Nothing Special   »   [go: up one dir, main page]

WO2017074109A1 - Cathode for secondary battery, method for preparing same, and lithium secondary battery comprising same - Google Patents

Cathode for secondary battery, method for preparing same, and lithium secondary battery comprising same Download PDF

Info

Publication number
WO2017074109A1
WO2017074109A1 PCT/KR2016/012273 KR2016012273W WO2017074109A1 WO 2017074109 A1 WO2017074109 A1 WO 2017074109A1 KR 2016012273 W KR2016012273 W KR 2016012273W WO 2017074109 A1 WO2017074109 A1 WO 2017074109A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
conductive material
active material
rolling
volume
Prior art date
Application number
PCT/KR2016/012273
Other languages
French (fr)
Korean (ko)
Inventor
최영근
김강근
오송택
최주영
양지혜
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160141349A external-priority patent/KR102100879B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP16860292.8A priority Critical patent/EP3370278B1/en
Priority to JP2018506967A priority patent/JP6727668B2/en
Priority to PL16860292T priority patent/PL3370278T3/en
Priority to CN201680048067.XA priority patent/CN107925057B/en
Publication of WO2017074109A1 publication Critical patent/WO2017074109A1/en
Priority to US15/885,961 priority patent/US10476078B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a secondary battery positive electrode that controls the pore size in the positive electrode mixture layer to improve the output, a manufacturing method thereof, and a lithium secondary battery with improved output by including the same.
  • lithium secondary batteries that exhibit high energy density and operating potential, have a long cycle life, and have a low self-discharge rate are commercially used.
  • the lithium secondary battery has a structure in which an electrolyte is impregnated into an electrode assembly in which a cathode including a lithium transition metal oxide, a cathode including a carbon-based active material, and a porous separator are sequentially stacked as an electrode active material.
  • the positive electrode is prepared by coating a positive electrode mixture containing a lithium transition metal oxide on an aluminum foil
  • the negative electrode is prepared by coating a negative electrode mixture containing a carbon-based active material on a copper foil.
  • a conductive material is added to the positive electrode mixture and the negative electrode mixture in order to improve the electrical conductivity of the active material.
  • a conductive material is essentially added to the positive electrode mixture.
  • a first object of the present invention is to provide a positive electrode for secondary batteries, the maximum diameter of the internal void is controlled to less than 1 ⁇ m.
  • Another object of the present invention is to provide a method for producing the positive electrode.
  • a third object of the present invention is to provide a lithium secondary battery with improved room temperature and low temperature output by including the positive electrode.
  • a positive electrode current collector and
  • the positive electrode mixture layer includes a positive electrode active material, a conductive material, a binder, and a bimodal type void consisting of first and second voids having different maximum diameters,
  • the conductive material the positive electrode active material is included in a volume ratio (K 1 ) of 0.08 to 0.32: 1,
  • the conductive material the volume ratio of the entire void is 0.1 to 0.33: 1,
  • Porosity 30% to 45% by volume
  • the maximum diameter of the first and second pores is less than 1 ⁇ m
  • the average pore ratio k of the first pore: the second pore is 0.13 to 0.27: 1 to provide a positive electrode for a secondary battery.
  • Conductive material mixing the positive electrode active material in a volume ratio of 0.08 to 0.32: 1 to prepare a positive electrode active material slurry having a solid content of 60 wt% to 90 wt%;
  • a positive electrode including a positive electrode mixture layer having a porosity of 30% by volume to 45% by volume by rolling the positive electrode prepared after the first rolling;
  • It provides a method for manufacturing a positive electrode for a secondary battery comprising a; by manufacturing the positive electrode comprising a positive electrode mixture layer having a porosity of 30% by volume to 45% by volume of the positive electrode prepared after the secondary rolling.
  • the positive electrode active material slurry may be coated with a loading amount of 2 mg / cm2 to 15 mg / cm2.
  • the manufacturing method of the positive electrode may further include the step of leaving for 30 minutes to 2 hours before the secondary rolling of the positive electrode prepared after the first rolling.
  • the method may further include the step of leaving for 30 minutes to 2 hours before the third rolling of the positive electrode prepared after the secondary rolling.
  • the first rolling is carried out under the condition that the gap (gap) between the two upper rolls and the lower roll at room temperature is (the total thickness of the anode before the first rolling + the total thickness of the anode manufactured after the third rolling) / 2. can do.
  • the secondary and tertiary rolling step may be carried out under the same conditions in the gap (gap) between the two upper rolls and the lower roll at room temperature equal to the total thickness of the target anode after the third rolling.
  • a secondary battery comprising a non-aqueous electrolyte containing a lithium salt
  • It provides a lithium secondary battery comprising the positive electrode for a secondary battery of the present invention as the positive electrode.
  • an improved lithium secondary battery having improved room temperature / low temperature output characteristics can be manufactured.
  • Example 1 is a scanning electron micrograph showing a cross-sectional structure of the anode prepared according to Example 1 of the present invention.
  • FIG. 3 is a scanning electron micrograph showing a cross-sectional structure of a positive electrode prepared according to Comparative Example 4.
  • the present invention provides a secondary battery positive electrode and a manufacturing method thereof in which the maximum diameter of the internal void is controlled to less than 1 ⁇ m.
  • the present invention provides a lithium secondary battery having improved output at room temperature and low temperature by including the positive electrode.
  • a positive electrode current collector and
  • the positive electrode mixture layer includes a positive electrode active material, a conductive material, a binder, and a bimodal type void consisting of first and second voids having different maximum diameters,
  • the conductive material the positive electrode active material is included in a volume ratio (K 1 ) of 0.08 to 0.32: 1,
  • the conductive material the volume ratio of the entire void is 0.1 to 0.33: 1,
  • Porosity 30% to 45% by volume
  • the maximum diameter of the first and second pores is less than 1 ⁇ m
  • the average pore ratio k of the first pore: the second pore is 0.13 to 0.27: 1 to provide a positive electrode for a secondary battery.
  • the positive electrode current collector is not particularly limited so long as it has conductivity without causing chemical change in the battery.
  • stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum The surface treated with carbon, nickel, titanium, silver, etc. on the stainless steel surface can be used.
  • the current collector may be used having a thickness of 3 to 500 ⁇ m, specifically 3 to 100 ⁇ m, in the present invention, it is preferable to use a current collector having a thickness of 5 to 20 ⁇ m. Fine irregularities may be formed on the surface of the current collector to increase the adhesion of the positive electrode active material.
  • it can be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven body.
  • the positive electrode active material is not particularly limited as long as it is made of a transition metal compound capable of intercalating / deintercalating lithium, and a representative particle having an average particle diameter (D50) of 3 to 20 ⁇ m is a representative example.
  • a cathode active material used in the cathode according to an embodiment of the present invention is typically lithium transition metal oxide particles in which lithium ions may be occluded and released, and the lithium composite metal oxide is a lithium-manganese oxide (eg, LiMnO 2 , LiMn 2 O Etc.), lithium-cobalt-based oxides (e.g., LiCoO 2, etc.), lithium-nickel-based oxides (e.g., LiNiO 2, etc.), lithium-nickel-manganese-based oxides (e.g., LiNi 1-x Mn x2 O 2 (where, 0 ⁇ x ⁇ 1), LiMn 2-y Ni y O 4 (here, 0 ⁇ y ⁇ 2) and the like), lithium-nickel-cobalt-based oxide (for example, LiNi 1- z Co z O 2 (here, 0 ⁇ z ⁇ 1) and the like, lithium-manganese-cobalt-based oxides (eg
  • LiCoO 2 , LiMnO 2 , LiNiO 2 , and lithium nickel manganese cobalt oxides may be improved in capacity and stability of the battery.
  • Li (Ni 0.5 Mn 0.3 Co 0.2 ) O 2 Li (Ni 0.7 Mn 0.15 Co 0.15 ) O 2 or Li (Ni 0.8 Mn 0.1 Co 0.1 ) O 2, etc.), or lithium nickel cobalt aluminum oxide (eg, Li (Ni 0.8 Co 0.15 Al 0.05 ) O 2, etc.), and the lithium composite metal oxide may be Li (Ni) in consideration of the remarkable improvement effect by controlling the type and content ratio of the constituent elements forming the lithium composite metal oxide.
  • 0.6 Mn 0.2 Co 0.2 ) O 2 Li (Ni 0.5 Mn 0.3 Co 0.2 ) O 2
  • Li (Ni 0. 7 Mn 0. 15 Co 0. 15 O 2 or Li (Ni 0.8 Mn 0.1 Co 0.1 ) O may be made of 2 or the like, either of which Or mixtures of two or more may be used.
  • the cathode active material may be included in an amount of 80 wt% to 98 wt% based on the total weight of the cathode mixture layer.
  • the conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and as a representative example, natural graphite or artificial graphite having an average particle diameter (D50) of 5 to 30000 nm, Single material selected from the group consisting of carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, conductive fiber, carbon fluoride, aluminum, nickel powder, conductive whiskey, conductive metal oxide and polyphenylene derivative Or a mixture of two or more thereof.
  • D50 average particle diameter
  • the conductive material: the positive electrode active material may include a volume ratio (K 1 ) of 0.08 to 0.32: 1, the volume ratio of the total space including the conductive material: the first and second pores is 0.1 to 0.33: 1 In this case, the porosity is 30% by volume to 45% by volume.
  • the volume ratio of the conductive material: positive electrode active material and the volume ratio of the conductive material: the entire void in the positive electrode can be calculated through the following process.
  • Vt the total volume (Vt), which is the sum of the solid content and the pore volume including the active material, the binder, and the conductive material, is multiplied by multiplying the thickness of the positive electrode material mixture layer by the area x length (5 x 5 cm 2) of the positive electrode material mixture layer.
  • volume Vp of all the pores can be calculated by the following formula (1).
  • each component is divided by dividing the mass of the active material (Va.m.), the conductive material (Vcon), and the binder (Vbin) used in the area of the width x length (5 x 5 cm 2) by their true density. You can get it.
  • the method of measuring the porosity and the pore size of the inside of the anode is not particularly limited, and the size (micro) and mesopore volume (meso) are measured using a Brunauer-Emmett-Teller (BET) measurement method using an adsorption gas such as nitrogen, which is generally used. pore volume) or the like, or may be measured using a commonly used mercury permeation method (Hg porosimeter).
  • BET Brunauer-Emmett-Teller
  • Hg porosimeter mercury permeation method
  • volume ratio (K 1 ) of the conductive material to the positive electrode active material is less than 0.08, or if the volume ratio of the conductive material to the total void is less than 0.1, that is, if the content of the conductive material is low (porosity exceeds 45% by volume), between the active material Insufficient amount of the conductive material to fill the separation distance prevents the conductive material from sufficiently surrounding the active material. As a result, the size of the first pore and the second pore increases, which makes it difficult to transfer the electrons generated by the reaction on the surface of the active material, and the electrical resistance in the electrode may increase because the conductive network is not smoothly connected in the anode. Can be.
  • the volume ratio (K 1 ) of the conductive material to the positive electrode active material exceeds 0.32, or if the volume ratio of the conductive material to the entire void exceeds 0.33 (porosity of 30% by volume or less), an excessive amount of conductive material is present on the surface of the active material. Therefore, the resistance according to the decrease in the size of the first pore increases, the reaction area of the positive electrode active material and the electrolyte decreases, and the battery output can be reduced.
  • the volume ratio of the conductive material / anode active material is less than 0.08, and the volume ratio of the conductive material / pore is less than 0.1, that is, when the conductive material is contained in a small amount compared to the voids, the first gap of 1 ⁇ m or more And it can be confirmed that a plurality of second voids are formed.
  • the conductive materials coagulate due to excessive use of the conductive material, and the surface of the active material. Since a phenomenon that does not sufficiently cover the occurrence of the second voids of 1 ⁇ m or more may be formed.
  • the maximum diameters of the first pore 301 and the second pore 302 may be controlled to a level of less than 1 ⁇ m, specifically several hundred nm, respectively.
  • the volume ratio of the conductive material 200 / the positive electrode active material 100 is 0.08 to 0.32.
  • the volume ratio of the entire conductive material / pore may be 0.1 to 0.33, and the porosity may be implemented only when all of them satisfy 30 vol% to 45 vol% (see FIG. 1).
  • the first gap includes a gap between the conductive material and the conductive material formed by the adjacent conductive material particles
  • the second gap is formed between the conductive material and the active material surrounded by the adjacent conductive material and the cathode active materials. Contains voids.
  • the outer circumferential surfaces of the first and second voids may be nonlinearly formed along surfaces of the plurality of adjacent conductive material and cathode active material particles, respectively.
  • the maximum diameter of the first pore and the second pore is less than 1 ⁇ m, specifically, the average diameter of the first pore is 1nm to 100nm, the average diameter of the second pore is 100nm to 500nm, Specifically, it is 200 nm to 400 nm.
  • the average diameter ratio k of the said 1st voids: 2nd voids is 0.13-0.27: 1.
  • the first pore size is very small due to the aggregation of the conductive material particles, or the second pore between the conductive material particles and the active material particles. It means that the size is relatively large.
  • the first pore is small, it is difficult for Li ions in the electrolyte to smoothly move to the surface of the active material by the conductive material-conductor clusters, and when the second pore is large, the contact between the active material and the conductive material is difficult and thus occurs on the surface of the active material. It can be difficult to transfer the electrons generated by it.
  • the average diameter ratio (k) of the first pore to the second pore exceeds 0.27, the first pore size is large, so that the conductive material-conductive material contact is not smooth, thereby increasing the electrical resistance in the electrode, Alternatively, since the second pore size is relatively small, the reaction area between the surface of the active material and the electrolyte is reduced, so that the output may be reduced.
  • Method for measuring the diameter of the first pore and the second pore is not particularly limited, but is represented by the size of the two main peaks appearing by using the Hg porosimeter generally used in the art, electron microscopy (SEM) The image confirmed the position for the size represented by each peak.
  • the binder is a component that assists the bonding of the active material and the conductive material and the bonding of the active material and the current collector, and representative examples thereof include polyvinylidene fluoride, polyvinyl alcohol, and carboxymethyl cellulose (CMC). ), Starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene-butadiene Rubber, fluororubber, various copolymers, and the like.
  • CMC carboxymethyl cellulose
  • the binder may be included in an amount of about 1 to 10% by weight, specifically, 2 to 9% by weight, based on the total weight of the positive electrode mixture.
  • the amount may be reduced to decrease the capacity, and when the binder is less than 10% by weight, the electrode may be peeled off, thereby degrading the lifespan performance of the battery.
  • the positive electrode of the present invention may have an energy of 0.8 mAh / cm 2 to 1.8 mAh / cm 2 per unit area.
  • Conductive material mixing the positive electrode active material in a volume ratio of 0.08 to 0.32: 1 to prepare a positive electrode active material slurry having a solid content of 60 wt% to 90 wt%;
  • a positive electrode including a positive electrode mixture layer having a porosity of 30% by volume to 45% by volume by rolling the positive electrode prepared after the first rolling;
  • It provides a method for manufacturing a positive electrode for a secondary battery comprising a; by manufacturing the positive electrode comprising a positive electrode mixture layer having a porosity of 30% by volume to 45% by volume of the positive electrode prepared after the secondary rolling.
  • the preparing of the positive electrode active material slurry may be performed by dissolving a binder in an organic solvent to prepare a binder solution, and then adding a conductive material to prepare a conductive material-binder mixed solution. It can be prepared by adding a positive electrode active material while stirring.
  • the conductive material-binder mixed solution may be prepared by stirring for about 1 minute to 10 minutes at a speed of about 1000rpm to 2000rpm, specifically 1500rpm at room temperature.
  • a positive electrode active material slurry may be prepared while stirring for about 5 minutes to 30 minutes at a speed of about 1000rpm to 2000rpm, specifically 1500rpm at room temperature.
