Nothing Special   »   [go: up one dir, main page]

WO2017073292A1 - Endoscopic imaging unit - Google Patents

Endoscopic imaging unit Download PDF

Info

Publication number
WO2017073292A1
WO2017073292A1 PCT/JP2016/079916 JP2016079916W WO2017073292A1 WO 2017073292 A1 WO2017073292 A1 WO 2017073292A1 JP 2016079916 W JP2016079916 W JP 2016079916W WO 2017073292 A1 WO2017073292 A1 WO 2017073292A1
Authority
WO
WIPO (PCT)
Prior art keywords
flare
image
optical
optical system
circular
Prior art date
Application number
PCT/JP2016/079916
Other languages
French (fr)
Japanese (ja)
Inventor
片倉正弘
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2017541408A priority Critical patent/JPWO2017073292A1/en
Publication of WO2017073292A1 publication Critical patent/WO2017073292A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes

Definitions

  • the present invention relates to an endoscope imaging unit.
  • a configuration in which a self-portrait is divided into two to form an image, and the two acquired images are combined by image processing.
  • a configuration is also known in which two images, a left eye image and a right eye image, are combined by image processing to obtain a stereoscopic image. In this way, it may be necessary to combine two optical images.
  • one flare stop is provided in the optical path.
  • the flare stop has a non-circular opening such as a rectangle.
  • the present invention has been made in view of such problems, and an object thereof is an endoscope imaging unit for forming two optical images on one imaging element and performing image synthesis.
  • An object of the present invention is to provide an endoscope imaging unit capable of obtaining a good image quality with little flare.
  • One aspect of the endoscope imaging unit according to the present invention is: In an endoscope imaging unit that forms two optical images formed separately by an optical system having two optical paths on one imaging element,
  • the optical system having two optical paths includes a negative first lens disposed closest to the object side, a first flare-preventing non-circular stop disposed on the image side of the first lens, and a first anti-flare non-circular stop. And a second anti-flare noncircular stop disposed on the image side, and satisfying the following conditional expression (1).
  • One embodiment of the present invention is an endoscope imaging unit for forming two optical images on one imaging element and performing image synthesis, and endoscope imaging capable of obtaining a good image quality with little flare There is an effect that a unit can be provided.
  • an endoscope imaging unit 100 that forms two optical images separately formed by an optical system having two optical paths on one imaging element 22,
  • an objective optical system LNS having two optical paths includes a negative first lens L1 disposed closest to the object side, a first anti-flare noncircular stop FS1 disposed on the image side of the first lens L1, and A second flare-preventing non-circular stop FS2 disposed on the image side of the first flare-preventing non-circular stop FS1, and satisfying the following conditional expression (1).
  • the endoscope imaging units 100 and 120 each receive two optical images separately formed by two optical paths by the optical path splitting unit 20 in one imaging element 22. It is used for the endoscope 1 that forms an image and obtains one endoscope image by performing image synthesis. That is, the optical system having two optical paths includes an objective optical system LNS having one optical axis AX and an optical path dividing unit 20 that divides the optical path into two.
  • the endoscope imaging units 100 and 120 according to the present embodiment are suitable for increasing the depth of field.
  • an endoscope imaging in which two optical images separately formed by objective optical systems LNSa and LNSb having two optical paths are formed on one imaging element 22.
  • the objective optical systems LNSa and LNSb having two optical paths are a negative first lens L1 disposed closest to the object side and a first flare-preventing noncircular diaphragm disposed on the image side of the first lens L1.
  • FS1 and a second flare-preventing non-circular stop FS2 disposed on the image side of the first flare-preventing non-circular stop FS1, and satisfying the above-described conditional expression (1).
  • the endoscope imaging unit 110 forms two optical images separately formed by the objective optical systems LNSa and LNSb having two optical paths on one imaging element 22.
  • the endoscope 2 is used for the endoscope 2 that obtains one endoscopic image by performing image synthesis.
  • the endoscope imaging unit 110 according to the present embodiment is suitable for obtaining a stereoscopic image based on a right eye image and a left eye image.
  • the “non-circular diaphragm” is a diaphragm having openings having different shapes in two orthogonal directions. Parameters S01_v and S02_v are shown in FIGS. 2A and 2B, respectively. The shapes of the first flare-preventing non-circular stop FS1 and the second flare-preventing non-circular stop FS2 will be described later.
  • FIG. 3A shows two optical images in the two effective imaging regions 22a and 22b of the endoscope imaging units 100 and 120 according to the first embodiment.
  • FIG. 3B shows two optical images in the two effective imaging regions 22a and 22b of the endoscope imaging unit 110 according to the second embodiment.
  • a direction in which images are adjacent to each other is a V direction
  • a direction perpendicular to the V direction is an H direction.
  • FIG. 10A shows a configuration of an optical path splitting unit 20 that splits an optical path from one objective optical system LNS into two. Details of the optical path splitting unit 20 will be described later.
  • the configuration of the optical path dividing unit 20 will be briefly described.
  • the optical path dividing unit 20 includes a polarization beam splitter 21 that divides a subject image into two optical images with different focus points, and an imaging element 22 that captures two optical images and acquires two images.
  • the imaging element 22 has an effective imaging area A and an effective imaging area B adjacent to the effective imaging area A.
  • the optical path dividing unit 20 divides the light from one objective optical system LNS into an optical path having the optical axis AXa and an optical path having the optical axis AXb using polarized light.
  • the two optical images are formed on the effective imaging area A and the effective imaging area B, respectively.
  • FIG. 11 is a diagram showing the flare FL generated in this way.
  • an objective optical system LNSa having an optical axis AXa and an objective optical system LNSb having an optical axis AXb are arranged as shown in FIG. A configuration for obtaining two optical images can be employed.
  • the flare FL indicated by the broken line generated in the optical path having the optical axis AXb may be reflected in the effective imaging area A for the other image. Also in this case, a flare FL as shown in FIG. 11 occurs.
  • the endoscope imaging units 100, 110, and 120 have the objective optical systems LNS, LNSa, and LNSb having two optical paths as the most object.
  • the first negative lens L1 disposed on the side, the first flare-preventing non-circular stop FS1 disposed on the image side of the first lens L1, and the first flare-preventing non-circular stop FS1 are disposed on the image side.
  • the flare FL as described above can be efficiently shielded by the two stops, the first flare prevention non-circular stop FS1 and the second flare prevention non-circular stop FS2.
  • FIG. 2A is a diagram illustrating the shape of the non-circular opening AP1 of the first flare-preventing non-circular stop FS1.
  • FIG. 2B is a diagram illustrating the shape of the non-circular opening AP2 of the second flare-preventing non-circular stop FS2.
  • the openings of the first flare-preventing non-circular stop FS1 and the second flare-preventing non-circular stop FS2 include shapes such as an oval, quadrangular (rectangular), and octagonal shape.
  • the configuration in which two images are arranged in the longitudinal opposite side direction with the lowest image height can minimize the outer diameter of the endoscope. preferable.
  • the image height in the longitudinal opposite side direction is smaller than the image height in the diagonal direction, the ray height is also reduced.
  • a non-circular diaphragm having a rectangular opening is used. This makes it possible to create a large opening in the diagonal direction where the image height is large and a small opening in the longitudinal opposite side direction where the image height is small. As a result, flare, which is an unnecessary light beam, can be shielded efficiently.
  • arranging the two images in the lateral opposite direction may make the outer diameter of the endoscope the smallest.
  • the direction in which the two optical images are adjacent to each other is referred to as the V direction.
  • Conditional expression (1) prescribes the ratio of the opening diameters in the V direction of the first flare prevention non-circular diaphragm FS1 and the second flare prevention non-circular diaphragm FS2.
  • conditional expression (1) If the upper limit value of conditional expression (1) is exceeded, the diameter in the V direction of the first flare-preventing non-circular stop FS1 becomes too large, and flare cannot be cut.
  • the opening diameter in the V direction of the non-circular diaphragm is different in the vertical direction, a small opening diameter value is used.
  • the endoscope imaging units 100, 110, and 120 according to the first embodiment and the second embodiment, at least two first and second flare-preventing non-circular shapes in the objective optical systems LNS, LNSa, and LNSb.
  • the stops FS1 and FS2 By arranging the stops FS1 and FS2 and selecting an appropriate opening shape that satisfies the conditional expression (1), the occurrence of the flare FL as described above can be suppressed.
  • conditional expression (1) ′ instead of conditional expression (1).
  • conditional expression (1) ′′ instead of conditional expression (1).
  • ih_v is the image height in the V direction
  • S02_v is a radius in the V direction of the second anti-flare non-circular diaphragm, It is.
  • Conditional expression (2) defines the ratio between the image height in the longitudinal opposite side direction and the aperture diameter of the second flare-preventing non-circular stop FS2.
  • conditional expression (2) If the upper limit value of conditional expression (2) is exceeded, the opening diameter of the second flare prevention non-circular stop FS2 becomes too small. For this reason, the peripheral light amount is increased, which makes it difficult to observe the peripheral region, which is not preferable.
  • conditional expression (2) If the lower limit value of conditional expression (2) is not reached, the opening diameter of the second flare-preventing non-circular stop FS2 becomes too large, and flare occurs, which is not preferable.
  • conditional expression (2) ′ instead of conditional expression (2).
  • conditional expression (2) ′′ instead of conditional expression (2).
  • ih_AB is the distance between the optical axes on the image sensor
  • S02_v is a radius in the V direction of the second anti-flare non-circular diaphragm, It is.
  • Conditional expression (3) prescribes the ratio of the distance between the optical axes AXa and AXb on the image sensor 22 and the aperture diameter of the second flare prevention non-circular stop FS2.
  • 3A and 3B show the parameter ih_AB.
  • conditional expression (3) If the upper limit value of conditional expression (3) is exceeded, the image formation positions of the two images are far apart, so that the flare does not enter the adjacent effective imaging region.
  • conditional expression (3) ′ instead of conditional expression (3).
  • conditional expression (3) ′ 2.0 ⁇ ih_AB / S02_v ⁇ 8.0 (3) ′
  • conditional expression (3) ′′ instead of conditional expression (3).
  • the optical system having two optical paths includes an objective optical system LNS having one optical axis AX, an optical path splitting unit 20 (optical path splitting optical system) that splits the optical path into two, and
  • the second flare prevention non-circular stop FS2 is preferably disposed between the objective optical system LNS and the optical path dividing unit 20.
  • Two images without parallax (convergence angle) can be obtained by comprising one objective optical system LNS and the optical path splitting unit 20 that splits the optical path into two.
  • the optical system having two optical paths is composed of objective optical systems LNSa and LNSb having two optical axes AXa and AXb.
  • the objective optical system LNS includes, in order from the object side, a negative first lens group G1, a movable positive second lens group G2, A positive third lens group G3 is desirable.
  • the negative first lens group G1, the movable positive second lens group G2, and the positive third lens group G3 are configured to reduce the number of lenses in each group. Can do. Thereby, shortening of the total lens length and cost reduction can be achieved. In addition, a long back focus can be secured while suppressing the size of the lens in the radial direction. Furthermore, it becomes possible to change the focus position by moving the positive second lens group G2, and it is possible to suppress aberration fluctuations and field angle fluctuations when the focus changes.
  • the objective optical system LNS includes, in order from the object side, the first lens group G1, the aperture stop S, and the positive rear group. It is desirable to be composed of
  • An endoscope objective optical system having a long back focus is configured with a small number of lenses by including a negative or positive first lens group G1, an aperture stop S, and a positive rear group in order from the object side. be able to.
  • the objective optical system LNS includes, in order from the object side, a positive first lens group G1, a movable negative second lens group G2, A positive third lens group G3 is desirable.
  • the positive first lens group G1, the movable negative second lens group G2, and the positive third lens group G3 are configured to reduce the number of lenses in each lens group. Can do. Thereby, shortening of the total lens length and cost reduction can be achieved. It is possible to change the angle of view by moving the negative second lens group G2, and it is possible to suppress aberration fluctuations when the angle of view changes.
  • the objective optical systems LNSa and LNSb having the two optical axes AXa and AXb at least one of the first flare prevention non-circular diaphragm FS1 and the second flare prevention non-circular diaphragm FS2 is used.
  • the diaphragm preferably has two non-circular openings APa and APb.
  • enp_wide is the entrance pupil position of the objective optical system LNS, LNSa, LNSb in the widest angle state
  • S01_v is a radius in the V direction of the first non-circular diaphragm for preventing flare, It is.
  • Conditional expression (4) defines the ratio between the entrance pupil position and the opening diameter of the first flare-preventing non-circular stop FS1.
  • the first flare-preventing non-circular stop FS1 is too large for the light ray height on the image plane side of the first lens L1, and flare is preferably generated. Absent.
  • the non-circular openings AP1 and AP2 included in at least one of the first flare-preventing non-circular stop FS1 and the second flare-preventing non-circular stop FS2 have the optical axes AX and AXa.
  • the non-circular opening AP1 has a tapered shape 32 inclined in one direction in a cross section along the optical axes AX, AXa, and AXb. Processing the taper shape from both sides (object side and image surface side) is not preferable because the processed surface is tilted and flare occurs. Further, as shown in FIGS. 2A and 2B, by having the cutout portions 30 and 31, the direction of the tapered shape 32 of the first and second non-circular diaphragms FS1 and FS2 can be easily recognized.
  • the object-side surface of the first lens L1 can be formed into a planar shape so that the first lens L1 can also function as a cover glass.
  • FIGS. 7A and 7B are diagrams illustrating a cross-sectional configuration of the objective optical system LNS of the endoscope imaging unit 100.
  • FIG. 7A is a diagram illustrating a cross-sectional configuration of the objective optical system LNS in a normal observation state (a long distance object point).
  • FIG. 7B is a diagram illustrating a cross-sectional configuration of the objective optical system LNS in the close-up observation state (short-distance object point).
