provided on at least one outermost surface on the reflective surface side. The surface layer C is a preferred embodiment of the bead layer.
 表面層Cを有する場合、本発明における表面層Cの厚みは、5μm以上、70μm以下であることが好ましい。ここでかかる厚みは、フィルム中に表面層Cを複数有する場合は光源側または導光板側となる1層の厚みである。これにより表面層Cの上述の効果をより奏し易くなる。薄すぎると表面層粒子の脱落が発生しやすく、他方厚すぎると突起形成し難くなる傾向にあり、上述の効果を奏し難くなる傾向にある。また経済的に非効率である。このような観点から、さらに好ましくは10μm以上であり、また、60μm以下である。 In the case of having the surface layer C, the thickness of the surface layer C in the present invention is preferably 5 μm or more and 70 μm or less. Here, the thickness is a thickness of one layer on the light source side or the light guide plate side when a plurality of surface layers C are included in the film. Thereby, the above-described effects of the surface layer C can be easily achieved. If it is too thin, the surface layer particles are likely to fall off. On the other hand, if it is too thick, it tends to be difficult to form protrusions, and it tends to be difficult to achieve the above effects. It is also economically inefficient. From such a viewpoint, it is more preferably 10 μm or more and 60 μm or less.
 白色反射フィルムが反射層Aと表面層Cとを有する場合、その積層構成は、反射層AをA、表面層CをCと表わした際に、C/Aの2層構成、C/A/Cの3層構成、C/A/C/AやC/A/C’/Aの4層構成、また同様にAとCとを有する5層以上の多層構成を挙げることができる。なお、上記において表面にないCは、表面層Cと同様の構成の内面層Cを表わす。またC’は、表面層Cと同様の構成であり別の構成の表面層C’を表わす。特に好ましくはC/Aの2層構成、C/A/Cの3層構成である。最も好ましくはC/A/Cの3層構成であり、延伸製膜性により優れる。また、表裏の表面層Cが近い厚み範囲であると、カール等の問題が生じ難い。 When the white reflective film has the reflective layer A and the surface layer C, the laminated structure is a two-layer structure of C / A when the reflective layer A is represented by A and the surface layer C is represented by C, C / A / Examples thereof include a three-layer structure of C, a four-layer structure of C / A / C / A and C / A / C ′ / A, and a multilayer structure of five or more layers having A and C. In the above, C not on the surface represents an inner surface layer C having the same configuration as the surface layer C. C ′ has the same configuration as the surface layer C and represents a surface layer C ′ having a different configuration. Particularly preferred are a two-layer structure of C / A and a three-layer structure of C / A / C. Most preferably, it has a three-layer structure of C / A / C, and is excellent in stretch film formation. Further, when the front and back surface layers C are in the close thickness range, problems such as curling hardly occur.
 また、白色反射フィルムが反射層A、支持層Bおよび表面層Cを有する場合、その積層構成は、支持層BをBと表わした際に、C/B/AやC/A/Bの3層構成、C/A/B/AやC/B/A/Bの4層構成、C/B/A/B/AやC/B/A/B’/Aの5層構成、また同様にAとBとを有する6層以上の多層構成の少なくとも片方の表面に表面層Cを有する多層構成を挙げることができる。なお、上記においてB’は、支持層Bと同様の構成であり別の構成の支持層B’を表わす。特に好ましくはC/B/A、C/A/Bの3層構成、C/A/B/A、C/B/A/Bの4層構成である。最も好ましくはC/B/A/Bの4層構成であり、延伸製膜性により優れる。また、表裏の支持層Bが近い厚み範囲であると、カール等の問題が生じ難い。 Further, when the white reflective film has the reflective layer A, the support layer B, and the surface layer C, when the support layer B is represented as B, the laminated structure is C / B / A or C / A / B 3 Layer structure, 4 layer structure of C / A / B / A and C / B / A / B, 5 layer structure of C / B / A / B / A and C / B / A / B '/ A, and the like And a multilayer structure having a surface layer C on at least one surface of a multilayer structure of 6 or more layers having A and B. In the above, B ′ has the same configuration as that of the support layer B and represents a support layer B ′ having a different configuration. Particularly preferred are a three-layer structure of C / B / A and C / A / B, and a four-layer structure of C / A / B / A and C / B / A / B. Most preferably, it has a four-layer structure of C / B / A / B, and is excellent in stretch film forming properties. Moreover, when the support layers B on the front and back sides are in the close thickness range, problems such as curling are unlikely to occur.
 [フィルムの製造方法]
 以下、本発明の白色反射フィルムを製造する方法の一例を説明する。
[Film Production Method]
Hereinafter, an example of the method for producing the white reflective film of the present invention will be described.
 本発明の白色反射フィルムを製造するに際しては、反射層Aは溶融押出法により形成されることが好ましい。また、白色反射フィルムが反射層Aと支持層Bとの積層構成である場合、または反射層Aと表面層Cとの積層構成である場合、または反射層Aと支持層Bと表面層Cとの積層構成である場合は、これら各層を共押出法により積層して製造することが好ましい。これにより延伸製膜性の向上効果を高められる。また、反射層Aと支持層B、または反射層Aと表面層C、または反射層Aと支持層Bと表面層Cとは、共押出法により直接積層されていることが好ましい。このように共押出法で積層することによって、各層の界面密着性を高くすることができる上、フィルムを貼り合わせたり、フィルムの製膜後に改めて支持層Bや表面層Cを形成したりするための工程を経る必要が無いため、安価に、容易に量産できる。 In producing the white reflective film of the present invention, the reflective layer A is preferably formed by a melt extrusion method. Further, when the white reflective film has a laminated structure of the reflective layer A and the support layer B, or a laminated structure of the reflective layer A and the surface layer C, or the reflective layer A, the support layer B, and the surface layer C. In the case of the laminated structure, it is preferable that these layers are laminated by a coextrusion method. Thereby, the improvement effect of extending | stretching film forming property can be heightened. The reflective layer A and the support layer B, or the reflective layer A and the surface layer C, or the reflective layer A, the support layer B, and the surface layer C are preferably directly laminated by a coextrusion method. By laminating in this way by coextrusion, the interfacial adhesion of each layer can be increased, and the films are bonded together or the support layer B and the surface layer C are formed again after the film is formed. Since it is not necessary to go through this process, it can be easily mass-produced at low cost.
 以下に、本発明の白色反射フィルムのより具体的な製法の一例について説明するが、本発明はかかる製法に限定はされず、また下記を参考に他の態様についても同様に製造することができる。その際、押出工程を含まない場合は、以下の「溶融押出温度」は、例えば「溶融温度」と読み替えればよい。なお、ここで、用いるポリエステルの融点をTm(単位:℃)、ガラス転移温度をTg(単位:℃)とする。 Hereinafter, an example of a more specific production method of the white reflective film of the present invention will be described. However, the present invention is not limited to this production method, and other embodiments can be similarly produced with reference to the following. . At that time, when the extrusion step is not included, the following “melt extrusion temperature” may be read as, for example, “melt temperature”. Here, the melting point of the polyester used is Tm (unit: ° C), and the glass transition temperature is Tg (unit: ° C).
 反射層Aと支持層Bとを有する場合であって、反射層Aを構成する熱可塑性樹脂Aおよび支持層Bを構成する熱可塑性樹脂Bとしてポリエステルを採用し、積層方法として共押出法を採用した場合は、まず、反射層Aを形成するための熱可塑性樹脂組成物A、これは、熱可塑性樹脂Aとしてポリエステルを採用した場合はポリエステル組成物Aともいう、として、ポリエステルと、炭酸カルシウム粒子と、非相溶樹脂を含有する場合は非相溶樹脂としてシクロオレフィンと、他の任意成分を混合したものを用意する。また、支持層Bを形成するための熱可塑性樹脂組成物B、これは、熱可塑性樹脂Bとしてポリエステルを採用した場合はポリエステル組成物Bともいう、として、ポリエステルと、他の任意成分を混合したものを用意する。ここで支持層Bについては、他の任意成分を添加せずに熱可塑性樹脂B、かかる熱可塑性樹脂Bとしてはたとえばポリエステルである、を用いても良い。これらポリエステル組成物は、乾燥して十分に水分を除去して用いる。 In the case of having a reflective layer A and a support layer B, polyester is adopted as the thermoplastic resin A constituting the reflective layer A and the thermoplastic resin B constituting the support layer B, and a coextrusion method is adopted as the laminating method. In this case, first, the thermoplastic resin composition A for forming the reflective layer A, which is also referred to as the polyester composition A when the polyester is used as the thermoplastic resin A, the polyester and calcium carbonate particles And when it contains incompatible resin, what mixed cycloolefin and another arbitrary component as incompatible resin is prepared. Further, a thermoplastic resin composition B for forming the support layer B, which is also referred to as a polyester composition B when a polyester is employed as the thermoplastic resin B, is mixed with polyester and other optional components. Prepare things. Here, for the support layer B, the thermoplastic resin B may be used without adding other optional components, and the thermoplastic resin B may be polyester, for example. These polyester compositions are used after drying to sufficiently remove moisture.
 また、反射層Aと表面層Cとを有する場合であって、反射層Aを構成する熱可塑性樹脂Aおよび表面層Cを構成する熱可塑性樹脂Cとしてポリエステルを採用し、積層方法として共押出法を採用した場合は、まず、反射層Aを形成するための熱可塑性樹脂組成物A、これは、熱可塑性樹脂Aとしてポリエステルを採用した場合はポリエステル組成物Aともいう、として、ポリエステルと、炭酸カルシウム粒子と、他の任意成分を混合したものを用意する。また、表面層Cを形成するための熱可塑性樹脂組成物C、これは、熱可塑性樹脂Cとしてポリエステルを採用した場合はポリエステル組成物Cともいう、として、ポリエステルと、表面層粒子と、他の任意成分を混合したものを用意する。これらポリエステル組成物は、乾燥して十分に水分を除去して用いる。 Further, in the case of having a reflective layer A and a surface layer C, a polyester is adopted as the thermoplastic resin A constituting the reflective layer A and the thermoplastic resin C constituting the surface layer C, and a coextrusion method is used as a laminating method. First, a thermoplastic resin composition A for forming the reflective layer A, which is also referred to as a polyester composition A when a polyester is used as the thermoplastic resin A, is polyester and carbonic acid. Prepare a mixture of calcium particles and other optional ingredients. Also, a thermoplastic resin composition C for forming the surface layer C, which is also referred to as a polyester composition C when polyester is used as the thermoplastic resin C, polyester, surface layer particles, and other Prepare a mixture of optional ingredients. These polyester compositions are used after drying to sufficiently remove moisture.
 次に、乾燥したポリエステル組成物を、それぞれ別の押出機に投入し、溶融押出する。溶融押出温度は、Tm以上が必要であり、Tm+40℃程度とすればよい。 Next, the dried polyester composition is put into separate extruders and melt-extruded. The melt extrusion temperature needs to be Tm or higher, and may be about Tm + 40 ° C.