  • the volume ratio (K 1 ) of the conductive material / the positive electrode active material is less than 0.08, that is, the content of the conductive material is small, the amount of the conductive material to fill the separation distance between the active material is insufficient, the conductive material is Since the size of the first pore and the second pore increases, it is not easy to transfer the electrons generated by the reaction, and the conductive network is not connected smoothly due to the lack of the conductive material in the electrode. This can increase.
  • the volume ratio of the conductive material / anode active material exceeds 0.32, the excess conductive material is present on the surface of the active material, and the size of the first and second pores is relatively reduced, thereby reducing the reaction area between the surface of the active material and the electrolyte. As a result, battery output can be reduced.
  • the solid content of the positive electrode active material slurry may be from 60% by weight to 90% by weight, when included in this range can implement the desired porosity.
  • the solid content means a conductive material and a positive electrode active material.
  • the positive electrode active material slurry may be coated with a loading amount of 2 mg / cm 2 to 15 mg / cm 2.
  • the coating method of the active material slurry may be used without limitation the coating method commonly used in the art, non-limiting examples of dip (Dip) coating, die coating, roll coating It may include a variety of methods, such as comma coating or a mixture thereof.
  • the drying drying step is preferably performed at a temperature of room temperature to 300 ° C. for 1 to 24 hours. If the drying temperature is lower than room temperature, there is a problem in that the drying of the solvent is not made, and if the drying temperature is higher than 300 ° C., it is not a meaning as a drying step because it corresponds to a heat treatment step. If the drying time is less than 1 hour, there is a problem in that the drying of the solvent is not performed. If the drying time is more than 24 hours, the process time is too large, which is not preferable.
  • the primary rolling is a gap (gap) between the two upper rolls and the lower rolls at room temperature (the total thickness of the anode before the first rolling + the total thickness of the target anode after the third rolling) Can be carried out under the condition of) / 2.
  • the secondary and tertiary rolling step may be carried out under the same conditions in the gap (gap) between the two upper rolls and the lower roll at room temperature equal to the total thickness of the target anode after the third rolling.
  • the positive electrode mixture layer may be formed to be higher than the target thickness by partially recovering the thickness after a predetermined time due to elasticity. Therefore, in the present invention, by further rolling (third rolling), it is possible to manufacture a positive electrode having a positive electrode mixture layer capable of maintaining a target thickness.
  • the porosity in the positive electrode is 30% by volume to 45% by volume
  • the volume ratio of the conductive material: the total pore including the first and second pores is 0.1 to 0.33: 1, and the maximum of the first and second pores
  • the diameter can be controlled to be less than 1 ⁇ m.
  • the present invention provides a positive electrode in which the maximum diameters of the first and second voids of the bimodal form are controlled to be less than 1 ⁇ m, so that the electrolyte is sufficiently contained in the electrode to contact the positive electrode active material and the electrolyte.
  • the capillary force can be improved as much as possible, the packing density of the electrode can be improved while reducing the internal plate resistance. Therefore, as compared with the conventional anode manufactured without considering the size of the existing pores, it is possible to realize a secondary battery having improved output at room temperature and low temperature in a short time by securing excellent high-rate charge and discharge characteristics and life characteristics according to an increase in electrical conductivity and binding force. Can be.
  • the method may further include the step of leaving for 30 minutes to 2 hours before the secondary rolling of the positive electrode prepared after the primary rolling.
  • the method may further include the step of leaving for 30 minutes to 2 hours before the secondary rolling of the positive electrode prepared after secondary rolling.
  • the positive electrode provides a secondary battery including the positive electrode of the present invention.
  • the negative electrode may be prepared by applying a negative electrode active material slurry composition on at least one surface of the negative electrode current collector, followed by drying and rolling.
  • the negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • the negative electrode current collector may be formed on a surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper, or stainless steel. Surface-treated with carbon, nickel, titanium, silver and the like, aluminum-cadmium alloy and the like can be used.
  • the negative electrode current collector, like the positive electrode current collector may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven fabric having fine irregularities formed on its surface.
  • the negative electrode active material slurry composition may include at least one or more of a negative electrode active material, a solvent, and optionally a binder and a conductive material.
  • the negative electrode active material is a compound capable of reversible intercalation and deintercalation of lithium, and specific examples thereof include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber, and amorphous carbon; Metallic or semimetallic compounds capable of alloying with lithium such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloys, Sn alloys or Al alloys; Metal oxides or metalloids which can dope and undo lithium such as SiO x1 (0 ⁇ x1 ⁇ 2), SnO 2 , vanadium oxide, lithium vanadium oxide; Or a composite including the inorganic compound and a carbonaceous material, such as a Si-C composite or a Sn-C composite, and any one or a mixture of two or more thereof may be used.
  • carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber, and amorphous carbon
  • Metallic or semimetallic compounds capable of alloying with
  • a metal lithium thin film may be used as the anode active material.
  • the carbon material both low crystalline carbon and high crystalline carbon can be used. Soft crystalline carbon and hard carbon are typical low crystalline carbon, and high crystalline carbon is amorphous, plate, scaly, spherical or fibrous natural graphite or artificial graphite, Kish graphite (Kish) graphite, pyrolytic carbon, mesophase pitch based carbon fiber, meso-carbon microbeads, mesophase pitches and petroleum or coal tar pitch High-temperature calcined carbon such as derived cokes is typical.
  • the negative electrode active material may be included in an amount of 80 wt% to 99 wt% based on the total weight of the negative electrode active material slurry composition.
  • the binder is a component that assists the bonding between the conductive material, the active material and the current collector, and is typically added in an amount of 1 to 30 wt% based on the total weight of the negative electrode active material slurry.
  • binders include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoro Low ethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber, fluorine rubber, various copolymers thereof, and the like.
  • PVDF polyvinylidene fluoride
  • CMC carboxymethyl cellulose
  • EPDM ethylene-propylene-diene polymer
  • sulfonated-EPDM styrene-butadiene rubber
  • the conductive material is a component for further improving the conductivity of the negative electrode active material, and may be added in an amount of 1 to 20 wt% based on the total weight of the negative electrode active material slurry.
  • a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon blacks such as acetylene black, Ketjen black, channel black, furnace black, lamp black and thermal black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the solvent may include an organic solvent such as water or NMP (N-methyl-2-pyrrolidone), and may be used in an amount that becomes a desirable viscosity when including the negative electrode active material, and optionally a binder and a conductive material.
  • concentration of the positive electrode active material and, optionally, the solid content including the binder and the conductive material may be included in an amount of 50 wt% to 95 wt%, preferably 70 wt% to 90 wt%.
  • the separator is a conventional porous polymer film conventionally used as a separator, for example, a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer
  • a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer
  • the porous polymer film prepared by using a single or a lamination thereof may be used, or a conventional porous nonwoven fabric, for example, a non-woven fabric made of glass fibers, polyethylene terephthalate fibers of high melting point, etc. may be used, but is not limited thereto. .
  • non-aqueous electrolyte solution consists of an electrolyte solution and a lithium salt, and a non-aqueous organic solvent or an organic solid electrolyte is used as the electrolyte solution.
  • non-aqueous organic solvent for example, N-methyl-2-pyrrolidone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma-butyrolactone, 1,2-dime Methoxyethane, tetrahydroxyfuran, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolon, formamide, dimethylformamide, dioxolon, acetonitrile, nitromethane, methyl formate, methyl acetate, Phosphate triester, trimethoxy methane, dioxoron derivative, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, ether, methyl propionate, ethyl propionate
  • An aprotic organic solvent such as may be used.
  • organic solid electrolytes examples include polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphate ester polymers, polyedgetion lysine, polyester sulfides, polyvinyl alcohols, polyvinylidene fluorides, Polymerizers containing ionic dissociating groups and the like can be used.
  • the lithium salt may be used, without limitation, those which are commonly used in a lithium secondary battery electrolyte, such as Li + cations, F -, Cl -, Br -, I -, NO 3 -, N (CN) 2 - , BF 4 -, ClO 4 - , PF 6 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF -, (CF 3) 6 P -, CF 3 SO 3 -, CF 3 CF 2 SO 3 -, N (CF 3 SO 2) 2 -, N (SO 2 F) 2 -, CF 3 CF 2 (CF 3) 2 CO - , (CF 3 SO 2) 2 CH -, (SF 5) 3 C -, (CF 3 SO 2) 3 C -, CF 3 (CF 2) 7 SO 3 -, CF 3 CO 2 -, CH 3 CO 2 - , SCN - and N (
  • pyridine triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitro Benzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N, N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyrroles, 2-methoxy ethanol, aluminum trichloride and the like may be added. .
  • halogen-containing solvents such as carbon tetrachloride and ethylene trifluoride may be further included, and carbon dioxide gas may be further included to improve high temperature storage characteristics.
  • a positive electrode and a secondary battery including the same were prepared in the same manner as in Example 1 except that the conductive material: positive electrode active material was included in a volume ratio of 0.28: 1 in the preparation of the positive electrode in Example 1.
  • the porosity of the positive electrode is 40% by volume
  • the volume ratio of the entire conductive material / voids in the positive electrode is 0.31
  • the diameter of the first pore is 45nm
  • the diameter of the second pore is 320nm
  • the first pore / second The average diameter ratio k of the voids is 0.14.
  • the energy density per unit area of the positive electrode was 1.5 mAh / cm 2.
  • a positive electrode and a secondary battery including the same were prepared in the same manner as in Example 1 except that the conductive material: the positive electrode active material was included in a volume ratio of 0.08: 1 in the preparation of the positive electrode in Example 1.
  • the porosity of the positive electrode is 40% by volume
  • the volume ratio of the entire conductive material / voids in the positive electrode is 0.1
  • the diameter of the first pore is 80nm
  • the diameter of the second pore is 300nm
  • the average diameter ratio k of the voids is 0.27.
  • the energy density per unit area of the positive electrode was 1.5 mAh / cm 2.
  • a positive electrode and a secondary battery including the same were manufactured in the same manner as in Example 1 except that the conductive material: positive electrode active material was included in a volume ratio of 0.32: 1 in the preparation of the positive electrode in Example 1.
  • the porosity of the positive electrode is 40% by volume
  • the volume ratio of the entire conductive material / voids in the positive electrode is 0.33
  • the diameter of the first pore is 45nm
  • the diameter of the second pore is 335nm
  • the first pore / second The average diameter ratio k of voids is 0.13.
  • the energy density per unit area of the positive electrode was 1.5 mAh / cm 2.
  • a positive electrode (total thickness of 60 ⁇ m) including the positive electrode mixture layer by rolling once, including the conductive material: positive electrode active material in a volume ratio of 0.051: 1 in the preparation of the positive electrode in Example 1, In the same manner as in Example 1, a cathode and a secondary battery including the same were prepared.
  • the volume ratio of the conductive material / total voids in the anode is 0.07
  • the diameter of the first pore is 150 nm
  • the diameter of the second pore is 500 nm
  • the average diameter ratio of the first pore / second pore ( k) is 0.3.
  • the energy density per unit area of the positive electrode was 1.5 mAh / cm 2.
  • Example 1 Except for preparing a positive electrode (total thickness 89 ⁇ m) including the positive electrode mixture layer by rolling twice, including the conductive material: positive electrode active material in a volume ratio of 0.45: 1 in the preparation of the positive electrode in Example 1, A positive electrode and a secondary battery including the same were manufactured in the same manner as in Example 1.
  • the volume ratio of the entire conductive material / pore in the anode is 0.37
  • the diameter of the first pore is 30 nm
  • the diameter of the second pore is 1000 nm
  • the average diameter ratio of the first pore / second pore ( k) is 0.03.
  • a positive electrode and a secondary battery including the same were prepared in the same manner as in Example 1, except that the conductive material: the positive electrode active material was included in a volume ratio of 0.07: 1 in the preparation of the positive electrode in Example 1.
  • the cross section of the prepared anode was observed with an electron microscope, and the results are shown in FIG. 2. As shown in FIG. 2, it can be seen that the conductive material does not sufficiently wrap the active material, so that a second gap of several ⁇ m is formed.
  • the volume ratio of the entire conductive material / pore in the anode is 0.09
  • the porosity is 40% by volume
  • the diameter of the first pore is 110nm
  • the diameter of the second pore is 400nm
  • the first pore / second pore The average diameter ratio (k) of was 0.28.
  • a positive electrode and a secondary battery including the same were prepared in the same manner as in Example 1 except that the conductive material: positive electrode active material was included in a volume ratio of 0.34: 1 in the preparation of the positive electrode in Example 1.
  • the cross section of the prepared anode was observed with an electron microscope, and the results are shown in FIG. 3. As shown in FIG. 3, while the first pore size is reduced, it can be seen that a plurality of second pores of 1 ⁇ m or more are formed.
  • the volume ratio of the entire conductive material / pore in the anode is 0.34
  • the porosity is 40% by volume
  • the diameter of the first pore is 40nm
  • the diameter of the second pore is 400nm
  • the first pore / second pore The average diameter ratio k is 0.1.
  • the energy density per unit area of the positive electrode was 1.5 mAh / cm 2.
  • the secondary batteries using the positive electrodes of Examples 1 to 4 have superior output characteristics at room temperature than the batteries using the positive electrodes of Comparative Examples 1 to 4.
  • the volume ratio of the conductive material / anode active material is less than 0.08, and the volume ratio of the conductive material / total voids is less than 0.1 (the average diameter ratio k of the first and second pores is more than 0.27).
  • the conductive material surrounding the active material is not enough, there is a disadvantage that the output is reduced due to the increase in the electrical resistance in the electrode.
  • the volume ratio of the conductive material / anode active material is more than 0.32, and the volume ratio of the conductive material / total voids is more than 0.33 (average diameter ratio k of the first and second pores is less than 0.13).
  • an excessive amount of the conductive material is present on the surface of the active material, so that the reaction area between the surface of the active material and the electrolyte decreases and thus the output is reduced.
  • the data shown in Figure 4 is only one example, the detailed output value according to the SOC may vary depending on the type of battery cell, it can be expected that there is no difference in the output characteristics (trend).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention relates to a cathode for a secondary battery, a method for preparing the same, and a lithium secondary battery comprising the same, the cathode for a secondary battery comprising: a cathode current collector; and a cathode mixture layer coated on at least one side of the cathode current collector, wherein the cathode mixture layer comprises a cathode active material, a conductive material, a binder, and bimodal-type pores composed of a first pore and a second pore which are different in the maximum diameter, wherein the conductive material and the cathode active material are contained at a volume ratio (K1) of 0.08 to 0.32 : 1, the volume ratio of the conductive material to the total pores is 0.1 to 0.33 : 1, the porosity is 30 volume% to 45 volume%, the maximum diameter of the first pore and the second pore is less than 1 ㎛, and the average diameter ratio (K) of the first pore to the second pore is 0.13 to 0.27 : 1.

