Nothing Special   »   [go: up one dir, main page]

WO2017002975A1 - 機械的接合装置及び機械的接合方法 - Google Patents

機械的接合装置及び機械的接合方法 Download PDF

Info

Publication number
WO2017002975A1
WO2017002975A1 PCT/JP2016/069718 JP2016069718W WO2017002975A1 WO 2017002975 A1 WO2017002975 A1 WO 2017002975A1 JP 2016069718 W JP2016069718 W JP 2016069718W WO 2017002975 A1 WO2017002975 A1 WO 2017002975A1
Authority
WO
WIPO (PCT)
Prior art keywords
rivet
punch
plate
metal plates
die
Prior art date
Application number
PCT/JP2016/069718
Other languages
English (en)
French (fr)
Inventor
古迫 誠司
岡田 徹
康信 宮▲崎▼
史徳 渡辺
嘉明 中澤
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to US15/740,786 priority Critical patent/US10722935B2/en
Priority to KR1020177032307A priority patent/KR102018251B1/ko
Priority to CN201680028590.6A priority patent/CN107614146B/zh
Priority to JP2017526461A priority patent/JP6460235B2/ja
Priority to MX2017016307A priority patent/MX2017016307A/es
Priority to EP16818083.4A priority patent/EP3318346A4/en
Publication of WO2017002975A1 publication Critical patent/WO2017002975A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J15/00Riveting
    • B21J15/02Riveting procedures
    • B21J15/025Setting self-piercing rivets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J15/00Riveting
    • B21J15/02Riveting procedures
    • B21J15/08Riveting by applying heat, e.g. to the end parts of the rivets to enable heads to be formed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J15/00Riveting
    • B21J15/10Riveting machines
    • B21J15/28Control devices specially adapted to riveting machines not restricted to one of the preceding subgroups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J15/00Riveting
    • B21J15/10Riveting machines
    • B21J15/30Particular elements, e.g. supports; Suspension equipment specially adapted for portable riveters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J15/00Riveting
    • B21J15/10Riveting machines
    • B21J15/36Rivet sets, i.e. tools for forming heads; Mandrels for expanding parts of hollow rivets