 またこのとき、フィルムの製造に用いるポリエステル組成物、特に反射層Aに用いるポリエステル組成物Aは、線径15μm以下のステンレス鋼細線よりなる平均目開き10μm以上、100μm以下の不織布型フィルターを用いて濾過を行うことが好ましい。この濾過を行うことで、通常は凝集して粗大凝集粒子となりやすい粒子の凝集を抑え、粗大異物の少ないフィルムを得ることができる。そして、凝集した粒子を抑制することによりミクロボイド形成し易くなり、熱撓みがより抑制される。なお、不織布の平均目開きは、好ましくは15μm以上、さらに好ましくは20μm以上、また、好ましくは50μm以下、さらに好ましくは40μm以下である。また、熱可塑性樹脂組成物Cについては、好ましくは35μm以上、さらに好ましくは40μm以上であり、また、好ましくは70μm以下、さらに好ましくは60μm以下である。濾過したポリエステル組成物は、溶融した状態でフィードブロックを用いた同時多層押出法、すなわち共押出法により、ダイから多層状態で押し出し、未延伸積層シートを製造する。ダイより押し出された未延伸積層シートを、キャスティングドラムで冷却固化し、未延伸積層フィルムとする。 At this time, the polyester composition used for the production of the film, particularly the polyester composition A used for the reflective layer A, uses a nonwoven fabric type filter having an average opening of 10 μm or more and 100 μm or less made of stainless steel fine wires having a wire diameter of 15 μm or less. It is preferable to perform filtration. By performing this filtration, it is possible to suppress aggregation of particles that normally tend to aggregate into coarse aggregated particles, and to obtain a film with few coarse foreign matters. And by suppressing the aggregated particles, it becomes easier to form microvoids, and thermal deflection is further suppressed. The average opening of the nonwoven fabric is preferably 15 μm or more, more preferably 20 μm or more, and preferably 50 μm or less, more preferably 40 μm or less. In addition, the thermoplastic resin composition C is preferably 35 μm or more, more preferably 40 μm or more, and preferably 70 μm or less, more preferably 60 μm or less. The filtered polyester composition is extruded in a multilayer state from a die by a simultaneous multilayer extrusion method using a feed block in a molten state, that is, a co-extrusion method, to produce an unstretched laminated sheet. The unstretched laminated sheet extruded from the die is cooled and solidified with a casting drum to obtain an unstretched laminated film.
 次いで、この未延伸積層フィルムをロール加熱、赤外線加熱等で加熱し、製膜機械軸方向(以下、縦方向または長手方向またはMDと呼称する場合がある。)に延伸して縦延伸フィルムを得る。この延伸は2個以上のロールの周速差を利用して行うのが好ましい。縦延伸後のフィルムは、続いてテンターに導かれ、縦方向と厚み方向とに垂直な方向(以下、横方向または幅方向またはTDと呼称する場合がある。)に延伸して、二軸延伸フィルムとする。 Next, this unstretched laminated film is heated by roll heating, infrared heating or the like, and stretched in the film forming machine axial direction (hereinafter sometimes referred to as the longitudinal direction or the longitudinal direction or MD) to obtain a longitudinally stretched film. . This stretching is preferably performed by utilizing the difference in peripheral speed between two or more rolls. The film after the longitudinal stretching is then guided to a tenter and stretched in a direction perpendicular to the longitudinal direction and the thickness direction (hereinafter sometimes referred to as a transverse direction or a width direction or TD) to be biaxially stretched. A film.
 延伸温度としては、ポリエステルのTg以上、好ましくは反射層Aを構成するポリエステルのTg以上、Tg+30℃以下の温度で行うことが好ましく、延伸製膜性により優れ、またボイドが好ましく形成されやすい。また、延伸倍率としては、縦方向、横方向ともに、好ましくは2.5~4.3倍、さらに好ましくは2.7~4.2倍である。延伸倍率が低すぎるとフィルムの厚み斑が悪くなる傾向にあり、またボイドが形成されにくい傾向にあり、他方高すぎると製膜中に破断が発生し易くなる傾向にある。なお、縦延伸を実施しその後横延伸を行うような逐次2軸延伸の際には、2段目、すなわちこの場合は横延伸である、は1段目の延伸温度よりも10~50℃程度高くする事が好ましい。これは1段目の延伸で配向した事により1軸フィルムとしてのTgがアップしている事に起因する。 The stretching temperature is preferably Tg or higher of the polyester, preferably Tg of the polyester constituting the reflective layer A and Tg + 30 ° C. or lower, and is excellent in stretch film-forming properties, and voids are preferably formed. The stretching ratio is preferably 2.5 to 4.3 times, more preferably 2.7 to 4.2 times in both the longitudinal direction and the transverse direction. If the draw ratio is too low, uneven thickness of the film tends to be worsened, and voids tend not to be formed. On the other hand, if it is too high, breakage tends to occur during film formation. In the case of sequential biaxial stretching in which longitudinal stretching is performed and then lateral stretching is performed, the second stage, that is, in this case, transverse stretching, is about 10 to 50 ° C. than the first stage stretching temperature. Higher is preferable. This is due to the fact that the Tg as a uniaxial film is increased due to the orientation in the first stage of stretching.
 また、各延伸の前にはフィルムを予熱することが好ましい。例えば横延伸の予熱処理はポリエステル、これは好ましくは反射層Aを構成するポリエステルである、のTg+5℃より高い温度から始めて、徐々に昇温するとよい。横延伸過程での昇温は連続的でも段階的(逐次的ともいう。)でもよいが通常逐次的に昇温する。例えばテンターの横延伸ゾーンをフィルム走行方向に沿って複数に分け、ゾーン毎に所定温度の加熱媒体を流すことで昇温する。 Also, it is preferable to preheat the film before each stretching. For example, the pre-heat treatment for transverse stretching is preferably started from a temperature higher than Tg + 5 ° C. of polyester, which is preferably the polyester constituting the reflective layer A, and gradually raised. The temperature increase in the transverse stretching process may be continuous or stepwise (also referred to as sequential), but the temperature is generally increased sequentially. For example, the transverse stretching zone of the tenter is divided into a plurality along the film running direction, and the temperature is raised by flowing a heating medium having a predetermined temperature for each zone.
 二軸延伸後のフィルムは、続いて、熱固定、熱弛緩の処理を順次施して二軸配向フィルムとするが、溶融押出から延伸に引き続いて、これらの処理もフィルムを走行させながら行うことができる。 The film after biaxial stretching is subsequently subjected to heat-fixing and heat-relaxing treatments in order to obtain a biaxially oriented film. However, following melt-extrusion to stretching, these treatments can also be performed while the film is running. it can.
 二軸延伸後のフィルムは、クリップで両端を把持したままポリエステルの融点をTmとして(Tm-10℃)~(Tm-100℃)で、定幅または10%以下の幅減少下で0.01~100秒間熱処理して、熱固定し、熱収縮率を低下させるのがよい。なお、かかる融点は、好ましくは反射層Aを構成するポリエステルの融点である。かかる熱処理温度が高すぎるとフィルムの平面性が悪くなる傾向にあり、厚み斑が大きくなる傾向にある。他方低すぎると熱収縮率が大きくなる傾向にある。また、これにより熱撓みの抑制効果をより向上できる。 The film after biaxial stretching is 0.01% with a constant width or a decrease in width of 10% or less with the melting point of the polyester being Tm (Tm-10 ° C) to (Tm-100 ° C) while holding both ends with clips. It is preferable to heat-fix for ˜100 seconds to reduce heat shrinkage. The melting point is preferably the melting point of the polyester constituting the reflective layer A. When the heat treatment temperature is too high, the flatness of the film tends to deteriorate, and the thickness unevenness tends to increase. On the other hand, if it is too low, the thermal shrinkage tends to increase. Moreover, this can further improve the effect of suppressing thermal deflection.
 また、熱収縮量を調整するために、把持しているフィルムの両端を切り落し、フィルム縦方向の引き取り速度を調整し、縦方向に弛緩させることができる。弛緩させる手段としてはテンター出側のロール群の速度を調整する。弛緩させる割合として、テンターのフィルムライン速度に対してロール群の速度ダウンを行い、好ましくは0.1~2.5%、さらに好ましくは0.2~2.3%、特に好ましくは0.3~2.0%の速度ダウンを実施してフィルムを弛緩(以下、この値を「弛緩率」ということがある。)して、弛緩率をコントロールすることによって縦方向の熱収縮率を調整する。また、これにより熱撓みの抑制効果をより向上できる。フィルム横方向については、両端を切り落すまでの過程で幅減少させて、所望の熱収縮率を得ることができる。 Also, in order to adjust the amount of heat shrinkage, both ends of the film being gripped can be cut off, the film take-up speed in the vertical direction can be adjusted, and the film can be relaxed in the vertical direction. As a means for relaxing, the speed of the roll group on the tenter exit side is adjusted. As the rate of relaxation, the speed of the roll group is reduced with respect to the film line speed of the tenter, preferably 0.1 to 2.5%, more preferably 0.2 to 2.3%, particularly preferably 0.3. Adjust the thermal shrinkage in the longitudinal direction by controlling the relaxation rate by relaxing the film by reducing the speed by ~ 2.0% (hereinafter this value may be referred to as "relaxation rate"). . Moreover, this can further improve the effect of suppressing thermal deflection. In the film transverse direction, the width can be reduced in the process until both ends are cut off, and a desired heat shrinkage rate can be obtained.
 なお、二軸延伸に際しては、上記のような縦-横の逐次二軸延伸法以外にも、横-縦の逐次二軸延伸法でもよい。また、同時二軸延伸法を用いて製膜することができる。同時二軸延伸法の場合、延伸倍率は、縦方向、横方向ともに例えば2.7~4.3倍、好ましくは2.8~4.2倍である。 In addition, in biaxial stretching, in addition to the above-described longitudinal-lateral sequential biaxial stretching method, a lateral-longitudinal sequential biaxial stretching method may be used. Moreover, it can form into a film using a simultaneous biaxial stretching method. In the case of the simultaneous biaxial stretching method, the stretching ratio is, for example, 2.7 to 4.3 times, preferably 2.8 to 4.2 times in both the longitudinal direction and the transverse direction.
 かくして本発明の白色反射フィルムを得ることができる。 Thus, the white reflective film of the present invention can be obtained.
 [白色反射フィルムの特性]
 (反射率、正面輝度)
 本発明の白色反射フィルムの反射率は、60%以上である。好ましくは70%以上、より好ましくは80%以上、さらに好ましくは90%以上、特に好ましくは95%以上、最も好ましくは97%以上である。反射率が上記範囲であることによって、液晶表示装置や照明等に用いた場合には、高い輝度を得ることができる。かかる反射率は、反射層Aのボイド体積率を高くする等好ましい態様としたり、反射層Aの厚みを厚くしたり、また、支持層Bや表面層Cを有する場合は、これら層にボイド形成剤を含有させたり、反射層Aよりも反射面側の支持層Bや表面層Cの厚みを薄くしたり等各層の態様を好ましい態様としたりすることにより達成できる。
[Characteristics of white reflective film]
(Reflectance, front brightness)
The reflectance of the white reflective film of the present invention is 60% or more. Preferably it is 70% or more, more preferably 80% or more, still more preferably 90% or more, particularly preferably 95% or more, and most preferably 97% or more. When the reflectance is within the above range, high luminance can be obtained when used in a liquid crystal display device, illumination, or the like. Such reflectivity is preferably a mode in which the void volume ratio of the reflective layer A is increased, the thickness of the reflective layer A is increased, or when the support layer B and the surface layer C are provided, voids are formed in these layers. This can be achieved by adding an agent, or by reducing the thickness of the support layer B or the surface layer C closer to the reflective surface than the reflective layer A, or by making the mode of each layer a preferred mode.
 また、正面輝度は、後述する測定方法により求められるが、2000cd/m以上が好ましく、3000cd/m以上がより好ましく、4000cd/m以上がさらに好ましく、4400cd/m以上が特に好ましい。 Further, the front luminance is determined by a measuring method described below is preferably 2000 cd / m 2 or more, more preferably 3000 cd / m 2 or more, more preferably 4000 cd / m 2 or more, 4400cd / m 2 or more is particularly preferable.
 なお、ここで反射率や正面輝度は、白色反射フィルムの反射面として用いる面についての値である。 In addition, a reflectance and front luminance here are the values about the surface used as a reflective surface of a white reflective film.
 (熱撓み)
 本発明は熱撓みの抑制が目的である。熱撓みとは、例えばテレビやモニター等の製品において液晶ディスプレイ等の表示装置を駆動するための電気回路や、バックライトユニットや光源から発生する熱、あるいは使用環境からの熱や湿度によって、製品に備わる白色反射フィルムに撓みないし歪みが生じてしまう現象である。白色反射フィルムに熱撓みが発生すると輝度斑の原因となり、画質の低下に直結する問題となる。
(Heat deflection)