  • the objective optical system LNS includes, in order from the object side, a first lens group G1 having a negative refractive power, an aperture stop S, a second lens group G2 having a positive refractive power, and a positive refractive power.
  • the second lens group G2 moves on the optical axis AX to the image side, and corrects the change in the focal position accompanying the change from the normal observation state to the close observation state.
  • the first lens group G1 includes a planoconcave negative lens L1, a parallel plate L2, a biconcave negative lens L3, and a positive meniscus lens L4 having a convex surface facing the object side.
  • the negative lens L3 and the positive meniscus lens L4 are cemented.
  • the second lens group G2 is composed of a positive meniscus lens L5 having a convex surface directed toward the object side.
  • the third lens group G3 includes a biconvex positive lens L6, a negative meniscus lens L7 having a convex surface facing the image side, a planoconvex positive lens L8, a biconvex positive lens L9, and a negative meniscus having a convex surface facing the image side. It consists of a lens L10.
  • the positive lens L6 and the negative meniscus lens L7 are cemented.
  • the positive lens L9 and the negative meniscus lens L10 are cemented.
  • the first anti-flare non-circular stop FS1 is disposed on the image side of the plano-concave negative lens L1 and between the plano-concave negative lens L1 and the parallel plate L2.
  • the second flare prevention non-circular stop FS2 is disposed on the image side of the negative meniscus lens L10.
  • the optical path dividing unit 20 is disposed on the image side of the third lens group G3. In the prism in the optical system, the optical path is bent.
  • the optical path splitting unit 20 will be described later.
  • the parallel flat plate L2 is a filter provided with a coating for cutting a specific wavelength, for example, 1060 nm of a YAG laser, 810 nm of a semiconductor laser, or an infrared region.
  • FIG. 8 is a diagram illustrating a cross-sectional configuration of the objective optical systems LNSa and LNSb of the endoscope imaging unit 110.
  • the objective optical systems LNSa and LNSb according to the present embodiment have a configuration in which two lens systems having the same configuration are arranged in parallel. For this reason, one objective optical system LNSa will be described as an example.
  • the first lens unit G1 having a positive refractive power, an aperture stop S, and a second lens unit G2 having a positive refractive power are configured.
  • the first lens group G1 includes a planoconcave negative lens L1 and a biconvex positive lens L2.
  • the second lens group G2 includes a parallel plate L3, a biconvex positive lens L4, a negative meniscus lens L5 having a convex surface directed toward the image side, a parallel plate F1, and a parallel plate CG.
  • the first flare prevention non-circular diaphragm FS1 is disposed on the image side of the plano-concave negative lens L1.
  • the second flare-preventing non-circular stop FS2 is located on the image side of the first flare-preventing non-circular stop FS1, and is disposed between the negative meniscus lens L5 and the parallel plate F1.
  • the parallel plate L3 is a filter provided with a coating for cutting a specific wavelength, for example, 1060 nm of a YAG laser, 810 nm of a semiconductor laser, or an infrared region.
  • FIGS. 9A and 9B are diagrams showing a cross-sectional configuration of the objective optical system LNS of the endoscope imaging unit 120.
  • FIG. 9A is a diagram illustrating a cross-sectional configuration of the objective optical system LNS in a normal observation state (a long distance object point).
  • FIG. 9B is a diagram showing a cross-sectional configuration of the objective optical system LNS in the close-up observation state (short-distance object point).
  • the objective optical system LNS includes, in order from the object side, a first lens group G1 having a positive refractive power, an aperture stop S, a second lens group G2 having a negative refractive power, and a positive refractive power.
  • the second lens group G2 moves on the optical axis AX to the image side, and corrects the change in the focal position accompanying the change from the normal observation state to the close observation state.
  • the first lens group G1 includes a plano-concave negative lens L1, a parallel plate L2, a positive meniscus lens L3 having a convex surface facing the image side, a plano-convex positive lens L4, and a negative meniscus lens L5 having a convex surface facing the image side. Consists of.
  • the positive lens L4 and the negative meniscus lens L5 are cemented.
  • the second lens group G2 includes a plano-concave negative lens L6 and a positive meniscus lens L7 having a convex surface directed toward the object side.
  • the negative lens L6 and the positive meniscus lens L7 are cemented.
  • the third lens group G3 includes a biconvex positive lens L8, a biconvex positive lens L9, and a biconcave negative lens L10.
  • the positive lens L9 and the negative lens L10 are cemented.
  • the first anti-flare non-circular stop FS1 is disposed on the image side of the plano-concave negative lens L1 and between the plano-concave negative lens L1 and the parallel plate L2.
  • the second flare prevention non-circular diaphragm FS2 is disposed on the image side of the negative lens L10.
  • the optical path dividing unit 20 is disposed on the image side of the third lens group G3. In the prism in the optical system, the optical path is bent.
  • the optical path splitting unit 20 will be described later.
  • the parallel flat plate L2 is a filter provided with a coating for cutting a specific wavelength, for example, 1060 nm of a YAG laser, 810 nm of a semiconductor laser, or an infrared region.
  • FIG. 4 is a functional block diagram of the endoscope imaging units 100 and 120.
  • FIG. 5 is a diagram illustrating a schematic configuration of the optical path splitting unit 20.
  • the light emitted from the objective optical system LNS of each embodiment described above enters the optical path dividing unit 20.
  • the optical path dividing unit 20 includes a polarization beam splitter 21 that divides a subject image into two optical images with different focus points, and an imaging element 22 that captures two optical images and acquires two images.
  • the polarization beam splitter 21 includes a first prism 21b, a second prism 21e, a mirror 21c, and a ⁇ / 4 plate 21d. Both the first prism 21b and the second prism 21e have beam split surfaces having an inclination of 45 degrees with respect to the optical axis.
  • a polarization splitting film 21f is formed on the beam splitting surface of the first prism 21b.
  • the first prism 21b and the second prism 21e constitute the polarization beam splitter 21 by bringing the beam split surfaces into contact with each other via the polarization separation film 21f.
  • the mirror 21c is provided near the end face of the first prism 21b via a ⁇ / 4 plate 21d.
  • the image sensor 22 is attached to the end face of the second prism 21e via a parallel plate (cover glass) CG.
  • the subject image from the objective optical system LNS is separated into a P-polarized component (transmitted light) and an S-polarized component (reflected light) by the polarization separation film 21f provided on the beam splitting surface in the first prism 21b, and reflected light.
  • the optical image is separated into two optical images, ie, an optical image on the side and an optical image on the transmitted light side.
  • the optical image of the S-polarized component is reflected to the imaging element 22 by the polarization separation film 21f, passes through the A ′ optical path, passes through the ⁇ / 4 plate 21d, is reflected by the mirror 21c, and is reflected to the imaging element 22 side. Wrapped.
  • the folded optical image is transmitted through the ⁇ / 4 plate 21d again to rotate the polarization direction by 90 °, passes through the polarization separation film 21f, and forms an image on the imaging device 22.
  • the optical image of the P-polarized component is reflected by a mirror surface provided on the side opposite to the beam splitting surface of the second prism 21e that passes through the polarization separation film 21f, passes through the B ′ optical path, and is folded vertically toward the image sensor 22. Then, an image is formed on the image sensor 22.
  • the prism glass path is set so that a predetermined optical path difference of, for example, about several tens of ⁇ m is generated between the A ′ optical path and the B ′ optical path, and two optical images with different focus are obtained from the image sensor 22. An image is formed on the light receiving surface.
  • the first prism 21b and the second prism 21e can be separated into two optical images having different focus positions so that the optical path length (glass path length) on the transmitted light side to the imaging element 22 in the first prism 21b can be separated.
  • the optical path length on the reflected light side is short (small).
  • the image sensor 22 receives two optical images with different focus positions by individually receiving and picking up two optical images. Regions) 22a and 22b are provided.
  • the light receiving areas (effective imaging areas) 22a and 22b are arranged so as to coincide with the image planes of these optical images in order to capture two optical images.
  • the light receiving area (effective imaging area) 22a is shifted (shifted) toward the near point relative to the light receiving area (effective imaging area) 22b.
  • the focus position of the area (effective imaging area) 22b is relatively shifted to the far point side with respect to the light receiving area (effective imaging area) 22a. Thereby, two optical images with different focus are formed on the light receiving surface of the image sensor 22.
  • the optical path length to the image sensor 22 is changed, and the focus positions relative to the light receiving areas (effective imaging areas) 22a and 22b are relatively set. You may make it move to.
  • a correction pixel area 22c for correcting a geometric shift of the optical image divided into two is provided around the light receiving areas (effective imaging areas) 22a and 22b.
  • a correction pixel area 22c for correcting a geometric shift of the optical image divided into two is provided.
  • manufacturing errors are suppressed, and correction by image processing is performed by an image correction processing unit 23b (FIG. 4), which will be described later, so as to eliminate the above-described geometrical deviation of the optical image. It has become.
  • the second lens group G2 of Examples 1 and 3 described above is a focusing lens and can be selectively moved to two positions in the direction of the optical axis.
  • the second lens group G2 is driven by an actuator (not shown) so as to move from one position to the other position and from the other position to one position between two positions.
  • the second lens group G2 In the state where the second lens group G2 is set to the front side (object side) position, the second lens group G2 is set so as to focus on the subject in the observation area when performing far-field observation (normal observation). Further, in the state where the second lens group G2 is set to the rear side position, it is set to focus on the subject in the observation region when performing close-up observation (magnification observation).
  • the polarization beam splitter 21 when used for the polarization separation, the brightness of the separated image is different unless the polarization state of the light to be separated is a circular polarization. Regular brightness differences are relatively easy to correct in image processing. However, if brightness differences occur locally and under viewing conditions, they cannot be corrected completely, resulting in uneven brightness in the composite image. May end up.
  • the subject observed with the endoscope may have uneven brightness in the relatively peripheral part of the visual field of the composite image. It should be noted that the unevenness in brightness with the polarization state broken is conspicuous when the subject has a relatively saturated brightness distribution.
  • the endoscope In the peripheral part of the visual field, the endoscope often sees the blood vessel running and the mucous membrane structure of the subject image relatively close to each other, and there is a high possibility that the image will be very troublesome for the user. Therefore, for example, as shown in FIG. 5, it is preferable to arrange the ⁇ / 4 plate 21d closer to the object side than the polarization separation film 21f of the optical path splitting unit 20 so as to return the polarization state to the circularly polarized state. .
  • a half mirror that splits the intensity of incident light can be used instead of the polarizing beam splitter as described above.
  • the image processor 23 reads an image related to two optical images captured by the image sensor 22 and has different focus positions, and an image for performing image correction on the two images read by the image read unit 23a.
  • the image processing apparatus includes a correction processing unit 23b and an image composition processing unit 23c that performs image composition processing for combining the two corrected images.
  • the image correction processing unit 23b is configured so that the differences other than the focus are substantially the same with respect to the images related to the two optical images formed on the light receiving areas (effective imaging areas) 22a and 22b of the imaging element 22, respectively. to correct. That is, the two images are corrected so that the relative positions, angles, and magnifications in the optical images of the two images are substantially the same.
  • each optical image formed on the light receiving regions (effective imaging regions) 22a and 22b of the image sensor 22 may have a relative displacement of magnification, displacement of position, angle, that is, displacement in the rotation direction, and the like. .
  • the lower one of the two images or images or the image or image having the lower luminance at the relatively same position of the two images or images is used as a reference. It is desirable to make corrections.
  • the image composition processing unit 23c selects a relatively high contrast image in a corresponding region between the two images corrected by the image correction processing unit 23b, and generates a composite image. That is, by comparing the contrast in each spatially identical pixel area in two images and selecting a pixel area having a relatively higher contrast, a composite image as one image synthesized from the two images Is generated.
  • a composite image is generated by a composite image process in which the pixel area is added with a predetermined weight.
  • the image processor 23 performs subsequent image processing such as color matrix processing, contour enhancement, and gamma correction on one image synthesized by the image synthesis processing unit 23c.
  • the image output unit 23d outputs an image that has been subjected to subsequent image processing.
  • the image output from the image output unit 23d is output to the image display unit 24.
  • first prism 21b and the second prism 21e are made of different glass materials according to the near point optical path and the far point optical path leading to the image sensor 22, and the refractive index is made different so that the relative focus position is relatively increased. It may be shifted.
  • r are the radius of curvature of each lens surface
  • d is the distance between the lens surfaces
  • nd is the refractive index of the d-line of each lens
  • ⁇ d is the Abbe number of each lens
  • FNO is the F number
  • is the half field angle It is.
  • Example 2 The numerical values of conditional expressions (1) to (4) in the objective optical systems according to Example 1, Example 2, and Example 3 are shown below.
  • Conditional Example 1 Example 2
  • Example 3 (1) S01_v / S02_v 1.447 1.500 1.800 (2) ih_v / S02_v 1.030 1.655 1.800 (3) ih_AB / S02_v 2.809 5.500 4.000 (4) S01_v / enp_wide 0.576 0.651 0.831 Parameter
  • Example 1 Example 2
  • Example 3 S01_v 0.94 0.71 0.77 S02_v 0.65 0.47 0.43 ih_v 0.67 0.78 0.77 ih_AB 1.82 2.59 1.70 enp_wide 1.63 1.08 0.92
  • the present invention is an endoscope imaging unit for forming two optical images on one imaging device and performing image synthesis, and an endoscope capable of obtaining good image quality with less flare. Useful for imaging units.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • General Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Endoscopes (AREA)
  • Lenses (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