Description

이차전지용 양극, 이의 제조 방법 및 이를 포함하는 리튬 이차전지Anode for a secondary battery, a manufacturing method thereof, and a lithium secondary battery including the same
관련 출원(들)과의 상호 인용Cross Citation with Related Application (s)
본 출원은 2015년 10월 30일자 한국 특허 출원 제10-2015-0151483호 및 2016년 10월 27일자 한국 특허 출원 제10-2016-0141349호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2015-0151483 filed October 30, 2015 and Korean Patent Application No. 10-2016-0141349 filed October 27, 2016. All content disclosed in the literature is included as part of this specification.
기술분야Technical Field
본 발명은 출력 향상을 위하여 양극 합제 층 내부의 공극 크기를 제어한 이차전지용 양극과, 이의 제조 방법 및 이를 포함함으로써 출력이 향상된 리튬 이차전지에 관한 것이다.The present invention relates to a secondary battery positive electrode that controls the pore size in the positive electrode mixture layer to improve the output, a manufacturing method thereof, and a lithium secondary battery with improved output by including the same.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지에 대한 수요가 급격히 증가하고 있다. 이차전지 중에서도 높은 에너지 밀도와 작동 전위를 나타내고, 사이클 수명이 길며, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.As technology development and demand for mobile devices increase, the demand for secondary batteries as a source of energy is rapidly increasing. Among secondary batteries, lithium secondary batteries that exhibit high energy density and operating potential, have a long cycle life, and have a low self-discharge rate are commercially used.
리튬 이차전지는 전극 활물질로서 리튬 전이금속 산화물을 포함하는 양극과 카본계 활물질을 포함하는 음극 및 다공성 세퍼레이터가 순차적으로 적층된 전극조립체에 전해질이 함침되어 있는 구조로 이루어져 있다.The lithium secondary battery has a structure in which an electrolyte is impregnated into an electrode assembly in which a cathode including a lithium transition metal oxide, a cathode including a carbon-based active material, and a porous separator are sequentially stacked as an electrode active material.
상기 양극은 리튬 전이금속 산화물을 포함하는 양극 합제를 알루미늄 호일에 코팅하여 제조되며, 상기 음극은 카본계 활물질을 포함하는 음극 합제를 구리 호일에 코팅하여 제조된다.The positive electrode is prepared by coating a positive electrode mixture containing a lithium transition metal oxide on an aluminum foil, the negative electrode is prepared by coating a negative electrode mixture containing a carbon-based active material on a copper foil.
상기 양극 합제와 음극 합제에는 활물질의 전기전도성을 향상시키기 위하여 도전재가 첨가되고 있다. 특히, 양극 활물질로 사용되는 리튬 전이금속 산화물은 본질적으로 전기전도성이 낮으므로, 양극 합제에는 도전재가 필수적으로 첨가되고 있다.A conductive material is added to the positive electrode mixture and the negative electrode mixture in order to improve the electrical conductivity of the active material. In particular, since the lithium transition metal oxide used as the positive electrode active material is inherently low in electrical conductivity, a conductive material is essentially added to the positive electrode mixture.
하지만, 활물질 재료와 도전재의 입경 차이로 인하여 활물질과 도전재의 균일한 혼합을 기대하기 어렵다. 이에, 도전재 간의 응집이 발생하거나, 또는 활물질과 도전재의 입도 차이에 따른 입자의 분리(segregation) 등이 발생하여 전극 내부에 수 ㎛의 공극이 다량 발생하고 있다.However, due to the difference in particle size of the active material and the conductive material, it is difficult to expect a uniform mixing of the active material and the conductive material. As a result, agglomeration between the conductive materials occurs, or segregation of particles due to the particle size difference between the active material and the conductive material occurs, and a large amount of voids of several μm are generated in the electrode.
이러한 공극은 전지의 저항 증가 또는 출력 저하 등을 야기하기 때문에, 이들을 개선할 수 있는 방법이 필요한 실정이다.Since these voids cause an increase in the resistance of the battery or a decrease in the output, there is a need for a method capable of improving them.
선행기술문헌Prior art literature
한국 특허공개공보 제2015-0016339호Korean Patent Publication No. 2015-0016339
한국 특허공개공보 제2015-0016581호Korean Patent Publication No. 2015-0016581
상기와 같은 문제점을 해결하기 위하여, 본 발명의 제1 기술적 과제는 내부 공극의 최대직경이 1 ㎛ 미만으로 제어된 이차전지용 양극을 제공하는 것을 목적으로 한다.In order to solve the above problems, a first object of the present invention is to provide a positive electrode for secondary batteries, the maximum diameter of the internal void is controlled to less than 1 ㎛.
또한, 본 발명의 제2 기술적 과제는 상기 양극의 제조 방법을 제공하는 것을 목적으로 한다.Another object of the present invention is to provide a method for producing the positive electrode.
또한, 본 발명의 제3 기술적 과제는 상기 양극을 포함함으로써 상온 및 저온출력이 향상된 리튬 이차전지를 제공하는 것을 목적으로 한다.In addition, a third object of the present invention is to provide a lithium secondary battery with improved room temperature and low temperature output by including the positive electrode.
상기의 목적을 달성하기 위한 본 발명의 일실시예에서, In one embodiment of the present invention for achieving the above object,
양극 집전체, 및 A positive electrode current collector, and
상기 양극 집전체의 적어도 일면에 코팅되어 있는 양극 합제층을 구비하고,A positive electrode mixture layer coated on at least one surface of the positive electrode current collector,
상기 양극 합제층은 양극활물질, 도전재, 바인더 및 최대직경이 서로 다른 제1 공극과 제2 공극으로 이루어진 바이모달(bimodal) 형태의 공극을 포함하며,The positive electrode mixture layer includes a positive electrode active material, a conductive material, a binder, and a bimodal type void consisting of first and second voids having different maximum diameters,
상기 도전재 : 양극 활물질은 0.08 내지 0.32 : 1의 부피비(K1)로 포함하되, The conductive material: the positive electrode active material is included in a volume ratio (K 1 ) of 0.08 to 0.32: 1,
상기 도전재 : 전체 공극의 부피비는 0.1 내지 0.33 : 1이고,The conductive material: the volume ratio of the entire void is 0.1 to 0.33: 1,
공극율은 30 부피% 내지 45 부피%이며, Porosity is 30% to 45% by volume,
상기 제1 공극 및 제2 공극의 최대직경은 1 ㎛ 미만이고,The maximum diameter of the first and second pores is less than 1 ㎛,
상기 제1 공극 : 제2 공극의 평균직경 비(k)는 0.13 내지 0.27 : 1인 이차전지용 양극을 제공한다.The average pore ratio k of the first pore: the second pore is 0.13 to 0.27: 1 to provide a positive electrode for a secondary battery.
또한, 본 발명의 일 실시예에서는 In addition, in one embodiment of the present invention
도전재 : 양극 활물질을 0.08 내지 0.32 : 1의 부피비로 혼합하여 고형분 함량이 60 중량% 내지 90 중량%인 양극 활물질 슬러리를 제조하는 단계;Conductive material: mixing the positive electrode active material in a volume ratio of 0.08 to 0.32: 1 to prepare a positive electrode active material slurry having a solid content of 60 wt% to 90 wt%;
상기 양극 활물질 슬러리를 양극 집전체에 코팅한 후, 건조하여 공극율이 55 부피% 내지 65 부피%인 양극 합제층을 포함하는 양극을 제조하는 단계;Coating the cathode active material slurry on a cathode current collector, followed by drying to prepare a cathode including a cathode mixture layer having a porosity of 55% by volume to 65% by volume;
상기 양극을 1차 압연하여 공극율이 53 부피% 내지 57 부피%인 양극 합제층을 포함하는 양극을 제조하는 단계;First rolling the anode to prepare a cathode including a cathode mixture layer having a porosity of 53% by volume to 57% by volume;
상기 1차 압연 후 제조된 양극을 2차 압연하여 공극율이 30 부피% 내지 45 부피%인 양극 합제층을 포함하는 양극을 제조하는 단계; 및Preparing a positive electrode including a positive electrode mixture layer having a porosity of 30% by volume to 45% by volume by rolling the positive electrode prepared after the first rolling; And
상기 2차 압연 후 제조된 양극을 3차 압연하여 공극율이 30 부피% 내지 45 부피%인 양극 합제층을 포함하는 양극을 제조하는 단계;를 포함하는 이차전지용 양극의 제조방법을 제공한다.It provides a method for manufacturing a positive electrode for a secondary battery comprising a; by manufacturing the positive electrode comprising a positive electrode mixture layer having a porosity of 30% by volume to 45% by volume of the positive electrode prepared after the secondary rolling.
이때, 상기 양극 활물질 슬러리는 2 ㎎/㎠ 내지 15 ㎎/㎠ 의 로딩량으로 코팅될 수 있다.At this time, the positive electrode active material slurry may be coated with a loading amount of 2 mg / ㎠ to 15 mg / ㎠.
또한, 상기 양극의 제조 방법은 1차 압연 후 제조된 양극을 2차 압연하기 전에 30 분 내지 2 시간 동안 방치하는 단계를 더 포함할 수 있다. 또한, 상기 방법은 2차 압연 후 제조된 양극을 3차 압연하기 전에 30 분 내지 2시간 동안 방치하는 단계를 더 포함할 수 있다.In addition, the manufacturing method of the positive electrode may further include the step of leaving for 30 minutes to 2 hours before the secondary rolling of the positive electrode prepared after the first rolling. In addition, the method may further include the step of leaving for 30 minutes to 2 hours before the third rolling of the positive electrode prepared after the secondary rolling.
이때, 상기 1차 압연은 상온에서 두 개의 상단 롤과 하단 롤 사이의 간격(gap)이 (1차 압연 전 양극의 전체 두께 + 3차 압연 후 제조된 양극의 전체 두께)/2인 조건하에서 실시할 수 있다.In this case, the first rolling is carried out under the condition that the gap (gap) between the two upper rolls and the lower roll at room temperature is (the total thickness of the anode before the first rolling + the total thickness of the anode manufactured after the third rolling) / 2. can do.
또한, 상기 2차 및 3차 압연 단계는 상온에서 두 개의 상단 롤과 하단 롤 사이의 간격(gap)이 3차 압연 후 목표하는 양극의 전체 두께와 동일한 조건하에서 실시할 수 있다.In addition, the secondary and tertiary rolling step may be carried out under the same conditions in the gap (gap) between the two upper rolls and the lower roll at room temperature equal to the total thickness of the target anode after the third rolling.
또한, 본 발명의 일 실시예에서는 In addition, in one embodiment of the present invention
양극, 음극, 상기 양극 및 음극 사이에 개재된 세퍼레이터, 및A positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and
리튬염을 포함하는 비수계 전해액을 포함하는 이차전지로서,A secondary battery comprising a non-aqueous electrolyte containing a lithium salt,
상기 양극으로 본 발명의 이차전지용 양극을 포함하는 리튬 이차전지를 제공한다.It provides a lithium secondary battery comprising the positive electrode for a secondary battery of the present invention as the positive electrode.
본 발명에 따르면, 내부 공극의 최대직경이 1 ㎛ 미만으로 제어된 리튬 이차전지용 양극을 제공함으로써, 상온/저온 출력 특성이 개선된 향상된 리튬 이차전지를 제조할 수 있다.According to the present invention, by providing a positive electrode for a lithium secondary battery in which the maximum diameter of the internal void is controlled to less than 1 μm, an improved lithium secondary battery having improved room temperature / low temperature output characteristics can be manufactured.
도 1은 본 발명의 실시예 1에 따라 제조된 양극의 단면 구조를 보여주는 주사 전자현미경 사진이다.1 is a scanning electron micrograph showing a cross-sectional structure of the anode prepared according to Example 1 of the present invention.
도 2는 비교예 3에 따라 제조된 양극의 단면 구조를 보여주는 주사 전자현미경 사진이다.2 is a scanning electron micrograph showing a cross-sectional structure of a positive electrode prepared according to Comparative Example 3.
도 3은 비교예 4에 따라 제조된 양극의 단면 구조를 보여주는 주사 전자현미경 사진이다.3 is a scanning electron micrograph showing a cross-sectional structure of a positive electrode prepared according to Comparative Example 4.
도 4는 본 발명의 실험예 1에 따른 리튬 이차전지의 상온 출력 결과를 비교한 그래프이다. 4 is a graph comparing room temperature output results of a lithium secondary battery according to Experimental Example 1 of the present invention.
이하, 본 발명을 더욱 상세하게 설명한다. Hereinafter, the present invention will be described in more detail.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in this specification and claims are not to be construed as limiting in their usual or dictionary meanings, and the inventors may appropriately define the concept of terms in order to best explain their invention in the best way possible. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the present invention.
상기 목적을 달성하기 위하여, 본 발명에서는 내부 공극의 최대직경이 1 ㎛ 미만으로 제어된 이차전지용 양극과 이의 제조 방법을 제공한다.In order to achieve the above object, the present invention provides a secondary battery positive electrode and a manufacturing method thereof in which the maximum diameter of the internal void is controlled to less than 1 ㎛.
또한, 본 발명에서는 상기 양극을 포함함으로써 상온 및 저온에서의 출력이 향상된 리튬 이차전지를 제공한다.In addition, the present invention provides a lithium secondary battery having improved output at room temperature and low temperature by including the positive electrode.
구체적으로, 본 발명의 일 실시예에서는Specifically, in one embodiment of the present invention
양극 집전체, 및 A positive electrode current collector, and
상기 양극 집전체의 적어도 일면에 코팅되어 있는 양극 합제층을 구비하고,A positive electrode mixture layer coated on at least one surface of the positive electrode current collector,
상기 양극 합제층은 양극활물질, 도전재, 바인더 및 최대직경이 서로 다른 제1 공극과 제2 공극으로 이루어진 바이모달(bimodal) 형태의 공극을 포함하며,The positive electrode mixture layer includes a positive electrode active material, a conductive material, a binder, and a bimodal type void consisting of first and second voids having different maximum diameters,
상기 도전재 : 양극 활물질은 0.08 내지 0.32 : 1의 부피비(K1)로 포함하되, The conductive material: the positive electrode active material is included in a volume ratio (K 1 ) of 0.08 to 0.32: 1,
상기 도전재 : 전체 공극의 부피비는 0.1 내지 0.33 : 1이고,The conductive material: the volume ratio of the entire void is 0.1 to 0.33: 1,
공극율은 30 부피% 내지 45 부피%이며, Porosity is 30% to 45% by volume,
상기 제1 공극 및 제2 공극의 최대직경은 1 ㎛ 미만이고,The maximum diameter of the first and second pores is less than 1 ㎛,
상기 제1 공극 : 제2 공극의 평균직경 비(k)는 0.13 내지 0.27 : 1인 이차전지용 양극을 제공한다.The average pore ratio k of the first pore: the second pore is 0.13 to 0.27: 1 to provide a positive electrode for a secondary battery.
우선, 본 발명의 양극에 있어서, 상기 양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. First of all, in the positive electrode of the present invention, the positive electrode current collector is not particularly limited so long as it has conductivity without causing chemical change in the battery. For example, stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum The surface treated with carbon, nickel, titanium, silver, etc. on the stainless steel surface can be used.
상기 집전체는 3 내지 500㎛의 두께, 구체적으로 3 내지 100㎛의 두께를 가지는 것을 사용할 수 있으며, 본 발명에서는 5 내지 20㎛ 두께의 집전체를 이용하는 것이 바람직하다. 상기 집전체 표면 상에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.The current collector may be used having a thickness of 3 to 500㎛, specifically 3 to 100㎛, in the present invention, it is preferable to use a current collector having a thickness of 5 to 20㎛. Fine irregularities may be formed on the surface of the current collector to increase the adhesion of the positive electrode active material. For example, it can be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven body.