The object of the present invention is to suppress thermal deflection. For example, in a product such as a television or a monitor, heat deflection is caused by an electric circuit for driving a display device such as a liquid crystal display, heat generated from a backlight unit or a light source, or heat and humidity from a use environment. This is a phenomenon in which the white reflective film is bent or distorted. When heat deflection occurs in the white reflective film, it causes brightness spots, which directly leads to a decrease in image quality.
 [用途]
 本発明の白色反射フィルムは、大型ディスプレイ用である。ここで大型ディスプレイとは、30インチ以上、好ましくは32インチ以上、より好ましくは40インチ以上、さらに好ましくは42インチ以上の液晶ディスプレイをいう。このような大型ディスプレイは、バックシャーシに電気回路等を組み込むための窪みまたは仕切りが設けてある。そのため、かかる窪みに上述した原因等により発生する熱が局所的に滞留し、熱撓みがより生じ易くなる。ディスプレイのサイズが大きくなるほど、輝度を確保するために必要な光源の数が多くなるため、回路等も複雑することから滞留する熱は多くなり、熱撓みがより生じ易くなる傾向にある。そのため、従来の技術ではこのような大型ディスプレイにおける熱撓みの抑制は困難であった。対して本発明は、このような大型ディスプレイにおいても、良好に熱撓みを抑制できるものである。
[Usage]
The white reflective film of the present invention is for a large display. Here, the large display means a liquid crystal display of 30 inches or more, preferably 32 inches or more, more preferably 40 inches or more, and further preferably 42 inches or more. Such a large display is provided with a recess or partition for incorporating an electric circuit or the like into the back chassis. For this reason, the heat generated by the above-described causes or the like is locally retained in the depression, and thermal deflection is more likely to occur. As the size of the display increases, the number of light sources necessary to ensure the luminance increases, so that the circuit and the like are complicated, so that the accumulated heat increases and thermal deflection tends to occur more easily. For this reason, it has been difficult for the conventional technology to suppress thermal deflection in such a large display. On the other hand, the present invention can satisfactorily suppress thermal deflection even in such a large display.
 以下、実施例により本発明を詳述する。なお、各特性値は以下の方法で測定した。 Hereinafter, the present invention will be described in detail by way of examples. Each characteristic value was measured by the following method.
 (1)光線反射率
 分光光度計(島津製作所製UV-3101PC)に積分球を取り付け、BaSO白板を100%とした時の反射率を波長550nmで測定し、この値を反射率とした。なお、測定は、反射面として使用する側、すなわち光源側となる表面において測定した。
(1) Light reflectivity An integrating sphere was attached to a spectrophotometer (Shimadzu UV-3101PC), and the reflectivity was measured at a wavelength of 550 nm when the BaSO 4 white plate was taken as 100%, and this value was taken as the reflectivity. In addition, the measurement was performed on the surface to be used as the reflecting surface, that is, the light source side.
 (2)粒子の平均粒径
 島津製作所製レーザー散乱式粒度分布測定装置SALD-7000を用いて測定した。測定前のエチレングリコールへの分散は、粒子粉体を5質量%スラリー濃度相当になるよう計量して、ミキサーで10分間攪拌し、常温まで冷却したのち、フローセル方式供給装置に供給した。ここでミキサーとしては、たとえばNational MXV253型料理用ミキサーを用いる。そして、該供給装置中で脱泡のために30秒間超音波処理してから測定に供した。なお、かかる超音波処理における超音波の強度は、超音波処理装置のつまみを、MAX値を示す位置から60%の位置とした。粒度分布測定結果より50%体積粒径(D50)を求め、これを平均粒径とした。また、同様にして10%体積粒径(D10)および90%体積粒径(D90)を求めた。
(2) Average particle size of particles The particle size was measured using a laser scattering particle size distribution analyzer SALD-7000 manufactured by Shimadzu Corporation. Before the measurement, the dispersion in ethylene glycol was measured such that the particle powder was equivalent to a 5% by mass slurry concentration, stirred with a mixer for 10 minutes, cooled to room temperature, and then supplied to a flow cell type supply device. Here, as the mixer, for example, National MXV253 type cooking mixer is used. Then, the sample was subjected to ultrasonic treatment for 30 seconds for defoaming in the supply device and then subjected to measurement. In addition, the intensity | strength of the ultrasonic wave in this ultrasonic processing set the knob of the ultrasonic processing apparatus to the position of 60% from the position which shows a MAX value. The 50% volume particle size (D50) was determined from the particle size distribution measurement result, and this was used as the average particle size. Similarly, 10% volume particle size (D10) and 90% volume particle size (D90) were determined.
 (3)粒子および非相溶樹脂の含有量
 (3-1)粒子の含有量
 フィルムを500℃の温度で6時間焼却し、その前後での重量を測定し、残差灰分の重さを粒子の含有量とした。なお、積層体における各層の粒子の含有量は、各層を分離してから前記操作を行うことで求めた。
(3) Content of particles and incompatible resin (3-1) Content of particles Incinerate the film for 6 hours at a temperature of 500 ° C., measure the weight before and after that, and determine the weight of residual ash as particles Content. In addition, content of the particle | grains of each layer in a laminated body was calculated | required by performing the said operation after isolate | separating each layer.
 (3-2)非相溶樹脂の含有量
 フィルムを秤量後、ヘキサフルオロイソプロパノール(HFIP)/クロロホルムの質量比50/50の混合溶媒に溶解し、不溶な成分がある場合は、この不溶成分を遠心分離で分取した後、質量を測定し、元素分析、FT-IR、NMR法により該成分の構造と質量分率を測定する。上澄み成分についても同様に分析すれば、ポリエステル成分および他成分の質量分率と構造とが特定できる。上澄み成分から溶媒を留去した後にHFIP/重クロロホルムの質量比50/50の混合溶媒に溶解した後、H-NMRスペクトルを測定する。
(3-2) Content of Incompatible Resin After weighing the film, it is dissolved in a mixed solvent of hexafluoroisopropanol (HFIP) / chloroform at a mass ratio of 50/50. After separation by centrifugation, the mass is measured, and the structure and mass fraction of the component are measured by elemental analysis, FT-IR, and NMR methods. If the supernatant component is analyzed in the same manner, the mass fraction and structure of the polyester component and other components can be specified. After the solvent is distilled off from the supernatant component, it is dissolved in a mixed solvent having a mass ratio of HFIP / deuterochloroform of 50/50, and then a 1 H-NMR spectrum is measured.
 得られたスペクトルから、各成分に特有の吸収のピーク面積強度を求め、その比率とプロトン数よりブレンドのモル比を算出する。さらにポリマーの単位ユニットに相当する式量より質量比を算出する。このようにして各成分の質量分率と構造を特定した。 From the obtained spectrum, the peak area intensity of absorption peculiar to each component is obtained, and the molar ratio of the blend is calculated from the ratio and the number of protons. Further, the mass ratio is calculated from the formula amount corresponding to the unit unit of the polymer. Thus, the mass fraction and structure of each component were specified.
 なお、積層体における各層の粒子の含有量は、各層を分離してから前記操作を行うことで求めた。 In addition, the content of the particles in each layer in the laminate was determined by performing the above operation after separating each layer.
 (4)フィルム厚みおよび層構成
 白色反射フィルムをミクロトームにてスライスして断面出しを行い、かかる断面について日立製作所製S-4700形電界放出形走査電子顕微鏡を用いて、倍率500倍にて観測し、フィルム全体、反射層A、支持層B、表面層Cの厚みをそれぞれ求めた。厚みの測定はn=7で任意位置を測定し平均値として求めた。各層の厚み(μm)を求めた上で各層の厚み比を算出した。
(4) Film thickness and layer structure A white reflective film was sliced with a microtome to obtain a cross section, and this cross section was observed at a magnification of 500 times using a Hitachi S-4700 field emission scanning electron microscope. The thickness of the whole film, the reflective layer A, the support layer B, and the surface layer C was determined. The thickness was measured as an average value by measuring an arbitrary position at n = 7. After determining the thickness (μm) of each layer, the thickness ratio of each layer was calculated.
 (5)ボイド体積率の算出
 ボイド体積率を求める層のポリマー、添加粒子、その他各成分の密度と配合割合から計算密度を求めた。同時に、当該層を剥離する等して単離し、質量および体積を計測し、これらから実密度を算出し、計算密度と実密度とから下記式により求めた。
(5) Calculation of Void Volume Ratio Calculated density was determined from the density and blending ratio of the polymer, additive particles, and other components of the layer for which void volume ratio was determined. At the same time, it was isolated by peeling off the layer, and the mass and volume were measured. The actual density was calculated from these, and the following formula was obtained from the calculated density and the actual density.
   ボイド体積率=100×(1-(実密度/計算密度))
 なお、2軸延伸後のイソフタル酸共重合ポリエチレンテレフタレートの密度を1.39g/cm、炭酸カルシウム粒子の密度を2.7g/cm、硫酸バリウム粒子の密度を4.5g/cm、非相溶樹脂であるシクロオレフィンコポリマーの密度を1.02g/cmとした。
Void volume fraction = 100 × (1− (actual density / calculated density))
The density of isophthalic acid copolymerized polyethylene terephthalate after biaxial stretching is 1.39 g / cm 3 , the density of calcium carbonate particles is 2.7 g / cm 3 , the density of barium sulfate particles is 4.5 g / cm 3 , non- The density of the cycloolefin copolymer, which is a compatible resin, was 1.02 g / cm 3 .
 また、ボイド体積率を測定する層のみを単離し、単位体積あたりの質量を求めて実密度を求めた。体積は、サンプルを面積3cmに切り出し、そのサイズでの厚みをエレクトリックマイクロメーター(アンリツ製 K-402B)にて10点測定した平均値を厚みとし、面積×厚みとして算出した。質量は、電子天秤にて秤量した。 Moreover, only the layer which measures a void volume ratio was isolated, the mass per unit volume was calculated | required, and the real density was calculated | required. The volume was calculated as an area × thickness by taking an average value obtained by cutting a sample into an area of 3 cm 2 and measuring the thickness at that point with an electric micrometer (K-402B manufactured by Anritsu) at 10 points. The mass was weighed with an electronic balance.
 なお、凝集粒子を含む他の粒子の比重としては、以下のメスシリンダー法にて求めた嵩比重の値を用いた。容積1000mlのメスシリンダーに絶乾状態の粒子を充填して、全体の重量を測定し、該全体の重量からメスシリンダーの重量を差引いて該粒子の重量を求め、該メスシリンダーの容積を測定し、該粒子の重量(g)を該容積(cm)で割ることによって求められる。 In addition, as the specific gravity of other particles including aggregated particles, the value of bulk specific gravity obtained by the following graduated cylinder method was used. Fill a 1000 ml measuring cylinder with completely dry particles, measure the total weight, subtract the weight of the measuring cylinder from the total weight to obtain the weight of the particle, and measure the volume of the measuring cylinder. , By dividing the weight (g) of the particles by the volume (cm 3 ).
 (6)融点、ガラス転移温度
 示差走査熱量測定装置(TA Instruments 2100 DSC)を用い、昇温速度20℃/分で測定を行った。
(6) Melting point, glass transition temperature Using a differential scanning calorimeter (TA Instruments 2100 DSC), the measurement was performed at a heating rate of 20 ° C./min.
 (7)正面輝度
 (7-1)正面輝度1
 LG社製のエッジライト型LED液晶テレビ(LG42LE5310AKR)(42インチ)から反射フィルムを取り出し、それに代えて実施例で得られた各種反射フィルムを、反射面側が画面側となるように設置し、もともと備わっていた拡散フィルムおよびプリズムシートを配してバックライトユニットの状態にて輝度計(大塚電子製Model MC-940)を用いて、輝度を測定した。
