Nothing Special   »   [go: up one dir, main page]

WO2017076053A1 - 一种基于天线的处理方法和装置 - Google Patents

一种基于天线的处理方法和装置 Download PDF

Info

Publication number
WO2017076053A1
WO2017076053A1 PCT/CN2016/089117 CN2016089117W WO2017076053A1 WO 2017076053 A1 WO2017076053 A1 WO 2017076053A1 CN 2016089117 W CN2016089117 W CN 2016089117W WO 2017076053 A1 WO2017076053 A1 WO 2017076053A1
Authority
WO
WIPO (PCT)
Prior art keywords
feed point
antenna
target
frequency band
metal antenna
Prior art date
Application number
PCT/CN2016/089117
Other languages
English (en)
French (fr)
Inventor
程波
陆康
Original Assignee
乐视控股(北京)有限公司
乐视移动智能信息技术(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 乐视控股(北京)有限公司, 乐视移动智能信息技术(北京)有限公司 filed Critical 乐视控股(北京)有限公司
Priority to US15/249,233 priority Critical patent/US20170135103A1/en
Publication of WO2017076053A1 publication Critical patent/WO2017076053A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/006Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using switches for selecting the desired band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/335Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors at the feed, e.g. for impedance matching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0421Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to an antenna-based processing method and an antenna-based processing apparatus.
  • the antenna is the only component of the mobile device connected to the network, plays the role of transmitting and receiving signals, and optimizing antenna performance becomes more and more important.
  • mobile devices need to support more and more frequency bands to meet the needs of people's communications.
  • mobile phones due to the popularity of The 4th Generation Mobile Communication Technology, mobile phones need to support more and more frequency bands, covering more than a dozen frequency bands such as 700-2700MHz, such as 2600MHz frequency band and 2500MHz frequency band. 2300MHz frequency band, 1900MHz frequency band, 1700MHz frequency band, 1800MHz frequency band, 900MHz frequency band, 850MHz frequency band, 700MHz frequency band, etc.
  • any direction of the antenna needs to be comparable to the wavelength of the radiated electromagnetic wave.
  • a monopole antenna commonly used in mobile phones is a quarter wavelength.
  • non-all-metal antennas for mobile devices use the Flexible Printed Circuit Board (FPC) or Laser-Direct-structuring (LDS) to design antenna patterns to achieve radiation in each frequency band. The size required.
  • FPC Flexible Printed Circuit Board
  • LDS Laser-Direct-structuring
  • the technical problem to be solved by the embodiments of the present invention is to provide an antenna-based processing method and apparatus to solve the problem of low efficiency and narrow bandwidth of an all-metal antenna.
  • an embodiment of the present invention discloses an antenna-based processing method, including:
  • Switching to the target feed point configuring the electrical length of the metal antenna according to the target feed point to receive and transmit the radio frequency signal.
  • an embodiment of the present invention further provides an antenna-based processing apparatus, including:
  • a frequency band determining module configured to monitor a network signal of the mobile device, and determine a frequency band occupied by the network signal
  • a target feed point determining module configured to determine, according to the frequency band, a target feed point to which the metal antenna needs to be connected
  • a switching module configured to switch to connect the target feed point, and configure an electrical length of the metal antenna according to the target feed point to receive and transmit the radio frequency signal.
  • a computer program comprising computer readable code that, when executed on a mobile device, causes the mobile device to perform the antenna based processing method described above.
  • a computer readable medium wherein the computer program described above is stored.
  • the embodiments of the invention include the following advantages:
  • the frequency band occupied by the network signal and the target feed point to which the metal antenna is connected may be determined by monitoring the network signal; by switching to the target feed point, the electrical length of the metal antenna may be changed, so that the metal The antenna can reach the size required for signal radiation in each frequency band, so that radio frequency signals of different frequency bands can be received or transmitted, the antenna efficiency is improved, and the problem of narrow antenna bandwidth is solved.
  • 1 is a schematic view showing the structure of an all-metal mobile phone antenna
  • FIG. 2 is a flow chart showing the steps of an embodiment of an antenna-based processing method of the present invention.
  • FIG. 3 is a schematic diagram of a feed point switching according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a feed point switching principle according to an embodiment of the present invention.
  • Figure 5 is a flow chart showing the steps of a preferred embodiment of an antenna based processing method of the present invention.
  • FIG. 6 is a structural block diagram of an embodiment of an antenna-based processing apparatus of the present invention.
  • Figure 7 is a block diagram showing the structure of a preferred embodiment of an antenna based processing apparatus of the present invention.
  • Figure 8 shows schematically a block diagram of a mobile device for performing the method according to the invention
  • Fig. 9 schematically shows a storage unit for holding or carrying program code implementing the method according to the invention.
  • all-metal antennas of mobile devices use antenna IDs to ensure antenna performance by increasing the width of the metal gap to ensure antenna performance.
  • the antenna must have the function of radiating outwards, and it is obvious that a fully enclosed metal casing is not feasible. Therefore, in order for the all-metal casing to have the radiation function of the antenna, some slitting treatment is usually performed on the all-metal casing.
  • the mobile device is also referred to as a mobile device, a mobile device, a handheld device, etc., and is a computing device, which may include, but is not limited to, a handheld game console, a mobile phone, a mobile phone, and a tablet. Computer, etc. Users can access a variety of information anytime, anywhere via a mobile device.
  • the metal part of the back metal shell of the all-metal mobile phone is an antenna.
  • the electromagnetic signal In order for the electromagnetic signal to be efficiently radiated into the space, it is necessary to sew over the back of the all-metal mobile phone to form the radiator of the antenna.
  • the same-size all-metal phone is too large, affecting the aesthetics and user experience.
  • a slit is formed at the top and bottom of the metal back shell, and the white portion in Fig. 1 is a non-metal portion, which can be understood as a slit.
  • the radiators 102-1 and 102-2 of the antenna can be formed.
  • the radiator 102-1 can be understood as a main antenna;
  • the radiator 102-2 can be understood as a diversity antenna, which is equivalent to a sub-antenna, and can include but is not limited to a GPS antenna, a Bluetooth antenna, a WiFi antenna, and an FM headphone hole antenna. Any one or several types of antennas.
  • the reference ground 101 is connected to the radiator by a connecting rib 103.
  • the tuning of the all-metal antenna is mainly controlled by the position and length of the metal connecting ribs of each part, as well as the width of the slit.
  • the design of the all-metal antenna is strictly limited by the industrial design and mechanical strength, and the form is single. It is difficult to achieve the size required for signal radiation in each frequency band, and has the weakness of narrow bandwidth and low efficiency. Therefore, the all-metal antenna has become one of the difficulties in the design of mobile devices.
  • One of the core concepts of the embodiments of the present invention is that, for different frequency bands, the position of the RF signal in the all-metal back shell can be changed by switching the antenna feed point, that is, changing the electrical length of the antenna, so that the metal antenna can be The size required for signal radiation in each frequency band is achieved, so that radio frequency signals of different frequency bands can be received or transmitted, the antenna efficiency is improved, and the antenna bandwidth is increased to optimize antenna performance.
  • FIG. 2 a flow chart of steps of an embodiment of an antenna-based processing method of the present invention is shown, which may specifically include the following steps:
  • Step 201 Monitor a network signal of the mobile device, and determine a frequency band occupied by the network signal.
  • mobile devices can change the operating frequency through antenna tuning, which can support different frequency bands.
  • the network signal connected to the mobile device determines the operating frequency of the mobile device antenna. By monitoring the network signal connected to the mobile device, the frequency band occupied by the network signal can be determined, that is, the operating frequency of the mobile device antenna is determined.
