WO2017071465A1 - 一种无人驾驶的货物运输系统及运输方法 - Google Patents
一种无人驾驶的货物运输系统及运输方法 Download PDFInfo
- Publication number
- WO2017071465A1 WO2017071465A1 PCT/CN2016/101771 CN2016101771W WO2017071465A1 WO 2017071465 A1 WO2017071465 A1 WO 2017071465A1 CN 2016101771 W CN2016101771 W CN 2016101771W WO 2017071465 A1 WO2017071465 A1 WO 2017071465A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- train
- unmanned
- control
- locomotive
- vehicle
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 17
- 238000012423 maintenance Methods 0.000 claims abstract description 12
- 230000009977 dual effect Effects 0.000 claims abstract description 4
- 230000003137 locomotive effect Effects 0.000 claims description 45
- 238000012546 transfer Methods 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 5
- 238000001514 detection method Methods 0.000 claims description 3
- 230000008439 repair process Effects 0.000 claims description 3
- 230000033228 biological regulation Effects 0.000 claims description 2
- 230000001133 acceleration Effects 0.000 abstract description 3
- 238000004891 communication Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 2
- 241000271559 Dromaiidae Species 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61L—GUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
- B61L3/00—Devices along the route for controlling devices on the vehicle or train, e.g. to release brake or to operate a warning signal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61L—GUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
- B61L27/00—Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
Definitions
- the invention relates to the technical field of rail transit, in particular to an unmanned cargo transportation system and a transportation method for rail cargo transportation.
- the use of multi-unit, light axle weight, large group of locomotive vehicles, and the use of unmanned systems to complete cargo transportation will bring less investment in roadbed construction, increased transport density, and reduced labor costs.
- the unmanned cargo transportation system needs to integrate the existing locomotive vehicle transportation system, turn the locomotive vehicle, platform, road network and maintenance into a highly relevant relationship, and the transportation organization is highly automated, and requires relevant control technology support. Multidisciplinary areas, highly dependent on relevant control technologies, such as adaptation to driverless ATO, ATP, 4G network technology, multi-machine reconnection, wireless synchronization control technology.
- the present invention provides an unmanned cargo Transportation system and transportation method.
- an unmanned cargo transportation system including a main line unmanned transportation system, a loading and unloading cargo automatic loading and unloading system, and a maintenance workshop wireless remote control system; wherein:
- the main line unmanned transportation system includes a control center, a full-range wireless 4G dual network coverage, a track circuit or a GPS positioning system, a full-range ultra-narrow or narrow track, and each train is composed of a plurality of train units, and each train unit is configured with one Set of signal system vehicle equipment;
- the repair shop wireless remote control system includes a transmitter, a receiver and a vehicle antenna, wherein the transmitter is a handheld device, the receiver is installed in an electrical cabinet, and the vehicle antenna is mounted on the top of the locomotive.
- the invention also provides an unmanned cargo transportation method, comprising the following contents:
- the control center automatically detects the real-time status of the transportation system and sends the system's running command. It is transmitted through the 4G network, the unmanned vehicle system receives it, and the signal is transmitted to the locomotive microcomputer and the brake system to realize the automatic train.
- Driving the ATO of the driverless vehicle system communicates with the locomotive microcomputer through the MVB network; the control signal of the driverless system passes the hard-wire relay signal to the locomotive microcomputer, and transmits the information of the automatic driving vehicle detection to the control center;
- the vehicle BTM antenna After detecting the trackside positioning device, the vehicle BTM antenna transmits the signal to the ATO host of the automatic driving system.
- the vehicle ATO host transmits the signal to the control center through the 4G network.
- the control center stops the control of the train and sends the traffic signal to the locomotive microcomputer.
- locomotive microcomputer After receiving the signal of the handover, the train is controlled to run at a constant constant speed, and the automatic loading and unloading system is realized through the automatic loading system or the unloading system;
- the transportation system and transportation method are innovative and advanced at home and abroad;
- the group adopts the power dispersion mode, which will reduce the longitudinal impact of the train and increase the tonnage of the single train.
- the multi-unit traction of the train has better acceleration performance and higher transportation efficiency.
- An unmanned cargo transportation system consisting of:
- Main line transportation system consists of two main automatic driving system control centers, full wireless 4G dual network coverage, track circuit or GPS positioning system implementation interval occlusion, full-range ultra-narrow gauge 580mm or narrow-gauge 900mm-1067mm, per train It consists of multiple train units, each of which is equipped with a set of signal system vehicle equipment. The whole process will be set as needed.
- the loading and unloading site has an automatic cargo handling system.
- the train When the train enters the loading and unloading area, it will be controlled by the loading and unloading system to automatically achieve low constant speed and complete the loading and unloading of the cargo.
- the locomotive In order to meet the needs of the train to be removed from the transportation line during maintenance and the locomotive control during maintenance, the locomotive is equipped with a wireless remote control system. In order to ensure the safety of the system, a remote control condition switch is arranged on the train to realize the switching between the automatic control of the locomotive and the wireless remote control.
- the wireless remote control system consists of three parts: the transmitter, the receiver and the vehicle antenna.
- the transmitter is a handheld device for the locomotive operator, the receiver is installed in the electrical cabinet, and the vehicle antenna is mounted on the top of the locomotive. Meet the maximum remote control distance of 2km.
- the transfer switch When the transfer switch is in the “home” position, the remote control input signal is disconnected, and the locomotive control is completed by the train control center.
- the transfer switch When the transfer switch is in the "remote control” position, the wireless remote control system is activated, and the signal required for the locomotive control is provided by the hand-held remote control transmitter.
- the hand-held remote control transmitter In the range of no more than 2000m from the locomotive, the hand-held remote control transmitter is used to issue control instructions such as forward, backward, traction, unloading, diesel engine speed, braking, etc., and the vehicle remote control receiver receives the remote control transmitter through the remote control antenna.
- the control signal and the control signal are simultaneously transmitted to the locomotive microcomputer through the relay and the RS485 network.
- the locomotive microcomputer reads the control signal output by the remote control receiver through the digital input, and drives the relevant actuators through the logic operation output control signal to realize the functions of front and rear commutation, traction/brake, diesel engine speed regulation and brake protection of the locomotive. .
- the main control center of the train control center automatically detects the transportation system.
- the state and the system's running command are transmitted, transmitted through the 4G network, the unmanned vehicle system receives, and the signal is forwarded to the locomotive microcomputer and the brake system to realize the automatic driving of the train.
- the driverless vehicle system host ATO communicates with the locomotive microcomputer through the MVB network.
- the important control signals of the driverless system pass the hardwire relay signal to the locomotive microcomputer.
- the information of the self-driving vehicle detection is transmitted to the ground control center.
- the driverless system automatically controls the train to achieve the train.
- the on-board BTM antenna detects the trackside positioning device, and the BTM antenna transmits the signal to the onboard ATO host of the autopilot system.
- the onboard ATO host transmits the signal to the ground control center through the 4G network, and the control center stops the control of the train and
- the train control authority is given to the locomotive microcomputer, and the transfer of authority is sent by the control center to the locomotive microcomputer.
- the locomotive microcomputer controls the train to run at a constant low speed. When the train runs at constant low speed, the automatic loading and unloading is realized through the automatic loading system and the unloading system.
- the train enters the maintenance workshop, and the train is switched to operate the locomotive by the wireless remote control system, and the robot automatically realizes the automatic refueling of the entire train at the same time.
- Synchronous control of multi-train units is completed by wireless reconnection system: wireless communication between various electric cars distributed in the train is realized by 4G network, data transmission is realized, and synchronous traction and braking such as braking are realized.
- the operation greatly improves the synchronization of the multi-locomotive reconnection, thereby optimizing the power distribution and braking control of the entire train.
- the command is transmitted to the wireless reconnection system control host of the vehicle through the MVB network, and the wireless reconnection system control host
- the traction/braking force distribution is performed according to the real-time state of each motor car in the current group, and then the assigned locomotive control commands are synchronously transmitted to the corresponding motor cars through wireless communication, and traction/braking is realized synchronously by each motor car.
- Systemized voice communication of the system It satisfies the cluster voice communication between the train dispatcher, the station attendant, the operation management personnel, and the work maintenance personnel of each type of work, and meets the emergency communication requirements of multi-sector and multi-work types such as repair and rescue.
- Mobile video surveillance on the head of the train real-time video surveillance of the road ahead of the train through wireless communication.
- the working principle of the invention is: according to the operational demand, different working modes are designed for the train:
- Unmanned driving mode When the in-vehicle system has all the basic data (including train data, driving permission and line data, etc.) required for the train control, and is confirmed by the center operator's driverless, enter the driverless mode.
- the automatic driving system combines the current train position and the route map to generate a target distance continuous speed control mode curve, and automatically controls the train's departure, acceleration, idle, deceleration, parking, and monitoring the safe operation of the train.
- the vehicle-mounted equipment has the function of automatically detecting the failure of the equipment. Once the vehicle-mounted equipment has a fault that affects safety, such as the bogie bearing is locked, the train performs a fault alarm, and the fault-related action is performed accordingly, and the on-board system outputs an emergency brake. Command, the train implements emergency braking; the same ground equipment detects the line problem, affects the operation safety, controls the train through the communication system, the vehicle system outputs the emergency braking command, and the train implements the emergency braking.
- a fault that affects safety such as the bogie bearing is locked
- the train performs a fault alarm, and the fault-related action is performed accordingly, and the on-board system outputs an emergency brake.
- the train implements emergency braking
- the same ground equipment detects the line problem, affects the operation safety, controls the train through the communication system, the vehicle system outputs the emergency braking command, and the train implements the emergency braking.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Train Traffic Observation, Control, And Security (AREA)
Abstract
一种无人驾驶的货物运输系统及运输方法,该货物运输系统包括主干线无人驾驶运输系统、装卸场货物自动装卸系统和维修车间无线遥控系统;其中:主干线无人驾驶运输系统包括控制中心、轨道电路或GPS定位系统、全程超窄轨或窄轨。全程无线4G双网络覆盖,每列车由多个列车单元组成,每个列车单元配置一套信号系统车载设备;维修车间无线遥控系统包括发射器、接收机和车载天线。所述运输方法采用计算机控制列车追踪,将追踪时间、列车间间隔距离减少,运输密度增加;列车组全程无人驾驶运行;编组采用动力分散方式,减少列车纵向冲击,增大单列车牵引吨位;列车多机组牵引,加速性能更好,运输效率更高。
Description
本发明涉及轨道交通技术领域,尤其是涉及一种无人驾驶的货物运输系统及运输方法,用于轨道货物运输。
国内具有动力分散动车组进行客运运输系统,有无人驾驶的地铁载人运输系统,也有多列车单元重联牵引的有人驾驶、准轨、重载货运运输系统。但目前国内外均没有多列车单元动力分散式的无人驾驶货运运输系统。
现目前货物列车运输多采用大功率单机或多机重联、大轴重、有人驾驶模式,而大轴重必然带来路基建设的高要求、高成本,且随着人力成本增加,各领域中无人的自动控制模式正在推广应用。
随着技术进步,采用多机组、轻轴重、大编组的机车车辆,并采用无人驾驶系统来完成货物运输,将带来路基建设的少投入、运输密度增加、人力成本的降低。但无人驾驶的货物运输系统需要对现有机车车辆运输系统整合,将机车车辆、站台、路网、维修变为高度强相关的关系、运输组织方式高度自动化,并需要相关控制技术支撑,涉及多学科领域,高度依赖相关控制技术,例如适应无人驾驶ATO、ATP、4G网络技术,多机重联、无线同步控制技术等。
发明内容
为了克服现有技术的上述缺点,本发明提供了一种无人驾驶的货
物运输系统及运输方法。
本发明解决其技术问题所采用的技术方案是:一种无人驾驶的货物运输系统,包括主干线无人驾驶运输系统、装卸场货物自动装卸系统和维修车间无线遥控系统;其中:
所述主干线无人驾驶运输系统包括控制中心、全程无线4G双网络覆盖、轨道电路或GPS定位系统、全程超窄轨或窄轨、每列车由多个列车单元组成,每个列车单元配置一套信号系统车载设备;
所述维修车间无线遥控系统包括发射器、接收机和车载天线,其中发射器为手持设备,接收机安装在电器柜内,车载天线安装在机车顶部。
本发明还提供了一种无人驾驶的货物运输方法,包括如下内容:
(1)正常情况下由控制中心自动检测运输系统实时状态并发送系统的运行指令,通过4G网络传输,无人驾驶车载系统接收,并将信号转送给机车微机和制动系统,实现列车的自动驾驶;无人驾驶车载系统主机ATO通过MVB网络与机车微机通信;无人驾驶系统的控制信号通过硬线继电器信号给机车微机,同时将自动驾驶车载检测的信息传送到控制中心;
(2)列车到达装货场或卸货场时,无人驾驶系统自动实现以下交权过程并自动装卸货:
车载BTM天线检测到轨旁定位装置后,将信号传输到自动驾驶系统车载ATO主机,车载ATO主机通过4G网络将信号传输到控制中心,控制中心停止对列车的控制,发送交权信号给机车微机,机车微机接
收到交权信号后控制列车低恒速运行,通过自动装货系统或卸货系统实现装自动装卸货;
(3)列车进入检修车间,列车切换到无线遥控系统对机车进行操作,由机器手同时实现对整个列车的自动加油。
与现有技术相比,本发明的积极效果是:
1、该运输系统及运输方法在国内外都具有创新性和先进性;
2、将带来总投入减少,主要是路基投入大幅下降,完全能消除网络建设的费用增加;
3、计算机控制的列车追踪,将追踪时间、列车间间隔距离减少,运输密度增加;
4、采用了无人驾驶方式,人力成本降低;
5、列车组全程无人驾驶运行,无须司乘人员,技术先进;
6、编组采用动力分散方式,将带来列车纵向冲击减少,单列车牵引吨位增大;列车多机组牵引,加速性能更好,运输效率更高。
1.一种无人驾驶的货物运输系统组成,包括:
(1)在主干线的无人驾驶运输系统组成
主干线运输系统组成为主、备两个自动驾驶系统控制中心、全程无线4G双网络覆盖、轨道电路或GPS定位系统实施区间闭塞、全程超窄轨距580mm或窄轨900mm-1067mm、每列车由多个列车单元组成,每个列车单元配置一套信号系统车载设备。全程根据需要设会让线。
(2)在装卸场的低恒速无人驾驶运输系统组成
装卸场设有货物自动装卸系统。
列车进入装卸区,将接受装卸系统控制,自动实现低恒速,完成货物的装卸工作。
(3)在维修车间等地的无线遥控运输系统组成
为满足维修时将列车调离运输线以及维修时机车控制的需要,机车设有无线遥控系统。为了确保系统的安全性,列车上设有遥控工况开关,实现机车的自动控制与无线遥控之间的切换。
无线遥控系统由三部分组成:发射器、接收机和车载天线,其中发射器为机车操作人员手持设备,接收机安装在电器柜内,车载天线安装在机车顶部。满足最大遥控距离2km要求。
在机车上设置“遥控—本车”转换开关,当转换开关在“本车”位时,断开遥控器输入信号,机车控制由列控中心完成。当转换开关在“遥控”位时,启动无线遥控系统,机车控制需要的信号由手持式遥控发射器提供。在距离机车不大于2000m范围内,使用手持式遥控发射器发出机车前向、后向、牵引、卸载、柴油机升降速、制动等控制指令,车载遥控接收机通过遥控天线接收到遥控发射器发出的控制信号,并将控制信号通过继电器和RS485网络两种方式同时传输到机车微机。机车微机通过开关量输入读取遥控接收机输出的控制信号,经过逻辑运算输出控制信号驱动相关的执行元件,实现机车的前后换向、牵引/制动、柴油机的调速、制动保护等功能。
2.无人驾驶的货物运输方法
(1)正常情况下由列控中心的主控制中心自动检测运输系统实
时状态并发送系统的运行指令,通过4G网络传输,无人驾驶车载系统接收,并将信号转送给机车微机和制动系统,实现列车的自动驾驶。无人驾驶车载系统主机ATO通过MVB网络与机车微机通信。无人驾驶系统的重要控制信号通过硬线继电器信号给机车微机。同时将自动驾驶车载检测的信息传送到地面控制中心。
无人驾驶系统自动控制列车道岔,实现列车会让。
(2)列车到达装货场或卸货场时,无人驾驶系统自动实现以下交权过程并自动装卸货:
车载BTM天线检测到轨旁定位装置,BTM天线将该信号传输到自动驾驶系统车载ATO主机,车载ATO主机通过4G网络将该信号传输到地面控制中心,控制中心停止对该列车的控制,并将列车控制权限交给机车微机,权限的交接由控制中心发送交权信号给机车微机实现。机车微机接收到交权信号后控制列车恒低速运行。列车恒低速运行时,通过自动装货系统和卸货系统实现装自动装卸货。
(3)列车进入检修车间,列车切换到由无线遥控系统对机车进行操作,由机器手同时实现对整个列车的自动加油。
(4)多列车单元同步控制是通过无线重联系统完成:利用4G网络实现分布于列车中的各个动车之间无线通信,进行数据传输,实现各个动车之间的同步牵引和制动等机车同步操作,大大提高多机车重联的同步性,从而优化整个列车的动力分配和制动控制。当列车自动驾驶车载设备接收到控制中心的牵引\制动指令后,通过MVB网络将该指令传送给本车的无线重联系统控制主机,无线重联系统控制主机
根据当前编组内各动车的实时状态进行牵引\制动力分配,然后通过无线通信将分配后的各机车控制指令同步传送给相应动车,由各动车同步实现牵引\制动。
(5)系统的集群语音通信:满足列车调度员、车站值班员、运营管理人员、各工种作业维护人员之间的集群语音通信,同时满足抢修、救援等多部门、多工种的应急通信需求。
列车头部设有移动视频监控:通过无线通讯实现列车前方路况的实时视频监控。
本发明的工作原理是:根据运营需求,对列车设计不同的工作模式:
(1)无人驾驶模式:当车载系统具备列控所需的全部基本数据(包括列车数据、行车许可和线路数据等),且得到中心操作员的无人驾驶确认后,进入无人驾驶模式,自动驾驶系统结合当前列车位置及线路图生成目标距离连续速度控制模式曲线,自动控制列车的发车、加速、惰行、减速、停车,及监控列车安全运行。
(2)远程人工控制模式:结合业主制定的规程提供异常情况下的远程人工控制模式,控制中心操作员可优先介入,远程人工控制列车运行。
(3)待机模式:当列控车载系统上电时,执行自检和外部设备测试正确后自动处于待机模式,车载系统禁止列车移动。
(4)交权模式:当列车到达装货场或卸货场时,车载BTM天线检测到轨旁定位装置,BTM天线将该信号传输到自动驾驶系统车载
ATO主机,车载ATO主机通过4G网络将该信号传输到地面控制中心,控制中心停止对该列车的控制,并将列车控制权限交给机车微机,权限的交接由控制中心发送交权信号给机车微机实现。机车微机接收到交权信号后接受装卸系统控制,实现列车恒低速运行。
(5)故障模式:车载设备具有自动检测设备故障功能,车载设备一旦出现影响安全的故障,如转向架轴承抱死,列车进行故障报警,并相应执行故障状态相关动作,车载系统输出紧急制动命令,列车实施紧急制动;同样地面设备检测线路问题,影响运行安全,通过通信系统对列车控制,车载系统输出紧急制动命令,列车实施紧急制动。
Claims (8)
- 一种无人驾驶的货物运输系统,其特征在于:包括主干线无人驾驶运输系统、装卸场货物自动装卸系统和维修车间无线遥控系统;其中:所述主干线无人驾驶运输系统包括控制中心、全程无线4G双网络覆盖、轨道电路或GPS定位系统、全程超窄轨或窄轨、每列车由多个列车单元组成,每个列车单元配置一套信号系统车载设备;所述维修车间无线遥控系统包括发射器、接收机和车载天线,其中发射器为手持设备,接收机安装在电器柜内,车载天线安装在机车顶部。
- 根据权利要求1所述的一种无人驾驶的货物运输系统,其特征在于:所述控制中心包括主、备两个控制中心。
- 根据权利要求1所述的一种无人驾驶的货物运输系统,其特征在于:所述超窄轨轨距为580mm,所述窄轨轨距为900mm-1067mm。
- 根据权利要求1所述的一种无人驾驶的货物运输系统,其特征在于:所述GPS定位系统实施区间闭塞。
- 根据权利要求1所述的一种无人驾驶的货物运输系统,其特征在于:全程根据需要设有会让线。
- 根据权利要求1所述的一种无人驾驶的货物运输系统,其特征在于:所述车载天线满足最大遥控距离2km要求。
- 一种无人驾驶的货物运输方法,其特征在于:包括如下内容:(1)正常情况下由控制中心自动检测运输系统实时状态并发送系统的运行指令,通过4G网络传输,无人驾驶车载系统接收,并将信号转送给机车微机和制动系统,实现列车的自动驾驶;无人驾驶车载系统主机ATO通过MVB网络与机车微机通信;无人驾驶系统的控制信号通过硬线继电器信号给机车微机,同时将自动驾驶车载检测的信息传送到控制中心;(2)列车到达装货场或卸货场时,无人驾驶系统自动实现以下交权过程并自动装卸货:车载BTM天线检测到轨旁定位装置后,将信号传输到自动驾驶系统车载ATO主机,车载ATO主机通过4G网络将信号传输到控制中心,控制中心停止对列车的控制,发送交权信号给机车微机,机车微机接收到交权信号后控制列车低恒速运行,通过自动装货系统或卸货系统实现装自动装卸货;(3)列车进入检修车间,列车切换到无线遥控系统对机车进行操作,由机器手同时实现对整个列车的自动加油。
- 根据权利要求7所述的一种无人驾驶的货物运输方法,其特征在于:当列车切换到无线遥控系统时,由发射器提供机车控制需要的信号,包括:机车前向、后向、牵引、卸载、柴油机升降速、制动等控制信号,接收机通过车载天线接收到发射器发出的控制信号,并将控制信号通过继电器和RS485网络两种方式同时传输到机车微机;机车微机通过开关量输入读取控制信号,经过逻辑运算后输出控制信号驱动相关的执行元件,实现机车的前后换向、牵引/制动、柴油机的调速、制动保护等功能。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510724888.8 | 2015-10-29 | ||
CN201510724888.8A CN105235714B (zh) | 2015-10-29 | 2015-10-29 | 一种无人驾驶的货物运输系统及运输方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017071465A1 true WO2017071465A1 (zh) | 2017-05-04 |
Family
ID=55033632
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/101771 WO2017071465A1 (zh) | 2015-10-29 | 2016-10-11 | 一种无人驾驶的货物运输系统及运输方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105235714B (zh) |
WO (1) | WO2017071465A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109677466A (zh) * | 2019-01-18 | 2019-04-26 | 卡斯柯信号有限公司 | 一种面向中国重载铁路的轻量化列车自动控制系统 |
CN109685436A (zh) * | 2018-07-12 | 2019-04-26 | 北京图森未来科技有限公司 | 自动驾驶车辆跨境运输系统及相关设备 |
CN109685434A (zh) * | 2018-07-12 | 2019-04-26 | 北京图森未来科技有限公司 | 一种自动驾驶车辆跨境运输系统及相关设备 |
CN110758424A (zh) * | 2019-11-26 | 2020-02-07 | 宝鸡中车时代工程机械有限公司 | 智能化铁路接触网检修作业车列 |
CN114501379A (zh) * | 2022-01-27 | 2022-05-13 | 中国铁道科学研究院集团有限公司通信信号研究所 | 兼容电路域和多种分组域网络的列控车载无线通信系统 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105235714B (zh) * | 2015-10-29 | 2017-04-05 | 中车资阳机车有限公司 | 一种无人驾驶的货物运输系统及运输方法 |
CN105676760A (zh) * | 2016-01-17 | 2016-06-15 | 济南大学 | 一种无人电机车多模式控制结构与切换方法 |
CN105923018B (zh) * | 2016-05-24 | 2018-08-21 | 株洲中车时代电气股份有限公司 | 一种动力分散性列车恒速集中控制方法 |
CN106864488A (zh) * | 2017-01-18 | 2017-06-20 | 王朝明 | 有轨高速交通系统 |
CN108132661B (zh) * | 2017-03-01 | 2021-01-08 | 中国北方车辆研究所 | 一种地面无人平台车载系统的状态监控方法及车载系统 |
CN109080663A (zh) * | 2017-06-14 | 2018-12-25 | 中铁电气化局集团有限公司 | 轨道交通控制装置及轨道交通引导系统 |
CN107390689B (zh) | 2017-07-21 | 2019-05-14 | 北京图森未来科技有限公司 | 实现车辆自动运输的系统及方法、相关设备 |
CN109743531B (zh) * | 2018-05-21 | 2021-01-01 | 比亚迪股份有限公司 | 自动驾驶列车的乘客报警系统和方法、车载报警装置 |
CN109719288A (zh) * | 2018-12-28 | 2019-05-07 | 合肥工大高科信息科技股份有限公司 | 铁水运输控制方法、后端及前端 |
CN113970921A (zh) * | 2020-07-22 | 2022-01-25 | 上海宝信软件股份有限公司 | 一种厂区机车无人驾驶的控制方法及其系统 |
CN113200062A (zh) * | 2021-04-27 | 2021-08-03 | 深圳市骅鼎鹏智能科技有限公司 | 一种隧道建设新能源轨道电机车无人驾驶系统 |
CN114545911A (zh) * | 2021-11-30 | 2022-05-27 | 中车大连机车车辆有限公司 | 炉前调车机车无人驾驶模式与遥控模式自动切换的控制方法 |
CN115158404A (zh) * | 2022-08-12 | 2022-10-11 | 中车资阳机车有限公司 | 一种调车机车自动驾驶控制执行系统及方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040049327A1 (en) * | 2002-09-10 | 2004-03-11 | Kondratenko Robert Allen | Radio based automatic train control system using universal code |
US20050216143A1 (en) * | 2004-03-09 | 2005-09-29 | Ron Tolmei | Safety system to detect and annunciate the loss of occupancy detection in transit systems |
CN202448990U (zh) * | 2012-02-14 | 2012-09-26 | 上海铁路通信有限公司 | 一种用于城际高速列车的自动驾驶系统 |
CN103010230A (zh) * | 2012-12-26 | 2013-04-03 | 北京交控科技有限公司 | 一种列车无人驾驶系统及方法 |
CN103662724A (zh) * | 2013-12-25 | 2014-03-26 | 湖北三丰智能输送装备股份有限公司 | 一种智能轨道车控制系统 |
CN104340236A (zh) * | 2014-10-24 | 2015-02-11 | 北京交控科技有限公司 | 跨座式单轨列车的列车自动驾驶控制系统 |
CN104554294A (zh) * | 2014-11-05 | 2015-04-29 | 陈明秀 | 管道列车智能高速货物输送系统 |
CN105235714A (zh) * | 2015-10-29 | 2016-01-13 | 南车资阳机车有限公司 | 一种无人驾驶的货物运输系统及运输方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2444171A1 (de) * | 2010-10-22 | 2012-04-25 | Siemens VAI Metals Technologies GmbH | Transportsystem, Transportwagen und Verfahren zum Transport von Metallbunde |
CN204701607U (zh) * | 2015-06-08 | 2015-10-14 | 戴长虹 | 物流互联网 |
-
2015
- 2015-10-29 CN CN201510724888.8A patent/CN105235714B/zh active Active
-
2016
- 2016-10-11 WO PCT/CN2016/101771 patent/WO2017071465A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040049327A1 (en) * | 2002-09-10 | 2004-03-11 | Kondratenko Robert Allen | Radio based automatic train control system using universal code |
US20050216143A1 (en) * | 2004-03-09 | 2005-09-29 | Ron Tolmei | Safety system to detect and annunciate the loss of occupancy detection in transit systems |
CN202448990U (zh) * | 2012-02-14 | 2012-09-26 | 上海铁路通信有限公司 | 一种用于城际高速列车的自动驾驶系统 |
CN103010230A (zh) * | 2012-12-26 | 2013-04-03 | 北京交控科技有限公司 | 一种列车无人驾驶系统及方法 |
CN103662724A (zh) * | 2013-12-25 | 2014-03-26 | 湖北三丰智能输送装备股份有限公司 | 一种智能轨道车控制系统 |
CN104340236A (zh) * | 2014-10-24 | 2015-02-11 | 北京交控科技有限公司 | 跨座式单轨列车的列车自动驾驶控制系统 |
CN104554294A (zh) * | 2014-11-05 | 2015-04-29 | 陈明秀 | 管道列车智能高速货物输送系统 |
CN105235714A (zh) * | 2015-10-29 | 2016-01-13 | 南车资阳机车有限公司 | 一种无人驾驶的货物运输系统及运输方法 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109685436A (zh) * | 2018-07-12 | 2019-04-26 | 北京图森未来科技有限公司 | 自动驾驶车辆跨境运输系统及相关设备 |
CN109685434A (zh) * | 2018-07-12 | 2019-04-26 | 北京图森未来科技有限公司 | 一种自动驾驶车辆跨境运输系统及相关设备 |
CN109677466A (zh) * | 2019-01-18 | 2019-04-26 | 卡斯柯信号有限公司 | 一种面向中国重载铁路的轻量化列车自动控制系统 |
CN109677466B (zh) * | 2019-01-18 | 2024-04-16 | 卡斯柯信号有限公司 | 一种面向中国重载铁路的轻量化列车自动控制系统 |
CN110758424A (zh) * | 2019-11-26 | 2020-02-07 | 宝鸡中车时代工程机械有限公司 | 智能化铁路接触网检修作业车列 |
CN114501379A (zh) * | 2022-01-27 | 2022-05-13 | 中国铁道科学研究院集团有限公司通信信号研究所 | 兼容电路域和多种分组域网络的列控车载无线通信系统 |
Also Published As
Publication number | Publication date |
---|---|
CN105235714A (zh) | 2016-01-13 |
CN105235714B (zh) | 2017-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017071465A1 (zh) | 一种无人驾驶的货物运输系统及运输方法 | |
CN107554556B (zh) | 基于无线通信的重载铁路移动闭塞系统 | |
US8768544B2 (en) | System and method for controlling a vehicle consist | |
CN101758839B (zh) | 铁路车站控制方法 | |
US20170349190A1 (en) | Autonomous Rail Coupling Shuttle System (A.R.C.S System) | |
CN101941451A (zh) | 点式列车控制系统 | |
JP6051092B2 (ja) | 列車制御システム | |
US11235789B2 (en) | Train control system and train control method including virtual train stop | |
CN110285987B (zh) | 一种轨道车辆线路碰撞试验方法 | |
CN112026854A (zh) | 机车控制方法和车载控制设备 | |
CN114148384A (zh) | 一种有轨电车运行控制系统 | |
US7340329B2 (en) | System and method for controlling an electrified vehicle | |
US11161486B2 (en) | Vehicle control system and method | |
CN210626062U (zh) | 一种线路碰撞试验驱动车 | |
CN110308001B (zh) | 一种线路碰撞试验驱动车智能驱动方法 | |
CN112265569B (zh) | 基于信号系统防护的可变组合工程车运行安全防护方法 | |
CN114407972A (zh) | 市郊铁路车载设备切换方法及系统 | |
Schindler | The Aachen Rail Shuttle ARS-Autonomous and energy self-sufficient feeder transport | |
AU2017268531A1 (en) | Rail transport system | |
CN111762233A (zh) | 铁水联运车辆交接安全防护系统及方法 | |
US20220017055A1 (en) | Vehicle Control System And Method | |
CN114475709A (zh) | 市郊铁路车载设备切换方法及系统 | |
US9487223B1 (en) | Automatic train operation tender unit | |
CN115571193B (zh) | 一种基于ctcs-n结合stp实现调车作业的方法 | |
CN115066362B (zh) | 自驾单车列车系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16858901 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16858901 Country of ref document: EP Kind code of ref document: A1 |