(7) Front brightness (7-1) Front brightness 1
The reflective film was taken out from the edge light type LED liquid crystal television (LG42LE5310AKR) (42 inches) manufactured by LG, and instead the various reflective films obtained in the examples were installed so that the reflective surface side was the screen side. The luminance was measured using a luminance meter (Model MC-940 manufactured by Otsuka Electronics Co., Ltd.) in the state of the backlight unit with the diffusion film and prism sheet provided.
 (7-2)正面輝度2
 LG社製の直下LEDライト型液晶テレビ(LG LN5400)(42インチ)から反射フィルムを取り出し、それに代えて実施例で得られた各種反射フィルムを、反射面側が画面側となるように設置し、もともと備わっていた拡散フィルムおよびプリズムシートを配してバックライトユニットの状態にて輝度計(大塚電子製Model MC-940)を用いて、輝度を測定した。
(7-2) Front brightness 2
The reflective film is taken out from the LG LED liquid crystal television (LG LN5400) (42 inches) manufactured by LG, and instead the various reflective films obtained in the examples are installed so that the reflective surface side is the screen side, Luminance was measured using a luminance meter (Model MC-940, manufactured by Otsuka Electronics Co., Ltd.) in the state of a backlight unit with the diffusion film and prism sheet originally provided.
 (8)延伸製膜性
 実施例に記載のフィルムを、テンターを用いた連続製膜法にて製膜したときの製膜安定性を観察し、下記基準で評価した。
◎:8時間以上安定に製膜できる。
○:3時間以上8時間未満安定に製膜できる。
△:3時間未満で1度切断が生じた。
×:3時間未満で複数回切断が発生し、安定な製膜ができない。
(8) Stretching film forming property The film forming stability when the film described in the example was formed by a continuous film forming method using a tenter was observed and evaluated according to the following criteria.
A: The film can be stably formed for 8 hours or more.
○: The film can be stably formed for 3 hours or more and less than 8 hours.
Δ: Cutting occurred once in less than 3 hours.
X: Cutting occurs multiple times in less than 3 hours, and stable film formation is not possible.
 (9)熱撓み評価
 LG社製のエッジライト型LED液晶テレビ(LG42LE5310AKR)(42インチ)を分解して、それに元から備わる反射フィルムを取り出し、代わりに実施例の白色反射フィルムを配置し、テレビを組み立て、その状態でテレビを白色表示で点灯させたまま温度50℃で湿度80%RHの環境に72時間保管し、その前後の輝度斑を評価した。
(9) Evaluation of heat deflection An edge-light type LED liquid crystal television (LG42LE5310AKR) (42 inches) manufactured by LG was disassembled, and the reflective film provided on the original was taken out. In this state, the television was stored in a white display for 72 hours in an environment with a temperature of 50 ° C. and a humidity of 80% RH, and brightness spots before and after the evaluation were evaluated.
 (9-1)輝度斑評価1
 目視にて輝度斑を判断し、以下の基準で評価した
○:全く輝度斑が見られない。
△:かろうじて輝度斑が認識される。
×:顕著な輝度斑が見られる。
(9-1) Luminance spot evaluation 1
Luminance spots were visually determined and evaluated according to the following criteria: ○: No brightness spots were observed.
Δ: Luminance spots are barely recognized.
X: A remarkable brightness spot is seen.
 (9-2)輝度斑評価2
 輝度計(コニカミノルタ社製CA-2000)にて画面内を平均的に任意の10点につき輝度を測定し、画面内の[(最高輝度-最低輝度)/平均輝度]の値を評価した。上述の値が5%以下である場合を熱撓みによる輝度斑が少なく良好な状態であると判定できる。好ましくは4%以下、さらに好ましくは3%以下である。
(9-2) Luminance spot evaluation 2
Luminance meter (CA-2000 manufactured by Konica Minolta Co., Ltd.) averaged the luminance of 10 arbitrary points in the screen, and evaluated the value of [(maximum luminance−lowest luminance) / average luminance] in the screen. When the above-mentioned value is 5% or less, it can be determined that there is little luminance unevenness due to thermal deflection and that the state is good. Preferably it is 4% or less, More preferably, it is 3% or less.
 (10)導光板貼り付き評価
 LG社製のLED液晶テレビ(LG42LE5310AKR)からシャーシを取り出し、テレビ内部側が上向きとなるように水平な机上に置き、その上に、シャーシとほぼ同じ大きさの反射フィルムを、表面層面が上向きとなるように置き、さらにその上に、元々テレビに備えられていた導光板および光学シート3枚、かかる光学シート3枚とは拡散フィルム2枚およびプリズム1枚である、を置いた。次いで、その面内で、シャーシの凹凸の最も激しい部分を含む領域に、図1に示すごとく直径5mmの円柱状足を三本備える正三角形型の台を置き、その上に更に15kgの重りを乗せて、かかる三本の足に囲まれた領域を目視で観測し、異常に明るい部分がなければ「密着斑がなし」、すなわち評価○とした。また、異常に明るい部分があった場合は、光学シート3枚の上にさらに、元々テレビに備わっていたDBEFシートを置き、同様に目視で観測し、異常に明るい部分が直らなければ、「密着斑があり」、すなわち評価×とし、異常に明るい部分がなくなれば、「密着斑が殆どなし」、すなわち評価△とした。なお、三つ足に囲まれた領域は、各辺の長さが10cmの略正三角形とした。
(10) Evaluation with light guide plate pasting The chassis is taken out from an LED liquid crystal television (LG42LE5310AKR) manufactured by LG, placed on a horizontal desk so that the inside of the television is facing upward, and a reflective film of approximately the same size as the chassis is placed thereon. Is placed so that the surface layer surface is facing upward, and further on that, the light guide plate and three optical sheets originally provided in the television, the three optical sheets are two diffusion films and one prism, Placed. Next, an equilateral triangular base having three columnar legs with a diameter of 5 mm as shown in FIG. 1 is placed in the area including the most severely uneven portion of the chassis in the plane, and a weight of 15 kg is further placed thereon. The region surrounded by the three legs was visually observed, and if there was no abnormally bright part, “no adhesion spots”, that is, evaluation “◯” was given. If there is an abnormally bright part, place the DBEF sheet originally provided on the television on top of the three optical sheets and observe it in the same manner. “Spots”, ie, evaluation ×, and when there were no abnormally bright parts, “there was almost no adhesion spots”, ie, evaluation Δ. In addition, the area surrounded by the three legs was a substantially equilateral triangle having a side length of 10 cm.
 <製造例1:イソフタル酸共重合ポリエチレンテレフタレート1の合成>
 テレフタル酸ジメチル136.5質量部、イソフタル酸ジメチル13.5質量部、すなわちイソフタル酸成分は得られるポリエステルの全酸成分100モル%に対して9モル%となる、エチレングリコール98質量部、ジエチレングリコール1.0質量部、酢酸マンガン0.05質量部、酢酸リチウム0.012質量部を精留塔、留出コンデンサを備えたフラスコに仕込み、撹拌しながら150~240℃に加熱しメタノールを留出させエステル交換反応を行った。メタノールが留出した後、リン酸トリメチル0.03質量部、二酸化ゲルマニウム0.04質量部を添加し、反応物を反応器に移した。ついで撹拌しながら反応器内を徐々に0.3mmHgまで減圧するとともに292℃まで昇温し、重縮合反応を行い、イソフタル酸共重合ポリエチレンテレフタレート1を得た。このポリマーの融点は235℃であった。
<Production Example 1: Synthesis of isophthalic acid copolymerized polyethylene terephthalate 1>
136.5 parts by mass of dimethyl terephthalate and 13.5 parts by mass of dimethyl isophthalate, that is, the isophthalic acid component is 9 mol% with respect to 100 mol% of the total acid component of the obtained polyester, 98 parts by mass of ethylene glycol, diethylene glycol 1 0.0 part by mass, 0.05 part by mass of manganese acetate, and 0.012 part by mass of lithium acetate were charged into a flask equipped with a rectifying column and a distillation condenser, and heated to 150 to 240 ° C. with stirring to distill methanol. A transesterification reaction was performed. After methanol was distilled, 0.03 parts by mass of trimethyl phosphate and 0.04 parts by mass of germanium dioxide were added, and the reaction product was transferred to the reactor. Next, while stirring, the pressure in the reactor was gradually reduced to 0.3 mmHg and the temperature was raised to 292 ° C. to carry out a polycondensation reaction to obtain isophthalic acid copolymerized polyethylene terephthalate 1. The melting point of this polymer was 235 ° C.
 <製造例2:イソフタル酸共重合ポリエチレンテレフタレート2の合成>
 テレフタル酸ジメチル129.0質量部、イソフタル酸ジメチル21.0質量部、すなわちイソフタル酸成分は得られるポリエステルの全酸成分100モル%に対して14モル%となる、に変更した他は、上記製造例1と同様にして、イソフタル酸共重合ポリエチレンテレフタレート2を得た。このポリマーの融点は215℃であった。
<Production Example 2: Synthesis of isophthalic acid copolymerized polyethylene terephthalate 2>
Except for the change to 129.0 parts by weight of dimethyl terephthalate and 21.0 parts by weight of dimethyl isophthalate, that is, the isophthalic acid component is 14 mole% with respect to 100 mole% of the total acid component of the polyester obtained, In the same manner as in Example 1, isophthalic acid copolymerized polyethylene terephthalate 2 was obtained. The melting point of this polymer was 215 ° C.
 <製造例3:粒子マスターチップ1の作成>
 上記で得られたイソフタル酸共重合ポリエチレンテレフタレート1の一部、およびボイド形成剤として平均粒径0.9μm、(D90-D10)/D50が1.4の合成炭酸カルシウム粒子を用いて、神戸製鋼社製NEX-T60タンデム式押出機にて、得られるマスターチップの質量に対して合成炭酸カルシウム粒子の含有量が60質量%となるように混合し、樹脂温度260℃にて押し出し、合成炭酸カルシウム粒子含有の粒子マスターチップ1を作成した。なお、かかる合成炭酸カルシウム粒子はリン酸トリメチルエステルにより表面処理されている。
<Production Example 3: Preparation of particle master chip 1>
Using a part of the isophthalic acid copolymerized polyethylene terephthalate 1 obtained above and synthetic calcium carbonate particles having an average particle size of 0.9 μm and (D90-D10) / D50 of 1.4 as a void forming agent, Kobe Steel In a NEX-T60 tandem type extruder manufactured by the company, mixing is performed so that the content of the synthetic calcium carbonate particles is 60% by mass with respect to the mass of the obtained master chip, and the mixture is extruded at a resin temperature of 260 ° C. A particle-containing particle master chip 1 was prepared. The synthetic calcium carbonate particles are surface-treated with phosphoric acid trimethyl ester.
 <製造例4:粒子マスターチップ2の作成>
 イソフタル酸共重合ポリエチレンテレフタレート1の代わりに、上記で得られたイソフタル酸共重合ポリエチレンテレフタレート2を用いる以外は上記製造例3と同様にして合成炭酸カルシウム粒子含有の粒子マスターチップ2を作成した。
<Production Example 4: Preparation of particle master chip 2>
A particle master chip 2 containing synthetic calcium carbonate particles was prepared in the same manner as in Production Example 3 except that the isophthalic acid copolymerized polyethylene terephthalate 2 obtained above was used instead of the isophthalic acid copolymerized polyethylene terephthalate 1.
 <製造例5:粒子マスターチップ3の作成>
 上記で得られたイソフタル酸共重合ポリエチレンテレフタレート2に、粒子Aとして、東ソー・シリカ株式会社製AY-601、これは凝集シリカである、を風力分級し平均粒径6.5μmとした粒子を、得られる粒子マスターチップにおける濃度が8質量%となるよう二軸押出機にて混合し、溶融温度250℃にて押し出し、粒子マスターチップ3を作成した。
<Production Example 5: Creation of particle master chip 3>
To the isophthalic acid copolymerized polyethylene terephthalate 2 obtained above, as particles A, AY-601 manufactured by Tosoh Silica Co., Ltd., which is an agglomerated silica, was subjected to air classification to obtain particles having an average particle size of 6.5 μm. The mixture was mixed by a twin screw extruder so that the concentration in the obtained particle master chip was 8% by mass, and extruded at a melting temperature of 250 ° C. to prepare a particle master chip 3.
 <製造例6:ビーズ層に用いる粒子1の作成>