  • the frequency at which the RF signal operates is controlled by the network and baseband. Therefore, moving When the network signal of the mobile device changes, the frequency band occupied by the network signal of the mobile device after the change can be determined by monitoring, and then the working frequency of the mobile device transmitting or receiving the radio frequency signal can be determined.
  • the mobile device antenna is tuned such that the mobile device can receive or transmit the RF signal at the operating frequency.
  • network signals occupy different frequency bands, such as network signal GSM-850 occupying 824-894MHz frequency band, network signal GSM-900 occupying 890-960MHz frequency band, network signal DCS-1800 occupying 1710-1880MHz frequency band, PCS 1900
  • the embodiment of the present invention does not limit the occupies the 1850-1990 MHz frequency band and the like.
  • Step 203 Determine, according to the frequency band, a target feed point to which the metal antenna needs to be connected.
  • the mobile device may determine the feed point corresponding to the connection according to the feed point corresponding to the preset frequency band; and the feed point corresponding to the frequency band is used as the target feed point, That is, the target feed point to which the metal antenna needs to be connected.
  • the mobile device may set multiple feed points, and the antenna lengths corresponding to the feed points are different.
  • the electrical length of the antenna can be understood as the ratio of the physical size of the antenna to the wavelength of the radiated electromagnetic wave.
  • the metal antenna can change the electrical length of the antenna by connecting different feed points, so that the size required for signal radiation in each frequency band can be achieved.
  • the mobile device can set the feed point 1 corresponding to the 900 MHz frequency band, the feed point 2 corresponds to the 1800 MHz frequency band, the feed point 3 corresponds to the 1900 MHz frequency band, the feed point 4 corresponds to the 2500 MHz frequency band, and so on.
  • a person skilled in the art can set the number of the feed points and the frequency band corresponding to each feed point according to the signal frequency band to be supported by the mobile device, which is not limited by the embodiment of the present invention.
  • the method may further include: determining, by using a test, a frequency band corresponding to a feed point connected to each port, and establishing a correspondence between the frequency band and the feed point.
  • the step of determining the target feed point to be connected to the metal antenna according to the frequency band may include: searching for a feed point corresponding to the frequency band, and using the feed point as a target feed point to be connected by the metal antenna.
  • by testing the metal antenna it can be determined that the port through which the switch is connected to the feed point can obtain better RF information reception and transmission results in each frequency band, thereby determining the port connected to the switch under each frequency band. That is, the feed point corresponding to each frequency band.
  • a feed point may correspond to one or more frequency bands, for example, the 1800 MHz frequency band and the 1900 MHz frequency band correspond to the same frequency band, and the corresponding relationship between the frequency band and the feed point may be determined according to actual requirements and test results, which is not limited by the embodiment of the present invention.
  • Step 205 Switch to connect to the target feed point, and configure an electrical length of the metal antenna according to the target feed point to receive and transmit the radio frequency signal.
  • the electronic switch of the mobile device may include multiple ports, each port being connected to a feed point.
  • the electronic switch is equivalent to a feed point switch, referred to as a switch.
  • the band in which the mobile device operates is controlled by the baseband of the mobile device, and the feed point switch can be switched to the best feed point according to the previous antenna test result.
  • the mobile device in order to meet the performance requirements, can switch to different ports through the electronic switch, and connect different feed points.
  • mobile devices can set different connection points for metal antennas.
  • the electrical length corresponding to each feed point is not the same.
  • the mobile device can configure the electrical length of the metal antenna according to the target feed point, so that the mobile device antenna can reach the size required for the radiation of the frequency band signal (ie, the radio frequency signal), so that the radio frequency signal can be received or transmitted.
  • the mobile device can set 3 feed points.
  • FIG. 3 a schematic diagram of a feed point switching according to an embodiment of the present invention is shown, wherein part 301 is a metal back shell, part 302 is a feed point switch, and part 303 is a joint part.
  • FIG. 4 a schematic diagram of a feed point switching principle according to an embodiment of the present invention is shown.
  • the radio frequency signal is referred to as radio frequency (RF), which can be understood as electromagnetic wave radiated into space;
  • the feed point Fedl corresponds to the 900MHz frequency band, the feed point Fed2 corresponds to the 1800MHz frequency band, and the feed point Fed3 corresponds to the 250,000MHz frequency band.
  • RF radio frequency
  • the mobile device can be set in the RF underlying driver: when the RF signal is working in the 900 MHz band, the feed point switch is switched to the feed point Fedl; when operating in the 1800 MHz band, the feed point switch is switched to reach the feed point Fed2; When operating in the 2500MHz band, the feed point switch is switched to reach the feed point Fed3.
  • switching to connecting the target feeds may include the following sub-steps:
  • Sub-step 20501 determining a target port corresponding to the target feed point.
  • Sub-step 20503 switching the switch to connect to the target port, and connecting the target feed through the target port.
  • the configuring the electrical length of the metal antenna according to the target feed point may include: using an electrical length corresponding to the target feed point as an electrical length of the metal antenna, and configuring the The radiation wavelength of a metal antenna.
  • the embodiment of the present invention can change the position of the RF signal in the all-metal back shell feeding by switching the antenna feed point, that is, changing the electrical length of the antenna, so that the metal antenna can reach the size required for signal radiation of each frequency band, thereby Can receive or transmit RF signals in different frequency bands, At the same time of high antenna efficiency, the antenna bandwidth is increased to achieve the purpose of optimizing antenna performance.
  • the method may include the following steps:
  • Step 501 Determine a frequency band corresponding to a feed point connected to each port by testing, and establish a correspondence between the frequency band and the feed point.
  • the mobile device can pass the test before the factory to determine the radiation capability of the feed point connected to each port of the feed point switch to determine the optimal radiation capability corresponding to each frequency band.
  • the feeding point with the best radiation capability is set as the target feeding point of the frequency band, that is, the corresponding relationship between the frequency band and the feeding point (corresponding to the antenna test result) is established, so that the metal antenna can be achieved by switching the feeding point.
  • Step 503 Monitor a network signal of the mobile device, and determine a frequency band occupied by the network signal.
  • Step 505 Find a feed point corresponding to the frequency band, and use the feed point as a target feed point to be connected to the metal antenna.
  • the corresponding relationship between the frequency band and the feed point can be found to determine the feed point corresponding to the occupied frequency band, and the determined feed point is used as the target feed point to be connected by the metal antenna.
  • Step 507 determining a target port corresponding to the target feed point.
  • Step 509 Switch the switch to connect to the target port, and connect the target feed point through the target port.
  • each port of the switch of the mobile device is respectively connected to the antenna feed point.
  • Each port is connected to an antenna feed point, that is, how many antenna feed points, how many ports are there in the switch, if there are 3 antenna feed points, the switch has 3 ports; there are 4 antenna feeds
  • the switch has four ports; there are five antenna feed points, the switch has five ports, and so on, and the embodiment of the present invention does not limit this.
  • the port of the switch connected to the target feed point can be determined as the target port.
  • the mobile device can connect to the target feed by switching the switch to the target port. It can be understood that the switch is switched to the best feed point according to the pre-antenna test result. Take the switch of the mobile device as an example. As shown in FIG. 3, the first port is connected to the feed point Fedl, the second port is connected to the feed point Fed2, and the third port is connected to the feed point Fed3.
