Nothing Special   »   [go: up one dir, main page]

WO2017074104A1 - 무선전력 전송용 자기장 차폐시트 및 이를 포함하는 무선전력 수신모듈 - Google Patents

무선전력 전송용 자기장 차폐시트 및 이를 포함하는 무선전력 수신모듈 Download PDF

Info

Publication number
WO2017074104A1
WO2017074104A1 PCT/KR2016/012257 KR2016012257W WO2017074104A1 WO 2017074104 A1 WO2017074104 A1 WO 2017074104A1 KR 2016012257 W KR2016012257 W KR 2016012257W WO 2017074104 A1 WO2017074104 A1 WO 2017074104A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
wireless power
power transmission
antenna
magnetic
Prior art date
Application number
PCT/KR2016/012257
Other languages
English (en)
French (fr)
Inventor
장길재
Original Assignee
주식회사 아모센스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아모센스 filed Critical 주식회사 아모센스
Priority to US15/770,288 priority Critical patent/US11087912B2/en
Priority to JP2018522019A priority patent/JP6714082B2/ja
Priority to CN201680076608.XA priority patent/CN108432358B/zh
Publication of WO2017074104A1 publication Critical patent/WO2017074104A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/18Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
    • H01F10/20Ferrites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/13Amorphous metallic alloys, e.g. glassy metals
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0007Casings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0075Magnetic shielding materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0088Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a plurality of shielding layers; combining different shielding material structure