 テレフタル酸ジメチル150質量部、エチレングリコール98質量部、ジエチレングリコール1.0質量部、酢酸マンガン0.05質量部、酢酸リチウム0.012質量部を精留塔、留出コンデンサを備えたフラスコに仕込み、撹拌しながら150~240℃に加熱しメタノールを留出させエステル交換反応を行った。メタノールが留出した後、リン酸トリメチル0.03質量部、二酸化ゲルマニウム0.04質量部を添加し、反応物を反応器に移した。次いで撹拌しながら反応器内を徐々に0.3mmHgまで減圧するとともに292℃まで昇温し、重縮合反応を行い、ポリエチレンテレフタレート3を得た。得られたポリエチレンテレフタレート3をストランドダイから押出し、冷却後に断裁することによってペレット状とした。ストランドの形状を調整した結果、このペレットの形状はほぼ直方体の形状で、形状の平均が4mm×3mm×2mmのものであった。次いで、この得られたペレットをオーブン内で170℃で3時間加熱することによって乾燥結晶化させ、株式会社マツボー製のアトマイザーミル TAP-1を用いて液体窒素で冷却しながら粉砕を行うことで平均粒径60μmのポリエステル粒子を得た。さらにこのポリエステル粒子を風力分級することによって平均粒径43μmの粒子1、これは非球状粒子である、を得た。
<Production Example 6: Creation of particle 1 used for bead layer>
150 parts by mass of dimethyl terephthalate, 98 parts by mass of ethylene glycol, 1.0 part by mass of diethylene glycol, 0.05 part by mass of manganese acetate, 0.012 part by mass of lithium acetate were charged into a rectifying column and a flask equipped with a distillation condenser. While stirring, the mixture was heated to 150 to 240 ° C. to distill methanol to conduct a transesterification reaction. After methanol was distilled, 0.03 parts by mass of trimethyl phosphate and 0.04 parts by mass of germanium dioxide were added, and the reaction product was transferred to the reactor. Next, the pressure in the reactor was gradually reduced to 0.3 mmHg while stirring, and the temperature was raised to 292 ° C. to carry out a polycondensation reaction, whereby polyethylene terephthalate 3 was obtained. The obtained polyethylene terephthalate 3 was extruded from a strand die and cut after cooling to form a pellet. As a result of adjusting the shape of the strand, the shape of the pellet was substantially a rectangular parallelepiped shape, and the average shape was 4 mm × 3 mm × 2 mm. Next, the obtained pellets were dried and crystallized by heating in an oven at 170 ° C. for 3 hours, and pulverized while cooling with liquid nitrogen using an atomizer mill TAP-1 manufactured by Matsubo Co., Ltd. Polyester particles having a particle size of 60 μm were obtained. Further, the polyester particles were subjected to air classification to obtain particles 1 having an average particle size of 43 μm, which are non-spherical particles.
 [実施例1-1]
(白色反射フィルムの製造)
 上記で得たイソフタル酸共重合ポリエチレンテレフタレート1と粒子マスターチップ1を反射層(A層とする。)の原料として、イソフタル酸共重合ポリエチレンテレフタレート2と粒子マスターチップ2を支持層(B層とする。)の原料としてそれぞれ用い、それぞれの層が表1に記載した構成となるように混合し、押出機に投入し、A層は平均目開き30μmの不織布型フィルターを通して溶融押出し温度255℃にて、B層は平均目開き30μmの不織布型フィルターを通して溶融押出し温度230℃にて、表1に示すごとくB層/A層/B層の層構成となるように3層フィードブロック装置を使用して合流させ、その積層状態を保持したままダイスよりシート状に成形した。このときB層/A層/B層の厚み比が2軸延伸後に10/80/10となるように各押出機の吐出量で調整した。さらにこのシートを表面温度25℃の冷却ドラムで冷却固化した未延伸フィルムとした。この未延伸フィルムを73℃の予熱ゾーン、つづけて75℃の予熱ゾーンを通して、92℃に保たれた縦延伸ゾーンに導き、縦方向に3.0倍に延伸し、25℃のロール群で冷却した。続いて、フィルムの両端をクリップで保持しながら115℃の予熱ゾーンを通して130℃に保たれた横延伸ゾーンに導き、横方向に3.6倍に延伸した。その後テンター内で155℃で10秒間の熱処理、200℃で10秒間の熱固定、155℃で10秒間の熱処理を連続的に行い、次いで幅入れ率2%、幅入れ温度130℃で横方向の幅入れを行い、次いでフィルム両端を切り落し、縦弛緩率2.5%で熱弛緩し、室温まで冷やして、厚み300μmのフィルムを得た。得られたフィルムの評価結果を表1に示す。
[Example 1-1]
(Manufacture of white reflective film)
The isophthalic acid copolymerized polyethylene terephthalate 1 and the particle master chip 1 obtained above were used as the raw material for the reflective layer (A layer), and the isophthalic acid copolymerized polyethylene terephthalate 2 and the particle master chip 2 were used as the support layer (B layer). )) And mixed so that each layer has the structure described in Table 1, and put into an extruder. Layer A is melt-extruded at a temperature of 255 ° C. through a nonwoven fabric type filter having an average opening of 30 μm. Using a three-layer feed block device, the layer B has a layer constitution of layer B / layer A / layer B as shown in Table 1 at a melt extrusion temperature of 230 ° C. through a nonwoven fabric type filter having an average opening of 30 μm. The sheet was merged and formed into a sheet from a die while maintaining the laminated state. At this time, it adjusted with the discharge amount of each extruder so that the thickness ratio of B layer / A layer / B layer might become 10/80/10 after biaxial stretching. Further, this sheet was an unstretched film cooled and solidified with a cooling drum having a surface temperature of 25 ° C. This unstretched film is led to a longitudinal stretching zone maintained at 92 ° C. through a preheating zone at 73 ° C., followed by a preheating zone at 75 ° C., stretched 3.0 times in the longitudinal direction, and cooled by a roll group at 25 ° C. did. Subsequently, while holding both ends of the film with clips, the film was led to a transverse stretching zone maintained at 130 ° C. through a preheating zone at 115 ° C. and stretched 3.6 times in the transverse direction. Then, heat treatment at 155 ° C. for 10 seconds, heat setting at 200 ° C. for 10 seconds, and heat treatment at 155 ° C. for 10 seconds are carried out continuously in the tenter, and then the width ratio is 2% and the width is 130 ° C. The width of the film was then cut, and both ends of the film were cut off, heat relaxed at a longitudinal relaxation rate of 2.5%, and cooled to room temperature to obtain a film having a thickness of 300 μm. The evaluation results of the obtained film are shown in Table 1.
 [実施例1-2~1-9、1-11、比較例1-1~1-6]
 粒子の態様、フィルムの構成を表1に示すとおりとする以外は、実施例1-1と同様にして白色反射フィルムを得た。得られたフィルムの評価結果を表1に示す。なお、用いた合成炭酸カルシウム粒子はリン酸トリメチルエステルにより表面処理されている。
[Examples 1-2 to 1-9, 1-11, Comparative Examples 1-1 to 1-6]
A white reflective film was obtained in the same manner as in Example 1-1 except that the form of the particles and the composition of the film were as shown in Table 1. The evaluation results of the obtained film are shown in Table 1. The used synthetic calcium carbonate particles are surface-treated with trimethyl phosphate.
 実施例1-11は、フィルムの総厚みを188μmとした。 In Example 1-11, the total thickness of the film was 188 μm.
 [比較例1-7]
 ボイド形成剤として、炭酸カルシウム粒子の代わりに平均粒径0.9μm、(D90-D10)/D50が1.4の硫酸バリウム粒子を用いる以外は製造例3,4と同様に粒子マスターチップを作成し、フィルムの構成を表1に示すとおりとする以外は、実施例1-1と同様にして白色反射フィルムを得た。得られたフィルムの評価結果を表1に示す。なお、かかる硫酸バリウム粒子は風力分級を繰り返すことで得た。
[Comparative Example 1-7]
A particle master chip was prepared in the same manner as in Production Examples 3 and 4 except that barium sulfate particles having an average particle size of 0.9 μm and (D90-D10) / D50 of 1.4 were used instead of calcium carbonate particles as a void forming agent. A white reflective film was obtained in the same manner as in Example 1-1 except that the film configuration was as shown in Table 1. The evaluation results of the obtained film are shown in Table 1. Such barium sulfate particles were obtained by repeating air classification.
 [実施例1-10]
 実施例1-1と同様にして得られた二軸延伸フィルムの片面の上に、ダイレクトグラビアコーティング装置にて、下記のビーズ層を形成するための塗液1に示す組成からなる塗液を、wet厚み15g/mの塗布量で塗布した後、オーブン内にて100℃で乾燥してビーズ層を有する白色反射フィルムを得た。得られたフィルムの評価結果を表1に示す。なお、評価においてはビーズ層側を反射面として用いた。
[Example 1-10]
On one side of the biaxially stretched film obtained in the same manner as in Example 1-1, a coating liquid having the composition shown in Coating liquid 1 for forming the following bead layer with a direct gravure coating apparatus, After apply | coating with the application quantity of 15 g / m < 2 > of wet thickness, it dried at 100 degreeC in oven, and obtained the white reflective film which has a bead layer. The evaluation results of the obtained film are shown in Table 1. In the evaluation, the bead layer side was used as the reflecting surface.
 <塗液1、固形分濃度30質量%>
・粒子:上記製造例6で得られた粒子1(非球状粒子)・・・7.5質量%
・アクリル樹脂(熱可塑性樹脂):DIC社製アクリディックA-817BA(固形分濃度50質量%)・・・30質量%
・架橋剤:日本ポリウレタン工業社製コロネートHL(イソシアネート系架橋剤、固形分濃度75質量%)・・・10質量%
・希釈溶媒:酢酸ブチル・・・52.5質量%
なお、塗液1における各成分の固形分比率は以下の通りとなる。
・粒子:25質量%
・アクリル樹脂(熱可塑性樹脂):50質量%
・架橋剤:25質量%
<Coating liquid 1, solid content concentration 30% by mass>
-Particles: Particles 1 (non-spherical particles) obtained in Production Example 6 7.5 mass%
Acrylic resin (thermoplastic resin): DIC's ACRICID A-817BA (solid content concentration 50% by mass) ... 30% by mass
・ Crosslinking agent: Coronate HL (isocyanate-based crosslinking agent, solid content concentration: 75% by mass) manufactured by Nippon Polyurethane Industry Co., Ltd .: 10% by mass
Diluting solvent: butyl acetate 52.5% by mass
In addition, the solid content ratio of each component in the coating liquid 1 is as follows.
・ Particles: 25% by mass
-Acrylic resin (thermoplastic resin): 50% by mass
・ Crosslinking agent: 25% by mass
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 [実施例2-1]
(白色反射フィルムの製造)
 上記で得たイソフタル酸共重合ポリエチレンテレフタレート1と粒子マスターチップ1および非相溶樹脂(シクロオレフィンコポリマー、Tg=210℃、ポリプラスチックス社製「TOPAS」)を反射層(A層とする。)の原料として、イソフタル酸共重合ポリエチレンテレフタレート2と粒子マスターチップ2を支持層(B層とする。)の原料としてそれぞれ用い、それぞれの層が表2に記載した構成となるように混合し、押出機に投入し、A層は平均目開き30μmの不織布型フィルターを通して溶融押出し温度255℃にて、B層は平均目開き30μmの不織布型フィルターを通して溶融押出し温度230℃にて、表2に示すごとくB層/A層/B層の層構成となるように3層フィードブロック装置を使用して合流させ、その積層状態を保持したままダイスよりシート状に成形した。このときB層/A層/B層の厚み比が2軸延伸後に10/80/10となるように各押出機の吐出量で調整した。さらにこのシートを表面温度25℃の冷却ドラムで冷却固化した未延伸フィルムとした。この未延伸フィルムを73℃の予熱ゾーン、つづけて75℃の予熱ゾーンを通して、92℃に保たれた縦延伸ゾーンに導き、縦方向に3.0倍に延伸し、25℃のロール群で冷却した。続いて、フィルムの両端をクリップで保持しながら115℃の予熱ゾーンを通して130℃に保たれた横延伸ゾーンに導き、横方向に3.6倍に延伸した。その後テンター内で155℃で10秒間の熱処理、200℃で10秒間の熱固定、155℃で10秒間の熱処理を連続的に行い、次いで幅入れ率2%、幅入れ温度130℃で横方向の幅入れを行い、次いでフィルム両端を切り落し、縦弛緩率2.5%で熱弛緩し、室温まで冷やして、厚み300μmのフィルムを得た。得られたフィルムの評価結果を表2に示す。
[Example 2-1]
(Manufacture of white reflective film)