  • the switch is switched to the first port (equivalent to the target port) to which the target feed point Fed1 is connected, that is, the target feed point Fedl can be connected through the target port, so that the device can be moved.
  • the antenna reaches the size required for signal radiation in the 900 MHz band, ensuring antenna efficiency and optimizing antenna performance.
  • Step 511 The electrical length corresponding to the target feed point is used as the electrical length of the metal antenna, and the radiation wavelength of the metal antenna is configured to receive and transmit the radio frequency signal.
  • the method further includes: feeding the electrical length of the feed point: acquiring a physical length of the metal antenna of the mobile device; determining, according to the radiation wavelength corresponding to each feed point and the physical length of the metal antenna The electrical length of the feed point.
  • the radiation frequency of the radio frequency signal in the frequency band can be determined, so that the wavelength of the electromagnetic wave can be surely radiated in the frequency band.
  • the radiation wavelength corresponding to each feed point can be determined.
  • the electrical length of the antenna is the ratio of the physical size of the antenna to the wavelength of the radiated electromagnetic wave.
  • the electrical length of each feed point can be determined by taking the physical length of the metal antenna of the mobile device and by the wavelength of the radiation corresponding to each feed point and the physical length of the metal antenna of the mobile device.
  • the mobile device can receive or transmit the radio frequency signal through the target feed point.
  • the electrical length corresponding to the target feed point may be used as the electrical length of the metal antenna, and the radiation wavelength of the metal antenna is configured according to the electrical length and the physical length of the antenna, and the radio frequency signal is received or transmitted according to the radiation wavelength (or the radiation frequency).
  • the other radio frequency signal is fed into the all-metal back shell, so that the all-metal antenna of the mobile device can reach the size required for radiation in each frequency band, increasing the antenna bandwidth, and improving the bandwidth.
  • the efficiency of an all-metal antenna is achieved by switching the feed point of the antenna connection, and the achievability is high.
  • FIG. 6 a structural block diagram of an embodiment of an antenna-based processing apparatus according to the present invention is shown, which may specifically include the following modules:
  • the frequency band determining module 601 is configured to monitor a network signal of the mobile device, and determine a frequency band occupied by the network signal.
  • the target feed point determining module 603 is configured to determine a target feed point to which the metal antenna needs to be connected according to the frequency band.
  • the switching module 605 is configured to switch to connect the target feed point, and configure an electrical length of the metal antenna according to the target feed point to receive and transmit the radio frequency signal.
  • FIG. 7 a structural block diagram of a preferred embodiment of an antenna-based processing apparatus according to the present invention is shown, which may specifically include the following modules:
  • the frequency band determining module 701 is configured to monitor a network signal of the mobile device, and determine a frequency band occupied by the network signal.
  • the target feed point determining module 703 is configured to determine a target feed point to which the metal antenna needs to be connected according to the frequency band.
  • the switching module 705 is configured to switch to connect the target feed point, and configure an electrical length of the metal antenna according to the target feed point to receive and transmit the radio frequency signal.
  • the switching module 705 can include the following sub-modules:
  • the target port determining sub-module 70501 is configured to determine a target port corresponding to the target feed point.
  • the port switching sub-module 70503 is configured to switch the switch to connect to the target port, and connect the target feed point through the target port.
  • the switching module 705 can further include a radiation wavelength configuration sub-module 70505.
  • the radiation wavelength configuration sub-module 70505 is configured to set an electrical length corresponding to the target feed point as an electrical length of the metal antenna, and configure a radiation wavelength of the metal antenna.
  • the antenna based processing device can also test the module 707.
  • the test module 707 is configured to determine, by using a test, a frequency band corresponding to a feed point connected to each port, and establish a correspondence between the frequency band and the feed point.
  • the target feed point determining module 703 may be specifically configured to search for a feed point corresponding to the frequency band, and use the feed point as a target for the metal antenna to be connected. Feed points.
  • the antenna-based processing device may further include an antenna length obtaining module 709 and a feed point electrical length determining module 711.
  • the antenna length obtaining module 709 is configured to obtain a physical length of the metal antenna of the mobile device.
  • the feed point electrical length determining module 711 is configured to determine an electrical length of the feed point according to a corresponding radiation wavelength of each feed point and a physical length of the metal antenna.
  • the description is relatively simple, and the relevant parts can be referred to the description of the method embodiment.
  • the various component embodiments of the present invention may be implemented in hardware, or in a software module running on one or more processors, or in a combination thereof.
  • a microprocessor or digital signal processor may be used in practice to implement some or all of the functionality of some or all of the components of a mobile device in accordance with embodiments of the present invention.
  • the invention can also be implemented as a device or device program (e.g., a computer program and a computer program product) for performing some or all of the methods described herein.
  • a program implementing the invention may be stored on a computer readable medium or may be in the form of one or more signals. Such signals may be downloaded from an Internet website, provided on a carrier signal, or provided in any other form.
  • Figure 8 illustrates a mobile device in which the present invention can be implemented.
  • the mobile device conventionally includes a processor 810 and a computer program product or computer readable medium in the form of a memory 820.
  • the memory 820 may be an electronic memory such as a flash memory, an EEPROM (Electrically Erasable Programmable Read Only Memory), an EPROM, a hard disk, or a ROM.
  • Memory 820 has a memory space 830 for program code 831 for performing any of the method steps described above.
  • storage space 830 for program code may include various program code 831 for implementing various steps in the above methods, respectively.
  • the program code can be read from or written to one or more computer program products.
  • These computer program products include programs such as hard disks, compact discs (CDs), memory cards, or floppy disks. Code carrier.
  • Such a computer program product is typically a portable or fixed storage unit as described with reference to FIG.
  • the storage unit may have a storage section, a storage space, and the like arranged similarly to the storage 820 in the mobile device of FIG.
  • the program code can be compressed, for example, in an appropriate form.
  • the storage unit includes computer readable code 831', ie, code readable by a processor, such as 810, that when executed by the mobile device causes the mobile device to perform each of the methods described above step.
  • Embodiments of the invention are described with reference to flowchart illustrations and/or block diagrams of methods, terminal devices (systems), and computer program products according to embodiments of the invention.
  • the computer program instructions A combination of the processes and/or blocks in the flowcharts and/or block diagrams, and the flowcharts and/or blocks in the flowcharts and/or block diagrams.
  • These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor or other programmable data processing terminal device to produce a machine such that instructions are executed by a processor of a computer or other programmable data processing terminal device
  • Means are provided for implementing the functions specified in one or more of the flow or in one or more blocks of the flow chart.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing terminal device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the instruction device implements the functions specified in one or more blocks of the flowchart or in a flow or block of the flowchart.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Telephone Function (AREA)
  • Support Of Aerials (AREA)