본 발명의 양극에 있어서, 상기 양극활물질은 리튬을 인터칼레이션/디인터칼레이션할 수 있는 전이금속 화합물로 이루어진 것이라면 특별히 제한하지 않으며, 그 대표적인 예로 평균 입경(D50)이 3 내지 20㎛인 본 발명의 일 실시예에 따른 상기 양극에 사용되는 양극 활물질로는 통상적으로 리튬 이온이 흡장 및 방출될 수 있는 리튬 전이금속 산화물 입자로서, 리튬 복합금속 산화물은 리튬-망간계 산화물(예를 들면, LiMnO2, LiMn2O 등), 리튬-코발트계 산화물(예를 들면, LiCoO2 등), 리튬-니켈계 산화물(예를 들면, LiNiO2 등), 리튬-니켈-망간계 산화물(예를 들면, LiNi1-xMnx2O2(여기에서, 0<x<1), LiMn2 - yNiyO4(여기에서, 0<y<2) 등), 리튬-니켈-코발트계 산화물(예를 들면, LiNi1 - zCozO2(여기에서, 0<z<1) 등), 리튬-망간-코발트계 산화물(예를 들면, LiCo1 - aMnaO2(여기에서, 0<a<1), LiMn2 - bCobO4(여기에서, 0<b<2) 등), 리튬-니켈-망간-코발트계 산화물(예를 들면, Li(NipCoqMnr)O2(여기에서, 0<p<1, 0<q<1, 0<r<1, p+q+r=1) 또는 Li(NicCodMne)O4(여기에서, 0<c<2, 0<d<2, 0<e<2, c+d+e=2) 등), 또는 리튬-니켈-코발트-전이금속(M) 산화물(예를 들면, Li(NifCogMnhMi)O2(여기에서, M은 Al, Fe, V, Cr, Ti, Ta, Mg 및 Mo로 이루어지는 군으로부터 선택되고, f, g, h 및 i는 각각 독립적인 원소들의 원자분율로서, 0<f<1, 0<g<1, 0<h<1, 0<i<1, f+g+h+i=1이다) 등) 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 화합물이 포함될 수 있다. 이중에서도 전지의 용량 특성 및 안정성을 높일 수 있다는 점에서 상기 리튬 복합금속 산화물은 LiCoO2, LiMnO2, LiNiO2, 리튬 니켈망간코발트 산화물(예를 들면, Li(Ni0.6Mn0.2Co0.2)O2, Li(Ni0.5Mn0.3Co0.2)O2, Li(Ni0.7Mn0.15Co0.15)O2 또는 Li(Ni0.8Mn0.1Co0.1)O2 등), 또는 리튬 니켈코발트알루미늄 산화물(예를 들면, Li(Ni0.8Co0.15Al0.05)O2 등) 등일 수 있으며, 리튬 복합금속 산화물을 형성하는 구성원소의 종류 및 함량비 제어에 따른 개선 효과의 현저함을 고려할 때 상기 리튬 복합금속 산화물은 Li(Ni0.6Mn0.2Co0.2)O2, Li(Ni0.5Mn0.3Co0.2)O2, Li(Ni0 . 7Mn0 . 15Co0 . 15O2 또는 Li(Ni0.8Mn0.1Co0.1)O2 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.In the positive electrode of the present invention, the positive electrode active material is not particularly limited as long as it is made of a transition metal compound capable of intercalating / deintercalating lithium, and a representative particle having an average particle diameter (D50) of 3 to 20 μm is a representative example. A cathode active material used in the cathode according to an embodiment of the present invention is typically lithium transition metal oxide particles in which lithium ions may be occluded and released, and the lithium composite metal oxide is a lithium-manganese oxide (eg, LiMnO 2 , LiMn 2 O Etc.), lithium-cobalt-based oxides (e.g., LiCoO 2, etc.), lithium-nickel-based oxides (e.g., LiNiO 2, etc.), lithium-nickel-manganese-based oxides (e.g., LiNi 1-x Mn x2 O 2 (where, 0 <x <1), LiMn 2-y Ni y O 4 (here, 0 <y <2) and the like), lithium-nickel-cobalt-based oxide (for example, LiNi 1- z Co z O 2 (here, 0 <z <1) and the like, lithium-manganese-cobalt-based oxides (eg, LiCo 1 - a Mn a O 2 (here 0 <a <1), LiMn 2 - b Co b O 4 (where 0 <b <2) and the like, lithium-nickel-manganese-cobalt-based oxides (eg, Li (Ni p Co q Mn r ) O 2 (here, 0 <P <1, 0 <q <1, 0 <r <1, p + q + r = 1) or Li (Ni c Co d Mn e ) O 4 (where 0 <c <2, 0 <d <2, 0 <e <2, c + d + e = 2), or lithium-nickel-cobalt-transition metal (M) oxide (for example, Li (Ni f Co g Mn h M i ) O 2 (wherein M is selected from the group consisting of Al, Fe, V, Cr, Ti, Ta, Mg and Mo, and f, g, h and i are each atoms of independent elements) As a fraction, 0 <f <1, 0 <g <1, 0 <h <1, 0 <i <1, f + g + h + i = 1) etc.) etc. are mentioned, Any one of these is mentioned. Or two or more compounds. Among the lithium composite metal oxides, LiCoO 2 , LiMnO 2 , LiNiO 2 , and lithium nickel manganese cobalt oxides (eg, Li (Ni 0.6 Mn 0.2 Co 0.2 ) O 2 may be improved in capacity and stability of the battery. , Li (Ni 0.5 Mn 0.3 Co 0.2 ) O 2 , Li (Ni 0.7 Mn 0.15 Co 0.15 ) O 2 or Li (Ni 0.8 Mn 0.1 Co 0.1 ) O 2, etc.), or lithium nickel cobalt aluminum oxide (eg, Li (Ni 0.8 Co 0.15 Al 0.05 ) O 2, etc.), and the lithium composite metal oxide may be Li (Ni) in consideration of the remarkable improvement effect by controlling the type and content ratio of the constituent elements forming the lithium composite metal oxide. 0.6 Mn 0.2 Co 0.2 ) O 2 , Li (Ni 0.5 Mn 0.3 Co 0.2 ) O 2, Li (Ni 0. 7 Mn 0. 15 Co 0. 15 O 2 or Li (Ni 0.8 Mn 0.1 Co 0.1 ) O may be made of 2 or the like, either of which Or mixtures of two or more may be used.
상기 양극 활물질은 양극 합제층의 전체 중량을 기준으로 80 중량% 내지 98중량%로 포함될 수 있다.The cathode active material may be included in an amount of 80 wt% to 98 wt% based on the total weight of the cathode mixture layer.
본 발명의 양극에 있어서, 상기 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 그 대표적인 예로서 평균 입경 (D50)이 5 내지 30000nm인 천연 흑연이나 인조 흑연, 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙, 도전성 섬유, 불화 카본, 알루미늄, 니켈 분말, 도전성 위스키, 도전성 금속 산화물 및 폴리페닐렌 유도체로 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 혼합물을 들 수 있다.In the positive electrode of the present invention, the conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and as a representative example, natural graphite or artificial graphite having an average particle diameter (D50) of 5 to 30000 nm, Single material selected from the group consisting of carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, conductive fiber, carbon fluoride, aluminum, nickel powder, conductive whiskey, conductive metal oxide and polyphenylene derivative Or a mixture of two or more thereof.
또한, 상기 도전재 : 양극 활물질은 0.08 내지 0.32 : 1의 부피비(K1)로 포함할 수 있고, 상기 도전재 : 제1 및 제2 공극을 포함하는 전체 공극의 부피비는 0.1 내지 0.33 : 1이며, 이때 공극율은 30 부피% 내지 45 부피%이다. In addition, the conductive material: the positive electrode active material may include a volume ratio (K 1 ) of 0.08 to 0.32: 1, the volume ratio of the total space including the conductive material: the first and second pores is 0.1 to 0.33: 1 In this case, the porosity is 30% by volume to 45% by volume.
이때, 상기 양극 내에서 도전재 : 양극 활물질의 부피비 및 도전재 : 전체 공극의 부피비는 다음과 같이 과정을 통해 산출할 수 있다.At this time, the volume ratio of the conductive material: positive electrode active material and the volume ratio of the conductive material: the entire void in the positive electrode can be calculated through the following process.
먼저, 제조된 양극에서 양극 합제층의 가로 x 세로 (5 x 5 ㎠)의 면적에 양극 합제층의 두께를 곱하여 활물질과 바인더 및 도전재를 포함하는 고형분과 공극부피의 합인 전체부피(Vt)를 구한다. First, the total volume (Vt), which is the sum of the solid content and the pore volume including the active material, the binder, and the conductive material, is multiplied by multiplying the thickness of the positive electrode material mixture layer by the area x length (5 x 5 cm 2) of the positive electrode material mixture layer. Obtain
이어서, 하기 식 1로 전체 공극의 부피(Vp)를 계산할 수 있다.Subsequently, the volume Vp of all the pores can be calculated by the following formula (1).
[식 1][Equation 1]
Vp = Vt x 공극률(%)Vp = Vt x Porosity (%)
또한, 상기 전체 부피에서 전체 공극의 부피(Vp)를 뺀 값이 고형분의 부피가 된다 (Vs = Vt -Vp). In addition, the value obtained by subtracting the volume (Vp) of the entire void from the total volume becomes the volume of the solid content (Vs = Vt -Vp).
또한, 상기 가로 x 세로 (5 x 5 ㎠)의 면적 내에서 사용된 활물질 (Va.m.), 도전재(Vcon), 바인더(Vbin)의 질량을 각각의 진밀도로 나눠서 각 성분의 부피를 구할 수 있다. In addition, the volume of each component is divided by dividing the mass of the active material (Va.m.), the conductive material (Vcon), and the binder (Vbin) used in the area of the width x length (5 x 5 cm 2) by their true density. You can get it.
또한, 상기 양극 내부의 공극률 및 공극 크기 측정법은 특별히 한정되지 않으며, 일반적으로 사용되는 질소 등의 흡착 기체를 이용한 BET(Brunauer-Emmett-Teller) 측정법을 이용하여 크기(micro) 및 메소 세공 부피(meso pore volume) 등을 측정할 수도 있고, 또는 일반적으로 이용되는 수은 침투법 (Hg porosimeter)을 활용하여 측정할 수도 있다.In addition, the method of measuring the porosity and the pore size of the inside of the anode is not particularly limited, and the size (micro) and mesopore volume (meso) are measured using a Brunauer-Emmett-Teller (BET) measurement method using an adsorption gas such as nitrogen, which is generally used. pore volume) or the like, or may be measured using a commonly used mercury permeation method (Hg porosimeter).
만약, 상기 양극활물질에 대한 도전재의 부피비(K1)가 0.08 미만이거나, 전체 공극에 대한 도전재의 부피비가 0.1 미만인 경우, 즉 도전재 함량이 적은 경우 (공극율이 45 부피%를 초과), 활물질 간의 이격 거리를 메울 수 있는 도전재의 양이 부족하여 활물질 주위를 도전재가 충분히 둘러싸지 못하게 된다. 그 결과, 제1 공극과 제2 공극의 크기가 증가하여 활물질 표면에서 반응에 의해 생성된 전자를 전달하기 쉽지 않을 뿐만 아니라, 양극 내에서 도전 네트워크가 원활하게 연결되지 않아 전극 내 전기적 저항이 증가할 수 있다. 반면에, 양극활물질에 대한 도전재의 부피비(K1)가 0.32를 초과하거나, 또는 전체 공극에 대한 도전재의 부피비가 0.33을 초과하는 경우 (공극율 30 부피% 이하), 활물질 표면에 과량의 도전재가 존재하기 때문에, 제1 공극의 크기 감소에 따른 저항이 증가하여, 양극활물질과 전해액의 반응 면적이 감소하여, 전지 출력이 감소할 수 있다.If the volume ratio (K 1 ) of the conductive material to the positive electrode active material is less than 0.08, or if the volume ratio of the conductive material to the total void is less than 0.1, that is, if the content of the conductive material is low (porosity exceeds 45% by volume), between the active material Insufficient amount of the conductive material to fill the separation distance prevents the conductive material from sufficiently surrounding the active material. As a result, the size of the first pore and the second pore increases, which makes it difficult to transfer the electrons generated by the reaction on the surface of the active material, and the electrical resistance in the electrode may increase because the conductive network is not smoothly connected in the anode. Can be. On the other hand, if the volume ratio (K 1 ) of the conductive material to the positive electrode active material exceeds 0.32, or if the volume ratio of the conductive material to the entire void exceeds 0.33 (porosity of 30% by volume or less), an excessive amount of conductive material is present on the surface of the active material. Therefore, the resistance according to the decrease in the size of the first pore increases, the reaction area of the positive electrode active material and the electrolyte decreases, and the battery output can be reduced.
구체적으로, 도 2 에 나타낸 바와 같이, 도전재/양극활물질의 부피비가 0.08 미만이고, 도전재/공극의 부피비가 0.1 미만인 경우, 즉 도전재가 공극에 비하여 소량으로 포함되는 경우 1 ㎛ 이상의 제1 공극 및 제2 공극이 다수 형성된 것을 확인할 수 있다. 또한, 도 3에 나타낸 바와 같이 도전재/양극활물질의 부피비가 0.32를 초과하고, 도전재/전체 공극의 부피비가 0.33을 초과하는 경우에도, 도전재의 과다 사용으로, 도전재끼리 응집하고, 활물질 표면을 충분히 덮지 못하는 현상이 발생하기 때문에 1 ㎛ 이상의 제2 공극이 형성될 수 있다. Specifically, as shown in FIG. 2, when the volume ratio of the conductive material / anode active material is less than 0.08, and the volume ratio of the conductive material / pore is less than 0.1, that is, when the conductive material is contained in a small amount compared to the voids, the first gap of 1 μm or more And it can be confirmed that a plurality of second voids are formed. In addition, as shown in FIG. 3, even when the volume ratio of the conductive material / anode active material exceeds 0.32 and the volume ratio of the conductive material / total voids exceeds 0.33, the conductive materials coagulate due to excessive use of the conductive material, and the surface of the active material. Since a phenomenon that does not sufficiently cover the occurrence of the second voids of 1 μm or more may be formed.
반면에, 도 1에 나타낸 바와 같이, 상기 도전재 : 양극 활물질을 0.08 내지 0.32 : 1의 부피비(K1)로 포함하되, 상기 도전재 : 전체 공극을 0.1 내지 0.33 : 1의 부피비로 포함하는 본 발명의 양극의 경우, 상기 제1 공극(301) 및 제2 공극(302)의 최대직경을 각각 1 ㎛ 미만, 구체적으로 각각 수백 nm의 수준으로 제어할 수 있다.On the other hand, as shown in Figure 1, containing the conductive material: the positive electrode active material in a volume ratio (K 1 ) of 0.08 to 0.32: 1, the conductive material: the present containing the voids in a volume ratio of 0.1 to 0.33: 1 In the case of the anode of the invention, the maximum diameters of the first pore 301 and the second pore 302 may be controlled to a level of less than 1 μm, specifically several hundred nm, respectively.
이와 같이, 본 발명의 양극에서 제1 공극(301)/제2 공극(302)의 최대직경이 1 ㎛ 미만이 되기 위해서는 상기 도전재(200)/양극 활물질(100)의 부피비가 0.08 내지 0.32이고, 상기 도전재/공극 전체의 부피비는 0.1 내지 0.33이며, 공극율은 30 부피% 내지 45 부피%인 것을 모두 만족하는 경우에만 구현 가능하다 (도 1 참조).As such, in order for the maximum diameter of the first pore 301 / the second pore 302 to be less than 1 μm in the positive electrode of the present invention, the volume ratio of the conductive material 200 / the positive electrode active material 100 is 0.08 to 0.32. The volume ratio of the entire conductive material / pore may be 0.1 to 0.33, and the porosity may be implemented only when all of them satisfy 30 vol% to 45 vol% (see FIG. 1).
이때, 상기 제1 공극은 인접한 도전재 입자들에 의하여 둘러싸여 형성된 도전재-도전재 사이의 공극을 포함하고, 상기 제2 공극은 인접한 도전재와 양극 활물질들에 의하여 둘러싸여 형성된 도전재-활물질 사이의 공극을 포함한다.In this case, the first gap includes a gap between the conductive material and the conductive material formed by the adjacent conductive material particles, and the second gap is formed between the conductive material and the active material surrounded by the adjacent conductive material and the cathode active materials. Contains voids.
상기 제1 및 제2 공극의 외주면은 각각 인접한 다수의 도전재 및 양극 활물질 입자들의 표면을 따라 비선형으로 형성된 것일 수 있다.The outer circumferential surfaces of the first and second voids may be nonlinearly formed along surfaces of the plurality of adjacent conductive material and cathode active material particles, respectively.
전술한 바와 같이, 상기 제1 공극 및 제2 공극의 최대직경은 1㎛ 미만이며, 구체적으로, 상기 제1 공극의 평균직경은 1nm 내지 100nm이고, 상기 제2 공극의 평균직경은 100nm 내지 500nm, 구체적으로 200nm 내지 400nm이다. 이때, 상기 제1 공극 : 제2 공극의 평균직경 비(k)는 0.13 내지 0.27 : 1인 것이 바람직하다. As described above, the maximum diameter of the first pore and the second pore is less than 1㎛, specifically, the average diameter of the first pore is 1nm to 100nm, the average diameter of the second pore is 100nm to 500nm, Specifically, it is 200 nm to 400 nm. At this time, it is preferable that the average diameter ratio k of the said 1st voids: 2nd voids is 0.13-0.27: 1.
만약, 상기 제2 공극에 대한 제1 공극의 평균직경 비(k)가 0.13 미만이면, 도전재 입자간 응집에 의해 제1 공극 크기가 매우 작거나, 도전재 입자와 활물질 입자 사이의 제2 공극 크기가 상대적으로 매우 크다는 것을 의미한다. 제1 공극이 작은 경우, 도전재-도전재 클러스터들에 의해 전해액 내 Li 이온이 활물질 표면으로 원활하게 이동하기 어렵고, 제2 공극이 큰 경우 활물질과 도전재 간에 접촉이 어려워, 활물질 표면에서 일어나는 반응에 의해 생성되는 전자를 전달하기 어려워질 수 있다. If the average diameter ratio (k) of the first pore to the second pore is less than 0.13, the first pore size is very small due to the aggregation of the conductive material particles, or the second pore between the conductive material particles and the active material particles. It means that the size is relatively large. When the first pore is small, it is difficult for Li ions in the electrolyte to smoothly move to the surface of the active material by the conductive material-conductor clusters, and when the second pore is large, the contact between the active material and the conductive material is difficult and thus occurs on the surface of the active material. It can be difficult to transfer the electrons generated by it.
반면에, 상기 제2 공극에 대한 제1 공극의 평균직경 비(k)가 0.27을 초과하면, 제1 공극 크기가 커서 도전재-도전재 접촉이 원활하지 않아, 전극 내 전기적 저항이 증가되거나, 또는 제2 공극 크기가 상대적으로 작아 활물질 표면과 전해액과의 반응 면적이 감소하기 때문에, 출력이 감소할 수 있다.On the other hand, when the average diameter ratio (k) of the first pore to the second pore exceeds 0.27, the first pore size is large, so that the conductive material-conductive material contact is not smooth, thereby increasing the electrical resistance in the electrode, Alternatively, since the second pore size is relatively small, the reaction area between the surface of the active material and the electrolyte is reduced, so that the output may be reduced.
상기 제1 공극 및 제2 공극의 직경 측정 방법은 특별히 제한하지 않으나, 당해 분야에서 일반적으로 이용되는 Hg porosimeter를 활용하여 나타나는 두 개의 주 피크(main peak)의 크기로 나타내었으며, 전자현미경(SEM) 이미지를 통해 각각의 피크가 나타내는 크기에 대한 위치를 확인하였다.Method for measuring the diameter of the first pore and the second pore is not particularly limited, but is represented by the size of the two main peaks appearing by using the Hg porosimeter generally used in the art, electron microscopy (SEM) The image confirmed the position for the size represented by each peak.
본 발명의 양극에 있어서, 상기 바인더는 활물질과 도전재 등의 결합과 활물질과 집전체의 결합에 조력하는 성분으로서, 그 대표적인 예로는 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌-부타디엔 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.In the positive electrode of the present invention, the binder is a component that assists the bonding of the active material and the conductive material and the bonding of the active material and the current collector, and representative examples thereof include polyvinylidene fluoride, polyvinyl alcohol, and carboxymethyl cellulose (CMC). ), Starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene-butadiene Rubber, fluororubber, various copolymers, and the like.
상기 바인더는 양극 합제 전체 중량을 기준으로 약 1 내지 10 중량%, 구체적으로 2 중량% 내지 9 중량%로 포함될 수 있는데, 만약 상기 바인더가 1 중량%를 초과하여 포함되는 경우에는 상대적으로 양극 활물질의 양이 줄어들게 되어 용량이 감소할 수 있고, 상기 바인더가 10 중량% 미만인 경우에는 전극이 박리하는 등이 야기되어 전지의 수명 성능이 저하될 수 있다.The binder may be included in an amount of about 1 to 10% by weight, specifically, 2 to 9% by weight, based on the total weight of the positive electrode mixture. The amount may be reduced to decrease the capacity, and when the binder is less than 10% by weight, the electrode may be peeled off, thereby degrading the lifespan performance of the battery.