Definitions

  • the present invention relates to a magnetic shielding sheet for wireless power transmission and a wireless power receiving module including the same.
  • RFID Radio Frequency Identification
  • NFC Near Field Communication
  • WPT Wireless Charging
  • Interactive Pen Tablet have been added to mobile terminals including mobile phones and tablet PCs.
  • the portable terminal is provided with a wireless charging function for wirelessly charging the built-in battery, such wireless charging is a wireless power receiving module built in the portable terminal, and a wireless power transmission module for supplying power to the wireless power receiving module. Is made by.
  • the thickness of the wireless power receiving module embedded in the portable terminal has also become thinner.
  • the total thickness of the wireless power receiving module has to be designed to be 0.4 m or less, even 0.35 mm or less. Faced.
  • the thickness of the wireless power receiving module is designed to be 0.4mm or less, even 0.35mm or less, there is a considerable difficulty in implementing the charging efficiency required by the wireless charging method.
  • the antenna unit when the antenna unit is provided with multiple antennas operating in different frequency bands, it is common to construct a magnetic shielding sheet by stacking a plurality of sheets in order to improve the characteristics of the antenna. Since the lamination method has a limitation in reducing the overall thickness, a shielding sheet of a frame type in which one sheet is inserted into the other is proposed.
  • the frame-type magnetic shielding sheet can reduce the overall thickness, but the overall thickness is very thin, for example, in the harsh conditions where the total thickness of the wireless power receiver module is less than 0.4mm, it does not satisfy the required charging efficiency. Revealed.
  • the wireless power transmission antenna operating in a magnetic induction method when the wireless power transmission antenna operating in a magnetic induction method and the wireless power transmission antenna operating in a magnetic resonance method are simultaneously implemented in the wireless power receiving module, the wireless power transmission antenna operating in a magnetic induction method has an overall thickness. The satisfies the required charging efficiency even under the harsh conditions of 0.4mm or less, but the antenna for wireless power transmission operating by the magnetic resonance method has a large width, for example, more than 10% in the required charging efficiency.
  • the charging efficiency does not significantly decrease, but in the case of a wireless power transmission antenna that operates in a magnetic resonance method, The thinner the thickness, the lower the charging efficiency.
  • the present invention has been made in view of the above, and when the antenna for wireless power transmission operating in a magnetic induction method and the antenna for wireless power transmission operating in a magnetic resonance method are implemented in one module, the overall thickness is limited. It is an object of the present invention to provide a magnetic shielding sheet for wireless power transmission that can satisfy all the charging efficiency required in each wireless power transmission method even in severe harsh conditions.
  • the present invention by implementing the wireless power receiving module using the magnetic shielding sheet for wireless power transmission as described above, the wireless power that can satisfy the charging characteristics required by different wireless charging method even under severe conditions of severe thickness constraints Another purpose is to provide a receiving module.
  • the present invention to solve the above problems is a first sheet for shielding the magnetic field generated in the first wireless power transmission antenna operating in a magnetic induction method; A second sheet for shielding a magnetic field generated by a second wireless power transmission antenna having a receiving portion for accommodating a thickness of the first sheet and operating in a magnetic resonance method; And a third sheet laminated on the same surface of the first sheet and the second sheet so as to cover the first sheet and the second sheet at the same time and shielding a magnetic field generated by the antenna for transmitting the second wireless power.
  • a magnetic shielding sheet for power transmission is provided.
  • the third sheet may be disposed to cover the boundary area between the first sheet and the second sheet, and may be provided to have the same area as the sum of the area of the first sheet and the area of the second sheet. .
  • the first sheet may be a ribbon sheet including at least one or more of an amorphous alloy and a nano grain alloy
  • the second sheet and the third sheet may be ferrite sheets.
  • the first sheet, the second sheet, and the third sheet may be flake-treated and separated into a plurality of fine pieces.
  • the plurality of microflakes may include microflakes having at least one side of a curved shape rather than a straight line, and at least one side of the total number of the plurality of microflakes has a number of fine pieces of at least 50%. Can be.
  • the average particle diameter of the fine pieces constituting the second sheet is larger than the average particle diameter of the fine pieces constituting the first sheet. It can be formed to have a large size.
  • the plurality of microflakes may be atypical, and may be entirely insulated or partially insulated from neighboring fine pieces.
  • the first sheet may be configured by laminating a plurality of layers of ribbon sheets including at least one of an amorphous alloy and a nanocrystalline alloy.
  • the present invention includes an antenna unit including a first wireless power transmission antenna for operating in a magnetic induction method and a second wireless power transmission antenna for operating in a magnetic resonance method; And a magnetic field shielding sheet for wireless power transmission, which is disposed on one surface of the antenna unit and focuses in a required direction by shielding a magnetic field generated by the antenna unit.
  • the antenna unit may include an MST antenna disposed at a position corresponding to the first sheet together with the first wireless power transmission antenna, and the second sheet together with the second wireless power transmission antenna.
  • the antenna may include an NFC antenna disposed at a corresponding position, and together with the first wireless power transmission antenna, the MST antenna and the second wireless power transmission antenna disposed at a position corresponding to the first sheet. It may include an NFC antenna disposed at a position corresponding to the two seats.
  • the total thickness of the sum of the thickness of the antenna unit and the magnetic shielding sheet may be 0.3mm ⁇ 0.4mm
  • the thickness of the sum of the thickness of the second sheet and the third sheet may be 0.2mm.
  • the present invention provides a portable terminal in which the above-described wireless power receiving module is provided in the back cover or the rear case.
  • the present invention by additionally stacking a separate sheet on one surface of the shielding sheet having a frame shape, even if the overall thickness is thin, it is possible to satisfy all the charging efficiency required in the wireless power transmission antennas operating in different ways.
  • the present invention is configured such that the sheet disposed on the outer side of the plurality of sheets constituting the magnetic shielding sheet is configured to include more than a predetermined ratio of the fine pieces of at least one side of the curved shape to ensure the flexibility of the sheet itself to reduce the characteristic change Can be.
  • FIG. 1 is a cross-sectional view showing a magnetic shielding sheet for wireless power transmission according to an embodiment of the present invention
  • FIG. 2 is an enlarged view showing the detailed configuration of the first sheet, the second sheet and the third sheet in FIG.
  • Figure 3 schematically shows the shape of the fine fragment when any one of the first sheet, the second sheet and the third sheet is separated into a plurality of fine pieces in the magnetic shielding sheet for wireless power transmission according to an embodiment of the present invention drawing,
  • FIG. 4 is a view showing a wireless power receiving module to which a magnetic shielding sheet for wireless power transmission is applied to an embodiment of the present invention
  • FIG. 5 is a cross-sectional view of FIG. 4,
  • 6A to 6C are cross-sectional views illustrating an arrangement relationship between various antenna units and a magnetic shielding sheet that may be applied to FIG. 4.
  • the wireless power receiving module 100 includes an antenna unit 110 and a magnetic shielding sheet 120.
  • the antenna unit 110 is built in portable electronic devices such as mobile phones, PDAs, PMPs, tablets, multimedia devices, etc. to transmit or receive wireless signals.
  • Such an antenna unit 110 is provided with a plurality of wireless power transmission antennas 114a and 114b that operate in different ways at different operating frequencies and thus require the above-mentioned portable electronic devices by receiving radio signals in the corresponding operating frequency bands. Can produce power.
  • the plurality of wireless power transmission antennas (114a, 114b) is a magnetic shielding sheet is composed of a circular, elliptical or square flat coil wound around the conductive member having a predetermined length in a clockwise or counterclockwise direction although it may be provided in a form fixed to one surface of the 120, as shown in Figure 4 to 6c, a conductor such as copper foil on at least one surface of the circuit board 112 made of a synthetic resin such as polyimide (PI) or PET It is preferable to implement the thinning by patterning in a loop form or by forming a loop-shaped metal pattern using a conductive ink.
  • PI polyimide
  • the plurality of wireless power transfer antennas 114a and 114b are used for the first wireless power transmission antenna 114a operating in a magnetic induction method and the second wireless power transmission operating in a magnetic resonance method. It may include an antenna 114b.
  • the first wireless power transmission antenna 114a may be a Qi or PMA antenna that operates in a self-induction method in a frequency band in which an operating frequency is 100 to 350 kHz, and the second wireless power transmission antenna 114b is used.
  • the wireless power receiving module 100 is a first wireless power transmission antenna 114a and a second wireless power transmission for each of the antenna unit 110 operating in a magnetic induction method and a magnetic resonance method.
  • the antenna 114b By including the antenna 114b, it is possible to use two different wireless power transmission methods different from each other through one receiving module.
  • the first wireless power transmission antenna 114a operating in a magnetic induction method may be operated in both a Qi method and a PMA method through one antenna.
  • the wireless power receiving module 100 is built in the portable terminal to receive wireless power by using all the Qi method, PMA method and A4WP method different in operating frequency or operation method or a battery built in the mobile terminal. Can be charged.
  • the plurality of antennas 114a and 114b are shown as being patterned on the upper surface of the circuit board 112, the present invention is not limited thereto and may be patterned on the lower surface of the circuit board 112. After being formed on the upper and lower surfaces of the substrate 112, they may be electrically connected to each other through via holes.
  • the antenna unit 110 may be fixed to one surface of the magnetic shielding sheet 120 via an adhesive layer.
  • the adhesive layer may be a bond, PVC, rubber or double-sided tape and the like having adhesive properties, and may include a component having conductivity.
  • the antenna unit 110 may additionally include an antenna for performing additional functions such as data transmission and reception and self-payment using short-range data communication as well as wireless power transmission.
  • the antenna unit 110 may further include at least one of a near field communication (NFC) antenna 114d for short range communication and a magnetic secure transmission (MST) antenna 114c of a magnetic secure transmission method.
  • NFC near field communication
  • MST magnetic secure transmission
  • an MST antenna 114c is disposed between the first wireless power transmission antenna 114a and the second wireless power transmission antenna 114a (see FIG. 6A), or An NFC antenna 114d may be disposed between the first wireless power transmission antenna 114a and the second wireless power transmission antenna 114a (see FIG. 6B), and the first wireless power transmission antenna 114a. ) And both the MST antenna 114c and the NFC antenna 114d may be disposed between the second wireless power transmission antenna 114a (see FIG. 6C).
  • the NFC antenna 114d and the MST antenna 114c may be arranged to be close to each antenna having a similar frequency band among the first wireless power transmission antenna 114a and the second wireless power transmission antenna 114b. have. That is, the NFC antenna 114d operating at 13.56 MHz may be disposed in close proximity to the second wireless power transmission antenna 114b operating at 6.765 ⁇ 6.795 MHz, and the MST antenna 114c operating at 70 to 80 kHz is described above.
  • the first wireless power transmission antenna 114a may be disposed in close proximity to the antenna.
  • the first wireless power transmission antenna 114a and the MST antenna 114c may be disposed in an area corresponding to the first sheet 121 to be described later, and the second wireless power transmission antenna 114b.
  • the NFC antenna 114d may be disposed in areas respectively corresponding to the second sheet 122 to be described later.
  • the NFC antenna 114d has a higher operating frequency band than the first wireless power transmission antenna 114a. It may be formed of a conductive pattern of a fine line width on the outside of the wireless power transmission antenna 114a, the first wireless power transmission antenna 114a is required to transmit power and use a lower frequency band than the NFC antenna 114d The line width of the NFC antenna 114d may be wider than that of the NFC antenna 114d.
  • the magnetic field shielding sheet 120 is formed of a plate-like member having a predetermined area as shown in Figs. 1 and 2, and serves to shield the magnetic field generated by the antenna unit 110 to focus in a required direction. To perform.
  • the magnetic field shielding sheet 120 may prevent the magnetic field generated from antennas operating in different frequency bands from affecting other components, respectively.
  • the first sheet 121, the second sheet 122, and the third sheet may be shielded.
  • the first sheet 121 is for shielding the magnetic field radiated from the first wireless power transmission antenna 114a and the MST antenna 114c of the plurality of antennas
  • the second sheet 122 Is for shielding the magnetic field radiated from the second wireless power transmission antenna 114b and the NFC antenna 114d.
  • the third sheet 123 supplements the second sheet 122 to shield the magnetic field radiated from the second wireless power transmission antenna 114b and the NFC antenna 114d.
  • the first sheet 121 may be disposed in an area corresponding to the first wireless power transmission antenna 114a, and the second sheet 122 is the second wireless power transmission antenna 114b.
  • the third sheet 123 may also be disposed to include a region corresponding to the second wireless power antenna 114b.
  • the first sheet 121 may have an area including the entire size of the first wireless power transmission antenna 114a disposed inside the second wireless power transmission antenna 114b. Accordingly, by covering the entire area of the first wireless power transmission antenna 114a through the first sheet 121, it is possible to smoothly shield the magnetic field generated in the first wireless power transmission antenna.
  • the first sheet 121 may form regions directly above the first wireless power transmission antenna 114a and the MST antenna 114c.
  • the second sheet 122 and the third sheet 123 may include the second wireless power transmission antenna 114b and the NFC. It may be provided to include a region directly above the antenna (114d).
  • the arrangement positions of the NFC antenna 114d and the MST antenna 114c are not limited thereto, and the first wireless power transmission antenna 114a is disposed in an area corresponding to the first sheet 121 and is positioned in the first sheet 121.
  • the arrangement positions of the NFC antenna 114d and the MST antenna 114c may be changed.
  • the NFC antenna 114d may be disposed at a position corresponding to the first sheet 121 and the MST antenna 114c may also be disposed at a position corresponding to the second sheet 122. Reveal.
  • the magnetic shielding sheet 120 according to the present invention can effectively shield the magnetic field generated by each antenna operating in different frequency bands to reduce the overall thickness while increasing the performance of the antenna.
  • an accommodating part may be formed inside the second sheet 122 to accommodate the entire thickness of the first sheet 121. Accordingly, the first sheet 121 may be inserted into the receiving portion, and the third sheet 123 is stacked on the same surface of the first sheet 121 and the second sheet 122 and One surface of the first sheet 121 and the second sheet 122 may be simultaneously covered.
  • an accommodating part having a size substantially the same as that of the first sheet 121 may be formed through the inside of the second sheet 122, and the second sheet 122 may be substantially formed with the first sheet 121. It may have the same thickness. Accordingly, when the first sheet 121 is inserted into the receiving portion of the second sheet 122, the second sheet 122 can accommodate the entire thickness of the first sheet 121, One surface of the first sheet 121 and the second sheet 122 may form a horizontal plane with each other.
  • the third sheet 123 is the first sheet 121 and the second sheet 122 to cover the boundary area of the first sheet 121 and the second sheet 122 arranged in the frame on the same surface. It may be stacked on one side of the).
  • the third sheet 123 is laminated on the first sheet 121 and the second sheet 122 to cover an area including a boundary line between the first sheet 121 and the second sheet 122.
  • a gap formed between the first sheet 121 and the second sheet 122 may be covered by the third sheet 123.
  • the third sheet 123 may be provided to have the same characteristics as the second sheet 122 so that the magnetic field generated by the second wireless power transmission antenna 114b may be shielded and focused in a required direction. Can be.
  • the magnetic field shielding sheet 120 may reduce the thickness of each of the first sheet 121, the second sheet 122, and the third sheet 123 in order to reduce the overall thickness.
  • the magnetic resonance type wireless power transmission or wireless charging through the power transmission antenna 114b complements the role of the second sheet 122 through the third sheet 123, the power transmission efficiency or the charging efficiency is greatly reduced. You can prevent it.
  • the magnetic shielding sheet 120 in order to satisfy the harsh conditions that the overall thickness of the wireless power receiving module 100 is limited to a thickness of 0.4mm or less, even 0.35mm or less Although the overall thickness of the film is thinned to a thickness of 0.2 mm, the wireless required for the first wireless power transmission antenna 114a operating in a magnetic induction method as well as the second wireless power transmission antenna 114b operating in a magnetic resonance method Power transmission efficiency or wireless charging efficiency can be satisfied.
  • the reference example is the charging efficiency when the magnetic shielding sheet is composed only of the sheet for the antenna for wireless power transmission operating in a magnetic resonance method
  • the comparative example is the first for the antenna for wireless power transmission operating in a magnetic induction method
  • the charging efficiency of the magnetic shielding sheet according to the present invention is the charging efficiency when the magnetic shielding sheet is configured in a frame type inserted into the second sheet for the wireless power transmission antenna operating in a magnetic resonance method. Indicates.
  • the total thickness of the magnetic shielding sheet used in the reference examples, comparative examples and examples is 0.2mm, and more specifically, a ferrite sheet having a thickness of 0.2mm as a sheet for a wireless power transmission antenna operating in a magnetic resonance method.
  • the charging efficiency was compared when the charging power is 4W and 5W.
  • the magnetic field shielding sheet 120 according to the present invention shows charging efficiency approximately equal to the charging efficiency in the reference example, which is an optimal condition of the antenna for wireless power transmission operating in a magnetic resonance method.
  • the charging efficiency is approximately 90% compared to the charging efficiency in the reference example.
  • the magnetic shielding sheet 120 according to the present invention can prevent the charging efficiency of the second wireless power transmission antenna from being greatly reduced even if the overall thickness is reduced.
  • the second sheet 122 and the third sheet 123 for the second wireless power transmission antenna 114b may be provided to have the same thickness or may have different thicknesses. That is, the thickness of the first sheet 121 for the first wireless power transmission antenna 114a is a thickness that satisfies the power transmission efficiency or charging efficiency required for wireless power transmission or wireless charging through a magnetic induction method.
  • the thickness of the third sheet 123 is the first sheet 121 of the total thickness of the magnetic shielding sheet 120 is acceptable Or the thickness of the second sheet 122 can be appropriately added or subtracted within the remaining thickness.
  • the magnetic shielding sheet 120 including the first sheet 121, the second sheet 122, and the third sheet 123 is attached to at least one of an upper surface and a lower surface by an adhesive layer 125.
  • the protective film 126 may be provided.
  • the adhesive layer 125 may include a non-conductive component, and at least one sheet of the first sheet 121, the second sheet 122, and the third sheet 133 may be flake-processed to form a plurality of sheets. If separated into fine pieces may be absorbed between the fine pieces to serve to insulate the fine pieces.
  • the adhesive layer 125 may be provided as an adhesive, or may be provided in the form of a film-based substrate, and a protective film coated with an adhesive on one or both sides of the substrate, and may have adhesiveness or adhesiveness. have.
  • the magnetic shielding sheet 120 includes a first sheet 121 for the first wireless power transmission antenna 114a and a second sheet for the second wireless power transmission antenna 114b ( 122 and the third sheet 123 may be provided to have different permeability in a predetermined frequency band.
  • the first sheet 121 may be formed of a material having a relatively higher permeability than the second sheet 122 and the third sheet 123 in the band 100 ⁇ 350kHz.
  • the first sheet 121 may be a ribbon sheet including at least one or more of an amorphous alloy and nanocrystalline alloy
  • the second sheet 122 and the third sheet 123 is a ferrite sheet Can be used.
  • the ribbon sheet including at least one or more of the amorphous alloy and the nano-crystalline alloy may be used a Fe-based or Co-based magnetic alloy
  • the ferrite sheet may be a sintered ferrite sheet.
  • the ferrite may be Mn-Zn ferrite or Ni-Zn ferrite.
  • the amorphous alloy or nanocrystalline alloy refers to a metal having an disordered or irregular arrangement because the arrangement of atoms or molecules is disturbed even though the arrangement of atoms or molecules has the same components as the regular crystalline alloy.
  • first sheet 121, the second sheet 122 and the third sheet 123 is not limited to the above-mentioned types, and the first wireless power transmission antenna 114a and the second wireless power transmission are not limited thereto. It is noted that any material having magnetic properties may be used to shield the magnetic field generated by the antenna 114b to increase power transmission efficiency or wireless charging efficiency.
  • the first sheet 121 for the first wireless power transmission antenna 114a is a ribbon sheet 121a including at least one of an amorphous alloy and a nanocrystalline alloy, as shown in FIG. 2.
  • the ribbon sheet 121a may be flake-processed to be separated into a plurality of fine pieces, and each of the fine pieces may be irregularly formed. This is to increase the overall resistance and to suppress the generation of eddy current to reduce the loss caused by the eddy current to increase the charging efficiency.
  • the first sheet 121 is composed of a ribbon sheet 121a including at least one or more of an amorphous alloy and a nano-crystalline alloy
  • the first sheet 121 is flake-processed and separated into a plurality of fine pieces.
  • the plurality of ribbon sheets 121a may be stacked and stacked in multiple layers.
  • an adhesive layer 121b including a non-conductive component may be disposed between each ribbon sheet 121a.
  • the adhesive layer 121b may serve to insulate neighboring fine pieces by moving between at least a part of each of the ribbon sheets 121a stacked on each other and moving between the fine pieces constituting the ribbon sheet 121a.
  • the adhesive layer may be provided with an adhesive or may be provided with an adhesive applied to one or both sides of the film-shaped substrate.
  • both the second sheet 122 and the third sheet 123 for the second wireless power transmission antenna 114b may be flake-processed and separated into a plurality of fine pieces.
  • both the second sheet 122 and the third sheet 123 may be flake-processed to be separated into a plurality of fine pieces, and each of the fine pieces may have a thickness of 1 ⁇ m to 7 mm. It may be provided in size and may be randomly made irregular.
  • the second sheet 122 and the third sheet 123 are made of a brittle ferrite sheet
  • the second sheet 122 and the third sheet 123 are separated into a plurality of fine pieces to secure flexibility to prevent or minimize cracks or cracks.
  • At least one of the first sheet 121, the second sheet 122, and the third sheet 123 is flake-processed and separated into a plurality of pieces.
  • At least one side may include a fine piece consisting of a curved shape rather than a straight line (see FIG. 3). That is, the total number of fine pieces having at least one side curved portion of the total number of fine pieces constituting each sheet may be 50% or more of the total number, preferably 70% or more.
  • the smaller number of fine pieces pressurizing the protective film improves the flexibility of the sheet itself, which is less likely to be broken by bending or bending. Since it means, the change of the initial characteristic value of the sheet itself is insignificant.
  • the second sheet 122 and the third sheet 123 is at least one side with respect to the total number of fine pieces constituting each sheet It is preferable to comprise so that the ratio of the fine fragment which consists of a curved shape may be 70% or more.
  • the second sheet 122 and the third sheet 123 are formed.
  • the average particle diameter of the fine pieces constituting the may be provided to have a larger size than the average particle diameter of the fine pieces constituting the first sheet 121.
  • the average particle diameter of the fine pieces constituting the second sheet 122 and the third sheet 123 is 1.2 to 2 times larger than the average particle diameter of the fine pieces constituting the first sheet 121. It may be provided to have.
  • the average particle diameter of the fine pieces constituting the first sheet 121 may be 1 ⁇ m to 4 mm
  • the average particle diameter of the fine pieces constituting the second sheet 122 and the third sheet 123 is It can be 4mm ⁇ 6mm.
  • the average particle diameter refers to the volume average diameter measured by the laser diffraction particle size distribution meter.
  • the first sheet 121 is composed of a ribbon sheet containing at least one or more of an amorphous alloy and nano-crystalline alloy
  • the second sheet 122 and the third sheet 123 is composed of a ferrite sheet
  • the average particle diameter of the ferrite pieces constituting the second sheet 122 and the third sheet 123 may be provided to have a size larger than the average particle diameter of the ribbon pieces constituting the first sheet 121.
  • the size of the ferrite piece is too large, for example, the size of the sheet itself is greater than twice the average particle diameter of the ribbon pieces constituting the first sheet 121, the flexibility of the sheet itself is reduced, the first sheet ( If the average particle diameter of the ferrite fragment is 1.2 times or less than the average particle diameter of the ribbon pieces constituting the 121) it is because the ferrite can not fully exhibit the original function.
  • the magnetic field shielding sheet 120 and the wireless power receiving module 100 including the same according to the present invention may be provided in a form attached to the back cover of the portable terminal when applied to an electronic device such as a portable terminal.
  • the portable terminal When the portable terminal is implemented in one piece, the portable terminal may be embedded in a form attached to the rear case of the portable terminal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Laminated Bodies (AREA)

Abstract

무선전력전송용 자기장 차폐시트 및 이를 포함하는 무선전력 수신모듈이 제공된다. 본 발명의 예시적인 실시예에 따른 무선전력전송용 자기장 차폐시트는 자기유도방식으로 작동하는 제1무선전력 전송용 안테나에서 발생되는 자기장을 차폐하기 위한 제1시트; 상기 제1시트의 두께를 수용하기 위한 수용부가 구비되고 자기공진방식으로 작동하는 제2무선전력 전송용 안테나에서 발생되는 자기장을 차폐하기 위한 제2시트; 및 상기 제1시트 및 제2시트를 동시에 덮도록 상기 제1시트 및 제2시트의 동일면 상에 적층되어 상기 제2무선전력 전송용 안테나에서 발생되는 자기장을 차폐하는 제3시트;를 포함한다.

Description

무선전력 전송용 자기장 차폐시트 및 이를 포함하는 무선전력 수신모듈
본 발명은 무선전력전송용 자기장 차폐시트 및 이를 포함하는 무선전력 수신모듈에 관한 것이다.
최근 휴대폰, 타블렛 PC 등을 비롯한 휴대 단말기에 RFID(Radio Frequency Identification: 무선식별), 근거리 무선통신(NFC), 무선충전(WPT), 대화형 펜 타블렛 등 다양한 기능이 추가되고 있다.
이러한 휴대 단말기에는 내장된 배터리를 무선으로 충전하기 위한 무선 충전 기능이 구비되고 있는데, 이러한 무선 충전은 휴대 단말기에 내장되는 무선전력 수신모듈과, 상기 무선전력 수신모듈에 전력을 공급하는 무선전력 송신모듈에 의해 이루어진다.
한편, 최근 휴대 단말기는 경박단소형화됨에 따라 휴대 단말기에 내장되는 무선전력 수신모듈의 두께 역시 얇아지고 있으며, 예컨대 무선전력 수신모듈의 총두께를 0.4m 이하, 심지어 0.35mm 이하로 설계해야 하는 문제에 직면했다.
이와 같은 무선전력 수신모듈의 두께를 0.4mm 이하, 심지어 0.35mm 이하로 설계하는 경우 무선 충전 방식에서 요구하는 충전효율을 구현하는데 상당한 어려움이 따르고 있다.
즉, 안테나유닛이 서로 다른 주파수 대역에서 작동하는 여러 개의 안테나로 구비되는 경우 해당 안테나의 특성을 각각 향상시키기 위해서는 복수 개의 시트를 적층하여 자기장 차폐시트를 구성하는 것이 일반적이다. 이러한 적층방식은 전체적인 두께를 줄이는데 한계가 있기 때문에 어느 하나의 시트를 다른 하나의 내부에 삽입하는 액자 형식의 차폐시트가 제안되었다.
그러나 이러한 액자 방식의 자기장 차폐시트는 전체적인 두께를 줄일 수는 있었으나 전체두께가 매우 얇은 조건, 일례로, 무선전력 수신모듈의 전체두께가 0.4mm 이하의 가혹한 조건에서는 요구되는 충전효율을 만족시키지 못하는 문제가 드러났다.
일례로, 자기유도방식으로 작동하는 무선전력 전송용 안테나와 자기공진방식으로 작동하는 무선전력 전송용 안테나가 무선전력 수신모듈에 동시에 구현되는 경우 자기유도 방식으로 작동하는 무선전력 전송용 안테나는 전체적인 두께가 0.4mm 이하의 가혹한 조건에서도 요구되는 충전효율을 만족하였으나 자기공진방식으로 작동하는 무선전력 전송용 안테나는 요구되는 충전효율에서 큰 폭, 일례로 10% 이상 떨어지는 문제점이 있다.
달리 말하면, 자기유도 방식으로 작동하는 무선전력 전송용 안테나의 경우 차폐시트의 전체두께가 얇아진다 하더라도 충전효율의 저하가 크게 발생하지 않으나 자기공진 방식으로 작동하는 무선전력 전송용 안테나의 경우 차폐시트의 두께가 얇아지게 되면 충전효율이 크게 저하된다.
따라서, 휴대 단말기의 경박단소형화의 요구에 부응하면서도 서로 다른 방식으로 작동하는 무선충전에서 요구하는 충전효율을 모두 만족할 수 있는 자기장 차폐시트의 개발이 절실히 요구된다.
본 발명은 상기와 같은 점을 감안하여 안출한 것으로, 자기유도방식으로 작동하는 무선전력 전송용 안테나와 자기공진방식으로 작동하는 무선전력 전송용 안테나가 하나의 모듈에 구현되는 경우 전체두께의 제약이 심한 가혹한 조건에서도 각각의 무선전력 전송방식에서 요구되는 충전효율을 모두 만족할 수 있는 무선전력전송용 자기장 차폐시트를 제공하는데 그 목적이 있다.
또한, 본 발명은 상기와 같은 무선전력전송용 자기장 차폐시트를 이용하여 무선전력 수신모듈을 구현함으로써 전체두께의 제약이 심한 가혹한 조건에서도 서로 다른 무선충전 방식에서 요구하는 충전특성을 만족할 수 있는 무선전력 수신모듈을 제공하는데 다른 목적이 있다.
상술한 과제를 해결하기 위하여 본 발명은 자기유도방식으로 작동하는 제1무선전력 전송용 안테나에서 발생되는 자기장을 차폐하기 위한 제1시트; 상기 제1시트의 두께를 수용하기 위한 수용부가 구비되고 자기공진방식으로 작동하는 제2무선전력 전송용 안테나에서 발생되는 자기장을 차폐하기 위한 제2시트; 및 상기 제1시트 및 제2시트를 동시에 덮도록 상기 제1시트 및 제2시트의 동일면 상에 적층되어 상기 제2무선전력 전송용 안테나에서 발생되는 자기장을 차폐하는 제3시트;를 포함하는 무선전력전송용 자기장 차폐시트를 제공한다.
또한, 상기 제3시트는 상기 제1시트 및 제2시트의 경계영역을 덮도록 배치될 수 있으며, 상기 제1시트의 면적과 제2시트의 면적을 합한 면적과 동일한 면적을 갖도록 구비될 수 있다.
또한, 상기 제1시트는 비정질 합금 및 나노 결정립 합금 중 적어도 1종 이상을 포함하는 리본시트이고, 상기 제2시트 및 제3시트는 페라이트 시트일 수 있다.
또한, 상기 제1시트, 제2시트 및 제3시트 중 적어도 어느 하나는 플레이크 처리되어 다수 개의 미세조각으로 분리형성될 수 있다. 이때, 상기 다수 개의 미세조각은 적어도 한 변이 직선이 아닌 만곡형상으로 이루어지는 미세조각을 포함할 수 있으며, 상기 다수 개의 미세조각의 전체개수 중 적어도 한 변이 만곡형상으로 이루어진 미세조각의 개수가 50% 이상일 수 있다.
또한, 상기 제1시트 및 제2시트가 플레이크 처리되어 다수 개의 미세조각으로 구성되는 경우, 상기 제2시트를 구성하는 미세조각의 평균입경은 상기 제1시트를 구성하는 미세조각의 평균입경보다 더 큰 크기를 갖도록 형성될 수 있다.
또한, 상기 다수 개의 미세조각은 비정형으로 이루어질 수 있으며, 서로 이웃하는 미세 조각들 간에 전체적으로 절연되거나 부분적으로 절연될 수 있다.
또한, 상기 제1시트는 비정질 합금 및 나노 결정립 합금 중 적어도 1종 이상을 포함하는 리본시트가 복수 개의 층으로 적층되어 구성될 수 있다.
한편, 본 발명은 자기유도 방식으로 작동하는 제1무선전력 전송용 안테나 및 자기공진 방식으로 작동하는 제2무선전력 전송용 안테나를 포함하는 안테나유닛; 및 상기 안테나유닛의 일면에 배치되고 상기 안테나유닛에서 발생되는 자기장을 차폐하여 소요의 방향으로 집속시키는 상술한 무선전력전송용 자기장 차폐시트;를 포함하는 무선전력 수신모듈을 제공한다.
또한, 상기 안테나유닛은 상기 제1무선전력 전송용 안테나와 함께 상기 제1시트와 대응되는 위치에 배치되는 MST 안테나를 포함할 수 있고, 상기 제2무선전력 전송용 안테나 와 함께 상기 제2시트와 대응되는 위치에 배치되는 NFC 안테나를 포함할 수 있으며, 상기 제1무선전력 전송용 안테나와 함께 상기 제1시트와 대응되는 위치에 배치되는 MST 안테나 및 상기 제2무선전력 전송용 안테나 와 함께 상기 제2시트와 대응되는 위치에 배치되는 NFC 안테나를 포함할 수 있다.
또한, 상기 안테나유닛 및 자기장 차폐시트의 두께를 합한 총 두께는 0.3mm ~ 0.4mm일 수 있으며, 상기 제2시트 및 제3시트의 두께를 합한 두께는 0.2mm일 수 있다.
한편, 본 발명은 상술한 무선전력 수신모듈이 백커버 또는 리어케이스에 구비된 휴대 단말기를 제공한다.
본 발명에 의하면, 액자형으로 구성되는 차폐시트의 일면에 별도의 시트를 추가적으로 적층함으로써 전체적인 두께가 얇아지더라도 서로 다른 방식으로 작동하는 무선전력 전송용 안테나에서 요구되는 충전효율을 모두 만족할 수 있다.
또한, 본 발명은 자기장 차폐시트를 구성하는 복수 개의 시트 중 외측에 배치되는 시트가 적어도 한변이 만곡형상으로 이루어진 미세 조각들이 소정의 비율 이상 포함하도록 구성됨으로써 시트 자체의 유연성을 확보하여 특성변화를 줄일 수 있다.
도 1은 본 발명의 일 실시예에 따른 무선전력전송용 자기장 차폐시트를 나타낸 단면도,
도 2는 도 1에서 제1시트, 제2시트 및 제3시트의 세부구성을 나타낸 확대도,
도 3은 본 발명의 일 실시예에 따른 무선전력전송용 자기장 차폐시트에서 제1시트, 제2시트 및 제3시트 중 어느 하나가 복수 개의 미세조각으로 분리형성된 경우 미세조각의 형상을 개략적으로 나타낸 도면,
도 4는 본 발명의 일 실시예에 무선전력전송용 자기장 차폐시트가 적용된 무선전력 수신모듈을 나타낸 도면,
도 5는 도 4의 단면도, 그리고,
도 6a 내지 도 6c는 도 4에 적용될 수 있는 다양한 안테나유닛과 자기장 차폐시트간의 배치관계를 나타낸 단면도이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 부가한다.
먼저, 도 4 및 도 5를 참조하면, 본 발명의 일 실시예에 따른 무선전력 수신모듈(100)은 안테나유닛(110) 및 자기장 차폐시트(120)를 포함한다.
상기 안테나유닛(110)은 휴대폰, PDA, PMP, 테블릿, 멀티미디어 기기 등과 같은 휴대용 전자기기에 내장되어 무선 신호를 송출하거나 수신하기 위한 것이다.
이와 같은 안테나유닛(110)은 서로 다른 동작주파수에서 상이한 방식으로 작동하는 복수 개의 무선전력 전송용 안테나(114a,114b)가 구비되어 해당 동작주파수 대역에서 무선신호를 수신함으로써 상술한 휴대용 전자기기가 필요로 하는 전력을 생산할 수 있다.
여기서, 상기 복수 개의 무선전력 전송용 안테나(114a,114b)는 일정길이를 갖는 도전성부재가 시계방향 또는 반시계방향으로 복수 회 권선되는 원형, 타원형 또는 사각형상의 평판형 코일로 구성되어 상기 자기장 차폐시트(120)의 일면에 고정되는 형태로 구비될 수도 있지만, 도 4 내지 도 6c에 도시된 바와 같이 폴리이미드(PI)나 PET 등과 같은 합성수지로 이루어진 회로기판(112)의 적어도 일면에 동박 등과 같은 전도체를 루프 형태로 패터닝하거나 전도성 잉크를 사용하여 루프 형상의 금속 패턴을 형성하여 구성함으로써 박형화를 구현할 수 있도록 하는 것이 바람직하다.
이때, 상기 복수 개의 무선전력 전송용 안테나(Wireless power transfer)(114a,114b)는 자기 유도 방식으로 작동하는 제1무선전력 전송용 안테나(114a) 및 자기 공진 방식으로 작동하는 제2무선전력 전송용 안테나(114b)를 포함할 수 있다.
즉, 상기 제1무선전력 전송용 안테나(114a)는 동작주파수가 100~350kHz인 주파수 대역에서 자기유도 방식으로 작동하는 Qi 또는 PMA 방식의 안테나일 수 있고, 상기 제2무선전력 전송용 안테나(114b)는 동작주파수가 6.765~6.795MHz인 주파수 대역에서 자기공진 방식으로 작동하는 A4WP 방식의 안테나일 수 있다.
이에 따라, 본 발명에 따른 무선전력 수신모듈(100)은 상기 안테나유닛(110)이 자기유도방식과 자기공진방식으로 각각 작동하는 제1무선전력 전송용 안테나(114a) 및 제2무선전력 전송용 안테나(114b)를 포함함으로써 하나의 수신모듈을 통하여 서로 상이한 두 가지 방식의 무선전력 전송방식을 모두 이용할 수 있다.
여기서, 자기유도방식으로 작동하는 상기 제1무선전력 전송용 안테나(114a)는 하나의 안테나를 통하여 Qi 방식과 PMA 방식으로 모두 작동될 수도 있다.
이로 인해, 본 발명에 따른 무선전력 수신모듈(100)은 휴대 단말기에 내장되어 동작주파수 또는 작동방식이 상이한 Qi 방식, PMA 방식 및 A4WP 방식을 모두 이용하여 무선 전력을 수신하거나 휴대 단말기에 내장된 배터리를 충전할 수 있다.
여기서, 도면에는 상기 복수 개의 안테나(114a,114b)가 회로기판(112)의 상부면에 패터닝되는 것으로 도시하였지만 이에 한정하는 것은 아니며, 상기 회로기판(112)의 하부면에 패터닝될 수도 있으며, 회로기판(112)의 상부면과 하부면에 각각 형성된 후 비아홀을 통해 서로 전기적으로 연결될 수도 있다.
이와 같은 안테나유닛(110)은 상기 자기장 차폐시트(120)의 일면에 접착층을 매개로 고정될 수 있다. 여기서, 상기 접착층은 접착 성질을 갖는 본드, PVC, 고무 또는 양면 테이프 등일 수 있으며, 전도성을 갖는 성분이 포함될 수도 있다.
한편, 본 발명에 따른 안테나유닛(110)은 무선 전력 전송뿐만 아니라 근거리 데이터 통신을 이용한 데이터 송수신 및 자기 결제 등과 같은 추가적인 기능을 수행하기 위한 안테나가 추가로 포함될 수 있다.
즉, 상기 안테나유닛(110)은 근거리 통신을 위한 NFC(Near field communication) 안테나(114d) 및 마그네틱 보안 전송 방식의 MST(Magnetic secure transmission) 안테나(114c) 중 적어도 어느 하나를 더 포함할 수 있다.
일례로, 상기 안테나유닛(110)은 상기 제1무선전력 전송용 안테나(114a)와 제2무선전력 전송용 안테나(114a)의 사이에 MST 안테나(114c)가 배치되거나(도 6a 참조), 상기 제1무선전력 전송용 안테나(114a)와 제2무선전력 전송용 안테나(114a)의 사이에 NFC 안테나(114d)가 배치될 수 있으며(도 6b 참조), 상기 제1무선전력 전송용 안테나(114a)와 제2무선전력 전송용 안테나(114a)의 사이에 MST 안테나(114c) 및 NFC 안테나(114d)가 모두 배치될 수 있다(도 6c 참조).
이때, 상기 NFC 안테나(114d) 및 MST 안테나(114c)는 제1무선전력 전송용 안테나(114a) 및 제2무선전력 전송용 안테나(114b) 중 주파수 대역이 유사한 각각의 안테나와 근접하도록 배치될 수 있다. 즉, 13.56MHz에서 작동하는 NFC 안테나(114d)는 6.765~6.795MHz에서 작동하는 제2무선전력 전송용 안테나(114b)와 근접하게 배치될 수 있고 70~80kHz에서 작동하는 MST 안테나(114c)는 상기 제1무선전력 전송용 안테나(114a)와 근접하게 배치될 수 있다.
이는, 하나의 시트를 통하여 서로 유사한 대역에서 작동하는 두 개의 안테나의 성능을 모두 높일 수 있도록 하기 위함이다.
일례로, 상기 제1무선전력 전송용 안테나(114a) 및 MST 안테나(114c)는 후술할 제1시트(121)와 대응되는 영역에 배치될 수 있으며, 상기 제2무선전력 전송용 안테나(114b) 및 NFC 안테나(114d)는 후술할 제2시트(122)와 각각 대응되는 영역에 배치될 수 있다.
여기서, 상기 NFC 안테나(114d) 및 제1무선전력 전송용 안테나(114a)가 모두 구비되는 경우 상기 NFC 안테나(114d)는 제1무선전력 전송용 안테나(114a)보다 동작주파수 대역이 높기 때문에 제1무선전력 전송용 안테나(114a)의 외측에 미세한 선폭의 도전성 패턴으로 형성될 수 있고, 제1무선전력 전송용 안테나(114a)는 전력 전송이 요구되며 NFC 안테나(114d)보다 낮은 주파수 대역을 사용하므로 NFC 안테나(114d)의 내측에 NFC 안테나(114d)의 선폭보다 넓은 선폭으로 형성될 수 있다.
상기 자기장 차폐시트(120)는 도 1 및 도 2에 도시된 바와 같이 일정면적을 갖는 판상의 부재로 이루어지며, 상기 안테나유닛(110)에서 발생되는 자기장을 차폐하여 소요의 방향으로 집속시키는 역할을 수행한다.
즉, 상기 자기장 차폐시트(120)는 서로 다른 주파수 대역에서 작동하는 안테나에서 발생하는 자기장이 다른 부품에 영향을 미치는 것을 각각 차단할 수 있도록 제1시트(121), 제2시트(122) 및 제3시트(123)를 포함한다.
본 발명에서, 상기 제1시트(121)는 상기 복수 개의 안테나 중 제1무선전력 전송용 안테나(114a) 및 MST 안테나(114c)에서 방사되는 자기장을 차폐하기 위한 것이고, 상기 제2시트(122)는 제2무선전력 전송용 안테나(114b) 및 NFC 안테나(114d)에서 방사되는 자기장을 차폐하기 위한 것이다. 더불어, 상기 제3시트(123)는 상기 제2시트(122)를 보완하여 상기 제2무선전력 전송용 안테나(114b) 및 NFC 안테나(114d)에서 방사되는 자기장을 차폐하기 위한 것이다.
이를 위해, 상기 제1시트(121)는 상기 제1무선전력 전송용 안테나(114a)와 대응되는 영역에 배치될 수 있고, 상기 제2시트(122)는 상기 제2무선전력 전송용 안테나(114b)와 대응되는 영역에 배치될 수 있으며, 상기 제3시트(123) 역시 상기 제2무선전력 전송용 안테나(114b)와 대응되는 영역을 포함하도록 배치될 수 있다.
이때, 상기 제1시트(121)는 상기 제2무선전력 전송용 안테나(114b)의 내측에 배치되는 제1무선전력 전송용 안테나(114a)의 전체 크기를 포함하는 면적을 가질 수 있다. 이에 따라, 상기 제1시트(121)를 통해 제1무선전력 전송용 안테나(114a)의 전 영역을 커버함으로써 제1무선전력 전송용 안테나에서 발생되는 자기장을 원활하게 차폐할 수 있다.
여기서, 상기 안테나유닛(110)에 MST용 안테나(114c)가 구비되는 경우 상기 제1시트(121)는 상기 제1무선전력 전송용 안테나(114a) 및 MST용 안테나(114c)의 직상부 영역을 포함하도록 구비될 수 있으며, NFC 안테나(114d)가 안테나유닛(110)에 포함되는 경우 상기 제2시트(122) 및 제3시트(123)는 상기 제2무선전력 전송용 안테나(114b) 및 NFC 안테나(114d)의 직상부 영역을 포함하도록 구비될 수 있다. 그러나 상기 NFC 안테나(114d) 및 MST 안테나(114c)의 배치위치를 이에 한정하는 것은 아니며, 상기 제1무선전력 전송용 안테나(114a)가 제1시트(121)와 대응되는 영역에 배치되고 상기 제2무선전력 전송용 안테나(114b)가 제2시트(122)와 대응되는 영역에 배치된다면 상기 NFC 안테나(114d) 및 MST 안테나(114c)의 배치위치는 변경될 수 있음을 밝혀둔다. 일례로, 상기 NFC 안테나(114d)는 상기 제1시트(121)와 대응되는 위치에 배치될 수 있고 상기 MST 안테나(114c) 역시 상기 제2시트(122)와 대응되는 위치에 배치될 수도 있음을 밝혀둔다.
한편, 본 발명에 따른 자기장 차폐시트(120)는 서로 다른 주파수 대역에서 작동하는 각각의 안테나에서 발생되는 자기장을 효율적으로 차폐하여 해당 안테나의 성능을 높이면서도 전체두께를 줄일 수 있다.
이를 위해, 상기 제2시트(122)의 내측에는 상기 제1시트(121)의 전체두께를 수용하기 위한 수용부가 형성될 수 있다. 이에 따라, 상기 제1시트(121)는 상기 수용부에 삽입배치될 수 있으며, 상기 제3시트(123)는 상기 제1시트(121) 및 제2시트(122)의 동일면 상에 적층되어 상기 제1시트(121) 및 제2시트(122)의 일면을 동시에 덮을 수 있다.
즉, 상기 제2시트(122)의 내부에는 상기 제1시트(121)와 대략 동일한 크기를 갖는 수용부가 관통형성될 수 있으며, 상기 제2시트(122)는 상기 제1시트(121)와 대략 동일한 두께를 가질 수 있다. 이에 따라, 상기 제1시트(121)를 제2시트(122)의 수용부에 삽입하게 되면, 상기 제2시트(122)는 제1시트(121)의 전체두께를 수용할 수 있으며, 상기 제1시트(121) 및 제2시트(122)의 일면은 서로 수평면을 형성할 수 있다.
이때, 상기 제3시트(123)는 동일면 상에 액자형으로 배치되는 상기 제1시트(121) 및 제2시트(122)의 경계영역을 덮도록 상기 제1시트(121) 및 제2시트(122)의 일면에 적층될 수 있다.
달리 말하면, 상기 제3시트(123)는 상기 제1시트(121)와 제2시트(122)의 경계선을 포함하는 영역을 덮도록 상기 제1시트(121) 및 제2시트(122)에 적층됨으로써 상기 제1시트(121)와 제2시트(122) 사이에 형성되는 틈새가 상기 제3시트(123)에 의해 덮여질 수 있다.
여기서, 상기 제3시트(123)는 상기 제2무선전력 전송용 안테나(114b)에서 발생되는 자기장을 차폐하여 소요의 방향으로 집속할 수 있도록 상기 제2시트(122)와 동일한 특성을 갖도록 구비될 수 있다.
이에 따라, 자기공진방식으로 작동하는 상기 제2무선전력 전송용 안테나(114b)의 작동시 발생되는 자기장 중 일부가 상기 제1시트(121)와 제2시트(122) 사이의 틈새를 통해 누설되더라도 상기 틈새의 상부에 배치된 제3시트(123)를 통해 차폐될 수 있다.
이로 인해, 본 발명에 따른 자기장 차폐시트(120)는 전체두께를 줄이기 위하여 상기 제1시트(121), 제2시트(122) 및 제3시트(123) 각각의 두께를 얇게하더라도 상기 제2무선전력 전송용 안테나(114b)를 통한 자기공진 방식의 무선전력 전송 또는 무선충전시 제3시트(123)를 통해 제2시트(122)의 역할이 보완됨으로써 전력전송 효율이나 충전효율이 크게 저하되는 것을 방지할 수 있다.
이에 따라, 본 발명에 따른 자기장 차폐시트(120)는 무선전력 수신모듈(100)의 전체두께가 0.4mm 이하, 심지어 0.35mm 이하의 두께로 제한되는 가혹한 조건을 만족시키기 위하여 자기장 차폐시트(120)의 전체두께가 0.2mm의 두께로 박형화된다 하더라도 자기유도방식으로 작동하는 제1무선전력 전송용 안테나(114a)는 물론 자기공진 방식으로 작동하는 제2무선전력 전송용 안테나(114b)에서 요구되는 무선전력 전송효율 또는 무선충전 효율을 만족시킬 수 있다.
이는, 아래의 표 1에서 확인할 수 있다.
충전전력(W) 기준예 충전효율(%) 비교예 충전효율(%) 실시예 충전효율(%)
4 51.27 46.02 50.81
5 50.61 46.96 50.52
여기서, 기준예는 자기장 차폐시트가 자기공진 방식으로 작동하는 무선전력 전송용 안테나를 위한 시트만으로 구성되는 경우의 충전효율이고, 비교예는 자기유도 방식으로 작동하는 무선전력 전송용 안테나를 위한 제1시트가 자기공진 방식으로 작동하는 무선전력 전송용 안테나를 위한 제2시트의 내부에 삽입되는 액자형으로 자기장 차페시트가 구성되는 경우의 충전효율이며, 실시예는 본 발명에 따른 자기장 차폐시트의 충전효율을 나타낸다.
이때, 기준예, 비교예 및 실시예에서 사용되는 자기장 차폐시트의 전체두께는 0.2mm이며, 더욱 자세하게는 자기공진방식으로 작동하는 무선전력 전송용 안테나를 위한 시트로서 두께가 0.2mm인 페라이트 시트를 적용하였으며, 충전전력이 4W 및 5W일 때의 충전효율을 비교하였다.
즉, 위의 표 1에서 확인할 수 있듯이 본 발명에 따른 자기장 차폐시트(120)는 자기공진 방식으로 작동하는 무선전력 전송용 안테나의 최적 조건인 기준예에서의 충전효율과 대략 동등한 충전효율이 나타나는 반면에 액자형으로 자기장 차폐시트가 구성되는 비교예의 경우 기준예에서의 충전효율에 비하여 대략 90%의 충전효율이 나타남을 확인할 수 있다.
이는, 비교예의 경우 두 개의 시트 사이에 발생되는 틈새를 통해 자기장의 일부가 누설됨으로써 전체적인 충전효율이 감소하는 반면에 본 발명에 따른 자기장 차폐시트의 경우 제1시트 및 제2시트 사이로 자기장의 일부가 누설되더라도 제3시트를 통해 보완이 이루어짐으로써 충전효율의 저하가 크게 일어나지 않는다는 것을 확인할 수 있다.
결국, 본 발명에 따른 자기장 차폐시트(120)는 전체두께가 전체적으로 감소하더라도 제2무선전력 전송용 안테나에서의 충전효율이 크게 저하되는 것을 방지할 수 있다.
여기서, 상기 무선전력 수신모듈(100)의 전체두께로 0.4mm를 예시적으로 설명하였지만 이에 한정하는 것은 아니며 매우 얇은 두께인 것으로 이해되어야 할 것임을 밝혀둔다.
더불어, 상기 제2무선전력 전송용 안테나(114b)를 위한 제2시트(122) 및 제3시트(123)는 서로 동일한 두께를 갖도록 구비될 수도 있고 서로 다른 두께를 갖도록 구비될 수도 있다. 즉, 상기 제1무선전력 전송용 안테나(114a)를 위한 제1시트(121)의 두께가 자기유도방식을 통한 무선전력 전송 또는 무선충전시 요구되는 전력전송효율 또는 충전효율을 만족할 수 있는 두께이고 상기 제2시트(122)가 제1시트(121)와 동일한 두께를 가지는 경우 상기 제3시트(123)의 두께는 허용될 수 있는 자기장 차폐시트(120)의 전체두께 중 상기 제1시트(121) 또는 제2시트(122)의 두께를 제외한 나머지 두께 내에서 적절하게 가감될 수 있음을 밝혀둔다.
여기서, 상기 제1시트(121), 제2시트(122) 및 제3시트(123)로 구성되는 자기장 차폐시트(120)는 상부면과 하부면 중 적어도 일면에 접착층(125)을 매개로 부착되는 보호필름(126)이 구비될 수 있다. 이때, 상기 접착층(125)은 비전도성 성분을 포함할 수 있으며, 상기 제1시트(121), 제2시트(122) 및 제3시트(133) 중 적어도 어느 하나의 시트가 플레이크 처리되어 복수 개의 미세 조각으로 분리형성된 경우 미세 조각들 사이에 흡수되어 미세 조각들을 절연하는 역할을 수행할 수도 있다. 더불어, 상기 접착층(125)은 접착제로 구비될 수도 있으며 필름 형태의 기재와, 상기 기재의 일면 또는 양면에 접착제가 도포된 보호필름의 형태로 구비될 수도 있ㅇ으며, 점착성 또는 접착성을 가질 수 있다.
한편, 본 발명에 따른 자기장 차폐시트(120)는 상기 제1무선전력 전송용 안테나(114a)를 위한 제1시트(121)와 상기 제2무선전력 전송용 안테나(114b)를 위한 제2시트(122) 및 제3시트(123)가 소정의 주파수 대역에서 서로 다른 투자율을 갖도록 구비될 수 있다.
즉, 상기 제1시트(121)는 100~350kHz 대역에서 상기 제2시트(122) 및 제3시트(123)보다 상대적으로 높은 투자율을 갖는 재질로 이루어질 수 있다.
일례로, 상기 제1시트(121)는 비정질 합금 및 나노결정립 합금 중 적어도 1종 이상을 포함하는 리본시트가 사용될 수 있고, 상기 제2시트(122) 및 제3시트(123)는 페라이트 시트가 사용될 수 있다.
여기서, 상기 비정질 합금 및 나노 결정립 합금 중 적어도 1종 이상을 포함하는 리본시트는 Fe계 또는 Co계 자성 합금이 사용될 수 있으며, 상기 페라이트 시트는 소결 페라이트 시트일 수 있다. 더불어, 상기 페라이트는 Mn-Zn 페라이트 또는 Ni-Zn 페라이트일 수 있다.
본 발명에서, 상기 비정질 합금 또는 나노결정립 합금은 원자나 분자의 배열상태가 규칙적인 결정질 합금과는 달리 동일한 성분을 갖는다 하더라도 원자나 분자의 배열이 흐트러져 무질서하거나 불규칙한 배열 상태를 가진 금속을 의미한다.
그러나 상기 제1시트(121), 제2시트(122) 및 제3시트(123)를 위에 언급한 종류로 한정하는 것은 아니며 상기 제1무선전력 전송용 안테나(114a) 및 제2무선전력 전송용 안테나(114b)에서 발생되는 자기장을 차폐하여 전력전송효율 또는 무선충전 효율을 높일 수 있도록 자성의 성질을 갖는 재질이면 모두 사용될 수 있음을 밝혀둔다.
한편, 상기 제1무선전력 전송용 안테나(114a)를 위한 제1시트(121)가 비정질 합금 및 나노 결정립 합금 중 적어도 1종 이상을 포함하는 리본시트(121a)인 경우, 도 2에 도시된 바와 같이 상기 리본시트(121a)는 플레이크 처리되어 복수 개의 미세조각으로 분리형성될 수 있으며, 각각의 미세조각들은 비정형으로 이루어질 수 있다. 이는, 전체적인 저항을 높이고 와전류의 발생을 억제하여 와전류에 의한 손실을 줄여줌으로써 충전효율을 높일 수 있도록 하기 위함이다.
더불어, 상기 제1시트(121)가 비정질 합금 및 나노 결정립 합금 중 적어도 1종 이상을 포함하는 리본시트(121a)로 구성되는 경우 상기 제1시트(121)는 플레이크 처리되어 다수 개의 미세조각으로 분리된 복수 개의 리본시트(121a)가 다층으로 적층되어 구성될 수 있다. 이때, 각각의 리본시트(121a) 사이에는 비전도성 성분을 포함하는 접착층(121b)이 배치될 수 있다. 이러한 접착층(121b)은 서로 적층되는 각각의 리본시트(121a) 측으로 적어도 일부가 스며들어 상기 리본시트(121a)를 구성하는 미세 조각들 사이로 이동함으로써 서로 이웃하는 미세 조각들을 절연하는 역할을 수행할 수도 있다. 여기서, 상기 접착층은 접착제로 구비될 수도 있으며 필름 형태의 기재의 일면 또는 양면에 접착제가 도포된 형태로 구비될 수도 있다.
한편, 상기 제2무선전력 전송용 안테나(114b)를 위한 제2시트(122) 및 제3시트(123) 중 적어도 어느 하나는 플레이크 처리되어 복수 개의 미세 조각으로 분리 형성될 수 있다. 바람직하게는 도 2에 도시된 바와 같이 상기 제2시트(122) 및 제3시트(123)가 모두 플레이크 처리되어 복수 개의 미세 조각으로 분리형성될 수 있고, 각각의 미세 조각들은 1㎛ ~ 7mm의 크기로 구비될 수 있으며 비정형으로 랜덤하게 이루어질 수 있다.
이는, 상기 제2시트(122) 및 제3시트(123)를 복수 개의 미세 조각으로 분리형성하여 유연성을 확보함으로써 사용과정이나 운반과정에서 제2시트(122) 및 제3시트(123)가 깨지는 것을 방지할 수 있다. 이를 통해, 크랙 또는 분리시 발생될 수 있는 시트 자체의 특성변화를 줄일 수 있을 뿐만 아니라, 전체적인 저항을 높여 와전류의 발생을 억제함으로써 충전효율을 높일 수 있도록 하기 위함이다.
특히, 상기 제2시트(122) 및 제3시트(123)가 취성이 강한 페라이트 시트로 이루어진 경우 복수 개의 미세 조각으로 분리하여 유연성을 확보함으로써 크랙이나 깨짐이 일어나는 것을 방지하거나 최소화하게 된다. 이로 인해, 크랙 및 깨짐으로 인한 최초 특성값의 변화를 방지함으로써 자기공진방식으로 작동하는 제2무선전력 전송용 안테나(114b)의 무선전력 전송효율이나 충전효율이 크게 저하되는 것을 미연에 방지할 수 있다.
한편, 본 발명에 따른 자기장 차폐시트(120)는 상기 제1시트(121), 제2시트(122) 및 제3시트(123) 중 적어도 어느 하나가 플레이크 처리되어 복수 개의 조각으로 분리형성되는 경우 적어도 한 변이 직선이 아닌 만곡형상으로 이루어지는 미세조각을 포함할 수 있다(도 3 참조). 즉, 각각의 시트를 구성하는 미세조각들의 전체개수 중 적어도 한 변이 만곡형상으로 이루어지는 미세조각의 총 개수가 전체개수의 50% 이상의 비율일 수 있으며, 바람직하게는 70 %이상의 비율일 수 있다.
이는, 적어도 한 변이 직선이 아닌 만곡형상으로 이루어지는 미세조각이 소정의 비율로 포함되도록 시트를 구성함으로써 시트 자체의 유연성을 개선시킬 수 있도록 하기 위함이다.
이를 통해, 사용과정이나 운반과정 중에 상기 차폐시트(120)를 구성하는 제1시트(121), 제2시트(122) 및 제3시트(123)가 외력에 의해 구부러지거나 휘어진다 하더라도 시트 자체의 유연성이 개선되어 각각의 미세조각들이 깨지거나 크랙이 발생하는 것을 미연에 방지할 수 있게 된다. 이에 따라, 각각의 시트에 대한 최초 설계치의 특성(일례로, 투자율)을 항상 유지할 수 있게 된다.
한편, 각각의 시트를 구성하는 전체 미세조각의 총 개수에 대하여 적어도 한 변이 만곡형상으로 이루어지는 미세조각의 비율에 따른 유연성을 테스트한 결과는 아래의 표 2와 같다.
즉, 시트를 수평면에 대하여 30도 각도로 100회 구부렸을 때 보호필름(126)을 가압하여 돌출되는 미세조각의 평균개수가 10개 이상인 경우를 불량품, 10개 미만인 경우를 합격품으로 분류하였다.
시트를 수평면에 대하여 30도 각도로 100회 구부렸을 때 보호필름을 가압하여 돌출되는 미세조각의 평균개수
만곡형상 미세조각비율 30% 50% 70%
미세조각의 평균개수 20 9 3
불량여부 X O O
위의 표 2에서 확인할 수 있듯이, 각가의 시트를 구성하는 전체 미세조각의 총 개수에 대하여 적어도 한 변이 만곡형상으로 이루어지는 미세조각의 비율이 50% 미만인 경우 보호필름 측으로 돌출되는 미세조각의 총 개수가 10개 이상인 것을 확인할 수 있었으며, 50% 이상인 경우 보호필름 측으로 돌출되는 미세조각의 총 개수가 10개 미만으로 발생하는 것을 확인할 수 있었다.
달리 말하면, 시트를 수평면에 대하여 30도 각도로 100회 구부렸을 때 보호필름을 가압하는 미세조각의 평균개수가 적다는 것은 시트 자체의 유연성이 개선되어 휘어짐이나 구부러짐에 의하여 미세조각이 파손될 가능성이 낮다는 것을 의미하므로, 시트 자체의 최초 특성치의 변화가 미미하다는 것을 의미하게 된다.
특히, 제1시트(121)를 둘러싸도록 배치되는 제2시트(122)와 상기 제1시트(121) 및 제2시트(122)를 동시에 덮도록 적층되는 제3시트(123)의 경우 외력에 의한 휘어짐이나 구부러짐이 제1시트(121)에 비하여 상대적으로 많이 발생하므로 상기 제2시트(122) 및 제3시트(123)는 각각의 시트를 구성하는 전체 미세조각의 총 개수에 대하여 적어도 한 변이 만곡형상으로 이루어지는 미세조각의 비율이 70% 이상이 되도록 구성하는 것이 바람직하다.
한편, 상기 제1시트(121), 제2시트(122) 및 제3시트(123)가 플레이크 처리되어 복수 개의 미세 조각으로 분리형성되는 경우 상기 제2시트(122) 및 제3시트(123)를 구성하는 미세조각들의 평균입경은 상기 제1시트(121)를 구성하는 미세조각들의 평균입경보다 더 큰 크기를 갖도록 구비될 수 있다. 바람직하게는, 상기 제2시트(122) 및 제3시트(123)를 구성하는 미세 조각들의 평균입경은 상기 제1시트(121)를 구성하는 미세조각들의 평균입경에 비하여 1.2 ~ 2배의 크기를 갖도록 구비될 수 있다. 일례로, 상기 제1시트(121)를 구성하는 미세조각들의 평균입경은 1㎛ ~ 4mm일 수 있으며, 상기 제2시트(122) 및 제3시트(123)를 구성하는 미세조각들의 평균입경은 4mm ~ 6mm일 수 있다.
여기서, 평균입경은 레이저 회절식 입도분포계에 의해 측정된 체적 평균 지름을 말한다.
일례로, 상기 제1시트(121)가 비정질 합금 및 나노 결정립 합금 중 적어도 1종 이상을 포함하는 리본시트로 구성되고 상기 제2시트(122) 및 제3시트(123)가 페라이트 시트로 구성되는 경우, 상기 제2시트(122) 및 제3시트(123)를 구성하는 페라이트 조각의 평균입경은 상기 제1시트(121)를 구성하는 리본조각의 평균입경보다 더 큰 크기를 갖도록 구비될 수 있다.
이는, 페라이트 조각의 크기가 너무 커지게 되면, 일례로 상기 제1시트(121)를 구성하는 리본조각의 평균입경보다 2배 이상의 크기를 갖게 되면 시트자체의 유연성이 저하되며, 상기 제1시트(121)를 구성하는 리본조각의 평균입경보다 페라이트 조각의 평균입경이 1.2배 이하의 크기를 갖게 되면 페라이트가 본래 가지는 기능을 충분히 발휘할 수 없기 때문이다.
상술한 본 발명에 따른 자기장 차폐시트(120) 및 이를 포함하는 무선전력 수신모듈(100)은 휴대단말기와 같은 전자기기에 적용되는 경우 상기 휴대단말기의 백커버에 부착되는 형태로 구비될 수도 있고, 상기 휴대단말기가 일체형으로 구현되는 경우 상기 휴대단말기의 리어 케이스에 부착되는 형태로 내장될 수도 있음을 밝혀둔다.
이상에서 본 발명의 일 실시예에 대하여 설명하였으나, 본 발명의 사상은 본 명세서에 제시되는 실시 예에 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서, 구성요소의 부가, 변경, 삭제, 추가 등에 의해서 다른 실시 예를 용이하게 제안할 수 있을 것이나, 이 또한 본 발명의 사상범위 내에 든다고 할 것이다.

Claims (18)

  1. 자기유도방식으로 작동하는 제1무선전력 전송용 안테나에서 발생되는 자기장을 차폐하기 위한 제1시트;
    상기 제1시트의 두께를 수용하기 위한 수용부가 구비되고 자기공진방식으로 작동하는 제2무선전력 전송용 안테나에서 발생되는 자기장을 차폐하기 위한 제2시트; 및
    상기 제1시트 및 제2시트를 동시에 덮도록 상기 제1시트 및 제2시트의 동일면 상에 적층되어 상기 제2무선전력 전송용 안테나에서 발생되는 자기장을 차폐하는 제3시트;를 포함하는 무선전력전송용 자기장 차폐시트.
  2. 제 1항에 있어서,
    상기 제3시트는 상기 제1시트 및 제2시트의 경계영역을 덮도록 배치되는 무선전력전송용 자기장 차폐시트.
  3. 제 1항에 있어서,
    상기 제1시트는 비정질 합금 및 나노 결정립 합금 중 적어도 1종 이상을 포함하는 리본시트이고, 상기 제2시트 및 제3시트는 페라이트 시트인 무선전력전송용 자기장 차폐시트.
  4. 제 3항에 있어서,
    상기 제1시트, 제2시트 및 제3시트 중 적어도 어느 하나는 플레이크 처리되어 다수 개의 미세조각으로 분리형성되는 무선전력전송용 자기장 차폐시트.
  5. 제 4항에 있어서,
    상기 다수 개의 미세조각은 적어도 한 변이 직선이 아닌 만곡형상으로 이루어진 미세조각을 포함하는 무선전력전송용 자기장 차폐시트.
  6. 제 5항에 있어서,
    상기 다수 개의 미세조각의 전체개수 중 적어도 한 변이 만곡형상으로 이루어진 미세조각의 개수가 50% 이상인 무선전력전송용 자기장 차폐시트.
  7. 제 4항에 있어서,
    상기 제1시트 및 제2시트가 플레이크 처리되어 다수 개의 미세조각으로 구성되는 경우, 상기 제2시트를 구성하는 미세조각의 평균입경은 상기 제1시트를 구성하는 미세조각의 평균입경보다 더 큰 크기를 갖도록 형성되는 무선전력전송용 자기장 차폐시트.
  8. 제 4항에 있어서,
    상기 다수 개의 미세조각은 비정형으로 이루어지는 무선전력전송용 자기장 차폐시트.
  9. 제 4항에 있어서,
    상기 다수 개의 미세 조각들은 서로 이웃하는 미세 조각들 간에 전체적으로 절연되거나 부분적으로 절연되는 무선전력전송용 자기장 차폐시트.
  10. 제 3항에 있어서,
    상기 제1시트는 비정질 합금 및 나노 결정립 합금 중 적어도 1종이상을 포함하는 리본시트가 다층으로 적층되어 구성되는 무선전력전송용 자기장 차폐시트.
  11. 제 3항에 있어서,
    상기 페라이트 시트는 Mn-Zn계 페라이트 또는 Ni-Zn계 페라이트로 이루어진 무선전력전송용 자기장 차폐시트.
  12. 자기유도 방식으로 작동하는 제1무선전력 전송용 안테나 및 자기공진 방식으로 작동하는 제2무선전력 전송용 안테나를 포함하는 안테나유닛; 및
    상기 안테나유닛의 일면에 배치되고 상기 안테나유닛에서 발생되는 자기장을 차폐하여 소요의 방향으로 집속시킬 수 있도록 제1항 내지 제 11항 중 어느 한 항에 기재된 무선전력전송용 자기장 차폐시트;를 포함하는 무선전력 수신모듈.
  13. 제 12항에 있어서,
    상기 안테나유닛은 MST 안테나를 포함하고,
    상기 제1무선전력 전송용 안테나 및 MST 안테나는 상기 제1시트와 대응되는 위치에 배치되는 무선전력 수신모듈.
  14. 제 12항에 있어서,
    상기 안테나유닛은 NFC 안테나를 포함하고,
    상기 제2무선전력 전송용 안테나 및 NFC 안테나는 상기 제2시트와 대응되는 위치에 배치되는 무선전력 수신모듈.
  15. 제 12항에 있어서,
    상기 안테나유닛은 MST 안테나 및 NFC 안테나를 포함하고,
    상기 제1무선전력 전송용 안테나 및 MST 안테나는 상기 제1시트와 대응되는 위치에 배치되고,
    상기 제2무선전력 전송용 안테나 및 NFC 안테나는 상기 제2시트와 대응되는 위치에 배치되는 무선전력 수신모듈.
  16. 제 12항에 있어서,
    상기 안테나유닛 및 자기장 차폐시트의 두께를 합한 총 두께는 0.3mm ~ 0.4mm인 무선전력 수신모듈.
  17. 제 12항에 있어서,
    상기 제2시트 및 제3시트의 두께를 합한 두께는 0.2mm인 무선전력 수신모듈.
  18. 제 12항에 기재된 무선전력 수신모듈이 백커버 또는 리어케이스에 구비된 휴대 단말기.
PCT/KR2016/012257 2015-10-30 2016-10-28 무선전력 전송용 자기장 차폐시트 및 이를 포함하는 무선전력 수신모듈 WO2017074104A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/770,288 US11087912B2 (en) 2015-10-30 2016-10-28 Magnetic field shield sheet for wireless power transmission and wireless power receiving module comprising same
JP2018522019A JP6714082B2 (ja) 2015-10-30 2016-10-28 無線電力伝送用磁場遮蔽シート及びこれを含む無線電力受信モジュール
CN201680076608.XA CN108432358B (zh) 2015-10-30 2016-10-28 无线电力传输用磁场屏蔽片以及包括其的无线电力接收模块

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150152496A KR101939663B1 (ko) 2015-10-30 2015-10-30 무선충전용 자기장 차폐시트 및 이를 포함하는 무선전력 수신모듈
KR10-2015-0152496 2015-10-30

Publications (1)

Publication Number Publication Date
WO2017074104A1 true WO2017074104A1 (ko) 2017-05-04

Family

ID=58630668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/012257 WO2017074104A1 (ko) 2015-10-30 2016-10-28 무선전력 전송용 자기장 차폐시트 및 이를 포함하는 무선전력 수신모듈

Country Status (5)

Country Link
US (1) US11087912B2 (ko)
JP (1) JP6714082B2 (ko)
KR (1) KR101939663B1 (ko)
CN (1) CN108432358B (ko)
WO (1) WO2017074104A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019208000A (ja) * 2018-05-29 2019-12-05 サンウェイ コミュニケーション (ジアンスー) カンパニー リミテッド ワイヤレス充電モジュール用シールドシート及びワイヤレス充電モジュール
CN111566765A (zh) * 2018-03-13 2020-08-21 阿莫善斯有限公司 大面积型复合磁场屏蔽垫及包括此的无线电力传输模块
CN112655115A (zh) * 2018-09-07 2021-04-13 阿莫技术有限公司 组合天线模块

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170092238A (ko) * 2016-02-03 2017-08-11 엘지이노텍 주식회사 무선 전력 충전을 위한 자성 차폐재 및 무선 전력 수신 장치
KR102122392B1 (ko) * 2017-09-18 2020-06-12 주식회사 아모센스 자기장 차폐시트 및 이를 포함하는 무선전력 전송모듈
EP3736839A1 (en) 2019-05-06 2020-11-11 AT & S Austria Technologie & Systemtechnik Aktiengesellschaft Component carrier comprising embedded magnet stack
CN110138104B (zh) * 2019-06-14 2023-11-17 青岛大学 一种用于无线电能传输磁耦合器的复合屏蔽层
CN112103642B (zh) * 2019-06-18 2021-11-09 阿莫先恩电子电器有限公司 磁场屏蔽片及其制造方法、无线电力接收模块及终端设备
KR102175380B1 (ko) * 2020-10-23 2020-11-06 주식회사 아모센스 대면적형 복합 자기장 차폐시트 및 이를 포함하는 무선전력 전송모듈

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101163574B1 (ko) * 2012-03-13 2012-07-06 주식회사 나노맥 무선인식 및 무선충전 겸용 전자파흡수체와 이를 포함하는 무선인식 및 무선충전 겸용 무선안테나, 그것의 제조방법
KR101455729B1 (ko) * 2013-03-06 2014-11-03 (주)프론티어 근거리 통신 안테나 모듈 및 제조 방법, 이를 포함한 무선 통신 단말기의 배터리 패키지와 후면 커버 패키지
KR20150045421A (ko) * 2013-03-05 2015-04-28 주식회사 아모센스 자기장 및 전자파 차폐용 복합시트 및 이를 구비하는 안테나 모듈
KR101534542B1 (ko) * 2012-11-21 2015-07-07 동부전자소재 주식회사 무선 충전 및 근거리 통신 동시 구현용 하이브리드 자성시트 및 이를 포함하는 하이브리드 전자부품 모듈
KR101548276B1 (ko) * 2011-11-08 2015-08-31 주식회사 아모센스 하이브리드형 자기장 차폐시트, 안테나 장치 및 이를 이용한 휴대 단말기기

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1426982A4 (en) * 2001-08-31 2004-11-17 Tdk Corp LAMINATED SOFT MAGNETIC LINK, SOFT MAGNETIC SHEET AND PRODUCTION METHOD FOR A LAMINATED SOFT MAGNETIC LINK
JP5170232B2 (ja) * 2008-02-28 2013-03-27 日本電気株式会社 電磁シールド構造およびそれを用いた無線装置、電磁シールドの製造方法
JP5685827B2 (ja) * 2010-03-29 2015-03-18 ソニー株式会社 磁性シート、アンテナモジュール及び電子機器
JP2012186949A (ja) * 2011-03-07 2012-09-27 Hitachi Maxell Energy Ltd 磁界共鳴を利用した非接触電力伝送装置
JP2012244763A (ja) * 2011-05-19 2012-12-10 Sony Corp 給電装置、給電システムおよび電子機器
CN104011814B (zh) * 2011-12-21 2017-08-15 阿莫先恩电子电器有限公司 磁场屏蔽片及其制造方法和无线充电器用接收装置
KR20130090121A (ko) * 2012-02-03 2013-08-13 삼성전자주식회사 기능성 시트
JP6268651B2 (ja) * 2012-02-03 2018-01-31 アモセンス カンパニー,リミテッド デジタイザ用磁場遮蔽シートおよびその製造方法、並びにこれを利用した携帯端末機器
WO2013183913A1 (ko) * 2012-06-04 2013-12-12 주식회사 아모센스 디지타이저용 자기장 차폐시트 및 그의 제조방법과 이를 이용한 휴대 단말기기
US9640304B2 (en) * 2012-07-12 2017-05-02 Skc Co., Ltd. Ceramic laminate sheet with flexibility and preparation method thereof
KR101399024B1 (ko) * 2012-12-14 2014-05-27 주식회사 아모센스 자기장 차폐시트 및 그 제조방법과 이를 이용한 휴대 단말기
KR101399022B1 (ko) * 2012-12-27 2014-05-27 주식회사 아모센스 전자파 흡수시트 및 그의 제조방법과 이를 포함하는 전자기기
KR101279856B1 (ko) 2013-04-12 2013-06-28 주식회사 케이더파워 근거리 통신용 안테나 및 무선 충전 전력전달용 코일을 실장하는 안테나 장치
US20140320369A1 (en) * 2013-04-24 2014-10-30 Broadcom Corporation Shielding layer for a device having a plurality of antennas
US9672976B2 (en) * 2013-10-28 2017-06-06 Nokia Corporation Multi-mode wireless charging
KR20150089239A (ko) * 2014-01-27 2015-08-05 엘지이노텍 주식회사 무선 전력 수신 장치
CN104900383B (zh) * 2015-04-27 2017-04-19 安泰科技股份有限公司 无线充电用单/多层导磁片及其制备方法
KR101548278B1 (ko) * 2015-04-28 2015-08-28 주식회사 아모센스 하이브리드형 자기장 차폐시트 및 이를 이용한 안테나 장치
US10931152B2 (en) * 2015-07-20 2021-02-23 Amosense Co., Ltd. Method of manufacturing magnetic field shielding sheet and magnetic field shielding sheet formed thereby
KR102405414B1 (ko) * 2015-10-13 2022-06-07 주식회사 위츠 자기장 차폐 시트 및 이를 포함하는 무선 충전 장치
US10327365B2 (en) * 2015-11-23 2019-06-18 Amosense Co., Ltd. Magnetic field shielding unit and multi-functional complex module including same
KR102452781B1 (ko) * 2015-12-15 2022-10-12 삼성전자주식회사 차폐 구조를 포함하는 전자 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101548276B1 (ko) * 2011-11-08 2015-08-31 주식회사 아모센스 하이브리드형 자기장 차폐시트, 안테나 장치 및 이를 이용한 휴대 단말기기
KR101163574B1 (ko) * 2012-03-13 2012-07-06 주식회사 나노맥 무선인식 및 무선충전 겸용 전자파흡수체와 이를 포함하는 무선인식 및 무선충전 겸용 무선안테나, 그것의 제조방법
KR101534542B1 (ko) * 2012-11-21 2015-07-07 동부전자소재 주식회사 무선 충전 및 근거리 통신 동시 구현용 하이브리드 자성시트 및 이를 포함하는 하이브리드 전자부품 모듈
KR20150045421A (ko) * 2013-03-05 2015-04-28 주식회사 아모센스 자기장 및 전자파 차폐용 복합시트 및 이를 구비하는 안테나 모듈
KR101455729B1 (ko) * 2013-03-06 2014-11-03 (주)프론티어 근거리 통신 안테나 모듈 및 제조 방법, 이를 포함한 무선 통신 단말기의 배터리 패키지와 후면 커버 패키지

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111566765A (zh) * 2018-03-13 2020-08-21 阿莫善斯有限公司 大面积型复合磁场屏蔽垫及包括此的无线电力传输模块
JP2019208000A (ja) * 2018-05-29 2019-12-05 サンウェイ コミュニケーション (ジアンスー) カンパニー リミテッド ワイヤレス充電モジュール用シールドシート及びワイヤレス充電モジュール
CN112655115A (zh) * 2018-09-07 2021-04-13 阿莫技术有限公司 组合天线模块

Also Published As

Publication number Publication date
KR20170050665A (ko) 2017-05-11
CN108432358B (zh) 2020-02-07
JP2018535634A (ja) 2018-11-29
US11087912B2 (en) 2021-08-10
JP6714082B2 (ja) 2020-06-24
CN108432358A (zh) 2018-08-21
US20180315534A1 (en) 2018-11-01
KR101939663B1 (ko) 2019-01-17

Similar Documents

Publication Publication Date Title
WO2017074104A1 (ko) 무선전력 전송용 자기장 차폐시트 및 이를 포함하는 무선전력 수신모듈
WO2017030289A1 (ko) 안테나유닛 및 이를 포함하는 무선전력 전송모듈
WO2017135687A1 (ko) 무선전력 전송모듈용 차폐유닛 및 이를 포함하는 무선전력 전송모듈
WO2016159551A1 (ko) 무선 충전용 방열유닛 및 이를 포함하는 무선전력 충전모듈
WO2016186443A1 (ko) 콤보 안테나유닛 및 이를 포함하는 무선전력 수신모듈
WO2016190649A1 (ko) 무선전력 수신모듈
WO2017023080A1 (ko) 차량용 무선전력 송신모듈
WO2016114528A1 (ko) 방열유닛 및 이를 구비한 무선전력 송수신장치
WO2017078481A1 (ko) 콤보형 안테나 모듈
WO2017007196A1 (ko) 방열시트 및 이를 포함하는 무선전력 전송모듈
WO2017014430A1 (ko) 무선전력 송신모듈
WO2017069581A1 (ko) 차량용 안테나 모듈
WO2017007231A1 (ko) 무선 충전과 nfc 통신을 위한 무선 안테나 및 이를 적용한 무선 단말기
WO2016186444A1 (ko) 무선충전용 차폐유닛 및 이를 포함하는 무선전력 전송모듈
WO2016072779A1 (ko) 무선충전기용 송신장치
WO2014204153A2 (ko) 수신 안테나 및 이를 포함하는 무선 전력 수신 장치
WO2017209481A1 (ko) 자기차폐용 하이브리드 메탈시트 및 이를 포함하는 무선전력 전송모듈
KR102565032B1 (ko) 무선전력전송용 일체형 자기장 차폐성 방열유닛 및 이를 포함하는 무선전력 전송 모듈
CN110710122B (zh) 车辆用无线电力发射装置
WO2017048062A1 (ko) 근거리 통신 안테나 모듈 및 이를 구비하는 휴대 단말
WO2017142350A1 (ko) 휴대단말기용 백커버 및 이를 포함하는 백커버 일체형 안테나모듈
WO2019172595A1 (ko) 무선전력 송신장치
WO2017200236A1 (ko) 안테나 모듈과 그 제조 방법 및 이를 구비한 휴대용 단말기
WO2016190708A1 (ko) 무선전력 전송용 안테나유닛 및 이를 포함하는 무선전력 송신모듈
WO2018147649A1 (ko) 자성시트 및 이를 포함하는 무선 전력 수신 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16860287

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15770288

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2018522019

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16860287

Country of ref document: EP

Kind code of ref document: A1