Nothing Special   »   [go: up one dir, main page]

WO2017087024A1 - Systèmes et procédés de production d'acier allié résistant à l'usure et aux chocs - Google Patents

Systèmes et procédés de production d'acier allié résistant à l'usure et aux chocs Download PDF

Info

Publication number
WO2017087024A1
WO2017087024A1 PCT/US2016/030679 US2016030679W WO2017087024A1 WO 2017087024 A1 WO2017087024 A1 WO 2017087024A1 US 2016030679 W US2016030679 W US 2016030679W WO 2017087024 A1 WO2017087024 A1 WO 2017087024A1
Authority
WO
WIPO (PCT)
Prior art keywords
materials
approximately
group
hardwearing
mixture
Prior art date
Application number
PCT/US2016/030679
Other languages
English (en)
Inventor
Yuanji ZHU
Original Assignee
Zhu Yuanji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhu Yuanji filed Critical Zhu Yuanji
Publication of WO2017087024A1 publication Critical patent/WO2017087024A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten

Definitions

  • the embodiments relate generally to systems and methods for preparing hardwearing and impact-resistant alloy steel and, more specifically, systems and methods for producing alloy steel that is both impact-resistant and more wear-resistant than currently available composite steel.
  • hardwearing or wear-resistant materials exhibit specific properties that enable them to withstand one or more forms of wear, including but not limited to, abrasion, stress, impact, fatigue, and corrosion.
  • Research and development surrounding the production of hardwearing materials has been steadily gaining in popularity for many years as new applications for the materials are found. Such materials are commonly incorporated into industrial and/or construction equipment, including composite hammers, liners, jaw plates, bucket teeth, helical blades, mixers, shovels, and pavers, just to name a few examples.
  • Hardwearing materials have also been implemented in the context of composite pipes and roll machinery parts. Moreover, with the continual improvement and optimization of processes for producing these wear-resistant materials, they will only gain in popularity and be used in other contexts.
  • Wear-resistant properties, lifetime, and price are the three main criteria used in the assessment and selection of hardwearing materials and corresponding hardwearing components. As demands for these hardwearing components increase and manufacturing technology improves, the desire for lower cost, longer lasting, and more wear-resistant materials will continue to grow.
  • systems and methods could benefit from improved devices and techniques for developing hardwearing materials and manufacturing hardwearing components.
  • improved techniques and materials are needed to meet the demands of today's economy, including the need for lower-cost, longer-lasting, and/or more wear-resistant materials, components, and equipment,
  • a process for producing wear-resistant alloy steel may comprise the melting of a first group of materials.
  • the first group of materials may comprise iron.
  • the first group of materials may use steel as an alternative material.
  • the first group of materials may then be mixed with a second group of materials to produce a mixture.
  • the second group of materials may comprise carbon, chromium, nickel, manganese, silicon, molybdenum, titanium, rhenium, sulfur, and phosphorus.
  • the mixture may then be insulated for a predetermined period of time and/or cooled to a solid state.
  • the mixture may be subject to a heat-treating process to yield the wear-resistant and impact-resistant alloy steel.
  • FIG. 1 depicts some aspects of an illustrative embodiment of a method as described herein.
  • FIG. 2 depicts some aspects of an illustrative embodiment of a material as described herein.
  • Fig. 1 depicts one illustrative embodiment of a method for producing a hardwearing material.
  • the method comprises a series of mixing, heating, and cooling steps.
  • a first kind of material (the "Group A" materials) may be provided.
  • the Group A materials may comprise iron.
  • Group A may comprise alternative or additional materials.
  • Group A may be subjected to a heating step.
  • an electromagnetic induction furnace may be used to heat Group A and melt the material.
  • the electromagnetic induction furnace may comprise, for example, a small AC
  • Electromagnetic Induction Furnace an electromagnetic induction furnace is only one example of a device suitable for heating and/or melting Group A and any one or more suitable devices may be implemented in step 120.
  • one heating device or furnace may be used to pre-heat Group A and one or more additional heating devices or furnaces may be used to melt Group A.
  • Group A may be melted to liquid form,
  • a second plurality of materials may be provided.
  • the Group B materials may comprise carbon (C), chromium (Cr), nickel (Ni), manganese (Mn), silicon (Si), molybdenum (Mo), titanium (Ti), rhenium (Re), sulfur (S), and phosphorus (P).
  • C carbon
  • Cr chromium
  • Ni nickel
  • Mo manganese
  • Si silicon
  • Mo molybdenum
  • Ti titanium
  • Re titanium
  • S sulfur
  • P phosphorus
  • Group B may comprise alternative or additional materials.
  • the percentage by mass of each of the materials within mixture 200 may be consistent with the ranges presented below in Table 1 or Table 2, wherein the rest percentage by mass may be iron. In alternative embodiments, the percentage by mass of one or more of the Group B materials may be greater or less than the ranges presented in Table 1 or Table 2.
  • the mixture 200 may be cast using a sandbox.
  • a sandbox is only one device for casting mixture 140 and any one or more suitable devices may be implemented in step 150.
  • mixture 200 may be insulated for an amount of time.
  • the hot casted mixture 200 may be stored in an incubator for approximately 1 hour.
  • mixture 200 may be insulated for an amount of time less than approximately 3 hours and longer than approximately 40 minutes.
  • these insulation times are only illustrative of the possibilities and mixture 200 may be insulated for any suitable period of time.
  • casted mixture 200 may be cooled at step 160 to solidify the mixture. In one embodiment, casted mixture 200 may be cooled down naturally.
  • casted mixture 200 may be cooled using any suitable one or more devices.
  • casted mixture 200 may be cooled to approximately 21°C [70°F], i.e., approximately room temperature.
  • a temperature is only meant as illustrative and casted mixture 200 may be cooled to any suitable temperature at which casted mixture 200 solidifies, including a temperature between 21 C C (70°F) and 30°C (86°FJ.
  • casted mixture 200 may be cooled to a temperature less than 21°C (70°F), including temperatures below 0°C [32°F].
  • heat treatment may be applied to the casted mixture 200.
  • a process comprising heating and cooling of the casted mixture 200 may be used to achieve one or more desired physical and/or mechanical properties through
  • the hardness of casted mixture 200 may be controlled in the range of HB380 to HB450 for Table 1, and H B360 to HB420. Of course, such a range is only meant as illustrative and casted mixture 200 may be heat treating to any suitable hardness, including a harness less than HB380 for Table 1 and HB360 for Table 2, or greater than HB450 for Table 1 and HB420 for Table 2.
  • Fig. 2 illustrates an embodiment of mixture 200 described above with respect to Fig. 1.
  • mixture 200 may comprise iron 201, carbon 202, chromium 203, nickel 204, manganese 205, silicon 206, molybdenum 207, titanium 208, rhenium 209, sulfur 210, and phosphorus 211.
  • mixture 200 may comprise alternative or additional materials.
  • systems and/or methods may be devised for sub-dividing one or more of the aforementioned mixing, heating, cooling, casting, or heat treating steps in order to expedite manufacture of the hardwearing material, reduce strain on the associated equipment, and/or increase system yields.
  • alternative or additional materials may be introduced into the Group A materials, Group B materials, or mixture 200, in order to influence the properties of the resulting hardwearing materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