The above-obtained isophthalic acid copolymerized polyethylene terephthalate 1, particle master chip 1 and incompatible resin (cycloolefin copolymer, Tg = 210 ° C., “TOPAS” manufactured by Polyplastics Co., Ltd.) are used as a reflective layer (referred to as layer A). As raw materials, isophthalic acid copolymerized polyethylene terephthalate 2 and particle master chip 2 were used as raw materials for the support layer (referred to as layer B), mixed so that each layer had the structure described in Table 2, and extruded. As shown in Table 2, the A layer is melt-extruded through a non-woven filter having an average opening of 30 μm at a melt extrusion temperature of 255 ° C., and the B layer is passed through a non-woven filter having an average opening of 30 μm at a melt-extruding temperature of 230 ° C. Combined using a three-layer feed block device so as to have a layer structure of B layer / A layer / B layer, The sheet was formed into a sheet from a die while maintaining the state. At this time, it adjusted with the discharge amount of each extruder so that the thickness ratio of B layer / A layer / B layer might become 10/80/10 after biaxial stretching. Further, this sheet was an unstretched film cooled and solidified with a cooling drum having a surface temperature of 25 ° C. This unstretched film is led to a longitudinal stretching zone maintained at 92 ° C. through a preheating zone at 73 ° C., followed by a preheating zone at 75 ° C., stretched 3.0 times in the longitudinal direction, and cooled by a roll group at 25 ° C. did. Subsequently, while holding both ends of the film with clips, the film was led to a transverse stretching zone maintained at 130 ° C. through a preheating zone at 115 ° C. and stretched 3.6 times in the transverse direction. Then, heat treatment at 155 ° C. for 10 seconds, heat setting at 200 ° C. for 10 seconds, and heat treatment at 155 ° C. for 10 seconds are carried out continuously in the tenter, and then the width ratio is 2% and the width is 130 ° C. The width of the film was then cut, and both ends of the film were cut off, heat relaxed at a longitudinal relaxation rate of 2.5%, and cooled to room temperature to obtain a film having a thickness of 300 μm. The evaluation results of the obtained film are shown in Table 2.
 [実施例2-2~2-17、比較例2-1~2-6]
 粒子および非相溶樹脂の態様、フィルムの構成を表2に示すとおりとする以外は、実施例2-1と同様にして白色反射フィルムを得た。得られたフィルムの評価結果を表2に示す。なお、用いた合成炭酸カルシウム粒子はリン酸トリメチルエステルにより表面処理されている。
[Examples 2-2 to 2-17, Comparative examples 2-1 to 2-6]
A white reflective film was obtained in the same manner as in Example 2-1, except that the aspect of the particles and the incompatible resin and the configuration of the film were as shown in Table 2. The evaluation results of the obtained film are shown in Table 2. The used synthetic calcium carbonate particles are surface-treated with trimethyl phosphate.
 実施例2-17は、フィルムの総厚みを188μmとした。 In Example 2-17, the total thickness of the film was 188 μm.
 [実施例2-18]
 実施例2-1と同様にして得られた二軸延伸フィルムの片面の上に、ダイレクトグラビアコーティング装置にて、上記したビーズ層を形成するための塗液1に示す組成からなる塗液を、wet厚み15g/mの塗布量で塗布した後、オーブン内にて100℃で乾燥してビーズ層を有する白色反射フィルムを得た。得られたフィルムの評価結果を表2に示す。なお、評価においてはビーズ層側を反射面として用いた。
[Example 2-18]
On one side of the biaxially stretched film obtained in the same manner as in Example 2-1, a coating liquid having the composition shown in the coating liquid 1 for forming the above-described bead layer was formed using a direct gravure coating apparatus. After apply | coating with the application quantity of 15 g / m < 2 > of wet thickness, it dried at 100 degreeC in oven, and obtained the white reflective film which has a bead layer. The evaluation results of the obtained film are shown in Table 2. In the evaluation, the bead layer side was used as the reflecting surface.
 [比較例2-7]
 ボイド形成剤として、炭酸カルシウム粒子の代わりに平均粒径0.9μm、(D90-D10)/D50が1.4の硫酸バリウム粒子を用いる以外は製造例3,4と同様に粒子マスターチップを作成し、フィルムの構成を表2に示すとおりとする以外は、実施例2-1と同様にして白色反射フィルムを得た。得られたフィルムの評価結果を表2に示す。なお、かかる硫酸バリウム粒子は風力分級を繰り返すことで得た。
[Comparative Example 2-7]
A particle master chip was prepared in the same manner as in Production Examples 3 and 4 except that barium sulfate particles having an average particle size of 0.9 μm and (D90-D10) / D50 of 1.4 were used instead of calcium carbonate particles as a void forming agent. A white reflective film was obtained in the same manner as in Example 2-1, except that the composition of the film was as shown in Table 2. The evaluation results of the obtained film are shown in Table 2. Such barium sulfate particles were obtained by repeating air classification.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 [実施例3-1]
(白色反射フィルムの製造)
 上記で得たイソフタル酸共重合ポリエチレンテレフタレート1と粒子マスターチップ1を反射層(A層とする。)の原料として、イソフタル酸共重合ポリエチレンテレフタレート2と粒子マスターチップ3を表面層(C層とする。)の原料としてそれぞれ用い、それぞれの層が表3に記載した構成となるように混合し、押出機に投入し、A層は平均目開き30μmの不織布型フィルターを通して溶融押出し温度255℃にて、C層は平均目開き50μmの不織布型フィルターを通して溶融押出し温度230℃にて、表3に示すごとくC層/A層/C層の層構成となるように3層フィードブロック装置を使用して合流させ、その積層状態を保持したままダイスよりシート状に成形した。このときC層/A層/C層の厚み比が2軸延伸後に10/80/10となるように各押出機の吐出量で調整した。さらにこのシートを表面温度25℃の冷却ドラムで冷却固化した未延伸フィルムとした。この未延伸フィルムを73℃の予熱ゾーン、つづけて75℃の予熱ゾーンを通して、92℃に保たれた縦延伸ゾーンに導き、縦方向に3.0倍に延伸し、25℃のロール群で冷却した。続いて、フィルムの両端をクリップで保持しながら115℃の予熱ゾーンを通して130℃に保たれた横延伸ゾーンに導き、横方向に3.6倍に延伸した。その後テンター内で155℃で10秒間の熱処理、200℃で10秒間の熱固定、155℃で10秒間の熱処理を連続的に行い、次いで幅入れ率2%、幅入れ温度130℃で横方向の幅入れを行い、次いでフィルム両端を切り落し、縦弛緩率2.5%で熱弛緩し、室温まで冷やして、厚み300μmのフィルムを得た。得られたフィルムの評価結果を表3に示す。
[Example 3-1]
(Manufacture of white reflective film)
The isophthalic acid copolymerized polyethylene terephthalate 1 and particle master chip 1 obtained above were used as the raw material for the reflective layer (A layer), and the isophthalic acid copolymerized polyethylene terephthalate 2 and particle master chip 3 were used as the surface layer (C layer). )) And mixed so that each layer has the structure described in Table 3, and put into an extruder. Layer A is melt extruded through a nonwoven fabric type filter having an average aperture of 30 μm at a temperature of 255 ° C. The C layer is passed through a nonwoven fabric type filter having an average opening of 50 μm at a melt extrusion temperature of 230 ° C., using a three layer feed block device so as to have a layer configuration of C layer / A layer / C layer as shown in Table 3. The sheet was merged and formed into a sheet from a die while maintaining the laminated state. At this time, it adjusted with the discharge amount of each extruder so that the thickness ratio of C layer / A layer / C layer might become 10/80/10 after biaxial stretching. Further, this sheet was an unstretched film cooled and solidified with a cooling drum having a surface temperature of 25 ° C. This unstretched film is led to a longitudinal stretching zone maintained at 92 ° C. through a preheating zone at 73 ° C., followed by a preheating zone at 75 ° C., stretched 3.0 times in the longitudinal direction, and cooled by a roll group at 25 ° C. did. Subsequently, while holding both ends of the film with clips, the film was led to a transverse stretching zone maintained at 130 ° C. through a preheating zone at 115 ° C. and stretched 3.6 times in the transverse direction. Then, heat treatment at 155 ° C. for 10 seconds, heat setting at 200 ° C. for 10 seconds, and heat treatment at 155 ° C. for 10 seconds are carried out continuously in the tenter, and then the width ratio is 2% and the width is 130 ° C. The width of the film was then cut, and both ends of the film were cut off, heat relaxed at a longitudinal relaxation rate of 2.5%, and cooled to room temperature to obtain a film having a thickness of 300 μm. The evaluation results of the obtained film are shown in Table 3.
 [実施例3-2~3-15、比較例3-1~3-10]
 粒子の態様、フィルムの構成を表3に示すとおりとする以外は、実施例3-1と同様にして白色反射フィルムを得た。得られたフィルムの評価結果を表3に示す。なお、用いた合成炭酸カルシウム粒子はリン酸トリメチルエステルにより表面処理されている。
[Examples 3-2 to 3-15, Comparative examples 3-1 to 3-10]
A white reflective film was obtained in the same manner as in Example 3-1, except that the form of the particles and the composition of the film were as shown in Table 3. The evaluation results of the obtained film are shown in Table 3. The used synthetic calcium carbonate particles are surface-treated with trimethyl phosphate.
 実施例3-10は、フィルムの総厚みを188μmとした。 In Example 3-10, the total thickness of the film was 188 μm.
 なお、表面層Cに用いた各表面層粒子を以下に示す。製造例5と同様に粒子マスターチップとして用いた。
粒子B:東ソー・シリカ株式会社製AY-601、これは凝集シリカである、を風力分級し平均粒径5.0μmとした粒子
粒子C:東ソー・シリカ株式会社製AY-601、これは凝集シリカである、を風力分級し平均粒径18.2μmとした粒子
粒子D:東ソー・シリカ株式会社製AY-601、これは凝集シリカである、を風力分級し平均粒径35.3μmとした粒子
粒子E:東ソー・シリカ株式会社製AY-601、これは凝集シリカである、を風力分級し平均粒径1.0μmとした粒子
粒子F:東ソー・シリカ株式会社製AY-601、これは凝集シリカである、を風力分級し平均粒径52.0μmとした粒子
 [比較例3-11]
 ボイド形成剤として、炭酸カルシウム粒子の代わりに平均粒径0.9μm、(D90-D10)/D50が1.4の硫酸バリウム粒子を用いる以外は製造例3と同様に粒子マスターチップを作成し、フィルムの構成を表3に示すとおりとする以外は、実施例3-1と同様にして白色反射フィルムを得た。得られたフィルムの評価結果を表3に示す。なお、かかる硫酸バリウム粒子は風力分級を繰り返すことで得た。
In addition, each surface layer particle | grain used for the surface layer C is shown below. It was used as a particle master chip in the same manner as in Production Example 5.
Particle B: AY-601 manufactured by Tosoh Silica Co., Ltd., which is agglomerated silica, was classified by wind classification to have an average particle size of 5.0 μm Particle C: AY-601 manufactured by Tosoh Silica Co., Ltd., which was agglomerated silica Is a particle particle D: AY-601 manufactured by Tosoh Silica Co., Ltd., which is agglomerated silica, and is a particle particle having an average particle size of 35.3 μm. E: AY-601 manufactured by Tosoh Silica Co., Ltd., which is an agglomerated silica, and classified by wind classification to obtain an average particle size of 1.0 μm F: AY-601 manufactured by Tosoh Silica Co., Ltd. Particles classified by wind force to have an average particle size of 52.0 μm [Comparative Example 3-11]
A particle master chip was prepared in the same manner as in Production Example 3 except that barium sulfate particles having an average particle size of 0.9 μm and (D90-D10) / D50 of 1.4 were used instead of calcium carbonate particles as a void forming agent. A white reflective film was obtained in the same manner as in Example 3-1, except that the composition of the film was as shown in Table 3. The evaluation results of the obtained film are shown in Table 3. Such barium sulfate particles were obtained by repeating air classification.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本発明の白色反射フィルムは、優れた反射特性を有しながら、大型のディスプレイに用いたとしても、電気回路や光源から発生する熱や、使用環境からの熱や湿度によって生じる熱撓みを抑制することができる。それにより、白色反射フィルムが撓んでしまうことで生じる輝度斑を抑制することができるため、産業上の利用可能性は高い。 The white reflective film of the present invention suppresses heat deflection caused by heat generated from an electric circuit or a light source, heat from the use environment, or humidity even when used in a large display while having excellent reflection characteristics. be able to. Thereby, since the brightness spot which arises when a white reflective film bends can be suppressed, industrial applicability is high.