Provided is an endoscopic imaging unit for synthesizing images by causing two optical images to focus on a single imaging element, with which good image quality with little flare can be achieved. The endoscopic imaging unit 100, 120 causes two optical images, separately formed by an optical system having two optical paths, to focus onto a single imaging element 22. An objective optical system LNS having two optical paths includes a first negative lens L1 disposed closest to an object, a first non-circular anti-flare diaphragm FS1 disposed on the image side of the first lens L1, and a second non-circular anti-flare diaphragm FS2 disposed closer to the image than the first non-circular anti-flare diaphragm FS1. The objective optical system satisfies the following conditional expression (1). 0.3 < S01_v / S02_v < 5.0 ... (1) Where, when v represents a direction along which the two optical images are adjacent, S01_v represents a radius of the first non-circular anti-flare diaphragm FS1 in the v direction, and S02_v represents a radius of the second non-circular anti-flare diaphragm FS2 in the v direction.

Description

内視鏡撮像ユニットEndoscopic imaging unit
 本発明は、内視鏡撮像ユニットに関する。 The present invention relates to an endoscope imaging unit.
 従来の内視鏡システムでは、被写界深度を拡大するため、自画像を2つに分割して結像させ、取得した2つの画像を画像処理で合成する構成が知られている。また、立体画像を得るために、左眼画像と右眼画像との2つの画像を画像処理で合成する構成も知られている。このように、2つの光学像を画像合成することが必要になる場合がある。 In a conventional endoscope system, in order to expand the depth of field, a configuration is known in which a self-portrait is divided into two to form an image, and the two acquired images are combined by image processing. A configuration is also known in which two images, a left eye image and a right eye image, are combined by image processing to obtain a stereoscopic image. In this way, it may be necessary to combine two optical images.
 1つの光路ごとに、1つの撮像素子を設けて撮像する場合、2つの画像を取得するために、2つの撮像素子が必要となる。このため、コストが上昇してしまうため、好ましくない。また、2つの撮像素子を用いると、画像取り込み用機器も2つ必要になり、コストの上昇や故障の可能性が大きくなり好ましくない。 When one image sensor is provided for each optical path to capture an image, two image sensors are required to acquire two images. For this reason, since a cost will rise, it is not preferable. If two image sensors are used, two image capturing devices are required, which increases the cost and increases the possibility of failure, which is not preferable.
 従って、被写界深度を拡大するためや、立体画像を得るためには、1つの撮像素子により、2つの像を取得する構成が望ましい。このような、光学系において、フレアを低減するために、例えば、特許文献1に開示された構成がある。 Therefore, in order to expand the depth of field or obtain a stereoscopic image, a configuration in which two images are acquired by one image sensor is desirable. In such an optical system, for example, there is a configuration disclosed in Patent Document 1 in order to reduce flare.
 特許文献1の構成では、フレアを低減するために、1つのフレア絞りを光路内に設けている。このフレア絞りは、矩形等の非円形形状の開口部を有している。 In the configuration of Patent Document 1, in order to reduce flare, one flare stop is provided in the optical path. The flare stop has a non-circular opening such as a rectangle.
特許第5509400号公報Japanese Patent No. 5509400
 従来の1つの光路につき1つの撮像素子で像を得る場合、像高の極端に大きなフレアは、有効撮像領域の範囲外に入射するため、問題とはならない。しかしながら、1つの撮像素子に、2つの像IA、像IBを結像させる構成の場合、像IAのための一方の光路で発生したフレアが、他方の像IBのための隣接する有効撮像領域に映りこんでしまうという問題を生ずる。このため、2つの有効撮像領域に、相互にフレアが発生してしまうため問題である。 When obtaining an image with one image sensor per conventional optical path, a flare having an extremely high image height is incident on the outside of the effective image pickup area, and this is not a problem. However, in the case of a configuration in which two images IA and IB are formed on one image sensor, a flare generated in one optical path for the image IA occurs in an adjacent effective imaging region for the other image IB. This causes the problem of being reflected. This is a problem because flare occurs between the two effective imaging areas.
 本発明は、このような問題点に鑑みてなされたものであり、その目的は、一つの撮像素子に2つの光学像を結像させ、画像合成を行うための内視鏡撮像ユニットであって、フレアの少ない良好な画質を得られる内視鏡撮像ユニットを提供することを目的とする。 The present invention has been made in view of such problems, and an object thereof is an endoscope imaging unit for forming two optical images on one imaging element and performing image synthesis. An object of the present invention is to provide an endoscope imaging unit capable of obtaining a good image quality with little flare.
 上述した課題を解決し、目的を達成するために、本発明は、以下の手段を提供する。
 本発明に係る内視鏡撮像ユニットの一態様は、
 2つの光路を有する光学系によって別々に形成される2つの光学像を一つの撮像素子に結像させる内視鏡撮像ユニットにおいて、
 2つの光路を有する光学系は、最も物体側に配置された負の第1レンズと、第1レンズの像側に配置された第1フレア防止非円形絞りと、第1フレア防止非円形絞りよりも像側に配置された第2フレア防止非円形絞りと、を有し、以下の条件式(1)を満足することを特徴とする。
 0.3<S01_v/S02_v<5.0   …(1)
 ここで、
 V方向を2つの光学像が隣接する方向とするとき、
 S01_vは、第1フレア防止非円形絞りのV方向の半径、
 S02_vは、第2フレア防止非円形絞りのV方向の半径、
である。
In order to solve the above-described problems and achieve the object, the present invention provides the following means.
One aspect of the endoscope imaging unit according to the present invention is:
In an endoscope imaging unit that forms two optical images formed separately by an optical system having two optical paths on one imaging element,
The optical system having two optical paths includes a negative first lens disposed closest to the object side, a first flare-preventing non-circular stop disposed on the image side of the first lens, and a first anti-flare non-circular stop. And a second anti-flare noncircular stop disposed on the image side, and satisfying the following conditional expression (1).
0.3 <S01_v / S02_v <5.0 (1)
here,
When the V direction is a direction in which two optical images are adjacent to each other,
S01_v is the radius in the V direction of the first anti-flare noncircular stop,
S02_v is the radius in the V direction of the second anti-flare non-circular diaphragm,
It is.
 本発明の一実施形態は、一つの撮像素子に2つの光学像を結像させ、画像合成を行うための内視鏡撮像ユニットであって、フレアの少ない良好な画質を得られる内視鏡撮像ユニットを提供できるという効果を奏する。 One embodiment of the present invention is an endoscope imaging unit for forming two optical images on one imaging element and performing image synthesis, and endoscope imaging capable of obtaining a good image quality with little flare There is an effect that a unit can be provided.
本発明の第1実施形態に係る内視鏡撮像ユニットの断面構成を示す図である。It is a figure which shows the cross-sectional structure of the endoscope imaging unit which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る内視鏡撮像ユニットの断面構成を示す図である。It is a figure which shows the cross-sectional structure of the endoscope imaging unit which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る内視鏡撮像ユニットの断面構成を示す図である。It is a figure which shows the cross-sectional structure of the endoscope imaging unit which concerns on 3rd Embodiment of this invention. 第1フレア防止非円形絞りの正面図である。It is a front view of the 1st flare prevention non-circular stop. 第2フレア防止非円形絞りの正面図である。It is a front view of the 2nd flare prevention non-circular stop. 第1フレア防止非円形絞りの断面図である。It is sectional drawing of a 1st flare prevention non-circular stop. 第1フレア防止非円形絞りの他の正面図である。It is another front view of the 1st flare prevention non-circular stop. 有効撮像領域における像を示す図である。It is a figure which shows the image in an effective imaging area. 有効撮像領域における像を示す他の図である。It is another figure which shows the image in an effective imaging area. 本発明の実施形態に係る内視鏡撮像ユニットの構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the endoscope imaging unit which concerns on embodiment of this invention. 本発明の実施形態に係る内視鏡撮像ユニットが有する光路分割部と撮像素子との概略構成図である。It is a schematic block diagram of the optical path division part and imaging device which the endoscope imaging unit which concerns on embodiment of this invention has. 本発明の実施形態に係る内視鏡撮像ユニットが有する撮像素子の概略構成図である。It is a schematic block diagram of the image pick-up element which the endoscope imaging unit which concerns on embodiment of this invention has. 本発明の実施例1に係る内視鏡撮像ユニットが有する対物光学系、光路分割部及び撮像素子の通常観察状態における断面構成を示す図である。It is a figure which shows the cross-sectional structure in the normal observation state of the objective optical system which the endoscope imaging unit which concerns on Example 1 of this invention has, an optical path division part, and an image pick-up element. 本発明の実施例1に係る内視鏡撮像ユニットが有する対物光学系、光路分割手段及び撮像素子の近接観察状態における断面構成を示す図である。It is a figure which shows the cross-sectional structure in the close observation state of the objective optical system which the endoscope imaging unit which concerns on Example 1 of this invention has, an optical path division | segmentation means, and an image pick-up element. 本発明の実施例2に係る内視鏡撮像ユニットが有する対物光学系、光路分割部及び撮像素子の断面構成を示す図である。It is a figure which shows the cross-sectional structure of the objective optical system which the endoscope imaging unit which concerns on Example 2 of this invention has, an optical path division part, and an image pick-up element. 本発明の実施例3に係る内視鏡撮像ユニットが有する対物光学系、光路分割部及び撮像素子の通常観察状態における断面構成を示す図である。It is a figure which shows the cross-sectional structure in the normal observation state of the objective optical system which the endoscope imaging unit which concerns on Example 3 of this invention has, an optical path division part, and an image pick-up element. 本発明の実施例3に係る内視鏡撮像ユニットが有する対物光学系、光路分割部及び撮像素子の近接観察状態における断面構成を示す図である。It is a figure which shows the cross-sectional structure in the close observation state of the objective optical system which the endoscope imaging unit which concerns on Example 3 of this invention has, an optical path division part, and an image pick-up element. 従来のフレアの発生理由を示す図である。It is a figure which shows the generation | occurrence | production reason of the conventional flare. 従来のフレアの発生理由を示す他の図である。It is another figure which shows the generation | occurrence | production reason of the conventional flare. 従来のフレアを示す別の図である。It is another figure which shows the conventional flare.
 以下、本実施形態に係る内視鏡撮像ユニットについて、図面を用いて、このような構成をとった理由と作用を説明する。なお、以下の実施形態によりこの発明が限定されるものではない。 Hereinafter, the reason and operation of the endoscope imaging unit according to this embodiment will be described with reference to the drawings. In addition, this invention is not limited by the following embodiment.
(第1実施形態)
 第1実施形態は、図1A、図1Cに示すように、2つの光路を有する光学系によって別々に形成される2つの光学像を一つの撮像素子22に結像させる内視鏡撮像ユニット100、120において、2つの光路を有する対物光学系LNSは、最も物体側に配置された負の第1レンズL1と、第1レンズL1の像側に配置された第1フレア防止非円形絞りFS1と、第1フレア防止非円形絞りFS1よりも像側に配置された第2フレア防止非円形絞りFS2と、を有し、以下の条件式(1)を満足することを特徴とする。
 0.3<S01_v/S02_v<5.0   …(1)
 ここで、
 V方向を2つの光学像が隣接する方向とするとき、
 S01_vは、第1フレア防止非円形絞りのV方向の半径、
 S02_vは、第2フレア防止非円形絞りのV方向の半径、
である。
(First embodiment)
In the first embodiment, as shown in FIGS. 1A and 1C, an endoscope imaging unit 100 that forms two optical images separately formed by an optical system having two optical paths on one imaging element 22, In 120, an objective optical system LNS having two optical paths includes a negative first lens L1 disposed closest to the object side, a first anti-flare noncircular stop FS1 disposed on the image side of the first lens L1, and A second flare-preventing non-circular stop FS2 disposed on the image side of the first flare-preventing non-circular stop FS1, and satisfying the following conditional expression (1).
0.3 <S01_v / S02_v <5.0 (1)
here,
When the V direction is a direction in which two optical images are adjacent to each other,
S01_v is the radius in the V direction of the first anti-flare noncircular stop,
S02_v is the radius in the V direction of the second anti-flare non-circular diaphragm,
It is.
 本実施形態に係る内視鏡撮像ユニット100、120は、図1A、1Cにそれぞれ示すように、光路分割部20により2つの光路によって別々に形成される2つの光学像を一つの撮像素子22に結像させ、画像合成を行うことで一つの内視鏡画像を得る内視鏡1に用いられる。即ち、2つの光路を有する光学系は、1つの光軸AXを有する対物光学系LNSと、光路を2分割する光路分割部20とから構成される。本実施形態に係る内視鏡撮像ユニット100、120は、被写界深度を大きくする場合に好適である。 As shown in FIGS. 1A and 1C, the endoscope imaging units 100 and 120 according to the present embodiment each receive two optical images separately formed by two optical paths by the optical path splitting unit 20 in one imaging element 22. It is used for the endoscope 1 that forms an image and obtains one endoscope image by performing image synthesis. That is, the optical system having two optical paths includes an objective optical system LNS having one optical axis AX and an optical path dividing unit 20 that divides the optical path into two. The endoscope imaging units 100 and 120 according to the present embodiment are suitable for increasing the depth of field.
(第2実施形態)
 また、第2実施形態は、図1Bに示すように、2つの光路を有する対物光学系LNSa、LNSbによって別々に形成される2つの光学像を一つの撮像素子22に結像させる内視鏡撮像ユニット110において、2つの光路を有する対物光学系LNSa、LNSbは、最も物体側に配置された負の第1レンズL1と、第1レンズL1の像側に配置された第1フレア防止非円形絞りFS1と、第1フレア防止非円形絞りFS1よりも像側に配置された第2フレア防止非円形絞りFS2と、を有し、上述の条件式(1)を満足することを特徴とする。
(Second Embodiment)
Further, in the second embodiment, as shown in FIG. 1B, an endoscope imaging in which two optical images separately formed by objective optical systems LNSa and LNSb having two optical paths are formed on one imaging element 22. In the unit 110, the objective optical systems LNSa and LNSb having two optical paths are a negative first lens L1 disposed closest to the object side and a first flare-preventing noncircular diaphragm disposed on the image side of the first lens L1. FS1 and a second flare-preventing non-circular stop FS2 disposed on the image side of the first flare-preventing non-circular stop FS1, and satisfying the above-described conditional expression (1).
 本実施形態に係る内視鏡撮像ユニット110は、図1Bに示すように、2つの光路を有する対物光学系LNSa、LNSbによって別々に形成される2つの光学像を一つの撮像素子22に結像させ、画像合成を行うことで一つの内視鏡画像を得る内視鏡2に用いられる。本実施形態に係る内視鏡撮像ユニット110は、右眼画像及び左眼画像に基づいて立体画像を得る場合に好適である。 As shown in FIG. 1B, the endoscope imaging unit 110 according to the present embodiment forms two optical images separately formed by the objective optical systems LNSa and LNSb having two optical paths on one imaging element 22. The endoscope 2 is used for the endoscope 2 that obtains one endoscopic image by performing image synthesis. The endoscope imaging unit 110 according to the present embodiment is suitable for obtaining a stereoscopic image based on a right eye image and a left eye image.
 第1実施形態、第2実施形態において、「非円形絞り」とは、直交する2方向において長さが異なる形状の開口部を有する絞りという。また、パラメータS01_v、S02_vを、それぞれ図2A、2Bに示す。第1フレア防止非円形絞りFS1と、第2フレア防止非円形絞りFS2の形状に関しては、後述する。 In the first embodiment and the second embodiment, the “non-circular diaphragm” is a diaphragm having openings having different shapes in two orthogonal directions. Parameters S01_v and S02_v are shown in FIGS. 2A and 2B, respectively. The shapes of the first flare-preventing non-circular stop FS1 and the second flare-preventing non-circular stop FS2 will be described later.
 さらに、図3Aは、第1実施形態に係る内視鏡撮像ユニット100、120の2つの有効撮像領域22a、22bにおける2つの光学像を示す。図3Bは、第2実施形態に係る内視鏡撮像ユニット110の2つの有効撮像領域22a、22bにおける2つの光学像を示す。図3A、3Bにおいて、像が隣接する方向をV方向、V方向に垂直な方向をH方向とする。 Furthermore, FIG. 3A shows two optical images in the two effective imaging regions 22a and 22b of the endoscope imaging units 100 and 120 according to the first embodiment. FIG. 3B shows two optical images in the two effective imaging regions 22a and 22b of the endoscope imaging unit 110 according to the second embodiment. 3A and 3B, a direction in which images are adjacent to each other is a V direction, and a direction perpendicular to the V direction is an H direction.
 まず、従来の構成において、フレアが発生する理由について説明する。図10Aは、1つの対物光学系LNSからの光路を2つに分割する光路分割部20の構成を示す。なお、光路分割部20の詳細は後述する。 First, the reason why flare occurs in the conventional configuration will be described. FIG. 10A shows a configuration of an optical path splitting unit 20 that splits an optical path from one objective optical system LNS into two. Details of the optical path splitting unit 20 will be described later.