Cette invention concerne des systèmes et des procédés de fabrication d'un acier allié résistant à l'usure ou durable. Dans un aspect, un premier groupe de matériaux comprenant de l'acier peut être chauffé et fondu à l'état liquide. Le premier groupe fondu peut être mélangé à un second groupe de matériaux comprenant du carbone, du chrome, du nickel, du manganèse, du silicium, du molybdène, du titane, du rhénium, du soufre et du phosphore, afin d'obtenir un mélange. Le mélange peut ensuite être coulé, refroidi et traité thermiquement pour obtenir l'acier allié résistant à l'usure ou durable.
PCT/US2016/030679 2015-11-18 2016-05-04 Systèmes et procédés de production d'acier allié résistant à l'usure et aux chocs WO2017087024A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562256768P 2015-11-18 2015-11-18
US62/256,768 2015-11-18

Publications (1)

Publication Number Publication Date
WO2017087024A1 true WO2017087024A1 (fr) 2017-05-26

Family

ID=58690465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2016/030679 WO2017087024A1 (fr) 2015-11-18 2016-05-04 Systèmes et procédés de production d'acier allié résistant à l'usure et aux chocs

Country Status (2)

Country Link
US (1) US20170137921A1 (fr)
WO (1) WO2017087024A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108456826A (zh) * 2017-08-31 2018-08-28 嘉禾县飞恒合金铸造有限公司 高温镶铸硬质合金制造复合耐磨锤头的方法
PL422261A1 (pl) * 2017-07-18 2019-01-28 Instytut Metalurgii Żelaza im. Stanisława Staszica Sposób wytwarzania stali z renem

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2847301A (en) * 1955-06-10 1958-08-12 Allegheny Ludlum Steel Process of producing stainless steel
US5560787A (en) * 1993-06-29 1996-10-01 Nsk Ltd. Rolling bearing for high-speed rotation at high temperatures
CN104087837A (zh) * 2014-06-30 2014-10-08 江苏华程工业制管股份有限公司 一种耐硫化氢腐蚀的异型钢管及其制备方法
KR20150064223A (ko) * 2013-03-28 2015-06-10 바오샨 아이론 앤 스틸 유한공사 고경도 저합금 내마모성 강판 및 이의 제조 방법
US20150232969A1 (en) * 2010-12-31 2015-08-20 Anatoly Alexeevich Kuznetsov Process For Heat Treatment of Parts Made From Low and Specified Hardenability Structural Steel