Claims (9)

  1.  反射層Aを有する白色反射フィルムであって、
     前記反射層Aが、
    a.熱可塑性樹脂Aに炭酸カルシウム粒子を含有する熱可塑性樹脂組成物A1からなり、該炭酸カルシウム粒子の含有量が前記熱可塑性樹脂組成物A1の質量に対して10質量%以上、70質量%以下である、
    あるいは、
    b.熱可塑性樹脂Aに炭酸カルシウム粒子および該熱可塑性樹脂Aに非相溶な樹脂を含有する熱可塑性樹脂組成物A2からなり、該炭酸カルシウム粒子の含有量が前記熱可塑性樹脂組成物A2の質量に対して5質量%以上、69質量%以下であり、該非相溶な樹脂の含有量が前記熱可塑性樹脂組成物A2の質量に対して1質量%以上、40質量%以下であり、前記炭酸カルシウム粒子と前記非相溶な樹脂の含有量の合計が前記熱可塑性樹脂組成物A2の質量に対して10質量%以上、70質量%以下である、のa、bいずれかを満足し、
     前記炭酸カルシウム粒子は、平均粒径が0.1μm以上、1.2μm以下であり、小粒径側から積算した10%体積粒径D10、50%体積粒径D50および90%体積粒径D90が(D90-D10)/D50≦1.6を満たし、
     フィルムの反射率が60%以上である、大型ディスプレイ用白色反射フィルム。
    A white reflective film having a reflective layer A,
    The reflective layer A is
    a. The thermoplastic resin A is composed of a thermoplastic resin composition A1 containing calcium carbonate particles, and the content of the calcium carbonate particles is 10% by mass or more and 70% by mass or less with respect to the mass of the thermoplastic resin composition A1. is there,
    Or
    b. The thermoplastic resin A comprises a thermoplastic resin composition A2 containing calcium carbonate particles and a resin incompatible with the thermoplastic resin A, and the content of the calcium carbonate particles is in the mass of the thermoplastic resin composition A2. The content of the incompatible resin is 5% by mass to 69% by mass with respect to the mass of the thermoplastic resin composition A2, and the calcium carbonate is 1% by mass to 40% by mass. Satisfying either a or b in which the total content of the particles and the incompatible resin is 10% by mass or more and 70% by mass or less with respect to the mass of the thermoplastic resin composition A2,
    The calcium carbonate particles have an average particle diameter of 0.1 μm or more and 1.2 μm or less, and 10% volume particle diameter D10, 50% volume particle diameter D50 and 90% volume particle diameter D90 accumulated from the small particle diameter side are (D90−D10) /D50≦1.6 is satisfied,
    A white reflective film for large displays, wherein the reflectance of the film is 60% or more.
  2.  上記反射層Aが、a.熱可塑性樹脂Aに炭酸カルシウム粒子を含有する熱可塑性樹脂組成物A1からなり、該炭酸カルシウム粒子の含有量が前記熱可塑性樹脂組成物A1の質量に対して10質量%以上、70質量%以下である、請求項1に記載の白色反射フィルム。 The reflection layer A is a. The thermoplastic resin A is composed of a thermoplastic resin composition A1 containing calcium carbonate particles, and the content of the calcium carbonate particles is 10% by mass or more and 70% by mass or less with respect to the mass of the thermoplastic resin composition A1. The white reflective film according to claim 1, wherein
  3.  上記反射層Aが、b.熱可塑性樹脂Aに炭酸カルシウム粒子および該熱可塑性樹脂Aに非相溶な樹脂を含有する熱可塑性樹脂組成物A2からなり、該炭酸カルシウム粒子の含有量が前記熱可塑性樹脂組成物A2の質量に対して5質量%以上、69質量%以下であり、該非相溶な樹脂の含有量が前記熱可塑性樹脂組成物A2の質量に対して1質量%以上、40質量%以下であり、前記炭酸カルシウム粒子と前記非相溶な樹脂の含有量の合計が前記熱可塑性樹脂組成物A2の質量に対して10質量%以上、70質量%以下である、請求項1に記載の白色反射フィルム。 The reflection layer A is b. The thermoplastic resin A comprises a thermoplastic resin composition A2 containing calcium carbonate particles and a resin incompatible with the thermoplastic resin A, and the content of the calcium carbonate particles is in the mass of the thermoplastic resin composition A2. The content of the incompatible resin is 5% by mass to 69% by mass with respect to the mass of the thermoplastic resin composition A2, and the calcium carbonate is 1% by mass to 40% by mass. The white reflective film of Claim 1 whose sum total of content of particle | grains and the said incompatible resin is 10 mass% or more and 70 mass% or less with respect to the mass of the said thermoplastic resin composition A2.
  4.  上記反射層Aと、さらに少なくとも一方の表面に表面層Cを有し、
     前記表面層Cは、表面層粒子を含有する熱可塑性樹脂組成物Cからなり、該表面層粒子は、平均粒径が2.0μm以上、50.0μm以下であり、含有量が該熱可塑性樹脂組成物Cの体積に対して3体積%以上、50体積%以下である、請求項1~3のいずれか1項に記載の大型ディスプレイ用白色反射フィルム。
    The reflective layer A, and further has a surface layer C on at least one surface,
    The surface layer C is composed of a thermoplastic resin composition C containing surface layer particles, and the surface layer particles have an average particle size of 2.0 μm or more and 50.0 μm or less, and the content thereof is the thermoplastic resin. The white reflective film for a large display according to any one of claims 1 to 3, which is 3 to 50% by volume with respect to the volume of the composition C.
  5.  上記熱可塑性樹脂Aが、共重合ポリエチレンテレフタレートである、請求項1~4のいずれか1項に記載の白色反射フィルム。 The white reflective film according to any one of claims 1 to 4, wherein the thermoplastic resin A is copolymerized polyethylene terephthalate.
  6.  上記共重合ポリエチレンテレフタレートの共重合量が、該共重合ポリエチレンテレフタレートの全酸成分100モル%に対して1モル%以上、20モル%以下である、請求項5に記載の白色反射フィルム。 The white reflective film according to claim 5, wherein the copolymerization amount of the copolymerized polyethylene terephthalate is 1 mol% or more and 20 mol% or less with respect to 100 mol% of the total acid component of the copolymerized polyethylene terephthalate.
  7.  白色反射フィルムの厚み100%に対する上記反射層Aの厚み比率が50%以上である、請求項1~6のいずれか1項に記載の白色反射フィルム。 The white reflective film according to any one of claims 1 to 6, wherein a thickness ratio of the reflective layer A to a thickness of 100% of the white reflective film is 50% or more.
  8.  さらに熱可塑性樹脂Bまたは熱可塑性樹脂組成物Bからなる支持層Bを有する、請求項1~7のいずれか1項に記載の白色反射フィルム。 The white reflective film according to any one of claims 1 to 7, further comprising a support layer B made of the thermoplastic resin B or the thermoplastic resin composition B.
  9.  請求項1~8のいずれか1項に記載の白色反射フィルムを用いた、面光源。 A surface light source using the white reflective film according to any one of claims 1 to 8.
PCT/JP2016/070505 2015-07-16 2016-07-12 White-reflecting film for large-scale display WO2017010471A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680037837.0A CN107710032B (en) 2015-07-16 2016-07-12 White reflective film for large display
KR1020187002780A KR20180030855A (en) 2015-07-16 2016-07-12 White-reflecting film for large-scale display

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015142209A JP2017026676A (en) 2015-07-16 2015-07-16 White reflective film for large-sized display
JP2015-142209 2015-07-16
JP2015-167587 2015-08-27
JP2015167587A JP2017044886A (en) 2015-08-27 2015-08-27 White reflective film for large display
JP2016077384A JP6837285B2 (en) 2016-04-07 2016-04-07 White reflective film for large displays
JP2016-077384 2016-04-07

Publications (1)

Publication Number Publication Date
WO2017010471A1 true WO2017010471A1 (en) 2017-01-19

Family

ID=57757406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070505 WO2017010471A1 (en) 2015-07-16 2016-07-12 White-reflecting film for large-scale display

Country Status (4)

Country Link
KR (1) KR20180030855A (en)
CN (1) CN107710032B (en)
TW (1) TWI772267B (en)
WO (1) WO2017010471A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110941039B (en) * 2018-09-25 2021-04-30 深圳光峰科技股份有限公司 Light reflecting material, reflecting layer and preparation method thereof
DE102019123660A1 (en) * 2019-09-04 2021-03-04 HELLA GmbH & Co. KGaA LIGHT OF A VEHICLE WITH A LENS
KR102401310B1 (en) * 2020-07-06 2022-05-23 도레이첨단소재 주식회사 Laminated polyester film
CN114114489A (en) * 2021-12-02 2022-03-01 宁波长阳科技股份有限公司 Polyester reflecting film, preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007320239A (en) * 2006-06-02 2007-12-13 Teijin Dupont Films Japan Ltd Biaxially stretched film
JP2007326297A (en) * 2006-06-08 2007-12-20 Teijin Dupont Films Japan Ltd Roll of polyester laminated film
JP2015087420A (en) * 2013-10-28 2015-05-07 帝人デュポンフィルム株式会社 White polyester film
JP2015086241A (en) * 2013-10-28 2015-05-07 帝人デュポンフィルム株式会社 White polyester film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4548430B2 (en) * 2006-03-02 2010-09-22 東レ株式会社 White laminated polyester film for reflector
JP5722937B2 (en) * 2013-02-25 2015-05-27 帝人デュポンフィルム株式会社 White reflective film
CN105190371B (en) * 2013-02-25 2017-07-21 帝人杜邦薄膜日本有限公司 White reflection film
JP6219673B2 (en) * 2013-10-28 2017-10-25 帝人フィルムソリューション株式会社 White polyester film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007320239A (en) * 2006-06-02 2007-12-13 Teijin Dupont Films Japan Ltd Biaxially stretched film
JP2007326297A (en) * 2006-06-08 2007-12-20 Teijin Dupont Films Japan Ltd Roll of polyester laminated film
JP2015087420A (en) * 2013-10-28 2015-05-07 帝人デュポンフィルム株式会社 White polyester film
JP2015086241A (en) * 2013-10-28 2015-05-07 帝人デュポンフィルム株式会社 White polyester film

Also Published As

Publication number Publication date
TWI772267B (en) 2022-08-01
CN107710032B (en) 2020-12-15
KR20180030855A (en) 2018-03-26
TW201708338A (en) 2017-03-01
CN107710032A (en) 2018-02-16

Similar Documents

Publication Publication Date Title
JP6404962B2 (en) White reflective film and method for producing the same
JP5926512B2 (en) White reflective film
JP5985809B2 (en) Polyester film for reflector
WO2014021476A1 (en) White reflective film
WO2017010471A1 (en) White-reflecting film for large-scale display
JP5596404B2 (en) Polyester film for reflector
JP5985808B2 (en) Polyester film for reflector
JP2020109515A (en) White reflective film for large-sized display
JP6837285B2 (en) White reflective film for large displays
JP6110220B2 (en) White reflective film
JP6259278B2 (en) White reflective film for direct surface light source
JP5722937B2 (en) White reflective film
JP6490891B2 (en) White reflective film for direct surface light source
KR102488716B1 (en) White reflective film for direct surface light source and direct surface light source using same
JP2020073992A (en) White reflective film for large-sized display
JP6336308B2 (en) White reflective film for direct surface light source
JP2017044886A (en) White reflective film for large display
JP2017026676A (en) White reflective film for large-sized display
JP5495345B2 (en) White reflective film
JP5702482B2 (en) White reflective film
JP5785202B2 (en) White reflective film
JP2015069020A (en) White reflection film
JP6352613B2 (en) White reflective film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16824451

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187002780

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16824451

Country of ref document: EP

Kind code of ref document: A1