상기 본 발명의 양극은 단위면적 당 0.8 mAh/㎠ 내지 1.8 mAh/㎠의 에너지를 가질 수 있다.The positive electrode of the present invention may have an energy of 0.8 mAh / cm 2 to 1.8 mAh / cm 2 per unit area.
또한, 본 발명의 일 실시예에서는In addition, in one embodiment of the present invention
도전재 : 양극 활물질을 0.08 내지 0.32 : 1의 부피비로 혼합하여 고형분 함량이 60 중량% 내지 90 중량%인 양극 활물질 슬러리를 제조하는 단계;Conductive material: mixing the positive electrode active material in a volume ratio of 0.08 to 0.32: 1 to prepare a positive electrode active material slurry having a solid content of 60 wt% to 90 wt%;
상기 양극 활물질 슬러리를 양극 집전체에 코팅한 후, 건조하여 공극율이 50 부피% 내지 60 부피%인 양극 합제층을 포함하는 양극을 제조하는 단계;Coating the cathode active material slurry on a cathode current collector and then drying to prepare a cathode including a cathode mixture layer having a porosity of 50% by volume to 60% by volume;
상기 양극을 1차 압연하여 공극율이 53 부피% 내지 57 부피%인 양극 합제층을 포함하는 양극을 제조하는 단계;First rolling the anode to prepare a cathode including a cathode mixture layer having a porosity of 53% by volume to 57% by volume;
상기 1차 압연 후 제조된 양극을 2차 압연하여 공극율이 30 부피% 내지 45 부피%인 양극 합제층을 포함하는 양극을 제조하는 단계; 및Preparing a positive electrode including a positive electrode mixture layer having a porosity of 30% by volume to 45% by volume by rolling the positive electrode prepared after the first rolling; And
상기 2차 압연 후 제조된 양극을 3차 압연하여 공극율이 30 부피% 내지 45 부피%인 양극 합제층을 포함하는 양극을 제조하는 단계;를 포함하는 이차전지용 양극의 제조방법을 제공한다. It provides a method for manufacturing a positive electrode for a secondary battery comprising a; by manufacturing the positive electrode comprising a positive electrode mixture layer having a porosity of 30% by volume to 45% by volume of the positive electrode prepared after the secondary rolling.
상기 본 발명의 방법에 있어서, 상기 양극 활물질 슬러리를 제조하는 단계는 유기 용매에 바인더를 용해시켜 바인더 용액을 제조하고, 이어서 도전재를 첨가하여 도전재-바인더 혼합 용액을 제조한 다음, 상기 혼합 용액을 교반하면서 양극활물질을 첨가하여 제조할 수 있다.In the method of the present invention, the preparing of the positive electrode active material slurry may be performed by dissolving a binder in an organic solvent to prepare a binder solution, and then adding a conductive material to prepare a conductive material-binder mixed solution. It can be prepared by adding a positive electrode active material while stirring.
이때, 상기 도전재-바인더 혼합 용액은 상온에서 약 1000rpm 내지 2000rpm, 구체적으로 1500rpm의 속도로 약 1 분 내지 10분 동안 교반하여 제조할 수 있다.In this case, the conductive material-binder mixed solution may be prepared by stirring for about 1 minute to 10 minutes at a speed of about 1000rpm to 2000rpm, specifically 1500rpm at room temperature.
또한, 상기 혼합 용액에 활물질 및 필요에 따라 유기 용매를 더 첨가한 후, 상온에서 약 1000rpm 내지 2000rpm, 구체적으로 1500rpm 속도로 5 분 내지 30분 동안 교반하면서 양극 활물질 슬러리를 제조할 수 있다.In addition, after the active material and an organic solvent is further added to the mixed solution, if necessary, a positive electrode active material slurry may be prepared while stirring for about 5 minutes to 30 minutes at a speed of about 1000rpm to 2000rpm, specifically 1500rpm at room temperature.
상기 본 발명의 방법에 있어서, 상기 도전재/양극 활물질의 부피비(K1)가 0.08 미만인 경우, 즉 도전재 함량이 적은 경우, 활물질 간의 이격 거리를 메울 수 있는 도전재의 양이 부족하여 도전재가 활물질을 충분히 둘러싸지 못하기 때문에, 제1 공극과 제2 공극의 크기가 증가하여 반응에 의해 생성된 전자를 전달하기가 쉽지 않을 뿐만 아니라, 전극 내 도전재 부족으로 도전 네트워크가 원활히 연결되지 않아 전기적 저항이 증가할 수 있다. In the method of the present invention, when the volume ratio (K 1 ) of the conductive material / the positive electrode active material is less than 0.08, that is, the content of the conductive material is small, the amount of the conductive material to fill the separation distance between the active material is insufficient, the conductive material is Since the size of the first pore and the second pore increases, it is not easy to transfer the electrons generated by the reaction, and the conductive network is not connected smoothly due to the lack of the conductive material in the electrode. This can increase.
반면에, 도전재/양극 활물질의 부피비가 0.32를 초과하는 경우, 활물질 표면에 과량의 도전재가 존재하게 되면서 제1 공극과 제2 공극 크기가 상대적으로 감소하여 활물질 표면과 전해액과의 반응 면적이 감소되기 때문에, 전지 출력이 감소할 수 있다.On the other hand, if the volume ratio of the conductive material / anode active material exceeds 0.32, the excess conductive material is present on the surface of the active material, and the size of the first and second pores is relatively reduced, thereby reducing the reaction area between the surface of the active material and the electrolyte. As a result, battery output can be reduced.
또한, 상기 양극활물질 슬러리 중 고형분 함량은 60 중량% 내지 90 중량%일 수 있으며, 이 범위로 포함되는 경우에 원하는 공극율을 구현할 수 있다. 이때, 상기 고형분은 도전재 및 양극활물질 등의 의미하는 것이다. In addition, the solid content of the positive electrode active material slurry may be from 60% by weight to 90% by weight, when included in this range can implement the desired porosity. In this case, the solid content means a conductive material and a positive electrode active material.
상기 본 발명의 방법에 있어서, 상기 양극 활물질 슬러리는 2 ㎎/㎠ 내지 15 ㎎/㎠ 의 로딩량으로 코팅될 수 있다. 이때, 상기 활물질 슬러리를 코팅하는 방법은 당해 기술분야에서 통상적으로 사용되는 코팅방법이 제한 없이 사용될 수 있으며, 그 비제한적인 예로는 딥(Dip) 코팅, 다이(Die) 코팅, 롤(roll) 코팅, 콤마(comma) 코팅 또는 이들의 혼합 방법 등 다양한 방법을 포함할 수 있다.In the method of the present invention, the positive electrode active material slurry may be coated with a loading amount of 2 mg / cm 2 to 15 mg / cm 2. At this time, the coating method of the active material slurry may be used without limitation the coating method commonly used in the art, non-limiting examples of dip (Dip) coating, die coating, roll coating It may include a variety of methods, such as comma coating or a mixture thereof.
상기 양극 활물질 슬러리 코팅 후, 건조 건조 단계는 상온 내지 300℃의 온도에서 1 내지 24 시간 실시하는 것이 바람직하다. 건조온도가 상온보다 낮으면 용매의 건조가 이루어지지 않는 문제점이 있으며 300℃를 초과하는 경우에는 열처리 공정에 해당되므로 건조공정으로서의 의미가 없다. 건조시간이 1시간 미만인 경우에는 용매의 건조가 이루어지지 않는 문제점이 있으며, 24시간을 초과하는 경우에는 공정시간이 지나치게 많아져 바람직하지 않다. After coating the cathode active material slurry, the drying drying step is preferably performed at a temperature of room temperature to 300 ° C. for 1 to 24 hours. If the drying temperature is lower than room temperature, there is a problem in that the drying of the solvent is not made, and if the drying temperature is higher than 300 ° C., it is not a meaning as a drying step because it corresponds to a heat treatment step. If the drying time is less than 1 hour, there is a problem in that the drying of the solvent is not performed. If the drying time is more than 24 hours, the process time is too large, which is not preferable.
또한, 본 발명의 방법에 있어서, 상기 1차 압연은 상온에서 두 개의 상단 롤과 하단 롤 사이의 간격(gap)이 (1차 압연 전 양극의 전체 두께 + 3차 압연 후 목표하는 양극의 전체 두께)/2인 조건하에서 실시할 수 있다.In addition, in the method of the present invention, the primary rolling is a gap (gap) between the two upper rolls and the lower rolls at room temperature (the total thickness of the anode before the first rolling + the total thickness of the target anode after the third rolling) Can be carried out under the condition of) / 2.
상기 1차 압연에 의하여 제2 공극 크기를 좀더 균일하게 형성하는 효과를 얻을 수 있다.By the primary rolling it is possible to obtain the effect of forming the second pore size more uniformly.
또한, 상기 2차 및 3차 압연 단계는 상온에서 두 개의 상단 롤과 하단 롤 사이의 간격(gap)이 3차 압연 후 목표하는 양극의 전체 두께와 동일한 조건하에서 실시할 수 있다.In addition, the secondary and tertiary rolling step may be carried out under the same conditions in the gap (gap) between the two upper rolls and the lower roll at room temperature equal to the total thickness of the target anode after the third rolling.
이때, 상기 2차 압연 후 양극 합제층은 탄성에 의하여 일정 시간이 지나면 두께가 일부 회복되어 목표하는 두께보다 높게 형성될 수 있다. 따라서, 본 발명에서는 한번 더 압연(3차 압연)함으로써, 목표하는 두께를 유지할 수 있는 양극 합제층을 구비한 양극을 제조할 수 있다. 뿐만 아니라, 양극 내에서 공극율은 30 부피% 내지 45 부피%이고, 도전재 : 제1 및 제2 공극을 포함하는 전체 공극의 부피비가 0.1 내지 0.33 : 1이며, 제1 공극 및 제2 공극의 최대직경이 1 ㎛ 미만이 되도록 제어할 수 있다.At this time, after the secondary rolling, the positive electrode mixture layer may be formed to be higher than the target thickness by partially recovering the thickness after a predetermined time due to elasticity. Therefore, in the present invention, by further rolling (third rolling), it is possible to manufacture a positive electrode having a positive electrode mixture layer capable of maintaining a target thickness. In addition, the porosity in the positive electrode is 30% by volume to 45% by volume, the volume ratio of the conductive material: the total pore including the first and second pores is 0.1 to 0.33: 1, and the maximum of the first and second pores The diameter can be controlled to be less than 1 μm.
결론적으로, 본 발명에서는 바이모달(bimodal) 형태의 제1 및 제2 공극의 최대직경이 1 ㎛ 미만으로 제어된 양극을 제공함으로써, 전극 내부에 전해액이 충분히 함유되어 양극 활물질과 전해액을 접촉 효과를 최대한 향상시킬 수 있으므로 (capillary force), 극판 내부 저항을 감소시키면서 전극의 충진 밀도를 향상시킬 수 있다. 따라서, 기존 공극의 크기를 고려하지 않고 제조된 종래 양극에 비하여 전기전도도 및 결착력 증가에 따른 우수한 고율 충방전 특성과 수명 특성을 확보하여, 짧은 시간 내에 상온 및 저온에서의 출력이 향상된 이차전지를 구현할 수 있다. In conclusion, the present invention provides a positive electrode in which the maximum diameters of the first and second voids of the bimodal form are controlled to be less than 1 μm, so that the electrolyte is sufficiently contained in the electrode to contact the positive electrode active material and the electrolyte. As the capillary force can be improved as much as possible, the packing density of the electrode can be improved while reducing the internal plate resistance. Therefore, as compared with the conventional anode manufactured without considering the size of the existing pores, it is possible to realize a secondary battery having improved output at room temperature and low temperature in a short time by securing excellent high-rate charge and discharge characteristics and life characteristics according to an increase in electrical conductivity and binding force. Can be.
또한, 상기 상기 방법은 1차 압연 후 제조된 양극을 2차 압연하기 전 30 분 내지 2시간 동안 방치하는 단계를 더 포함할 수 있다.In addition, the method may further include the step of leaving for 30 minutes to 2 hours before the secondary rolling of the positive electrode prepared after the primary rolling.
또한, 상기 방법은 2차 압연 후 제조된 양극을 3차 압연하기 전 30 분 내지 2시간 동안 방치하는 단계를 더 포함할 수 있다.In addition, the method may further include the step of leaving for 30 minutes to 2 hours before the secondary rolling of the positive electrode prepared after secondary rolling.
또한, 본 발명의 일 실시예에서는 In addition, in one embodiment of the present invention
양극, 음극, 상기 양극 및 음극 사이에 개재된 세퍼레이터, 및A positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and
비수계 전해액을 포함하는 이차전지로서,As a secondary battery containing a non-aqueous electrolyte,
상기 양극은 본 발명의 양극을 포함하는 이차전지를 제공한다. The positive electrode provides a secondary battery including the positive electrode of the present invention.
이때, 상기 양극과 관련해서는 상술하였으므로, 구체적인 설명은 생략한다.In this case, since it has been described above with respect to the anode, a detailed description thereof will be omitted.
상기 음극은 음극 집전체의 적어도 일 표면 상에 음극 활물질 슬러리 조성물을 도포한 후, 건조 및 압연하여 제조할 수 있다.The negative electrode may be prepared by applying a negative electrode active material slurry composition on at least one surface of the negative electrode current collector, followed by drying and rolling.
이때, 상기 음극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되지 않으며, 예를 들면 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 상기 음극 집전체는 양극 집전체와 마찬가지로, 표면에 미세한 요철이 형성된 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 사용될 수 있다.In this case, the negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery. For example, the negative electrode current collector may be formed on a surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper, or stainless steel. Surface-treated with carbon, nickel, titanium, silver and the like, aluminum-cadmium alloy and the like can be used. In addition, the negative electrode current collector, like the positive electrode current collector, may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven fabric having fine irregularities formed on its surface.
상기 음극 활물질 슬러리 조성물은 음극 활물질, 용매, 및 선택적으로 바인더 및 도전재 중 적어도 하나 이상을 포함할 수 있다.The negative electrode active material slurry composition may include at least one or more of a negative electrode active material, a solvent, and optionally a binder and a conductive material.
이때, 상기 음극 활물질은 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물로서, 그 구체적인 예로 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 또는 준금속질 화합물; SiOx1(0<x1<2), SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도프 및 탈도프할 수 있는 금속산화물 또는 준금속 산화물; 또는 Si-C 복합체 또는 Sn-C 복합체와 같이 상기 무기질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또한, 상기 음극활물질로서 금속 리튬 박막이 사용될 수도 있다. 또, 탄소재료는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 무정형, 판상, 인편상, 구형 또는 섬유형의 천연 흑연 또는 인조 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.In this case, the negative electrode active material is a compound capable of reversible intercalation and deintercalation of lithium, and specific examples thereof include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber, and amorphous carbon; Metallic or semimetallic compounds capable of alloying with lithium such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloys, Sn alloys or Al alloys; Metal oxides or metalloids which can dope and undo lithium such as SiO x1 (0 <x1 <2), SnO 2 , vanadium oxide, lithium vanadium oxide; Or a composite including the inorganic compound and a carbonaceous material, such as a Si-C composite or a Sn-C composite, and any one or a mixture of two or more thereof may be used. In addition, a metal lithium thin film may be used as the anode active material. As the carbon material, both low crystalline carbon and high crystalline carbon can be used. Soft crystalline carbon and hard carbon are typical low crystalline carbon, and high crystalline carbon is amorphous, plate, scaly, spherical or fibrous natural graphite or artificial graphite, Kish graphite (Kish) graphite, pyrolytic carbon, mesophase pitch based carbon fiber, meso-carbon microbeads, mesophase pitches and petroleum or coal tar pitch High-temperature calcined carbon such as derived cokes is typical.
상기 음극 활물질은 음극 활물질 슬러리 조성물의 전체 중량을 기준으로 80 중량% 내지 99중량%로 포함될 수 있다.The negative electrode active material may be included in an amount of 80 wt% to 99 wt% based on the total weight of the negative electrode active material slurry composition.
상기 바인더는 도전재, 활물질 및 집전체 간의 결합에 조력하는 성분으로서, 통상적으로 음극 활물질 슬러리의 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리비닐리덴플로라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무, 불소 고무, 이들의 다양한 공중합체 등을 들 수 있다.The binder is a component that assists the bonding between the conductive material, the active material and the current collector, and is typically added in an amount of 1 to 30 wt% based on the total weight of the negative electrode active material slurry. Examples of such binders include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoro Low ethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber, fluorine rubber, various copolymers thereof, and the like.