 光路分割部20の構成を簡単に説明する。光路分割部20は、被写体像をピントの異なる2つの光学像に分割する偏光ビームスプリッタ21と、2つの光学像を撮像して2つの画像を取得する撮像素子22とを有する。撮像素子22は、有効撮像領域Aと、有効撮像領域Aに隣接する有効撮像領域Bとを有する。 The configuration of the optical path dividing unit 20 will be briefly described. The optical path dividing unit 20 includes a polarization beam splitter 21 that divides a subject image into two optical images with different focus points, and an imaging element 22 that captures two optical images and acquires two images. The imaging element 22 has an effective imaging area A and an effective imaging area B adjacent to the effective imaging area A.
 光路分割部20は、1つの対物光学系LNSからの光を、偏光を利用して、光軸AXaを有する光路と、光軸AXbを有する光路とに分割する。2つの光学像は、それぞれ有効撮像領域Aと有効撮像領域Bに結像する。 The optical path dividing unit 20 divides the light from one objective optical system LNS into an optical path having the optical axis AXa and an optical path having the optical axis AXb using polarized light. The two optical images are formed on the effective imaging area A and the effective imaging area B, respectively.
 従来の構成では、図10Aにおいて破線で示すフレアFLのように、一方の光路で発生した光が、他方の像のための隣接する有効撮像領域Aに映りこんでしまう場合がある。図11は、このようにして発生するフレアFLを示す図である。 In the conventional configuration, like the flare FL indicated by a broken line in FIG. 10A, the light generated in one optical path may be reflected in the adjacent effective imaging area A for the other image. FIG. 11 is a diagram showing the flare FL generated in this way.
 また、例えば、立体画像を得るために、図10Bに示すように、光軸AXaを有する対物光学系LNSaと、光軸AXbを有する対物光学系LNSbを配置して、1つの撮像素子22により、2つの光学像を得る構成をとることができる。 Further, for example, in order to obtain a stereoscopic image, an objective optical system LNSa having an optical axis AXa and an objective optical system LNSb having an optical axis AXb are arranged as shown in FIG. A configuration for obtaining two optical images can be employed.
 図10Bに示す従来の構成において、光軸AXbを有する光路で発生した破線で示すフレアFLが、他方の像のための有効撮像領域Aに映りこんでしまう場合がある。この場合にも、図11に示すようなフレアFLを生じてしまう。 In the conventional configuration shown in FIG. 10B, the flare FL indicated by the broken line generated in the optical path having the optical axis AXb may be reflected in the effective imaging area A for the other image. Also in this case, a flare FL as shown in FIG. 11 occurs.
 このような従来の構成に対して、第1実施形態及び第2実施形態に係る内視鏡撮像ユニット100、110、120は、2つの光路を有する対物光学系LNS、LNSa、LNSbは、最も物体側に配置された負の第1レンズL1と、第1レンズL1の像側に配置された第1フレア防止非円形絞りFS1と、第1フレア防止非円形絞りFS1よりも像側に配置された第2フレア防止非円形絞りFS2と、を有する。 In contrast to such a conventional configuration, the endoscope imaging units 100, 110, and 120 according to the first embodiment and the second embodiment have the objective optical systems LNS, LNSa, and LNSb having two optical paths as the most object. The first negative lens L1 disposed on the side, the first flare-preventing non-circular stop FS1 disposed on the image side of the first lens L1, and the first flare-preventing non-circular stop FS1 are disposed on the image side. A second anti-flare non-circular diaphragm FS2.
 第1フレア防止非円形絞りFS1と第2フレア防止非円形絞りFS2との2つの絞りにより、上述したようなフレアFLを効率良く遮光できる。 The flare FL as described above can be efficiently shielded by the two stops, the first flare prevention non-circular stop FS1 and the second flare prevention non-circular stop FS2.
 円形形状の開口部の代わりに、非円形形状の開口部を有する絞りを用いる理由について説明する。図2Aは、第1フレア防止非円形絞りFS1の非円形開口部AP1の形状を示す図である。図2Bは、第2フレア防止非円形絞りFS2の非円形開口部AP2の形状を示す図である。第1フレア防止非円形絞りFS1及び第2フレア防止非円形絞りFS2の開口部は、小判型、4角形(矩形)、8角形などの形状を含む。 The reason for using a diaphragm having a non-circular opening instead of a circular opening will be described. FIG. 2A is a diagram illustrating the shape of the non-circular opening AP1 of the first flare-preventing non-circular stop FS1. FIG. 2B is a diagram illustrating the shape of the non-circular opening AP2 of the second flare-preventing non-circular stop FS2. The openings of the first flare-preventing non-circular stop FS1 and the second flare-preventing non-circular stop FS2 include shapes such as an oval, quadrangular (rectangular), and octagonal shape.
 1つの撮像素子22に、2つの光学像を結像させる場合、一番像高の低い縦対辺方向に2つの像を並べる構成が、内視鏡の外径を最も小さくすることができるため、好ましい。 When two optical images are formed on one image sensor 22, the configuration in which two images are arranged in the longitudinal opposite side direction with the lowest image height can minimize the outer diameter of the endoscope. preferable.
 この場合、縦対辺方向の像高は、対角方向の像高に比べて小さくなるため、光線高も小さくなる。このため、例えば、矩形形状の開口部を有する非円形絞りを用いる。これにより、像高の大きな対角方向には大きな開口部、像高の小さな縦対辺方向には小さな開口部を作り出すことができる。この結果、効率よく不要な光線であるフレアを遮光することができる。 In this case, since the image height in the longitudinal opposite side direction is smaller than the image height in the diagonal direction, the ray height is also reduced. For this reason, for example, a non-circular diaphragm having a rectangular opening is used. This makes it possible to create a large opening in the diagonal direction where the image height is large and a small opening in the longitudinal opposite side direction where the image height is small. As a result, flare, which is an unnecessary light beam, can be shielded efficiently.
 また、撮像素子22の大きさと像高との関係によっては、横対辺方向に2つの像を並べることが、内視鏡の外径を最も小さくすることができる場合もある。本実施形態では、縦対辺方向及び横対辺方向に光学像を並べることを想定している。このため、2つの光学像が隣接する方向をV方向と呼ぶ。 Further, depending on the relationship between the size of the image sensor 22 and the image height, arranging the two images in the lateral opposite direction may make the outer diameter of the endoscope the smallest. In the present embodiment, it is assumed that optical images are arranged in the vertical opposite side direction and the horizontal opposite side direction. For this reason, the direction in which the two optical images are adjacent to each other is referred to as the V direction.
 条件式(1)は、第1フレア防止非円形絞りFS1と第2フレア防止非円形絞りFS2のV方向の開口径の比率を既定している。 Conditional expression (1) prescribes the ratio of the opening diameters in the V direction of the first flare prevention non-circular diaphragm FS1 and the second flare prevention non-circular diaphragm FS2.
 条件式(1)を満足することで、適切な開口径の比率を得ることができる。フレアの上側光線及び下側光線を2つの非円形絞りにより効果的に遮光することが可能である。これにより、周辺光量を確保しつつ、フレアを低減できる。 When the conditional expression (1) is satisfied, an appropriate aperture diameter ratio can be obtained. The upper and lower rays of the flare can be effectively shielded by the two non-circular stops. Thereby, flare can be reduced while securing the peripheral light quantity.
 条件式(1)の下限値を下回ると、第1フレア防止非円形絞りFS1のV方向の径が小さくなりすぎるため、周辺光量が大きくけられてしまい、周辺が観察しづらくなるため好ましくない。 If the lower limit of conditional expression (1) is not reached, the diameter of the first flare-preventing non-circular stop FS1 in the V direction becomes too small, and the amount of peripheral light is increased, which makes it difficult to observe the periphery.
 条件式(1)の上限値を上回ると、第1フレア防止非円形絞りFS1のV方向の径が大きくなりすぎるため、フレアをカットすることができないため好ましくない。なお、非円形絞りのV方向の開口径が上下方向で異なる場合は、小さい開口径の値を用いる。 If the upper limit value of conditional expression (1) is exceeded, the diameter in the V direction of the first flare-preventing non-circular stop FS1 becomes too large, and flare cannot be cut. When the opening diameter in the V direction of the non-circular diaphragm is different in the vertical direction, a small opening diameter value is used.
 このように、第1実施形態及び第2実施形態に係る内視鏡撮像ユニット100、110、120によれば、対物光学系LNS、LNSa、LNSbに少なくとも2つの第1、第2フレア防止非円形絞りFS1、FS2を配置し、条件式(1)を満足する適切な開口部の形状を選択することで、上述したようなフレアFLの発生を抑えることができる。 Thus, according to the endoscope imaging units 100, 110, and 120 according to the first embodiment and the second embodiment, at least two first and second flare-preventing non-circular shapes in the objective optical systems LNS, LNSa, and LNSb. By arranging the stops FS1 and FS2 and selecting an appropriate opening shape that satisfies the conditional expression (1), the occurrence of the flare FL as described above can be suppressed.
 なお、条件式(1)に代えて、以下の条件式(1)’を満たすことが望ましい。
 1.0<S01_v/S02_v<3.0   …(1)'
 さらに、条件式(1)に代えて、以下の条件式(1)”を満たすことが望ましい。
 1.4<S01_v/S02_v<1.8   …(1)”
Note that it is desirable to satisfy the following conditional expression (1) ′ instead of conditional expression (1).
1.0 <S01_v / S02_v <3.0 (1) ′
Furthermore, it is desirable to satisfy the following conditional expression (1) ″ instead of conditional expression (1).
1.4 <S01_v / S02_v <1.8 (1) "
 また、本実施形態の好ましい態様によれば、以下の条件式(2)を満足することが望ましい。
 0.2<ih_v/S02_v<5.0   …(2)
 ここで、
 ih_vは、V方向の像高、
 S02_vは、前記第2フレア防止非円形絞りのV方向の半径、
である。
Moreover, according to a preferable aspect of the present embodiment, it is desirable that the following conditional expression (2) is satisfied.
0.2 <ih_v / S02_v <5.0 (2)
here,
ih_v is the image height in the V direction,
S02_v is a radius in the V direction of the second anti-flare non-circular diaphragm,
It is.
 条件式(2)は、縦対辺方向の像高と第2フレア防止非円形絞りFS2の開口径の比率を規定している。 Conditional expression (2) defines the ratio between the image height in the longitudinal opposite side direction and the aperture diameter of the second flare-preventing non-circular stop FS2.
 条件式(2)の上限値を上回ると、第2フレア防止非円形絞りFS2の開口径が小さくなりすぎる。このため、周辺光量が大きくけられてしまい、周辺領域を観察しづらくなるため好ましくない。 If the upper limit value of conditional expression (2) is exceeded, the opening diameter of the second flare prevention non-circular stop FS2 becomes too small. For this reason, the peripheral light amount is increased, which makes it difficult to observe the peripheral region, which is not preferable.
 条件式(2)の下限値を下回ると、第2フレア防止非円形絞りFS2の開口径が大きくなりすぎ、フレアが発生してしまうため好ましくない。 If the lower limit value of conditional expression (2) is not reached, the opening diameter of the second flare-preventing non-circular stop FS2 becomes too large, and flare occurs, which is not preferable.
 なお、条件式(2)に代えて、以下の条件式(2)’を満たすことが望ましい。
 0.8<ih_v/S02_v<3.0   …(2)'
 さらに、条件式(2)に代えて、以下の条件式(2)”を満たすことが望ましい。
 1.0<ih_v/S02_v<2.0   …(2)”
Note that it is desirable to satisfy the following conditional expression (2) ′ instead of conditional expression (2).
0.8 <ih_v / S02_v <3.0 (2) ′
Further, it is desirable to satisfy the following conditional expression (2) ″ instead of conditional expression (2).
1.0 <ih_v / S02_v <2.0 (2) "
 また、本実施形態の好ましい態様によれば、以下の条件式(3)を満足することが望ましい。
 1.0<ih_AB/S02_v<10.0   …(3)
 ここで、
 ih_ABは、撮像素子上での光軸間距離、
 S02_vは、前記第2フレア防止非円形絞りのV方向の半径、
である。
Moreover, according to a preferable aspect of this embodiment, it is desirable that the following conditional expression (3) is satisfied.
1.0 <ih_AB / S02_v <10.0 (3)
here,
ih_AB is the distance between the optical axes on the image sensor,
S02_v is a radius in the V direction of the second anti-flare non-circular diaphragm,
It is.
 条件式(3)は、撮像素子22上での光軸AXa、AXbどうしの距離と第2フレア防止非円形絞りFS2の開口径の比率を既定している。また、図3A、3Bに、パラメータih_ABを示す。 Conditional expression (3) prescribes the ratio of the distance between the optical axes AXa and AXb on the image sensor 22 and the aperture diameter of the second flare prevention non-circular stop FS2. 3A and 3B show the parameter ih_AB.
 条件式(3)の上限値を上回ると、2つの像の結像位置が遠く離れるため、フレアが隣接する有効撮像領域に入射しない。 If the upper limit value of conditional expression (3) is exceeded, the image formation positions of the two images are far apart, so that the flare does not enter the adjacent effective imaging region.
 条件式(3)の下限値を下回ると、第2フレア防止非円形絞りFS2の開口径が大きくなりすぎ、フレアが発生してしまうため好ましくない。 If the lower limit value of conditional expression (3) is not reached, the opening diameter of the second flare-preventing non-circular stop FS2 becomes too large, and flare occurs, which is not preferable.
 なお、条件式(3)に代えて、以下の条件式(3)’を満たすことが望ましい。
 2.0<ih_AB/S02_v<8.0   …(3)'
 さらに、条件式(3)に代えて、以下の条件式(3)”を満たすことが望ましい。
 2.5<ih_AB/S02_v<6.0   …(3)”
In addition, it is preferable to satisfy the following conditional expression (3) ′ instead of conditional expression (3).
2.0 <ih_AB / S02_v <8.0 (3) ′
Furthermore, it is desirable to satisfy the following conditional expression (3) ″ instead of conditional expression (3).
2.5 <ih_AB / S02_v <6.0 (3) "
 また、本実施形態の好ましい態様によれば、2つの光路を有する光学系は、1つの光軸AXを有する対物光学系LNSと、光路を2分割する光路分割部20(光路分割光学系)と、から構成され、第2フレア防止非円形絞りFS2は、対物光学系LNSと光路分割部20との間に配置されていることが望ましい。 According to a preferred aspect of the present embodiment, the optical system having two optical paths includes an objective optical system LNS having one optical axis AX, an optical path splitting unit 20 (optical path splitting optical system) that splits the optical path into two, and The second flare prevention non-circular stop FS2 is preferably disposed between the objective optical system LNS and the optical path dividing unit 20.
 1つの対物光学系LNSと光路を2分割する光路分割部20とから構成することによって、視差(輻輳角)の無い2つの像を得ることができる。 Two images without parallax (convergence angle) can be obtained by comprising one objective optical system LNS and the optical path splitting unit 20 that splits the optical path into two.
 また、本実施形態の好ましい態様によれば、2つの光路を有する光学系は、2つの光軸AXa、AXbを有する対物光学系LNSa、LNSbから構成されることが望ましい。 Further, according to a preferred aspect of the present embodiment, it is desirable that the optical system having two optical paths is composed of objective optical systems LNSa and LNSb having two optical axes AXa and AXb.
 2つの光路は、2つの光軸AXa、AXbを有する対物光学系LNSa、LNSbで構成することによって、立体観察時の視差(輻輳角)を得ることが可能になる。 By configuring the two optical paths with the objective optical systems LNSa and LNSb having the two optical axes AXa and AXb, it becomes possible to obtain parallax (convergence angle) during stereoscopic observation.
 また、本実施形態の好ましい態様によれば、図1Aに示すように、対物光学系LNSは、物体側から順に、負の第1レンズ群G1と、可動の正の第2レンズ群G2と、正の第3レンズ群G3と、から構成されることが望ましい。 Further, according to a preferred aspect of the present embodiment, as shown in FIG. 1A, the objective optical system LNS includes, in order from the object side, a negative first lens group G1, a movable positive second lens group G2, A positive third lens group G3 is desirable.
 物体側から順に、負の第1レンズ群G1と、可動の正の第2レンズ群G2と、正の第3レンズ群G3と、から構成されることにより、各群のレンズ枚数を削減することができる。これにより、レンズ全長の短縮やコストの削減を達成できる。また、レンズの径方向の大きさを抑えながらも、長いバックフォーカスを確保できる。さらに、正の第2レンズ群G2の移動によりフォーカス位置を変化させることが可能になり、フォーカス変化時の収差変動や画角変動を抑えることができる。 In order from the object side, the negative first lens group G1, the movable positive second lens group G2, and the positive third lens group G3 are configured to reduce the number of lenses in each group. Can do. Thereby, shortening of the total lens length and cost reduction can be achieved. In addition, a long back focus can be secured while suppressing the size of the lens in the radial direction. Furthermore, it becomes possible to change the focus position by moving the positive second lens group G2, and it is possible to suppress aberration fluctuations and field angle fluctuations when the focus changes.
 また、本実施形態の好ましい態様によれば、図1A、1Cに示すように、対物光学系LNSは、物体側から順に、第1レンズ群G1と、明るさ絞りSと、正の後群と、から構成されることが望ましい。 Further, according to a preferred aspect of the present embodiment, as shown in FIGS. 1A and 1C, the objective optical system LNS includes, in order from the object side, the first lens group G1, the aperture stop S, and the positive rear group. It is desirable to be composed of
 物体側から順に、負または正の第1レンズ群G1と、明るさ絞りSと、正の後群と、から構成することで、少ない枚数でバックフォーカスの長い内視鏡対物光学系を構成することができる。 An endoscope objective optical system having a long back focus is configured with a small number of lenses by including a negative or positive first lens group G1, an aperture stop S, and a positive rear group in order from the object side. be able to.
 また、本実施形態の好ましい態様によれば、図1Cに示すように、対物光学系LNSは、物体側から順に、正の第1レンズ群G1と、可動の負の第2レンズ群G2と、正の第3レンズ群G3と、から構成されることが望ましい。 Further, according to a preferred aspect of the present embodiment, as shown in FIG. 1C, the objective optical system LNS includes, in order from the object side, a positive first lens group G1, a movable negative second lens group G2, A positive third lens group G3 is desirable.
 物体側から順に、正の第1レンズ群G1と、可動の負の第2レンズ群G2と、正の第3レンズ群G3と、から構成することにより、各レンズ群のレンズ枚数を削減することができる。これにより、レンズ全長の短縮やコストの削減を達成できる。負の第2レンズ群G2の移動により画角を変化させることが可能になり、画角変化時の収差変動を抑えることができる。 In order from the object side, the positive first lens group G1, the movable negative second lens group G2, and the positive third lens group G3 are configured to reduce the number of lenses in each lens group. Can do. Thereby, shortening of the total lens length and cost reduction can be achieved. It is possible to change the angle of view by moving the negative second lens group G2, and it is possible to suppress aberration fluctuations when the angle of view changes.
 また、本実施形態の好ましい態様によれば、2つの光軸AXa、AXbを有する対物光学系LNSa、LNSbにおいて、第1フレア防止非円形絞りFS1と第2フレア防止非円形絞りFS2の少なくとも一方の絞りは、2つの非円形開口部APa、APbを有することが望ましい。 Further, according to a preferable aspect of the present embodiment, in the objective optical systems LNSa and LNSb having the two optical axes AXa and AXb, at least one of the first flare prevention non-circular diaphragm FS1 and the second flare prevention non-circular diaphragm FS2 is used. The diaphragm preferably has two non-circular openings APa and APb.
 図2Dに示すように、1つの第1フレア防止非円形絞りFS1の中に、2つの非円形開口部AP1、AP2を形成することによって、非円形開口部APa、APbの回転方向の位置合わせの工程が不要になる。 As shown in FIG. 2D, by forming two non-circular openings AP1 and AP2 in one first flare-preventing non-circular stop FS1, the alignment of the non-circular openings APa and APb in the rotational direction is adjusted. A process becomes unnecessary.
 また、本実施形態の好ましい態様によれば、以下の条件式(4)を満足することが望ましい。
 0.1<S01_v/enp_wide<5.0   …(4)
 ここで、
 enp_wideは、対物光学系LNS、LNSa、LNSbの最も広角状態での入射瞳位置、
 S01_vは、前記第1フレア防止非円形絞りのV方向の半径、
である。
Moreover, according to a preferable aspect of the present embodiment, it is desirable that the following conditional expression (4) is satisfied.
0.1 <S01_v / emp_wide <5.0 (4)
here,
enp_wide is the entrance pupil position of the objective optical system LNS, LNSa, LNSb in the widest angle state,
S01_v is a radius in the V direction of the first non-circular diaphragm for preventing flare,
It is.
 条件式(4)は、入射瞳位置と第1フレア防止非円形絞りFS1の開口径の比を規定している。 Conditional expression (4) defines the ratio between the entrance pupil position and the opening diameter of the first flare-preventing non-circular stop FS1.
 条件式(4)の上限値を上回ると、第1レンズL1の像面側の光線高に対して、第1フレア防止非円形絞りFS1の開口径が大きすぎるため、フレアを発生させてしまい好ましくない。 If the upper limit of conditional expression (4) is exceeded, the first flare-preventing non-circular stop FS1 is too large for the light ray height on the image plane side of the first lens L1, and flare is preferably generated. Absent.
 条件式(4)の下限値を下回ると、第1フレア防止非円形絞りFS1の開口径が小さすぎるため周辺光量が少なくなりすぎてしまい好ましくない。 If the lower limit of conditional expression (4) is not reached, the opening diameter of the first flare-preventing non-circular stop FS1 is too small, and the peripheral light amount becomes too small.
 また、本実施形態の好ましい態様によれば、第1フレア防止非円形絞りFS1と第2フレア防止非円形絞りFS2の少なくとも一方の絞りが有する非円形開口部AP1、AP2は、光軸AX、AXa、AXbに沿った断面において一方向に傾斜するテーパー形状32を有し、さらに、絞りは、非円形開口部AP1、AP2に対して所定の位置に切欠き部30、31を有することが望ましい。 Further, according to a preferred aspect of the present embodiment, the non-circular openings AP1 and AP2 included in at least one of the first flare-preventing non-circular stop FS1 and the second flare-preventing non-circular stop FS2 have the optical axes AX and AXa. In addition, it is desirable to have a tapered shape 32 inclined in one direction in the cross section along AXb, and further, the diaphragm has notches 30 and 31 at predetermined positions with respect to the non-circular openings AP1 and AP2.
 図2Cに示すように、非円形開口部AP1は、光軸AX、AXa、AXbに沿った断面において一方向に傾斜するテーパー形状32を有する。テーパー形状を両側(物体側と像面側)から加工すると、加工面がだれてしまい、フレアが発生してしまうため好ましくない。また、図2A、2Bに示すように、切欠き部30、31を有することで、第1、第2非円形絞りFS1、FS2のテーパー形状32の方向を容易に認識できる。 As shown in FIG. 2C, the non-circular opening AP1 has a tapered shape 32 inclined in one direction in a cross section along the optical axes AX, AXa, and AXb. Processing the taper shape from both sides (object side and image surface side) is not preferable because the processed surface is tilted and flare occurs. Further, as shown in FIGS. 2A and 2B, by having the cutout portions 30 and 31, the direction of the tapered shape 32 of the first and second non-circular diaphragms FS1 and FS2 can be easily recognized.
 また、本実施形態の好ましい態様によれば、最も物体側にカバーガラスを有することが望ましい。 Also, according to a preferred aspect of the present embodiment, it is desirable to have a cover glass on the most object side.
 これにより、本内視鏡撮像ユニットを内視鏡に容易に組み込むことができる。また、第1レンズL1の物体側の面を平面形状として、第1レンズL1にカバーガラスの機能を兼用させることもできる。 This makes it possible to easily incorporate the endoscope imaging unit into the endoscope. Further, the object-side surface of the first lens L1 can be formed into a planar shape so that the first lens L1 can also function as a cover glass.
(実施例1)
 次に、実施例1に係る内視鏡撮像ユニット100について説明する。図7A、7Bは、内視鏡撮像ユニット100の対物光学系LNSの断面構成を示す図である。ここで、図7Aは、通常観察状態(遠距離物点)における対物光学系LNSの断面構成を示す図である。図7Bは、近接観察状態(近距離物点)における対物光学系LNSの断面構成を示す図である。
Example 1
Next, the endoscope imaging unit 100 according to the first embodiment will be described. 7A and 7B are diagrams illustrating a cross-sectional configuration of the objective optical system LNS of the endoscope imaging unit 100. FIG. Here, FIG. 7A is a diagram illustrating a cross-sectional configuration of the objective optical system LNS in a normal observation state (a long distance object point). FIG. 7B is a diagram illustrating a cross-sectional configuration of the objective optical system LNS in the close-up observation state (short-distance object point).
 本実施例に係る対物光学系LNSは、物体側から順に、負の屈折力の第1レンズ群G1と、明るさ絞りSと、正の屈折力の第2レンズ群G2と、正の屈折力の第3レンズ群G3とから構成されている。第2レンズ群G2は、光軸AX上を像側に移動して、通常観察状態から近接観察状態への変化に伴う焦点位置の変化を補正する。 The objective optical system LNS according to the present example includes, in order from the object side, a first lens group G1 having a negative refractive power, an aperture stop S, a second lens group G2 having a positive refractive power, and a positive refractive power. The third lens group G3. The second lens group G2 moves on the optical axis AX to the image side, and corrects the change in the focal position accompanying the change from the normal observation state to the close observation state.
 第1レンズ群G1は、平凹負レンズL1と、平行平板L2と、両凹負レンズL3と、物体側に凸面を向けた正メニスカスレンズL4とからなる。ここで、負レンズL3と正メニスカスレンズL4とは接合されている。 The first lens group G1 includes a planoconcave negative lens L1, a parallel plate L2, a biconcave negative lens L3, and a positive meniscus lens L4 having a convex surface facing the object side. Here, the negative lens L3 and the positive meniscus lens L4 are cemented.
 第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズL5からなる。 The second lens group G2 is composed of a positive meniscus lens L5 having a convex surface directed toward the object side.
 第3レンズ群G3は、両凸正レンズL6と、像側に凸面を向けた負メニスカスレンズL7と、平凸正レンズL8と、両凸正レンズL9と、像側に凸面を向けた負メニスカスレンズL10とからなる。ここで、正レンズL6と負メニスカスレンズL7とは接合されている。正レンズL9と負メニスカスレンズL10とは接合されている。 The third lens group G3 includes a biconvex positive lens L6, a negative meniscus lens L7 having a convex surface facing the image side, a planoconvex positive lens L8, a biconvex positive lens L9, and a negative meniscus having a convex surface facing the image side. It consists of a lens L10. Here, the positive lens L6 and the negative meniscus lens L7 are cemented. The positive lens L9 and the negative meniscus lens L10 are cemented.
 第1フレア防止非円形絞りFS1は、平凹負レンズL1の像側であって、平凹負レンズL1と平行平板L2との間に配置されている。第2フレア防止非円形絞りFS2は、負メニスカスレンズL10の像側に配置されている。 The first anti-flare non-circular stop FS1 is disposed on the image side of the plano-concave negative lens L1 and between the plano-concave negative lens L1 and the parallel plate L2. The second flare prevention non-circular stop FS2 is disposed on the image side of the negative meniscus lens L10.
 第3レンズ群G3の像側に、光路分割部20を配置している。光学系中のプリズムでは、光路が折り曲げられる。光路分割部20に関しては、後述する。なお、平行平板L2は、特定の波長、例えばYAGレーザーの1060nm、半導体レーザーの810nm、あるいは赤外域をカットするためのコーティングが施されたフィルターである。 The optical path dividing unit 20 is disposed on the image side of the third lens group G3. In the prism in the optical system, the optical path is bent. The optical path splitting unit 20 will be described later. The parallel flat plate L2 is a filter provided with a coating for cutting a specific wavelength, for example, 1060 nm of a YAG laser, 810 nm of a semiconductor laser, or an infrared region.
(実施例2)
 次に、実施例2に係る内視鏡撮像ユニット110について説明する。図8は、内視鏡撮像ユニット110の対物光学系LNSa、LNSbの断面構成を示す図である。
(Example 2)
Next, the endoscope imaging unit 110 according to the second embodiment will be described. FIG. 8 is a diagram illustrating a cross-sectional configuration of the objective optical systems LNSa and LNSb of the endoscope imaging unit 110.
 本実施例に係る対物光学系LNSa、LNSbは、同一の構成のレンズ系を2つ並列した構成である。このため、一方の対物光学系LNSaを例に説明する。 The objective optical systems LNSa and LNSb according to the present embodiment have a configuration in which two lens systems having the same configuration are arranged in parallel. For this reason, one objective optical system LNSa will be described as an example.
 物体側から順に、正の屈折力の第1レンズ群G1と、明るさ絞りSと、正の屈折力の第2レンズ群G2とから構成されている。 In order from the object side, the first lens unit G1 having a positive refractive power, an aperture stop S, and a second lens unit G2 having a positive refractive power are configured.
 第1レンズ群G1は、平凹負レンズL1と、両凸正レンズL2からなる。 The first lens group G1 includes a planoconcave negative lens L1 and a biconvex positive lens L2.
 第2レンズ群G2は、平行平板L3と、両凸正レンズL4と、像側に凸面を向けた負メニスカスレンズL5と、平行平板F1と、平行平板CGからなる。 The second lens group G2 includes a parallel plate L3, a biconvex positive lens L4, a negative meniscus lens L5 having a convex surface directed toward the image side, a parallel plate F1, and a parallel plate CG.
 第1フレア防止非円形絞りFS1は、平凹負レンズL1の像側に配置されている。第2フレア防止非円形絞りFS2は、第1フレア防止非円形絞りFS1よりも像側であって、負メニスカスレンズL5と、平行平板F1との間に配置されている。 The first flare prevention non-circular diaphragm FS1 is disposed on the image side of the plano-concave negative lens L1. The second flare-preventing non-circular stop FS2 is located on the image side of the first flare-preventing non-circular stop FS1, and is disposed between the negative meniscus lens L5 and the parallel plate F1.
 平行平板L3は、特定の波長、例えばYAGレーザーの1060nm、半導体レーザーの810nm、あるいは赤外域をカットするためのコーティングが施されたフィルターである。 The parallel plate L3 is a filter provided with a coating for cutting a specific wavelength, for example, 1060 nm of a YAG laser, 810 nm of a semiconductor laser, or an infrared region.
(実施例3)
 次に、実施例3に係る内視鏡撮像ユニット120について説明する。図9A、9Bは、内視鏡撮像ユニット120の対物光学系LNSの断面構成を示す図である。ここで、図9Aは、通常観察状態(遠距離物点)における対物光学系LNSの断面構成を示す図である。図9Bは、近接観察状態(近距離物点)における対物光学系LNSの断面構成を示す図である。
(Example 3)
Next, the endoscope imaging unit 120 according to the third embodiment will be described. 9A and 9B are diagrams showing a cross-sectional configuration of the objective optical system LNS of the endoscope imaging unit 120. FIG. Here, FIG. 9A is a diagram illustrating a cross-sectional configuration of the objective optical system LNS in a normal observation state (a long distance object point). FIG. 9B is a diagram showing a cross-sectional configuration of the objective optical system LNS in the close-up observation state (short-distance object point).
 本実施例に係る対物光学系LNSは、物体側から順に、正の屈折力の第1レンズ群G1と、明るさ絞りSと、負の屈折力の第2レンズ群G2と、正の屈折力の第3レンズ群G3から構成されている。第2レンズ群G2は、光軸AX上を像側に移動して、通常観察状態から近接観察状態への変化に伴う焦点位置の変化を補正する。 The objective optical system LNS according to this example includes, in order from the object side, a first lens group G1 having a positive refractive power, an aperture stop S, a second lens group G2 having a negative refractive power, and a positive refractive power. The third lens group G3. The second lens group G2 moves on the optical axis AX to the image side, and corrects the change in the focal position accompanying the change from the normal observation state to the close observation state.
 第1レンズ群G1は、平凹負レンズL1と、平行平板L2と、像側に凸面を向けた正メニスカスレンズL3と、平凸正レンズL4と、像側に凸面を向けた負メニスカスレンズL5からなる。ここで、正レンズL4と負メニスカスレンズL5とは接合されている。 The first lens group G1 includes a plano-concave negative lens L1, a parallel plate L2, a positive meniscus lens L3 having a convex surface facing the image side, a plano-convex positive lens L4, and a negative meniscus lens L5 having a convex surface facing the image side. Consists of. Here, the positive lens L4 and the negative meniscus lens L5 are cemented.
 第2レンズ群G2は、平凹負レンズL6と、物体側に凸面を向けた正メニスカスレンズL7からなる。負レンズL6と正メニスカスレンズL7は接合されている。 The second lens group G2 includes a plano-concave negative lens L6 and a positive meniscus lens L7 having a convex surface directed toward the object side. The negative lens L6 and the positive meniscus lens L7 are cemented.
 第3レンズ群G3は、両凸正レンズL8と、両凸正レンズL9と、両凹負レンズL10からなる。ここで、正レンズL9と負レンズL10は接合されている。 The third lens group G3 includes a biconvex positive lens L8, a biconvex positive lens L9, and a biconcave negative lens L10. Here, the positive lens L9 and the negative lens L10 are cemented.
 第1フレア防止非円形絞りFS1は、平凹負レンズL1の像側であって、平凹負レンズL1と平行平板L2との間に配置されている。第2フレア防止非円形絞りFS2は、負レンズL10の像側に配置されている。 The first anti-flare non-circular stop FS1 is disposed on the image side of the plano-concave negative lens L1 and between the plano-concave negative lens L1 and the parallel plate L2. The second flare prevention non-circular diaphragm FS2 is disposed on the image side of the negative lens L10.
 第3レンズ群G3の像側に、光路分割部20を配置している。光学系中のプリズムでは、光路が折り曲げられる。光路分割部20に関しては、後述する。なお、平行平板L2は、特定の波長、例えばYAGレーザーの1060nm、半導体レーザーの810nm、あるいは赤外域をカットするためのコーティングが施されたフィルターである。 The optical path dividing unit 20 is disposed on the image side of the third lens group G3. In the prism in the optical system, the optical path is bent. The optical path splitting unit 20 will be described later. The parallel flat plate L2 is a filter provided with a coating for cutting a specific wavelength, for example, 1060 nm of a YAG laser, 810 nm of a semiconductor laser, or an infrared region.
(光路分割部の説明)
 次に、上記実施形態、実施例における光路分割部20について説明する。
 図4は、内視鏡撮像ユニット100、120の機能ブロック図である。図5は、光路分割部20の概略構成を示す図である。
(Description of the optical path splitting unit)
Next, the optical path splitting unit 20 in the above embodiment and examples will be described.
FIG. 4 is a functional block diagram of the endoscope imaging units 100 and 120. FIG. 5 is a diagram illustrating a schematic configuration of the optical path splitting unit 20.
 上述した各実施例の対物光学系LNSを射出した光は、光路分割部20に入射する。 The light emitted from the objective optical system LNS of each embodiment described above enters the optical path dividing unit 20.
 光路分割部20は、被写体像をピントの異なる2つの光学像に分割する偏光ビームスプリッタ21と、2つの光学像を撮像して2つの画像を取得する撮像素子22を有する。 The optical path dividing unit 20 includes a polarization beam splitter 21 that divides a subject image into two optical images with different focus points, and an imaging element 22 that captures two optical images and acquires two images.
 偏光ビームスプリッタ21は、図5に示すように、第1プリズム21b、第2プリズム21e、ミラー21c、及びλ/4板21dを備えている。第1プリズム21b及び第2プリズム21eは共に光軸に対して45度の斜度であるビームスプリット面を有する。 As shown in FIG. 5, the polarization beam splitter 21 includes a first prism 21b, a second prism 21e, a mirror 21c, and a λ / 4 plate 21d. Both the first prism 21b and the second prism 21e have beam split surfaces having an inclination of 45 degrees with respect to the optical axis.
 第1プリズム21bのビームスプリット面には偏光分離膜21fが形成されている。そして、第1プリズム21b及び第2プリズム21eは、互いのビームスプリット面を偏光分離膜21fを介して当接させて偏光ビームスプリッタ21を構成している。 A polarization splitting film 21f is formed on the beam splitting surface of the first prism 21b. The first prism 21b and the second prism 21e constitute the polarization beam splitter 21 by bringing the beam split surfaces into contact with each other via the polarization separation film 21f.
 また、ミラー21cは、第1プリズム21bの端面近傍にλ/4板21dを介して設けられている。第2プリズム21eの端面には、平行平板(カバーガラス)CGを介して撮像素子22が取り付けられている。 The mirror 21c is provided near the end face of the first prism 21b via a λ / 4 plate 21d. The image sensor 22 is attached to the end face of the second prism 21e via a parallel plate (cover glass) CG.
 対物光学系LNSからの被写体像は、第1プリズム21bにおいてそのビームスプリット面に設けられた偏光分離膜21fによりP偏光成分(透過光)とS偏光成分(反射光)とに分離され、反射光側の光学像と透過光側の光学像との2つの光学像に分離される。 The subject image from the objective optical system LNS is separated into a P-polarized component (transmitted light) and an S-polarized component (reflected light) by the polarization separation film 21f provided on the beam splitting surface in the first prism 21b, and reflected light. The optical image is separated into two optical images, ie, an optical image on the side and an optical image on the transmitted light side.
 S偏光成分の光学像は、偏光分離膜21fで撮像素子22に対して対面側に反射されA’光路を通り、λ/4板21dを透過後、ミラー21cで反射され、撮像素子22側に折り返される。折り返された光学像は、λ/4板21dを再び透過する事で偏光方向が90°回転し、偏光分離膜21fを透過して撮像素子22に結像される。 The optical image of the S-polarized component is reflected to the imaging element 22 by the polarization separation film 21f, passes through the A ′ optical path, passes through the λ / 4 plate 21d, is reflected by the mirror 21c, and is reflected to the imaging element 22 side. Wrapped. The folded optical image is transmitted through the λ / 4 plate 21d again to rotate the polarization direction by 90 °, passes through the polarization separation film 21f, and forms an image on the imaging device 22.
 P偏光成分の光学像は、偏光分離膜21fを透過してB’光路を通り、撮像素子22に向かって垂直に折り返す第2プリズム21eのビームスプリット面と反対側に設けられたミラー面によって反射され、撮像素子22に結像される。この際、A’光路とB’光路で、例えば、数十μm程度の所定の光路差を生じさせるように、プリズム硝路を設定しておき、ピントが異なる2つの光学像を撮像素子22の受光面に結像させる。 The optical image of the P-polarized component is reflected by a mirror surface provided on the side opposite to the beam splitting surface of the second prism 21e that passes through the polarization separation film 21f, passes through the B ′ optical path, and is folded vertically toward the image sensor 22. Then, an image is formed on the image sensor 22. At this time, the prism glass path is set so that a predetermined optical path difference of, for example, about several tens of μm is generated between the A ′ optical path and the B ′ optical path, and two optical images with different focus are obtained from the image sensor 22. An image is formed on the light receiving surface.
 すなわち、第1プリズム21b及び第2プリズム21eを、被写体像をピント位置が異なる2つの光学像に分離できるように、第1プリズム21bにおける撮像素子22に至る透過光側の光路長(硝路長)に対して反射光側の光路長が短く(小さく)なるように配置する。 That is, the first prism 21b and the second prism 21e can be separated into two optical images having different focus positions so that the optical path length (glass path length) on the transmitted light side to the imaging element 22 in the first prism 21b can be separated. The optical path length on the reflected light side is short (small).
 撮像素子22は、図6に示すように、ピント位置が異なる2つの光学像を各々個別に受光して撮像するために、撮像素子22の全画素領域の中に、2つの受光領域(有効撮像領域)22a、22bが設けられている。 As shown in FIG. 6, the image sensor 22 receives two optical images with different focus positions by individually receiving and picking up two optical images. Regions) 22a and 22b are provided.
 受光領域(有効撮像領域)22a、22bは、2つの光学像を撮像するために、これらの光学像の結像面と各々一致するように配置されている。そして、撮像素子22において、受光領域(有効撮像領域)22aは、受光領域(有効撮像領域)22bに対してそのピント位置が相対的に近点側にシフトしており(ずれており)、受光領域(有効撮像領域)22bは、受光領域(有効撮像領域)22aに対してそのピント位置が相対的に遠点側にシフトしている。これにより、ピントが異なる2つの光学像を撮像素子22の受光面に結像させるように構成されている。 The light receiving areas (effective imaging areas) 22a and 22b are arranged so as to coincide with the image planes of these optical images in order to capture two optical images. In the image sensor 22, the light receiving area (effective imaging area) 22a is shifted (shifted) toward the near point relative to the light receiving area (effective imaging area) 22b. The focus position of the area (effective imaging area) 22b is relatively shifted to the far point side with respect to the light receiving area (effective imaging area) 22a. Thereby, two optical images with different focus are formed on the light receiving surface of the image sensor 22.
 なお、第1プリズム21bと第2プリズム21eにおける両者の硝材の屈折率を異ならせることにより、撮像素子22に至る光路長を変えて受光領域(有効撮像領域)22a、22bに対するピント位置を相対的にずらすようにしても良い。 In addition, by changing the refractive indexes of the glass materials of the first prism 21b and the second prism 21e, the optical path length to the image sensor 22 is changed, and the focus positions relative to the light receiving areas (effective imaging areas) 22a and 22b are relatively set. You may make it move to.
 また、受光領域(有効撮像領域)22a、22bの周囲には、2つに分割された光学像の幾何的なズレを補正するための補正画素領域22cが設けられている。補正画素領域22c内において製造上の誤差を抑え、後述する画像補正処理部23b(図4)にて画像処理による補正を行なうことで、上記した光学像の幾何学的なズレを解消するようになっている。 Further, around the light receiving areas (effective imaging areas) 22a and 22b, a correction pixel area 22c for correcting a geometric shift of the optical image divided into two is provided. In the correction pixel region 22c, manufacturing errors are suppressed, and correction by image processing is performed by an image correction processing unit 23b (FIG. 4), which will be described later, so as to eliminate the above-described geometrical deviation of the optical image. It has become.
 上述の実施例1、3の第2レンズ群G2は、フォーカシングレンズであり、光軸の方向における2つの位置に選択的に移動可能である。不図示のアクチュエータにより、第2レンズ群G2は、2つの位置間で一方の位置から他方の位置、他方の位置から一方の位置に移動するように駆動される。 The second lens group G2 of Examples 1 and 3 described above is a focusing lens and can be selectively moved to two positions in the direction of the optical axis. The second lens group G2 is driven by an actuator (not shown) so as to move from one position to the other position and from the other position to one position between two positions.
 第2レンズ群G2を、前方側(物体側)の位置に設定した状態においては遠方観察(通常観察)する場合の観察領域の被写体にピントが合うように設定される。また、第2レンズ群G2を後方側の位置に設定した状態においては近接観察(拡大観察)する場合の観察領域の被写体にピントが合うように設定されている。 In the state where the second lens group G2 is set to the front side (object side) position, the second lens group G2 is set so as to focus on the subject in the observation area when performing far-field observation (normal observation). Further, in the state where the second lens group G2 is set to the rear side position, it is set to focus on the subject in the observation region when performing close-up observation (magnification observation).
 なお、本実施形態のように、偏光ビームスプリッタ21を適用して偏光分離をする場合、分離する光の偏光状態が円偏光でないと分離した像の明るさに差が生じてしまう。規則的な明るさの差異は画像処理での補正が比較的容易であるが、局所的に且つ観察条件で明るさの差異が生じた場合、補正しきれなくなり、合成画像に明るさムラが生じてしまう場合がある。 Note that, as in the present embodiment, when the polarization beam splitter 21 is used for the polarization separation, the brightness of the separated image is different unless the polarization state of the light to be separated is a circular polarization. Regular brightness differences are relatively easy to correct in image processing. However, if brightness differences occur locally and under viewing conditions, they cannot be corrected completely, resulting in uneven brightness in the composite image. May end up.
 内視鏡で観察する被写体は、合成画像の比較的視野周辺部で明るさムラが生じてしまう可能性がある。尚、この偏光状態が崩れた明るさムラは、被写体が比較的飽和気味の明るさ分布であると顕著に生じる。 The subject observed with the endoscope may have uneven brightness in the relatively peripheral part of the visual field of the composite image. It should be noted that the unevenness in brightness with the polarization state broken is conspicuous when the subject has a relatively saturated brightness distribution.
 視野の周辺部において、内視鏡では比較的近接して被写体像の血管走行や粘膜構造を見る事が多く、ユーザーにとって非常に煩わしい画像になる可能性が高い。
 そこで、例えば、図5に示すように、この偏光状態が崩れた状態を円偏光に戻す様にλ/4板21dを、光路分割部20の偏光分離膜21fより物体側に配置することが好ましい。
In the peripheral part of the visual field, the endoscope often sees the blood vessel running and the mucous membrane structure of the subject image relatively close to each other, and there is a high possibility that the image will be very troublesome for the user.
Therefore, for example, as shown in FIG. 5, it is preferable to arrange the λ / 4 plate 21d closer to the object side than the polarization separation film 21f of the optical path splitting unit 20 so as to return the polarization state to the circularly polarized state. .
 なお、上述のような偏光ビームスプリッタの代わりに、入射光を強度分割するハーフミラーを用いることもできる。 It should be noted that a half mirror that splits the intensity of incident light can be used instead of the polarizing beam splitter as described above.
 次に、図4を参照して、取得した2つの画像の合成に関して説明する。 Next, with reference to FIG. 4, the synthesis of the two acquired images will be described.
 画像プロセッサ23は、撮像素子22により撮像されたピント位置が異なる2つの光学像に係る画像を各々読み出す画像読出部23aと、画像読出部23aにより読み出された2つの画像に対する画像補正を行う画像補正処理部23bと、補正された2つの画像を合成する画像合成処理を行う画像合成処理部23cとを有する。 The image processor 23 reads an image related to two optical images captured by the image sensor 22 and has different focus positions, and an image for performing image correction on the two images read by the image read unit 23a. The image processing apparatus includes a correction processing unit 23b and an image composition processing unit 23c that performs image composition processing for combining the two corrected images.
 画像補正処理部23bは、撮像素子22の受光領域(有効撮像領域)22a、22bにそれぞれ結像される2つの光学像に係る画像に対し、互いのピント以外の差異が略同一となるように補正する。すなわち、2つの画像の各光学像における相対的な位置、角度及び倍率が略同一となるように2つの画像に対して補正を行う。 The image correction processing unit 23b is configured so that the differences other than the focus are substantially the same with respect to the images related to the two optical images formed on the light receiving areas (effective imaging areas) 22a and 22b of the imaging element 22, respectively. to correct. That is, the two images are corrected so that the relative positions, angles, and magnifications in the optical images of the two images are substantially the same.
 被写体像を2つに分離して撮像素子22に各々結像させる場合、幾何的な差異が生じる場合がある。すなわち、撮像素子22の受光領域(有効撮像領域)22a、22bにそれぞれ結像される各々の光学像は、相対的に倍率ズレ、位置ズレ、角度すなわち回転方向のズレ等が発生する場合がある。 When the subject image is separated into two and formed on the image sensor 22, geometrical differences may occur. That is, each optical image formed on the light receiving regions (effective imaging regions) 22a and 22b of the image sensor 22 may have a relative displacement of magnification, displacement of position, angle, that is, displacement in the rotation direction, and the like. .
 これらの差異を製造時などにおいて、完全に解消することは困難であるが、それらのズレ量が大きくなると、合成画像が2重画像となったり、不自然な明るさムラ等を生じたりする。このため、画像補正処理部23bにて上述した幾何的な差異、明るさ差異を補正する。 Although it is difficult to completely eliminate these differences at the time of manufacturing or the like, if the amount of misalignment increases, the composite image becomes a double image or unnatural brightness unevenness occurs. Therefore, the above-described geometric difference and brightness difference are corrected by the image correction processing unit 23b.
 2つの画像間における明るさの差異を補正する場合、2つの像または画像のうち輝度の低い方の像または画像、もしくは2つの像または画像の相対的に同一位置における輝度の低い方を基準にして補正を行うことが望ましい。 When correcting the difference in brightness between two images, the lower one of the two images or images or the image or image having the lower luminance at the relatively same position of the two images or images is used as a reference. It is desirable to make corrections.
 画像合成処理部23cは、画像補正処理部23bにより補正された2つの画像間の対応する所定領域において、相対的にコントラストが高い画像を選択して合成画像を生成する。つまり、2つの画像における空間的に同一の画素領域それぞれにおけるコントラストを比較し、相対的にコントラストが高い方の画素領域を選択することにより、2つの画像から合成された1つの画像としての合成画像を生成する。 The image composition processing unit 23c selects a relatively high contrast image in a corresponding region between the two images corrected by the image correction processing unit 23b, and generates a composite image. That is, by comparing the contrast in each spatially identical pixel area in two images and selecting a pixel area having a relatively higher contrast, a composite image as one image synthesized from the two images Is generated.
 なお、2つの画像の同一の画素領域におけるコントラスト差が小さい又は略同一である場合は、その画素領域に所定の重み付けして加算する合成画像処理により、合成画像を生成する。 When the contrast difference in the same pixel area of the two images is small or substantially the same, a composite image is generated by a composite image process in which the pixel area is added with a predetermined weight.
 また、画像プロセッサ23は、画像合成処理部23cにより合成された1つの画像に対して、色マトリクス処理、輪郭強調、ガンマ補正等の後段画像処理を行う。画像出力部23dは、後段画像処理された画像を出力する。画像出力部23dから出力される画像は画像表示部24に出力される。 Further, the image processor 23 performs subsequent image processing such as color matrix processing, contour enhancement, and gamma correction on one image synthesized by the image synthesis processing unit 23c. The image output unit 23d outputs an image that has been subjected to subsequent image processing. The image output from the image output unit 23d is output to the image display unit 24.
 また、撮像素子22に至る近点光路と遠点光路とに応じて、第1プリズム21bと第2プリズム21eとを異なる硝材で構成し、屈折率を異ならせることにより、相対的にピント位置をずらしても良い。 Further, the first prism 21b and the second prism 21e are made of different glass materials according to the near point optical path and the far point optical path leading to the image sensor 22, and the refractive index is made different so that the relative focus position is relatively increased. It may be shifted.
 これにより、ピントの異なる2つの光学像に係る画像を取得し、これら画像を画像合成処理部23cで合成して合成被写界深度を得ることができる。内視鏡検査で広い範囲を俯瞰してスクリーニングする際には遠方観察が適しており、病変の詳細を観察したり、診断したりする際には、近接観察が適している。 Thereby, it is possible to obtain images related to two optical images with different focus and to synthesize these images by the image composition processing unit 23c to obtain a combined depth of field. Far-field observation is suitable for screening a wide range by endoscopy, and close-up observation is suitable for observing or diagnosing the details of a lesion.
 このような構成をとる事で、より多画素化した撮像素子を使用しても解像力を落とすことなく被写界深度を拡大する事が可能となる。更にフォーカシング機構があるので自在に観察範囲を切り替えて高画質の内視鏡観察や診断を行うことができる。 By adopting such a configuration, it becomes possible to expand the depth of field without reducing the resolving power even when an image sensor having a larger number of pixels is used. Furthermore, since there is a focusing mechanism, it is possible to freely switch the observation range and perform high-quality endoscope observation and diagnosis.
 以下に、上記各実施例の数値データを示す。記号は、rは各レンズ面の曲率半径、dは各レンズ面間の間隔、ndは各レンズのd線の屈折率、νdは各レンズのアッベ数、FNOはFナンバー、ωは半画角である。 The numerical data of each of the above examples is shown below. Symbols r are the radius of curvature of each lens surface, d is the distance between the lens surfaces, nd is the refractive index of the d-line of each lens, νd is the Abbe number of each lens, FNO is the F number, and ω is the half field angle It is.
数値実施例1
単位  mm
 
面データ
  面番号             r          d         nd       νd
      1              ∞        0.48     1.88300    40.76
      2             1.673      0.83
      3(FS1)         ∞        0.21
      4              ∞        0.83     1.52100    65.12
      5              ∞        0.34
      6           -11.775      0.76     1.88300    40.76
      7             1.866      2.10     1.84666    23.78
      8            17.956      可変
      9             1.976      0.79     1.48749    70.23
     10             2.106      0.41
     11 (明るさ絞り)  ∞       可変
     12             4.016      0.91     1.64769    33.79
     13            -1.601      0.32     2.00330    28.27
     14            -5.954      0.06
     15              ∞        0.88     1.69895    30.13
     16            -3.128      0.14
     17            40.949      0.93     1.48749    70.23
     18            -2.174      0.39     1.92286    18.90
     19            -4.393      1.00
     20(FS2)          ∞       3.52
     21               ∞
 
ズームデータ
                   通常      拡大
焦点距離           1.00      1.00      
FNO.           3.58      3.54     
画角2ω         145.02    139.22    
fb (in air)        4.47      4.39     
全長 (in air)     16.52     16.44    
 
      d7           0.46      1.18       
      d11          41.23     0.51      
 
各群焦点距離
f1=-1.15   f2=21.90   f3=3.20   
 
Numerical example 1
Unit mm

Surface data Surface number r d nd νd
1 ∞ 0.48 1.88300 40.76
2 1.673 0.83
3 (FS1) ∞ 0.21
4 ∞ 0.83 1.52100 65.12
5 ∞ 0.34
6 -11.775 0.76 1.88300 40.76
7 1.866 2.10 1.84666 23.78
8 17.956 Variable 9 1.976 0.79 1.48749 70.23
10 2.106 0.41
11 (Brightness stop) ∞ Variable 12 4.016 0.91 1.64769 33.79
13 -1.601 0.32 2.00330 28.27
14 -5.954 0.06
15 ∞ 0.88 1.69895 30.13
16 -3.128 0.14
17 40.949 0.93 1.48749 70.23
18 -2.174 0.39 1.92286 18.90
19 -4.393 1.00
20 (FS2) ∞ 3.52
21 ∞

Zoom data Normal Expanded focal length 1.00 1.00
FNO. 3.58 3.54
Angle of view 2ω 145.02 139.22
fb (in air) 4.47 4.39
Total length (in air) 16.52 16.44

d7 0.46 1.18
d11 41.23 0.51

Each group focal length
f1 = -1.15 f2 = 21.90 f3 = 3.20
数値実施例2
単位  mm
 
面データ
  面番号             r          d         nd       νd
      1              ∞        0.30     1.88300    40.76
      2             0.689      0.42
      3(FS1)         ∞        0.08
      4             4.817      1.57     1.80610    40.92
      5            -1.521      0.10
      6(明るさ絞り)  ∞        0.04
      7              ∞        0.89     1.52100    65.12
      8              ∞        0.15
      9             3.167      1.27     1.75500    52.32
     10            -1.199      0.45     1.92286    18.90
     11            -3.669      0.50
     12(FS2)         ∞        0.07
     13              ∞        0.75     1.51633    64.14
     14              ∞        0.01     1.00000    64.00
     15              ∞        0.75     1.00000    50.49
     16              ∞
      
各種データ
fb (in air)        1.46            
全長 (in air)      6.73           
 
各群焦点距離
  前群=3.03   後群=3.11
 
Numerical example 2
Unit mm

Surface data Surface number r d nd νd
1 ∞ 0.30 1.88300 40.76
2 0.689 0.42
3 (FS1) ∞ 0.08
4 4.817 1.57 1.80610 40.92
5 -1.521 0.10
6 (Brightness stop) ∞ 0.04
7 ∞ 0.89 1.52100 65.12
8 ∞ 0.15
9 3.167 1.27 1.75500 52.32
10 -1.199 0.45 1.92286 18.90
11 -3.669 0.50
12 (FS2) ∞ 0.07
13 ∞ 0.75 1.51633 64.14
14 ∞ 0.01 1.00000 64.00
15 ∞ 0.75 1.00000 50.49
16 ∞

Various data
fb (in air) 1.46
Total length (in air) 6.73

Focal length for each group Front group = 3.03 Rear group = 3.11
数値実施例3
単位  mm
 
面データ
  面番号             r          d         nd       νd
      1              ∞        0.30     1.88300    40.76
      2             0.909      0.45
      3(FS1)         ∞        0.27
      4              ∞        0.34     1.52100    65.12
      5              ∞        0.17
      6            -7.718      1.62     1.58144    40.75
      7            -1.795      0.26
      8              ∞        0.68     1.53172    48.84
      9            -1.125      0.26     1.92286    18.90
     10            -1.774      0.04
     11(明るさ絞り)  ∞        可変
     12              ∞        0.21     1.77250    49.60
     13             1.321      0.47     1.69895    30.13
     14             3.510      可変
     15             3.621      1.02     1.81600    46.62
     16            -5.962      0.04
     17             4.016      1.40     1.58913    61.14
     18            -2.042      0.30     1.92286    18.90
     19             9.007      0.50
     20(FS2)         ∞        1.26
     21              ∞
 
ズームデータ
                   通常      拡大
焦点距離           1.00      1.25     
FNO.           6.13      7.68     
画角2ω         140.39     78.40    
fb (in air)        1.67      1.01     
全長 (in air)     11.73     11.07     
 
      d11          0.29      1.86      
      d14          1.94      0.38      
 
各群焦点距離
f1=1.74   f2=-3.88   f3=2.78   
 
Numerical Example 3
Unit mm

Surface data Surface number r d nd νd
1 ∞ 0.30 1.88300 40.76
2 0.909 0.45
3 (FS1) ∞ 0.27
4 ∞ 0.34 1.52100 65.12
5 ∞ 0.17
6 -7.718 1.62 1.58144 40.75
7 -1.795 0.26
8 ∞ 0.68 1.53172 48.84
9 -1.125 0.26 1.92286 18.90
10 -1.774 0.04
11 (Brightness stop) ∞ Variable 12 ∞ 0.21 1.77250 49.60
13 1.321 0.47 1.69895 30.13
14 3.510 Variable 15 3.621 1.02 1.81600 46.62
16 -5.962 0.04
17 4.016 1.40 1.58913 61.14
18 -2.042 0.30 1.92286 18.90
19 9.007 0.50
20 (FS2) ∞ 1.26
21 ∞

Zoom data Normal Expanded focal length 1.00 1.25
FNO. 6.13 7.68
Angle of view 2ω 140.39 78.40
fb (in air) 1.67 1.01
Full length (in air) 11.73 11.07

d11 0.29 1.86
d14 1.94 0.38

Each group focal length
f1 = 1.74 f2 = -3.88 f3 = 2.78
 以下、実施例1、実施例2、実施例3に係る対物光学系における条件式(1)~(4)の数値を示す。
 
条件式            実施例1 実施例2 実施例3
(1)S01_v/S02_v     1.447   1.500   1.800
(2)ih_v/S02_v      1.030   1.655   1.800
(3)ih_AB/S02_v     2.809   5.500   4.000
(4)S01_v/enp_wide  0.576   0.651   0.831
 
パラメータ
          実施例1 実施例2 実施例3
S01_v      0.94    0.71    0.77 
S02_v      0.65    0.47    0.43 
ih_v       0.67    0.78    0.77 
ih_AB      1.82    2.59    1.70 
enp_wide   1.63    1.08    0.92
 
The numerical values of conditional expressions (1) to (4) in the objective optical systems according to Example 1, Example 2, and Example 3 are shown below.

Conditional Example 1 Example 2 Example 3
(1) S01_v / S02_v 1.447 1.500 1.800
(2) ih_v / S02_v 1.030 1.655 1.800
(3) ih_AB / S02_v 2.809 5.500 4.000
(4) S01_v / enp_wide 0.576 0.651 0.831

Parameter Example 1 Example 2 Example 3
S01_v 0.94 0.71 0.77
S02_v 0.65 0.47 0.43
ih_v 0.67 0.78 0.77
ih_AB 1.82 2.59 1.70
enp_wide 1.63 1.08 0.92
 以上、本発明の種々の実施形態について説明したが、本発明は、これらの実施形態のみに限られるものではなく、その趣旨を逸脱しない範囲で、これら実施形態の構成を適宜組合せて構成した実施形態も本発明の範疇となるものである。 Although various embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and may be implemented by appropriately combining the configurations of these embodiments without departing from the spirit of the present invention. The form is also within the scope of the present invention.
 以上のように、本発明は、一つの撮像素子に2つの光学像を結像させ、画像合成を行うための内視鏡撮像ユニットであって、フレアの少ない良好な画質を得られる内視鏡撮像ユニットに有用である。 As described above, the present invention is an endoscope imaging unit for forming two optical images on one imaging device and performing image synthesis, and an endoscope capable of obtaining good image quality with less flare. Useful for imaging units.
 1、2 内視鏡
 100、110、120 内視鏡撮像ユニット
 20 光路分割部
 21 偏光ビームスプリッタ
 21a λ/4板
 21b 第1プリズム
 21c ミラー
 21d λ/4板
 21e 第2プリズム
 21f 偏光分離膜
 22 撮像素子
 22a、22b 受光領域(有効撮像領域)
 22c 補正画素領域
 23 画像プロセッサ
 23a 画像読出部
 23b 画像補正処理部
 23c 画像合成処理部
 23d 画像出力部
 24 画像表示部
 30、31 切欠き部
 32 テーパー形状
 CG 平行平板(カバーガラス)
 LNS、LNSa、LNSb 対物光学系(光学系)
 G1 第1レンズ群
 G2 第2レンズ群
 G3 第3レンズ群
 S  明るさ絞り
 FS1 第1フレア防止非円形絞り
 FS2 第2フレア防止非円形絞り
 AP1、AP2、APa、APb 非円形開口部(開口部)
 A、B 有効撮像領域
 FL フレア
 AX、AXa、AXb 光軸
1, 2 Endoscopes 100, 110, 120 Endoscope imaging unit 20 Optical path dividing unit 21 Polarizing beam splitter 21a λ / 4 plate 21b First prism 21c Mirror 21d λ / 4 plate 21e Second prism 21f Polarization separation film 22 Imaging Element 22a, 22b Light receiving area (effective imaging area)
22c correction pixel area 23 image processor 23a image reading unit 23b image correction processing unit 23c image composition processing unit 23d image output unit 24 image display unit 30, 31 notch 32 taper shape CG parallel flat plate (cover glass)
LNS, LNSa, LNSb Objective optical system (optical system)
G1 First lens group G2 Second lens group G3 Third lens group S Brightness stop FS1 First flare prevention non-circular stop FS2 Second flare prevention non-circular stop AP1, AP2, APa, APb Non-circular opening (opening)
A, B Effective imaging area FL Flare AX, AXa, AXb Optical axis

Claims (12)

  1.  2つの光路を有する光学系によって別々に形成される2つの光学像を一つの撮像素子に結像させる内視鏡撮像ユニットにおいて、
     前記2つの光路を有する光学系は、最も物体側に配置された負の第1レンズと、前記第1レンズの像側に配置された第1フレア防止非円形絞りと、前記第1フレア防止非円形絞りよりも像側に配置された第2フレア防止非円形絞りと、を有し、以下の条件式(1)を満足することを特徴とする内視鏡撮像ユニット。
     0.3<S01_v/S02_v<5.0   …(1)
     ここで、
     V方向を2つの前記光学像が隣接する方向とするとき、
     S01_vは、前記第1フレア防止非円形絞りのV方向の半径、
     S02_vは、前記第2フレア防止非円形絞りのV方向の半径、
    である。
    In an endoscope imaging unit that forms two optical images formed separately by an optical system having two optical paths on one imaging element,
    The optical system having the two optical paths includes a negative first lens disposed closest to the object side, a first anti-flare noncircular stop disposed on the image side of the first lens, and the first anti-flare non-circular stop. An endoscope imaging unit comprising: a second flare-preventing non-circular aperture disposed on the image side of the circular aperture, and satisfying the following conditional expression (1):
    0.3 <S01_v / S02_v <5.0 (1)
    here,
    When the V direction is the direction in which the two optical images are adjacent,
    S01_v is a radius in the V direction of the first non-circular diaphragm for preventing flare,
    S02_v is a radius in the V direction of the second anti-flare non-circular diaphragm,
    It is.
  2.  以下の条件式(2)を満足することを特徴とする請求項1に記載の内視鏡撮像ユニット。
     0.2<ih_v/S02_v<5.0   …(2)
     ここで、
     ih_vは、V方向の像高、
     S02_vは、前記第2フレア防止非円形絞りのV方向の半径、
    である。
    The endoscope imaging unit according to claim 1, wherein the following conditional expression (2) is satisfied.
    0.2 <ih_v / S02_v <5.0 (2)
    here,
    ih_v is the image height in the V direction,
    S02_v is a radius in the V direction of the second anti-flare non-circular diaphragm,
    It is.
  3.  以下の条件式(3)を満足することを特徴とする請求項1または2に記載の内視鏡撮像ユニット。
     1.0<ih_AB/S02_v<10.0   …(3)
     ここで、
     ih_ABは、前記撮像素子上での光軸間距離、
     S02_vは、前記第2フレア防止非円形絞りのV方向の半径、
    である。
    The endoscope imaging unit according to claim 1, wherein the following conditional expression (3) is satisfied.
    1.0 <ih_AB / S02_v <10.0 (3)
    here,
    ih_AB is the distance between the optical axes on the image sensor,
    S02_v is a radius in the V direction of the second anti-flare non-circular diaphragm,
    It is.
  4.  前記2つの光路を有する光学系は、1つの光軸を有する対物光学系と、光路を2分割する光路分割光学系と、から構成され、
     前記第2フレア防止非円形絞りは、前記対物光学系と前記光路分割光学系との間に配置されていることを特徴とする請求項1から3のいずれか1項に記載の内視鏡撮像ユニット。
    The optical system having the two optical paths is composed of an objective optical system having one optical axis and an optical path dividing optical system that divides the optical path into two parts,
    The endoscope imaging according to any one of claims 1 to 3, wherein the second flare-preventing non-circular stop is disposed between the objective optical system and the optical path dividing optical system. unit.
  5.  前記2つの光路を有する光学系は、2つの光軸を有する対物光学系から構成されることを特徴とする請求項1から3のいずれか1項に記載の内視鏡撮像ユニット。 The endoscope imaging unit according to any one of claims 1 to 3, wherein the optical system having the two optical paths includes an objective optical system having two optical axes.
  6.  前記対物光学系は、物体側から順に、負の第1レンズ群と、可動の正の第2レンズ群と、正の第3レンズ群と、から構成されることを特徴とする請求項4または5に記載の内視鏡撮像ユニット。 The objective optical system is configured by a negative first lens group, a movable positive second lens group, and a positive third lens group in order from the object side. The endoscope imaging unit according to 5.
  7.  前記対物光学系は、物体側から順に、第1レンズ群と、明るさ絞りと、正の後群と、から構成されることを特徴とする請求項4または5に記載の内視鏡撮像ユニット。 The endoscope imaging unit according to claim 4 or 5, wherein the objective optical system includes, in order from the object side, a first lens group, an aperture stop, and a positive rear group. .
  8.  前記対物光学系は、物体側から順に、正の第1レンズ群と、可動の負の第2レンズ群と、正の第3レンズ群と、から構成されることを特徴とする請求項4または5に記載の内視鏡撮像ユニット。 The objective optical system is configured by a positive first lens group, a movable negative second lens group, and a positive third lens group in order from the object side. The endoscope imaging unit according to 5.
  9.  前記2つの光軸を有する対物光学系において、前記第1フレア防止非円形絞りと前記第2フレア防止非円形絞りの少なくとも一方の絞りは、2つの非円形開口部を有することを特徴とする請求項5から8のいずれか1項に記載の内視鏡撮像ユニット。 In the objective optical system having the two optical axes, at least one of the first flare-preventing non-circular stop and the second flare-preventing non-circular stop has two non-circular openings. The endoscope imaging unit according to any one of Items 5 to 8.
  10.  以下の条件式(4)を満足することを特徴とする請求項6から9のいずれか1項に記載の内視鏡撮像ユニット。
     0.1<S01_v/enp_wide<5.0   …(4)
     ここで、
     enp_wideは、前記対物光学系の最も広角状態での入射瞳位置、
     S01_vは、前記第1フレア防止非円形絞りのV方向の半径、
    である。
    The endoscope imaging unit according to claim 6, wherein the following conditional expression (4) is satisfied.
    0.1 <S01_v / emp_wide <5.0 (4)
    here,
    emp_wide is the entrance pupil position of the objective optical system in the widest angle state,
    S01_v is a radius in the V direction of the first non-circular diaphragm for preventing flare,
    It is.
  11.  前記第1フレア防止非円形絞りと前記第2フレア防止非円形絞りの少なくとも一方の絞りが有する開口部は、光軸に沿った断面において一方向に傾斜するテーパー形状を有し、
     さらに、前記絞りは、前記開口部に対して所定の位置に切欠き部を有することを特徴とする請求項1から3のいずれか1項に記載の内視鏡撮像ユニット。
    The opening of at least one of the first flare-preventing non-circular stop and the second flare-preventing non-circular stop has a tapered shape that is inclined in one direction in a cross section along the optical axis,
    The endoscope imaging unit according to any one of claims 1 to 3, wherein the diaphragm has a notch at a predetermined position with respect to the opening.
  12.  最も物体側にカバーガラスを有することを特徴とする請求項1から11のいずれか1項に記載の内視鏡撮像ユニット。
     
    The endoscope imaging unit according to claim 1, further comprising a cover glass on the most object side.
PCT/JP2016/079916 2015-10-29 2016-10-07 Endoscopic imaging unit WO2017073292A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017541408A JPWO2017073292A1 (en) 2015-10-29 2016-10-07 Endoscopic imaging unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-212884 2015-10-29
JP2015212884 2015-10-29

Publications (1)

Publication Number Publication Date
WO2017073292A1 true WO2017073292A1 (en) 2017-05-04

Family

ID=58631614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079916 WO2017073292A1 (en) 2015-10-29 2016-10-07 Endoscopic imaging unit

Country Status (2)

Country Link
JP (1) JPWO2017073292A1 (en)
WO (1) WO2017073292A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018225377A1 (en) * 2017-06-07 2018-12-13 オリンパス株式会社 Endoscopic imaging system
WO2019171642A1 (en) * 2018-03-06 2019-09-12 オリンパス株式会社 Endoscopic optical system and endoscopic device
WO2019187195A1 (en) * 2018-03-27 2019-10-03 オリンパス株式会社 Objective optical system for endoscope
WO2021214873A1 (en) * 2020-04-21 2021-10-28 オリンパス株式会社 Imaging optical system, endoscope, and imaging device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004350848A (en) * 2003-05-28 2004-12-16 Olympus Corp Endoscopic device
JP2006288821A (en) * 2005-04-12 2006-10-26 Olympus Medical Systems Corp Electronic endoscope
WO2014034339A1 (en) * 2012-08-30 2014-03-06 オリンパスメディカルシステムズ株式会社 Endoscope
WO2014129089A1 (en) * 2013-02-22 2014-08-28 オリンパスメディカルシステムズ株式会社 Endoscope objective optical system, and imaging device
WO2014132494A1 (en) * 2013-02-28 2014-09-04 オリンパスメディカルシステムズ株式会社 Objective optical system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004350848A (en) * 2003-05-28 2004-12-16 Olympus Corp Endoscopic device
JP2006288821A (en) * 2005-04-12 2006-10-26 Olympus Medical Systems Corp Electronic endoscope
WO2014034339A1 (en) * 2012-08-30 2014-03-06 オリンパスメディカルシステムズ株式会社 Endoscope
WO2014129089A1 (en) * 2013-02-22 2014-08-28 オリンパスメディカルシステムズ株式会社 Endoscope objective optical system, and imaging device
WO2014132494A1 (en) * 2013-02-28 2014-09-04 オリンパスメディカルシステムズ株式会社 Objective optical system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018225377A1 (en) * 2017-06-07 2018-12-13 オリンパス株式会社 Endoscopic imaging system
JP6463573B1 (en) * 2017-06-07 2019-02-06 オリンパス株式会社 Endoscopic imaging system
US11375882B2 (en) 2017-06-07 2022-07-05 Olympus Corporation Endoscope system which generates an image of high dynamic range
WO2019171642A1 (en) * 2018-03-06 2019-09-12 オリンパス株式会社 Endoscopic optical system and endoscopic device
US11857158B2 (en) 2018-03-06 2024-01-02 Olympus Corporation Optical system, endoscope apparatus and endoscope
WO2019187195A1 (en) * 2018-03-27 2019-10-03 オリンパス株式会社 Objective optical system for endoscope
JPWO2019187195A1 (en) * 2018-03-27 2021-02-25 オリンパス株式会社 Objective optics, imaging equipment, endoscopes and endoscope systems
JP6995978B2 (en) 2018-03-27 2022-01-17 オリンパス株式会社 Objective optical system for endoscopes, image pickup devices, endoscopes and endoscope systems
US11903560B2 (en) 2018-03-27 2024-02-20 Olympus Corporation Objective optical system, image pickup apparatus, endoscope and endoscope system
WO2021214873A1 (en) * 2020-04-21 2021-10-28 オリンパス株式会社 Imaging optical system, endoscope, and imaging device

Also Published As

Publication number Publication date
JPWO2017073292A1 (en) 2018-01-11

Similar Documents

Publication Publication Date Title
JP6006464B1 (en) Endoscope system
JP5910739B2 (en) Imaging device
US9459443B2 (en) Endoscopic objective optical system and imaging apparatus
US8456767B2 (en) Objective optical system
CN105917263B (en) Optical system, stereo photographic device and endoscope
JP6029159B1 (en) Observation optical system, observation imaging apparatus, observation imaging system, imaging lens system, and adjustment method of observation optical system
JP6197147B1 (en) Objective optical system
WO2017183371A1 (en) Endoscopic system
US20160120397A1 (en) Endoscope image-acquisition device
WO2017073292A1 (en) Endoscopic imaging unit
WO2019171642A1 (en) Endoscopic optical system and endoscopic device
WO2017216969A1 (en) Bright relay optical system, rigid scope optical system using same, and rigid scope
CN105793756B (en) Stereo camera shooting optical system, stereo photographic device and endoscope
JP2017209154A (en) Endoscope system
JPWO2017033234A1 (en) Imaging device
JPWO2016129055A1 (en) Zoom imaging device
JP6363570B2 (en) Viewfinder and imaging device
JP6363818B1 (en) Endoscope system
JP6602738B2 (en) Observation optical system, observation imaging apparatus, observation imaging system, imaging lens system, and adjustment method of observation optical system
JP6764813B2 (en) Objective optics and endoscope
JPWO2017017854A1 (en) Imaging device
JP2000193883A (en) Optical part for photographing stereoimage and stereoimage photographing device using it
US11933961B2 (en) Stereoscopic vision endoscope objective optical system and endoscope using the same
JP2009282182A (en) Viewfinder and imaging apparatus using the same
JP2017219657A (en) Aberration correction plate and optical device having the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16859529

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017541408

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16859529

Country of ref document: EP

Kind code of ref document: A1