Abstract

本发明实施例提供了一种基于天线的处理方法和装置,该方法包括:对移动设备的网络信号进行监听,确定所述网络信号所占用的频段;依据所述频段确定金属天线所需连接的目标馈点;切换到连接所述目标馈点,按照所述目标馈点配置金属天线的电长度,以进行射频信号的接收和发送。本发明实施例提供的基于天线的处理方法,可以改变金属天线的电长度,使得金属天线可以达到各频段信号辐射所需要的尺寸,从而可以接收或发射不同频段的射频信号,提高了天线效率,以及解决了天线带宽窄的问题。

Description

一种基于天线的处理方法和装置
本申请要求在2015年11月6日提交中国专利局、申请号为201510756375.5、发明名称为“一种基于天线的处理方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及无线通信技术领域,特别是涉及一种基于天线的处理方法和一种基于天线的处理装置。
背景技术
随着通信技术的快速发展,尤其是随着移动互联网的推广,移动设备日益普及,成为人们生活工作中一种重要的通信工具。其中,天线是移动设备连接网络的唯一部件,起着发射和接收信号的作用,优化天线性能变得越来越重要。
随着数据通信与多媒体业务需求的发展,移动设备需要支持越来越多的频段,以满足人们通信的需求。以手机为例,由于第四代移动通信技术(The 4th Generation Mobile Communication Technology)的普及,手机需要支持越的频段越来越多,涵盖700-2700MHz等十几个频段,如2600MHz频段、2500MHz频段、2300MHz频段、1900MHz频段、1700MHz频段、1800MHz频段、900MHz频段、850MHz频段、700MHz频段等。
为保证天线有效辐射,天线的任何一个方向的物理尺寸需要跟所辐射电磁波波长可比拟,如手机常用的单极子天线为四分之一波长。通常,移动设备的非全金属天线使用柔性印刷电路板技术(Flexible Printed Circuit Board,FPC)或者激光直接成型技术(Laser-Direct-structuring,LDS)设计天线形状(pattern),从而可以达到各个频段辐射所需要的尺寸。
但是,全金属天线的设计严格受工业设计(Industrial Design,ID)和机械强度限制,无法像非全金属天线一样利用FPC或者LDS设计天线形状,很难达到各个频段信号辐射所需要的尺寸。因此,造成全金属天线效率低以及无法兼顾高中低频段即带宽窄的问题。
发明内容
本发明实施例所要解决的技术问题是提供一种基于天线的处理方法和装置,以解决全金属天线效率低以及带宽窄的问题。
根据本发明的一个方面,本发明实施例公开了一种基于天线的处理方法,包括:
对移动设备的网络信号进行监听,确定所述网络信号所占用的频段;
依据所述频段确定金属天线所需连接的目标馈点;
切换到连接所述目标馈点,按照所述目标馈点配置金属天线的电长度,以进行射频信号的接收和发送。
相应的,根据本发明的另一个方面,本发明实施例还公开了一种基于天线的处理装置,包括:
频段确定模块,用于对移动设备的网络信号进行监听,确定所述网络信号所占用的频段;
目标馈点确定模块,用于依据所述频段确定金属天线所需连接的目标馈点;
切换模块,用于切换到连接所述目标馈点,按照所述目标馈点配置金属天线的电长度,以进行射频信号的接收和发送。
根据本发明的又一个方面,提供了一种计算机程序,其包括计算机可读代码,当所述计算机可读代码在移动设备上运行时,导致所述移动设备执行上述的基于天线的处理方法。
根据本发明的再一个方面,提供了一种计算机可读介质,其中存储了上述的计算机程序。
与现有技术相比,本发明实施例包括以下优点:
本发明实施例可以通过对网络信号进行监听,确定该网路信号所占用的频段,以及金属天线所需连接的目标馈点;通过切换到目标馈点,可以改变金属天线的电长度,使得金属天线可以达到各频段信号辐射所需要的尺寸,从而可以接收或发射不同频段的射频信号,提高了天线效率,以及解决了天线带宽窄的问题。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是一种全金属手机天线结构的示意图;
图2是本发明的一种基于天线的处理方法实施例的步骤流程图;
图3是本发明实施例的一种馈点切换的示意图;
图4是本发明实施例的一种馈点切换原理的示意图;
图5是本发明的一种基于天线的处理方法优选实施例的步骤流程图;
图6是本发明的一种基于天线的处理装置实施例的结构框图;
图7是本发明的一种基于天线的处理装置优选实施例的结构框图。
图8示意性地示出了用于执行根据本发明的方法的移动设备的框图;以及
图9示意性地示出了用于保持或者携带实现根据本发明的方法的程序代码的存储单元。
具体实施例
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
通常,移动设备全金属天线都是以牺牲ID来保证天线性能,即通过增加金属间隙宽度来增加天线净空区域,保证天线性能。具体来说,天线必须具备向外辐射的功能,显然全封闭的金属外壳是不可行的。因此,为了使全金属外壳兼有天线的辐射功能,通常会对全金属外壳进行一些开缝的处理。
需要说明的是,移动设备也被称为行动装置、流动装置、手持装置等,是一种计算设备,可以包括但不仅限于掌上游戏机、手机、移动电话、平板 电脑等。用户通过移动设备可以随时随地访问获得各种信息。
以全金属手机天线为例,全金属手机后壳金属部分即为天线。为了使电磁信号能够有效的辐射到空间,必须在全金属手机后壳上面开缝以构成天线的辐射体。同样屏幕尺寸的全金属手机偏大,影响美观及用户体验。
参照图1,示出了一种全金属手机天线结构的示意图。
如图1所示,为了满足天线辐射功能的要求,在金属后壳的顶端和底部各开了一条缝隙,图1中的白色部分为非金属部分,可以理解为开缝。这样就可以形成天线的辐射体102-1和102-2。其中,辐射体102-1可以理解为主天线;辐射体102-2可以理解为分集天线,相当于副天线,可以包括但不仅限于GPS天线、蓝牙天线、WiFi天线和FM耳机孔天线等其中的任意一种或几种类型的天线。参考地101通过连接筋103与辐射体相连接。全金属天线的调谐主要通过各部分金属连接筋的位置和长度,以及开缝的宽度控制。
显然,全金属天线的设计严格受工业设计和机械强度限制,形式单一,很难达到各个频段信号辐射所需要的尺寸,具有带宽窄、效率低的弱点。因此,全金属天线成为移动设备设计的难点之一。
针对上述问题,本发明实施例的核心构思之一在于,针对不同的频段,可以通过切换天线馈点来改变射频信号在全金属后壳馈入的位置,即改变天线电长度,使得金属天线可以达到各频段信号辐射所需要的尺寸,从而可以接收或发射不同频段的射频信号,提高了天线效率,以及增加天线带宽,达到优化天线性能的目的。
参照图2,示出了本发明的一种基于天线的处理方法实施例的步骤流程图,具体可以包括如下步骤:
步骤201,对移动设备的网络信号进行监听,确定所述网络信号所占用的频段。
实际上,移动设备可以通过天线调谐改变工作频率,从而可以支持不同的频段。其中,移动设备所连接的网络信号决定了该移动设备天线的工作频率。通过对该移动设备所连接的网络信号进行监听,可以确定该网络信号所占用的频段,即确定该移动设备天线的工作频率。
具体来说,射频信号工作在哪个频率是受网络和基带控制。因此,在移 动设备的网络信号发生变更时,通过监听,可以确定变更后移动设备的网络信号所占用的频段,进而可以确定移动设备发送或接收射频信号的工作频率。移动设备天线通过调谐,使得移动设备可以接收或发送该工作频率的射频信号。需要说明的是,不同的网络信号占用不同的频段,如网络信号GSM-850占用824-894MHz频段、网络信号GSM-900占用890-960MHz频段、网络信号DCS-1800占用1710-1880MHz频段、PCS 1900占用1850-1990MHz频段等等,本发明实施例对此不加以限制。
步骤203,依据所述频段确定金属天线所需连接的目标馈点。
当确定网络信号所占用的频段时,移动设备可以根据预置的各频段所对应连接的馈点,确定该频段所对应连接的馈点;把该频段所对应连接的馈点作为目标馈点,即是金属天线所需要连接的目标馈点。具体来说,移动设备可以设置多个馈点,各馈点所对应的天线电长度不相同。其中,天线电长度可以理解为天线物理尺寸与所辐射电磁波波长的比值。金属天线通过连接不同的馈点可以改变天线电长度,从而可以达到各频段信号辐射所需要的尺寸。例如,移动设备可以设置馈点1对应900MHz频段、馈点2对应1800MHz频段、馈点3对应1900MHz频段、馈点4对应2500MHz频段……如此类推。本领域技术人员可以根据移动设备所要支持的信号频段设置馈点的数量以及各馈点所对应的频段,本发明实施例对此不加以限制。
在本发明的一种优选实施例中,该方法还可以包括:预先通过测试确定每个端口所连接馈点对应的频段,建立所述频段和馈点的对应关系。上述依据所述频段确定金属天线所需连接的目标馈点的步骤,可以包括:查找所述频段对应的馈点,将所述馈点作为金属天线所需连接的目标馈点。本发明实施例中,通过对金属天线进行测试可以确定每个频段下,切换开关通过哪个端口连接馈点能够得到较好的射频信息接收和发送结果,从而确定各频段下切换开关连接的端口,即各频段所对应的馈点。因此一个馈点可能对应一个或多个频段,如1800MHz频段和1900MHz频段对应同一个频段,频段与馈点的对应关系可以依据实际需求和测试结果确定,本发明实施例对此不作限定。
步骤205,切换到连接所述目标馈点,按照所述目标馈点配置金属天线的电长度,以进行射频信号的接收和发送。
在具体实现中,移动设备的电子切换开关可以包括多个端口,每个端口与一个馈点相连。其中,电子切换开关相当于馈点切换开关,简称切换开关。移动设备工作在哪个频段(band)是受移动设备基带控制的,馈点切换开关可以根据预先的天线测试结果切换到最好的馈点上。具体而言,在天线调试过程中,为达到性能的要求,移动设备可以通过电子切换开关切换到不同的端口,连接不同的馈点。针对不同的频段,移动设备可以设置金属天线不同的连接馈点。其中,每个馈点对应的电长度并不相同。移动设备可以按照目标馈点配置金属天线的电长度,使得移动设备天线可以达到频段信号(即射频信号)辐射所需要的尺寸,从而可以接收或发送射频信号。
作为本发明的一种具体示例,移动设备可以设置3个馈点。参照图3,示出了本发明实施例的一种馈点切换的示意图,其中,301部分为金属后壳,302部分为馈点切换开关,303部分为连接部分。参照图4,示出了本发明实施例的一种馈点切换原理的示意图。其中,射频信号简称射频(Radio Frequency,RF),可以理解为辐射到空间的电磁波;馈点Fedl对应900MHz频段,馈点Fed2对应1800MHz频段,馈点Fed3对应250000MHz频段。在天线调试过程中,移动设备可以在射频底层驱动里面设置:射频信号在900MHz频段工作时,馈点切换开关切换到馈点Fedl;在1800MHz频段工作时,馈点切换开关切换达到馈点Fed2;在2500MHz频段工作时,馈点切换开关切换达到馈点Fed3。
在本发明的一种优选实施例中,切换到连接所述目标馈点,可以包括以下子步骤:
子步骤20501,确定目标馈点对应的目标端口。
子步骤20503,将切换开关切换到连接所述目标端口,通过所述目标端口连接所述目标馈点。
在本发明的另一种优选实施例中,所述按照所述目标馈点配置金属天线的电长度,可以包括:将所述目标馈点对应的电长度作为金属天线的电长度,配置所述金属天线的辐射波长。
针对不同的频段,本发明实施例可以通过切换天线馈点来改变射频信号在全金属后壳馈入的位置,即改变天线电长度,使得金属天线可以达到各频段信号辐射所需要的尺寸,从而可以接收或发射不同频段的射频信号,在提 高天线效率的同时,增加了天线带宽,从而达到优化天线性能的目的。
为了本领域技术人员更好理解本发明实施列,以下结合优选实施例对本发明实施例进行描述。
参照图5,示出了本发明的一种基于天线的处理方法优选实施例的步骤流程图,具体可以包括如下步骤:
步骤501,通过测试确定每个端口所连接馈点对应的频段,建立所述频段和馈点的对应关系。
实际上,移动设备在出厂之前可以通过测试,确定馈点切换开关每个端口所连接的馈点对各频段的辐射能力,即可以确定各频段对应的最优辐射能力的馈点。针对各频段,将辐射能力最优的馈点设置为频段的目标馈点,即建立频段与馈点的对应关系(相当于天线测试结果),从而可以通过切换馈点,使得金属天线可以达到各频段信号辐射所需要的电长度,提高天线效率,达到优化天线性能的目的。
步骤503,对移动设备的网络信号进行监听,确定所述网络信号所占用的频段。
步骤505,查找所述频段对应的馈点,将所述馈点作为金属天线所需连接的目标馈点。
在确定网络信号所占用的频段后,可以通过查找频段和馈点的对应关系,确定所占用的频段对应的馈点,将所确定的馈点作为金属天线所需要连接的目标馈点。
步骤507,确定目标馈点对应的目标端口。
步骤509,将切换开关切换到连接所述目标端口,通过所述目标端口连接所述目标馈点。
在本发明实施例中,移动设备的切换开关各个端口分别与天线馈点相连接。其中,每一个端口与一个天线馈点相连接,即有多少个天线馈点,切换开关就有多少个端口,如有3个天线馈点,切换开关就有3个端口;有4个天线馈点,切换开关就有4个端口;有5个天线馈点,切换开关就有5个端口……如此类推,本发明实施例对此不加以限制。
在确定目标馈点后,可以将目标馈点所连接的切换开关的端口确定为目标端口。移动设备可以通过将切换开关切换至目标端口,以连接目标馈点, 可以理解为切换开关根据预先天线测试结果切换到最好的馈点上。以移动设备的切换开关具有3个端口为例,如图3所示,第一个端口连接馈点Fedl,第二个端口连接馈点Fed2,第三个端口连接馈点Fed3。例如,在射频信号工作在900MHz频段时,将切换开关切换到目标馈点Fedl所连接的第一个端口(相当于目标端口),即可以通过该目标端口连接目标馈点Fedl,从而可以移动设备天线达到900MHz频段信号辐射所需要的尺寸,保证了天线效率,优化了天线性能。
步骤511,将所述目标馈点对应的电长度作为金属天线的电长度,配置所述金属天线的辐射波长,以进行射频信号的接收和发送。
在本发明的一种优选实施例中,还可以包括馈点电长度的步骤:获取移动设备金属天线的物理长度;依据每个馈点对应辐射波长和所述金属天线的物理长度,确定所述馈点的电长度。
实际上,根据网络信号所占用的频段,可以确定该频段射频信号的辐射频率,从而可以确信该频段辐射电磁波的波长。根据馈点与频段的对应关系,以及各频段辐射的电磁波波长,可以确定每个馈点对应辐射波长。其中,天线电长度为天线物理尺寸与所辐射电磁波波长的比值。通过获取移动设备金属天线的物理长度,以及根据每个馈点对应辐射波长和移动设备金属天线的物理长度,可以确定每个馈点的电长度。
连接目标馈点后,移动设备可通过该目标馈点接收或发送射频信号。具体地,可以将目标馈点所对应的电长度作为金属天线的电长度,依据电长度以及天线的物理长度配置金属天线的辐射波长,按照该辐射波长(或辐射频率)接收或发送射频信号。
在本发明实施例中,通过切换天线馈点来该别射频信号在全金属后壳馈入位置,使得移动设备全金属天线可以达到各频段辐射所需的尺寸,增加了天线带宽,以及提高了全金属天线的效率。本发明实施例通过切换天线连接的馈点,达到优化移动设备全金属天线性能的目的,可实现性高。
需要说明的是,对于方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明实施例并不受所描述的动作顺序的限制,因为依据本发明实施例,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例 均属于优选实施例,所涉及的动作并不一定是本发明实施例所必须的。
参照图6,示出了本发明一种基于天线的处理装置实施例的结构框图,具体可以包括如下模块:
频段确定模块601,用于对移动设备的网络信号进行监听,确定所述网络信号所占用的频段。
目标馈点确定模块603,用于依据所述频段确定金属天线所需连接的目标馈点。
切换模块605,用于切换到连接所述目标馈点,按照所述目标馈点配置金属天线的电长度,以进行射频信号的接收和发送。
参照图7,示出了本发明一种基于天线的处理装置优选实施例的结构框图,具体可以包括如下模块:
频段确定模块701,用于对移动设备的网络信号进行监听,确定所述网络信号所占用的频段。
目标馈点确定模块703,用于依据所述频段确定金属天线所需连接的目标馈点。
切换模块705,用于切换到连接所述目标馈点,按照所述目标馈点配置金属天线的电长度,以进行射频信号的接收和发送。
在本发明的一种优选实施例中,切换模块705可以包括如下子模块:
目标端口确定子模块70501,用于确定目标馈点对应的目标端口。
端口切换子模块70503,用于将切换开关切换到连接所述目标端口,通过所述目标端口连接所述目标馈点。
可选地,切换模块705还可以包括辐射波长配置子模块70505。辐射波长配置子模块70505,用于将所述目标馈点对应的电长度作为金属天线的电长度,配置所述金属天线的辐射波长。
在本发明的一种优选实施例中,基于天线的处理装置还可以测试模块707。
测试模块707,用于预先通过测试确定每个端口所连接馈点对应的频段,建立所述频段和馈点的对应关系。相应的,目标馈点确定模块703,可以具体用于查找所述频段对应的馈点,将所述馈点作为金属天线所需连接的目标 馈点。
可选地,基于天线的处理装置还可以包括天线长度获取模块709和馈点电长度确定模块711。
其中,天线长度获取模块709,用于获取移动设备金属天线的物理长度。馈点电长度确定模块711,用于依据每个馈点对应辐射波长和所述金属天线的物理长度,确定所述馈点的电长度。
对于装置实施例而言,由于其与方法实施例基本相似,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
本发明的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本发明实施例的移动设备中的一些或者全部部件的一些或者全部功能。本发明还可以实现为用于执行这里所描述的方法的一部分或者全部的设备或者装置程序(例如,计算机程序和计算机程序产品)。这样的实现本发明的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
例如,图8示出了可以实现根据本发明的移动设备。该移动设备传统上包括处理器810和以存储器820形式的计算机程序产品或者计算机可读介质。存储器820可以是诸如闪存、EEPROM(电可擦除可编程只读存储器)、EPROM、硬盘或者ROM之类的电子存储器。存储器820具有用于执行上述方法中的任何方法步骤的程序代码831的存储空间830。例如,用于程序代码的存储空间830可以包括分别用于实现上面的方法中的各种步骤的各个程序代码831。这些程序代码可以从一个或者多个计算机程序产品中读出或者写入到这一个或者多个计算机程序产品中。这些计算机程序产品包括诸如硬盘,紧致盘(CD)、存储卡或者软盘之类的程序代 码载体。这样的计算机程序产品通常为如参考图9所述的便携式或者固定存储单元。该存储单元可以具有与图8的移动设备中的存储器820类似布置的存储段、存储空间等。程序代码可以例如以适当形式进行压缩。通常,存储单元包括计算机可读代码831’,即可以由例如诸如810之类的处理器读取的代码,这些代码当由移动设备运行时,导致该移动设备执行上面所描述的方法中的各个步骤。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本发明的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本发明的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
应该注意的是上述实施例对本发明进行说明而不是对本发明进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本发明可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
此外,还应当注意,本说明书中使用的语言主要是为了可读性和教导的目的而选择的,而不是为了解释或者限定本发明的主题而选择的。因此,在不偏离所附权利要求书的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。对于本发明的范围,对本发明所做的公开是说明性的,而非限制性的,本发明的范围由所附权利要求书限定。
本发明实施例是参照根据本发明实施例的方法、终端设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令 实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理终端设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理终端设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理终端设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理终端设备上,使得在计算机或其他可编程终端设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程终端设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上对本发明所提供的一种基于天线的处理方法和一种基于天线的处理装置,进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (12)

  1. 一种基于天线的处理方法,其特征在于,包括:
    对移动设备的网络信号进行监听,确定所述网络信号所占用的频段;
    依据所述频段确定金属天线所需连接的目标馈点;
    切换到连接所述目标馈点,按照所述目标馈点配置金属天线的电长度,以进行射频信号的接收和发送。
  2. 根据权利要求1所述的方法,其特征在于,还包括:
    预先通过测试确定每个端口所连接馈点对应的频段,建立所述频段和馈点的对应关系;
    所述依据所述频段确定金属天线所需连接的目标馈点,包括:
    查找所述频段对应的馈点,将所述馈点作为金属天线所需连接的目标馈点。
  3. 根据权利要求1或2所述的方法,其特征在于,切换到连接所述目标馈点,包括:
    确定目标馈点对应的目标端口;
    将切换开关切换到连接所述目标端口,通过所述目标端口连接所述目标馈点。
  4. 根据权利要求1所述的方法,其特征在于,还包括确定馈点电长度的步骤:
    获取移动设备金属天线的物理长度;
    依据每个馈点对应辐射波长和所述金属天线的物理长度,确定所述馈点的电长度。
  5. 根据权利要求1所述的方法,其特征在于,所述按照所述目标馈点配置金属天线的电长度,包括:
    将所述目标馈点对应的电长度作为金属天线的电长度,配置所述金属天线的辐射波长。
  6. 一种基于天线的处理装置,其特征在于,包括:
    频段确定模块,用于对移动设备的网络信号进行监听,确定所述网络信号所占用的频段;
    目标馈点确定模块,用于依据所述频段确定金属天线所需连接的目标馈 点;
    切换模块,用于切换到连接所述目标馈点,按照所述目标馈点配置金属天线的电长度,以进行射频信号的接收和发送。
  7. 根据权利要求6所述的装置,其特征在于,还包括:
    测试模块,用于预先通过测试确定每个端口所连接馈点对应的频段,建立所述频段和馈点的对应关系;
    所述目标馈点确定模块,具体用于查找所述频段对应的馈点,将所述馈点作为金属天线所需连接的目标馈点。
  8. 根据权利要求6或7所述的装置,其特征在于,所述切换模块,包括:
    目标端口确定子模块,用于确定目标馈点对应的目标端口;
    端口切换子模块,用于将切换开关切换到连接所述目标端口,通过所述目标端口连接所述目标馈点。
  9. 根据权利要求6所述的装置,其特征在于,还包括:
    天线长度获取模块,用于获取移动设备金属天线的物理长度;
    馈点电长度确定模块,用于依据每个馈点对应辐射波长和所述金属天线的物理长度,确定所述馈点的电长度。
  10. 根据权利要求6所述的装置,其特征在于,所述切换模块,包括:
    辐射波长配置子模块,用于将所述目标馈点对应的电长度作为金属天线的电长度,配置所述金属天线的辐射波长。
  11. 一种计算机程序,包括计算机可读代码,当所述计算机可读代码在移动设备上运行时,导致所述移动设备执行根据权利要求1-5中的任一个所述的基于天线的处理方法。
  12. 一种计算机可读介质,其中存储了如权利要求11所述的计算机程序。
PCT/CN2016/089117 2015-11-06 2016-07-07 一种基于天线的处理方法和装置 WO2017076053A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/249,233 US20170135103A1 (en) 2015-11-06 2016-08-26 Antenna-based processing method and antenna-based processing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510756375.5 2015-11-06
CN201510756375.5A CN105655715A (zh) 2015-11-06 2015-11-06 一种基于天线的处理方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/249,233 Continuation US20170135103A1 (en) 2015-11-06 2016-08-26 Antenna-based processing method and antenna-based processing device

Publications (1)

Publication Number Publication Date
WO2017076053A1 true WO2017076053A1 (zh) 2017-05-11

Family

ID=56482150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/089117 WO2017076053A1 (zh) 2015-11-06 2016-07-07 一种基于天线的处理方法和装置

Country Status (3)

Country Link
US (1) US20170135103A1 (zh)
CN (1) CN105655715A (zh)
WO (1) WO2017076053A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105655715A (zh) * 2015-11-06 2016-06-08 乐视移动智能信息技术(北京)有限公司 一种基于天线的处理方法和装置
CN107094027B (zh) * 2017-05-02 2020-07-17 奇酷互联网络科技(深圳)有限公司 天线调谐方法以及移动终端
CN107454214B (zh) * 2017-07-21 2020-07-21 北京小米移动软件有限公司 终端设备的天线结构、控制方法、设备和存储介质
CN108879080B (zh) * 2018-06-22 2024-03-19 深圳迈睿智能科技有限公司 平板天线
CN111211402B (zh) * 2020-03-23 2021-05-25 RealMe重庆移动通信有限公司 穿戴式电子设备
CN112242854B (zh) * 2020-10-19 2022-05-03 维沃移动通信有限公司 电子设备、电子设备的控制方法及装置
CN115441882B (zh) * 2022-09-01 2024-06-18 联想(北京)有限公司 一种天线控制方法、装置及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008075133A1 (en) * 2006-12-19 2008-06-26 Nokia Corporation An antenna arrangement
CN104064855A (zh) * 2014-05-27 2014-09-24 普尔思(苏州)无线通讯产品有限公司 一种无缝金属环手机lte-4g天线
CN204144417U (zh) * 2014-05-27 2015-02-04 普尔思(苏州)无线通讯产品有限公司 一种无缝金属环手机lte-4g天线
CN104852144A (zh) * 2015-04-02 2015-08-19 酷派软件技术(深圳)有限公司 一种天线、天线切换方法及装置
CN105576379A (zh) * 2015-03-31 2016-05-11 酷派软件技术(深圳)有限公司 终端
CN105655715A (zh) * 2015-11-06 2016-06-08 乐视移动智能信息技术(北京)有限公司 一种基于天线的处理方法和装置
CN105720994A (zh) * 2016-01-29 2016-06-29 努比亚技术有限公司 移动终端及其通信处理方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008075133A1 (en) * 2006-12-19 2008-06-26 Nokia Corporation An antenna arrangement
CN104064855A (zh) * 2014-05-27 2014-09-24 普尔思(苏州)无线通讯产品有限公司 一种无缝金属环手机lte-4g天线
CN204144417U (zh) * 2014-05-27 2015-02-04 普尔思(苏州)无线通讯产品有限公司 一种无缝金属环手机lte-4g天线
CN105576379A (zh) * 2015-03-31 2016-05-11 酷派软件技术(深圳)有限公司 终端
CN104852144A (zh) * 2015-04-02 2015-08-19 酷派软件技术(深圳)有限公司 一种天线、天线切换方法及装置
CN105655715A (zh) * 2015-11-06 2016-06-08 乐视移动智能信息技术(北京)有限公司 一种基于天线的处理方法和装置
CN105720994A (zh) * 2016-01-29 2016-06-29 努比亚技术有限公司 移动终端及其通信处理方法

Also Published As

Publication number Publication date
US20170135103A1 (en) 2017-05-11
CN105655715A (zh) 2016-06-08

Similar Documents

Publication Publication Date Title
WO2017076053A1 (zh) 一种基于天线的处理方法和装置
US9319155B2 (en) Multiple input multiple output antenna module and associated method
US9577331B2 (en) Wireless communication device
US10263319B2 (en) Antenna with swappable radiation direction and communication device thereof
TWI587569B (zh) 行動裝置
US9306282B2 (en) Antenna arrangement
US9496617B2 (en) Surface wave launched dielectric resonator antenna
US10374287B2 (en) Antenna system with full metal back cover
US9509042B1 (en) Single feed passive antenna for a metal back cover
TWI713570B (zh) 關於孔隙來配置的多個天線
CN107851884A (zh) 金属边框天线和终端设备
KR20170086532A (ko) 캐비티 백 어퍼처 안테나
CN103036587B (zh) 具有服务获取天线切换的电子设备
US20140256388A1 (en) Hairpin element for improving antenna bandwidth and antenna efficiency and mobile device with the same
GB2523367A (en) An apparatus for wireless communication
WO2012008946A1 (en) Multiple input - multiple output antenna module
TW201006039A (en) Antenna arrangement
WO2017211024A1 (zh) 终端设备多天线系统及终端设备信号传输方法
EP2408062A1 (en) Multiple input - multiple output antenna module
US10727600B1 (en) Coupling and re-radiating system for millimeter-wave antenna
US9196966B1 (en) Quad-slot antenna for dual band operation
US11115510B1 (en) Communication device having antenna arrays configured based on open/closed position of housing
US20110037663A1 (en) Antenna Module and Electronic device using the same
CN109216875B (zh) 一种带反射腔的宽频天线及天线系统
US9178283B1 (en) Quad-slot antenna for dual band operation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16861323

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16861323

Country of ref document: EP

Kind code of ref document: A1