상기 도전재는 음극 활물질의 도전성을 더욱 향상시키기 위한 성분으로서, 음극 활물질 슬러리의 전체 중량을 기준으로 1 내지 20 중량%로 첨가될 수 있다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.The conductive material is a component for further improving the conductivity of the negative electrode active material, and may be added in an amount of 1 to 20 wt% based on the total weight of the negative electrode active material slurry. Such a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon blacks such as acetylene black, Ketjen black, channel black, furnace black, lamp black and thermal black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
상기 용매는 물 또는 NMP(N-methyl-2-pyrrolidone) 등의 유기용매를 포함할 수 있으며, 상기 음극 활물질, 및 선택적으로 바인더 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다. 예를 들면, 양극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 고형분의 농도가 50 중량% 내지 95 중량%, 바람직하게 70 중량% 내지 90 중량%가 되도록 포함될 수 있다.The solvent may include an organic solvent such as water or NMP (N-methyl-2-pyrrolidone), and may be used in an amount that becomes a desirable viscosity when including the negative electrode active material, and optionally a binder and a conductive material. . For example, the concentration of the positive electrode active material and, optionally, the solid content including the binder and the conductive material may be included in an amount of 50 wt% to 95 wt%, preferably 70 wt% to 90 wt%.
상기 세퍼레이터는 종래에 세퍼레이터으로 사용된 통상적인 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.The separator is a conventional porous polymer film conventionally used as a separator, for example, a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer The porous polymer film prepared by using a single or a lamination thereof may be used, or a conventional porous nonwoven fabric, for example, a non-woven fabric made of glass fibers, polyethylene terephthalate fibers of high melting point, etc. may be used, but is not limited thereto. .
또한, 상기 비수계 전해액은 전해액과 리튬염으로 이루어져 있으며, 상기 전해액으로는 비수계 유기용매 또는 유기 고체 전해질 등이 사용된다.In addition, the non-aqueous electrolyte solution consists of an electrolyte solution and a lithium salt, and a non-aqueous organic solvent or an organic solid electrolyte is used as the electrolyte solution.
상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리돈, 프로필렌 카보네이트, 에틸렌 카보네이트, 부틸렌 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 감마-부티로락톤, 1,2-디메톡시에탄, 테트라히드록시푸란, 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 프로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.As the non-aqueous organic solvent, for example, N-methyl-2-pyrrolidone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma-butyrolactone, 1,2-dime Methoxyethane, tetrahydroxyfuran, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolon, formamide, dimethylformamide, dioxolon, acetonitrile, nitromethane, methyl formate, methyl acetate, Phosphate triester, trimethoxy methane, dioxoron derivative, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, ether, methyl propionate, ethyl propionate An aprotic organic solvent such as may be used.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합제 등이 사용될 수 있다.Examples of the organic solid electrolytes include polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphate ester polymers, polyedgetion lysine, polyester sulfides, polyvinyl alcohols, polyvinylidene fluorides, Polymerizers containing ionic dissociating groups and the like can be used.
상기 리튬염은 리튬 이차전지용 전해질에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있으며, 예를 들어 Li+ 양이온과, F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, N(CF3SO2)2 -, N(SO2F)2 -, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 N(CF3CF2SO2)2 -로 이루어진 군에서 선택된 어느 하나의 음이온을 포함한다. The lithium salt may be used, without limitation, those which are commonly used in a lithium secondary battery electrolyte, such as Li + cations, F -, Cl -, Br -, I -, NO 3 -, N (CN) 2 - , BF 4 -, ClO 4 - , PF 6 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF -, (CF 3) 6 P -, CF 3 SO 3 -, CF 3 CF 2 SO 3 -, N (CF 3 SO 2) 2 -, N (SO 2 F) 2 -, CF 3 CF 2 (CF 3) 2 CO - , (CF 3 SO 2) 2 CH -, (SF 5) 3 C -, (CF 3 SO 2) 3 C -, CF 3 (CF 2) 7 SO 3 -, CF 3 CO 2 -, CH 3 CO 2 - , SCN - and N (CF 3 CF 2 SO 2 ) 2 - One of the anions selected from the group consisting of.
또한, 전해액에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있다.In addition, in the electrolyte solution, for the purpose of improving the charge and discharge characteristics, flame retardancy, etc., for example, pyridine, triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitro Benzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N, N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyrroles, 2-methoxy ethanol, aluminum trichloride and the like may be added. . In some cases, in order to impart nonflammability, halogen-containing solvents such as carbon tetrachloride and ethylene trifluoride may be further included, and carbon dioxide gas may be further included to improve high temperature storage characteristics.
실시예 2Example 2
상기 실시예 1에서 양극 제조 시에 도전재 : 양극 활물질을 0.28 : 1의 부피비로 포함하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 양극과 이를 포함하는 이차전지를 제조하였다.A positive electrode and a secondary battery including the same were prepared in the same manner as in Example 1 except that the conductive material: positive electrode active material was included in a volume ratio of 0.28: 1 in the preparation of the positive electrode in Example 1.
이때, 상기 양극의 공극율은 40 부피%이고, 양극 내의 도전재/공극 전체의 부피비는 0.31 이고, 제1 공극의 직경은 45nm이고, 제2 공극의 직경은 320nm 이며, 상기 제1 공극/제2 공극의 평균직경 비(k)는 0.14이다. 상기 양극의 단위 면적당 에너지 밀도는 1.5 mAh/㎠ 이었다.In this case, the porosity of the positive electrode is 40% by volume, the volume ratio of the entire conductive material / voids in the positive electrode is 0.31, the diameter of the first pore is 45nm, the diameter of the second pore is 320nm, the first pore / second The average diameter ratio k of the voids is 0.14. The energy density per unit area of the positive electrode was 1.5 mAh / cm 2.
실시예 3Example 3
상기 실시예 1에서 양극 제조 시에 도전재 : 양극 활물질을 0.08 : 1의 부피비로 포함하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 양극과 이를 포함하는 이차전지를 제조하였다.A positive electrode and a secondary battery including the same were prepared in the same manner as in Example 1 except that the conductive material: the positive electrode active material was included in a volume ratio of 0.08: 1 in the preparation of the positive electrode in Example 1.
이때, 상기 양극의 공극율은 40 부피%이고, 양극 내의 도전재/공극 전체의 부피비는 0.1 이고, 제1 공극의 직경은 80nm이고, 제2 공극의 직경은 300nm 이며, 상기 제1 공극/제2 공극의 평균직경 비(k)는 0.27이다. 상기 양극의 단위 면적당 에너지 밀도는 1.5 mAh/㎠ 이었다.In this case, the porosity of the positive electrode is 40% by volume, the volume ratio of the entire conductive material / voids in the positive electrode is 0.1, the diameter of the first pore is 80nm, the diameter of the second pore is 300nm, the first pore / second The average diameter ratio k of the voids is 0.27. The energy density per unit area of the positive electrode was 1.5 mAh / cm 2.
실시예 4Example 4
상기 실시예 1에서 양극 제조 시에 도전재 : 양극 활물질을 0.32 : 1의 부피비로 포함하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 양극과 이를 포함하는 이차전지를 제조하였다.A positive electrode and a secondary battery including the same were manufactured in the same manner as in Example 1 except that the conductive material: positive electrode active material was included in a volume ratio of 0.32: 1 in the preparation of the positive electrode in Example 1.
이때, 상기 양극의 공극율은 40부피%이고, 양극 내의 도전재/공극 전체의 부피비는 0.33 이고, 제1 공극의 직경은 45nm이고, 제2 공극의 직경은 335nm 이며, 상기 제1 공극/제2 공극의 평균직경 비(k)는 0.13이다. 상기 양극의 단위 면적당 에너지 밀도는 1.5 mAh/㎠ 이었다.In this case, the porosity of the positive electrode is 40% by volume, the volume ratio of the entire conductive material / voids in the positive electrode is 0.33, the diameter of the first pore is 45nm, the diameter of the second pore is 335nm, the first pore / second The average diameter ratio k of voids is 0.13. The energy density per unit area of the positive electrode was 1.5 mAh / cm 2.
비교예 1Comparative Example 1
상기 실시예 1에서 양극 제조 시에 도전재 : 양극 활물질을 0.051 : 1의 부피비로 포함하고, 1회 압연하여 양극 합제층을 포함하는 양극 (전체 두께 두께 60 ㎛)을 제조하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 양극과 이를 포함하는 이차전지를 제조하였다.Except for preparing a positive electrode (total thickness of 60 μm) including the positive electrode mixture layer by rolling once, including the conductive material: positive electrode active material in a volume ratio of 0.051: 1 in the preparation of the positive electrode in Example 1, In the same manner as in Example 1, a cathode and a secondary battery including the same were prepared.
이때, 상기 양극 내에서 도전재/전체 공극의 부피비는 0.07 이고, 제1 공극의 직경은 150 nm 이며, 제2 공극의 직경은 500 nm 이며, 상기 제1 공극/제2 공극의 평균직경 비(k)는 0.3 이다. 상기 양극의 단위 면적당 에너지 밀도는 1.5 mAh/㎠ 이었다.At this time, the volume ratio of the conductive material / total voids in the anode is 0.07, the diameter of the first pore is 150 nm, the diameter of the second pore is 500 nm, the average diameter ratio of the first pore / second pore ( k) is 0.3. The energy density per unit area of the positive electrode was 1.5 mAh / cm 2.
비교예 2Comparative Example 2
상기 실시예 1에서 양극 제조 시에 도전재 : 양극 활물질을 0.45 : 1의 부피비로 포함하고, 2회 압연하여 양극 합제층을 포함하는 양극 (전체 두께 89 ㎛)을 제조하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 양극과 이를 포함하는 이차전지를 제조하였다.Except for preparing a positive electrode (total thickness 89 μm) including the positive electrode mixture layer by rolling twice, including the conductive material: positive electrode active material in a volume ratio of 0.45: 1 in the preparation of the positive electrode in Example 1, A positive electrode and a secondary battery including the same were manufactured in the same manner as in Example 1.
이때, 상기 양극 내에서 도전재/공극 전체의 부피비는 0.37이고, 제1 공극의 직경은 30 nm 이며, 제2 공극의 직경은 1000 nm 이며, 상기 제1 공극/제2 공극의 평균직경 비(k)는 0.03 이다. At this time, the volume ratio of the entire conductive material / pore in the anode is 0.37, the diameter of the first pore is 30 nm, the diameter of the second pore is 1000 nm, the average diameter ratio of the first pore / second pore ( k) is 0.03.
비교예 3Comparative Example 3
상기 실시예 1에서 양극 제조 시에 도전재 : 양극 활물질을 0.07 : 1의 부피비로 포함하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 양극과 이를 포함하는 이차전지를 제조하였다.A positive electrode and a secondary battery including the same were prepared in the same manner as in Example 1, except that the conductive material: the positive electrode active material was included in a volume ratio of 0.07: 1 in the preparation of the positive electrode in Example 1.
상기 제조된 양극의 단면을 전자현미경으로 관찰하고, 그 결과를 도 2에 나타내었다. 도 2에 도시한 바와 같이, 도전재가 활물질을 충분히 감싸지 못해 수 ㎛의 제 2공극이 형성되는 것을 확인할 수 있다.The cross section of the prepared anode was observed with an electron microscope, and the results are shown in FIG. 2. As shown in FIG. 2, it can be seen that the conductive material does not sufficiently wrap the active material, so that a second gap of several μm is formed.
이때, 상기 양극 내에서 도전재/공극 전체의 부피비는 0.09 이고, 공극율은 40 부피%이며, 제1 공극의 직경은 110nm이고, 제2 공극의 직경은 400nm 이며, 상기 제1 공극/제2 공극의 평균직경 비(k)는 0.28 이었다. In this case, the volume ratio of the entire conductive material / pore in the anode is 0.09, the porosity is 40% by volume, the diameter of the first pore is 110nm, the diameter of the second pore is 400nm, the first pore / second pore The average diameter ratio (k) of was 0.28.
비교예 4Comparative Example 4
상기 실시예 1에서 양극 제조 시에 도전재 : 양극 활물질을 0.34 : 1의 부피비로 포함하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 양극과 이를 포함하는 이차전지를 제조하였다.A positive electrode and a secondary battery including the same were prepared in the same manner as in Example 1 except that the conductive material: positive electrode active material was included in a volume ratio of 0.34: 1 in the preparation of the positive electrode in Example 1.
상기 제조된 양극의 단면을 전자현미경으로 관찰하고, 그 결과를 도 3에 나타내었다. 도 3에 도시한 바와 같이, 제1 공극 크기는 감소하는 반면, 1 ㎛ 이상의 제2 공극이 다수 형성되는 것을 확인할 수 있다. The cross section of the prepared anode was observed with an electron microscope, and the results are shown in FIG. 3. As shown in FIG. 3, while the first pore size is reduced, it can be seen that a plurality of second pores of 1 μm or more are formed.
이때, 상기 양극 내의 도전재/공극 전체의 부피비는 0.34이고, 공극율은 40 부피%이며, 제1 공극의 직경은 40nm이고, 제2 공극의 직경은 400nm 이며, 상기 제1 공극/제2 공극의 평균직경 비(k)는 0.1 이다. 상기 양극의 단위 면적당 에너지 밀도는 1.5 mAh/㎠ 이었다. At this time, the volume ratio of the entire conductive material / pore in the anode is 0.34, the porosity is 40% by volume, the diameter of the first pore is 40nm, the diameter of the second pore is 400nm, the first pore / second pore The average diameter ratio k is 0.1. The energy density per unit area of the positive electrode was 1.5 mAh / cm 2.
실험예Experimental Example
실험예 1.Experimental Example 1.
상기 실시예 1 내지 4와 비교예 1 내지 4에서 얻어진 전지를 4.2V에서 포메이션 한 뒤, SOC 전 50% 영역에서 상온에서의 출력 변화(25℃, 10초 저항, @SOC 50%)를 측정하고, 그 결과를 도 4에 나타내었다.After the cells obtained in Examples 1 to 4 and Comparative Examples 1 to 4 were formed at 4.2 V, the change in output at room temperature (25 ° C., 10 seconds resistance, @SOC 50%) was measured at 50% before SOC. The results are shown in FIG. 4.
도 4를 참조하면, 실시예 1 내지 4의 양극을 사용한 이차전지가 비교예 1 내지 4의 양극을 사용한 전지에 비해 상온에서의 출력 특성이 우수함을 확인할 수 있다. Referring to FIG. 4, it can be seen that the secondary batteries using the positive electrodes of Examples 1 to 4 have superior output characteristics at room temperature than the batteries using the positive electrodes of Comparative Examples 1 to 4.
즉, 비교예 1 및 3과 같이 도전재/양극활물질의 부피비가 0.08 미만이고, 도전재/전체 공극의 부피비가 0.1 미만 (제1 공극/제2 공극의 평균직경 비(k)는 0.27 초과)인 경우에 활물질 주변 도전재가 충분하지 못해, 전극 내 전기적 저항 증가로 인하여 출력이 감소하는 단점이 있다.That is, as in Comparative Examples 1 and 3, the volume ratio of the conductive material / anode active material is less than 0.08, and the volume ratio of the conductive material / total voids is less than 0.1 (the average diameter ratio k of the first and second pores is more than 0.27). In the case of the conductive material surrounding the active material is not enough, there is a disadvantage that the output is reduced due to the increase in the electrical resistance in the electrode.
또한, 비교예 2 및 4와 같이 상기 도전재/양극활물질의 부피비가 0.32 초과이고, 도전재/전체 공극의 부피비가 0.33 초과 (제1 공극/제2 공극의 평균직경 비(k)는 0.13 미만)인 경우, 활물질 표면에 과량의 도전재가 존재하게 되면서 활물질 표면과 전해액과의 반응 면적이 감소하여 출력이 감소하는 단점이 있다. In addition, as in Comparative Examples 2 and 4, the volume ratio of the conductive material / anode active material is more than 0.32, and the volume ratio of the conductive material / total voids is more than 0.33 (average diameter ratio k of the first and second pores is less than 0.13). In the case of), an excessive amount of the conductive material is present on the surface of the active material, so that the reaction area between the surface of the active material and the electrolyte decreases and thus the output is reduced.
이때, 도 4에 나타낸 데이터는 하나의 예시일 뿐, SOC에 따른 세부적인 출력 수치는 전지셀의 종류에 따라 달라질 수 있으나, 출력 특성(경향)에 차이는 없을 것으로 예측할 수 있다.At this time, the data shown in Figure 4 is only one example, the detailed output value according to the SOC may vary depending on the type of battery cell, it can be expected that there is no difference in the output characteristics (trend).