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3915693A (en) * 1972-06-21 1975-10-28 Robert T C Rasmussen Process, structure and composition relating to master alloys in wire or rod form
US5767475A (en) * 1995-09-29 1998-06-16 Kyoei Steel Co., Ltd. Hot rolling method
DE19639299C2 (de) * 1996-09-25 2001-02-22 Sms Demag Ag Vorrichtung zur Herstellung eines Vielkant- oder Profil-Formats in einer Stranggießanlage
WO2012029812A1 (fr) * 2010-08-30 2012-03-08 株式会社神戸製鋼所 Matériau de fil d'acier pour ressort à haute résistance qui a d'excellentes propriétés de tréfilage et son procédé de fabrication, et ressort à haute résistance
ITRM20120647A1 (it) * 2012-12-19 2014-06-20 Ct Sviluppo Materiali Spa ACCIAIO INOSSIDABILE AUSTENITICO AD ELEVATA PLASTICITÀ INDOTTA DA GEMINAZIONE, PROCEDIMENTO PER LA SUA PRODUZIONE, E SUO USO NELLÂeuro¿INDUSTRIA MECCANICA.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2847301A (en) * 1955-06-10 1958-08-12 Allegheny Ludlum Steel Process of producing stainless steel
US5560787A (en) * 1993-06-29 1996-10-01 Nsk Ltd. Rolling bearing for high-speed rotation at high temperatures
US20150232969A1 (en) * 2010-12-31 2015-08-20 Anatoly Alexeevich Kuznetsov Process For Heat Treatment of Parts Made From Low and Specified Hardenability Structural Steel
KR20150064223A (ko) * 2013-03-28 2015-06-10 바오샨 아이론 앤 스틸 유한공사 고경도 저합금 내마모성 강판 및 이의 제조 방법
CN104087837A (zh) * 2014-06-30 2014-10-08 江苏华程工业制管股份有限公司 一种耐硫化氢腐蚀的异型钢管及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL422261A1 (pl) * 2017-07-18 2019-01-28 Instytut Metalurgii Żelaza im. Stanisława Staszica Sposób wytwarzania stali z renem
PL234778B1 (pl) * 2017-07-18 2020-03-31 Inst Metalurgii Zelaza Im Stanislawa Staszica Sposób wytwarzania stali z renem
CN108456826A (zh) * 2017-08-31 2018-08-28 嘉禾县飞恒合金铸造有限公司 高温镶铸硬质合金制造复合耐磨锤头的方法

Also Published As

Publication number Publication date
US20170137921A1 (en) 2017-05-18

Similar Documents

Publication Publication Date Title
CN104271775A (zh) 对用于加工的钢的韧贝氏体热处理
CN103397275A (zh) 一种马氏体系列耐磨钢及其制备方法
CN103789603A (zh) 一种性能可调节的奥铁体球墨铸铁件及其制造方法
CN106119711A (zh) 非调质钢棒材及其制造方法
CN102517509A (zh) Hb500级耐磨钢板及其制备方法
CN102776448A (zh) 一种合金磨球及其生产方法
CN104178703A (zh) 一种新型金属材料
CN102310014A (zh) 高性能复合金属锤头
CN106011684A (zh) 一种高强高韧不锈钢材料及其制备方法
WO2017087024A1 (fr) Systèmes et procédés de production d'acier allié résistant à l'usure et aux chocs
CN103993217B (zh) 大型破碎机锤头的制备方法
CN105200301A (zh) 高强铁基合金的制备方法及高强铁基合金截齿
CN104946989A (zh) 一种挖掘机斗齿的制造方法
CN101512031B (zh) 温度稳定的铸铁合金及其用途
US9038701B2 (en) Systems and methods for producing a hardwearing alloy material
CN102732809A (zh) 一种高强耐磨合金及其制备方法
CN103451557B (zh) 钨、钼复合强化高钴镍高韧性二次硬化超高强度钢
CN104313490A (zh) 一种合金钢材料
CN105463302B (zh) 一种高硬度球墨铸铁锤头的制备方法
CN104087813B (zh) 一种矿山特种专用研磨球
CN102936690A (zh) 一种新型9SiCrAlBN合金工具钢
CN103060702A (zh) 耐磨钢的铸造方法
CN105821329A (zh) 一种高强度低铬锻及其制备方法
CN104480371A (zh) 一种耐磨性铁合金制备方法
CN104313489A (zh) 一种合金钢材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16866779

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16866779

Country of ref document: EP

Kind code of ref document: A1