Definitions

  • the present disclosure relates to a mechanical joining device that can be used when joining a plurality of metal plates when the deformation resistance of the metal plates is large, and in particular, a high-strength steel plate having a tensile strength of 780 MPa or more on the plurality of metal plates.
  • the present invention relates to a mechanical joining apparatus that can be used when one or more sheets are included, or when the metal plate has a low tensile strength and a high processing speed.
  • Tensile strength includes tensile shear strength (TSS) measured by applying a tensile load in the shear direction and cross tensile strength (CTS) measured by applying a tensile load in the peeling direction.
  • TSS tensile shear strength
  • CTS cross tensile strength
  • CTS of a spot welded joint formed by a plurality of steel plates having a tensile strength of 270 to 600 MPa increases as the strength of the steel plate increases. Therefore, in a spot welded joint formed of a steel plate having a tensile strength of 270 to 600 MPa, a problem related to joint strength is unlikely to occur. However, in a spot welded joint formed by a plurality of metal plates including one or more steel plates having a tensile strength of 780 MPa or more, even if the tensile strength of the steel plates increases, CTS does not increase or decreases.
  • One of the techniques for solving this is a mechanical joining technique for joining the base materials without melting them. Specifically, multiple metal plates that are the materials to be joined are overlapped, and the outer periphery of the punch is pressed with a plate presser that prevents the metal plate from splashing, and a rivet is driven with the punch, and the multiple metal plates are riveted together There is a technology for mechanical joining.
  • Patent Document 1 discloses that a rivet is driven through a high-strength steel sheet having a superposed tensile strength of 430 to 1000 MPa, and the tip of the rivet penetrated is deformed.
  • a joining technique for obtaining a high-strength steel sheet excellent in tensile properties and fatigue properties by jointly joining them is disclosed.
  • the technique disclosed in Patent Document 1 has been studied for high-strength steel sheets having a tensile strength of up to 619 MPa, and is effective as a technique for joining a plurality of steel sheets.
  • application of the said technique was not examined with respect to the several steel plate containing the high strength steel plate with a tensile strength of 780 Mpa or more.
  • Non-Patent Document 1 when joining a high-strength steel plate and an aluminum alloy plate, when rivets are driven and mechanically joined, up to a plurality of metal plates including a high-strength steel plate having a tensile strength of about 590 MPa.
  • a rivet cannot penetrate a high-strength steel plate in a plurality of metal plates including a high-strength steel plate having a tensile strength of 980 MPa, although they can be joined without defects.
  • Patent Document 2 in a method of joining a joining thin plate having high strength or high work hardening using a rivet, a pressing member and a die, or Mechanical joining method in which local and temporally limited heating of the joining thin plate is performed by electrical resistance heating by a component disposed near the pressing member and the die or a previously disposed component Is disclosed.
  • Patent Document 2 describes a technique that can be applied to a steel plate having high strength or high work hardening, and a plurality of metal plates including one or more high strength steel plates having a tensile strength of 780 MPa or more.
  • the technology is effective to some extent.
  • the technique disclosed in Patent Document 2 is used to actually join a plurality of metal plates including one or more high-strength steel plates having a tensile strength of 780 MPa or more with rivets, rivet joining may not be possible. There was also room for improvement. Even if the metal plate has a tensile strength of less than 780 MPa, the deformation resistance of the metal plate increases as the processing speed during rivet driving increases, and there is still room for improvement.
  • the present disclosure provides a mechanical joining device and a mechanical joining method capable of stably rivet-joining a plurality of metal plates even when the deformation resistance of the metal plates is large.
  • the purpose is to do.
  • the present inventors diligently studied a method for solving the above problems.
  • the heating temperature of the steel sheet is set to 35 to 250 ° C., and the heating of the steel sheet is finished before the rivets are driven. Accordingly, the present inventors have conceived of driving rivets while heating a plurality of metal plates when rivet joining is performed when the deformation resistance of the metal plates is large.
  • the mechanical joining device and the mechanical joining method of the present disclosure have been made based on the above findings, and the gist thereof is as follows.
  • the plate retainer is a cylindrical body into which the punch can be inserted, and one end of the plate retainer is brought into contact with the metal plate on the punch side of the plurality of metal plates, and the plurality of sheets It is composed of an electrode body material that can be pressed and energized and heated.
  • the punch is made of a material capable of driving a rivet
  • the die is composed of an electrode body material capable of supporting the plurality of metal plates and capable of conducting heating.
  • the first power supply device starts energizing the plate presser and the die so as to raise the temperature of the plurality of metal plates simultaneously with the start of rivet driving by the punch, and the plate until the rivet driving ends.
  • Configured to energize the presser and die Mechanical joining device.
  • the mechanical joining device further includes a cooling device, the cooling device is connected to the punch, and is configured to cool the rivet from the start of driving the rivet to the end of driving.
  • the mechanical joining device according to (1).
  • the punch and the rivet are made of an electrode body material that can be driven and energized and heated, and after the second power supply device has driven the rivet with the punch, the rivet is energized and heat-treated.
  • the mechanical joining device further comprises a cooling device, wherein the cooling device is configured to cool the rivet after heat treatment of the rivet;
  • the mechanical joining apparatus as described in said (1) or (2).
  • the material of the portion facing the rivet with at least the plurality of metal plates interposed therebetween is tool steel, and the material of the outer peripheral portion of the tool steel is copper or copper alloy (1
  • the mechanical joining device according to any one of (1) to (3).
  • the mechanical joining device and the mechanical joining method of the present disclosure even when the deformation resistance of the metal plate is large, a joint joint can be obtained without causing cracking of the metal plate, breakage of the rivet, and non-penetration of the rivet.
  • FIG. 1 is a schematic cross-sectional view showing a form of mechanical joining.
  • FIG. 1A is a schematic cross-sectional view showing a state in which energization heating of the plate assembly is started simultaneously with the start of rivet driving
  • FIG. 1B is a schematic cross-sectional view showing a state after rivet driving.
  • FIG. 2 is a schematic cross-sectional view showing a form of mechanical joining.
  • FIG. 2A is a schematic cross-sectional view showing a state in which energization heating of the plate assembly is started simultaneously with the start of rivet driving
  • FIG. 2B is energization heating of the rivet after rivet driving. It is a cross-sectional schematic diagram showing a state.
  • FIG. 1A is a schematic cross-sectional view showing a state in which energization heating of the plate assembly is started simultaneously with the start of rivet driving
  • FIG. 2B is energization heating of the rivet after rivet driving. It is a cross-sectional schematic diagram showing a state
  • FIG. 3 is a schematic cross-sectional view showing the form of mechanical joining when tool steel is used for a part of the die.
  • FIG. 3A is a schematic cross-sectional view showing a state in which the plate assembly is energized and heated simultaneously with the start of rivet driving when tool steel is used as a part of the die, and
  • dye When tool steel is used for a part of die
  • Patent Document 2 The inventors have used a technique disclosed in Patent Document 2 to provide a plurality of metal plates (hereinafter referred to as “plate assemblies”) including a high strength steel plate (hereinafter also referred to as “high strength steel plate”) having a tensile strength of 780 MPa or more.
  • plate assemblies including a high strength steel plate (hereinafter also referred to as “high strength steel plate”) having a tensile strength of 780 MPa or more.
  • high strength steel plate having a tensile strength of 780 MPa or more.
  • Patent Document 2 The inventors of the technology disclosed in Patent Document 2 pay attention to the fact that the heating temperature of the steel sheet is set to 35 to 250 ° C., and the heating of the steel sheet is finished before rivet driving. Inspired to drive rivets while heating the pair.
  • the present inventors investigated a relationship between rivet breakage and the like by driving rivets into a set of various metal plates while heating. As a result, it was found that rivet joining can be stably performed by raising the temperature of the plate assembly simultaneously with the start of rivet driving into the plate assembly. Furthermore, the present inventors have found a mechanical joining device (hereinafter also referred to as a “joining device”) of the present disclosure, conceived of energizing between the plate presser and the die in order to raise the temperature of the plate assembly.
  • the present disclosure is a mechanical joining device for driving rivets by punching a plurality of metal plates, Punches and dies,
  • the plate retainer is a cylindrical body into which the punch can be inserted, and one end of the plate retainer is brought into contact with the metal plate on the punch side of the plurality of metal plates, and the plurality of sheets It is composed of an electrode body material that can be pressed and energized and heated.
  • the punch is made of a material capable of driving a rivet
  • the die is composed of an electrode body material capable of supporting the plurality of metal plates and capable of conducting heating.
  • the first power supply device starts energizing the plate presser and the die so as to raise the temperature of the plurality of metal plates simultaneously with the start of rivet driving by the punch, and the plate until the rivet driving ends. Configured to energize the presser and die, Intended for mechanical joining devices.
  • the punch side is the upper side
  • the die side is the lower side
  • the punch-side metal plate is the upper metal plate
  • the die-side metal plate is the lower metal plate
  • FIG. 1 the cross-sectional schematic diagram showing the form of the mechanical joining using the mechanical joining apparatus of this indication is shown.
  • FIG. 1A is a schematic cross-sectional view showing a state in which energization heating of the plate assembly is started simultaneously with the start of rivet driving
  • FIG. 1B is a schematic cross-sectional view showing a state after rivet driving. It is.
  • the punches 5 are opposed to each other so that the plate assembly 4 on which the upper metal plate 2 and the lower metal plate 3 are stacked can be sandwiched therebetween. And a die 6 is arranged. A plate presser 7 is disposed on the outer periphery of the punch 5.
  • the mechanical joining device 1 starts the driving of the rivet 8 with the punch 5 and at the same time, a first power supply device (not shown) that energizes the plate retainer 7 and the die 6 so as to raise the temperature of the plate assembly 4. ).
  • the start of driving of the rivet 8 means a point in time when the rivet 8 driven by the punch 5 comes into contact with the metal plate on the punch side of the plate assembly 4.
  • the first power supply device is connected to the plate retainer 7 and the die 6 and is configured to energize and heat the plate assembly 4.
  • the first power supply device includes a first control device (not shown) that controls the amount of electricity (current value and energization time) energized to the plate presser 7 and the die 6, and can heat the plate assembly 4. .
  • the first control device starts energizing the plate retainer 7 and the die 6 so as to raise the temperature of the plate assembly 4 at the same time as starting the driving of the rivet 8, and until the end of the driving of the rivet 8, the plate retainer 7
  • the die 6 is energized and the plate assembly 4 is controlled to be energized and heated to a desired temperature.
  • the energization heating of the plate assembly 4 starts when the rivet 8 starts to be driven.
  • the energization heating of the plate assembly 4 may be continued after the driving of the rivet 8 is finished and then stopped, but preferably is stopped substantially at the same time as the driving of the rivet 8 is finished.
  • the completion of driving the rivet 8 means a point in time when the movement of the punch in the driving direction has substantially stopped, and the position of the punch can be detected and detected.
  • the method for detecting the position of the punch is not particularly limited. For example, it can be performed using a non-contact type laser displacement meter or a device that detects the position from the number of rotations of the ball screw that pushes the punch.
  • the rivet driving speed is preferably 1 mm / second or more, more preferably 10 mm / second.
  • the rivet driving speed can be adjusted according to the tensile strength of the metal plate of the plate set.
  • the time from the start of driving the rivet 8 to the end of driving may be adjusted according to the material, thickness, number, etc. of the metal plates used in the plate assembly, preferably 0.3 to 2.0 seconds, more preferably 0.5 to 1.4 seconds.
  • the heating temperature of the plate assembly 4 may be a temperature range in which the rivet can be driven in while the ductility of the plate assembly is improved and cracking of a metal plate such as a steel plate, rivet breakage, and rivet non-penetration are suppressed. That is, the lower limit of the heating temperature of the plate assembly 4 may be a temperature at which cracking of the metal plate, rivet breakage, and rivet non-penetration can be suppressed.
  • the upper limit of the heating temperature of the plate assembly 4 may be set to a temperature lower than the melting point of the metal plate having the lowest melting point in the plate assembly 4.
  • the lower limit of the heating temperature of the plate assembly 4 is preferably 400 ° C. or higher, more preferably 500 ° C. or higher, and further preferably 600 ° C. or higher.
  • the upper limit of the heating temperature of the plate assembly 4 is preferably 900 ° C. or less, more preferably 800 ° C. or less.
  • the heating temperature of the plate assembly 4 is the temperature at the end of driving, and the measurement point is the rivet driving position on the surface of the upper metal plate in the region surrounded by the plate presser 7.
  • the surface temperature of the upper metal plate can be measured using, for example, a thermocouple.
  • the surface temperature of the upper metal plate may be measured in advance before preparing the rivet. When the surface temperature of the upper metal plate is measured in advance, the temperature measurement can be omitted when the rivet is held by the punch and driven.
  • the current value for energizing and heating the plate assembly 4 can be controlled by the first control device so that the plate assembly 4 is heated within the temperature range within the time from the start to the end of driving.
  • the first control device can control the current value flowing through the plate assembly 4 to 8 to 14 KA or 10 to 12 kA, for example. Further, the first control device can control the energization time to be substantially the same as the time from the start of driving the rivet 8 to the end of driving.
  • the first control device can detect the time when the rivet 8 contacts the plate assembly 4 and can control the first power supply device to start energizing the plate presser 7 and the die 6.
  • a voltmeter that detects a change in voltage between the punch 5 and the die 6 when the rivet 8 contacts the plate assembly 4 An incorporated load cell or the like can be used.
  • the first power supply device is not particularly limited, and can be a conventionally used power supply, for example, a DC power supply device or an AC power supply device.
  • the first control device is not particularly limited, and can include a known temperature controller.
  • the first control device can control the amount of electricity to energize the plate presser 7 and the die 6 using a temperature controller including a thermometer that measures the temperature of the plate assembly 4.
  • a relationship between the current value at which the desired temperature is reached and the time may be obtained in advance, and the first control device may control the current value and time. .
  • the punch 5 can be rod-shaped, and the cross-sectional shape perpendicular to the longitudinal direction of the punch 5 is not particularly limited, and can be circular, elliptical, rectangular, or the like.
  • the punch 5 may have different cross-sectional shapes in the length direction.
  • the material of the punch 5 is not particularly limited as long as the punch 5 has strength capable of driving the rivet 8, and can be selected from materials having desired mechanical strength.
  • the punch 5 is preferably made of steel, copper, or a copper alloy having a Vickers hardness Hv of 300 to 510. When using a punch also as an electrode body, it is preferable that the punch 5 is comprised from copper or copper alloy with high electrical conductivity.
  • the die 6 is made of an electrode body material that can support a plurality of metal plates and can electrically heat the plate assembly 4 and has mechanical strength and electrical conductivity, the material Is not particularly limited, and can be selected from desired materials.
  • the die 6 is preferably copper or a copper alloy.
  • a plate presser 7 is disposed on the outer periphery of the punch 5.
  • the plate retainer 7 is a member that can press the plate assembly 4 against the die 6 by contacting one end of the plate assembly 4 with the metal plate on the punch 5 side of the plate assembly 4. Can be moved to.
  • the shape of the plate retainer 7 is a cylindrical body such as a cylinder into which the punch 4 is inserted.
  • the plate retainer 7 is made of an electrode body material having mechanical strength and electrical conductivity capable of pressing a plurality of metal plates against the die 6 and capable of conducting heating, the material is particularly The material is not limited and can be selected from desired materials.
  • the plate retainer 7 is preferably copper or a copper alloy.
  • the composition of the copper alloy that can be used for the punch 5, the die 6, the plate retainer 7, and the cooling pipe 9 is preferably a chromium copper alloy or an alumina-dispersed copper alloy.
  • the composition of the chromium copper alloy is preferably 0.4 to 1.6% Cr—Cu, more preferably 0.8 to 1.2% Cr—Cu, for example 1.0% Cr—Cu, and alumina dispersed copper
  • the composition of the alloy is preferably 0.2 to 1.0% Al 2 O 3 —Cu, more preferably 0.3 to 0.7% Al 2 O 3 —Cu, such as 0.5% Al 2 O 3 —. Cu.
  • a rivet 8 is disposed at the tip of the punch 5.
  • the rivet 8 is driven into the plate assembly 4 by the punch 5 and may be a general-purpose rivet, such as a full tubular rivet.
  • the material of the rivet 8 is not particularly limited as long as it can be driven into the plate assembly 4 and can be joined, and can be, for example, steel for machine structure, high hardness steel or the like.
  • the rivet 8 Prior to driving, the rivet 8 can be disposed above the plate assembly 4 while being supported by the punch 5 or supported by an appropriate support member.
  • a method for instructing the punch 5 to the rivet 8 or an appropriate support member is not particularly limited.
  • the punch 5 and the support member may be mechanically held, and the rivet 8 is magnetically attached using the punch 5 and the support member as magnetic materials. You may hold it.
  • the die 6 arranged to face the punch 5 has a pressing or restraining surface 11 having a dish-like shape or a concave shape corresponding to the shape and size of the leg portion of the rivet 8 to be driven, and a substantially frustoconical protrusion at the center thereof.
  • the portion 12 may be included.
  • the top of the protrusion 12 may be slightly lower than the top surface of the die 6.
  • the base portion side of the protruding portion 12 may have a smooth arcuate surface so as to be continuous with the bottom surface of the pressing restraint surface 11.
  • the plate set 4 into which rivets are driven using the apparatus of the present disclosure may be composed of the two upper metal plates 2 and the lower metal plate 3, or may include a plurality of three or more metal plates.
  • the metal plate only needs to have a plate-like portion at least partially, and the plate-like portions have portions that can be stacked on each other, and the whole may not be plate-shaped.
  • the plate assembly 4 is not limited to one composed of separate metal plates, and may be a superposition of one metal plate molded into a predetermined shape such as a tubular shape.
  • the plurality of metal plates may be the same type of metal plate or different types of metal plates.
  • the metal plate can be a metal plate having high strength, and can be a steel plate, an aluminum plate, magnesium or the like.
  • the steel plate can be a high strength steel plate, more preferably a high strength steel plate having a tensile strength of 780 MPa or more.
  • the plurality of metal plates may include one or more steel plates, or may include one or more high-strength steel plates having a tensile strength of 780 MPa or more.
  • the plate assembly 4 is a plate assembly in which all the metal plates of the plate assembly 4 are steel plates, the upper metal plate or the lower metal plate is a high strength steel plate, and the other metal plates are steel plates having a tensile strength of less than 780 MPa.
  • the plate assembly may be a plate assembly in which the upper metal plate is an aluminum plate and the lower metal plate is a high-strength steel plate, or a plate assembly in which all the metal plates of the plate assembly 4 are aluminum plates. If the apparatus of this indication is used, the board set containing at least 1 sheet of the high strength steel plate which has the tensile strength of 780 Mpa or more can also be joined favorably.
  • the thickness of the metal plate is not particularly limited, and can be, for example, 0.5 to 3.0 mm. Further, the thickness of the plate assembly is not particularly limited, and can be, for example, 1.0 to 6.0 mm. Further, the presence or absence of plating, the component composition, etc. are not particularly limited.
  • FIG. 1 the flow of current from the plate presser 7 to the die 6 is illustrated by a dotted arrow, but it is sufficient that the plate assembly 4 can be heated and energized, and the current flow from the die 6 to the plate presser 7 may be used.
  • FIGS. 2 and 3 the same applies to FIGS. 2 and 3.
  • Embodiment 2 will be described as a preferred embodiment.
  • the joining device of the present disclosure preferably further includes a cooling device (not shown).
  • the cooling device is connected to the punch 5 and is configured to cool the rivet 8 through the punch 5 from the start of driving the rivet 8 to the end of driving. While the plate assembly 4 is energized and heated, the rivet 8 can be driven by the punch 5 and the plate assembly 4 can be joined while the rivet 8 is cooled by a cooling device connected to the punch 5.
  • the rivet 8 When the rivet 8 is driven while the plate assembly 4 is energized and heated between the plate retainer 7 and the die 6, the rivet 8 is cooled via the punch 5 to suppress softening of the rivet 8 due to the heat of the plate assembly 4. Rivet joining can be performed more stably. By cooling the rivet 8, especially when the temperature of the plate assembly 4 when the rivet 8 is driven is high, the rivet 8 is suppressed from being softened to prevent the rivet 8 from becoming unpenetrated. Bonding can be performed stably.
  • the cooling of the rivet 8 may be performed between the start of driving the rivet 8 and the end of driving. That is, the cooling of the rivet 8 may be started before driving or may be started simultaneously with the start of driving, but preferably the cooling of the rivet 8 is started before driving.
  • the cooling of the rivet 8 may be completed at the same time as the driving is completed, or may be continued after the driving is completed, but is preferably completed substantially at the same time as the driving is completed.
  • the cooling device is not particularly limited as long as the rivet 8 can be cooled via the punch 5, but the punch 5 may have a cooling pipe 9 therein.
  • FIG. 1A illustrates a cooling pipe 9 disposed inside the punch 5 and connected to a cooling device.
  • the cooling pipe 9 is a pipe that can supply a refrigerant in a direction indicated by an arrow, for example.
  • a cooling device connected to the cooling pipe 9 can be provided on the other end side opposite to the end of the punch 5 with which the rivet 8 contacts.
  • the material of the cooling pipe 9 is not particularly limited as long as it can cool the rivet through the punch 5 by circulating a refrigerant therein, and may be, for example, copper or a copper alloy.
  • the punch 5 is preferably made of copper or a copper alloy having a high thermal conductivity.
  • the refrigerant is not particularly limited, and may be a known refrigerant liquid or refrigerant gas, but water is preferable in consideration of economy and ease of handling.
  • a cooling device is arranged so as to contact the other end opposite to the end of the punch 5 with which the rivet 8 contacts, the punch 5 is cooled, and the punch 5
  • the rivet 8 may be cooled by heat conduction.
  • the punch 5 is preferably made of copper or a copper alloy having a high thermal conductivity.
  • the cooling of the rivet 8 may be performed between the start of driving the rivet 8 and the end of driving. That is, the cooling of the rivet 8 may be started before the rivet 8 is driven or may be started simultaneously with the start of the driving, but preferably the cooling of the rivet 8 is started before the driving.
  • the cooling of the rivet 8 may be completed at the same time as the driving is completed, or may be continued after the driving is completed, but is preferably completed substantially at the same time as the driving is completed.
  • the cooling device includes a control device, and can control the cooling temperature and the timing of starting and ending cooling.
  • the control device preferably controls the cooling device so that the temperature of the rivet 8 is preferably 3 to 50 ° C., more preferably 5 to 30 ° C., preferably from the start to the end of driving at the end of driving. can do.
  • the temperature of the rivet 8 can be measured, for example, by performing a preliminary test for measuring the temperature of the rivet in advance before actually joining, and measuring the temperature of the rivet using a thermocouple.
  • the control device provided in the cooling device is not particularly limited, and may include a known temperature controller.
  • FIG. 2A is a schematic sectional view showing a state in which the plate assembly is energized and heated simultaneously with the start of rivet driving
  • FIG. 2B shows a state in which the rivet is energized and heated after the rivet is driven. It is a cross-sectional schematic diagram to represent.
  • the mechanical joining device 1 includes a second power supply device (not shown) for energizing the punch 5 and the die 6 so that the rivet 8 driven by the punch 5 is heat-treated.
  • the mechanical joining apparatus of FIG. 2 has the same configuration as the mechanical joining apparatus of FIG. 1 except that the punch 5 and the die 6 are made of an electrode body material and the rivet 8 can be energized and heated.
  • the second power supply device is connected to the punch 5 and the die 6, and after the rivet 8 is driven by the punch 5, the rivet 8 is energized through the punch 5 and the die 6 to perform heat treatment.
  • the second power supply device includes a second control device (not shown) that controls the amount of electricity (current value and energization time) energized to the punch 5 and the die 6 and heats the rivet 8 to a desired temperature. Can do.
  • the rivet 8 can have a martensite structure, and the strength of the rivet 8 can be improved.
  • the cooling device used in the third embodiment may be the same as or different from the cooling device used in the second embodiment.
  • the rivet 8 is heat-treated to increase the strength, so that breakage of the joint joint obtained using the rivet including the rivet can be further reduced.
  • Patent Document 3 a technique for adjusting the composition of ingredients and performing heat treatment such as quenching is known.
  • Patent Document 3 a technique for adjusting the composition of ingredients and performing heat treatment such as quenching.
  • the component composition of rivets is limited, and a heat treatment furnace for heat treatment is required, resulting in an increase in cost, and further, a heat treatment step in the heat treatment furnace is required, resulting in an increase in rivet production time. There was a problem.
  • the punch and die for driving rivets are used as electrode bodies, current is passed through the rivets after they are driven into the plate assembly, and the rivets are heat-treated to heat-treat the rivets, that is, rivets made of steel are austenitic. It can be heated to a temperature that reaches a range, rapidly cooled to obtain a martensite structure, and the strength of the rivet can be increased. Therefore, a high-strength rivet can be obtained without using a heat treatment furnace or the like.
  • the heating temperature in the heat treatment of the rivet 8 is not particularly limited as long as the rivet 8 can be heated to the austenite region, but it is preferably heated to a temperature of A3 point to less than the melting point of the rivet.
  • the current value and time for heating the rivet 8 to the maximum temperature can be, for example, a current value of 8 to 10 kA and a time of 0.1 to 1.0 seconds.
  • the energization heating of the rivet 8 can be started simultaneously with the end of driving the rivet 8 or after a predetermined time has elapsed from the end of driving the rivet 8.
  • the second control device can control the second power supply device so that the rivet 8 is energized and heated simultaneously with the end of driving the rivet 8 or after a predetermined time has elapsed from the end of driving the rivet 8.
  • the cooling condition after heating the rivet 8 to the austenite region is not particularly limited as long as a martensite structure is obtained, but the control device provided in the cooling device is preferably used after heating the rivet 8 to the austenite region.
  • the cooling device can be controlled so that the rivet 8 is cooled to a temperature lower than the martensite transformation end temperature of the material constituting the rivet, generally about 200 ° C. or less, at a cooling rate of 10 ° C./second or more.
  • the rivet 8 When the rivet 8 is cooled through the punch 5 when the rivet 8 is driven, as long as the rivet 8 is heated to a predetermined temperature by energization heating during the heat treatment of the rivet 8 after the rivet 8 is driven,
  • the cooling of the rivet 8 through the punch 5 may be continued, but preferably the cooling of the punch 5 is stopped or the cooling amount is reduced, and after the heat treatment of the rivet 8, the cooling is restarted or the cooling amount is increased to increase the rivet 8. Cool down.
  • the punch 5 is not particularly limited as long as the punch 5 is made of an electrode body material having mechanical strength and electrical conductivity that can be driven by the rivet 8 and that can be heated and energized. You can choose from.
  • the punch 5 is preferably made of copper or a copper alloy having a Vickers hardness Hv of 300 to 510 and a high electric conductivity.
  • the die 6 can support a plurality of metal plates and can be formed of an electrode body material having mechanical strength and electrical conductivity capable of energizing and heating the plate assembly 4 and the rivet 8.
  • the material is not particularly limited, and can be selected from desired materials.
  • the die 6 is preferably copper or a copper alloy.
  • the die 6 can be made of the same material as that used in the first embodiment.
  • the second power supply device is not particularly limited, and can be a conventionally used power supply, for example, a DC power supply device or an AC power supply device.
  • the second power supply device may have a configuration similar to that of the first power supply device.
  • the second control device is not particularly limited and can include a known temperature controller.
  • the second control device can control the amount of electricity for energizing the punch 5 and the die 6 using a temperature controller including a thermometer that measures the temperature of the rivet 8.
  • the relationship between the current value at which the rivet 8 reaches a predetermined temperature and the time may be obtained in advance, and the second control device may control the second power supply device so that the current value and the time are reached.
  • the control device provided in the cooling device can control the cooling rate and the cooling temperature after the heat treatment of the rivet 8 using the temperature controller.
  • the first power supply device and the second power supply device may be separate power supply devices, an integrated power supply device, or the first power supply device may have the function of the second power supply device.
  • the power supply device includes the plate retainer 7 and the die 6. Are connected to both the punch 5 and the die 6.
  • FIG. 3 the cross-sectional schematic diagram showing the form of the mechanical joining using the mechanical joining apparatus provided with tool steel in a part of die
  • FIG. 3A is a schematic cross-sectional view showing a state in which the plate assembly is energized and heated before rivets are driven when tool steel is used for a part of the die
  • FIG. It is a cross-sectional schematic diagram showing the state which energizes and heats a rivet after driving
  • the mechanical joining apparatus of FIG. 3 has the same configuration as the mechanical joining apparatus of FIG. 2 except that the die 6 is composed of a tool steel die 6a and a copper or copper alloy die 6b.
  • the die 6 is made of a die 6 a made of tool steel, and the portion of the die 6 that restrains the lower metal plate 3 that can be deformed when the rivet 8 is driven is used to increase the strength of the die 6.
  • the size can be increased, and deformation of the die 6 can be suppressed.
  • the die When the rivet is driven into the plate assembly, the die is heated when energized between the plate presser and the die or when energized between the punch and the die in order to heat-treat the driven rivet. At this time, if the material of the die is all tool steel, the die is easily softened. Therefore, preferably, the outer peripheral portion of the tool steel die 6a is made of copper or a copper alloy from the viewpoint of facilitating the flow of current.
  • a part of the die 6 is made of tool steel
  • at least a portion of the die 6 that faces the rivet 8 with the plate assembly 4 interposed therebetween may be made of tool steel.
  • a part of the portion facing the plate holder 7 may be made of tool steel.
  • the ratio of the portion made of copper or copper alloy in the die 6 decreases, the current flows through the tool steel and the tool steel is easily softened, so the gap between the plate presser 7 and the die 6 or the punch According to the energization amount between 5 and the die 6, the ratio of the part comprised with tool steel and the part comprised with copper or a copper alloy can be adjusted.
  • the present disclosure is also a mechanical joining method of punching rivets into a plurality of metal plates by punching, Preparing multiple metal plates, Placing the plurality of metal plates in an overlapping manner between opposed punches and dies, Pressing one end of a plate presser, which is a cylindrical body into which the punch can be inserted, against the metal plate on the punch side of the plurality of metal plates; Driving the rivet into the plurality of metal plates pressed by the plate press with the punch, and simultaneously increasing the temperature of the plurality of metal plates at the same time as starting the rivet driving, Through the die, to start the energization heating to the plurality of metal plates, to energize and heat the plurality of metal plates until the end of the rivet driving, And a mechanical joining method (hereinafter also referred to as a joining method).
  • a mechanical joining method hereinafter also referred to as a joining method.
  • the plate set 4 may include at least one high-strength steel plate having a tensile strength of 780 MPa or more, or may include only a metal plate having a tensile strength of less than 780 MPa.
  • the plate assembly 4 is placed on the die 6, one end of the plate retainer 7, which is a cylindrical body, is pressed against the metal plate on the punch 5 side of the plate assembly 4, and the plate assembly pressed by the plate retainer 7. 4, the rivet 8 is driven by the punch 5.
  • the rivet 8 is cooled via the punch 5 from the start to the end of driving of the rivet 8.
  • the rivet is heated by heating through a punch and a die.
  • a material of a portion facing the rivet with at least a plurality of metal plates interposed therebetween is tool steel, and a material of an outer peripheral portion of the tool steel is copper or a copper alloy.
  • the plate presser has a through hole into which the punch can be inserted, and the punch is moved relative to the plate press while sliding with the through hole.
  • an elastic body is provided at the other end of the plate presser, and the elastic body applies pressing pressure to the plurality of metal plates via the plate presser.
  • the plate presser 7 moves together with the punch 5 via the compression coil spring 14 and can come into contact with the plate assembly 4.
  • the plate retainer 7 can be moved with respect to the die 6 with a pressing force that stops the rivet 8 at a position where it does not contact the plate assembly 4 so that the steel plates of the plate assembly 4 are in close contact with each other.
  • the configuration described in the mechanical bonding apparatus can be applied to the configuration of the bonding method of the present disclosure.
  • Example 1 Using a mechanical joining apparatus 1 shown in FIG. 1, a joining test of a plate set including one or more high-strength steel plates having a tensile strength of 780 MPa or more was performed as a joining test when the deformation resistance of the metal plate was large.
  • a steel plate with a thickness of 1.2 mm having a tensile strength of 980 MPa is used as an upper metal plate
  • a steel plate with a tensile strength of less than 780 MPa a steel plate with a thickness of 1.6 mm having a tensile strength of 440 MPa is used as an upper side.
  • a plate assembly 4 as a metal plate was prepared.
  • the plate assembly 4 was placed on a copper die 6, and the plate assembly 4 was pressed and brought into close contact with a copper plate retainer 7.
  • a full tubular rivet made of high hardness steel and having a diameter of 6 mm was prepared as the rivet 8 and held by the punch 5.
  • the plate presser 7 and the die 6 are provided with a first control device.
  • a current of 10 kA was passed for 1.0 second, the plate assembly 4 was heated, and rivets 8 were driven.
  • the temperature of the plate assembly 4 at the end of riveting was 750 ° C.
  • a joint as shown in FIG. 1 (b) is obtained, and the stacked steel plates are completely in close contact with each other, so that the plates can be joined without causing cracks in the metal plates, breakage of the rivets, and non-penetration of the rivets.
  • the first control device Using the first power supply device, a current of 10 kA was passed for 1.0 second, the plate assembly 4 was heated, and rivets 8 were driven. The temperature of the plate assembly 4 at the end of riveting was 750 ° C.
  • a joint as shown in FIG. 1 (b) is obtained, and the stacked steel plates are completely in close contact with each other, so that the plates can be joined without causing cracks in the metal plates, breakage of the rivets
  • Example 2 A metal plate having a tensile strength of 590 MPa and 440 MPa is prepared as an upper metal plate and a lower metal plate, respectively, as a plate set composed of metal plates having a tensile strength of less than 780 MPa, and the rivet driving speed is increased to 20 mm /
  • the joining test was performed under the same conditions as in Example 1 except that the current was 20 seconds and the current of 20 kA was 0.5 seconds. The plate assembly could be joined without causing cracks in the metal plate, breakage of the rivet, and non-penetration of the rivet.
  • Example 3 1 is used to cool the rivet 8 to 30 ° C. via the punch 5 while the rivet 8 is cooled to 30 ° C. by using the punch 5 connected to a cooling device having a temperature controller.
  • a joining test was performed under the same conditions as in Example 1 except that the driving was performed and the plate assembly 4 was heated to 780 ° C. The plate assembly could be joined without causing cracks in the metal plate, breakage of the rivet, and non-penetration of the rivet.
  • Example 4 A joining test was performed under the same conditions as in Example 3 except that the rivet 8 was heat treated and cooled after the rivet 8 was driven using the mechanical joining apparatus 1 shown in FIG.
  • the cooling of the rivet 8 and the heating of the plate assembly 4 are stopped, and a current of 8 kA is applied to the punch 5 and the die 6 by using a second power supply device equipped with a temperature controller for 0.5 seconds.
  • 8 was heated to 900 ° C. in the austenite region, and then rapidly cooled to 180 ° C. at a cooling rate of 30 ° C./second using a cooling device equipped with a temperature controller.
  • Example 5 Using the mechanical joining apparatus 1 shown in FIG. 3, the part facing the rivet 8 with the plate assembly 4 interposed therebetween is a tool steel die 6a, and the copper die 6b is disposed on the outer periphery of the die 6a. Except for the above, the joining test was performed under the same conditions as in Example 1. The deformation of the die 6 could be suppressed, and the plate assembly could be joined without causing cracking of the metal plate, breakage of the rivet, and non-penetration of the rivet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Insertion Pins And Rivets (AREA)
  • Connection Of Plates (AREA)

Abstract

複数枚の金属板の接合にて金属板の変形抵抗が大きい場合でも安定してリベット接合できる機械的接合装置を提供する。 複数枚の金属板にパンチによりリベットを打込む機械的接合装置であって、パンチ及びダイと板押えと電源装置とを備え、パンチ及びダイは複数枚の金属板を間に挟めるように対向して配置され、板押えはパンチを内部に挿入可能な筒状体であり板押えの一方の端部を複数枚の金属板のパンチ側の金属板に接触させて複数枚の金属板を押し付け可能且つ通電加熱可能な電極体材料で構成され、パンチはリベットを打込み可能な材料で構成され、ダイは複数枚の金属板を支持可能且つ通電加熱可能な電極体材料で構成され、電源装置は打込み開始と同時に複数枚の金属板を昇温するように板押え及びダイへの通電を開始し打込み終了まで板押え及びダイを通電するように構成される、機械的接合装置。

Description

機械的接合装置及び機械的接合方法
 本開示は、複数枚の金属板の接合において、金属板の変形抵抗が大きいときに用いることができる機械的接合装置に関し、特に、複数枚の金属板に引張強度が780MPa以上の高強度鋼板を1枚以上含む場合、又は金属板の引張強度が小さくとも加工速度が大きい場合に用いることができる機械的接合装置に関するものである。
 近年、自動車分野では、低燃費化やCO2排出量の削減のため、車体を軽量にしつつ、衝突安全性の向上のため、車体部材を高強度にすることが求められている。これらの要求を満たすためには、車体や部品などに高強度鋼板を使用することが有効である。そのため、高強度鋼板に対する需要が高まっている。車体や部品などに高強度鋼板を使用するためには、高強度鋼板と他の金属板とを接合する必要があるが、この接合において、以下のような問題がある。
 従来、車体の組立や部品の取付けなどは、主として、スポット溶接で行われており、高強度鋼板を含む複数枚の金属板の接合も、スポット溶接で行われる。このような、複数枚の金属板を重ね合わせて、スポット溶接して形成した継手において、引張強度は重要な特性である。引張強度には、せん断方向に引張荷重を負荷して測定する引張せん断強度(TSS)と、剥離方向に引張荷重を負荷して測定する十字引張強度(CTS)とがある。
 270~600MPaの引張強度を有する複数枚の鋼板により形成されるスポット溶接継手のCTSは、鋼板の強度の増加に伴い増加する。したがって、270~600MPaの引張強度を有する鋼板により形成されるスポット溶接継手では、継手強度に関する問題は生じ難い。しかし、780MPa以上の引張強度を有する鋼板を1枚以上含む複数枚の金属板により形成されるスポット溶接継手では、鋼板の引張強度が増加しても、CTSが、増加しないか、又は減少する。これは、変形能の低下により溶接部への応力集中が高まること及び合金元素を多く含有することに起因して、溶接部に焼きが入ること及び凝固偏析により、溶接部の靱性が低下することが、その理由である。
 このため、780MPa以上の引張強度を有する鋼板を1枚以上含む複数枚の金属板の接合において、CTSを向上させる技術が求められている。それを解決する技術の一つとして、母材を溶融させることなく接合する機械的接合技術がある。具体的には、被接合材である複数枚の金属板同士を重ね合わせ、パンチの外周を金属板のはね上がりを防止する板押えで押さえながら、パンチでリベットを打ち込み、複数の金属板同士をリベットで機械的に接合する技術がある。
 しかしながら、この技術では、リベットを打ち込むため、ダイ側の鋼板の変形が非常に大きくなり、延性不足又は変形局所化により、ダイ側の鋼板で割れが発生するという問題、せん断方向及び剥離方向に引張応力がかかった場合、リベットが抜けて破壊が生じ、せん断方向及び剥離方向の引張強度について十分な値が得られないという問題、並びに同じリベット打ち込み方式の高強度鋼板の継手及び軟鋼板の継手について、両者の疲労強度を比べると、ほとんど差がないという問題があった。
 このような問題を解決する技術として、特許文献1には、重ね合わせた引張強度が430~1000MPaの高強度鋼板に、リベットを打ち込んで貫通させ、貫通させたリベットの先端を変形させて、機械的に接合して、引張特性と疲労特性に優れた高強度鋼板を得る接合技術が開示されている。特許文献1に開示の技術は、引張強度が619MPaまでの高強度鋼板に対して検討されており、複数枚の鋼板を接合する技術として有効である。しかしながら、特許文献1では、引張強度780MPa以上の高強度鋼板を含む複数枚の鋼板に対して、上記技術の適用は検討されていなかった。
 また、非特許文献1には、高強度鋼板とアルミニウム合金板との接合において、リベットを打ち込んで機械的に接合する際に、引張強度590MPa程度の高強度鋼板を含む複数枚の金属板までは、欠陥なく接合できるが、引張強度980MPaの高強度鋼板を含む複数枚の金属板では、リベットが高強度鋼板を貫通できないと記載されている。
 このように金属板にリベットを打ち込んで機械的に接合する技術では、通常、接合前に被接合材に穴加工はせず、リベット自身で被接合材を打ち抜く必要があり、変形抵抗が大きい鋼板、例えば、780MPa以上の引張強度を有する鋼板を1枚以上含む複数枚の金属板にリベットを打ち込んで機械的に接合することは、困難とされていた。
 これに対して、特許文献2には、高強度を有する又は高加工硬化された接合薄板を、リベットを用いて接合する方法において、接合プロセスの開始またはその直前に、押さえ付け部材及びダイス、又は押さえ付け部材及びダイスのそばに配置された構成要素、若しくは前に配置された構成要素によって、接合薄板の局所的かつ時間的に制限された加熱を、電気的な抵抗加熱によって行う機械的接合方法が開示されている。
 このように、特許文献2では、高強度を有する又は高加工硬化された鋼板に適用できる技術と記載されており、引張強度780MPa以上の高強度鋼板を1枚以上含む複数枚の金属板に対してもある程度は有効な技術であると考えられる。しかしながら、特許文献2に開示の技術を用いて、実際に、引張強度780MPa以上の高強度鋼板を1枚以上含む複数枚の金属板をリベットで接合を行ったとき、リベット接合できない場合があり、更に、改善の余地があった。また、引張強度が780MPa未満の金属板であっても、リベット打ち込みの際の加工速度が大きくなると、金属板の変形抵抗が大きくなり、同様に改善すべき余地があった。
特開2000-202563号公報 特表2004-516140号公報 特開2007-254775号公報
ふぇらむ,Vol.16(2011)No.9,p.32-38
 本開示は、上記の従来技術の現状に鑑みて、複数枚の金属板の接合において、金属板の変形抵抗が大きい場合でも、安定してリベット接合できる機械的接合装置及び機械的接合方法を提供することを目的とする。
 そこで、本発明者らは、上記課題を解決する方法について鋭意検討した。特許文献2に開示の技術では、鋼板の加熱温度を35~250℃とし、鋼板の加熱をリベットの打ち込み前に終了していた。そこで、本発明者らは、金属板の変形抵抗が大きい場合に、リベット接合する際に、複数枚の金属板を加熱しながらリベットを打ち込むことに着想した。
 その結果、金属板の割れ、リベット破損、又はリベット未貫通などが生じないことを知見した。そして、複数枚の金属板にリベットを打ち込んでいる間、板押えとダイとの間で通電して、複数枚の金属板の温度を上げることを着想した。
 本開示の機械的接合装置及び機械的接合方法は、上記知見に基づいてなされたもので、その要旨とするところは以下の通りである。
(1)複数枚の金属板にパンチによりリベットを打ち込む機械的接合装置であって、
 パンチ及びダイと、
 板押えと、
 第1の電源装置と、
 を備え、
 前記パンチ及びダイは、重ね合わせた複数枚の金属板を間に挟むことができるように、対向して配置され、
 前記板押えは、前記パンチを内部に挿入可能な筒状体であり、前記板押えの一方の端部を、前記複数枚の金属板の前記パンチ側の金属板に接触させて、前記複数枚の金属板を押し付け可能且つ通電加熱可能な電極体材料で構成され、
 前記パンチは、リベットを打ち込み可能な材料で構成され、
 前記ダイは、前記複数枚の金属板を支持可能且つ通電加熱可能な電極体材料で構成され、
 前記第1の電源装置は、前記パンチによるリベットの打ち込み開始と同時に、前記複数枚の金属板の温度を上げるように前記板押え及びダイへの通電を開始し、前記リベットの打ち込み終了まで前記板押え及びダイを通電するように構成されている、
 機械的接合装置。
(2)前記機械的接合装置が冷却装置をさらに備え、前記冷却装置は、前記パンチに接続されており、前記リベットの打ち込み開始から打ち込み終了までの間、前記リベットを冷却するように構成されている、前記(1)に記載の機械的接合装置。
(3)前記パンチ、前記リベットを打ち込み可能且つ通電加熱可能な電極体材料で構成され、第2の電源装置が、前記パンチにより前記リベットを打ち込んだ後に前記リベットを通電して熱処理するように、前記パンチ及びダイを通電するように構成されており、
 前記機械的接合装置が冷却装置をさらに備え、前記冷却装置が、前記リベットの熱処理後に前記リベットを冷却するように構成されている、
 前記(1)または(2)に記載の機械的接合装置。
(4)
 前記ダイのうち、少なくとも前記複数枚の金属板を間に挟んで前記リベットと対向する部分の材質が工具鋼であり、前記工具鋼の外周部分の材質が銅又は銅合金である、前記(1)~(3)のいずれか一項に記載の機械的接合装置。
(5)複数枚の金属板にパンチによりリベットを打ち込む機械的接合方法であって、
 複数枚の金属板を準備すること、
 対向して配置されたパンチ及びダイの間に、前記複数枚の金属板を重ね合わせて配置すること、
 前記パンチを内部に挿入可能な筒状体である板押えの一方の端部を、前記複数枚の金属板の前記パンチ側の金属板に押し付けること、
 前記板押えにより押さえられた前記複数枚の金属板に、前記パンチによりリベットを打ち込むこと、並びに
 前記リベットの打ち込み開始と同時に、前記複数枚の金属板の温度を上げるように、前記板押え及び前記ダイを介して、前記複数枚の金属板への通電加熱を開始し、前記リベットの打ち込み終了まで前記複数枚の金属板を通電加熱すること、
 を含む、機械的接合方法。
(6)前記リベットの打ち込み開始から打ち込み終了までの間、前記パンチを介して前記リベットを冷却することをさらに含む、前記(5)に記載の機械的接合方法。
(7)前記リベットの打ち込み後、前記パンチ及び前記ダイを介して、前記リベットを通電加熱して熱処理し、次いで前記リベットを冷却することを含む、前記(5)または(6)に記載の機械的接合方法。
(8)前記ダイのうち、少なくとも前記複数枚の金属板を間に挟んで前記リベットと対向する部分の材質が工具鋼であり、前記工具鋼の外周部分の材質が銅又は銅合金である、前記(5)~(7)のいずれか一項に記載の機械的接合方法。
 本開示の機械的接合装置及び機械的接合方法によれば、金属板の変形抵抗が大きい場合でも、金属板の割れ、リベット破損、及びリベット未貫通を生じることなく接合継手を得ることができる。
図1は、機械的接合の形態を表す断面模式図である。図1(a)は、リベットの打ち込み開始と同時に板組の通電加熱を開始している状態を表す断面模式図であり、図1(b)は、リベットの打ち込み後の状態を表す断面模式図である。 図2は、機械的接合の形態を表す断面模式図である。図2(a)は、リベットの打ち込み開始と同時に板組の通電加熱を開始している状態を表す断面模式図であり、図2(b)は、リベットの打ち込み後にリベットを通電加熱している状態を表す断面模式図である。 図3は、ダイの一部に工具鋼を用いた場合の機械的接合の形態を表す断面模式図である。図3(a)は、ダイの一部に工具鋼を用いた場合に、リベットの打ち込み開始と同時に板組を通電加熱している状態を表す断面模式図であり、図3(b)は、ダイの一部に工具鋼を用いた場合に、リベットの打ち込み後にリベットを通電加熱している状態を表す断面模式図である。
 本発明者らは、特許文献2に開示の技術を用いて、引張強度が780MPa以上の高強度鋼板(以下、「高強度鋼板」ともいう)を含む複数枚の金属板(以下、「板組」ともいう)を挟むように配置された板押えとパンチの反対側に設置されているダイとの間に電流を流して板組を通電加熱し、リベットを打ち込んだところ、リベット接合できない場合があった。また、引張強度が780MPa未満のみの金属板を用いる場合に、リベット打ち込みの際の加工速度を大きくしたところ、金属板の変形抵抗が大きくなり、リベット接合できない場合があった。
 本発明者らは、特許文献2に開示の技術では、鋼板の加熱温度を35~250℃とし、鋼板の加熱をリベットの打ち込み前に終了していることに着目し、リベット接合する際、板組を加熱しながらリベットを打ち込むことに着想した。
 本発明者らは、種々の金属板の組合せの板組に加熱しながらリベットを打ち込み、リベット破損などとの関係について調査した。その結果、板組へのリベット打ち込み開始と同時に、板組の温度を上げることで、安定してリベット接合できることを知見した。さらに、板組の温度を上げるために、板押えとダイとの間を通電することを着想して、本開示の機械的接合装置(以下、「接合装置」ともいう)を見出した。
 本開示は、複数枚の金属板にパンチによりリベットを打ち込む機械的接合装置であって、
 パンチ及びダイと、
 板押えと、
 第1の電源装置と、
 を備え、
 前記パンチ及びダイは、重ね合わせた複数枚の金属板を間に挟むことができるように、対向して配置され、
 前記板押えは、前記パンチを内部に挿入可能な筒状体であり、前記板押えの一方の端部を、前記複数枚の金属板の前記パンチ側の金属板に接触させて、前記複数枚の金属板を押し付け可能且つ通電加熱可能な電極体材料で構成され、
 前記パンチは、リベットを打ち込み可能な材料で構成され、
 前記ダイは、前記複数枚の金属板を支持可能且つ通電加熱可能な電極体材料で構成され、
 前記第1の電源装置は、前記パンチによるリベットの打ち込み開始と同時に、前記複数枚の金属板の温度を上げるように前記板押え及びダイへの通電を開始し、前記リベットの打ち込み終了まで前記板押え及びダイを通電するように構成されている、
 機械的接合装置を対象とする。
 以下、図面を参照しながら、本開示の接合装置を説明する。説明の便宜上、パンチ側を上側、ダイ側を下側として、パンチ側の金属板を上側金属板、ダイ側の金属板を下側金属板というが、接合装置は、固定することができればよく、縦置き、横置き等の方向は問わない。
 (実施形態1)
 図1に、本開示の機械的接合装置を用いた機械的接合の形態を表す断面模式図を示す。図1(a)は、リベットの打ち込み開始と同時に板組の通電加熱を開始している状態を表す断面模式図であり、図1(b)は、リベットの打ち込み後の状態を表す断面模式図である。
 図1(a)に示すように、機械的接合装置1においては、上側金属板2及び下側金属板3が重ねられた板組4を間に挟むことができるように、対向してパンチ5及びダイ6が配置されている。パンチ5の外周に、板押え7が配置される。
 機械的接合装置1は、パンチ5によりリベット8の打ち込みを開始するのと同時に、板組4の温度を上げるように、板押え7とダイ6とを通電する第1の電源装置(図示せず)を備える。
 リベット8の打ち込み開始とは、パンチ5により打ち込まれるリベット8が板組4のパンチ側の金属板と接触する時点を意味する。
 リベット8の打ち込みを開始するのと同時に、板組4を通電加熱することによって、金属板の割れ、リベット破損、及びリベット未貫通を生じることなく接合継手を得ることができる。リベット打ち込み開始から板組を加熱するので、打ち込み前から加熱している場合に比べて、板組の加熱領域を接合領域に限定しやすくなり、接合領域以外の板組の軟化を抑制することができる。そのため、板組の金属組織の変質を防止することができる。特に、金属板として780MPa以上の高強度鋼板を用いる場合に、鋼板の強度低下を抑制しながら、接合を行うことができる。
 第1の電源装置は、板押え7及びダイ6に接続され、板組4を通電加熱するように構成されている。第1の電源装置は、板押え7及びダイ6に通電する電気量(電流値及び通電時間)を制御する第1の制御装置(図示せず)を備え、板組4を加熱することができる。
 第1の制御装置は、リベット8の打ち込みを開始するのと同時に、板組4の温度を上げるように、板押え7及びダイ6に通電を開始し、リベット8の打ち込み終了まで、板押え7及びダイ6を通電して板組4を所望の温度に通電加熱することを制御する。
 板組4の通電加熱は、リベット8の打ち込み開始とともに開始する。板組4の通電加熱は、リベット8の打ち込み終了後も継続し、その後停止してもよいが、好ましくは、リベット8の打ち込み終了と実質的に同時に停止する。
 リベット8の打ち込み終了とは、パンチの打ち込み方向への移動が実質的に停止した時点をいい、パンチの位置を検知して検出することができる。パンチの位置の検知方法は特に限定されるものではなく、例えば、非接触式のレーザ変位計やパンチを押し込むボールねじの回転数から位置を検知する装置を用いて行うことができる。
 リベット打ち込み速度は、好ましくは1mm/秒以上、より好ましくは10mm/秒である。リベット打ち込み速度は、板組の金属板の引張強度等に応じて調節することができる。
 リベット8の打ち込み開始から打ち込み終了までの時間は、板組に用いる金属板の材料、厚み、枚数などによって調整すればよく、好ましくは0.3~2.0秒、より好ましくは0.5~1.4秒である。
 板組4の加熱温度は、板組の延性が向上して、鋼板等の金属板の割れ、リベット破損、及びリベット未貫通を抑制しつつ、リベットを打ち込むことができる温度範囲であればよい。すなわち、板組4の加熱温度の下限は、金属板の割れ、リベット破損、及びリベット未貫通を抑制できる温度とすればよい。板組4の加熱温度の上限は、板組4のうち最も融点が低い金属板の融点未満の温度にすればよい。
 板組4の加熱温度の下限は、好ましくは400℃以上、より好ましくは500℃以上、さらに好ましくは600℃以上である。板組4の加熱温度の上限は、好ましくは900℃以下、より好ましくは800℃以下である。板組4の加熱温度は、打ち込み終了時点の温度であり、その測定個所は、板押え7に囲まれた領域内にある上側金属板の表面のリベット打ち込み位置である。上側金属板の表面温度は、例えば、熱電対を用いて測定することができる。上側金属板の表面温度測定は、リベットを準備する前に、事前に行ってもよい。事前に上側金属板の表面温度測定を行う場合、パンチにリベットを保持させて打ち込む際に、温度測定を省くことができる。
 板組4を通電加熱する電流値は、打ち込み開始から終了までの時間内に板組4を上記温度範囲内に加熱するように、第1の制御装置で制御することができる。第1の制御装置は、板組4を流れる電流値を、例えば8~14KAまたは10~12kAに制御することができる。また、第1の制御装置は、通電時間をリベット8の打ち込み開始から打ち込み終了までの時間と実質的に同じに制御することができる。
 第1の制御装置は、リベット8が板組4に接触した時間を検知して、板押え7及びダイ6に通電を開始するように第1の電源装置を制御することができる。リベット8が板組4に接触した時間を検知するために、例えば、リベット8が板組4に接触したときにパンチ5とダイ6との間の電圧の変化を検知する電圧計、パンチ5に組み込んだロードセル等を用いることができる。
 第1の電源装置は、特に限定されるものでなく、従来用いられている電源、例えば直流電源装置又は交流電源装置であることができる。
 第1の制御装置は、特に限定されるものでなく、公知の温度調節器を含むことができる。第1の制御装置は、板組4の温度を計測する温度計を含む温度調節器を用いて、板押え7とダイ6とを通電する電気量を制御することができる。板組4の金属板の組合せに応じて所望の温度になる電流値と時間との関係を予め求めておき、第1の制御装置が、当該電流値及び時間となるように制御してもよい。
 パンチ5は棒状であることができ、パンチ5の長手方向に垂直方向の断面形状は、特に限定されるものではなく、円状、楕円状、矩形状などであることができる。パンチ5は、長さ方向に異なる断面形状を有してもよい。
 パンチ5は、リベット8を打ち込むことができる強度を有するものではあれば、その材質は特に限定されず、所望の機械的強度を有する材料から選択することができる。パンチ5は、好ましくは、ビッカース硬度Hvが300~510である、鋼、銅、又は銅合金から構成される。パンチを電極体としても用いる場合は、パンチ5は、電気伝導率が高い銅又は銅合金から構成されることが好ましい。
 ダイ6は、複数枚の金属板を支持することができ且つ板組4を通電加熱することができる機械的強尾及び電気伝導率を有する電極体材料で構成されるものではあれば、その材質は特に限定されず、所望の材料から選択することができる。ダイ6は、好ましくは、銅又は銅合金である。
 パンチ5の外周に、板押え7が配置される。板押え7は、一方の端部を板組4のパンチ5側の金属板に接触して板組4をダイ6に押し付けることができる部材であり、パンチ5の長手軸に沿って、相対的に移動することができる。板押え7の形状は、パンチ4が内部に挿入される円筒などの筒状体である。
 板押え7は、ダイ6に複数枚の金属板を押し付けることができ且つ通電加熱することができる機械的強度及び電気伝導率を有する電極体材料で構成されるものではあれば、その材質は特に限定されず、所望の材料から選択することができる。板押え7は、好ましくは銅又は銅合金である。
 パンチ5、ダイ6、板押え7、及び冷却管9に用いられ得る銅合金の組成は、好ましくはクロム銅合金またはアルミナ分散銅合金である。クロム銅合金の組成は、好ましくは0.4~1.6%Cr-Cu、より好ましくは0.8~1.2%Cr-Cu、例えば1.0%Cr-Cuであり、アルミナ分散銅合金の組成は、好ましくは0.2~1.0%Al―Cu、より好ましくは0.3~0.7%Al―Cu、例えば0.5%Al―Cuである。
 パンチ5の先端には、リベット8が配置される。このリベット8は、パンチ5により板組4に打ち込まれるものであり、汎用品のリベットでよく、フルチューブラリベットなどを用いることができる。リベット8の材質は、板組4に打ち込んで接合可能なものであれば特に限定されるものでなく、例えば機械構造用鋼、高硬度鋼等であることができる。
 打ち込み前において、リベット8は、パンチ5に支持された状態または適宜の支持部材により支持された状態で、板組4の上方に配置され得る。
 パンチ5をリベット8または適宜の支持部材に指示させる方法は特に限定されないが、例えば、機械的に保持してもよく、パンチ5及び支持部材を、磁力を有する材料としてリベット8を磁気的に付着させて保持してもよい。
 パンチ5と対向して配置されるダイ6は、打ち込むリベット8の脚部の形状及び大きさに応じた皿状又は凹状の押付け拘束面11を有し、その中央部に略円錐台形状の突出部12を有してもよい。突出部12の頂部は、ダイ6の上面よりもわずかに低くてもよい。突出部12の根元部側は、押付け拘束面11の底面に連続するように滑らかな円弧状面を有してもよい。
 本開示の装置を用いてリベットを打ち込まれる板組4は、2枚の上側金属板2と下側金属板3とで構成されてもよく、3枚以上の複数の金属板を含んでもよい。金属板は、少なくとも一部に板状部を有し、板状部が互いに積み重ね可能な部分を有するものであればよく、全体が板状でなくてもよい。また、板組4は、別々の金属板から構成されるものに限定されず、1枚の金属板を管状などの所定の形状に成形したものを重ね合わせたものでもよい。
 複数の金属板は、同一種類の金属板であってもよいし、異なる種類の金属板であってもよい。金属板は、高強度を有する金属板であることができ、鋼板、アルミニウム板、マグネシウム等であることができる。鋼板は、好ましくは高強度鋼板、より好ましくは780MPa以上の引張強度を有する高強度鋼板であることができる。複数の金属板は、鋼板を1枚以上含んでもよく、780MPa以上の引張強度を有する高強度鋼板を1枚以上含んでもよい。例えば、板組4は、板組4の全ての金属板を鋼板とする板組、上側金属板又は下側金属板を高強度鋼板とし、他の金属板を引張強度が780MPa未満の鋼板とする板組、上側金属板をアルミニウム板とし、下側金属板を高強度鋼板とする板組、又は板組4の全ての金属板をアルミニウム板とする板組でもよい。本開示の装置を用いれば、780MPa以上の引張強度を有する高強度鋼板を少なくとも1枚以上含む板組も良好に接合することができる。
 金属板の厚さは、特に限定されるものでなく、例えば0.5~3.0mmとすることができる。また、板組の厚さも、特に限定されるものでなく、例えば1.0~6.0mmとすることができる。また、めっきの有無、成分組成なども、特に限定されるものでない。
 図1には、板押え7からダイ6に向かう電流の流れを点線矢印で例示しているが、板組4を通電加熱できればよく、ダイ6から板押え7に向かう電流の流れとしてもよい。図2及び3においても同様である。
 (実施形態2)
 好ましい実施形態として、実施形態2を説明する。本開示の接合装置は、好ましくは冷却装置(図示せず)をさらに備える。
 冷却装置は、パンチ5に接続されており、パンチ5を介して、リベット8の打ち込み開始から打ち込み終了までの間、リベット8を冷却するように構成されている。板組4の通電加熱を行いつつ、パンチ5に接続された冷却装置でリベット8を冷却しながら、パンチ5でリベット8を打ち込んで板組4を接合することができる。
 板押え7とダイ6との間で板組4を通電加熱しながらリベット8を打ち込む際に、パンチ5を介してリベット8を冷却することで、板組4の熱によるリベット8の軟化を抑制することができ、より安定してリベット接合を行うことができる。リベット8を冷却することによって、特に、リベット8を打ち込む際の板組4の温度が高い場合にも、リベット8の軟化を抑制して、リベット8が未貫通となることを防止して、より安定して接合を行うことができる。
 リベット8の冷却は、リベット8の打ち込み開始から打ち込み終了までの間に行えばよい。すなわち、リベット8の冷却は、打ち込み前から開始してもよく、打ち込み開始と同時に開始してもよいが、好ましくはリベット8の冷却は、打ち込み前から開始する。リベット8の冷却は、打ち込み終了と同時に終了してもよく、打ち込み終了後も継続して行ってもよいが、好ましくは打ち込み終了と実質的に同時に終了する。
 冷却装置は、パンチ5を介してリベット8を冷却することができるものであれば特に限定されないが、パンチ5は、その内部に冷却管9を有してもよい。図1(a)に、パンチ5の内部に配置され、冷却装置に接続された冷却管9を例示する。
 冷却管9は、例えば矢印で示す方向に、冷媒を供給することができる管である。リベット8が接触するパンチ5の端部とは反対側の他端部側に、冷却管9に接続される冷却装置が設けられ得る。冷却管9の材質は、冷媒を内部に流通させて、パンチ5を介してリベットを冷却することができるものであれば特に限定されないが、例えば銅または銅合金であることができる。この場合、パンチ5を熱伝導率の高い銅又は銅合金とすることが好ましい。
 冷媒は、特に限定されるものでなく、公知の冷媒液または冷媒ガスとすることができるが、経済面及び扱い易さなど考慮して、水が好ましい。
 パンチ5の内部に冷却管9を設けずに、リベット8が接触するパンチ5の端部とは反対側の他端部に接するように冷却装置を配置し、パンチ5を冷却し、パンチ5の熱伝導により、リベット8を冷却してもよい。この場合も、パンチ5を熱伝導率の高い銅又は銅合金とすることが好ましい。
 リベット8の冷却は、リベット8の打ち込み開始から打ち込み終了までの間に行えばよい。すなわち、リベット8の冷却は、リベット8の打ち込み前から開始してもよく、打ち込み開始と同時に開始してもよいが、好ましくはリベット8の冷却は、打ち込み前から開始する。リベット8の冷却は、打ち込み終了と同時に終了してもよく、打ち込み終了後も継続して行ってもよいが、好ましくは打ち込み終了と実質的に同時に終了する。
 冷却装置は制御装置を備えており、冷却温度並びに冷却開始及び終了のタイミングを制御することができる。制御装置は、好ましくは打ち込み終了時点において、より好ましくは打ち込み開始から打ち込み終了まで、リベット8の温度が、好ましくは3~50℃、より好ましくは5~30℃となるように、冷却装置を制御することができる。リベット8の温度は、例えば、実際に接合を行う前に、事前にリベットの温度測定用の予備試験を行い、熱電対を用いてリベットの温度を測定しておくことができる。冷却装置に備えられた制御装置は、特に限定されるものでなく、公知の温度調節器を含むことができる。
 (実施形態3)
 図2を参照しながら、好ましい実施形態である実施形態3を説明する。図2に、本開示の機械的接合装置を用いた機械的接合の形態を表す断面模式図を示す。図2(a)は、リベットの打ち込み開始と同時に板組を通電加熱している状態を表す断面模式図であり、図2(b)は、リベットの打ち込み後にリベットを通電加熱している状態を表す断面模式図である。
 機械的接合装置1は、パンチ5により打ち込まれたリベット8が熱処理されるように、パンチ5とダイ6とを通電する第2の電源装置(図示せず)を備える。図2の機械的接合装置は、パンチ5及びダイ6が電極体材料で構成されてリベット8を通電加熱できること以外は、図1の機械的接合装置と同様の構成を有する。
 第2の電源装置は、パンチ5及びダイ6に接続され、パンチ5によりリベット8を打ち込んだ後に、パンチ5及びダイ6を介してリベット8を通電して熱処理するように構成されている。第2の電源装置は、パンチ5及びダイ6に通電する電気量(電流値及び通電時間)を制御する第2の制御装置(図示せず)を備え、リベット8を所望の温度に加熱することができる。
 第2の電源装置及びパンチ5に接続された冷却装置を用いて、リベット8の打ち込み終了後に、リベット8をオーステナイト域に加熱する熱処理を行い、次いで冷却することができる。これにより、リベット8がマルテンサイト組織を有することができ、リベット8の強度向上を図ることができる。実施形態3で用いられる冷却装置は、実施形態2で用いられる冷却装置と同じでも異なってもよい。
 打ち込み終了後にリベット8を熱処理して高強度化を図ることにより、リベットを用いて得られた接合継手の、リベットを含む周辺の破損を、より低減することができる。
 特に、高強度鋼板を含む板組と、高強度でない汎用品のリベットとを接合する場合でも、強度の低いリベットに応力集中することを抑制し、リベットを用いて得られた接合継手の破損をより安定して防止することができる。
 リベットの強度を高くするために、従来、成分組成を調整し、焼入れなどの熱処理を施す技術が知られている(特許文献3)。しかし、この技術では、リベットの成分組成が制限され、熱処理のための熱処理炉が必要となり、コストの上昇を生じ、更に、熱処理炉での熱処理工程が必要となり、リベットの生産時間の増加を招く問題があった。
 これに対して、リベットを打ち込むパンチとダイとを電極体として、板組に打ち込んだ後のリベットに電流を流して通電加熱して、リベットを熱処理、すなわち、鋼材製の汎用品のリベットをオーステナイト域になる温度まで加熱し、急冷してマルテンサイト組織を得て、リベットの高強度化を図ることができる。そのため、熱処理炉等を用いることなく、高強度のリベットを得ることができる。
 リベット8の熱処理における加熱温度は、リベット8をオーステナイト域まで加熱することができるものであれば特に限定されないが、好ましくはA3点~リベットの融点未満の温度に加熱する。リベット8の最高温度までの加熱における電流値及び時間は、例えば、電流値は8~10kA、時間は0.1~1.0秒であることができる。
 リベット8の通電加熱は、リベット8の打ち込み終了と同時にまたはリベット8の打ち込み終了から所定時間経過後に開始することができる。第2の制御装置が、リベット8の打ち込み終了と同時にまたはリベット8の打ち込み終了から所定時間経過後に、リベット8の通電加熱を行うように、第2の電源装置を制御することができる。
 リベット8をオーステナイト域に加熱した後の冷却条件は、マルテンサイト組織が得られる範囲であれば特に限定されないが、冷却装置に備えられた制御装置は、リベット8をオーステナイト域に加熱した後に、好ましくは10℃/秒以上の冷却速度で、リベットを構成する材料のマルテンサイト変態終了温度以下、一般には約200℃以下までリベット8を冷却するように、冷却装置を制御することができる。
 リベット8の打ち込みの際にパンチ5を介したリベット8の冷却を行っている場合に、リベット8の打ち込み後にリベット8の熱処理を行う間、通電加熱によりリベット8が所定温度に加熱される限り、パンチ5を介したリベット8の冷却を継続してもよいが、好ましくはパンチ5の冷却を停止又冷却量を低減させ、リベット8の熱処理後に、冷却を再開又冷却量を増加させてリベット8を冷却する。
 パンチ5は、リベット8を打ち込むことができ且つ通電加熱することができる機械的強度及び電気伝導率を有する電極体材料で構成されるものではあれば、その材質は特に限定されず、所望の材料から選択することができる。パンチ5は、好ましくは、ビッカース硬度Hvが300~510であり、電気電導率が高い銅又は銅合金から構成される。
 ダイ6は、複数枚の金属板を支持することができ且つ板組4及びリベット8を通電加熱することができる機械的強度及び電気伝導率を有する電極体材料で構成されるものではあれば、その材質は特に限定されず、所望の材料から選択することができる。ダイ6は、好ましくは、銅又は銅合金である。ダイ6は、実施形態1で用いられるものと同じ材料で構成することができる。
 第2の電源装置は、特に限定されるものでなく、従来用いられている電源、例えば直流電源装置又は交流電源装置であることができる。第2の電源装置は、第1の電源装置と同様の構成を有してもよい。
 第2の制御装置は、特に限定されるものでなく、公知の温度調節器を含むことができる。第2の制御装置は、リベット8の温度を計測する温度計を含む温度調節器を用いて、パンチ5及びダイ6を通電する電気量を制御することができる。リベット8が所定の温度になる電流値と時間との関係を予め求めておき、第2の制御装置が、当該電流値及び時間となるように第2の電源装置を制御してもよい。
 冷却装置に備えられた制御装置は、温度調節器を用いて、リベット8の熱処理後の冷却速度及び冷却温度を制御することができる。
 第1の電源装置及び第2の電源装置は、別々の電源装置でもよく、一体の電源装置でもよく、または第1の電源装置が第2の電源装置の機能をも有してもよい。
 第1の電源装置及び第2の電源装置が一体の電源装置である場合、または第1の電源装置が第2の電源装置の機能をも有する場合、当該電源装置は、板押え7及びダイ6と、パンチ5及びダイ6との両方に接続される。
 (実施形態4)
 図3を参照しながら、好ましい実施形態である実施形態4を説明する。図3に、ダイの一部に工具鋼を備える機械的接合装置を用いた機械的接合の形態を表す断面模式図を示す。図3(a)は、ダイの一部に工具鋼を用いた場合に、リベットの打ち込み前に板組を通電加熱している状態を表す断面模式図であり、図3(b)は、ダイの一部に工具鋼を用いた場合に、リベットの打ち込み後にリベットを通電加熱している状態を表す断面模式図である。図3の機械的接合装置は、ダイ6が工具鋼製のダイ6aと銅又は銅合金製のダイ6bで構成されること以外は、図2の機械的接合装置と同様の構成を有する。
 ダイの変形を抑制するためには、ダイのうち、板組4を間に挟んでリベットと対向する部分(リベット8が打ち込まれる部分の下方部分)の強度を強くすることが効果的である。そのため、図3に示すように、ダイ6のうち、リベット8が打ち込まれることで変形し得る下側金属板3を拘束する部分を工具鋼製のダイ6aとすることで、ダイ6の強度を大きくすることができ、ダイ6の変形を抑制できる。
 板組にリベットを打ち込むときに、板押えとダイとの間で通電すると、又は打ち込んだリベットを熱処理するためにパンチとダイとの間で通電すると、ダイは加熱される。このとき、ダイの材質が全て工具鋼であると、ダイが軟化しやすい。そのため、好ましくは、工具鋼製のダイ6aの外周部分を、電流を流れやすくする観点から、銅又は銅合金で構成する。
 工具鋼製のダイ6aの外周部分を取り囲むように、電気抵抗の低い銅又は銅合金製のダイ6bを配置することによって、板押え7とダイ6との間で通電するときに、又はパンチ5とダイ6との間で通電するときに、電流が電気抵抗の低い外周部分に優先的に流れるので、工具鋼製のダイ6aが加熱され難くなり、軟化を防止することができる。
 ダイ6の一部を工具鋼で構成する場合、ダイ6のうち、少なくとも板組4を間に挟んでリベット8と対向する部分を工具鋼で構成すればよいが、板組4を間に挟んで板押え7と対向する部分の一部を工具鋼で構成してもよい。ただし、ダイ6のうち、銅又は銅合金で構成される部分の割合が少なくなるにつれて、電流が工具鋼を流れて工具鋼が軟化しやすくなるため、板押え7とダイ6との間又はパンチ5とダイ6との間の通電量に応じて、工具鋼で構成される部分と銅又は銅合金で構成される部分との割合を調整することができる。
 本開示はまた、複数枚の金属板にパンチによりリベットを打ち込む機械的接合方法であって、
 複数枚の金属板を準備すること、
 対向して配置されたパンチ及びダイの間に、前記複数枚の金属板を重ね合わせて配置すること、
 前記パンチを内部に挿入可能な筒状体である板押えの一方の端部を、前記複数枚の金属板の前記パンチ側の金属板に押し付けること、
 前記板押えにより押さえられた前記複数枚の金属板に、前記パンチによりリベットを打ち込むこと、並びに
 前記リベットの打ち込み開始と同時に、前記複数枚の金属板の温度を上げるように、前記板押え及び前記ダイを介して、前記複数枚の金属板への通電加熱を開始し、前記リベットの打ち込み終了まで前記複数枚の金属板を通電加熱すること、
 を含む、機械的接合方法(以下、接合方法ともいう)を対象とする。
 本開示の接合方法について、図1を参照しながら説明する。
 複数枚の金属板の板組4を準備する。板組4は、引張強度が780MPa以上の高強度鋼板を少なくとも1枚含んでもよく、引張強度が780MPa未満の金属板のみを含んでもよい。
 板組4をダイ6の上に載置し、筒状体である板押え7の一方の端部を、板組4のパンチ5側の金属板に押し付け、板押え7により押さえられた板組4に、パンチ5によりリベット8を打ち込む。
 板組4の温度を上げるように、リベット8の打ち込み開始と同時に、板押え7及びダイ6を介して、板組4への通電を開始し、リベット8の打ち込み終了まで板組4を通電する。
 好ましくは、リベット8の打ち込み開始から打ち込み終了までの間、パンチ5を介してリベット8を冷却する。
 好ましくは、リベットの打ち込み後、パンチ及びダイを介して、リベットを通電加熱して熱処理する。
 好ましくは、ダイのうち、少なくとも複数枚の金属板を間に挟んで前記リベットと対向する部分の材質が工具鋼であり、前記工具鋼の外周部分の材質が銅又は銅合金である。
 好ましくは、板押えが、パンチを挿入可能な貫通孔を有し、パンチを、貫通孔と摺動させながら板押えに対して相対的に移動させる。
 好ましくは、板押えの他方の端部に弾性体を備え、弾性体が、板押えを介して複数枚の金属板に押付け圧力を加える。
 パンチ5を移動装置(図示せず)で移動させることで、圧縮コイルバネ14を介して板押え7がパンチ5とともに移動し、板組4に接触することができる。板組4の鋼板同士が密着するように、リベット8が板組4に接触しない位置で停止する程度の加圧力にて、ダイ6に対して板押え7を移動させることができる。
 本開示の接合方法の構成について、上記機械的接合装置にて説明した構成を適用することができる。
 (実施例1)
 図1に示す機械的接合装置1を用いて、金属板の変形抵抗が大きい場合の接合試験として、引張強度が780MPa以上の高強度鋼板を1枚以上含む板組の接合試験を実施した。
 引張強度が780MPa以上の高強度鋼板として980MPaの引張強度を有する厚み1.2mmの鋼板を上側金属板とし、引張強度が780MPa未満の鋼板として440MPaの引張強度を有する厚み1.6mmの鋼板を上側金属板とする板組4を準備した。
 図1(a)に示すように、板組4を銅製のダイ6の上に載置し、銅製の板押え7で板組4を押さえて密着させた。リベット8として高硬度鋼製で直径6mmのフルチューブラリベットを用意してパンチ5に保持させた。
 リベット打ち込み速度10mm/秒で、1.0%Cr-Cu製のパンチ5で板組4にリベット8の打ち込みを開始するのと同時に、板押え7及びダイ6に、第1の制御装置を備えた第1の電源装置を用いて10kAの電流を1.0秒間流し、板組4を加熱して、リベット8を打ち込んだ。リベット打ち込み終了時の板組4の温度は750℃であった。図1(b)に示すような接合部が得られ、重ね合わせた鋼板同士は完全に密着しており、金属板の割れ、リベット破損、及びリベット未貫通を生じることなく、板組の接合を行うことができた。
 (実施例2)
 引張強度が780MPa未満の金属板で構成される板組として、上側金属板及び下側金属板としてそれぞれ、590MPa及び440MPaの引張強度を有する金属板を用意し、リベット打ち込み速度を大きくして20mm/秒にし、20kAの電流を0.5秒間にしたこと以外は、実施例1と同様の条件で、接合試験を行った。金属板の割れ、リベット破損、及びリベット未貫通を生じることなく、板組の接合を行うことができた。
 (実施例3)
 温度調節器を備えた冷却装置に接続され図1に示す冷却管9を内部に備えたパンチ5を用いて、パンチ5を介してリベット8を30℃に冷却しながら、パンチ5でリベット8を打ち込んだこと、及び板組4を780℃まで加熱したこと以外は、実施例1と同様の条件で接合試験を行った。金属板の割れ、リベット破損、及びリベット未貫通を生じることなく、板組の接合を行うことができた。
 (実施例4)
 図2に示す機械的接合装置1を用いて、リベット8の打ち込み後にリベット8を熱処理及び冷却したこと以外は、実施例3と同様の条件で接合試験を行った。
 打ち込み終了後、リベット8の冷却及び板組4の加熱を停止し、パンチ5及びダイ6に、温度調節器を備えた第2の電源装置を用いて8kAの電流を0.5秒間流し、リベット8がオーステナイト域の900℃になるまで加熱し、次いで30℃/秒の冷却速度で180℃まで、温度調節器を備えた冷却装置を用いて急冷した。
 熱処理後のリベットを調査したところ、マルテンサイト組織を有していることが確認できた。そして、接合継手の継手強度試験を実施したところ、リベットを熱処理しない場合に比べて、リベットを含む周辺の破損がより低減したことが分かった。
 (実施例5)
 図3に示す機械的接合装置1を用いて、板組4を間に挟んでリベット8と対向する部分を工具鋼製のダイ6aとし、ダイ6aの外周部分に銅製のダイ6bを配置したこと以外は、実施例1と同様の条件で接合試験を行った。ダイ6の変形を抑制することができ、且つ金属板の割れ、リベット破損、及びリベット未貫通を生じることなく、板組の接合を行うことができた。
 1  機械的接合装置
 2  上側金属板
 3  下側金属板
 4  板組
 5  パンチ
 5a  パンチの接触部分
 5b  パンチの摺動部分
 6  ダイ
 6a  工具鋼製のダイ
 6b  銅又は銅合金製のダイ
 7  板押え
 8  リベット
 9  冷却管
 10  貫通孔
 11  押付け拘束面
 12  突出部
 13  可動板
 14  ホルダ
 15  圧縮コイルバネ
 16  保持板
 17  樹脂成形体
 18  ガイドボルト

Claims (8)

  1.  複数枚の金属板にパンチによりリベットを打ち込む機械的接合装置であって、
     パンチ及びダイと、
     板押えと、
     第1の電源装置と、
     を備え、
     前記パンチ及びダイは、重ね合わせた複数枚の金属板を間に挟むことができるように、対向して配置され、
     前記板押えは、前記パンチを内部に挿入可能な筒状体であり、前記板押えの一方の端部を、前記複数枚の金属板の前記パンチ側の金属板に接触させて、前記複数枚の金属板を押し付け可能且つ通電加熱可能な電極体材料で構成され、
     前記パンチは、リベットを打ち込み可能な材料で構成され、
     前記ダイは、前記複数枚の金属板を支持可能且つ通電加熱可能な電極体材料で構成され、
     前記第1の電源装置は、前記パンチによるリベットの打ち込み開始と同時に、前記複数枚の金属板の温度を上げるように前記板押え及びダイへの通電を開始し、前記リベットの打ち込み終了まで前記板押え及びダイを通電するように構成されている、
     機械的接合装置。
  2.  前記機械的接合装置が冷却装置をさらに備え、前記冷却装置は、前記パンチに接続されており、前記リベットの打ち込み開始から打ち込み終了までの間、前記リベットを冷却するように構成されている、請求項1に記載の機械的接合装置。
  3.  前記パンチが、前記リベットを打ち込み可能且つ通電加熱可能な電極体材料で構成され、第2の電源装置が、前記パンチにより前記リベットを打ち込んだ後に前記リベットを通電して熱処理するように、前記パンチ及びダイを通電するように構成されており、
     前記機械的接合装置が冷却装置をさらに備え、前記冷却装置が、前記リベットの熱処理後に前記リベットを冷却するように構成されている、
     請求項1または2に記載の機械的接合装置。
  4.  前記ダイのうち、少なくとも前記複数枚の金属板を間に挟んで前記リベットと対向する部分の材質が工具鋼であり、前記工具鋼の外周部分の材質が銅又は銅合金である、請求項1~3のいずれか一項に記載の機械的接合装置。
  5.  複数枚の金属板にパンチによりリベットを打ち込む機械的接合方法であって、
     複数枚の金属板を準備すること、
     対向して配置されたパンチ及びダイの間に、前記複数枚の金属板を重ね合わせて配置すること、
     前記パンチを内部に挿入可能な筒状体である板押えの一方の端部を、前記複数枚の金属板の前記パンチ側の金属板に押し付けること、
     前記板押えにより押さえられた前記複数枚の金属板に、前記パンチによりリベットを打ち込むこと、並びに
     前記リベットの打ち込み開始と同時に、前記複数枚の金属板の温度を上げるように、前記板押え及び前記ダイを介して、前記複数枚の金属板の通電加熱を開始し、前記リベットの打ち込み終了まで前記複数枚の金属板を通電加熱すること、
     を含む、機械的接合方法。
  6.  前記リベットの打ち込み開始から打ち込み終了までの間、前記パンチを介して前記リベットを冷却することをさらに含む、請求項5に記載の機械的接合方法。
  7.  前記リベットの打ち込み後、前記パンチ及び前記ダイを介して、前記リベットを通電加熱して熱処理し、次いで前記リベットを冷却することを含む、請求項5または6に記載の機械的接合方法。
  8.  前記ダイのうち、少なくとも前記複数枚の金属板を間に挟んで前記リベットと対向する部分の材質が工具鋼であり、前記工具鋼の外周部分の材質が銅又は銅合金である、請求項5~7のいずれか一項に記載の機械的接合方法。
PCT/JP2016/069718 2015-07-01 2016-07-01 機械的接合装置及び機械的接合方法 WO2017002975A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US15/740,786 US10722935B2 (en) 2015-07-01 2016-07-01 Mechanical joining apparatus and mechanical joining method
KR1020177032307A KR102018251B1 (ko) 2015-07-01 2016-07-01 기계적 접합 장치 및 기계적 접합 방법
CN201680028590.6A CN107614146B (zh) 2015-07-01 2016-07-01 机械接合装置以及机械接合方法
JP2017526461A JP6460235B2 (ja) 2015-07-01 2016-07-01 機械的接合装置及び機械的接合方法
MX2017016307A MX2017016307A (es) 2015-07-01 2016-07-01 Dispositivo de union mecanica y metodo de union mecanica.
EP16818083.4A EP3318346A4 (en) 2015-07-01 2016-07-01 MECHANICAL BONDING DEVICE AND MECHANICAL BONDING PROCESS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-133106 2015-07-01
JP2015133106 2015-07-01

Publications (1)

Publication Number Publication Date
WO2017002975A1 true WO2017002975A1 (ja) 2017-01-05

Family

ID=57608538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069718 WO2017002975A1 (ja) 2015-07-01 2016-07-01 機械的接合装置及び機械的接合方法

Country Status (8)

Country Link
US (1) US10722935B2 (ja)
EP (1) EP3318346A4 (ja)
JP (1) JP6460235B2 (ja)
KR (1) KR102018251B1 (ja)
CN (1) CN107614146B (ja)
MX (1) MX2017016307A (ja)
TW (1) TWI597110B (ja)
WO (1) WO2017002975A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109570430A (zh) * 2017-09-28 2019-04-05 江苏津谊新能源科技有限公司 一种电池极柱铆接制具
JPWO2021200692A1 (ja) * 2020-03-30 2021-10-07
JPWO2021200695A1 (ja) * 2020-03-30 2021-10-07

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9815109B2 (en) 2016-02-03 2017-11-14 Utica Enterprises, Inc. Apparatus and method for mechanically joining advanced high strength steel
EP3589433A4 (en) 2017-03-03 2021-01-27 Utica Enterprises, Inc. DEVICE AND METHOD FOR SECURING A SELF-LOCKING NUT ON AN ADVANCED HIGH STRENGTH STEEL PLATE AND RESULTING ARRANGEMENT
WO2019146400A1 (ja) * 2018-01-24 2019-08-01 武延 本郷 固定装置、固定方法および構造体
CN109967683B (zh) * 2019-03-28 2023-10-27 南京航空航天大学 一种基于脉冲电流前处理的钛钉铆接成形方法及装置
DE102019108813B4 (de) * 2019-04-04 2024-02-29 Volkswagen Aktiengesellschaft Verfahren zum mechanischen Fügen
TWI761736B (zh) * 2019-11-29 2022-04-21 財團法人金屬工業研究發展中心 鈑件接合與其冷卻的方法
EP4458490A1 (en) * 2023-05-03 2024-11-06 Newfrey LLC Method of producing a riveted joint

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006007266A (ja) * 2004-06-25 2006-01-12 Nissan Motor Co Ltd リベットを用いた接合方法
JP2007521964A (ja) * 2004-01-27 2007-08-09 アダム オペル アクチエンゲゼルシャフト 1つ又は複数の接続点で機械的に接合するとともに加圧溶接することによって、2つ以上の、形状部品又は金属板を接合する方法
US20100083481A1 (en) * 2008-10-08 2010-04-08 Gm Global Technology Operations, Inc. Method for attaching magnesium panels using self-piercing rivet
CN103600017A (zh) * 2013-11-25 2014-02-26 吉林大学 超高强钢板之间或与铝合金板的自冲铆接装置
WO2014196268A1 (ja) * 2013-06-03 2014-12-11 ニューフレイ リミテッド ライアビリティ カンパニー 樹脂部材の接合装置、接合構造及び接合方法
WO2015075964A1 (ja) * 2013-11-22 2015-05-28 ニューフレイ リミテッド ライアビリティ カンパニー 接合装置及び接合方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19726104A1 (de) * 1997-06-19 1998-12-24 Emhart Inc Verfahren zum Entfernen von in ein Werkzeug gesetzten Stanznieten
EP1032480B1 (de) * 1997-11-17 2002-10-02 Technische Universität Dresden Verfahren und vorrichtung zum verbinden überlappt angeordneter fügeteile
JP2000202563A (ja) 1999-01-14 2000-07-25 Nippon Steel Corp 引張特性と疲労特性に優れた高強度鋼板の接合方法
DE10060390B4 (de) 2000-12-05 2012-04-19 Volkswagen Ag Stanznietverfahren
US6694597B2 (en) * 2002-03-08 2004-02-24 General Motors Corporation Method for riveting metal members
US6836948B2 (en) * 2003-02-05 2005-01-04 General Motors Corporation Method of joining a sheet metal part to a metal tube
CN100584509C (zh) * 2004-07-05 2010-01-27 株式会社大桥技研 压入接合用螺母、压入接合结构及压入接合方法
JP4880336B2 (ja) 2006-03-20 2012-02-22 日産自動車株式会社 セルフピアスリベットおよびその製造方法
JP5055104B2 (ja) * 2007-12-18 2012-10-24 日産自動車株式会社 セルフピアスリベットによる接合方法とリベット接合用ダイ
US8250728B2 (en) * 2008-07-28 2012-08-28 GM Global Technology Operations LLC Method of joining with self-piercing rivet and assembly
CN101920302B (zh) 2010-09-07 2013-02-06 上海交通大学 电致塑性自冲铆接装置
EP2650105A4 (en) * 2010-12-08 2013-12-04 Toyota Motor Co Ltd METHOD FOR CONNECTING PARTS
EP2514537B1 (en) * 2011-09-20 2018-08-08 Aleris Aluminum Duffel BVBA Method of riveting aluminium alloy sheet
US9352377B2 (en) * 2011-09-20 2016-05-31 Aleris Aluminum Duffel Bvba Method of joining aluminium alloy sheets of the AA7000-series

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007521964A (ja) * 2004-01-27 2007-08-09 アダム オペル アクチエンゲゼルシャフト 1つ又は複数の接続点で機械的に接合するとともに加圧溶接することによって、2つ以上の、形状部品又は金属板を接合する方法
JP2006007266A (ja) * 2004-06-25 2006-01-12 Nissan Motor Co Ltd リベットを用いた接合方法
US20100083481A1 (en) * 2008-10-08 2010-04-08 Gm Global Technology Operations, Inc. Method for attaching magnesium panels using self-piercing rivet
WO2014196268A1 (ja) * 2013-06-03 2014-12-11 ニューフレイ リミテッド ライアビリティ カンパニー 樹脂部材の接合装置、接合構造及び接合方法
WO2015075964A1 (ja) * 2013-11-22 2015-05-28 ニューフレイ リミテッド ライアビリティ カンパニー 接合装置及び接合方法
CN103600017A (zh) * 2013-11-25 2014-02-26 吉林大学 超高强钢板之间或与铝合金板的自冲铆接装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3318346A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109570430A (zh) * 2017-09-28 2019-04-05 江苏津谊新能源科技有限公司 一种电池极柱铆接制具
JPWO2021200692A1 (ja) * 2020-03-30 2021-10-07
WO2021200692A1 (ja) * 2020-03-30 2021-10-07 日本製鉄株式会社 リベット継手の製造方法、リベット継手、自動車部品、及び通電加熱用リベット
JPWO2021200695A1 (ja) * 2020-03-30 2021-10-07
WO2021200695A1 (ja) * 2020-03-30 2021-10-07 日本製鉄株式会社 リベット継手の製造方法、リベット継手、及び自動車部品
JP7295487B2 (ja) 2020-03-30 2023-06-21 日本製鉄株式会社 リベット継手の製造方法、リベット継手、自動車部品、及び通電加熱用リベット
JP7295488B2 (ja) 2020-03-30 2023-06-21 日本製鉄株式会社 リベット継手の製造方法、リベット継手、及び自動車部品

Also Published As

Publication number Publication date
CN107614146A (zh) 2018-01-19
MX2017016307A (es) 2018-03-02
KR102018251B1 (ko) 2019-09-05
KR20170136580A (ko) 2017-12-11
JP6460235B2 (ja) 2019-01-30
EP3318346A1 (en) 2018-05-09
US20180185902A1 (en) 2018-07-05
TWI597110B (zh) 2017-09-01
JPWO2017002975A1 (ja) 2018-03-22
CN107614146B (zh) 2019-03-12
EP3318346A4 (en) 2019-02-27
TW201706050A (zh) 2017-02-16
US10722935B2 (en) 2020-07-28

Similar Documents

Publication Publication Date Title
JP6460235B2 (ja) 機械的接合装置及び機械的接合方法
CN108136534B (zh) 电阻点焊方法
US9957584B2 (en) Method and system for enhancing rivetability
JP6477880B2 (ja) 機械的接合装置及び機械的接合方法
JP5895430B2 (ja) 高強度薄鋼板の抵抗スポット溶接継手および抵抗スポット溶接方法
KR20060129404A (ko) 차량 몸체부 세그먼트 및 그 생산방법
JP2012187639A (ja) 高強度鋼板の抵抗スポット溶接方法
JP6313921B2 (ja) 抵抗スポット溶接方法
CN117916034A (zh) 铆接头的制造方法、铆接头以及汽车构件
JP2013103273A (ja) 高張力鋼板の抵抗スポット溶接方法
JP6584729B1 (ja) 抵抗スポット溶接継手の製造方法
US9044831B2 (en) Method of joining part having high fatigue strength
KR102549826B1 (ko) 용접 조인트의 제조 방법, 용접 조인트, 템퍼링 장치 및 용접 장치
JP7399360B1 (ja) プロジェクション溶接継手の製造方法、プロジェクション溶接継手、及び自動車部品
WO2023182266A1 (ja) プロジェクション溶接継手の製造方法、プロジェクション溶接継手、及び自動車部品
JP2018144098A (ja) スポット溶接装置
WO2019159541A1 (ja) 電極構造及び通電加熱方法
Shawon Investigation into physical and mechanical properties and failure mode of resistance spot welded dissimilar metal joints
Prokop et al. Application of Forced Freeze during Flash-Butt Welding for Coil Joining of Advanced High Strength Steels (AHSS)
AL-Yasari Experimental Study on Effect of Changing Welding Current on Mechanical and Metallurgical Properties of Seam Welding Joint for Low Carbon Steel AISI 1005 (0.8 mm)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16818083

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177032307

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017526461

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/016307

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016818083

Country of ref document: EP