Claims (16)

  1. 양극 집전체, 및 A positive electrode current collector, and
    상기 양극 집전체의 적어도 일면에 코팅되어 있는 양극 합제층을 구비하고,A positive electrode mixture layer coated on at least one surface of the positive electrode current collector,
    상기 양극 합제층은 양극활물질, 도전재, 바인더 및 평균 직경이 서로 다른 제1 공극과 제2 공극으로 이루어진 바이모달(bimodal) 형태의 공극을 포함하며,The positive electrode mixture layer includes a positive electrode active material, a conductive material, a binder, and a bimodal type air gap having a first pore and a second pore having different average diameters.
    상기 도전재 : 양극 활물질은 0.08 내지 0.32 : 1의 부피비(K1)로 포함하되, The conductive material: the positive electrode active material is included in a volume ratio (K 1 ) of 0.08 to 0.32: 1,
    상기 도전재 : 전체 공극의 부피비는 0.1 내지 0.33 : 1이고,The conductive material: the volume ratio of the entire void is 0.1 to 0.33: 1,
    공극율은 30 부피% 내지 45 부피%이며, Porosity is 30% to 45% by volume,
    상기 제1 공극 및 제2 공극의 최대직경은 1 ㎛ 미만이고,The maximum diameter of the first and second pores is less than 1 ㎛,
    상기 제1 공극 : 제2 공극의 평균직경 비(k)는 0.13 내지 0.27 : 1인 것인 이차전지용 양극.The average pore ratio (k) of the first pore: the second pore is 0.13 to 0.27: 1 positive electrode for secondary batteries.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 양극활물질의 평균 입경(D50)은 3㎛ 내지 20㎛인 것인 이차전지용 양극.The average particle diameter (D50) of the cathode active material is a secondary battery positive electrode of 3㎛ 20㎛.
  3. 청구항 1에 있어서, The method according to claim 1,
    상기 양극 활물질은 리튬-망간계 산화물, 리튬-코발트계 산화물, 리튬-니켈계 산화물, 리튬-니켈-망간계 산화물, 리튬-니켈-코발트계 산화물, 리튬-망간-코발트계 산화물, 리튬-니켈-망간-코발트계 산화물, 및 리튬-니켈-코발트-전이금속 산화물로 이루어진 군으로부터 선택된 단일물 또는 이들 중 2종 이상의 혼합물을 포함하는 것인 양극.The positive electrode active material may be lithium-manganese oxide, lithium-cobalt oxide, lithium-nickel oxide, lithium-nickel-manganese oxide, lithium-nickel-cobalt oxide, lithium-manganese-cobalt oxide, lithium-nickel- A positive electrode comprising a single material selected from the group consisting of manganese-cobalt-based oxide, and lithium-nickel-cobalt-transition metal oxide or a mixture of two or more thereof.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 도전재의 평균 입경(D50)은 5nm 내지 30000nm인 것인 이차전지용 양극.The average particle diameter (D50) of the conductive material is a secondary battery positive electrode of 5nm to 30000nm.
  5. 청구항 1에 있어서, The method according to claim 1,
    상기 도전재는 천연 흑연이나 인조 흑연, 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙, 도전성 섬유, 불화 카본, 알루미늄, 니켈 분말, 도전성 위스키, 도전성 금속 산화물 및 폴리페닐렌 유도체로 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 혼합물인 것인 양극.The conductive material may be natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, conductive fiber, carbon fluoride, aluminum, nickel powder, conductive whiskey, conductive metal oxide and poly A positive electrode which is a single substance or a mixture of 2 or more types selected from the group which consists of phenylene derivatives.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 제1 공극은 인접한 도전재 입자들에 의하여 둘러싸여 형성된 도전재-도전재 사이의 공극이고,The first gap is a gap between the conductive material and the conductive material formed by the adjacent conductive material particles,
    상기 제2 공극은 인접한 도전재와 양극 활물질들에 의하여 둘러싸여 형성된 도전재-양극활물질 사이의 공극이며,The second gap is a gap between the conductive material and the cathode active material formed by the adjacent conductive material and the cathode active materials,
    상기 제1 및 제2 공극의 외주면은 각각 인접한 다수의 도전재 및 양극 활물질 입자들의 표면을 따라 비선형인 것인 양극.An outer circumferential surface of the first and second voids is a non-linear along the surface of the plurality of adjacent conductive material and the positive electrode active material particles, respectively.
  7. 청구항 1에 있어서,The method according to claim 1,
    상기 제1 공극의 평균직경은 1nm 내지 100nm이고,The average diameter of the first gap is 1nm to 100nm,
    상기 제2 공극의 평균직경은 100nm 내지 500nm인 것인 양극.The average diameter of the second voids is 100nm to 500nm.
  8. 청구항 7에 있어서,The method according to claim 7,
    상기 제2 공극의 평균직경은 200nm 내지 400nm인 것인 양극.The average diameter of the second void is 200nm to 400nm.
  9. 청구항 1에 있어서, The method according to claim 1,
    상기 양극은 단위면적 당 에너지 밀도가 0.8 mAh/㎠ 내지 1.8 mAh/㎠인 양극.The anode has an energy density of 0.8 mAh / cm 2 to 1.8 mAh / cm 2 per unit area.
  10. 도전재 : 양극 활물질을 0.08 내지 0.32 : 1의 부피비로 혼합하여 고형분 함량이 60 중량% 내지 90 중량%인 양극 활물질 슬러리를 제조하는 단계;Conductive material: mixing the positive electrode active material in a volume ratio of 0.08 to 0.32: 1 to prepare a positive electrode active material slurry having a solid content of 60 wt% to 90 wt%;
    상기 양극 활물질 슬러리를 양극 집전체에 코팅한 후, 건조하여 공극율이 55 부피% 내지 65 부피%인 양극 합제층을 포함하는 양극을 제조하는 단계;Coating the cathode active material slurry on a cathode current collector, followed by drying to prepare a cathode including a cathode mixture layer having a porosity of 55% by volume to 65% by volume;
    상기 양극을 1차 압연하여 공극율이 53 부피% 내지 57 부피%인 양극 합제층을 포함하는 양극을 제조하는 단계;First rolling the anode to prepare a cathode including a cathode mixture layer having a porosity of 53% by volume to 57% by volume;
    상기 1차 압연 후 제조된 양극을 2차 압연하여 공극율이 30 부피% 내지 45 부피%인 양극 합제층을 포함하는 양극을 제조하는 단계; 및Preparing a positive electrode including a positive electrode mixture layer having a porosity of 30% by volume to 45% by volume by rolling the positive electrode prepared after the first rolling; And
    상기 2차 압연 후 제조된 양극을 3차 압연하여 공극율이 30 부피% 내지 45 부피%인 양극 합제층을 포함하는 양극을 제조하는 단계;를 포함하는 것인 이차전지용 양극의 제조방법.Manufacturing a positive electrode including a positive electrode mixture layer having a porosity of 30% by volume to 45% by volume by rolling the positive electrode prepared after the second rolling in a third direction.
  11. 청구항 10에 있어서, The method according to claim 10,
    상기 양극 활물질 슬러리는 2 ㎎/㎠ 내지 15 ㎎/㎠ 의 로딩량으로 코팅되는 것인 이차전지용 양극의 제조방법.The cathode active material slurry is coated with a loading of 2 mg / ㎠ to 15 mg / ㎠ method for manufacturing a positive electrode for a secondary battery.
  12. 청구항 10에 있어서, The method according to claim 10,
    상기 1차 압연은 상온에서 두 개의 상단 롤과 하단 롤 사이의 간격(gap)이 (1차 압연 전 양극의 전체 두께 + 3차 압연 후 목표하는 양극의 전체 두께)/2인 조건하에서 실시하는 것인 이차전지용 양극의 제조방법.The primary rolling is carried out under the condition that the gap between the two upper rolls and the lower roll at room temperature is (the total thickness of the anode before the first rolling plus the total thickness of the target anode after the third rolling) / 2. Method for producing a positive electrode for a secondary battery.
  13. 청구항 10에 있어서,The method according to claim 10,
    상기 2차 및 3차 압연 단계는 상온에서 두 개의 상단 롤과 하단 롤 사이의 간격(gap)이 3차 압연 후 목표하는 양극의 전체 두께와 동일한 조건하에서 실시하는 것인 이차전지용 양극의 제조방법.The secondary and tertiary rolling step is a method of manufacturing a positive electrode for a secondary battery that is carried out under the same conditions as the gap (gap) between the two upper rolls and the lower roll at room temperature to the total thickness of the target positive electrode after the third rolling.
  14. 청구항 10에 있어서,The method according to claim 10,
    상기 방법은 1차 압연 후 제조된 양극을 2차 압연하기 전에 30 분 내지 2시간 동안 방치하는 단계를 더 포함하는 것인 이차전지용 양극의 제조방법.The method further comprises the step of leaving for 30 minutes to 2 hours before the secondary rolling of the positive electrode prepared after the first rolling.
  15. 청구항 10에 있어서, The method according to claim 10,
    상기 방법은 2차 압연 후 제조된 양극을 3차 압연하기 전에 30 분 내지 2시간 동안 방치하는 단계를 더 포함하는 것인 이차전지용 양극의 제조방법.The method further comprises the step of leaving for 30 minutes to 2 hours before the third rolling of the positive electrode prepared after secondary rolling.
  16. 양극, 음극, 상기 양극 및 음극 사이에 개재된 세퍼레이터, 및 A positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and
    비수계 전해액을 포함하는 이차전지로서, 상기 양극은 청구항 1의 양극을 포함하는 것인 리튬 이차전지.A secondary battery comprising a non-aqueous electrolyte, wherein the positive electrode comprises the positive electrode of claim 1.
PCT/KR2016/012273 2015-10-30 2016-10-28 Cathode for secondary battery, method for preparing same, and lithium secondary battery comprising same WO2017074109A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16860292.8A EP3370278B1 (en) 2015-10-30 2016-10-28 Cathode for secondary battery, method for preparing same, and lithium secondary battery comprising same
JP2018506967A JP6727668B2 (en) 2015-10-30 2016-10-28 Positive electrode for secondary battery, manufacturing method thereof and lithium secondary battery including the same
PL16860292T PL3370278T3 (en) 2015-10-30 2016-10-28 Cathode for secondary battery, method for preparing same, and lithium secondary battery comprising same
CN201680048067.XA CN107925057B (en) 2015-10-30 2016-10-28 Positive electrode for secondary battery, method for preparing same, and lithium secondary battery comprising same
US15/885,961 US10476078B2 (en) 2015-10-30 2018-02-01 Positive electrode for secondary battery, method of preparing the same, and lithium secondary battery including the positive electrode

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0151483 2015-10-30
KR20150151483 2015-10-30
KR10-2016-0141349 2016-10-27
KR1020160141349A KR102100879B1 (en) 2015-10-30 2016-10-27 Positive electrode for secondary battery, preparation method thereof, and lithium secondary battery comprising the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/885,961 Continuation-In-Part US10476078B2 (en) 2015-10-30 2018-02-01 Positive electrode for secondary battery, method of preparing the same, and lithium secondary battery including the positive electrode

Publications (1)

Publication Number Publication Date
WO2017074109A1 true WO2017074109A1 (en) 2017-05-04

Family

ID=58631844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/012273 WO2017074109A1 (en) 2015-10-30 2016-10-28 Cathode for secondary battery, method for preparing same, and lithium secondary battery comprising same

Country Status (1)

Country Link
WO (1) WO2017074109A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020106106A1 (en) * 2018-11-22 2020-05-28 에스케이이노베이션 주식회사 Method for manufacturing anode, and secondary battery with improved rapid charging performance, having anode according thereto
CN116207383A (en) * 2023-05-05 2023-06-02 四川新能源汽车创新中心有限公司 Dry functional layer for lithium battery, preparation method, composite electrode and preparation method
US11876215B2 (en) 2018-11-22 2024-01-16 Sk On Co., Ltd. Method for manufacturing anode, and secondary battery with improved rapid charging performance, having anode according thereto

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007109636A (en) * 2005-09-14 2007-04-26 Nissan Motor Co Ltd Electrode for battery
KR20120023849A (en) * 2009-06-05 2012-03-13 도요타지도샤가부시키가이샤 Lithium secondary battery
US20120219855A1 (en) * 2011-02-25 2012-08-30 Hitachi Vehicle Energy, Ltd. Lithium ion secondary battery
KR20130087038A (en) * 2010-11-12 2013-08-05 도요타지도샤가부시키가이샤 Secondary battery
KR20150016581A (en) * 2010-01-21 2015-02-12 도요타지도샤가부시키가이샤 Lithium secondary battery, method for producing the same, and vehicle including the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007109636A (en) * 2005-09-14 2007-04-26 Nissan Motor Co Ltd Electrode for battery
KR20120023849A (en) * 2009-06-05 2012-03-13 도요타지도샤가부시키가이샤 Lithium secondary battery
KR20150016581A (en) * 2010-01-21 2015-02-12 도요타지도샤가부시키가이샤 Lithium secondary battery, method for producing the same, and vehicle including the same
KR20130087038A (en) * 2010-11-12 2013-08-05 도요타지도샤가부시키가이샤 Secondary battery
US20120219855A1 (en) * 2011-02-25 2012-08-30 Hitachi Vehicle Energy, Ltd. Lithium ion secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020106106A1 (en) * 2018-11-22 2020-05-28 에스케이이노베이션 주식회사 Method for manufacturing anode, and secondary battery with improved rapid charging performance, having anode according thereto
US11876215B2 (en) 2018-11-22 2024-01-16 Sk On Co., Ltd. Method for manufacturing anode, and secondary battery with improved rapid charging performance, having anode according thereto
CN116207383A (en) * 2023-05-05 2023-06-02 四川新能源汽车创新中心有限公司 Dry functional layer for lithium battery, preparation method, composite electrode and preparation method
CN116207383B (en) * 2023-05-05 2023-07-25 四川新能源汽车创新中心有限公司 Dry functional layer for lithium battery, preparation method, composite electrode and preparation method

Similar Documents

Publication Publication Date Title
WO2019194510A1 (en) Cathode active material for lithium secondary battery, method for manufacturing same, cathode comprising same for lithium secondary battery, and lithium secondary battery
WO2019164319A1 (en) Anode for lithium secondary battery, manufacturing method therefor, and lithium secondary battery comprising anode for lithium secondary battery
WO2018135915A1 (en) Method for manufacturing lithium secondary battery with improved high-temperature storage characteristics
WO2019164347A1 (en) Negative electrode active material for lithium secondary battery, negative electrode containing same for lithium secondary battery, and lithium secondary battery
WO2019050282A1 (en) Lithium secondary battery cathode active material, preparation method therefor, lithium secondary battery cathode comprising same, and lithium secondary battery
WO2019194554A1 (en) Negative electrode active material for lithium secondary battery, manufacturing method therefor, lithium secondary battery negative electrode comprising same, and lithium secondary battery
WO2016018023A1 (en) Graphite secondary particle, and lithium secondary battery comprising same
WO2017095068A1 (en) Positive electrode active material for secondary battery, positive electrode, for secondary battery, comprising same, and secondary battery
WO2020116858A1 (en) Positive electrode active material for rechargeable battery, production method therefor and rechargeable battery positive electrode comprising same
WO2021101188A1 (en) Anode and secondary battery comprising same
WO2021154021A1 (en) Positive electrode active material precursor for secondary battery, positive electrode active material, and lithium secondary battery comprising same
WO2020262890A1 (en) Anode and secondary battery comprising same
WO2021049918A1 (en) Positive electrode material for secondary battery and lithium secondary battery comprising same
WO2021015511A1 (en) Method for preparing cathode active material for lithium secondary battery, and cathode active material prepared by preparation method
WO2019059647A2 (en) Positive electrode material for lithium secondary battery, method for manufacturing same, and positive electrode for lithium secondary battery and lithium secondary battery comprising same
WO2020149679A1 (en) Lithium secondary battery and method for manufacturing same
WO2021187907A1 (en) Cathode material for lithium secondary battery, and cathode and lithium secondary battery each comprising same
WO2021235818A1 (en) Method for manufacturing secondary battery
WO2021101281A1 (en) Method for preparing cathode active material for lithium secondary battery, and cathode active material prepared by same method
WO2021096265A1 (en) Cathode active material for lithium secondary battery, and method for preparing cathode active material
WO2022055308A1 (en) Negative electrode material, and negative electrode and secondary battery comprising same
WO2021112606A1 (en) Cathode active material for lithium secondary battery and method for preparing cathode active material
WO2021125535A1 (en) Cathode optimized for improving high-temperature lifespan characteristics, and secondary battery comprising same
WO2017074109A1 (en) Cathode for secondary battery, method for preparing same, and lithium secondary battery comprising same
WO2019078626A1 (en) Method for preparing cathode active material for secondary battery and secondary battery using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16860292

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018506967

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE