Nothing Special   »   [go: up one dir, main page]

WO2017057231A1 - Ni-COATED COPPER POWDER, CONDUCTIVE PASTE, CONDUCTIVE PAINT AND CONDUCTIVE SHEET USING SAME, AND METHOD FOR MANUFACTURING Ni-COATED COPPER POWDER - Google Patents

Ni-COATED COPPER POWDER, CONDUCTIVE PASTE, CONDUCTIVE PAINT AND CONDUCTIVE SHEET USING SAME, AND METHOD FOR MANUFACTURING Ni-COATED COPPER POWDER Download PDF

Info

Publication number
WO2017057231A1
WO2017057231A1 PCT/JP2016/078181 JP2016078181W WO2017057231A1 WO 2017057231 A1 WO2017057231 A1 WO 2017057231A1 JP 2016078181 W JP2016078181 W JP 2016078181W WO 2017057231 A1 WO2017057231 A1 WO 2017057231A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper powder
coated
dendritic
alloy
coated copper
Prior art date
Application number
PCT/JP2016/078181
Other languages
French (fr)
Japanese (ja)
Inventor
岡田 浩
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015190482A external-priority patent/JP2017066445A/en
Priority claimed from JP2015190479A external-priority patent/JP2017066442A/en
Priority claimed from JP2015190481A external-priority patent/JP2017066444A/en
Priority claimed from JP2015190480A external-priority patent/JP2017066443A/en
Priority claimed from JP2015192151A external-priority patent/JP2017066463A/en
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Publication of WO2017057231A1 publication Critical patent/WO2017057231A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C5/00Electrolytic production, recovery or refining of metal powders or porous metal masses
    • C25C5/02Electrolytic production, recovery or refining of metal powders or porous metal masses from solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form

Definitions

  • the present invention relates to copper powder (Ni-coated copper powder) whose surface is coated with nickel (Ni) or a Ni alloy, and more specifically, to improve conductivity by using it as a material such as a conductive paste.
  • the present invention relates to a Ni-coated copper powder having a new shape.
  • metal fillers such as copper powder and silver powder, such as resin pastes, fired pastes, and electromagnetic wave shielding paints.
  • Metal filler pastes such as copper powder and silver powder are applied or printed on various base materials, and are subjected to heat curing or heat baking treatment to form a conductive film to be a wiring layer or an electrode.
  • a resin-type conductive paste is made of a metal filler, a resin, a curing agent, a solvent, etc., printed on a conductor circuit pattern or terminal, and cured by heating at 100 ° C. to 200 ° C. An electrode is formed.
  • the resin-type conductive paste since the thermosetting resin is cured and contracted by heat, when the metal filler is pressed and brought into contact, the metal filler overlaps and an electrically connected current path is formed. Since this resin-type conductive paste is processed at a curing temperature of 200 ° C. or less, it is used for a substrate using a heat-sensitive material such as a printed wiring board.
  • Firing-type conductive paste consists of a metal filler, glass, solvent, etc., printed on a conductor circuit pattern or terminal, and heated and fired at 600 ° C. to 800 ° C. to form wiring and electrodes as a conductive film. To do.
  • the fired conductive paste is processed at a high temperature to sinter the metal filler and ensure conductivity.
  • this firing-type conductive paste has a high firing temperature, it cannot be used for printed wiring boards that use resin materials, but it can realize low resistance because the metal filler is sintered by high-temperature treatment. Become. Therefore, the fired conductive paste is used for an external electrode of a multilayer ceramic capacitor.
  • electromagnetic wave shields are used to prevent the generation of electromagnetic noise from electronic equipment.
  • personal computers and mobile phone cases have been made of resin, so that the case is made conductive.
  • a method of forming a thin metal film by a vapor deposition method or a sputtering method a method of applying a conductive paint, a method of attaching a conductive sheet to a necessary place and shielding an electromagnetic wave, etc. Proposed.
  • special methods are required in the processing process for the method of applying the metal filler dispersed in the resin and the method of dispersing the metal filler in the resin and processing it into a sheet and attaching it to the housing. It has excellent flexibility and is widely used.
  • Copper powder as a metal powder material used as a metal filler for such conductive paste and electromagnetic wave shielding material is covered with copper oxide when oxidized, causing adverse effects on sinterability, corrosion resistance, or conductivity become. For this reason, in order to prevent oxidation of the copper powder, the surface of the copper particles is coated with a noble metal such as Pt, Pd, Ag, Au, etc., coated with a SiO 2 oxide, or coated with Ni. Those with improved oxidation resistance are known. For example, Patent Document 2 discloses Ni-coated copper powder in which nickel (Ni) is coated on the surface of copper powder.
  • the shape of the copper powder used as the metal filler is spherical, flat, dendritic, etc., and in particular, the flat copper powder is a contact point between fillers compared to granular or dendritic copper powder. Since a large area can be secured, it is widely used as a low-resistance conductive paste.
  • Patent Document 3 discloses a method of obtaining a flaky copper powder by mechanically processing a spherical copper powder into a flat shape.
  • a spherical copper powder having an average particle size of 0.5 ⁇ m to 10 ⁇ m is used as a raw material, and it is mechanically processed into a flat plate shape by a mechanical energy of a medium loaded in the mill using a ball mill or a vibration mill. is there.
  • Patent Document 4 discloses a technique relating to a copper powder for conductive paste, more specifically, a disk-shaped copper powder that provides high performance as a copper paste for through holes and external electrodes, and a method for producing the same. Specifically, the granular atomized copper powder is put into a medium agitating mill, and a steel ball having a diameter of 1/8 inch to 1/4 inch is used as a grinding medium. % To 1% and processed into a flat plate shape by pulverization in air or in an inert atmosphere.
  • silver powder is used as the metal filler used for these conductive pastes and electromagnetic wave shields, and as described above, the surface of the copper particles is coated with a noble metal such as Pt, Pd, Ag, or Au.
  • a noble metal such as Pt, Pd, Ag, or Au.
  • a method for coating copper powder with Ni is mentioned as a low cost and relatively good sinterability while ensuring oxidation resistance and the like.
  • the coating method by electroless nickel plating is to perform nickel coating on the copper powder surface by reducing nickel ions in the plating solution with a reducing agent.
  • the types of reducing agents are hypophosphites and borohydrides. And hydrazine compounds.
  • a Ni—P alloy coating is formed because phosphorus is contained in the coating during the reduction reaction.
  • a Ni—B alloy coating is formed because boron is contained in the coating during the reduction reaction.
  • a high-purity Ni coating with few impurities is formed.
  • dendritic shape electrolytic copper powder deposited in dendritic shape called dendritic shape is known, and since the shape is dendritic, it is characterized by a large surface area. Due to the dendritic shape as described above, when this is used for a conductive film or the like, the dendritic branches are overlapped with each other, conduction is easy, and the number of contact points between particles is larger than that of spherical particles. Therefore, there is an advantage that the amount of conductive filler such as conductive paste can be reduced.
  • Patent Document 5 discloses a technique for ensuring oxidation resistance by forming an Ni alloy layer on a copper surface and performing Ag coating thereon, and the copper powder used here is a dendritic electrolytic copper powder. Is preferable from the viewpoint of entanglement between particles.
  • the dendritic copper powder As described above, it is not easy to use the dendritic copper powder as a metal filler such as a conductive paste, and the improvement of the conductivity of the paste has been difficult.
  • the present invention has been proposed in view of such circumstances, and agglomeration between copper powders while ensuring excellent conductivity by increasing the number of contacts when the copper powders coated with Ni are in contact with each other.
  • An object of the present invention is to provide a Ni-coated copper powder that can be suitably used for applications such as conductive paste and electromagnetic wave shielding.
  • the inventor has conducted intensive examinations to solve the above-described problems. As a result, the copper particles of a specific shape coated with Ni or Ni alloy on the surface are gathered, and the Ni-coated copper powder having a dendritic shape or an aggregate form of the copper particles, It has been found that the number of contacts between the copper powders increases and exhibits excellent conductivity, and the present invention has been completed. That is, the present invention provides the following.
  • a first aspect of the present invention is a tree branch having a main trunk that is linearly grown with copper particles coated with nickel (Ni) or Ni alloy on the surface and a plurality of branches separated from the main trunk.
  • the copper particles having a Ni-shaped copper powder having a surface shape coated with Ni or a Ni alloy have an average cross-sectional thickness of 0.02 ⁇ m to 5.5 mm as determined by scanning electron microscope (SEM) observation.
  • the Ni-coated copper powder which has a flat shape of 0 ⁇ m and is constituted by aggregating the copper particles, has an average particle diameter (D50) of 1.0 ⁇ m to 100 ⁇ m, and is equal to the flat surface of the copper particles.
  • D50 average particle diameter
  • a second invention of the present invention is a Ni-coated copper powder in which copper particles whose surfaces are coated with nickel (Ni) or Ni alloy are assembled to form a dendritic shape having a plurality of branches.
  • the copper particles coated with Ni or Ni alloy on the surface have a minor axis average diameter of 0.2 ⁇ m to 0.5 ⁇ m and a major axis average diameter of 0.5 ⁇ m to 2.0 ⁇ m.
  • the Ni-coated copper powder that is an ellipsoid and is configured by aggregating the copper particles is Ni-coated copper powder having an average particle diameter (D50) of 5.0 ⁇ m to 20 ⁇ m.
  • a third invention of the present invention is the Ni-coated copper powder according to the second invention, wherein the average thickness of the branch portions constituting the dendritic shape is 0.5 ⁇ m to 2.0 ⁇ m.
  • a fourth aspect of the present invention is a tree branch having a main trunk that is linearly grown with copper particles coated with nickel (Ni) or Ni alloy on the surface and a plurality of branches separated from the main trunk.
  • a copper particle having a Ni-shaped copper powder having a surface shape, the surface of which is coated with Ni or a Ni alloy is a flat plate having a cross-sectional average thickness of 0.2 ⁇ m to 5.0 ⁇ m.
  • the Ni-coated copper powder composed of the above is Ni-coated copper powder having an average particle diameter (D50) of 1.0 ⁇ m to 100 ⁇ m.
  • a fifth invention of the present invention is a Ni-coated copper powder in which a plurality of individual copper particles whose surfaces are coated with nickel (Ni) or a Ni alloy are aggregated to have an aggregate form.
  • the copper particles coated with Ni or Ni alloy have an average major axis diameter determined by observation with a scanning electron microscope (SEM) of 0.5 ⁇ m to 5.0 ⁇ m and an average cross-sectional thickness of 0.02 ⁇ m to
  • the Ni-coated copper powder which has a flat plate shape of 1.0 ⁇ m and is configured by the aggregation of the copper particles, is an Ni-coated copper powder having an average particle diameter (D50) of 1.0 ⁇ m to 30 ⁇ m.
  • a sixth aspect of the present invention is a tree branch having a main trunk that is linearly grown with copper particles coated with nickel (Ni) or Ni alloy on the surface and a plurality of branches separated from the main trunk.
  • the copper particles having a Ni-shaped copper powder having a surface shape coated with Ni or a Ni alloy are dendritic having a main trunk grown in a dendritic shape and a plurality of branches separated from the main trunk.
  • the Ni-coated copper powder which is a flat plate having a cross-sectional average thickness of the main trunk and branches of the copper particles of 0.02 ⁇ m to 0.5 ⁇ m and is configured by aggregating the copper particles, has an average particle diameter ( D50) is a Ni-coated copper powder having a thickness of 1.0 to 30 ⁇ m.
  • a seventh invention of the present invention is the Ni according to the sixth invention, wherein the surface of the copper particles has fine convex portions, and the average height of the convex portions is 0.01 ⁇ m to 0.4 ⁇ m. Coated copper powder.
  • the eighth invention of the present invention is the entire Ni-coated copper powder coated with Ni or Ni alloy in which the Ni content coated as Ni or Ni alloy in any of the first to seventh inventions
  • the Ni-coated copper powder is 1 to 50% by mass with respect to 100% by mass.
  • the surface of the copper particles is coated with a Ni alloy, and cobalt, zinc, tungsten, molybdenum, palladium, platinum, Coated with a Ni alloy containing at least one selected from the group consisting of tin, phosphorus, and boron at a content of 0.1% by mass to 20% by mass with respect to 100% by mass of the Ni alloy.
  • Ni-coated copper powder Ni-coated copper powder.
  • a tenth aspect of the present invention is the Ni-coated copper powder according to any one of the first to ninth aspects, wherein the bulk density is in the range of 0.5 g / cm 3 to 5.0 g / cm 3. is there.
  • BET specific surface area is 0.2m 2 /g ⁇ 5.0m 2 / g, a Ni-coated copper powder is there.
  • a twelfth invention of the present invention is a metal filler containing the Ni-coated copper powder according to any one of the first to eleventh inventions in a proportion of 20% by mass or more of the whole.
  • a thirteenth invention of the present invention is a conductive paste obtained by mixing a metal filler according to the twelfth invention with a resin.
  • a fourteenth aspect of the present invention is a conductive paint for electromagnetic wave shielding using the metal filler according to the twelfth aspect of the present invention.
  • a fifteenth aspect of the present invention is an electromagnetic wave shielding conductive sheet using the metal filler according to the twelfth aspect of the present invention.
  • a sixteenth invention of the present invention is a method for producing a Ni-coated copper powder according to the first invention, wherein the copper powder is deposited on the cathode from the electrolyte by an electrolytic method, and the copper powder
  • a step of coating nickel (Ni) or a Ni alloy, and the electrolytic solution is represented by the following formula (2), a copper ion and a compound having a phenazine structure represented by the following formula (1):
  • R 1 , R 2 , R 3 , R 4 , R 6 , R 7 , R 8 , R 9 are each independently hydrogen, halogen, amino, OH, ⁇ O, CN, SCN. , SH, COOH, COO salt, COO ester, SO 3 H, SO 3 salt, SO 3 ester, benzenesulfonic acid, and C1-C8 alkyl
  • R 5 is hydrogen, halogen , Amino, OH, —O, CN, SCN, SH, COOH, COO salt, COO ester, SO 3 H, SO 3 salt, SO 3 ester, benzenesulfonic acid, lower alkyl, and aryl.
  • R 1 , R 2 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 are each independently hydrogen, Selected from the group consisting of halogen, amino, OH, ⁇ O, CN, SCN, SH, COOH, COO salt, COO ester, SO 3 H, SO 3 salt, SO 3 ester, benzenesulfonic acid, and C1-C8 alkyl
  • R 3 is hydrogen, halogen, amino, OH, ⁇ O, CN, SCN, SH, COOH, COO salt, COO ester, SO 3 H, SO 3 salt, SO 3 ester, benzenesulfonic acid, A group selected from the group consisting of lower alkyl and aryl, and A ⁇ is a halide anion.
  • the seventeenth invention of the present invention is the method for producing Ni-coated copper powder in the sixteenth invention, wherein the electrolytic solution further contains chloride ions.
  • An eighteenth invention of the present invention is a method for producing a Ni-coated copper powder according to the second or third invention, wherein the copper powder is deposited on the cathode from the electrolytic solution by an electrolysis method, A process for coating nickel powder with nickel (Ni) or a nickel alloy, wherein the electrolytic solution contains copper ions and a polyether compound for electrolysis. is there.
  • a nineteenth invention of the present invention is a method for producing a Ni-coated copper powder according to the fourth invention, wherein the copper powder is deposited on the cathode from the electrolyte by an electrolytic method, and the copper powder A step of coating nickel (Ni) or a Ni alloy on the electrolyte solution, and the electrolytic solution includes one or two selected from copper ions and a compound having a phenazine structure represented by the following formula (1)
  • This is a method for producing Ni-coated copper powder in which electrolysis is carried out.
  • R 1 , R 2 , R 3 , R 4 , R 6 , R 7 , R 8 , R 9 are each independently hydrogen, halogen, amino, OH, ⁇ O, CN, SCN. , SH, COOH, COO salt, COO ester, SO 3 H, SO 3 salt, SO 3 ester, benzenesulfonic acid, and C1-C8 alkyl
  • R 5 is hydrogen, halogen , Amino, OH, —O, CN, SCN, SH, COOH, COO salt, COO ester, SO 3 H, SO 3 salt, SO 3 ester, benzenesulfonic acid, lower alkyl, and aryl.
  • a ⁇ is a halide anion.
  • a twentieth invention of the present invention is a method for producing a Ni-coated copper powder according to the sixth or seventh invention, wherein the copper powder is deposited on the cathode from the electrolytic solution by an electrolysis method, A step of coating copper powder with nickel (Ni) or Ni alloy, and the electrolytic solution is selected from compounds having a phenazine structure and an azobenzene structure represented by the following formula (3): copper ions
  • court copper powder which electrolyzes containing 1 type, or 2 or more types.
  • R 1 , R 2 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 are each independently hydrogen, Selected from the group consisting of halogen, amino, OH, ⁇ O, CN, SCN, SH, COOH, COO salt, COO ester, SO 3 H, SO 3 salt, SO 3 ester, benzenesulfonic acid, and C1-C8 alkyl It is a group.
  • R 3 is hydrogen, halogen, amino, OH, ⁇ O, CN, SCN, SH, COOH, COO salt, COO ester, SO 3 H, SO 3 salt, SO 3 ester, benzenesulfonic acid, lower alkyl, And a group selected from the group consisting of aryl.
  • a ⁇ is a halide anion.
  • the present invention it is possible to secure a large number of contacts and a large contact area, to ensure excellent conductivity, and to prevent agglomeration between copper powders. It can utilize suitably for uses, such as a shield.
  • Nickel (Ni) coated copper powder is a copper powder having a surface coated with nickel (Ni) or a Ni alloy.
  • nickel-coated copper powder is referred to as “Ni-coated copper powder”.
  • nickel or nickel alloy to be coated is expressed as “Ni” and “Ni alloy”, respectively, and when Ni is coated on the surface of copper powder or Ni alloy is coated on the surface of copper powder, “Ni coating” is generally used. ".
  • Ni-coated copper powder When the Ni-coated copper powder according to the first embodiment is observed using a scanning electron microscope (SEM), the Ni-coated copper powder has a dendritic shape having a main trunk that grows linearly and a plurality of branches separated from the main trunk. The main trunk and the branch are constituted by a collection of tabular copper particles having a specific cross-sectional average thickness, and the surface of the tabular copper particles is coated with Ni or a Ni alloy.
  • this Ni-coated copper powder is also referred to as “dendritic Ni-coated copper powder”.
  • the main trunk and branches are composed of flat copper particles having an average cross-sectional thickness of 0.02 ⁇ m to 5.0 ⁇ m determined by SEM observation.
  • the average particle diameter (D50) of the Ni-coated copper powder composed of flat copper particles is 1.0 ⁇ m to 100 ⁇ m.
  • the height of the flat copper particles in the vertical direction with respect to the flat surface is 1/10 or less with respect to the maximum length in the horizontal direction. It has a smooth surface that suppresses growth in the vertical direction.
  • the anode and the cathode are immersed in a sulfuric acid acidic electrolyte solution containing copper ions, and a direct current is applied to perform electrolysis so that the copper is deposited on the cathode. It can be produced by depositing powder and coating the surface of the obtained copper powder with Ni or a Ni alloy by an electroless plating method or the like.
  • the dendritic Ni-coated copper powder 11 has a dendritic shape having a main trunk 12 grown linearly and a plurality of branches 13 separated from the main trunk 12. Note that the branches 13 in the dendritic Ni-coated copper powder 11 mean not only the branches 13a branched from the main trunk 12 but also the branches 13b further branched from the branches 13a.
  • the main trunk 12 and the branch 13 are constituted by a collection of tabular copper particles having an average cross-sectional thickness of 0.02 ⁇ m to 5.0 ⁇ m determined by SEM observation.
  • the formation of such flat copper particles is caused by the fact that specific additives added to the electrolytic solution when electrolytically depositing copper powder are adsorbed on the surface of the copper particles, as will be described later. As a result, it is thought that it grows flat.
  • the Ni-coated copper powder 11 is constituted by coating the surface of such flat copper particles with Ni or a Ni alloy.
  • FIG. 2 is a diagram showing a horizontal direction (flat plate direction) to the flat plate surface and a direction perpendicular to the flat plate surface.
  • the flat plate direction indicates the XY direction, and the vertical direction. Indicates the Z direction.
  • FIG. 3 shows an observation image when the copper powder grown in the direction perpendicular to the flat plate-like surface is observed by SEM (magnification 1,000 times) in the dendritic copper powder before coating with Ni. It is a photograph figure which shows an example. In the dendritic copper powder shown in this photograph, copper particles grow in a direction perpendicular to the flat surface to form protrusions, and some flat surfaces are bent to have a height in the vertical direction. It has a shape.
  • the copper particles grow in the vertical direction as shown in the photograph of FIG. 3, for example, when the Ni-coated copper powder produced based on the copper powder is used for a conductive paste or conductive paint, the vertical Since the copper powder becomes bulky due to the growth of the copper particles in the direction, the filling density cannot be obtained, and there is a problem that sufficient conductivity cannot be ensured.
  • the Ni-coated copper powder 11 in the Ni-coated copper powder 11 according to the first embodiment, the growth in the vertical direction with respect to the flat plate-like surface is suppressed, and the copper powder has a substantially smooth surface.
  • the Ni-coated copper powder 11 has a maximum height in the vertical direction (reference numeral “15” in FIG. 2) with respect to the plate-like surface. It becomes 1/10 or less with respect to the maximum length (symbol “14” in FIG. 2) that is long in the direction.
  • the maximum height 15 in the direction perpendicular to the flat surface is not the thickness of the flat surface, but, for example, when the protrusion is formed on the flat surface, the height of the protrusion. Yes, it means the “height” in the direction opposite to the thickness direction with respect to the flat “surface”.
  • the maximum length 14 in the horizontal direction with respect to the flat surface means the major axis length of the flat surface.
  • FIG. 4 shows an observation image when the dendritic copper powder before being coated with Ni or Ni alloy is observed by SEM (magnification 1,000 times), that is, in a direction perpendicular to the flat surface. It is a photograph figure which shows an example of the observation image of the flat dendritic copper powder which suppressed the growth.
  • FIG. 5 is a graph showing the dendritic Ni-coated copper powder in which Ni or Ni alloy is coated on the dendritic copper powder whose growth in the vertical direction shown in FIG. It is a photograph figure which shows the observation image of.
  • FIG. 6 is similar to FIG.
  • Such a flat dendritic Ni-coated copper powder 11 in which the growth in the vertical direction is suppressed can ensure a large contact area between the copper powders. And since the contact area becomes large, low resistance, that is, high conductivity can be realized. Thereby, it is further excellent in electroconductivity, can maintain the electroconductivity favorably, and can be used suitably for the use of an electroconductive coating material or an electroconductive paste. Moreover, when the dendritic Ni-coated copper powder 11 is formed by aggregating flat copper particles, it can contribute to thinning of the wiring material and the like.
  • the tabular copper particles coated with Ni or Ni alloy constituting the main trunk 12 and the branches 13 in the dendritic Ni-coated copper powder 11 have an average cross-sectional thickness of 0.02 ⁇ m to 5.0 ⁇ m. It is. As for the cross-sectional average thickness of the flat copper particles coated with Ni or Ni alloy, the thinner one will exhibit the effect as a flat plate. That is, the trunk 12 and the branches 13 are constituted by flat copper particles coated with Ni having a cross-sectional average thickness of 5.0 ⁇ m or less, so that the copper particles and dendritic Ni formed thereby are formed. A large area where the coated copper powders 11 come into contact with each other can be secured.
  • the cross-sectional average thickness of the tabular copper particles coated with Ni or Ni alloy becomes thinner, the number of contacts when the dendritic Ni-coated copper powders 11 come into contact with each other decreases. If the cross-sectional average thickness of the copper particles coated with Ni or Ni alloy is 0.02 ⁇ m or more, a sufficient number of contacts can be secured, and more preferably 0.2 ⁇ m or more. Can be increased effectively.
  • the average particle diameter (D50) is 1.0 ⁇ m to 100 ⁇ m.
  • the average particle diameter can be controlled by changing the electrolysis conditions described later. Further, if necessary, it can be further adjusted to a desired size by adding mechanical crushing or crushing such as a jet mill, a sample mill, a cyclone mill, or a bead mill.
  • an average particle diameter (D50) can be measured by the laser diffraction scattering type particle size distribution measuring method, for example.
  • the dendritic Ni-coated copper powder It is necessary to reduce the shape of the. However, if the particle diameter of the dendritic Ni-coated copper powder is too small, the dendritic shape cannot be secured. Therefore, the effect of being in a dendritic shape, that is, a three-dimensional shape, has a large surface area and excellent moldability and sinterability, and can be molded with high strength by being firmly connected via a branch-like portion. In order to secure the effect, it is necessary that the dendritic Ni-coated copper powder has a size larger than a predetermined size.
  • the average particle diameter is 1.0 ⁇ m to 100 ⁇ m, so that the surface area is increased and good moldability and sinterability are ensured. can do.
  • the dendritic Ni-coated copper powder 11 has a dendritic shape because the main trunk 12 and the branch 13 are composed of an aggregate of tabular copper particles in addition to the dendritic shape. Due to the three-dimensional effect and the effect that the copper particles constituting the dendritic shape are flat, more contacts between copper powders can be secured.
  • Patent Document 3 and Patent Document 4 show that a flat plate is formed by a mechanical method such as pulverization.
  • a mechanical method such as pulverization.
  • fatty acid is added and pulverized in air or in an inert atmosphere. This is processed into a flat plate shape.
  • the fatty acid added at the time of processing may affect the dispersibility when it is made into a paste.
  • the fatty acid may firmly adhere to the copper surface due to the pressure during machining, which causes a problem that it cannot be completely removed.
  • metal fillers such as an electrically conductive paste and resin for electromagnetic wave shielding, the adhesion of the oxide film or fatty acid becomes a cause of increasing resistance.
  • the dendritic Ni-coated copper powder 11 according to the first embodiment can be grown by direct electrolysis to form a flat plate without performing mechanical processing. Therefore, the problem of oxidation and the problem due to the remaining fatty acid, which are problems in this method, do not occur, the surface state of the copper powder becomes good, and the electrical conductivity can be made extremely good. Thereby, when using as metal fillers, such as electroconductive paste and resin for electromagnetic wave shielding, low resistance is realizable.
  • the manufacturing method of the dendritic Ni-coated copper powder 11 will be described in detail later.
  • the filling rate of the metal filler becomes a problem.
  • the smoothness of the flat dendritic Ni-coated copper powder is required. That is, the form of the dendritic Ni-coated copper powder 11 is such that the maximum height in the direction perpendicular to the flat surface is 1/10 of the maximum length in the direction horizontal to the flat surface.
  • the dendritic Ni-coated copper powder having the above-mentioned shape is occupied at a predetermined ratio in the obtained Ni-coated copper powder when observed with an electron microscope, Ni of other shapes Even if the coated copper powder is mixed, the same effect as that of the copper powder composed only of the dendritic Ni-coated copper powder can be obtained.
  • the dendritic Ni-coated copper powder having the shape described above is 65% by number or more, preferably 80% of the total Ni-coated copper powder. As long as it occupies a ratio of several percent or more, more preferably 90 percent or more, Ni-coated copper powder of other shapes may be included.
  • the dendritic Ni-coated copper powder 11 according to the first embodiment is a flat plate having a cross-sectional average thickness of 0.02 ⁇ m to 5.0 ⁇ m, and the surface is coated with Ni or a Ni alloy. It is constituted in a dendritic shape by copper particles.
  • the dendritic Ni-coated copper powder 11 is preferably 1% by mass as Ni content with respect to 100% by mass of the entire Ni-coated copper powder 11 coated with Ni on the dendritic copper powder before being coated with Ni or Ni alloy.
  • Ni or Ni alloy is coated at a ratio of ⁇ 50 mass%, and the thickness of Ni (coating thickness) is 0.1 ⁇ m or less, preferably 0.05 ⁇ m or less. From this, the dendritic Ni-coated copper powder 11 has a shape that retains the shape of the dendritic copper powder before coating with Ni or Ni alloy. Therefore, the shape of the copper powder before coating Ni or Ni alloy and the shape of the Ni-coated copper powder after coating Ni or Ni alloy on the copper powder are both dendritic shapes.
  • the content of Ni coated as Ni or Ni alloy in the dendritic Ni-coated copper powder 11 is 1% by mass to 50% by mass with respect to 100% by mass of the Ni-coated copper powder 1 as a whole as described above. % Is preferable.
  • the content of Ni coated as Ni or Ni alloy is preferably as low as possible because the conductivity of Ni itself is lower than copper, but if it is too small, a uniform Ni or Ni alloy film cannot be secured on the copper powder surface. As a result, copper is oxidized to cause a decrease in conductivity. Therefore, the content of Ni coated as Ni or Ni alloy is preferably 1% by mass or more with respect to 100% by mass of the entire Ni-coated copper powder 11 coated with Ni, and is 2% by mass or more. It is more preferable that the content is 5% by mass or more.
  • the coating amount of Ni or Ni alloy is preferably 50% by mass or less, more preferably 20% by mass or less, with respect to 100% by mass of the Ni-coated copper powder 11 coated with Ni. More preferably, it is 10 mass% or less.
  • the average thickness of Ni or Ni alloy coated on the surface of the dendritic copper powder is about 0.0003 ⁇ m to 0.1 ⁇ m, and 0.005 ⁇ m. More preferably, it is about 0.02 ⁇ m. If the coating thickness of Ni or Ni alloy is less than 0.0003 ⁇ m on average, a uniform Ni or Ni alloy coating cannot be secured on the surface of the copper powder, and copper conductivity cannot be suppressed, resulting in a decrease in conductivity. Cause. On the other hand, when the coating thickness of Ni or Ni alloy exceeds 0.1 ⁇ m on average, it is not preferable from the viewpoint of decreasing the electrical conductivity.
  • the average thickness of Ni coated on the surface of the dendritic copper powder is 0.1 ⁇ m or less, and the cross-sectional average thickness of the flat copper particles constituting the dendritic copper powder before coating the Ni or Ni alloy Is smaller than 0.02 ⁇ m to 5.0 ⁇ m. Therefore, before and after coating the surface of the dendritic copper powder with Ni or Ni alloy, the cross-sectional average thickness of the tabular copper particles does not substantially change.
  • the Ni covered with the dendritic copper powder may be a Ni alloy.
  • the element added as the Ni alloy is preferably an element from Group 6 to Group 14 of the periodic table, and particularly one or more selected from zinc, cobalt, tungsten, molybdenum, palladium, platinum, and tin. preferable.
  • the resulting Ni coating is They are Ni-P alloy and Ni-B alloy, respectively.
  • the bulk density of the dendritic Ni-coated copper powder 11 is not particularly limited, but is preferably in the range of 0.5 g / cm 3 to 5.0 g / cm 3 . If the bulk density is less than 0.5 g / cm 3 , there is a possibility that sufficient contact between the dendritic Ni-coated copper powders 11 cannot be secured. On the other hand, if the bulk density exceeds 5.0 g / cm 3 , the average particle diameter of the dendritic Ni-coated copper powder 11 also increases, and the surface area decreases and the moldability and sinterability deteriorate. is there.
  • [BET specific surface area] In dendritic Ni-coated copper powder 11 is not particularly limited, it is preferable the value of the BET specific surface area of 0.2m 2 /g ⁇ 5.0m 2 / g.
  • the BET specific surface area value is less than 0.2 m 2 / g, the copper particles coated with Ni or Ni alloy may not have the desired flat plate shape as described above, and high conductivity is obtained. There may not be.
  • the BET specific surface area value exceeds 5.0 m 2 / g, the Ni coating on the surface of the dendritic Ni-coated copper powder becomes non-uniform and high conductivity may not be obtained.
  • court copper powder may become too fine, Ni coat copper powder may become a fine beard-like state, and electroconductivity may fall.
  • the BET specific surface area can be measured in accordance with JIS Z8830: 2013.
  • Ni-coated copper powder [Configuration of Ni-coated copper powder]
  • the Ni-coated copper powder according to the second embodiment forms a dendritic shape having a plurality of branches when observed using a scanning electron microscope (SEM), and has an ellipsoidal shape having a specific size.
  • the copper particles are assembled and the surfaces of these copper particles are coated with Ni or a Ni alloy.
  • this Ni-coated copper powder is also referred to as “dendritic Ni-coated copper powder”.
  • a copper powder having a dendritic shape having a plurality of branches has a minor axis average diameter of 0.2 ⁇ m to 0.5 ⁇ m and a major axis average diameter.
  • the ellipsoid has a size in the range of 0.5 ⁇ m to 2.0 ⁇ m, and is composed of copper particles whose surfaces are coated with Ni or a Ni alloy.
  • the average particle diameter (D50) of the Ni-coated copper powder formed by aggregating copper particles coated with Ni or Ni alloy on the surface is 5.0 ⁇ m to 20 ⁇ m.
  • FIG. 7 is a diagram schematically showing a specific shape of the dendritic copper powder before the Ni or Ni alloy is coated on the surface, which constitutes the Ni-coated copper powder according to the second embodiment. It is.
  • the dendritic copper powder 21 constituting the Ni-coated copper powder has a dendritic shape having a plurality of branches and is composed of an aggregate of fine copper particles 22.
  • the Ni-coated copper powder is formed by coating the surface of dendritic copper powder 21, which is an aggregate of such copper particles 22, with Ni or a Ni alloy.
  • the copper particles 22 constituting the dendritic copper powder 21 have an ellipsoid having a minor axis average diameter of 0.2 ⁇ m to 0.5 ⁇ m and a major axis average diameter of 0.5 ⁇ m to 2.0 ⁇ m. It is the copper particle of the shape.
  • the dendritic copper powder 21 which is an aggregate of the ellipsoidal copper particles 22 has an average particle diameter (D50) of 5.0 ⁇ m to 20 ⁇ m. Even after the surface of the dendritic copper powder 21 is coated with Ni or Ni alloy, the minor axis average diameter and major axis average diameter of the copper particles coated with Ni constituting the Ni-coated copper powder, and the Ni The average particle diameter of the coated copper powder is almost the same.
  • the anode and the cathode are immersed in a sulfuric acid acidic electrolyte solution containing copper ions, and a DC current is applied to cause electrolysis to deposit on the cathode.
  • a DC current is applied to cause electrolysis to deposit on the cathode.
  • the dendritic copper powder 21 having a small shape as described above can be deposited and formed by electrolysis without performing physical treatment such as pulverization and crushing.
  • the conventional dendritic copper powder has a very large shape and cannot be used as it is, it was used as a small shape by performing a pulverization process.
  • the crushed shape is a rod-shaped copper powder having a size of 10 ⁇ m or less. Therefore, the shape of the conventional dendritic copper powder is considered to be a dendritic copper powder in which shapes of 10 ⁇ m or less are assembled.
  • FIG. 8 is a photograph showing an example of an observation image obtained by SEM (magnification: 5,000 times) of the dendritic copper powder before coating with Ni or Ni alloy.
  • 9 and 10 are SEM observations of the dendritic Ni-coated copper powder according to the second embodiment, that is, the dendritic Ni-coated copper powder obtained by coating the surface of the dendritic copper powder with Ni or a Ni alloy. It is a photograph figure which shows an example of an image (FIG. 9: 5,000 times magnification, FIG. 10: 10,000 times magnification).
  • the copper powder before coating with Ni exhibits a dendritic precipitation state.
  • this dendritic copper powder has formed the dendritic shape which has a some branch by gathering the fine copper particle which has an elliptical shape, as typically shown in FIG.
  • the size of the copper particles is an ellipsoidal shape having a minor axis average diameter of 0.5 ⁇ m or less and a major axis average diameter of 2.0 ⁇ m or less.
  • Increasing the number of contacts when dendritic Ni-coated copper powders are in contact with each other by having a long axis average diameter of the shape of the copper particles 2 constituting the dendritic copper powder 1 is 2.0 ⁇ m or less.
  • the major axis average diameter of the copper particles 2 is preferably 0.5 ⁇ m to 2.0 ⁇ m.
  • the minor axis average diameter of the copper particles 2 is 0.5 ⁇ m or less.
  • the thickness of the branch portion of the dendritic copper powder (for example, FIG. 7). “D1”) in the schematic diagram increases.
  • the thickness of the branch portion is increased, the interval between the branches of the dendritic Ni-coated copper powder in which the surface of the dendritic copper powder is coated with Ni or Ni alloy is narrowed, resulting in a dense shape as a whole. No dendritic effect.
  • the minor axis average diameter of the copper particles 2 is 0.2 ⁇ m to 0.5 ⁇ m, thereby providing sufficient conductivity while exhibiting a three-dimensional dendritic effect. Can be secured.
  • the average thickness (D1) of the branch portion of the dendritic copper powder 1 constituted by the aggregation of the copper particles 2 is preferably 2.0 ⁇ m or less.
  • the average thickness of the branch portion exceeds 2.0 ⁇ m, the interval between the branches of the dendritic copper powder is narrowed and the shape becomes dense as a whole.
  • the thickness of the branch portion of the dendritic copper powder 1 is preferably 0.5 ⁇ m to 2.0 ⁇ m.
  • the average particle diameter (D50) is 5.0 ⁇ m to 20 ⁇ m.
  • the average particle diameter can be controlled by changing the electrolysis conditions described later. Further, if necessary, it can be further adjusted to a desired size by adding mechanical crushing or crushing such as a jet mill, a sample mill, a cyclone mill, or a bead mill. With such a size of the Ni-coated copper powder, it is possible to secure a large number of contact points between the copper powders by the effect of the three-dimensional dendritic shape, and to suppress the aggregation in the resin and disperse it well. And increase in paste viscosity can be suppressed.
  • an average particle diameter (D50) can be measured by the laser diffraction scattering type particle size distribution measuring method, for example.
  • the dendritic Ni-coated copper powder having the above-mentioned shape is occupied at a predetermined ratio in the obtained Ni-coated copper powder when observed with an electron microscope, Ni of other shapes Even if the coated copper powder is mixed, the same effect as that of the copper powder composed only of the dendritic Ni-coated copper powder can be obtained.
  • the dendritic Ni-coated copper powder having the shape described above is 65% by number or more, preferably 80% of the total Ni-coated copper powder. As long as it occupies a ratio of several percent or more, more preferably 90 percent or more, Ni-coated copper powder of other shapes may be included.
  • the surface of the dendritic copper powder 21 is coated with Ni or a Ni alloy as described above.
  • the dendritic Ni-coated copper powder has a Ni content of 1% by mass to 100% by mass of the entire Ni-coated copper powder coated with Ni on the dendritic copper powder 21 before being coated with Ni or Ni alloy.
  • Ni or Ni alloy is coated at a ratio of 50% by mass, and the thickness of Ni (coating thickness) is 0.1 ⁇ m or less, preferably 0.02 ⁇ m or less.
  • the resinous Ni-coated copper powder has a shape that retains the shape of the dendritic copper powder 21 before being coated with Ni or Ni alloy. Therefore, both the shape of the copper powder before coating Ni or Ni alloy and the shape of the Ni-coated copper powder after coating the copper powder with Ni or Ni alloy are both dendritic shapes.
  • the content of Ni coated as Ni or Ni alloy in the dendritic Ni-coated copper powder is 1% by mass to 50% by mass with respect to 100% by mass of the entire Ni-coated copper powder coated with Ni as described above. A range is preferable.
  • the content of Ni coated as Ni or Ni alloy is preferably as low as possible because the conductivity of Ni itself is lower than copper, but if it is too small, a uniform Ni or Ni alloy film cannot be secured on the copper powder surface. As a result, copper is oxidized to cause a decrease in conductivity. Therefore, as content of Ni coat
  • the coating amount of Ni or Ni alloy is preferably 50% by mass or less, more preferably 20% by mass or less, with respect to 100% by mass of the entire Ni-coated copper powder coated with Ni. More preferably, it is at most mass%.
  • the average thickness of Ni or Ni alloy coated on the surface of the copper particles is about 0.0003 ⁇ m to 0.1 ⁇ m, and 0.005 ⁇ m to 0.00. It is preferably about 02 ⁇ m. If the coating thickness of Ni or Ni alloy is less than 0.0003 ⁇ m on average, a uniform Ni coating cannot be ensured on the surface of the copper powder, and copper oxidation cannot be suppressed, resulting in a decrease in conductivity. Become. On the other hand, when the coating thickness of Ni or Ni alloy exceeds 0.1 ⁇ m on average, it is not preferable from the viewpoint of decreasing the electrical conductivity.
  • the average thickness of the Ni or Ni alloy coated on the surface of the dendritic Ni-coated copper powder is about 0.0003 ⁇ m to 0.1 ⁇ m, and constitutes the dendritic copper powder 21 before coating the Ni or Ni alloy. It is smaller than the size of the copper particles 22 (an ellipsoid having a minor axis average diameter of 0.2 ⁇ m to 0.5 ⁇ m and a major axis average diameter of 0.5 ⁇ m to 2.0 ⁇ m). Therefore, the form of the copper powder is not substantially changed before and after the surface of the dendritic copper powder 21 is coated with Ni or Ni alloy.
  • the Ni covered with the dendritic copper powder 21 may be a Ni alloy.
  • the element added as the Ni alloy is preferably an element from Group 6 to Group 14 of the periodic table, and particularly one or more selected from zinc, cobalt, tungsten, molybdenum, palladium, platinum, and tin. preferable.
  • the Ni coating obtained are a Ni—P alloy and a Ni—B alloy, respectively.
  • the bulk density of the dendritic Ni-coated copper powder according to the second embodiment is not particularly limited, but is preferably in the range of 0.5 g / cm 3 to 5.0 g / cm 3 . If the bulk density is less than 0.5 g / cm 3 , there is a possibility that sufficient contact between the dendritic Ni-coated copper powders cannot be ensured. On the other hand, if the bulk density exceeds 5.0 g / cm 3 , the average particle diameter of the dendritic Ni-coated copper powder also increases, and the surface area may decrease, and the formability and sinterability may deteriorate. .
  • the dendritic Ni-coated copper powder according to the second embodiment is not particularly limited, it is preferable the value of the BET specific surface area of 0.2m 2 /g ⁇ 5.0m 2 / g. If the BET specific surface area value is less than 0.2 m 2 / g, the copper particles 22 coated with Ni or Ni alloy (see FIG. 7) may not have the desired size and shape as described above. High conductivity may not be obtained. On the other hand, if the BET specific surface area value exceeds 5.0 m 2 / g, the Ni or Ni alloy coating on the surface of the dendritic Ni-coated copper powder becomes non-uniform and high conductivity may not be obtained.
  • the copper particles 2 constituting the Ni-coated copper powder become too fine, and the Ni-coated copper powder may be in a fine whisker-like state, resulting in a decrease in conductivity.
  • the BET specific surface area can be measured in accordance with JIS Z8830: 2013.
  • the Ni-coated copper powder according to the third embodiment is observed using a scanning electron microscope (SEM), the Ni-coated copper powder has a dendritic shape having a main trunk that grows linearly and a plurality of branches separated from the main trunk.
  • the main trunk and the branch are constituted by a collection of tabular copper particles having a specific cross-sectional average thickness, and the surface of the tabular copper particles is coated with Ni or a Ni alloy.
  • this Ni-coated copper powder is also referred to as “dendritic Ni-coated copper powder”.
  • the main trunk and branches are composed of flat copper particles having an average cross-sectional thickness of 0.2 ⁇ m to 5.0 ⁇ m determined by SEM observation.
  • the average particle diameter (D50) of the Ni-coated copper powder composed of flat copper particles is 1.0 ⁇ m to 100 ⁇ m.
  • the anode and the cathode are immersed in a sulfuric acid acidic electrolyte solution containing copper ions, and a direct current is applied to perform electrolysis so that the copper is deposited on the cathode. It can be produced by depositing powder and coating the surface of the obtained copper powder with Ni or a Ni alloy by an electroless plating method or the like.
  • FIG. 11 is a diagram schematically showing a specific shape of the Ni-coated copper powder according to the third embodiment.
  • the dendritic Ni-coated copper powder 31 has a dendritic shape having a main trunk 32 that grows linearly and a plurality of branches 33 that are separated from the main trunk 32.
  • the branch 33 in the dendritic Ni-coated copper powder 31 means both a branch 33a branched from the main trunk 32 and a branch 33b further branched from the branch 33a.
  • the dendritic Ni-coated copper powder 31 is a flat plate having a predetermined average cross-sectional thickness, and is composed of copper particles whose surface is coated with Ni or a Ni alloy.
  • the main trunk 32 and the branch 33 are configured by aggregating tabular copper particles having a cross-sectional average thickness of 0.2 ⁇ m to 5.0 ⁇ m.
  • the formation of such flat copper particles is caused by the fact that specific additives added to the electrolytic solution when electrolytically depositing copper powder are adsorbed on the surface of the copper particles, as will be described later. As a result, it is thought that it grows flat.
  • the Ni-coated copper powder 31 is constituted by coating the surface of such flat copper particles with Ni or a Ni alloy.
  • FIG. 12 is a photograph showing an example of an observation image of the dendritic copper powder 31 constituting the dendritic Ni-coated copper powder 31 before being coated with Ni, when observed by SEM (magnification 5,000 times).
  • FIG. 13 is a photograph showing an example of an observation image when the dendritic Ni-coated copper powder obtained by coating the dendritic copper powder of FIG. 12 with Ni is observed by SEM (magnification 5,000 times).
  • FIG. 14 is a photograph showing an example of an observation image when dendritic Ni-coated copper powder obtained by coating Ni on dendritic copper powder by SEM (magnification 1,000 times).
  • the dendritic Ni-coated copper powder forms a two-dimensional or three-dimensional dendritic shape having a main trunk and branches branched from the main trunk, as shown in the observation images of FIGS.
  • the flat copper particles constituting the main trunk 32 and the branches 33 have an average cross-sectional thickness of 0.2 ⁇ m to 5.0 ⁇ m as described above.
  • the dendritic Ni-coated copper powder 31 is composed of fine copper particles coated with a flat-plate Ni, it can contribute to thinning of the wiring material and the like.
  • the lower limit value of the average cross-sectional thickness of the copper particles is preferably 0.2 ⁇ m or more, which can increase the number of contacts.
  • the dendritic Ni-coated copper powder 31 has an average particle diameter (D50) of 1.0 to 100 ⁇ m.
  • the average particle diameter can be controlled by changing the electrolysis conditions described later. Further, if necessary, it can be further adjusted to a desired size by adding mechanical pulverization such as a jet mill, a sample mill, a cyclone mill, and a bead mill.
  • an average particle diameter (D50) can be measured by the laser diffraction scattering type particle size distribution measuring method, for example.
  • the dendritic Ni-coated copper powder 31 has a dendritic shape and, in addition, the main trunk 32 and the branch 33 are made of flat copper particles. As a result of the effect that the copper particles constituting the dendritic shape are flat, more contacts between the dendritic Ni-coated copper powders 31 can be secured.
  • the dendritic Ni-coated copper powder having the above-mentioned shape is occupied at a predetermined ratio in the obtained Ni-coated copper powder when observed with an electron microscope, Ni of other shapes Even if the coated copper powder is mixed, the same effect as that of the copper powder composed only of the dendritic Ni-coated copper powder can be obtained.
  • the dendritic Ni-coated copper powder having the shape described above is 65% by number or more, preferably 80% of the total Ni-coated copper powder. As long as it occupies a ratio of several percent or more, more preferably 90 percent or more, Ni-coated copper powder of other shapes may be included.
  • the dendritic Ni-coated copper powder 31 according to the third embodiment is a flat plate having a cross-sectional average thickness of 0.2 ⁇ m to 5.0 ⁇ m, and the surface is coated with Ni or a Ni alloy. It is constituted in a dendritic shape by copper particles.
  • the dendritic Ni-coated copper powder 31 preferably has a Ni content of 1% by mass to 100% by mass of the entire Ni-coated copper powder coated with Ni on the dendritic copper powder before coating with Ni or Ni alloy. Ni or Ni alloy is coated at a ratio of 50% by mass, and the thickness of Ni (coating thickness) is 0.1 ⁇ m or less, preferably 0.05 ⁇ m or less. From this, the dendritic Ni-coated copper powder 31 has a shape that retains the shape of the dendritic copper powder before coating with Ni or Ni alloy. Therefore, the shape of the copper powder before coating Ni or Ni alloy and the shape of the Ni-coated copper powder after coating Ni or Ni alloy on the copper powder are both dendritic shapes.
  • the content of Ni coated as Ni or Ni alloy in the dendritic Ni-coated copper powder 31 is 1% by mass to 50% by mass with respect to 100% by mass of the Ni-coated copper powder 31 as a whole. % Is preferable.
  • the content of Ni coated as Ni or Ni alloy is preferably as low as possible because the conductivity of Ni itself is lower than that of copper, but if it is too small, a uniform Ni or Ni alloy film can be secured on the copper surface. As a result, copper is oxidized, resulting in a decrease in conductivity. Therefore, the content of Ni coated as Ni or Ni alloy is preferably 1% by mass or more with respect to 100% by mass of the entire Ni-coated copper powder 31 coated with Ni, and is 2% by mass or more. It is more preferable that the content is 5% by mass or more.
  • the coating amount of Ni or Ni alloy is preferably 50% by mass or less, more preferably 20% by mass or less, with respect to 100% by mass of the Ni-coated copper powder 31 coated with Ni. More preferably, it is 10 mass% or less.
  • the average thickness of Ni or Ni alloy coated on the surface of the dendritic copper powder is about 0.0003 ⁇ m to 0.1 ⁇ m, and 0.005 ⁇ m. More preferably, it is about 0.02 ⁇ m.
  • the coating thickness of Ni or Ni alloy is less than 0.0003 ⁇ m on average, a uniform Ni or Ni alloy coating cannot be secured on the surface of the copper powder, and copper oxidation cannot be suppressed, resulting in a decrease in conductivity.
  • the coating thickness of Ni or Ni alloy exceeds 0.1 ⁇ m on average, it is not preferable from the viewpoint of decreasing the electrical conductivity.
  • the average thickness of Ni coated on the surface of the dendritic copper powder is about 0.0003 ⁇ m to 0.1 ⁇ m, compared with the cross-sectional average thickness of the tabular copper particles constituting the dendritic copper powder. Very small. Therefore, before and after coating the surface of the dendritic copper powder with Ni or Ni alloy, the cross-sectional average thickness of the tabular copper particles does not substantially change.
  • the Ni covered with the dendritic copper powder may be a Ni alloy.
  • the element added as the Ni alloy is preferably an element from Group 6 to Group 14 of the periodic table, and particularly one or more selected from zinc, cobalt, tungsten, molybdenum, palladium, platinum, and tin. preferable.
  • the resulting Ni coating is They are Ni-P alloy and Ni-B alloy, respectively.
  • the bulk density of the dendritic Ni-coated copper powder 31 is not particularly limited, but is preferably in the range of 0.5 g / cm 3 to 5.0 g / cm 3 . If the bulk density is less than 0.5 g / cm 3 , there is a possibility that sufficient contact between the dendritic Ni-coated copper powders 31 cannot be secured. On the other hand, if the bulk density exceeds 5.0 g / cm 3 , the average particle diameter of the dendritic Ni-coated copper powder 31 also increases, and the surface area decreases and the formability and sinterability deteriorate. is there.
  • [BET specific surface area] In dendritic Ni-coated copper powder 31 is not particularly limited, it is preferable the value of the BET specific surface area of 0.2m 2 /g ⁇ 5.0m 2 / g.
  • the BET specific surface area value is less than 0.2 m 2 / g, the copper particles coated with Ni or Ni alloy may not have the desired flat plate shape as described above, and high conductivity is obtained. There may not be.
  • the BET specific surface area value exceeds 5.0 m 2 / g, the Ni coating on the surface of the dendritic Ni-coated copper powder becomes non-uniform and high conductivity may not be obtained.
  • court copper powder may become too fine, Ni coat copper powder may become a fine beard-like state, and electroconductivity may fall.
  • the BET specific surface area can be measured in accordance with JIS Z8830: 2013.
  • FIG. 15 is a schematic diagram showing a specific shape of the Ni-coated copper powder according to the fourth embodiment.
  • the Ni-coated copper powder 41 is made of Ni or Ni alloy on the surface of the copper powder having a form in which the separated flat copper particles 42 are aggregated two-dimensionally or three-dimensionally.
  • the copper particles 42 have a flat plate shape.
  • this Ni-coated copper powder is also referred to as “flat Ni-coated copper particle aggregated powder 41”.
  • the plate-like Ni-coated copper particle aggregated powder 41 is in the form of an aggregated copper powder in which a plurality of copper particles 42 whose surfaces are coated with Ni or Ni alloy are aggregated to form an aggregate.
  • the copper particles 42 are in the form of a flat plate having an average major axis diameter d (average major axis diameter) of 0.5 ⁇ m to 5.0 ⁇ m and an average cross-sectional thickness of 0.02 ⁇ m to 1.0 ⁇ m.
  • the tabular Ni-coated copper particle aggregated powder 41 obtained by aggregating a plurality of tabular copper particles 2 into an aggregate is characterized in that the average particle diameter (D50) is 1.0 ⁇ m to 30 ⁇ m. Yes.
  • the flat Ni-coated copper particle agglomerated powder 41 is described later in detail.
  • the anode and the cathode are immersed in a sulfuric acid electrolyte containing copper ions, and the cathode is electrolyzed by flowing a direct current.
  • the agglomerated powder is deposited on the surface, and the surface of the obtained agglomerated powder can be produced by coating Ni or a Ni alloy by an electroless plating method or the like.
  • FIG.16 and FIG.17 is a photograph figure which shows an example of the observation image when it observes by SEM (FIG. 16: 5,000 times magnification, FIG. 17: 10,000 times magnification) about the tabular Ni coat copper particle aggregated powder 41. It is.
  • the tabular Ni-coated copper particle aggregated powder 41 has a form in which tabular copper particles are aggregated.
  • the flat copper particles are singulated and have a flat shape having a flat surface or a curved surface.
  • the flat copper particles 42 have a flat surface having a smooth periphery, such as a substantially oval shape, an oval shape, or a so-called corn flake shape, which will be described later.
  • the shape has a cross-sectional average thickness within a specific range.
  • the surface having a substantially elliptic shape or the like may have protrusions and attached particles having a height of about twice or less the average cross-sectional thickness.
  • the average major axis diameter d of the copper particles 42 which are flat and whose surfaces are coated with Ni or Ni alloy is 0.5 ⁇ m to 5.0 ⁇ m, more preferably 0.7 ⁇ m to 4 ⁇ m. 0.0 ⁇ m.
  • the average cross-sectional thickness of the copper particles 42 is 0.02 ⁇ m to 1.0 ⁇ m, more preferably 0.05 ⁇ m to 0.4 ⁇ m.
  • the average major axis diameter d of the flat copper particles 42 indicates the maximum width of a flat surface having a shape such as an ellipse, as shown in FIG. Further, the average major axis diameter d and the cross-sectional average thickness can be obtained by SEM observation.
  • the average major axis diameter d of the tabular copper particles 42 is less than 0.5 ⁇ m, or the cross-sectional average thickness exceeds 1.0 ⁇ m, the aggregated powders formed by aggregation of these particles are aggregated. A large contact area cannot be secured, and the electrical conductivity may decrease.
  • the upper limit value of the average major axis diameter d of the tabular copper particles 42 is not particularly limited. However, in the method of depositing on the cathode by electrolysis described later, the upper limit is about 5.0 ⁇ m. Further, the lower limit value of the cross-sectional average thickness of the flat copper particles 42 is not particularly limited, but in the same method of depositing on the cathode by electrolysis, the lower limit is about 0.02 ⁇ m.
  • the size of the tabular Ni-coated copper particle aggregated powder 41 obtained by aggregating the tabular copper particles 42 into an aggregate is 1.0 ⁇ m to 30 ⁇ m in average particle diameter (D50).
  • the average particle diameter can be controlled by changing the electrolysis conditions described later. Further, if necessary, it can be further adjusted to a desired size by adding mechanical pulverization such as a jet mill, a sample mill, a cyclone mill, and a bead mill.
  • the average particle diameter (D50) of the tabular Ni-coated copper particle aggregated powder 41 can be measured by a laser diffraction / scattering particle size distribution measurement method.
  • the tabular copper particles 2 having an average cross-sectional thickness of 0.02 ⁇ m to 1.0 ⁇ m are aggregated to form the tabular Ni-coated copper particle aggregated powder 41, so that the copper having a desired size described above is formed. It becomes a powder, and it is possible to secure a large area where the flat Ni-coated copper particle aggregated powders 41 and the copper particles 42 on the flat plate contact each other. And since the contact area becomes large, low resistance, that is, high conductivity can be realized. By this, it is more excellent in electroconductivity and can be used suitably for the use of a conductive paint and a conductive paste.
  • the metal filler in the resin has a dendritic shape
  • Dendritic copper powders are entangled with each other and agglomeration occurs, which may not be uniformly dispersed in the resin.
  • the agglomeration increases the viscosity of the paste and causes problems in wiring formation by printing. This is because the shape of the dendritic copper powder grows in a needle shape, and when trying to prevent agglomeration, the shape of the dendritic copper powder is reduced. It becomes impossible to obtain the effect of securing the contact by eliminating.
  • the plate is formed by the mechanical method of Patent Document 3 or Patent Document 4, it is necessary to prevent copper oxidation at the time of mechanical processing. For example, after adding a fatty acid, in the air or inactive It is crushed in an atmosphere and processed into a flat plate shape. However, oxidation cannot be completely prevented, and the fatty acid added at the time of processing needs to be removed after processing to affect dispersibility when it is made into a paste. There is a problem that the fatty acid cannot be completely removed because it may firmly adhere to the copper surface. Moreover, it becomes difficult to make the flat copper powder obtained to make a flat plate by mechanical pressure flat because it becomes flat by mechanical processing, and it becomes warped. . Since copper powder with a smooth and warped surface is difficult to secure contact points, when using it as a metal filler, not only flat copper powder but also granular copper powder can be mixed with other metal fillers. It is necessary to secure the contact points.
  • the tabular Ni-coated copper particle aggregated powder 41 since the tabular copper particles 42 are aggregated, the respective tabular copper particles 42 are aggregated in a three-dimensional shape. It has a structure that simultaneously satisfies a two-dimensional contact effect and a three-dimensional contact effect. Further, the flat Ni-coated copper particle aggregated powder 41 has an average particle size (D50) of 1.0 ⁇ m to 30 ⁇ m, thereby increasing the surface area and ensuring good moldability and sinterability. be able to.
  • D50 average particle size
  • the Ni-coated copper powder having the above-mentioned shape is occupied at a predetermined ratio in the obtained Ni-coated copper powder when observed with an electron microscope, Ni-coated copper of other shapes Even if the powder is mixed, the same effect as the copper powder consisting only of the Ni-coated copper powder can be obtained.
  • the Ni-coated copper powder having the shape described above is 65% by number or more, preferably 80% by number, of the total Ni-coated copper powder.
  • Ni-coated copper powder having other shapes may be included as long as it accounts for 90% by number or more.
  • the flat Ni-coated copper particle aggregated powder 41 according to the fourth embodiment has an average major axis diameter of 0.5 ⁇ m to 5.0 ⁇ m and an average cross-sectional thickness of 0.02 to 1.0 ⁇ m.
  • a plurality of copper particles 42 having a flat plate shape and coated with Ni or Ni alloy are aggregated to form an aggregate.
  • the flat Ni-coated copper particle aggregated powder 41 has a Ni content with respect to 100% of the total mass of the Ni-coated copper powder 41 coated with Ni on the tabular copper particle aggregated powder before being coated with Ni or Ni alloy.
  • the Ni or Ni alloy is coated at a ratio of 1% by mass to 50% by mass, and the thickness of Ni (coating thickness) is 0.1 ⁇ m or less, preferably 0.02 ⁇ m or less. It is covered. From this, the flat-plate Ni coat copper particle aggregated powder 41 becomes a shape which maintained the shape of the flat-plate copper particle aggregated powder before Ni or Ni alloy coat
  • the shape of the tabular copper particle aggregated powder before coating with Ni or Ni alloy and the shape of the tabular Ni-coated copper particle aggregated powder 41 after coating with Ni or Ni alloy are both two-dimensional or It is the shape which the flat plate which is a three-dimensional form aggregated.
  • the content of Ni coated as Ni or Ni alloy in the flat Ni-coated copper particle aggregated powder 41 is 1% by mass to 100% by mass of the Ni-coated copper powder 41 coated with Ni. A range of 50% by mass is preferred.
  • the content of Ni coated as Ni or Ni alloy is preferably as low as possible because the conductivity of Ni itself is lower than that of copper, but if it is too small, a uniform Ni or Ni alloy film can be secured on the copper surface. As a result, copper is oxidized, resulting in a decrease in conductivity. Therefore, the content of Ni coated as Ni or Ni alloy is preferably 1% by mass or more with respect to 100% by mass of the entire Ni-coated copper powder 41 coated with Ni, and is 2% by mass or more. It is more preferable that the content is 5% by mass or more.
  • the content of Ni coated as Ni or Ni alloy increases, it is not preferable from the viewpoint of decreasing the electrical conductivity.
  • the Ni coated copper powder 41 It is preferably 50% by mass or less, more preferably 20% by mass or less, and further preferably 10% by mass or less with respect to 100% of the total mass.
  • the average thickness of Ni or Ni alloy coated on the surface of the flat copper particles is about 0.0003 ⁇ m to 0.1 ⁇ m.
  • the thickness is preferably about 0.005 ⁇ m to 0.02 ⁇ m.
  • the Ni or Ni alloy coating thickness is less than 0.0003 ⁇ m on average, a uniform Ni or Ni alloy coating cannot be secured on the surface of the copper powder, and copper oxidation cannot be suppressed, resulting in a decrease in conductivity.
  • the coating thickness of Ni or Ni alloy exceeds 0.1 ⁇ m on average, it is not preferable from the viewpoint of decreasing the electrical conductivity.
  • the average thickness of the Ni or Ni alloy coated on the surface of the tabular Ni-coated copper particle aggregated powder 41 is about 0.0003 ⁇ m to 0.1 ⁇ m, and the tabular copper before coating the Ni or Ni alloy. It is smaller than the cross-sectional average thickness (0.02 ⁇ m to 0.5 ⁇ m) of the flat copper particles 42 constituting the particle aggregated powder. Therefore, the form of the tabular copper particles is not substantially changed before and after the surface of the tabular copper particle aggregated powder is coated with Ni or Ni alloy.
  • the Ni coated with the tabular copper particles 42 may be a Ni alloy.
  • the element added as the Ni alloy is preferably an element from Group 6 to Group 14 of the periodic table, and particularly one or more selected from zinc, cobalt, tungsten, molybdenum, palladium, platinum, and tin. preferable.
  • electroless plating is used in the step of coating Ni on the flat copper particle agglomerated powder, and hypophosphite and a borohydride compound are used as the reducing agent, the Ni obtained The coatings are Ni—P alloy and Ni—B alloy, respectively.
  • the tabular Ni-coated copper particle aggregated powder 41 according to the fourth embodiment is not particularly limited, but its bulk density (tap density) is in the range of 0.5 g / cm 3 to 5.0 g / cm 3. preferable. If the tap density is less than 0.5 g / cm 3 , there is a possibility that sufficient contact between the Ni-coated copper powders cannot be secured. On the other hand, when the tap density exceeds 5.0 g / cm 3 , the average particle diameter of the Ni-coated copper powder increases, the surface area decreases, and the moldability and sinterability may deteriorate.
  • the BET specific surface area of the tabular Ni-coated copper particles agglomerated powder 41 is not particularly limited, it is preferably in the range of 0.2m 2 /g ⁇ 5.0m 2 / g.
  • the BET specific surface area exceeds 5.0 m 2 / g, there is a possibility that sufficient contact between the Ni-coated copper powders cannot be ensured.
  • the BET specific surface area is less than 0.2 m 2 / g, the average particle diameter of the Ni-coated copper powder is also increased, the surface area is decreased, and the formability and the sinterability may be deteriorated.
  • the BET specific surface area can be measured in accordance with JIS Z8830: 2013.
  • the Ni-coated copper powder according to the fifth embodiment is observed using a scanning electron microscope (SEM), the Ni-coated copper powder has a dendritic shape having a main trunk that grows linearly and a plurality of branches separated from the main trunk.
  • the main trunk and branches are dendritic having a main trunk grown in a dendritic manner and a plurality of branches separated from the main trunk, and copper particles coated with Ni or Ni alloy on the surface are assembled. It is configured.
  • this Ni-coated copper powder is also referred to as “dendritic Ni-coated copper powder”.
  • FIG. 18 is a schematic diagram showing the specific shape of the copper particles whose surface is coated with Ni or Ni alloy, which constitutes the Ni-coated copper powder according to the fifth embodiment. As shown in the schematic diagram of FIG. 18, the copper particles 51 coated with Ni or Ni alloy have a dendritic shape that is a two-dimensional or three-dimensional form.
  • the copper particles 51 coated with Ni or Ni alloy have a shape having a main trunk 52 grown in a dendritic shape and a plurality of branches 53 separated from the main trunk 52.
  • the plate has a flat cross-sectional average thickness of 0.02 ⁇ m to 0.5 ⁇ m.
  • the branch 53 in the copper particle 51 means both a branch 53a branched from the main trunk 52 and a branch 53b further branched from the branch 53a.
  • the Ni-coated copper powder according to the fifth embodiment is a dendritic copper powder (dendritic copper powder) having a main trunk and a plurality of branches, which is configured by aggregating such flat copper particles 51.
  • Ni-coated copper powder with Ni or Ni alloy coated on its surface see SEM images of Ni-coated copper powder in FIGS. 20 to 22
  • dendritic Ni-coated copper composed of the flat copper particles 51 The average particle size (D50) of the powder is 1.0 ⁇ m to 30 ⁇ m.
  • the dendritic Ni-coated copper powder according to the fifth embodiment will be described in detail later, for example, by immersing an anode and a cathode in a sulfuric acid acidic electrolyte solution containing copper ions and flowing a direct current to perform electrolysis It can be produced by depositing dendritic copper powder on the cathode and coating the surface of the obtained dendritic copper powder with Ni or a Ni alloy by an electroless plating method or the like.
  • FIG. 19 is a photograph showing an example of an observation image when the dendritic copper powder before being coated with Ni or Ni alloy is observed by SEM (magnification 10,000 times).
  • 20 is a photographic diagram showing an example of an observation image when the dendritic Ni-coated copper powder obtained by coating the dendritic copper powder of FIG. 19 with Ni or a Ni alloy is observed by SEM (5,000 times magnification). is there.
  • FIG. 21 and FIG. 22 show SEM (FIG. 21: Magnification 10,000 times, FIG. 22: Magnification) of another part of dendritic Ni-coated copper powder in which dendritic copper powder is similarly coated with Ni or Ni alloy. It is a photograph figure which shows an example of an observation image when it observes by 1,000 times.
  • the Ni-coated copper powder exhibits a two-dimensional or three-dimensional dendritic precipitation state having a main trunk and branches branched from the main trunk. Further, the main trunk and the branch are formed in a flat plate shape and have a dendritic shape and are formed by aggregation of copper particles covered with Ni or Ni alloy, and the copper particles 1 are fine on the surface. It has a convex part.
  • the flat copper particles 51 constituting the dendritic Ni-coated copper powder and coated with Ni or Ni alloy having the main trunk 52 and the branches 53 have an average cross-sectional thickness of 0.02 ⁇ m to 0.5 ⁇ m. is there.
  • the contact area becomes large, low resistance, that is, high conductivity can be realized. Thereby, it is more excellent in electroconductivity, can maintain the electroconductivity favorably, and can be used suitably for the use of an electroconductive coating material or an electroconductive paste. Further, since the dendritic Ni-coated copper powder is composed of the flat copper particles 51, it is possible to contribute to thinning of the wiring material and the like.
  • the cross-sectional average thickness of the tabular copper particles 51 coated with Ni or Ni alloy becomes thinner, the number of contacts when the dendritic Ni-coated copper powders contact with each other decreases. If the cross-sectional average thickness of the copper particles 51 is 0.02 ⁇ m or more, a sufficient number of contacts can be ensured, and more preferably 0.2 ⁇ m or more, thereby effectively increasing the number of contacts. .
  • the average particle diameter (D50) is 1.0 ⁇ m to 30 ⁇ m.
  • the average particle diameter can be controlled by changing the electrolysis conditions described later. Further, if necessary, it can be further adjusted to a desired size by adding mechanical pulverization such as a jet mill, a sample mill, a cyclone mill, and a bead mill.
  • an average particle diameter (D50) can be measured by the laser diffraction scattering type particle size distribution measuring method, for example.
  • the average particle size is 1.0 ⁇ m to 30 ⁇ m, the surface area is increased, and good moldability and sinterability can be ensured.
  • the dendritic Ni coat copper powder in addition to being dendritic shape, the dendritic shape which has the main trunk 2 and the branch 3 and the copper particle 51 which has a flat plate shape is comprised, and is comprised. More contact points between the copper powders can be secured by the three-dimensional effect of being dendritic and the effect that the copper particles 1 constituting the dendritic shape are flat.
  • the flat copper particles 51 have fine convex portions on the surface.
  • the average height of the convex portions on the surface is preferably 0.01 ⁇ m to 0.4 ⁇ m.
  • the mechanically flattened copper powder has a smooth and warped surface. Therefore, it becomes difficult to secure the contacts, and when used, the contacts between the metal fillers must be secured by a method of mixing not only the flat copper powder but also the granular copper powder.
  • the flat copper particles 51 constituting the dendritic Ni-coated copper powder according to the fifth embodiment have fine convex portions on the surface, and the average height of the convex portions is preferably
  • the dendritic Ni-coated copper powder has a feature that the contact between the metal fillers can be easily secured as compared with the plate-like copper powder obtained by mechanical processing, by being 0.01 ⁇ m to 0.4 ⁇ m. Have.
  • this dendritic Ni-coated copper powder since there are fine convex portions on the surface of the flat copper particles 51 constituting the dendritic Ni-coated copper powder, when used as a metal filler such as a conductive paste or a resin for electromagnetic wave shielding The contact point can be easily secured by the convex portions on the surface of the flat copper particles 51. Furthermore, this dendritic Ni-coated copper powder is produced by depositing tabular copper particles by direct electrolysis and growing into the shape of dendritic copper powder without performing mechanical processing. Occurrence of oxidation and removal of fatty acids are not necessary, and the electrical conductivity characteristics can be made extremely good.
  • the average height of the fine protrusions on the surface of the flat copper particles 51 is preferably 0.01 ⁇ m to 0.4 ⁇ m.
  • the average height is less than 0.01 ⁇ m, a sufficient effect cannot be obtained as a shape for securing the contacts.
  • the average height exceeds 0.4 ⁇ m, it is used for a conductive paste or the like. In some cases, the filling rate of the metal filler in the paste does not increase, and a satisfactory resistance value may not be obtained.
  • the dendritic Ni-coated copper powder having the above-mentioned shape is occupied at a predetermined ratio in the obtained Ni-coated copper powder when observed with an electron microscope, Ni of other shapes Even if the coated copper powder is mixed, the same effect as that of the copper powder composed only of the dendritic Ni-coated copper powder can be obtained.
  • the dendritic Ni-coated copper powder having the shape described above is 65% by number or more, preferably 80% of the total Ni-coated copper powder. As long as it occupies a ratio of several percent or more, more preferably 90 percent or more, Ni-coated copper powder of other shapes may be included.
  • the dendritic Ni-coated copper powder according to the fifth embodiment is a dendritic shape having a main trunk 52 and a branch 53, and has a plate-like shape with a cross-sectional average thickness of 0.02 ⁇ m to 0.5 ⁇ m.
  • the copper particles 51 are configured in a dendritic shape, and the surfaces of the copper particles 51 are coated with Ni or a Ni alloy.
  • This dendritic Ni-coated copper powder is preferably 1% by mass as Ni content with respect to 100% by mass of the entire Ni-coated copper powder coated with Ni on the dendritic copper powder before coating with Ni or Ni alloy.
  • Ni or Ni alloy is coated at a ratio of ⁇ 50% by mass, and the Ni thickness (coating thickness) is 0.1 ⁇ m or less, preferably 0.02 ⁇ m or less. . From this, the dendritic Ni-coated copper powder has a shape that retains the shape of the dendritic copper powder before being coated with Ni or Ni alloy.
  • the shape of the dendritic copper powder before coating with Ni or Ni alloy and the shape of the dendritic Ni-coated copper powder after coating Ni or Ni alloy on the copper powder are both two-dimensional or three-dimensional. It is a dendritic shape that is a form of
  • the content of Ni coated as Ni or Ni alloy in the dendritic Ni-coated copper powder is 1% by mass to 50% by mass with respect to 100% by mass of the entire Ni-coated copper powder coated with Ni as described above. It is preferable that it is the range of these.
  • the content of Ni coated as Ni or Ni alloy is preferably as low as possible because the conductivity of Ni itself is lower than that of copper, but if it is too small, a uniform Ni or Ni alloy film can be secured on the copper surface. In other words, copper is oxidized to cause a decrease in conductivity.
  • covered as Ni or Ni alloy it is preferable that it is 1 mass% or more with respect to 100 mass of the whole Ni coat
  • the content of Ni coated as Ni or Ni alloy is the Ni coated Ni coating. It is preferable that it is 50 mass% or less with respect to 100 mass of the whole copper powder, It is more preferable that it is 20 mass% or less, It is further more preferable that it is 10 mass% or less.
  • the average thickness of Ni or Ni alloy coated on the surface of the copper particles is about 0.0003 ⁇ m to 0.1 ⁇ m, and 0.005 ⁇ m to 0.00. It is preferably about 02 ⁇ m.
  • the Ni or Ni alloy coating thickness is less than 0.0003 ⁇ m on average, a uniform Ni or Ni alloy coating cannot be secured on the surface of the copper powder, and copper oxidation cannot be suppressed, resulting in a decrease in conductivity. Cause.
  • the coating thickness of Ni or Ni alloy exceeds 0.1 ⁇ m on average, it is not preferable from the viewpoint of decreasing the electrical conductivity.
  • the average thickness of the Ni or Ni alloy coated on the surface of the dendritic Ni-coated copper powder is about 0.0003 ⁇ m to 0.1 ⁇ m, and constitutes the dendritic copper powder before coating the Ni or Ni alloy. This is smaller than the average cross-sectional thickness (0.02 ⁇ m to 0.5 ⁇ m) of the dendritic copper particles 51. Therefore, before and after coating the surface of the dendritic copper powder with Ni or Ni alloy, the form of the dendritic copper powder does not substantially change.
  • the Ni coated with the dendritic copper powder may be a Ni alloy.
  • the element added as the Ni alloy is preferably an element from Group 6 to Group 14 of the periodic table, and particularly one or more selected from zinc, cobalt, tungsten, molybdenum, palladium, platinum, and tin. preferable.
  • the resulting Ni coating is They are Ni-P alloy and Ni-B alloy, respectively.
  • the bulk density of the dendritic Ni-coated copper powder according to the fifth embodiment is not particularly limited, but is preferably in the range of 0.5 g / cm 3 to 5.0 g / cm 3 . If the bulk density is less than 0.5 g / cm 3 , there is a possibility that sufficient contact between the dendritic Ni-coated copper powders cannot be ensured. On the other hand, if the bulk density exceeds 5.0 g / cm 3 , the average particle diameter of the dendritic Ni-coated copper powder also increases, and the surface area may decrease, and the formability and sinterability may deteriorate. .
  • the dendritic Ni-coated copper powder according to the fifth embodiment is not particularly limited, it is preferable the value of the BET specific surface area of 0.2m 2 /g ⁇ 5.0m 2 / g. If the value of the BET specific surface area is less than 0.2 m 2 / g, the copper particles coated with Ni or Ni alloy may not have the desired shape as described above, and high conductivity cannot be obtained. Sometimes. On the other hand, if the value of the BET specific surface area exceeds 5.0 m 2 / g, the Ni or Ni alloy coating on the surface of the dendritic Ni-coated copper powder becomes non-uniform and high conductivity may not be obtained.
  • the copper particles constituting the dendritic Ni-coated copper powder become too fine, and the dendritic Ni-coated copper powder becomes a fine whisker-like state, and the conductivity may decrease.
  • the BET specific surface area can be measured in accordance with JIS Z8830: 2013.
  • Ni-coated copper powder ⁇ 2.
  • Manufacturing method of Ni-coated copper powder >> Next, the manufacturing method of Ni coat copper powder concerning the present invention is explained. Below, the manufacturing method of the copper powder before Ni coating
  • the Ni-coated copper powder according to the first embodiment has a dendritic shape in which copper particles whose surfaces are coated with Ni or a Ni alloy are aggregated and have a main trunk that grows linearly and a plurality of branches that are separated from the main trunk. It is Ni coat copper powder which constituted the shape.
  • the copper particles whose surfaces are coated with Ni or Ni alloy have a flat plate shape with an average cross-sectional thickness of 0.02 ⁇ m to 5.0 ⁇ m determined by SEM observation, and the copper particles are assembled to form a copper particle.
  • the Ni-coated copper powder has an average particle diameter (D50) of 1.0 ⁇ m to 100 ⁇ m, and the maximum height in a direction perpendicular to the flat surface of the copper particles is in the horizontal direction of the flat surface. It is 1/10 or less with respect to the maximum length.
  • D50 average particle diameter
  • the Ni-coated copper powder (dendritic Ni-coated copper powder) according to the first embodiment is coated with Ni or a Ni alloy on the surface of the dendritic copper powder.
  • it can be manufactured by a predetermined electrolytic method using a sulfuric acid acidic solution containing copper ions as an electrolytic solution.
  • a sulfuric acid electrolytic solution containing copper ions is accommodated in an electrolytic cell in which metallic copper is used as an anode (anode) and a stainless steel plate or titanium plate is used as a cathode (cathode). Electrolysis is performed by passing a direct current through the liquid at a predetermined current density. Thereby, a fine dendritic copper powder can be deposited (electrodeposited) on the cathode with energization.
  • a specific additive and a nonionic surfactant are added to the sulfuric acid electrolytic solution containing a water-soluble copper salt serving as a copper ion source to perform electrolysis.
  • a flat dendritic copper powder composed of flat copper particles can be deposited. Further, it is preferable that the electrolytic solution further contains chloride ions.
  • the water-soluble copper salt is a copper ion source that supplies copper ions, and examples thereof include copper sulfate such as copper sulfate pentahydrate and copper nitrate, but are not particularly limited.
  • copper oxide may be dissolved in a sulfuric acid solution to make a sulfuric acid acidic solution.
  • the copper ion concentration in the electrolytic solution can be about 1 g / L to 20 g / L, preferably about 5 g / L to 10 g / L.
  • Sulfuric acid is for making a sulfuric acid electrolyte.
  • concentration of sulfuric acid in the electrolytic solution can be about 20 g / L to 300 g / L, preferably about 50 g / L to 150 g / L, as the free sulfuric acid concentration. Since the sulfuric acid concentration affects the conductivity of the electrolyte, it affects the uniformity of the copper powder obtained on the cathode.
  • additive one kind of compound selected from the group consisting of a compound having a phenazine structure, a compound having an azobenzene structure, and a compound having a phenazine structure and an azobenzene structure, or this group Two or more compounds selected from the group consisting of different molecular structures are used in combination.
  • a nonionic surfactant described later By adding such an additive to the electrolytic solution together with a nonionic surfactant described later and performing electrolysis, copper powder that suppresses growth in a direction perpendicular to the flat surface, that is, copper having a smooth surface Powder can be produced.
  • the concentration in the electrolyte of one or more additives selected from the group consisting of a compound having a phenazine structure, a compound having an azobenzene structure, and a compound having a phenazine structure and an azobenzene structure may be added. It is preferable that the total amount is about 1 mg / L to 1000 mg / L.
  • a compound having a phenazine structure can be represented by the following formula (1).
  • one or more compounds having a phenazine structure represented by the following formula (1) can be contained as an additive.
  • R 1 , R 2 , R 3 , R 4 , R 6 , R 7 , R 8 , R 9 are each independently hydrogen, halogen, amino, OH, ⁇ O, It is a group selected from the group consisting of CN, SCN, SH, COOH, COO salt, COO ester, SO 3 H, SO 3 salt, SO 3 ester, benzenesulfonic acid, and C1-C8 alkyl.
  • R 5 is hydrogen, halogen, amino, OH, —O, CN, SCN, SH, COOH, COO salt, COO ester, SO 3 H, SO 3 salt, SO 3 ester, benzenesulfonic acid, lower alkyl, And a group selected from the group consisting of aryl.
  • a ⁇ is a halide anion.
  • examples of the compound having a phenazine structure include 5-methylphenazine-5-ium, eruginosine B, aeruginosine A, 5-ethylphenazine-5-ium, 3,7-diamino-5-phenylphenazine-5.
  • the compound having an azobenzene structure can be represented by the following formula (2).
  • the 1 type (s) or 2 or more types of the compound which has an azobenzene structure represented by following formula (2) can be contained as an additive.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 are each independently hydrogen, halogen, amino A group selected from the group consisting of OH, ⁇ O, CN, SCN, SH, COOH, COO salt, COO ester, SO 3 H, SO 3 salt, SO 3 ester, benzenesulfonic acid, lower alkyl, and aryl. is there.
  • examples of the compound having an azobenzene structure include azobenzene, 4-aminoazobenzene-4'-sulfonic acid, 4- (dimethylamino) -4 '-(trifluoromethyl) azobenzene, C.I. I.
  • a compound having a phenazine structure and an azobenzene structure can be represented by the following formula (3).
  • one or more compounds having a phenazine structure and an azobenzene structure represented by the following formula (3) can be contained as an additive.
  • R 1 , R 2 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 are each separately , Hydrogen, halogen, amino, OH, ⁇ O, CN, SCN, SH, COOH, COO salt, COO ester, SO 3 H, SO 3 salt, SO 3 ester, benzenesulfonic acid, and C1-C8 alkyl
  • R 3 is hydrogen, halogen, amino, OH, ⁇ O, CN, SCN, SH, COOH, COO salt, COO ester, SO 3 H, SO 3 salt, SO 3 ester, benzenesulfonic acid, lower alkyl, And a group selected from the group consisting of aryl.
  • a ⁇ is a halide anion.
  • a compound having a phenazine structure and an azobenzene structure for example, 3- (diethylamino) -7-[(4-hydroxyphenyl) azo] -2,8-dimethyl-5-phenylphenazine-5-ium , 3-[[4- (dimethylamino) phenyl] azo] -7- (diethylamino) -5-phenylphenazine-5-ium, Janus Green B, 3-amino-7-[(2,4-diaminophenyl) Azo] -2,8-dimethyl-5-phenylphenazine-5-ium, 2,8-dimethyl-3-amino-5-phenyl-7- (2-hydroxy-1-naphthylazo) phenazine-5-ium, 3 -[[4- (dimethylamino) phenyl] azo] -7- (dimethylamino) -5-phenylphenazine-5-ium, 3-
  • a nonionic surfactant is contained as the surfactant.
  • nonionic surfactant one kind can be used alone, or two or more kinds can be used in combination, and the total concentration in the electrolytic solution can be about 1 mg / L to 10,000 mg / L.
  • the number average molecular weight of the nonionic surfactant is not particularly limited, but is preferably from 100 to 200,000, more preferably from 200 to 15,000, and preferably from 1,000 to 10,000. Further preferred. When the surfactant has a number average molecular weight of less than 100, fine electrolytic copper powder that does not exhibit a dendritic shape may be deposited. On the other hand, when the surfactant has a number average molecular weight exceeding 200,000, electrolytic copper powder having a large average particle size is precipitated, and only dendritic copper powder having a specific surface area of less than 0.2 m 2 / g is obtained. There is no possibility.
  • the number average molecular weight is a molecular weight in terms of polystyrene determined by gel permeation chromatography (GPC) using tetrahydrofuran (THF) as a solvent.
  • nonionic surfactant is not particularly limited, but is preferably a surfactant having an ether group, for example, polyethylene glycol, polypropylene glycol, polyethyleneimine, pluronic surfactant, tetronic surfactant. , Polyoxyethylene glycol / glycerin ether, polyoxyethylene glycol / dialkyl ether, polyoxyethylene polyoxypropylene glycol / alkyl ether, aromatic alcohol alkoxylate, polymer compound represented by the following formula (x), and the like. These nonionic surfactants can be used alone or in combination of two or more.
  • polyethylene glycol for example, one represented by the following formula (i) can be used.
  • n1 represents an integer of 1 to 120.
  • polypropylene glycol for example, one represented by the following formula (ii) can be used.
  • n1 represents an integer of 1 to 90.
  • polyethyleneimine what is represented, for example by a following formula (iii) can be used.
  • n1 represents an integer of 1 to 120.
  • pluronic surfactant for example, one represented by the following formula (iv) can be used.
  • n2 and l2 represent an integer of 1 to 30, and m2 represents an integer of 10 to 100.
  • tetronic surfactant for example, one represented by the following formula (v) can be used.
  • n3 represents an integer of 1 to 200, and m3 represents an integer of 1 to 40.
  • polyoxyethylene glycol glyceryl ether for example, those represented by the following formula (vi) can be used.
  • n4, m4, and l4 each represent an integer of 1 to 200.
  • polyoxyethylene glycol dialkyl ether for example, those represented by the following formula (vii) can be used.
  • R 1 and R 2 represent a hydrogen atom or a lower alkyl group having 1 to 5 carbon atoms, and n5 represents an integer of 2 to 200.
  • polyoxyethylene polyoxypropylene glycol / alkyl ether for example, those represented by the following formula (viii) can be used.
  • R 3 represents a hydrogen atom or a lower alkyl group having 1 to 5 carbon atoms, and m6 or n6 represents an integer of 2 to 100.
  • aromatic alcohol alkoxylate what is represented, for example by a following formula (ix) can be used.
  • n7 represents an integer of 1 to 120.
  • nonionic surfactant a polymer compound represented by the following formula (x) can be used.
  • R 1 has a higher alcohol residue having 5 to 30 carbon atoms, an alkylphenol residue having an alkyl group having 1 to 30 carbon atoms, or an alkyl group having 1 to 30 carbon atoms.
  • a residue of alkyl naphthol, a residue of fatty acid amide having 3 to 25 carbon atoms, a residue of alkyl amine having 2 to 5 carbon atoms, or a hydroxyl group, and R 2 and R 3 are each a hydrogen atom or a methyl group.
  • M and n are integers of 1 to 100.
  • the electrolyte solution can contain chloride ions.
  • Chloride ions contribute to the shape control of the precipitated copper powder together with the above-described additives and nonionic surfactants.
  • chloride ions in the electrolytic solution, it is possible to more effectively produce a copper powder having a smooth surface that suppresses growth in a direction perpendicular to the flat surface. .
  • chloride ions compounds that supply chloride ions such as hydrochloric acid and sodium chloride (chloride ion source) can be added to the electrolyte solution.
  • the chloride ion concentration in the electrolytic solution is not particularly limited, but can be about 1 mg / L to 500 mg / L.
  • electrolysis is performed using the electrolytic solution having the composition as described above, whereby copper powder is deposited on the cathode to produce dendritic copper powder.
  • the electrolysis method a known method can be used.
  • the current density is preferably in the range of 5 A / dm 2 to 30 A / dm 2 in electrolysis using a sulfuric acid electrolytic solution, and the electrolytic solution is energized while stirring.
  • the liquid temperature (bath temperature) of the electrolytic solution can be, for example, about 20 ° C. to 60 ° C.
  • Ni Coating Method Production of Ni Coated Copper Powder
  • the Ni-coated copper powder according to the first embodiment is formed on the surface of the dendritic copper powder prepared by the above-described electrolytic method using, for example, Ni or a Ni plating solution (electroless Ni plating solution) by an electroless plating method. It can be manufactured by coating a Ni alloy.
  • the dendritic copper powder is dispersed in the cleaning liquid and washed while stirring. It can be carried out.
  • the washing treatment is preferably performed in an acidic solution. After washing, filtration, separation and washing with water of the dendritic copper powder are repeated as appropriate to obtain a water slurry in which the dendritic copper powder is dispersed in water.
  • What is necessary is just to use a well-known method about filtration, isolation
  • the electroless Ni plating solution is added to the copper slurry obtained after washing the dendritic copper powder, or the copper slurry is added to the electroless Ni plating solution.
  • the surface of the dendritic copper powder can be coated more uniformly with Ni or Ni alloy.
  • the electroless Ni plating solution is not particularly limited.
  • the electroless Ni plating solution performs Ni coating by reducing Ni ions in the plating solution with a reducing agent.
  • the reducing agent include hypophosphites, borohydrides, and hydrazine compounds. It is done.
  • hypophosphites include hypophosphites such as potassium hypophosphite and sodium hypophosphite, and phosphites such as potassium phosphite and sodium phosphite. Can be mentioned.
  • Examples of the borohydride compound include dimethylhexaborane, dimethylamineborane (DMAB), diethylamineborane, morpholineborane, pyridineamineborane, piperidineborane, ethylenediamineborane, ethylenediaminebisborane, t-butylamineborane, imidazoleborane, methoxy
  • Examples include ethylamine borane and sodium borohydride.
  • hydrazine compound hydrazine and hydrates thereof
  • hydrazine salts such as hydrazine sulfate and hydrazine hydrochloride
  • hydrazine derivatives such as pyrazoles, triazoles and hydrazides, and the like
  • pyrazoles such as 3,5-dimethylpyrazole and 3-methyl-5-pyrazolone can be used in addition to pyrazole.
  • triazoles 4-amino-1,2,4-triazole, 1,2,3-triazole, and the like can be used.
  • hydrazides As hydrazides, adipic hydrazide, maleic hydrazide, carbohydrazide, and the like can be used.
  • hydrazines As hydrazines, hydrazine sulfate, hydrazine hydrochloride, adipic hydrazide, maleic hydrazide, carbohydrazide, and the like can be used.
  • Nickel sources include nickel salts such as nickel sulfate, nickel chloride, nickel acetate and nickel sulfamate.
  • the plating solution can contain a complexing agent, a pH buffering agent, and a pH adjusting agent.
  • a known complexing agent can be used as the complexing agent.
  • amino acids such as glycine, citrates such as sodium citrate and ammonium citrate, lactic acid, oxalic acid, malonic acid, malic acid, tartaric acid, aspartic acid, glutamic acid, gluconic acid, sodium salts or ammonium salts, ammonia, etc. Is mentioned.
  • a known complexing agent can be used as the pH buffering agent.
  • ammonium chloride, ammonium sulfate, boric acid, sodium acetate and the like can be mentioned.
  • a known complexing agent can be used as the pH adjuster.
  • an acid or alkali compound can be used, and examples thereof include alkali metal hydroxides such as ammonia and sodium hydroxide, nickel carbonate, sulfuric acid, and hydrochloric acid.
  • alkali metal hydroxides such as ammonia and sodium hydroxide, nickel carbonate, sulfuric acid, and hydrochloric acid.
  • ammonia it can supply as ammonia water.
  • an antifoaming agent or a dispersing agent may be used.
  • a surfactant can be contained.
  • the surfactant any of nonionic, cationic, anionic and amphoteric surfactants can be used, and one kind can be used alone, or two or more kinds can be used in combination.
  • the Ni coating deposited differs depending on the hypophosphorous acid bath salt, borohydride compound, and hydrazine compound which are reducing agents in the electroless Ni plating solution.
  • hypophosphorous acid bath salt is used as the reducing agent
  • a Ni—P alloy film is formed because phosphorus is contained in the film during the reduction reaction.
  • a borohydride compound is used as the reducing agent
  • since the boron is contained in the coating during the reduction reaction a Ni—B alloy coating is formed.
  • a hydrazine compound is used as the reducing agent, a high-purity Ni film with few impurities is formed.
  • the Ni film to be formed contain other elements, that is, by forming a “Ni alloy” film on the surface of the copper powder, the Ni-coated copper powder can be used for heat resistance.
  • a conductive paste having excellent corrosion resistance can be realized.
  • elements of Groups 6 to 14 of the periodic table can be mentioned, and among them, zinc, palladium.
  • examples include cobalt, rhodium, iron, platinum, iridium, tungsten, molybdenum, chromium, and tin.
  • one or more elements selected from zinc, cobalt, tungsten, molybdenum, palladium, platinum, and tin are preferable, and a Ni alloy film having excellent conductivity is formed by using an Ni alloy containing these elements. be able to.
  • the content of the elements constituting these Ni alloys is preferably 0.1% by mass to 20% by mass with respect to 100% by mass of the Ni alloy, from the viewpoint of conductivity and dispersibility, and preferably 1% by mass to 15%. More preferably, it is more preferably 2% by mass to 10% by mass.
  • the content of phosphorus and boron is also 0.1% by mass with respect to 100% by mass of the Ni alloy film. It is preferably ⁇ 20% by mass, more preferably 1% by mass to 15% by mass, and further preferably 2% by mass to 10% by mass.
  • the content of elements other than Ni is too large, the conductivity is lowered, so that the content is preferably 20% by mass or less. On the other hand, if the content is less than 0.1% by mass, the effect of improving the heat resistance and corrosion resistance cannot be sufficiently obtained even if these elements are contained together with Ni to form a Ni alloy.
  • content of the element in Ni alloy can be measured by converting content of each element which comprises Ni coat
  • each element in the Ni alloy coating can be quantitatively analyzed from the cross section of the Ni-coated copper powder or the like by energy dispersive X-ray spectroscopy (EDX) method or Auger electron spectroscopy (AES) method.
  • EDX energy dispersive X-ray spectroscopy
  • AES Auger electron spectroscopy
  • ions such as cobalt, zinc, tungsten, molybdenum, palladium, platinum, and tin are added to the above-described electroless Ni plating solution, and electroless plating using the plating solution is performed.
  • the ion source such as cobalt, zinc, tungsten, molybdenum, palladium, platinum, and tin is not particularly limited as long as it is a soluble metal salt.
  • the cobalt ion source can be used without particular limitation as long as it is soluble in a plating solution as a cobalt compound and can obtain an aqueous solution having a predetermined concentration.
  • examples thereof include cobalt sulfate, cobalt chloride, and cobalt sulfamate. These cobalt compounds can be used individually by 1 type or in mixture of 2 or more types.
  • the zinc ion source is not particularly limited as long as it is soluble in the plating solution as a zinc compound and can obtain an aqueous solution having a predetermined concentration.
  • zinc chloride, zinc sulfamate, zinc sulfate, zinc acetate and the like can be mentioned. These zinc compounds can be used singly or in combination of two or more.
  • the tungsten ion source is not particularly limited as long as it is soluble in the plating solution as a tungsten compound and can obtain an aqueous solution having a predetermined concentration.
  • Examples thereof include sodium tungstate, potassium tungstate, and ammonium tungstate. These tungsten compounds can be used singly or in combination of two or more.
  • the molybdenum ion source is not particularly limited as long as it is soluble in the plating solution as a molybdenum compound and can obtain an aqueous solution having a predetermined concentration.
  • examples thereof include molybdenum trioxide, sodium molybdate, diammonium molybdate, calcium molybdate, molybdic acid, phosphomolybdic acid, and molybdate gluconic acid complex. These molybdenum compounds can be used singly or in combination of two or more.
  • the palladium ion source is not particularly limited as long as it is soluble in a plating solution as a palladium compound and can obtain an aqueous solution having a predetermined concentration.
  • water-soluble palladium compounds such as palladium sulfate, palladium chloride, palladium acetate, dichlorodiethine rediamine palladium, and tetraammine palladium dichloride can be used.
  • a so-called palladium solution in which palladium is made into a solution can also be used.
  • a dichlorodiethylenediamine palladium solution or a tetraammine palladium dichloride solution can be used as the palladium solution.
  • These palladium compounds can be used individually by 1 type or in mixture of 2 or more types.
  • the platinum ion source is not particularly limited as long as it is soluble in a plating solution as a platinum compound and can obtain an aqueous solution having a predetermined concentration.
  • a platinum compound can be used individually by 1 type or in mixture of 2 or more types.
  • the tin ion source is not particularly limited as long as it is soluble in a plating solution as a tin compound and can obtain an aqueous solution having a predetermined concentration.
  • tin carboxylates such as stannic oxalate, tin methanesulfonate, tin 1-ethanesulfonate, tin 2-ethanesulfonate, tin 1-propanesulfonate, tin 3-propanesulfonate Alkane sulfonate, tin methanol sulfonate, tin hydroxyethane-1-sulfonate, tin 1-hydroxypropane-1-sulf
  • the method for forming the Ni alloy film is not limited to the above-described electroless plating method.
  • an element other than Ni constituting the Ni alloy is included in the dendritic copper powder before coating with Ni, and after forming a film made only of Ni (Ni film), it is added to the copper powder in advance.
  • a Ni alloy film can also be formed by diffusing the elements previously deposited into the Ni film.
  • the Ni-coated copper powder according to the second embodiment is a Ni-coated copper powder in which copper particles whose surfaces are coated with Ni or Ni alloy are assembled to form a dendritic shape having a plurality of branches.
  • the copper particles whose surfaces are coated with Ni or Ni alloy have an elliptical size with a minor axis average diameter of 0.2 ⁇ m to 0.5 ⁇ m and a major axis average diameter of 0.5 ⁇ m to 2.0 ⁇ m.
  • the Ni-coated copper powder which is a body and is constituted by aggregating the copper particles, has an average particle diameter (D50) of 5.0 to 20 ⁇ m. Further, the average thickness of the branch portions constituting the dendritic shape is preferably 0.5 ⁇ m to 2.0 ⁇ m.
  • the Ni-coated copper powder (dendritic Ni-coated copper powder) according to the second embodiment is obtained by coating the surface of the dendritic copper powder with Ni or a Ni alloy.
  • it can be manufactured by a predetermined electrolytic method using a sulfuric acid acidic solution containing copper ions as an electrolytic solution.
  • a sulfuric acid-containing electrolytic solution containing copper ions is contained in an electrolytic cell in which metallic copper is used as an anode and a stainless steel plate or a titanium plate is used as a cathode, as in the electrolytic treatment in the first embodiment. Then, electrolytic treatment is performed by passing a direct current through the electrolytic solution at a predetermined current density. Thereby, a dendritic copper powder can be deposited (electrodeposition) on a cathode with electricity supply.
  • a sulfuric acid acidic electrolytic solution containing a water-soluble copper salt serving as a copper ion source is electrolyzed by adding a polyether compound as an additive.
  • the ellipsoidal copper particles gathered into a dendritic shape by aggregation only by electrolysis. It can be deposited on the cathode surface.
  • the electrolytic solution for example, an electrolytic solution containing a water-soluble copper salt (copper ion), sulfuric acid, and a polyether compound is used. Further, it is preferable that the electrolytic solution further contains chloride ions.
  • the water-soluble copper salt and sulfuric acid contained in the electrolytic solution are the same as those in the manufacturing method according to the first embodiment, and detailed description thereof is omitted.
  • a polyether compound is used as an additive in the electrolytic solution.
  • This polyether compound together with chloride ions described later, contributes to shape control of the deposited copper powder, and the copper powder deposited on the cathode is an ellipsoidal copper having a predetermined minor axis average diameter and major axis average diameter.
  • a dendritic copper powder in which particles are aggregated into a dendritic shape can be obtained.
  • the polyether compound is not particularly limited.
  • examples thereof include polymer compounds such as glycol dialkyl ether, polyoxyethylene polyoxypropylene glycol alkyl ether, and aromatic alcohol alkoxylate.
  • the number average molecular weight of the polyether compound is not particularly limited, but is preferably 100 to 200,000, more preferably 200 to 15,000, and 1,000 to 10,000. Is more preferable. If the number average molecular weight is less than 100, fine electrolytic copper powder that does not have a dendritic shape may be deposited. On the other hand, when the number average molecular weight exceeds 200,000, electrolytic copper powder having a large average particle size is precipitated, and only dendritic copper powder having a specific surface area of less than 0.6 m 2 / g may be obtained. .
  • the number average molecular weight is a molecular weight in terms of polystyrene determined by gel permeation chromatography (GPC) using tetrahydrofuran (THF) as a solvent.
  • polyether compound you may add individually by 1 type and may add it in combination of 2 or more types. Further, the addition amount of the polyether compound is preferably such that the concentration in the electrolytic solution is in the range of about 0.1 mg / L to 5,000 mg / L.
  • chloride ions compounds that supply chloride ions such as hydrochloric acid and sodium chloride (chloride ion source) can be added to the electrolyte solution.
  • chloride ion source compounds that supply chloride ions such as hydrochloric acid and sodium chloride
  • the chloride ion concentration in the electrolytic solution can be about 1 mg / L to 1000 mg / L, preferably about 10 mg / L to 800 mg / L, more preferably about 20 mg / L to 500 mg / L.
  • electrolysis is performed using the electrolytic solution having the composition as described above, whereby copper powder is deposited on the cathode to produce dendritic copper powder.
  • the electrolysis method a known method can be used.
  • the current density is preferably in the range of 5 A / dm 2 to 30 A / dm 2 in electrolysis using a sulfuric acid electrolytic solution, and the electrolytic solution is energized while stirring.
  • the liquid temperature (bath temperature) of the electrolytic solution can be, for example, about 20 ° C. to 60 ° C.
  • Ni Coating Method Production of Ni Coated Copper Powder
  • Ni plating solution electroless Ni plating solution
  • electroless plating method on the surface of the dendritic copper powder produced by the above-described electrolysis method. It can be manufactured by coating a Ni alloy.
  • the specific electroless plating method, the composition of the electroless Ni plating solution (components in the plating solution), and pretreatment such as cleaning treatment before electroless plating are performed in the first embodiment.
  • the method is the same as that of the method, and detailed description is omitted.
  • Ni film it is preferable that other elements are contained in the Ni film to be formed, similarly to the formation of the Ni film in the first embodiment.
  • a Ni alloy film By forming a Ni alloy film on the surface of the copper powder, it is possible to realize a conductive paste having excellent heat resistance and corrosion resistance using the Ni-coated copper powder.
  • elements of Groups 6 to 14 of the periodic table can be mentioned, and among them, zinc, palladium.
  • examples include cobalt, rhodium, iron, platinum, iridium, tungsten, molybdenum, chromium, and tin.
  • one or more elements selected from zinc, cobalt, tungsten, molybdenum, palladium, platinum, and tin are preferable, and a Ni alloy film having excellent conductivity is formed by using an Ni alloy containing these elements. be able to.
  • the formation method of the Ni alloy film, the content of elements other than Ni in the Ni alloy, the element source of the elements other than Ni, and the like are the same as the aspects of the manufacturing method in the first embodiment. The detailed explanation is omitted.
  • the Ni-coated copper powder according to the third embodiment has a dendritic shape in which copper particles whose surfaces are coated with Ni or a Ni alloy are aggregated and have a main trunk that grows linearly and a plurality of branches separated from the main trunk. It is Ni coat copper powder which constituted the shape.
  • the copper particles whose surfaces are coated with Ni or Ni alloy are in the form of a flat plate having a cross-sectional average thickness of 0.2 ⁇ m to 5.0 ⁇ m, and the Ni coated copper powder formed by assembling the copper particles is The average particle diameter (D50) is 1.0 ⁇ m to 100 ⁇ m.
  • the Ni-coated copper powder (dendritic Ni-coated copper powder) according to the third embodiment is coated with Ni or a Ni alloy on the surface of the dendritic copper powder.
  • it can be manufactured by a predetermined electrolytic method using a sulfuric acid acidic solution containing copper ions as an electrolytic solution.
  • a sulfuric acid-containing electrolytic solution containing copper ions is contained in an electrolytic cell in which metallic copper is used as an anode and a stainless steel plate or a titanium plate is used as a cathode, as in the electrolytic treatment in the first embodiment. Then, electrolytic treatment is performed by passing a direct current through the electrolytic solution at a predetermined current density. Thereby, a dendritic copper powder can be deposited (electrodeposition) on a cathode with electricity supply.
  • an amine compound is added as an additive to a sulfuric acid electrolytic solution containing a water-soluble copper salt serving as a copper ion source, and thus electrolysis is obtained.
  • the copper powder in the form of particles is formed by dendritic copper powder that is formed by aggregation of flat copper particles only by electrolysis without mechanical deformation using a medium such as a ball. Can be deposited.
  • the electrolytic solution for example, an electrolytic solution containing a water-soluble copper salt (copper ion), sulfuric acid, and an amine compound is used. Further, it is preferable that the electrolytic solution further contains chloride ions.
  • the water-soluble copper salt and sulfuric acid contained in the electrolytic solution are the same as those in the manufacturing method according to the first embodiment, and detailed description thereof is omitted.
  • an amine compound can be used as an additive in the electrolytic solution.
  • This amine compound contributes to shape control of the copper powder deposited together with chloride ions to be described later, and the copper powder deposited on the cathode surface is composed of flat copper particles having a predetermined cross-sectional average thickness. And a dendritic copper powder having a branch branched from its main trunk.
  • the amine compound one kind may be added alone, or two or more kinds may be added in combination.
  • the amount of the amine compound added is preferably an amount such that the concentration in the electrolytic solution is in the range of 0.1 mg / L to 500 mg / L, and an amount in the range of 1 mg / L to 400 mg / L. More preferably.
  • the amine compound is not particularly limited, but a compound having a phenazine structure that can be represented by the following formula (1) can be used. More preferably, for example, safranine (3,7-diamino-2,8-dimethyl-5-phenyl-5-phenazinium chloride, C 20 H 19 N 4 Cl, CAS number: 477-73-64) is used. Can do.
  • R 1 , R 2 , R 3 , R 4 , R 6 , R 7 , R 8 , R 9 are each independently hydrogen, halogen, amino, OH, ⁇ O, It is a group selected from the group consisting of CN, SCN, SH, COOH, COO salt, COO ester, SO 3 H, SO 3 salt, SO 3 ester, benzenesulfonic acid, and C1-C8 alkyl.
  • R 5 is hydrogen, halogen, amino, OH, —O, CN, SCN, SH, COOH, COO salt, COO ester, SO 3 H, SO 3 salt, SO 3 ester, benzenesulfonic acid, lower alkyl, And a group selected from the group consisting of aryl.
  • a ⁇ is a halide anion.
  • chloride ions compounds that supply chloride ions such as hydrochloric acid and sodium chloride (chloride ion source) can be added to the electrolyte solution.
  • chloride ion source compounds that supply chloride ions such as hydrochloric acid and sodium chloride
  • the chloride ion concentration in the electrolytic solution can be about 1 mg / L to 1000 mg / L, preferably about 5 mg / L to 800 mg / L, more preferably about 10 mg / L to 500 mg / L.
  • electrolysis is performed using the electrolytic solution having the composition as described above, whereby copper powder is deposited on the cathode to produce dendritic copper powder.
  • the electrolysis method a known method can be used.
  • the current density is preferably in the range of 5 A / dm 2 to 30 A / dm 2 in electrolysis using a sulfuric acid electrolytic solution, and the electrolytic solution is energized while stirring.
  • the liquid temperature (bath temperature) of the electrolytic solution can be, for example, about 20 ° C. to 60 ° C.
  • Ni Coating Method Production of Ni Coated Copper Powder
  • the Ni-coated copper powder according to the third embodiment is obtained by using Ni plating solution (electroless Ni plating solution) by an electroless plating method on the surface of the dendritic copper powder produced by the above-described electrolysis method. It can be manufactured by coating a Ni alloy.
  • the specific electroless plating method, the composition of the electroless Ni plating solution (components in the plating solution), and pretreatment such as cleaning treatment before electroless plating are performed in the first embodiment.
  • the method is the same as that of the method, and detailed description is omitted.
  • Ni film it is preferable that other elements are contained in the Ni film to be formed, similarly to the formation of the Ni film in the first embodiment.
  • a Ni alloy film By forming a Ni alloy film on the surface of the copper powder, it is possible to realize a conductive paste having excellent heat resistance and corrosion resistance using the Ni-coated copper powder.
  • elements of Groups 6 to 14 of the periodic table can be mentioned, and among them, zinc, palladium.
  • examples include cobalt, rhodium, iron, platinum, iridium, tungsten, molybdenum, chromium, and tin.
  • one or more elements selected from zinc, cobalt, tungsten, molybdenum, palladium, platinum, and tin are preferable, and a Ni alloy film having excellent conductivity is formed by using an Ni alloy containing these elements. be able to.
  • the formation method of the Ni alloy film, the content of elements other than Ni in the Ni alloy, the element source of the elements other than Ni, and the like are the same as the aspects of the manufacturing method in the first embodiment. The detailed explanation is omitted.
  • the Ni-coated copper powder according to the fourth embodiment is a Ni-coated copper powder in which a plurality of piece-like copper particles whose surfaces are coated with Ni or a Ni alloy are aggregated to form an aggregate.
  • the copper particles coated with Ni or Ni alloy have a flat plate shape with an average major axis diameter determined by SEM observation of 0.5 ⁇ m to 5.0 ⁇ m and an average cross-sectional thickness of 0.02 ⁇ m to 1.0 ⁇ m.
  • the Ni-coated copper powder composed of the copper particles has an average particle diameter (D50) of 1.0 ⁇ m to 30 ⁇ m.
  • the Ni-coated copper powder (flat Ni-coated copper particle aggregated powder) according to the fourth embodiment is obtained by coating the surface of the tabular copper particle aggregated powder with Ni or a Ni alloy.
  • the copper particle agglomerated powder can be produced, for example, by a predetermined electrolytic method using a sulfuric acid acidic solution containing copper ions as an electrolytic solution.
  • a sulfuric acid-containing electrolytic solution containing copper ions is contained in an electrolytic cell in which metallic copper is used as an anode and a stainless steel plate or a titanium plate is used as a cathode, as in the electrolytic treatment in the first embodiment. Then, electrolytic treatment is performed by passing a direct current through the electrolytic solution at a predetermined current density. Thereby, flat copper particle aggregation copper powder can be deposited (electrodeposition) on a cathode with electricity supply.
  • an amine compound or a nonionic surfactant is added as an additive to the sulfuric acid acidic electrolyte solution containing a water-soluble copper salt serving as a copper ion source.
  • the granular copper powder obtained by electrolysis is not subjected to mechanical deformation processing using a medium such as a ball, and the tabular copper particle aggregated powder in which tabular copper particles are aggregated is obtained only by electrolysis. It can be deposited on the surface.
  • the electrolytic solution for example, a material containing a water-soluble copper salt (copper ion), sulfuric acid, and an additive such as an amine compound or a nonionic surfactant is used. Further, it is preferable that the electrolytic solution further contains chloride ions.
  • the water-soluble copper salt and sulfuric acid contained in the electrolytic solution are the same as those in the manufacturing method according to the first embodiment, and detailed description thereof is omitted.
  • an amine compound or a nonionic surfactant is used as an additive in the electrolytic solution.
  • the amine compound added as an additive contributes to the shape control of the copper powder deposited together with the chloride ions and nonionic surfactants described later, and the copper powder deposited on the cathode has a flat cross-sectional shape having a predetermined average thickness. It can be set as the tabular copper particle aggregation powder comprised from a copper particle.
  • the amine compound is not particularly limited, and for example, Janus Green B (C 30 H 31 N 6 Cl, CAS number: 2869-83-2) can be used.
  • the amine compound one kind may be added alone, or two or more kinds may be added in combination. Further, the addition amount of the amine compound is preferably an amount that is in the range of about 0.1 mg / L to 500 mg / L in terms of concentration in the electrolytic solution.
  • the nonionic surfactant is not particularly limited, but those having an ether group are preferred. Specific examples include polyethylene glycol, polypropylene glycol, polyethyleneimine, pluronic surfactant, tetronic surfactant, polyoxyethylene glycol / glyceryl ether, polyoxyethylene glycol / dialkyl ether, polyoxyethylene polyoxypropylene glycol. -Alkyl ether, aromatic alcohol alkoxylate, the compound represented by following formula (x), etc. are mentioned.
  • R 1 has a higher alcohol residue having 5 to 30 carbon atoms, an alkylphenol residue having an alkyl group having 1 to 30 carbon atoms, or an alkyl group having 1 to 30 carbon atoms.
  • a residue of an alkyl naphthol, a residue of a fatty acid amide having 3 to 25 carbon atoms, a residue of an alkyl amine having 2 to 5 carbon atoms or a hydroxyl group, R 2 and R 3 represent a hydrogen atom or a methyl group, m And n represents an integer of 1 to 100.
  • the number average molecular weight of the nonionic surfactant is not particularly limited, but is preferably 100 to 200,000, more preferably 200 to 15,000, and further preferably 1,000 to 10,000. preferable.
  • the number average molecular weight is a molecular weight in terms of polystyrene determined by gel permeation chromatography (GPC) using tetrahydrofuran (THF) as a solvent.
  • nonionic surfactants may be added singly or in combination of two or more.
  • the amount of the nonionic surfactant added is not particularly limited, but is preferably about 200 mg / L to 5000 mg / L, more preferably about 500 mg / L to 2000 mg / L in terms of the concentration in the electrolytic solution. preferable.
  • chloride ions compounds that supply chloride ions such as hydrochloric acid and sodium chloride (chloride ion source) can be added to the electrolyte solution.
  • Chloride ions contribute to shape control of the deposited copper powder together with the above-described amine compound and nonionic surfactant additives.
  • the chloride ion concentration in the electrolytic solution is not particularly limited, but is preferably about 200 mg / L to 1000 mg / L, and more preferably about 250 mg / L to 800 mg / L.
  • the electrolysis method for example, by performing electrolysis using the electrolytic solution having the above-described composition, copper powder is deposited on the cathode to produce a tabular copper particle aggregated powder.
  • the electrolysis method a known method can be used.
  • the current density is preferably in the range of 5 A / dm 2 to 40 A / dm 2 when electrolysis is performed using a sulfuric acid electrolyte, and the electrolyte is energized while stirring.
  • the liquid temperature (bath temperature) of the electrolytic solution can be, for example, about 20 ° C. to 60 ° C.
  • Ni Coating Method Production of Ni Coated Copper Powder
  • the Ni-coated copper particles according to the fourth embodiment are obtained by using, for example, a Ni plating solution (electroless Ni plating solution) by an electroless plating method on the surface of the tabular copper particle aggregate powder produced by the above-described electrolytic method. It can be produced by coating Ni or Ni alloy.
  • the specific electroless plating method, the composition of the electroless Ni plating solution (components in the plating solution), and pretreatment such as cleaning treatment before electroless plating are performed in the first embodiment.
  • the method is the same as that of the method, and detailed description is omitted.
  • Ni film it is preferable that other elements are contained in the Ni film to be formed, similarly to the formation of the Ni film in the first embodiment.
  • a Ni alloy film By forming a Ni alloy film on the surface of the copper powder, it is possible to realize a conductive paste having excellent heat resistance and corrosion resistance using the Ni-coated copper powder.
  • elements of Groups 6 to 14 of the periodic table can be mentioned, and among them, zinc, palladium.
  • examples include cobalt, rhodium, iron, platinum, iridium, tungsten, molybdenum, chromium, and tin.
  • one or more elements selected from zinc, cobalt, tungsten, molybdenum, palladium, platinum, and tin are preferable, and a Ni alloy film having excellent conductivity is formed by using an Ni alloy containing these elements. be able to.
  • the formation method of the Ni alloy film, the content of elements other than Ni in the Ni alloy, the element source of the elements other than Ni, and the like are the same as the aspects of the manufacturing method in the first embodiment. The detailed explanation is omitted.
  • the Ni-coated copper powder according to the fifth embodiment has a dendritic shape in which copper particles whose surfaces are coated with Ni or a Ni alloy are aggregated and have a main trunk that grows linearly and a plurality of branches separated from the main trunk. It is Ni coat copper powder which constituted the shape.
  • the copper particles whose surfaces are coated with Ni or Ni alloy are dendritic having a main trunk grown in a dendritic shape and a plurality of branches separated from the main trunk, and the cross-sectional average thickness of the main trunk and the branches of the copper particles.
  • the Ni-coated copper powder which is a flat plate having a thickness of 0.02 ⁇ m to 0.5 ⁇ m and is formed by aggregating the copper particles, has an average particle diameter (D50) of 1.0 ⁇ m to 30 ⁇ m.
  • the surface of the copper particles has fine convex portions, and the average height of the convex portions is preferably 0.01 ⁇ m to 0.4 ⁇ m.
  • the Ni-coated copper powder (dendritic Ni-coated copper powder) according to the fifth embodiment is obtained by coating the surface of the dendritic copper powder with Ni or a Ni alloy.
  • it can be manufactured by a predetermined electrolytic method using a sulfuric acid acidic solution containing copper ions as an electrolytic solution.
  • a sulfuric acid-containing electrolytic solution containing copper ions is contained in an electrolytic cell in which metallic copper is used as an anode and a stainless steel plate or a titanium plate is used as a cathode, as in the electrolytic treatment in the first embodiment. Then, electrolytic treatment is performed by passing a direct current through the electrolytic solution at a predetermined current density. Thereby, a dendritic copper powder can be deposited (electrodeposition) on a cathode with electricity supply.
  • an amine compound is added as an additive to the sulfuric acid acidic electrolytic solution containing a water-soluble copper salt serving as a copper ion source, and thus obtained by electrolysis.
  • the dendritic copper powder is formed on the surface of the cathode by gathering flat copper particles and forming a dendritic shape only by electrolysis. It can be deposited.
  • the electrolytic solution for example, an electrolytic solution containing a water-soluble copper salt (copper ion), sulfuric acid, and an amine compound is used. Further, it is preferable that the electrolytic solution further contains chloride ions.
  • the water-soluble copper salt and sulfuric acid contained in the electrolytic solution are the same as those in the manufacturing method according to the first embodiment, and detailed description thereof is omitted.
  • an amine compound can be used as an additive in the electrolytic solution.
  • the amine compound contributes to shape control of the copper powder to be deposited together with chloride ions to be described later, and the copper powder to be deposited on the cathode surface is composed of flat copper particles having a predetermined cross-sectional thickness; A dendritic copper powder having branches branched from the main trunk can be obtained.
  • the amine compound one kind may be added alone, or two or more kinds may be added in combination.
  • the amount of the amine compound added is preferably an amount such that the concentration in the electrolytic solution is in the range of 0.1 mg / L to 500 mg / L, and an amount in the range of 1 mg / L to 400 mg / L. More preferably.
  • the amine compound is not particularly limited, but a compound having a phenazine structure and an azobenzene structure, which can be represented by the following formula (3), can be used. More preferably, for example, Janus Green B (C30H31N6Cl, CAS number: 2869-83-2) can be used.
  • R 1 , R 2 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 are each separately , Hydrogen, halogen, amino, OH, ⁇ O, CN, SCN, SH, COOH, COO salt, COO ester, SO 3 H, SO 3 salt, SO 3 ester, benzenesulfonic acid, and C1-C8 alkyl
  • R 3 is hydrogen, halogen, amino, OH, ⁇ O, CN, SCN, SH, COOH, COO salt, COO ester, SO 3 H, SO 3 salt, SO 3 ester, benzenesulfonic acid, lower alkyl, And a group selected from the group consisting of aryl.
  • a ⁇ is a halide anion.
  • a compound having a phenazine structure and an azobenzene structure for example, 3- (diethylamino) -7-[(4-hydroxyphenyl) azo] -2,8-dimethyl-5-phenylphenazine-5-ium , 3-[[4- (dimethylamino) phenyl] azo] -7- (diethylamino) -5-phenylphenazine-5-ium, Janus Green B, 3-amino-7-[(2,4-diaminophenyl) Azo] -2,8-dimethyl-5-phenylphenazine-5-ium, 2,8-dimethyl-3-amino-5-phenyl-7- (2-hydroxy-1-naphthylazo) phenazine-5-ium, 3 -[[4- (dimethylamino) phenyl] azo] -7- (dimethylamino) -5-phenylphenazine-5-ium, 3-
  • chloride ions compounds that supply chloride ions such as hydrochloric acid and sodium chloride (chloride ion source) can be added to the electrolyte solution.
  • chloride ion source compounds that supply chloride ions such as hydrochloric acid and sodium chloride
  • the chloride ion concentration in the electrolytic solution can be about 30 mg / L to 1000 mg / L, preferably about 50 mg / L to 800 mg / L, more preferably about 200 mg / L to 500 mg / L.
  • electrolysis is performed using the electrolytic solution having the above-described composition, so that copper powder is deposited on the cathode to produce dendritic copper powder.
  • the electrolysis method a known method can be used.
  • the current density is preferably in the range of 5 A / dm 2 to 30 A / dm 2 in electrolysis using a sulfuric acid electrolytic solution, and the electrolytic solution is energized while stirring.
  • the liquid temperature (bath temperature) of the electrolytic solution can be, for example, about 20 ° C. to 60 ° C.
  • Ni Coating Method Production of Ni Coated Copper Powder
  • the Ni-coated copper powder according to the fifth embodiment is obtained by using Ni plating liquid (electroless Ni plating liquid) by an electroless plating method on the surface of the dendritic copper powder produced by the above-described electrolysis method. It can be manufactured by coating a Ni alloy.
  • the specific electroless plating method, the composition of the electroless Ni plating solution (components in the plating solution), and pretreatment such as cleaning treatment before electroless plating are performed in the first embodiment.
  • the method is the same as that of the method, and detailed description is omitted.
  • Ni film it is preferable that other elements are contained in the Ni film to be formed, similarly to the formation of the Ni film in the first embodiment.
  • a Ni alloy film By forming a Ni alloy film on the surface of the copper powder, it is possible to realize a conductive paste having excellent heat resistance and corrosion resistance using the Ni-coated copper powder.
  • elements of Groups 6 to 14 of the periodic table can be mentioned, and among them, zinc, palladium.
  • examples include cobalt, rhodium, iron, platinum, iridium, tungsten, molybdenum, chromium, and tin.
  • one or more elements selected from zinc, cobalt, tungsten, molybdenum, palladium, platinum, and tin are preferable, and a Ni alloy film having excellent conductivity is formed by using an Ni alloy containing these elements. be able to.
  • the formation method of the Ni alloy film, the content of elements other than Ni in the Ni alloy, the element source of the elements other than Ni, and the like are the same as the aspects of the manufacturing method in the first embodiment. The detailed explanation is omitted.
  • Ni-coated copper powder according to the present invention (Ni-coated copper powder according to the first to fifth embodiments) has a large surface area and excellent formability and sinterability, and has a specific shape. A large number of contacts between the Ni-coated copper powders can be ensured by the aggregation of the copper particles, thereby exhibiting excellent conductivity.
  • the Ni-coated copper powder having a specific structure can suppress aggregation even when a copper paste or the like is used, It becomes possible to disperse uniformly in the resin, and it is possible to suppress the occurrence of poor printability due to an increase in the viscosity of the paste.
  • the Ni-coated copper powder according to the first to fifth embodiments can be suitably used for applications such as conductive paste and conductive paint.
  • Ni-coated copper powder is included as a metal filler (copper powder), and kneaded with binder resin, solvent, and additives such as antioxidants and coupling agents as required. Can be produced.
  • the Ni-coated copper powder in the metal filler is 20% by mass or more, preferably 30% by mass or more, more preferably 50% by mass or more.
  • the ratio of the Ni-coated copper powder in the metal filler is 20% by mass or more, for example, when the metal filler is used in the copper paste, it can be uniformly dispersed in the resin, and the paste has an excessive viscosity. It is possible to prevent the printability from being increased. Moreover, the more excellent electroconductivity can be exhibited as an electrically conductive paste.
  • the metal filler may contain Ni-coated copper powder in a proportion of 20% by mass or more.
  • Others include, for example, spherical copper powder of about 1 ⁇ m to 20 ⁇ m or spherical Ni-coated. You may mix copper powder etc.
  • fillers having different compositions as well as fillers such as silver powder may be mixed.
  • the binder resin is not particularly limited, but an epoxy resin, a phenol resin, or the like can be used.
  • organic solvents such as ethylene glycol, diethylene glycol, triethylene glycol, glycerol, and terpineol, can be used.
  • the addition amount of the organic solvent is not particularly limited, but the addition amount is adjusted in consideration of the particle size of the Ni-coated copper powder so that the viscosity is suitable for a conductive film forming method such as screen printing or a dispenser. be able to.
  • resin components can be added to adjust the viscosity.
  • a cellulose-based resin typified by ethyl cellulose can be used, and it can be added as an organic vehicle dissolved in an organic solvent such as terpineol.
  • an antioxidant or the like can be added in order to improve the conductivity after firing.
  • a hydroxycarboxylic acid etc. can be mentioned. More specifically, hydroxycarboxylic acids such as citric acid, malic acid, tartaric acid, and lactic acid are preferable, and citric acid or malic acid that has high adsorptive power to copper coated with Ni or Ni alloy is particularly preferable.
  • the addition amount of the antioxidant can be set to, for example, about 1% by mass to 15% by mass in consideration of the antioxidant effect and the viscosity of the paste.
  • Ni-coated copper powder is used as a metal filler as an electromagnetic shielding material, it is not limited to use under particularly limited conditions.
  • a metal filler is mixed with a resin. Can be used.
  • the resin used for forming the electromagnetic wave shielding layer of the electromagnetic wave shielding conductive sheet is not particularly limited, and conventionally used vinyl chloride resin, vinyl acetate resin, vinylidene chloride resin, Thermoplastic resin, thermosetting resin, radiation curable type made of various polymers and copolymers such as acrylic resin, polyurethane resin, polyester resin, olefin resin, chlorinated olefin resin, polyvinyl alcohol resin, alkyd resin, phenol resin, etc. Resin etc. can be used suitably.
  • the above-described metal filler and resin are dispersed or dissolved in a solvent to form a coating material, and the coating material is applied or printed on the substrate to form the electromagnetic shielding layer. It can be manufactured by forming and drying to such an extent that the surface solidifies.
  • a metal filler can also be utilized for the conductive adhesive layer of a conductive sheet.
  • Ni-coated copper powder as a metal filler to form a conductive coating for electromagnetic wave shielding
  • a general method for example, using a metal filler as a resin And mixed with a solvent, and further mixed with an antioxidant, a thickener, an anti-settling agent or the like as necessary, and then kneaded and used as a conductive paint.
  • the binder resin and solvent used at this time are not particularly limited, and vinyl chloride resin, vinyl acetate resin, acrylic resin, polyester resin, fluororesin, silicon resin, phenol resin, and the like that have been used in the past are used. Can be used.
  • the solvent conventionally used alcohols such as isopropanol, aromatic hydrocarbons such as toluene, esters such as methyl acetate, ketones such as methyl ethyl ketone, and the like can be used.
  • conventionally used antioxidants such as fatty acid amides, higher fatty acid amines, phenylenediamine derivatives, titanate coupling agents, and the like can also be used.
  • the average particle diameter (D50) of the obtained Ni-coated copper powder was measured using a laser diffraction / scattering particle size distribution analyzer (manufactured by Nikkiso Co., Ltd., HRA9320 X-100).
  • the bulk density was measured as a tap density using a shaking specific gravity measuring device (manufactured by Kuramochi Scientific Instruments, Tapping machine KRS-40).
  • BET specific surface area The BET specific surface area was measured using a specific surface area / pore distribution measuring apparatus (manufactured by Cantachrome, QUADRASORB SI).
  • the sheet resistance value was measured by a four-terminal method using a low resistivity meter (Loresta-GP MCP-T600, manufactured by Mitsubishi Chemical Corporation), while the surface roughness shape measuring instrument ( The film thickness of the coating film was measured by SURFCOM130A, manufactured by Tokyo Seimitsu Co., Ltd., and the sheet resistance value was determined by dividing the film thickness by the film thickness.
  • Electromagnetic wave shielding characteristics were evaluated by measuring the attenuation rate of the samples obtained in the examples and comparative examples using an electromagnetic wave having a frequency of 1 GHz.
  • Example 1 ⁇ Preparation of electrolytic copper powder>
  • an electrolytic cell having a capacity of 100 L an electrode plate made of titanium having an electrode area of 200 mm ⁇ 200 mm is used as a cathode, and a copper electrode plate having an electrode area of 200 mm ⁇ 200 mm is used as an anode, and an electrolytic solution is loaded in the electrolytic cell. Then, a direct current was applied thereto to deposit copper powder on the cathode plate.
  • the electrolytic solution a composition having a copper ion concentration of 15 g / L and a sulfuric acid concentration of 100 g / L was used. Further, a hydrochloric acid solution (manufactured by Wako Pure Chemical Industries, Ltd.) was added to the electrolytic solution so that the chloride ion (chlorine ion) concentration in the electrolytic solution was 50 mg / L. In addition, safranin (manufactured by Kanto Chemical Co., Ltd.), which is a compound having a phenazine structure, is added as an additive to the electrolytic solution so that the concentration in the electrolytic solution is 100 mg / L, and a nonionic surfactant is further added. Polyethylene glycol (PEG) having a molecular weight of 1,000 (manufactured by Wako Pure Chemical Industries, Ltd.) was added to a concentration of 500 mg / L in the electrolytic solution.
  • PEG polyethylene glycol
  • the temperature is maintained at 25 ° C. and the current density of the cathode is 10 A / dm 2. Then, copper powder was deposited on the cathode plate.
  • the electrolytic copper powder deposited on the cathode plate was recovered by mechanically scraping it off the bottom of the electrolytic cell using a scraper, and the recovered copper powder was washed with pure water and then put in a vacuum dryer and dried. .
  • Ni-coated copper powder (reducing agent: borohydride)>
  • 100 g of the obtained dendritic copper powder was used to coat the surface of the copper powder with an electroless Ni plating solution, thereby producing a Ni-coated copper powder.
  • the electroless Ni plating solution whose reducing agent is a borohydride compound was used.
  • nickel sulfate 30 g / L nickel sulfate 30 g / L, sodium succinate 50 g / L, boric acid 30 g / L, ammonium chloride 30 g / L, dimethylamine borane 4 g / L were added at each concentration, Further, 500 mL of a plating solution adjusted to pH 6.0 by adding sodium hydroxide was prepared.
  • Ni-coated copper powder having a Ni alloy coated on the surface of the copper powder was obtained.
  • at least 90% by number or more of Ni-coated copper powder is a flat copper particle whose surface is uniformly coated with a Ni alloy. It was a dendritic Ni-coated copper powder that was densely gathered and exhibited a dendritic shape.
  • the dendritic Ni-coated copper powder was recovered and the Ni content was measured, it was 18.2% by mass with respect to 100% by mass of the entire dendritic Ni-coated copper powder. Further, the content of boron (B) contained in the Ni alloy was 6.3% by mass with respect to 100% by mass of the Ni alloy.
  • the obtained dendritic Ni-coated copper powder was grown in a direction perpendicular to the cross-sectional average thickness of the flat copper particles and the flat surface of the dendritic Ni-coated copper powder while observing with SEM. The ratio between the maximum length and the long axis length in the horizontal direction with respect to the flat surface was measured. As a result, the copper particles constituting the obtained dendritic Ni-coated copper powder were in the form of a flat plate having a cross-sectional average thickness of 2.7 ⁇ m. The average particle diameter (D50) of the dendritic Ni-coated copper powder was 46.6 ⁇ m. The ratio of the maximum length of the Ni-coated copper powder grown in the vertical direction from the flat surface to the maximum length in the direction horizontal to the flat surface (flat direction) (vertical length / flat length in the flat plate direction) was an average of 0.069.
  • the bulk density of the obtained dendritic Ni-coated copper powder was 2.9 g / cm 3 .
  • the BET specific surface area was 1.15 m 2 / g.
  • Example 1 From the result of Example 1, a compound having a phenazine structure and a nonionic surfactant were added to the electrolytic solution to prepare a dendritic electrolytic copper powder, and the surface of the obtained copper powder was coated with a Ni alloy By doing this, it was found that a plate-like dendritic Ni-coated copper powder with suppressed growth in the vertical direction could be produced.
  • Example 2 ⁇ Preparation of electrolytic copper powder> A hydrochloric acid solution (manufactured by Wako Pure Chemical Industries, Ltd.) is added to the electrolyte so that the chloride ion concentration is 150 mg / L, and methyl orange (Kanto Chemical Industries, Ltd.), which is a compound having an azobenzene structure as an additive, is added. Manufactured) was added to a concentration of 150 mg / L in the electrolytic solution.
  • polyoxyethylene polyoxypropylene butyl ether having a molecular weight of 1,000 which is a nonionic surfactant, (manufactured by NOF Corporation, trade name: UNILOVE 50MB-11), as the electrolyte solution, has a concentration of 700 mg / L in the electrolyte solution. It added so that it might become. Otherwise, electrolytic treatment was performed under the same conditions as in Example 1 to produce electrolytic copper powder.
  • Ni-coated copper powder (reducing agent: hypophosphite)>
  • 100 g of the obtained dendritic copper powder was used to coat the surface of the copper powder with an electroless Ni plating solution, thereby producing a Ni-coated copper powder.
  • an electroless Ni plating solution whose reducing agent is hypophosphite was used.
  • nickel sulfate 20 g / L, sodium hypophosphite 25 g / L, sodium acetate 10 g / L, sodium citrate 10 g / L are added at each concentration, and sodium hydroxide is further added.
  • 500 mL of a plating solution adjusted to pH 5.0 by adding the above was prepared.
  • Ni-coated copper powder in which Ni alloy containing phosphorus (P) was coated on the surface of dendritic copper powder was obtained.
  • Ni-coated copper powder in which Ni alloy containing phosphorus (P) was coated on the surface of dendritic copper powder was obtained.
  • Ni-coated copper powder As a result of observing the obtained Ni-coated copper powder with a field of view at a magnification of 5,000 by SEM, at least 90% by number or more of Ni-coated copper powder is a flat copper particle whose surface is uniformly coated with a Ni alloy. It was a dendritic Ni-coated copper powder that was densely gathered and exhibited a dendritic shape.
  • the dendritic Ni-coated copper powder was recovered and the Ni content was measured, it was 13.3% by mass with respect to 100% by mass of the entire dendritic Ni-coated copper powder.
  • the content of P contained in the Ni alloy was 7.2% by mass with respect to 100% by mass of the Ni alloy.
  • the obtained dendritic Ni-coated copper powder was grown in a direction perpendicular to the cross-sectional average thickness of the flat copper particles and the flat surface of the dendritic Ni-coated copper powder while observing with SEM. The ratio between the maximum length and the long axis length in the horizontal direction with respect to the flat surface was measured. As a result, the copper particles constituting the obtained dendritic Ni-coated copper powder were in the form of a flat plate having a cross-sectional average thickness of 1.8 ⁇ m. The average particle diameter (D50) of the dendritic Ni-coated copper powder was 34.6 ⁇ m. The ratio of the maximum length of the Ni-coated copper powder grown in the vertical direction from the flat surface to the maximum length in the direction horizontal to the flat surface (flat direction) (vertical length / flat length in the flat plate direction) was an average of 0.034.
  • the bulk density of the obtained dendritic Ni-coated copper powder was 2.1 g / cm 3 .
  • the BET specific surface area was 1.29 m 2 / g.
  • Example 2 From the results of Example 2, a compound having an azobenzene structure and a nonionic surfactant were added to the electrolytic solution to produce a dendritic electrolytic copper powder, and the surface of the obtained copper powder was coated with a Ni alloy. By doing this, it was found that a plate-like dendritic Ni-coated copper powder with suppressed growth in the vertical direction could be produced.
  • Example 3 ⁇ Preparation of electrolytic copper powder> To the electrolyte, a hydrochloric acid solution (manufactured by Wako Pure Chemical Industries, Ltd.) was added so that the chloride ion concentration was 80 mg / L, and Janus Green B (a compound having a phenazine structure and an azobenzene structure as an additive) Kanto Chemical Co., Ltd.) was added at a concentration of 600 mg / L in the electrolytic solution.
  • a hydrochloric acid solution manufactured by Wako Pure Chemical Industries, Ltd.
  • Janus Green B a compound having a phenazine structure and an azobenzene structure as an additive
  • polyoxyethylene polyoxypropylene butyl ether having a molecular weight of 3,000 as a nonionic surfactant (manufactured by NOF Corporation, trade name: UNILOVE 50MB-72) is added to the electrolyte solution at a concentration of 1,000 mg / liter in the electrolyte solution. It added so that it might become L. Otherwise, electrolytic treatment was performed under the same conditions as in Example 1 to produce electrolytic copper powder.
  • Ni-coated copper powder (reducing agent: hydrazine compound)>
  • 100 g of the obtained dendritic copper powder was used to perform Ni coating on the surface of the copper powder by electroless Ni plating to prepare a Ni-coated copper powder.
  • Electroless Ni plating using a hydrazine compound as a reducing agent was performed.
  • nickel acetate was added to a slurry in which 100 g of the obtained electrolytic copper powder was dispersed in 500 mL of water to a concentration of 12.4 g / L, and then 6 g of an 80% by mass aqueous solution of hydrazine monohydrate was added. The solution was dropped into the bath with slow stirring over 60 minutes. At this time, the bath temperature was controlled to 60 ° C.
  • the powder was filtered, washed with water, and dried through ethanol.
  • Ni-coated copper powder in which Ni was coated on the surface of the electrolytic copper powder was obtained.
  • at least 90% by number or more of Ni-coated copper powder is densely packed with flat copper particles whose surfaces are uniformly coated with Ni.
  • the dendritic Ni-coated copper powder aggregated and exhibited a dendritic shape.
  • the dendritic Ni-coated copper powder was recovered and the Ni content was measured, it was 7.5% by mass with respect to 100% by mass of the entire dendritic Ni-coated copper powder.
  • the obtained dendritic Ni-coated copper powder was grown in a direction perpendicular to the cross-sectional average thickness of the flat copper particles and the flat surface of the dendritic Ni-coated copper powder while observing with SEM. The ratio between the maximum length and the long axis length in the horizontal direction with respect to the flat surface was measured. As a result, the copper particles constituting the obtained dendritic Ni-coated copper powder were flat plate having a cross-sectional average thickness of 1.3 ⁇ m. The average particle diameter (D50) of the dendritic Ni-coated copper powder was 33.7 ⁇ m. The ratio of the maximum length of the Ni-coated copper powder grown in the vertical direction from the flat surface to the maximum length in the direction horizontal to the flat surface (flat direction) (vertical length / flat length in the flat plate direction) was an average of 0.022.
  • the bulk density of the obtained dendritic Ni-coated copper powder was 1.9 g / cm 3 .
  • the BET specific surface area was 1.98 m ⁇ 2 > / g.
  • the surface of the obtained copper powder was prepared by adding a compound having a phenazine structure and an azobenzene structure and a nonionic surfactant to the electrolytic solution to form a dendritic electrolytic copper powder. It was found that a plate-like dendritic Ni-coated copper powder with suppressed growth in the vertical direction can be produced by coating Ni with Ni.
  • Example 4 ⁇ Preparation of electrolytic copper powder> A hydrochloric acid solution (manufactured by Wako Pure Chemical Industries, Ltd.) is added to the electrolyte so that the chloride ion concentration is 100 mg / L, and methyl orange (manufactured by Kanto Chemical Co., Ltd.), which is a compound having an azobenzene structure as an additive, is added. ) Is added at a concentration of 150 mg / L in the electrolytic solution, and Janus Green B (manufactured by Kanto Chemical Co., Ltd.), which is a compound having a phenazine structure and an azobenzene structure, is added at a concentration of 100 mg / L in the electrolytic solution.
  • methyl orange manufactured by Kanto Chemical Co., Ltd.
  • Janus Green B manufactured by Kanto Chemical Co., Ltd.
  • a nonionic surfactant having a molecular weight of 600 polyethylene glycol (PEG) (manufactured by Wako Pure Chemical Industries, Ltd.) is further added to the electrolyte so that the concentration in the electrolyte is 1,000 mg / L.
  • PEG polyethylene glycol
  • Polyoxyethylene polyoxypropylene butyl ether having a molecular weight of 3,000 (manufactured by NOF Corporation, trade name: UNILOVE 50MB-72) as an agent was added so that the concentration in the electrolytic solution was 1,000 mg / L. Otherwise, electrolytic treatment was performed under the same conditions as in Example 1 to produce electrolytic copper powder.
  • Ni-coated copper powder As a result of observing the obtained Ni-coated copper powder with a field of view at a magnification of 5,000 by SEM, at least 90% by number or more of Ni-coated copper powder is densely packed with tabular copper particles coated with a Ni alloy on the surface.
  • the dendritic Ni-coated copper powder gathered and exhibited a dendritic shape.
  • recovered and content of Ni was measured, it was 18.5 mass% with respect to 100 mass of the said dendritic Ni coat copper powder whole.
  • the obtained dendritic Ni-coated copper powder was grown in a direction perpendicular to the cross-sectional average thickness of the flat copper particles and the flat surface of the dendritic Ni-coated copper powder while observing with SEM. The ratio between the maximum length and the long axis length in the horizontal direction with respect to the flat surface was measured. As a result, the copper particles constituting the obtained dendritic Ni-coated copper powder were flat plate having a cross-sectional average thickness of 0.4 ⁇ m. The average particle diameter (D50) of the dendritic Ni-coated copper powder was 18.9 ⁇ m. The ratio of the maximum length of the Ni-coated copper powder grown in the vertical direction from the flat surface to the maximum length in the direction horizontal to the flat surface (flat direction) (vertical length / flat length in the flat plate direction) was an average of 0.055.
  • the bulk density of the obtained dendritic Ni-coated copper powder was 1.2 g / cm 3 .
  • the BET specific surface area was 2.10 m 2 / g.
  • Example 4 From the results of Example 4, a compound having an azobenzene structure and a compound having a phenazine structure and an azobenzene structure were added and added as additives, and two or more kinds of nonionic surfactants were further added to form a dendron. It is found that a plate-like dendritic Ni-coated copper powder with suppressed growth in the vertical direction can be produced by preparing a shaped electrolytic copper powder and coating the surface of the obtained copper powder with a Ni alloy. It was.
  • polyoxyethylene polyoxypropylene butyl ether having a molecular weight of 3,000 as a nonionic surfactant (manufactured by NOF Corporation, trade name: UNILOVE 50MB-72) is added to the electrolyte solution at a concentration of 1,000 mg / liter in the electrolyte solution. It added so that it might become L. Otherwise, electrolytic treatment was performed under the same conditions as in Example 1 to produce a dendritic copper powder.
  • Ni-coated copper powder (Ni alloy)> Next, 100 g of the obtained dendritic copper powder was used, and the copper powder surface was coated with a Ni alloy with an electroless plating solution.
  • nickel acetate is added to a slurry (copper powder slurry) in which 100 g of the obtained electrolytic copper powder is dispersed in 500 mL of water to a concentration of 12.4 g / L, and hydrazine is further added. 3.2 g was added dropwise into the bath over 60 minutes with slow stirring. The bath temperature was controlled to 60 ° C.
  • each metal compound was added to a bath containing a copper powder slurry and nickel acetate, and hydrazine was gradually added so that each desired Ni alloy film was formed.
  • 1.5 g of sodium tungstate was added as a metal compound to form a Ni—W alloy film.
  • 2 g of cobalt sulfate was added to form a Ni—Co alloy film.
  • 4 g each of zinc sulfate heptahydrate and sodium citrate were added to form a Ni—Zn alloy film.
  • 2 g of palladium chloride was added to form a Ni—Pd alloy film.
  • Example 9 2 g of potassium tetrachloroplatinate and 1 g of glycine were added to form a Ni—Pt alloy film.
  • Example 10 1 g each of sodium molybdate and trisodium citrate was added to form a Ni—Mo alloy film.
  • Example 11 1 g of sodium stannate was added to form a Ni—Sn alloy film.
  • Ni-coated copper powder in which Ni alloy was coated on the surface of the electrolytic copper powder was obtained.
  • the Ni-coated copper powder was recovered and the Ni alloy coating amount was measured.
  • Table 1 shows the results of measuring the content of Ni with respect to 100% by mass of the entire dendritic Ni-coated copper powder and the content of elements that become Ni alloys with respect to 100% by mass of the Ni alloy.
  • At least 90% by number or more of the Ni-coated copper powder is an electrolytic copper powder before Ni coating.
  • a dendritic Ni-coated copper powder having a two-dimensional or three-dimensional dendritic shape, the surface of which is uniformly coated with a Ni alloy, and a main trunk that grows linearly and a plurality of linear branches branched from the main trunk
  • the dendritic Ni-coated copper powder had a dendritic shape having a branch and a branch further branched from the branch.
  • Table 1 shows the alloy composition of the obtained dendritic Ni-coated copper powder.
  • the obtained dendritic Ni-coated copper powder was grown in a direction perpendicular to the cross-sectional average thickness of the flat copper particles and the flat surface of the dendritic Ni-coated copper powder while observing with SEM. The ratio between the maximum length and the long axis length in the horizontal direction with respect to the flat surface was measured. Table 1 shows the measurement results for each dendritic Ni-coated copper powder.
  • a dendritic electrolytic copper powder was prepared by adding a compound having a phenazine structure and an azobenzene structure and a nonionic surfactant to the electrolytic solution, and the obtained copper powder.
  • a compound having a phenazine structure and an azobenzene structure and a nonionic surfactant was added to the electrolytic solution, and the obtained copper powder.
  • Example 12 ⁇ Preparation of dendritic Ni-coated copper powder (hypophosphite + tungsten compound)>
  • 100 g of the dendritic copper powder prepared in Example 2 was used, and the copper powder surface was coated with a Ni alloy with an electroless plating solution.
  • a plating solution containing hypophosphite as a reducing agent was used in the same manner as in Example 1, and a metal other than Ni was added to the plating solution to produce a Ni alloy.
  • an electroless Ni plating solution a plating solution in which nickel sulfate 20 g / L, sodium hypophosphite 25 g / L, sodium acetate 10 g / L, and sodium citrate 10 g / L are added at each concentration, 500 g of a plating solution prepared by adding 1.5 g of sodium tungstate and adjusting the pH to 5.0 by adding sodium hydroxide was prepared. The bath temperature was controlled to 60 ° C.
  • Ni-coated copper powder coated with a Ni—WP alloy was obtained.
  • Ni-coated copper powder was filtered, washed with water, and dried through ethanol.
  • Ni-coated copper powder coated with a Ni—WP alloy was obtained.
  • at least 90% by number or more of Ni-coated copper powder is densely packed with flat copper particles whose surfaces are uniformly coated with Ni.
  • the dendritic Ni-coated copper powder aggregated and exhibited a dendritic shape.
  • content of P contained in Ni alloy was 7.0 mass% with respect to 100 mass of Ni alloy.
  • the content of W contained in the Ni alloy was 5.6% by mass with respect to 100% by mass of the Ni alloy.
  • the obtained dendritic Ni-coated copper powder was grown in a direction perpendicular to the cross-sectional average thickness of the flat copper particles and the flat surface of the dendritic Ni-coated copper powder while observing with SEM. The ratio between the maximum length and the long axis length in the horizontal direction with respect to the flat surface was measured. As a result, the copper particles constituting the obtained dendritic Ni-coated copper powder were in the form of a flat plate having a cross-sectional average thickness of 1.8 ⁇ m. The average particle diameter (D50) of the dendritic Ni-coated copper powder was 36.1 ⁇ m. The ratio of the maximum length of the Ni-coated copper powder grown in the vertical direction from the flat surface to the maximum length in the direction horizontal to the flat surface (flat direction) (vertical length / flat length in the flat plate direction) was an average of 0.037.
  • the bulk density of the obtained dendritic Ni-coated copper powder was 2.2 g / cm 3 .
  • the BET specific surface area was 1.26 m 2 / g.
  • Example 12 From the results of Example 12, a compound having an azobenzene structure and a nonionic surfactant were added to the electrolytic solution to prepare a dendritic electrolytic copper powder, and Ni—W— was formed on the surface of the obtained copper powder. It was found that by coating a Ni alloy made of P, a plate-like dendritic Ni-coated copper powder with suppressed growth in the vertical direction can be produced.
  • Example 13 To 55 parts by mass of dendritic Ni-coated copper powder having a specific surface area of 1.15 m 2 / g obtained in Example 1, 15 parts by mass of phenol resin (PL-2211 manufactured by Gunei Chemical Co., Ltd.), butyl cellosolve ( Paste by mixing 10 parts by mass of Kanto Chemical Co., Ltd., deer special grade) and repeating kneading 3 times at 1200 rpm for 3 minutes using a small kneader (Nippon Seiki Seisakusho, non-bubbling kneader NBK-1). did. The obtained conductive paste was printed on glass with a metal squeegee and cured at 200 ° C. for 30 minutes in the air atmosphere.
  • phenol resin PL-2211 manufactured by Gunei Chemical Co., Ltd.
  • butyl cellosolve Paste by mixing 10 parts by mass of Kanto Chemical Co., Ltd., deer special grade
  • the specific resistance value of the film obtained by curing was 7.6 ⁇ 10 ⁇ 5 ⁇ ⁇ cm.
  • Example 14 To 55 parts by mass of the dendritic Ni-coated copper powder having a specific surface area of 1.29 m 2 / g obtained in Example 2, 15 parts by mass of a phenol resin (manufactured by Gunei Chemical Co., Ltd., PL-2211), butyl cellosolve ( Paste by mixing 10 parts by mass of Kanto Chemical Co., Ltd., deer special grade) and repeating kneading 3 times at 1200 rpm for 3 minutes using a small kneader (Nippon Seiki Seisakusho, non-bubbling kneader NBK-1). did. The obtained conductive paste was printed on glass with a metal squeegee and cured at 200 ° C. for 30 minutes in the air atmosphere.
  • a phenol resin manufactured by Gunei Chemical Co., Ltd., PL-2211
  • butyl cellosolve Paste by mixing 10 parts by mass of Kanto Chemical Co., Ltd., deer special grade
  • the specific resistance value of the film obtained by curing was 8.1 ⁇ 10 ⁇ 5 ⁇ ⁇ cm.
  • Example 15 To 55 parts by mass of dendritic Ni-coated copper powder having a specific surface area of 2.10 m 2 / g obtained in Example 4, 15 parts by mass of phenol resin (manufactured by Gunei Chemical Co., Ltd., PL-2211), butyl cellosolve ( Paste by mixing 10 parts by mass of Kanto Chemical Co., Ltd., deer special grade) and repeating kneading 3 times at 1200 rpm for 3 minutes using a small kneader (Nippon Seiki Seisakusho, non-bubbling kneader NBK-1). did. The obtained conductive paste was printed on glass with a metal squeegee and cured at 200 ° C. for 30 minutes in the air atmosphere.
  • phenol resin manufactured by Gunei Chemical Co., Ltd., PL-2211
  • butyl cellosolve Paste by mixing 10 parts by mass of Kanto Chemical Co., Ltd., deer special grade
  • the specific resistance value of the film obtained by curing was 7.9 ⁇ 10 ⁇ 5 ⁇ ⁇ cm.
  • Example 16 2 different between the Ni-coated copper powder having a specific surface area of 1.15 m 2 / g obtained in Example 1 and the Ni-coated copper powder having a specific surface area of 1.29 m 2 / g obtained in Example 2.
  • the specific resistance value of the film obtained by curing was 8.0 ⁇ 10 ⁇ 5 ⁇ ⁇ cm.
  • Example 17 Dendritic Ni-coated copper powder having a specific surface area of 1.15 m 2 / g obtained in Example 1 was dispersed in a resin to obtain an electromagnetic wave shielding material.
  • Example 2 40 g of the dendritic Ni-coated copper powder obtained in Example 1 was mixed with 100 g of vinyl chloride resin and 200 g of methyl ethyl ketone, and kneading was performed at 1200 rpm for 3 minutes using a small kneader. The paste was made by repeating the process once. During pasting, the Ni-coated copper powder was uniformly dispersed in the resin without agglomeration. This was coated and dried on a base material made of a transparent polyethylene terephthalate sheet having a thickness of 100 ⁇ m using a Mayer bar to form an electromagnetic wave shielding layer having a thickness of 25 ⁇ m.
  • the electromagnetic shielding characteristics were evaluated by measuring the attenuation rate using an electromagnetic wave having a frequency of 1 GHz. Table 1 shows the results of the characteristic evaluation.
  • Example 18 Dendritic Ni-coated copper powder having a specific surface area of 1.29 m 2 / g obtained in Example 2 was dispersed in a resin to prepare an electromagnetic wave shielding material.
  • Example 2 40 g of dendritic Ni-coated copper powder obtained in Example 2 was mixed with 100 g of vinyl chloride resin and 200 g of methyl ethyl ketone, and kneading was performed at 1200 rpm for 3 minutes using a small kneader. The paste was made by repeating the process once. During pasting, the Ni-coated copper powder was uniformly dispersed in the resin without agglomeration. This was coated and dried on a base material made of a transparent polyethylene terephthalate sheet having a thickness of 100 ⁇ m using a Mayer bar to form an electromagnetic wave shielding layer having a thickness of 25 ⁇ m.
  • the electromagnetic shielding characteristics were evaluated by measuring the attenuation rate using an electromagnetic wave having a frequency of 1 GHz. Table 1 shows the results of the characteristic evaluation.
  • Example 19 Dendritic Ni-coated copper powder having a specific surface area of 2.10 m 2 / g obtained in Example 4 was dispersed in a resin to obtain an electromagnetic wave shielding material.
  • Example 4 40 g of dendritic Ni-coated copper powder obtained in Example 4 was mixed with 100 g of vinyl chloride resin and 200 g of methyl ethyl ketone, and kneading was performed at 1200 rpm for 3 minutes using a small kneader. The paste was made by repeating the process once. During pasting, the copper powder was uniformly dispersed in the resin without agglomeration. This was coated and dried on a base material made of a transparent polyethylene terephthalate sheet having a thickness of 100 ⁇ m using a Mayer bar to form an electromagnetic wave shielding layer having a thickness of 25 ⁇ m.
  • the electromagnetic shielding characteristics were evaluated by measuring the attenuation rate using an electromagnetic wave having a frequency of 1 GHz. Table 1 shows the results of the characteristic evaluation.
  • the obtained Ni-coated copper powder had a dendritic shape, but the granular copper particles were It was an aggregate and was not a flat dendritic Ni-coated copper powder.
  • the specific surface area of the Ni-coated copper powder obtained was 0.14 m 2 / g.
  • content of Ni of Ni coat copper powder was measured, it was 18.9 mass% with respect to 100 mass of the said Ni coat copper powder whole.
  • content of P contained in the Ni alloy was 8.2% by mass with respect to 100% by mass of the Ni alloy.
  • the dendritic Ni-coated copper powder was mixed with 15 parts by mass of a phenol resin (manufactured by Gunei Chemical Co., Ltd., PL-2211) and 10 parts by mass of butyl cellosolve (manufactured by Kanto Chemical Co., Ltd., deer special grade). Then, using a small kneader (Nippon Seiki Seisakusho, non-bubbling kneader NBK-1), it was made into a paste by repeating kneading at 1200 rpm for 3 minutes three times. The obtained conductive paste was printed on glass with a metal squeegee and cured at 200 ° C. for 30 minutes in the air atmosphere.
  • a phenol resin manufactured by Gunei Chemical Co., Ltd., PL-2211
  • butyl cellosolve manufactured by Kanto Chemical Co., Ltd., deer special grade
  • the specific resistance value of the film obtained by curing was 65.2 ⁇ 10 ⁇ 5 ⁇ ⁇ cm.
  • the flat copper powder was prepared by mechanically flattening granular electrolytic copper powder. Specifically, 5 g of stearic acid was added to 500 g of granular atomized copper powder (manufactured by Mekin Metal Powders Co., Ltd.) having an average particle diameter of 7.9 ⁇ m, and flattened with a ball mill. The ball mill was charged with 5 kg of 3 mm zirconia beads, and flattened by rotating for 90 minutes at a rotation speed of 500 rpm.
  • the obtained flat copper powder was coated with Ni in the same manner as in Example 2.
  • the content of Ni in the produced tabular Ni-coated copper powder was 13.8% by mass with respect to 100% by mass of the tabular Ni-coated copper powder.
  • content of P contained in Ni alloy was 8.6 mass% with respect to 100 mass of Ni alloy.
  • the plate-like Ni-coated copper powder thus produced was measured with a laser diffraction / scattering particle size distribution analyzer, and as a result, the average particle size (D50) was 21.8 ⁇ m. Moreover, as a result of observing with SEM, the cross-sectional average thickness was 0.4 micrometer.
  • the electromagnetic shielding characteristics were evaluated by measuring the attenuation rate using an electromagnetic wave having a frequency of 1 GHz. Specifically, the level of Comparative Example 3 in which no dendritic Ni-coated copper powder is used is “ ⁇ ”, and the level worse than that of Comparative Example 3 is “ ⁇ ”. The case where it was better than the level was evaluated as “ ⁇ ”, and the case where it was superior was evaluated as “ ⁇ ”. Table 1 shows the results.
  • Example 20 ⁇ Preparation of electrolytic copper powder> An electrolytic cell with a capacity of 100 L is used with a titanium electrode plate having an electrode area of 200 mm ⁇ 200 mm as a cathode and a copper electrode plate with an electrode area of 200 mm ⁇ 200 mm as an anode, and an electrolytic solution is charged into the electrolytic cell. Then, a direct current was applied thereto to deposit copper powder on the cathode plate.
  • an electrolytic solution having a composition with a copper ion concentration of 10 g / L and a sulfuric acid concentration of 100 g / L was used. Further, polyethylene glycol (PEG) having a molecular weight of 400 (manufactured by Wako Pure Chemical Industries, Ltd.) as an additive was added to this electrolytic solution so that the concentration in the electrolytic solution was 500 mg / L, and a hydrochloric acid solution (Wako Pure Chemical Industries, Ltd.) was further added. Yakuhin Kogyo Co., Ltd.) was added at a chloride ion (chlorine ion) concentration of 50 mg / L.
  • PEG polyethylene glycol
  • a hydrochloric acid solution Yakuhin Kogyo Co., Ltd.
  • the current density of the cathode is 20 A / dm 2 under the condition that the temperature is maintained at 30 ° C. while circulating the electrolytic solution whose concentration is adjusted as described above at a flow rate of 10 L / min using a metering pump. In this way, copper powder was deposited on the cathode plate.
  • the electrolytic copper powder deposited on the cathode plate was mechanically scraped and collected on the bottom of the electrolytic cell, and the collected copper powder was washed with pure water, and then placed in a vacuum dryer and dried.
  • the deposited copper powder had a minor axis average diameter of 0.2 ⁇ m to 0 ⁇ m. It was a dendritic copper powder having a dendritic shape composed of ellipsoidal copper particles having a major axis average diameter of 0.5 ⁇ m to 2.0 ⁇ m.
  • the average particle diameter (D50) of the dendritic copper powder formed by aggregation of the copper particles was 5.0 ⁇ m to 20 ⁇ m. It was also confirmed that the copper particles were aggregated to form a dendritic copper powder having an average thickness of the branch portion of 0.5 ⁇ m to 2.0 ⁇ m.
  • nickel sulfate 30 g / L nickel sulfate 30 g / L, sodium succinate 50 g / L, boric acid 30 g / L, ammonium chloride 30 g / L, dimethylamine borane 4 g / L were added at each concentration, 500 mL of a plating solution adjusted to pH 6.0 by adding sodium hydroxide was prepared.
  • Ni-coated copper powder in which the surface of the dendritic copper powder was coated with Ni was obtained.
  • the Ni-coated copper powder was recovered and the Ni content was measured, it was 18.6% by mass with respect to 100% by mass of the entire Ni-coated copper powder.
  • the content of boron (B) contained in the Ni alloy was 6.1% by mass with respect to 100% by mass of the Ni alloy.
  • the Ni-coated copper powder has a dendritic shape in which copper particles are aggregated, It was dendritic Ni-coated copper powder in which the Ni alloy was uniformly coated on the surface of the copper particles.
  • the copper particles constituting the Ni-coated copper powder and coated with a Ni alloy on the surface have a minor axis average diameter of 0.2 ⁇ m to 0.5 ⁇ m and an average of 0.39 ⁇ m. It was an ellipsoid having a diameter of 0.5 ⁇ m to 2.0 ⁇ m and an average size of 1.6 ⁇ m.
  • the average particle diameter (D50) of the dendritic Ni-coated copper powder formed by aggregating ellipsoidal copper particles coated with these Ni alloys is 21.2 ⁇ m, and the average thickness of the branch portion is 1 It was 5 ⁇ m.
  • the bulk density of the obtained Ni-coated copper powder was 1.25 g / cm 3 .
  • the BET specific surface area was 1.7 m 2 / g.
  • Example 21 ⁇ Manufacture of electrolytic copper powder>
  • a composition having a copper ion concentration of 10 g / L and a sulfuric acid concentration of 125 g / L is used, and polyethylene glycol (PEG) as an additive is 150 mg / L as an additive in the electrolytic solution.
  • PEG polyethylene glycol
  • Ni-coated copper powder was produced by electroless plating.
  • an electroless Ni plating solution whose reducing agent is hypophosphite was used.
  • nickel sulfate 20 g / L, sodium hypophosphite 25 g / L, sodium acetate 10 g / L, sodium citrate 10 g / L were added at each concentration, and sodium hydroxide was further added.
  • 500 mL of a plating solution adjusted to pH 5.0 by addition was prepared.
  • Ni-coated copper powder in which the surface of the dendritic copper powder was coated with Ni alloy containing phosphorus (P) was obtained.
  • Ni-coated copper powder was recovered and the Ni content was measured, it was 13.1% by mass with respect to 100% by mass of the entire Ni-coated copper powder.
  • content of P contained in Ni alloy was 8.1 mass% with respect to 100 mass of Ni alloy.
  • Ni-coated copper powder As a result of observing the obtained Ni-coated copper powder with a field of view at a magnification of 5,000 by SEM, at least 90% by number or more of the Ni-coated copper powder has a dendritic shape in which copper particles are aggregated, It was Ni coat copper powder by which Ni alloy was uniformly coat
  • the copper particles constituting the Ni-coated copper powder and coated with a Ni alloy on the surface have a minor axis average diameter of 0.2 ⁇ m to 0.5 ⁇ m and an average of 0.27 ⁇ m. It was an ellipsoid having a diameter of 0.5 ⁇ m to 2.0 ⁇ m and an average size of 1.2 ⁇ m.
  • the average particle diameter (D50) of dendritic Ni-coated copper powder formed by agglomeration of ellipsoidal copper particles coated with these Ni alloys is 8.3 ⁇ m, and the average thickness of the branch portion is 1 .1 ⁇ m.
  • the bulk density of the obtained Ni-coated copper powder was 2.77 g / cm 3 .
  • the BET specific surface area was 1.2 m 2 / g.
  • Example 22 ⁇ Preparation of dendritic Ni-coated copper powder (reducing agent: hydrazine compound)> Using 100 g of the dendritic copper powder obtained in Example 21, Ni was coated on the surface of the copper powder by electroless plating to prepare a Ni-coated copper powder. Electroless Ni plating using a hydrazine compound as a reducing agent was performed.
  • nickel acetate was added to a slurry in which 100 g of the dendritic copper powder obtained in Example 21 was dispersed in 500 mL of water to a concentration of 12.4 g / L, and an aqueous solution of 80% by mass of hydrazine monohydrate. 6 g was added dropwise into the bath with slow stirring over 60 minutes. At this time, the bath temperature was controlled to 60 ° C.
  • Ni-coated copper powder in which the surface of the dendritic copper powder was coated with Ni was obtained.
  • the Ni-coated copper powder was recovered and the Ni content was measured, it was 7.7% by mass with respect to 100% by mass of the entire Ni-coated copper powder.
  • the Ni-coated copper powder has a dendritic shape in which copper particles are aggregated, It was Ni coat copper powder by which Ni was uniformly coat
  • a minor axis average diameter of 0.2 to 0.5 ⁇ m and an average of 0.24 ⁇ m
  • the average particle diameter (D50) of the dendritic Ni-coated copper powder formed by agglomeration of ellipsoidal copper particles coated with Ni is 9.6 ⁇ m, and the average thickness of the branch portion is 1.3 ⁇ m. Met.
  • the bulk density of the obtained Ni-coated copper powder was 2.92 g / cm 3 .
  • the BET specific surface area was 1.6 m 2 / g.
  • nickel acetate was added to a slurry in which 100 g of the dendritic copper powder obtained in Example 2 was dispersed in 500 mL of water to a concentration of 12.4 g / L, and hydrazine 3. 2 g was added dropwise into the bath over 60 minutes with slow stirring. The bath temperature was controlled to 60 ° C.
  • each metal compound was added to a bath containing a copper powder slurry and nickel acetate, and hydrazine was gradually added so that each desired Ni alloy film was formed.
  • the metal compound in Example 23, 1.5 g of sodium tungstate was added to form a Ni—W alloy film.
  • 2 g of cobalt sulfate was added to form a Ni—Co alloy film.
  • 4 g each of zinc sulfate heptahydrate and sodium citrate were added to form a Ni—Zn alloy film.
  • 2 g of palladium chloride was added to form a Ni—Pd alloy film.
  • Example 27 2 g of potassium tetrachloroplatinate and 1 g of glycine were added to form a Ni—Pt alloy film.
  • Example 28 1 g each of sodium molybdate and trisodium citrate was added to form a Ni—Mo alloy coating.
  • Example 29 1 g of sodium stannate was added to form a Ni—Sn alloy film.
  • Ni-coated copper powder in which the surface of the dendritic copper powder was coated with Ni alloy was obtained.
  • the Ni-coated copper powder was recovered and the Ni alloy coating amount was measured.
  • Table 1 shows the results of measuring the content of Ni with respect to 100% by mass of the entire Ni-coated copper powder and the content of elements that become Ni alloys with respect to 100% by mass of the Ni alloy.
  • Ni-coated copper powders are aggregated with copper particles in a dendritic shape. It was a Ni-coated copper powder that had a shape and was uniformly coated with a Ni alloy on the surface of the copper particles.
  • the copper particles constituting the Ni-coated copper powder and coated with Ni on the surface have an average minor axis diameter of 0.2 ⁇ m to 0.5 ⁇ m and an average major axis diameter of 0.5 ⁇ m to 2.0 ⁇ m. It was an ellipsoid of the size.
  • the average particle diameter (D50), bulk density, and BET specific surface area of the dendritic Ni-coated copper powder formed by aggregating ellipsoidal copper particles coated with these Ni alloys were measured. Table 1 summarizes these measurement results.
  • Example 30 ⁇ Preparation of dendritic Ni-coated copper powder (hypophosphite + tungsten compound)>
  • 100 g of the dendritic copper powder produced in Example 20 was used, and the copper powder surface was coated with a Ni alloy by electroless plating.
  • electroless Ni plating solution a plating solution containing hypophosphite as the same reducing agent as in Example 20 was used, and a metal other than Ni was added to the plating solution to produce a Ni alloy.
  • an electroless Ni plating solution a plating solution in which nickel sulfate 20 g / L, sodium hypophosphite 25 g / L, sodium acetate 10 g / L, and sodium citrate 10 g / L are added at each concentration, 500 g of a plating solution prepared by adding 1.5 g of sodium tungstate and adjusting the pH to 5.0 by adding sodium hydroxide was prepared. The bath temperature was controlled to 60 ° C.
  • Ni-coated copper powder coated with a Ni—WP alloy was obtained.
  • the content of P contained in the Ni alloy was 7.1% by mass with respect to 100% by mass of the Ni alloy.
  • content of W contained in Ni alloy was 5.5 mass% with respect to 100 mass of Ni alloy.
  • Ni-coated copper powder As a result of observing the obtained Ni-coated copper powder with a field of view at a magnification of 5,000 by SEM, at least 90% by number or more of the Ni-coated copper powder has a dendritic shape in which copper particles are aggregated, It was Ni coat copper powder by which Ni alloy was uniformly coat
  • the copper particles constituting the Ni-coated copper powder and coated with Ni alloy on the surface have a minor axis average diameter of 0.2 ⁇ m to 0.5 ⁇ m and an average of 0.34 ⁇ m. It was an ellipsoid having a diameter of 0.5 ⁇ m to 2.0 ⁇ m and an average size of 1.6 ⁇ m.
  • the average particle diameter (D50) of the dendritic Ni-coated copper powder formed by aggregating ellipsoidal copper particles coated with these Ni alloys is 21.2 ⁇ m, and the average thickness of the branch portion is 1 It was 5 ⁇ m.
  • the bulk density of the obtained Ni-coated copper powder was 1.25 g / cm 3 .
  • the BET specific surface area was 1.7 m 2 / g.
  • Example 31 30 g of the dendritic Ni-coated copper powder obtained in Example 20 was mixed with 15 g of a phenol resin (PL-2211 manufactured by Gunei Chemical Co., Ltd.) and 10 g of butyl cellosolve (manufactured by Kanto Chemical Co., Ltd., deer special grade). Using a kneader (Nippon Seiki Seisakusho, non-bubbling kneader NBK-1), kneading at 1200 rpm for 3 minutes was repeated three times to form a paste. The obtained conductive paste was printed on glass with a metal squeegee and cured at 200 ° C. for 30 minutes in an air atmosphere.
  • a phenol resin PL-2211 manufactured by Gunei Chemical Co., Ltd.
  • butyl cellosolve manufactured by Kanto Chemical Co., Ltd., deer special grade
  • the specific resistance value of the film obtained by curing was 9.0 ⁇ 10 ⁇ 5 ⁇ ⁇ cm, and it was found that excellent conductivity was exhibited. Table 2 shows these results.
  • Example 32 30 g of dendritic Ni-coated copper powder obtained in Example 21 was mixed with 20 g of a phenolic resin (manufactured by Gunei Chemical Co., Ltd., PL-2211) and 10 g of butyl cellosolve (manufactured by Kanto Chemical Co., Ltd., deer special grade). Using a kneader (Nippon Seiki Seisakusho, non-bubbling kneader NBK-1), kneading at 1200 rpm for 3 minutes was repeated three times to form a paste. The obtained conductive paste was printed on glass with a metal squeegee and cured at 200 ° C. for 30 minutes in an air atmosphere.
  • a phenolic resin manufactured by Gunei Chemical Co., Ltd., PL-2211
  • butyl cellosolve manufactured by Kanto Chemical Co., Ltd., deer special grade
  • the specific resistance value of the film obtained by curing was 9.2 ⁇ 10 ⁇ 5 ⁇ ⁇ cm, and it was found that excellent electrical conductivity was exhibited. Table 2 shows these results.
  • Example 33 The dendritic Ni-coated copper powder obtained in Example 20 was dispersed in a resin to obtain an electromagnetic wave shielding material.
  • Example 20 30 g of dendritic Ni-coated copper powder obtained in Example 20 was mixed with 100 g of vinyl chloride resin and 200 g of methyl ethyl ketone, and kneaded at 1200 rpm for 3 minutes using a small kneader. The paste was made by repeating the process once. During pasting, the copper powder was uniformly dispersed in the resin without agglomeration. This was coated and dried using a Mayer bar on a substrate made of a transparent polyethylene terephthalate sheet having a thickness of 100 ⁇ m to form an electromagnetic wave shielding layer having a thickness of 25 ⁇ m.
  • the electromagnetic shielding characteristics were evaluated by measuring the attenuation rate using an electromagnetic wave having a frequency of 1 GHz. Table 2 shows these results.
  • Example 4 Copper powder was deposited on the cathode plate in the same manner as in Example 20 except that PEG as an additive and chlorine ions were not added to the electrolytic solution. Subsequently, in the same manner as in Example 1, the surface of the obtained copper powder was coated with a Ni alloy to obtain a Ni-coated copper powder.
  • Ni content of the Ni-coated copper powder was 18.3% by mass with respect to 100 as the total weight of the Ni-coated copper powder coated with the Ni alloy. Moreover, content of B contained in Ni alloy was 6.0 mass% with respect to 100 mass of Ni alloy.
  • the obtained Ni-coated copper powder had a dendritic shape, but the thickness of the branch portion was 10 ⁇ m. It was confirmed that this was a very large dendritic Ni-coated copper powder. Moreover, the average particle diameter (D50) of the Ni-coated copper powder was 22.3 ⁇ m.
  • the specific resistance value of the film obtained by curing is 6.7 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, and the specific resistance value is extremely high and inferior in conductivity compared to the conductive paste obtained in the examples. Met.
  • an electrolytic copper powder having an average particle size of 30.5 ⁇ m (trade name: electrolytic copper powder Cu-300, manufactured by Nexel Japan) was applied to a high-pressure jet airflow swirl vortex jet mill (manufactured by Tokusu Kogakusha Co., Ltd., NJ Nanogrine) Using a Ding mill NJ-30), spherical copper powder was prepared by grinding and pulverizing by performing 8 passes at an air flow rate of 200 liters / minute, a grinding pressure of 10 kg / cm 2 and about 400 g / hour. The obtained spherical copper powder was observed by SEM with a field of view of 5,000 times magnification and confirmed to be granular. Moreover, the average particle diameter (D50) of the spherical copper powder was 5.6 ⁇ m.
  • the obtained spherical copper powder was coated with Ni on the surface of the copper powder by electroless plating in the same manner as shown in Example 22. And when spherical Ni coat copper powder after electroless plating was collect
  • the obtained spherical Ni-coated copper powder had an average particle size (D50) of 5.8 ⁇ m and a bulk density of 3.83 g / cm 3 . Further, the BET specific surface area was 0.16 m 2 / g.
  • this spherical Ni-coated copper powder was mixed with 15 g of a phenol resin (PLE 2211, manufactured by Gunei Chemical Co., Ltd.) and 10 g of butyl cellosolve (manufactured by Kanto Chemical Co., Ltd., deer special grade), and a small kneader.
  • a non-bubbling kneader NBK-1 manufactured by Nippon Seiki Seisakusho Co., Ltd.
  • kneading at 1200 rpm for 3 minutes was repeated three times to form a paste.
  • the copper powder was uniformly dispersed in the resin without agglomeration.
  • the obtained conductive paste was printed on glass with a metal squeegee and cured at 200 ° C. for 30 minutes in the air atmosphere.
  • the specific resistance value of the film obtained by curing is 8.2 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, which is extremely high in specific resistance value and inferior in conductivity compared to the conductive paste obtained in the examples. Met.
  • the electromagnetic shielding characteristics were evaluated by measuring the attenuation rate using an electromagnetic wave having a frequency of 1 GHz. Specifically, the level of Comparative Example 6 that does not use dendritic Ni-coated copper powder is set as “ ⁇ ”, and the level worse than the level of Comparative Example 6 is set as “X”. The case where it was better than the level was evaluated as “ ⁇ ”, and the case where it was superior was evaluated as “ ⁇ ”. Table 2 shows the results.
  • Example 34 ⁇ Preparation of electrolytic copper powder> An electrolytic cell with a capacity of 100 L is used with a titanium electrode plate having an electrode area of 200 mm ⁇ 200 mm as a cathode and a copper electrode plate with an electrode area of 200 mm ⁇ 200 mm as an anode, and an electrolytic solution is charged into the electrolytic cell. Then, a direct current was applied thereto to deposit copper powder on the cathode plate.
  • the electrolytic solution a composition having a copper ion concentration of 10 g / L and a sulfuric acid concentration of 125 g / L was used.
  • safranin manufactured by Kanto Chemical Co., Inc.
  • a hydrochloric acid solution manufactured by Wako Pure Chemical Industries, Ltd.
  • the current density of the cathode is 18 A / dm 2 under the condition that the temperature is maintained at 25 ° C. while circulating the electrolytic solution whose concentration is adjusted as described above at a flow rate of 15 L / min using a metering pump.
  • the electrolytic copper powder deposited on the cathode plate was recovered by mechanically scraping it off the bottom of the electrolytic cell using a scraper, and the recovered copper powder was washed with pure water and then put in a vacuum dryer and dried. .
  • the deposited copper powder was a main chain that grew linearly and the main trunk. It was a dendritic copper powder having a two-dimensional or three-dimensional dendritic shape having a plurality of branches branched linearly from and branches further branched from the branches.
  • nickel sulfate 20 g / L, sodium hypophosphite 25 g / L, sodium acetate 10 g / L, sodium citrate 10 g / L are added at each concentration, and sodium hydroxide is further added.
  • 500 mL of a plating solution adjusted to pH 5.0 by adding the above was prepared.
  • Ni-coated copper powder in which the surface of the dendritic copper powder was coated with Ni alloy containing phosphorus (P) was obtained.
  • Ni-coated copper powder was recovered and the Ni content was measured, it was 13.5% by mass with respect to 100% by mass of the entire Ni-coated copper powder.
  • content of P contained in Ni alloy was 8.2 mass% with respect to 100 mass of Ni alloy.
  • Ni-coated copper powder As a result of observing the obtained Ni-coated copper powder with a field of view of 5,000 times by SEM, at least 90% by number or more of Ni-coated copper powder is uniformly on the surface of the dendritic copper powder before Ni coating.
  • the copper particles constituting the main trunk and branches of the dendritic Ni-coated copper powder had a flat plate shape with an average cross-sectional thickness of 0.42 ⁇ m, and the copper particles were formed into a dendritic shape. .
  • the average particle diameter (D50) of the dendritic Ni-coated copper powder was 25.1 ⁇ m.
  • the bulk density of the obtained dendritic Ni-coated copper powder was 0.53 g / cm 3 .
  • the BET specific surface area was 0.82 m ⁇ 2 > / g.
  • the specific resistance value of the film obtained by curing was 8.8 ⁇ 10 ⁇ 5 ⁇ ⁇ cm, and it was found that excellent conductivity was exhibited.
  • Example 35 ⁇ Preparation of electrolytic copper powder>
  • a composition having a copper ion concentration of 10 g / L and a sulfuric acid concentration of 125 g / L is used, and safranin is added to the electrolytic solution so that the concentration in the electrolytic solution is 150 mg / L.
  • an electrolytic copper powder dendritic copper powder
  • a hydrochloric acid solution was added so that the chloride ion concentration in the electrolytic solution was 100 mg / L. It was.
  • nickel sulfate 30 g / L nickel sulfate 30 g / L, sodium succinate 50 g / L, boric acid 30 g / L, ammonium chloride 30 g / L, dimethylamine borane 4 g / L were added at each concentration, Further, 500 mL of a plating solution adjusted to pH 6.0 by adding sodium hydroxide was prepared.
  • Ni-coated copper powder in which the surface of the dendritic copper powder was coated with Ni alloy was obtained.
  • the Ni-coated copper powder was recovered and the Ni content was measured, it was 18.8% by mass with respect to 100% by mass of the entire Ni-coated copper powder.
  • the content of boron (B) contained in the Ni alloy was 6.4% by mass with respect to 100% by mass of the Ni alloy.
  • Ni-coated copper powder having a Ni-coated two-dimensional or three-dimensional dendritic shape the main trunk growing linearly, a plurality of branches linearly branching from the main trunk, and further from the branches Furthermore, it was a dendritic Ni-coated copper powder having a dendritic shape having branched branches.
  • the copper particles constituting the main trunk and branches of the dendritic Ni-coated copper powder had a flat plate shape with an average cross-sectional thickness of 0.23 ⁇ m. Moreover, the average particle diameter (D50) of this dendritic Ni coat copper powder was 9.4 micrometers.
  • the bulk density of the obtained dendritic Ni-coated copper powder copper powder was 0.53 g / cm 3 .
  • the BET specific surface area was 1.94 m 2 / g.
  • the specific resistance value of the film obtained by curing was 8.4 ⁇ 10 ⁇ 5 ⁇ ⁇ cm, and it was found that excellent conductivity was exhibited.
  • Example 36 ⁇ Production of dendritic Ni-coated copper powder (reducing agent: hydrazine compound)> Using 100 g of the dendritic copper powder obtained in Example 35, Ni was coated on the surface of the copper powder by electroless Ni plating to prepare a Ni-coated copper powder. Electroless Ni plating using a hydrazine compound as a reducing agent was performed.
  • nickel acetate was added to a slurry in which 100 g of the dendritic copper powder obtained in Example 35 was dispersed in 500 mL of water to a concentration of 12.4 g / L, and an 80% by mass aqueous solution of hydrazine monohydrate. 6 g was added dropwise into the bath with slow stirring over 60 minutes. At this time, the bath temperature was controlled to 60 ° C.
  • Ni-coated copper powder in which the surface of the dendritic copper powder was coated with Ni was obtained.
  • the Ni-coated copper powder was recovered and the Ni content was measured, it was 7.6% by mass with respect to 100% by mass of the entire Ni-coated copper powder.
  • Ni-coated copper powder As a result of observing the obtained Ni-coated copper powder with a field of view of 5,000 times by SEM, at least 90% by number or more of Ni-coated copper powder is uniformly on the surface of the dendritic copper powder before Ni coating.
  • the copper particles constituting the main trunk and branches of the dendritic Ni-coated copper powder had a flat plate shape with an average cross-sectional thickness of 0.23 ⁇ m. Moreover, the average particle diameter (D50) of this dendritic Ni coat copper powder was 9.6 micrometers.
  • the bulk density of the obtained dendritic Ni-coated copper powder was 0.52 g / cm 3 .
  • the BET specific surface area was 1.98 m ⁇ 2 > / g.
  • the specific resistance value of the film obtained by curing was 6.2 ⁇ 10 ⁇ 5 ⁇ ⁇ cm, and it was found that the film exhibited excellent conductivity.
  • nickel acetate was added to a slurry in which 100 g of the dendritic copper powder obtained in Example 35 was dispersed in 500 mL of water to a concentration of 12.4 g / L, and hydrazine 3. 2 g was added dropwise into the bath over 60 minutes with slow stirring. The bath temperature was controlled to 60 ° C.
  • each metal compound was added to a bath containing a copper powder slurry and nickel acetate, and hydrazine was gradually added so that each desired Ni alloy film was formed.
  • the metal compound 1.5 g of sodium tungstate was added to form a Ni—W alloy film.
  • Example 38 2 g of cobalt sulfate was added to form a Ni—Co alloy film.
  • Example 39 4 g each of zinc sulfate heptahydrate and sodium citrate were added to form a Ni—Zn alloy coating.
  • 2 g of palladium chloride was added to form a Ni—Pd alloy film.
  • Example 41 2 g of potassium tetrachloroplatinate and 1 g of glycine were added to form a Ni—Pt alloy film.
  • Example 42 1 g of each of sodium molybdate and trisodium citrate was added to form a Ni—Mo alloy film.
  • Example 43 1 g of sodium stannate was added to form a Ni—Sn alloy film.
  • Ni-coated copper powder in which the surface of the dendritic copper powder was coated with Ni was obtained.
  • the Ni-coated copper powder was recovered and the Ni alloy coating amount was measured. Table 3 shows the results of measuring the content of Ni with respect to 100% by mass of the entire Ni-coated copper powder and the content of elements that become Ni alloys with respect to 100% by mass of the Ni alloy.
  • Ni-coated copper powder having a two-dimensional or three-dimensional dendritic shape in which Ni is uniformly coated on the surface of the main body, and a plurality of linearly branched main trunks and a plurality of linear branches from the main trunk
  • the dendritic Ni-coated copper powder had a dendritic shape having a branch and a branch further branched from the branch.
  • Table 3 shows the result of measuring the specific resistance value of the coating obtained by curing. As shown in Table 3, it was found that all the coating films showed excellent conductivity.
  • Example 44 ⁇ Manufacture of dendritic Ni-coated copper powder (hypophosphite + tungsten compound)>
  • 100 g of the dendritic copper powder prepared in Example 34 was used, and the copper powder surface was coated with a Ni alloy by electroless plating.
  • electroless Ni plating solution a plating solution containing hypophosphite as the same reducing agent as in Example 1 was used, and a metal other than Ni was added to the plating solution to produce a Ni alloy.
  • an electroless Ni plating solution a plating solution in which nickel sulfate 20 g / L, sodium hypophosphite 25 g / L, sodium acetate 10 g / L, and sodium citrate 10 g / L are added at each concentration, 500 g of a plating solution prepared by adding 1.5 g of sodium tungstate and adjusting the pH to 5.0 by adding sodium hydroxide was prepared.
  • Ni-coated copper powder coated with a Ni—WP alloy was obtained.
  • Ni-coated copper powder was recovered and the Ni content was measured, it was 12.4% by mass with respect to 100% by mass of the entire Ni-coated copper powder.
  • the content of P contained in the Ni alloy was 7.4% by mass with respect to 100% by mass of the Ni alloy.
  • content of W contained in Ni alloy was 5.4 mass% with respect to 100 mass of Ni alloy.
  • Ni-coated copper powder As a result of observing the obtained Ni-coated copper powder with a field of view at a magnification of 5,000 by SEM, at least 90% Ni-coated copper powder is uniformly Ni alloy on the surface of the dendritic copper powder before Ni coating.
  • the copper particles constituting the main trunk and branches of the dendritic Ni-coated copper powder had a flat plate shape with an average cross-sectional thickness of 0.43 ⁇ m, and the copper particles were formed into a dendritic shape. .
  • the average particle diameter (D50) of the dendritic Ni-coated copper powder was 25.6 ⁇ m.
  • the bulk density of the obtained dendritic Ni-coated copper powder was 1.87 g / cm 3 .
  • the BET specific surface area was 0.88 m ⁇ 2 > / g.
  • the specific resistance value of the film obtained by curing was 9.8 ⁇ 10 ⁇ 5 ⁇ ⁇ cm, and it was found that excellent conductivity was exhibited.
  • Example 45 ⁇ Preparation of electrolytic copper powder>
  • a composition having a copper ion concentration of 5 g / L and a sulfuric acid concentration of 150 g / L was used, and safranin was added to the electrolytic solution so that the concentration in the electrolytic solution was 100 mg / L.
  • an electrolytic copper powder (dendritic copper powder) was deposited on the cathode plate under the same conditions as in Example 34 except that a hydrochloric acid solution was added so that the chloride ion concentration in the electrolytic solution was 10 mg / L. It was.
  • Ni-coated copper powder in which Ni alloy containing P was coated on the surface of dendritic copper powder was obtained.
  • Ni-coated copper powder was recovered and the Ni content was measured, it was 13.1% by mass with respect to 100% by mass of the entire Ni-coated copper powder.
  • the content of P contained in the Ni alloy was 8.6% by mass with respect to 100% by mass of the Ni alloy.
  • the copper particles constituting the main trunk and branches of the dendritic Ni-coated copper powder had a flat plate shape with an average cross-sectional thickness of 3.7 ⁇ m, and the copper particles were formed into a dendritic shape. .
  • the average particle diameter (D50) of the dendritic Ni-coated copper powder was 61.8 ⁇ m.
  • the bulk density of the obtained dendritic Ni-coated copper powder was 3.2 g / cm 3 .
  • the BET specific surface area was 1.02 m 2 / g.
  • the specific resistance value of the film obtained by curing was 9.2 ⁇ 10 ⁇ 5 ⁇ ⁇ cm, and it was found that excellent electrical conductivity was exhibited.
  • Example 46 The dendritic Ni-coated copper powder produced in Example 34 was dispersed in a resin to obtain an electromagnetic wave shielding material.
  • the preparation of the dendritic copper powder for producing the dendritic Ni-coated copper powder, and the conditions until the dendritic copper powder is coated with a Ni alloy to produce the dendritic Ni-coated copper powder are described in the Examples. 1, the Ni content of the dendritic Ni-coated copper powder is 13.5% by mass with respect to 100% by mass of the entire dendritic Ni-coated copper powder, and the content of P contained in the Ni alloy The amount of dendritic Ni-coated copper powder was 8.2% by mass with respect to 100% by mass of the Ni alloy.
  • a 40 g of this dendritic Ni-coated copper powder was mixed with 100 g of vinyl chloride resin and 200 g of methyl ethyl ketone, and paste was made by repeating kneading at 1200 rpm for 3 minutes three times using a small kneader. During pasting, the copper powder was uniformly dispersed in the resin without agglomeration. This was coated and dried using a Mayer bar on a substrate made of a transparent polyethylene terephthalate sheet having a thickness of 100 ⁇ m to form an electromagnetic wave shielding layer having a thickness of 25 ⁇ m.
  • the electromagnetic shielding characteristics were evaluated by measuring the attenuation rate using an electromagnetic wave having a frequency of 1 GHz. Table 3 shows these results.
  • Example 47 The dendritic Ni-coated copper powder produced in Example 38 was dispersed in a resin to obtain an electromagnetic wave shielding material. The preparation of the dendritic copper powder for producing the dendritic Ni-coated copper powder, and the conditions until the dendritic copper powder is coated with a Ni alloy to produce the dendritic Ni-coated copper powder are described in the Examples. 38.
  • the Ni content of the dendritic Ni-coated copper powder is 12.4% by mass with respect to 100% by mass of the entire dendritic Ni-coated copper powder, and the content of P contained in the Ni alloy
  • the dendritic Ni-coated copper powder is 7.4% by mass with respect to 100% by mass of the Ni alloy, and the W content in the Ni alloy is 5.4% by mass with respect to 100% by mass of the Ni alloy. used.
  • a 40 g of this dendritic Ni-coated copper powder was mixed with 100 g of vinyl chloride resin and 200 g of methyl ethyl ketone, and paste was made by repeating kneading at 1200 rpm for 3 minutes three times using a small kneader. During pasting, the copper powder was uniformly dispersed in the resin without agglomeration. This was coated and dried using a Mayer bar on a substrate made of a transparent polyethylene terephthalate sheet having a thickness of 100 ⁇ m to form an electromagnetic wave shielding layer having a thickness of 25 ⁇ m.
  • the electromagnetic shielding characteristics were evaluated by measuring the attenuation rate using an electromagnetic wave having a frequency of 1 GHz. Table 3 shows these results.
  • Example 48 The dendritic Ni-coated copper powder produced in Example 45 was dispersed in a resin to obtain an electromagnetic wave shielding material.
  • the preparation of the dendritic copper powder for producing the dendritic Ni-coated copper powder, and the conditions until the dendritic copper powder is coated with a Ni alloy to produce the dendritic Ni-coated copper powder are described in the Examples. 45.
  • the Ni content of the dendritic Ni-coated copper powder is 13.1% by mass with respect to 100% by mass of the entire dendritic Ni-coated copper powder, and the content of P contained in the Ni alloy
  • the amount of dendritic Ni-coated copper powder was 8.6% by mass with respect to 100% by mass of the Ni alloy.
  • a 40 g of this dendritic Ni-coated copper powder was mixed with 100 g of vinyl chloride resin and 200 g of methyl ethyl ketone, and paste was made by repeating kneading at 1200 rpm for 3 minutes three times using a small kneader. During pasting, the copper powder was uniformly dispersed in the resin without agglomeration. This was coated and dried using a Mayer bar on a substrate made of a transparent polyethylene terephthalate sheet having a thickness of 100 ⁇ m to form an electromagnetic wave shielding layer having a thickness of 25 ⁇ m.
  • the electromagnetic shielding characteristics were evaluated by measuring the attenuation rate using an electromagnetic wave having a frequency of 1 GHz. Table 3 shows these results.
  • Example 49 Spherical Ni-coated copper powder was mixed with the dendritic Ni-coated copper powder prepared in Example 34, and these were dispersed in a resin to obtain an electromagnetic wave shielding material.
  • the preparation of the dendritic copper powder for producing the dendritic Ni-coated copper powder, and the conditions until the dendritic copper powder is coated with a Ni alloy to produce the dendritic Ni-coated copper powder are described in the Examples. 34, and the Ni content of the dendritic Ni-coated copper powder is 13.5% by mass with respect to 100% by mass of the entire dendritic Ni-coated copper powder, and the content of P contained in the Ni alloy The amount of dendritic Ni-coated copper powder was 8.2% by mass with respect to 100% by mass of the Ni alloy.
  • the spherical Ni-coated copper powder uses a granular atomized copper powder (manufactured by Mekin Metal Powders Co., Ltd.) having an average particle size of 7.9 ⁇ m, and Ni is coated in the same manner as in Example 34 to form a spherical Ni-coated copper powder.
  • the Ni content of the spherical Ni-coated copper powder is 12.8% by mass with respect to 100% by mass of the entire Ni-coated copper powder, and the content of P contained in the Ni alloy is 100% by mass of the Ni alloy.
  • Spherical Ni-coated copper powder having a mass of 8.8% by mass was used.
  • 15 g of dendritic Ni-coated copper powder and 25 g of spherical Ni-coated copper powder are mixed with 100 g of vinyl chloride resin and 200 g of methyl ethyl ketone, and mixed at 1200 rpm for 3 minutes using a small kneader.
  • Paste was made by repeating smelting three times. During pasting, the copper powder was uniformly dispersed in the resin without agglomeration. This was coated and dried using a Mayer bar on a substrate made of a transparent polyethylene terephthalate sheet having a thickness of 100 ⁇ m to form an electromagnetic wave shielding layer having a thickness of 25 ⁇ m.
  • the electromagnetic shielding characteristics were evaluated by measuring the attenuation rate using an electromagnetic wave having a frequency of 1 GHz. Table 3 shows these results.
  • Example 7 The electrolytic copper powder was deposited on the cathode plate in the same manner as in Example 34, except that the conditions were such that safranin as an additive and chlorine ions were not added to the electrolytic solution. Then, the surface of the obtained electrolytic copper powder was coated with a Ni alloy in the same manner as in Example 34 to obtain a Ni-coated copper powder. When the Ni content of the Ni-coated copper powder was measured, it was 12.6% by mass relative to 100% by mass of the entire Ni-coated copper powder. Moreover, content of P contained in Ni alloy was 7.9 mass% with respect to 100 mass of Ni alloy.
  • FIG. 23 shows the result of observing the shape of the obtained Ni-coated copper powder with a SEM field of view at a magnification of 1,000 times.
  • the obtained Ni-coated copper powder had a dendritic shape but was formed by aggregation of particulate copper. Moreover, it was in the state by which the surface of the copper powder was coat
  • the obtained conductive paste was printed on a glass with a metal squeegee and cured at 200 ° C. for 30 minutes in an air atmosphere.
  • the specific resistance value of the film obtained by curing is 6.7 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, and the specific resistance value is extremely high and inferior in conductivity compared to the conductive paste obtained in the examples. Met.
  • the flat copper powder was prepared by mechanically flattening granular electrolytic copper powder. Specifically, 5 g of stearic acid was added to 500 g of granular atomized copper powder (manufactured by Mekin Metal Powders Co., Ltd.) having an average particle diameter of 7.9 ⁇ m, and flattened with a ball mill. The ball mill was charged with 5 kg of 3 mm zirconia beads, and flattened by rotating for 90 minutes at a rotation speed of 500 rpm.
  • the obtained flat copper powder was coated with Ni in the same manner as in Example 34.
  • the content of Ni in the produced tabular Ni-coated copper powder was 13.8% by mass with respect to 100% by mass of the tabular Ni-coated copper powder.
  • the content of P contained in the Ni alloy was 8.6% by mass with respect to 100% by mass of the Ni alloy.
  • the plate-like Ni-coated copper powder thus produced was measured with a laser diffraction / scattering particle size distribution measuring instrument.
  • the average particle size (D50) was 21.8 ⁇ m, and the cross-section was observed by SEM.
  • the average thickness was 0.4 ⁇ m.
  • the specific resistance value of the film obtained by curing is 2.6 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, which is extremely high in specific resistance value and inferior in conductivity compared to the conductive paste obtained in the examples. Met.
  • Comparative Example 9 Similar to the one used in Comparative Example 8, a Ni-coated copper powder in which Ni was coated on a flat copper powder prepared by mechanically flattening a granular electrolytic copper powder was prepared. And the characteristic of the electromagnetic wave shield by the Ni coat copper powder was evaluated, and compared with the characteristic of the electromagnetic wave shield produced using the dendritic Ni coat copper powder in an Example, the dendritic shape effect was investigated. In addition, content of Ni of the used flat Ni coat copper powder was 13.8 mass% with respect to 100 mass of the flat Ni coat copper powder. The content of P contained in the Ni alloy was 8.6% by mass with respect to 100% by mass of the Ni alloy.
  • the electromagnetic shielding characteristics were evaluated by measuring the attenuation rate using an electromagnetic wave having a frequency of 1 GHz. Specifically, the level of Comparative Example 9 in which no dendritic Ni-coated copper powder is used is “ ⁇ ”, and the level worse than that of Comparative Example 9 is “ ⁇ ”. The case where it was better than the level was evaluated as “ ⁇ ”, and the case where it was superior was evaluated as “ ⁇ ”. Table 3 shows the results.
  • Example 50 ⁇ Preparation of flat copper particle agglomerated powder> An electrolytic cell with a capacity of 100 L is charged with an electrolytic solution in the electrolytic cell using a titanium electrode plate with an electrode area of 200 mm ⁇ 200 mm as a cathode and a copper plate with an electrode area of 200 mm ⁇ 200 mm as an anode. Then, a direct current was passed through this to deposit copper powder on the cathode plate.
  • an electrolytic solution having a composition with a copper ion concentration of 10 g / L and a sulfuric acid concentration of 100 g / L was used.
  • Janus Green B manufactured by Wako Pure Chemical Industries, Ltd.
  • polyethylene glycol having a molecular weight of 2,000 was added.
  • Yakuhin Kogyo Co., Ltd. was added so that the concentration in the electrolyte was 850 mg / L.
  • a hydrochloric acid solution (manufactured by Wako Pure Chemical Industries, Ltd.) was added so that the chloride ion (chlorine ion) concentration in the electrolyte solution was 50 mg / L.
  • the temperature is maintained at 30 ° C. and the current density of the cathode is 25 A / dm 2. Then, copper powder was deposited on the cathode plate.
  • the electrolytic copper powder deposited on the cathode plate was recovered by mechanically scraping it off the bottom of the electrolytic cell using a scraper, and the recovered copper powder was washed with pure water and then put in a vacuum dryer and dried. .
  • the deposited copper powder has a shape in which flat copper particles are aggregated. It was the presented copper powder (flat copper particle aggregated powder).
  • the flat copper particles have an average cross-sectional thickness of 0.3 ⁇ m, and an average major axis diameter (equivalent to the diameter indicated by “d” in the schematic diagram of FIG. 1) is 2.7 ⁇ m. there were.
  • size of the tabular copper particle aggregated powder which the aggregate of the tabular copper particle became the aggregate was the average particle diameter (D50) measured with the laser diffraction and the scattering method particle size distribution measuring device 7.9 micrometer. Met.
  • Ni-coated copper particle aggregated powder (reducing agent: hypophosphite)
  • reducing agent hypophosphite
  • Ni was coated on the surface of the copper powder by electroless Ni plating using the tabular copper particle aggregated powder prepared by the above-described method to prepare a Ni-coated copper powder.
  • An electroless Ni plating solution that is a reducing agent hypophosphite was used.
  • nickel sulfate 20 g / L, sodium hypophosphite 25 g / L, sodium acetate 10 g / L, sodium citrate 10 g / L are added at each concentration, and sodium hydroxide is further added.
  • 500 mL of a plating solution adjusted to pH 5.0 by adding the above was prepared.
  • a slurry obtained by dispersing 100 g of tabular copper particle agglomerated powder prepared in the above-described method in 100 mL of water is stirred for 10 minutes at 25 ° C., and then the bath temperature is heated to 90 ° C. And stirred for 60 minutes.
  • Ni-coated copper powder in which Ni alloy containing phosphorus (P) was coated on the surface of the tabular copper particle aggregated powder was obtained.
  • Ni-coated copper powder was recovered and the Ni content was measured, it was 13.4% by mass with respect to 100% by mass of the entire Ni-coated copper powder.
  • the content of P contained in the Ni alloy was 7.8% by mass with respect to 100% by mass of the Ni alloy.
  • Ni-coated copper powder was uniformly coated with the Ni alloy on the surface of the copper powder before being coated with the Ni alloy.
  • a flat Ni-coated copper particle aggregated powder having a shape of agglomerated powder in which a plurality of Ni-coated copper particles having a flat plate shape are aggregated to form an aggregate.
  • the shape was the same as the flat copper particle aggregated powder before coating the Ni alloy.
  • the plate-like Ni-coated copper particles constituting the Ni-coated copper powder have a plate-like shape with a cross-sectional thickness (cross-sectional average thickness) of 0.3 ⁇ m, and the size is the average major axis diameter (see FIG. (Diameter indicated by “d” in the schematic diagram of FIG. 1) was 2.7 ⁇ m.
  • the size of the aggregated copper powder formed by aggregating a plurality of the flat plate-like Ni-coated copper particles into an aggregate is 7.9 ⁇ m in average particle diameter (D50). The same value as the flat copper particle aggregated powder before coating was shown.
  • the tap density of the obtained Ni-coated copper powder was 2.9 g / cm 3 .
  • the BET specific surface area was 2.5 m 2 / g.
  • Example 51 ⁇ Preparation of flat copper particle agglomerated powder> An electrolytic solution having a copper ion concentration of 8 g / L and a sulfuric acid concentration of 110 g / L is used, and Janus Green B as an additive is added to the electrolytic solution to a concentration of 160 mg / L in the electrolytic solution. Further, polyethylene glycol having a molecular weight of 2,000 (manufactured by Wako Pure Chemical Industries, Ltd.) was added so that the concentration in the electrolytic solution was 800 mg / L. Further, a hydrochloric acid solution was added so that the chloride ion concentration in the electrolytic solution was 125 mg / L.
  • Example 50 While circulating the electrolyte adjusted to the concentration as described above at a flow rate of 20 L / min using a pump, the temperature is maintained at 35 ° C. and the current density of the cathode is 30 A / dm 2. Except for these, copper powder was deposited on the cathode plate in the same manner as in Example 50.
  • the deposited copper powder was a copper powder (plate copper particle aggregated powder) having a shape in which flat copper particles were aggregated. It was.
  • the tabular copper particles had an average cross-sectional thickness of 0.2 ⁇ m and an average major axis diameter of 3.8 ⁇ m.
  • the size of the agglomerated copper powder in which a plurality of tabular copper particles aggregated to form an aggregate was 12.9 ⁇ m in terms of the average particle diameter (D50) measured with a laser diffraction / scattering particle size distribution analyzer. .
  • nickel sulfate 30 g / L nickel sulfate 30 g / L, sodium succinate 50 g / L, boric acid 30 g / L, ammonium chloride 30 g / L, dimethylamine borane 4 g / L are added at each concentration. Further, 500 mL of a plating solution adjusted to pH 6.0 by adding sodium hydroxide was prepared.
  • Ni-coated copper powder in which the surface of the tabular copper particle aggregated powder was coated with Ni alloy was obtained.
  • the content of B contained in the Ni alloy was 6.5% by mass with respect to 100% by mass of the Ni alloy.
  • the Ni-coated copper powder was uniformly coated with the Ni alloy on the surface of the copper powder before being coated with the Ni alloy.
  • the Ni-coated copper particles were in the form of agglomerated powder formed by aggregating a plurality of Ni-coated copper particles in which the shape of the Ni-coated copper particles was flat.
  • the Ni-coated copper powder produced had a thin Ni alloy coating thickness
  • the shape was the same as the flat copper particle aggregated powder before coating the Ni alloy.
  • the plate-like Ni-coated copper particles had a plate shape with a cross-sectional thickness (average cross-sectional thickness) of 0.2 ⁇ m, and the size thereof had an average major axis diameter of 3.8 ⁇ m.
  • the size of the aggregated copper powder formed by aggregating a plurality of the flat Ni-coated copper particles into an aggregate is 12.9 ⁇ m in terms of the average particle diameter (D50). The same value as the flat copper particle aggregated powder before coating was shown.
  • the tap density of the obtained Ni-coated copper powder was 3.8 g / cm 3 .
  • the BET specific surface area was 1.8 m 2 / g.
  • Example 52 ⁇ Preparation of flat copper particle agglomerated powder>
  • an electrode plate made of titanium having an electrode area of 200 mm ⁇ 200 mm is used as a cathode, and a copper electrode plate having an electrode area of 200 mm ⁇ 200 mm is used as an anode, and an electrolytic solution is loaded in the electrolytic cell. Then, a direct current was applied thereto to deposit copper powder on the cathode plate.
  • the electrolytic solution a composition having a copper ion concentration of 10 g / L and a sulfuric acid concentration of 125 g / L was used.
  • Janus Green B manufactured by Wako Pure Chemical Industries, Ltd.
  • polyethylene glycol having a molecular weight of 2,000 Yakuhin Kogyo Co., Ltd.
  • a hydrochloric acid solution manufactured by Wako Pure Chemical Industries, Ltd. was added so that the chlorine ion concentration in the electrolytic solution was 50 mg / L.
  • the temperature is maintained at 30 ° C. and the current density of the cathode is 25 A / dm 2. Then, copper powder was deposited on the cathode plate.
  • the electrolytic copper powder deposited on the cathode plate was recovered by mechanically scraping it off the bottom of the electrolytic cell using a scraper, and the recovered copper powder was washed with pure water and then put in a vacuum dryer and dried. .
  • the deposited copper powder has a shape in which flat copper particles are aggregated. It was the exhibited copper powder (plate-like copper particle aggregated powder).
  • the tabular copper particles have a cross-sectional thickness (average cross-sectional thickness) of 0.1 ⁇ m and an average major axis diameter (equivalent to the diameter indicated by “d” in the schematic diagram of FIG. 15).
  • d the diameter indicated by “d” in the schematic diagram of FIG. 15.
  • the size of the agglomerated copper powder in which a plurality of the tabular copper particles were aggregated to form an aggregate was 7.1 ⁇ m as an average particle diameter (D50) measured with a laser diffraction / scattering particle size distribution analyzer. .
  • nickel acetate was added to a slurry in which 100 g of the tabular copper particle aggregated powder obtained in Example 51 was dispersed in 500 mL of water to a concentration of 12.4 g / L, and hydrazine monohydrate 80 mass. 6 g of a% aqueous solution was added dropwise to the bath over 60 minutes with slow stirring. At this time, the bath temperature was controlled to 60 ° C.
  • Ni-coated copper powder in which Ni was coated on the surface of the tabular copper particle aggregated powder was obtained.
  • the Ni-coated copper powder was recovered and the Ni content was measured, it was 7.5% by mass with respect to 100% by mass of the entire Ni-coated copper powder.
  • the Ni-coated copper powder was uniformly coated with the Ni alloy on the surface of the copper powder before being coated with the Ni alloy.
  • the shape of the agglomerated powder was formed by aggregating a plurality of Ni-coated copper particles having a flat plate shape.
  • the shape was the same as the flat copper particle aggregated powder before coating the Ni alloy.
  • the plate-like Ni-coated copper particles constituting the Ni-coated copper powder have a plate-like shape with a cross-sectional thickness (cross-sectional average thickness) of 0.1 ⁇ m, and the size is an average major axis diameter (see FIG. 15) (diameter indicated by “d” in the schematic diagram) was 2.9 ⁇ m.
  • the size of the aggregated copper powder formed by aggregating a plurality of the flat plate-like Ni-coated copper particles into an aggregate is 7.1 ⁇ m in terms of the average particle diameter (D50). The same value as the flat copper particle aggregated powder before coating was shown.
  • the tap density of the obtained Ni-coated copper powder was 2.8 g / cm 3 .
  • the BET specific surface area was 2.4 m 2 / g.
  • Example 53 ⁇ Manufacture of flat Ni-coated copper particle agglomerated powder (Ni alloy)> Using 100 g of the tabular copper particle aggregate powder obtained in Example 52, the surface of the copper powder was coated with a Ni alloy by electroless plating.
  • nickel acetate was added to a slurry in which 100 g of the tabular copper particle aggregate powder obtained in Example 52 was dispersed in 500 mL of water to a concentration of 12.4 g / L, and hydrazine was added. 3.2 g was added dropwise into the bath over 60 minutes with slow stirring. The bath temperature was controlled to 60 ° C.
  • each metal compound was added to a bath containing a copper powder slurry and nickel acetate, and hydrazine was gradually added so that each desired Ni alloy film was formed.
  • the metal compound in Example 53, 1.5 g of sodium tungstate was added to form a Ni—W alloy film.
  • Example 54 2 g of cobalt sulfate was added to form a Ni—Co alloy film.
  • Example 55 4 g each of zinc sulfate heptahydrate and sodium citrate were added to form a Ni—Zn alloy film.
  • 2 g of palladium chloride was added to form a Ni—Pd alloy film.
  • Example 57 2 g of potassium tetrachloroplatinate and 1 g of glycine were added to form a Ni—Pt alloy film.
  • Example 58 1 g each of sodium molybdate and trisodium citrate was added to form a Ni—Mo alloy coating.
  • Example 59 1 g of sodium stannate was added to form a Ni—Sn alloy film.
  • Ni-coated copper powder with Ni coated on the surface of the tabular copper particles was obtained.
  • the Ni-coated copper powder was recovered and the Ni alloy coating amount was measured.
  • Table 4 shows the results of measuring the content of Ni with respect to 100% by mass of the entire Ni-coated copper powder and the content of elements that become Ni alloys with respect to 100% by mass of the Ni alloy.
  • the Ni coating in which the Ni alloy was uniformly coated on the surface of the copper powder before coating the Ni alloy was a copper powder and was a flat Ni-coated copper particle aggregated powder in the form of an aggregated powder in which a plurality of Ni-coated copper particles having a flat plate shape were aggregated to form an aggregate.
  • Example 60 ⁇ Production of flat Ni-coated copper particle aggregated powder (hypophosphite + tungsten compound)>
  • Ni alloy coating was performed on the surface of the copper powder by electroless plating using 100 g of the tabular copper particle aggregate powder prepared in Example 1.
  • electroless Ni plating solution a plating solution containing hypophosphite as the same reducing agent as in Example 1 was used, and a metal other than Ni was added to the plating solution to produce a Ni alloy.
  • an electroless Ni plating solution a plating solution in which nickel sulfate 20 g / L, sodium hypophosphite 25 g / L, sodium acetate 10 g / L, and sodium citrate 10 g / L are added at each concentration, 500 g of a plating solution prepared by adding 1.5 g of sodium tungstate and adjusting the pH to 5.0 by adding sodium hydroxide was prepared.
  • Ni-coated copper powder coated with a Ni—WP alloy was obtained.
  • Ni-coated copper powder was recovered and the Ni content was measured, it was 12.5% by mass with respect to 100% by mass of the entire Ni-coated copper powder.
  • content of P contained in Ni alloy was 7.3 mass% with respect to 100 mass of Ni alloy.
  • the content of W contained in the Ni alloy was 5.2% by mass with respect to 100% by mass of the Ni alloy.
  • Ni-coated copper powder was uniformly coated with the Ni alloy on the surface of the copper powder before being coated with the Ni alloy.
  • a flat Ni-coated copper particle aggregated powder having a shape of agglomerated powder in which a plurality of Ni-coated copper particles having a flat plate shape are aggregated to form an aggregate.
  • the shape was the same as the flat copper particle aggregated powder before coating the Ni alloy.
  • the plate-like Ni-coated copper particles constituting the Ni-coated copper powder have a plate-like shape with a cross-sectional thickness (cross-sectional average thickness) of 0.3 ⁇ m, and the size is the average major axis diameter (see FIG. 15) (diameter indicated by “d” in the schematic diagram) was 2.7 ⁇ m.
  • the size of the aggregated copper powder formed by aggregating a plurality of the flat Ni-coated copper particles into an aggregate is 7.2 ⁇ m in terms of the average particle diameter (D50). The same value as the flat copper particle aggregated powder before coating was shown.
  • the tap density of the obtained Ni-coated copper powder was 2.9 g / cm 3 .
  • the BET specific surface area was 2.5 m 2 / g.
  • Example 61 15 g of a phenolic resin (manufactured by Gunei Chemical Co., Ltd., PL-2211) and 10 g of butyl cellosolve (manufactured by Kanto Chemical Co., Ltd., deer special grade) are mixed with 30 g of the tabular Ni-coated copper particle aggregated powder obtained in Example 50. Using a small kneader (manufactured by Nippon Seiki Seisakusho, non-bubbling kneader NBK-1), kneading at 1200 rpm for 3 minutes was repeated three times to form a paste. The obtained conductive paste was printed on glass with a metal squeegee and cured at 200 ° C. for 30 minutes in an air atmosphere.
  • a phenolic resin manufactured by Gunei Chemical Co., Ltd., PL-2211
  • butyl cellosolve manufactured by Kanto Chemical Co., Ltd., deer special grade
  • the specific resistance value of the film obtained by curing was 8.3 ⁇ 10 ⁇ 5 ⁇ ⁇ cm, and it was found that the film exhibited excellent conductivity. Table 4 shows these results.
  • Example 62 20 g of a phenolic resin (manufactured by Gunei Chemical Co., Ltd., PL-2211) and 10 g of butyl cellosolve (manufactured by Kanto Kagaku Co., Ltd., deer special grade) are mixed with 30 g of the tabular Ni-coated copper particle aggregated powder obtained in Example 51. Using a small kneader (manufactured by Nippon Seiki Seisakusho, non-bubbling kneader NBK-1), the mixture was kneaded at 1200 rpm for 3 minutes three times to make a paste. The obtained conductive paste was printed on glass with a metal squeegee and cured at 200 ° C. for 30 minutes in an air atmosphere.
  • a phenolic resin manufactured by Gunei Chemical Co., Ltd., PL-2211
  • butyl cellosolve manufactured by Kanto Kagaku Co., Ltd., deer special grade
  • the specific resistance value of the film obtained by curing was 8.9 ⁇ 10 ⁇ 5 ⁇ ⁇ cm, and it was found that excellent conductivity was exhibited. Table 4 shows these results.
  • Example 63 The tabular Ni-coated copper particle aggregate powder produced in Example 50 was dispersed in a resin to obtain an electromagnetic wave shielding material.
  • the electromagnetic shielding characteristics were evaluated by measuring the attenuation rate using an electromagnetic wave having a frequency of 1 GHz. Table 4 shows these results.
  • the obtained copper powder is a copper powder having a dendritic shape, and in the examples It was not a shape in which flat pieces were aggregated like the obtained copper powder.
  • Ni-coated copper powder (reducing agent: hypophosphite)> Next, Ni coat copper powder was produced using the obtained copper powder.
  • nickel sulfate 20 g / L, sodium hypophosphite 25 g / L, sodium acetate 10 g / L, sodium citrate 10 g / L are added at each concentration, and sodium hydroxide is further added.
  • 500 mL of a plating solution adjusted to pH 5.0 by adding the above was prepared.
  • Ni-coated copper powder in which a Ni alloy containing P was coated on the surface of the copper powder was obtained.
  • Ni-coated copper powder was recovered and the Ni content was measured, it was 13.7% by mass with respect to 100% by mass of the entire Ni-coated copper powder.
  • content of P contained in Ni alloy was 7.9 mass% with respect to 100 mass of Ni alloy.
  • FIG. 24 shows the result of observing the shape of the obtained Ni-coated copper powder with a SEM field of view at a magnification of 5,000 times.
  • the obtained Ni-coated copper powder is a copper powder having a dendritic shape, and the surface of the copper powder before being coated with the Ni alloy is uniformly coated with the Ni alloy. It is. It was not a shape in which flat pieces were aggregated like the copper powder obtained in the examples.
  • the average particle size (D50) of this Ni-coated copper powder was 17.6 ⁇ m.
  • Ni-coated copper powder 55 parts by mass of the obtained Ni-coated copper powder was mixed with 15 parts by mass of phenol resin (manufactured by Gunei Chemical Co., Ltd., PL-2211) and 10 parts by mass of butyl cellosolve (manufactured by Kanto Chemical Co., Ltd., deer special grade).
  • phenol resin manufactured by Gunei Chemical Co., Ltd., PL-2211
  • butyl cellosolve manufactured by Kanto Chemical Co., Ltd., deer special grade.
  • kneader manufactured by Nippon Seiki Seisakusho, non-bubbling kneader NBK-1
  • kneading at 1200 rpm for 3 minutes was repeated three times to form a paste.
  • the obtained conductive paste was printed on glass with a metal squeegee and cured at 200 ° C. for 30 minutes in the air atmosphere.
  • the specific resistance value of the film obtained by curing is 68.2 ⁇ 10 ⁇ 5 ⁇ ⁇ cm, which is extremely high in specific resistance value and inferior in conductivity compared to the conductive paste obtained in the examples. Met.
  • the flat copper powder was prepared by mechanically flattening granular electrolytic copper powder. Specifically, 5 g of stearic acid was added to 500 g of granular atomized copper powder (manufactured by Mekin Metal Powders Co., Ltd.) having an average particle size of 5.4 ⁇ m, and flattened with a ball mill. The ball mill was charged with 5 kg of 3 mm zirconia beads and rotated for 90 minutes at a rotation speed of 500 rpm.
  • the average particle diameter was 21.8 ⁇ m.
  • the thickness (cross-sectional average thickness) of the flat copper powder measured by SEM observation was 0.4 ⁇ m.
  • Ni-coated copper powder (reducing agent: borohydride)> Using 100 g of flat copper powder produced by flattening, the surface of the copper powder was coated with Ni by electroless Ni plating.
  • nickel sulfate 30 g / L nickel sulfate 30 g / L, sodium succinate 50 g / L, boric acid 30 g / L, ammonium chloride 30 g / L, dimethylamine borane 4 g / L were added at each concentration, Further, 500 mL of a plating solution adjusted to pH 6.0 by adding sodium hydroxide was prepared.
  • Ni-coated copper powder flat Ni-coated copper powder
  • Ni alloy coating amount was measured, it was 18.3% by mass relative to 100% by mass of the entire Ni-coated copper powder.
  • content of B contained in Ni alloy was 6.8 mass% with respect to 100 mass of Ni alloy.
  • the obtained flat copper powder was measured with a laser diffraction / scattering particle size distribution measuring instrument, and as a result, the average particle size was 21.8 ⁇ m. Moreover, the thickness (cross-sectional average thickness) of the flat copper powder measured by SEM observation was 0.40 ⁇ m.
  • the obtained conductive paste was printed on a glass with a metal squeegee and cured at 200 ° C. for 30 minutes in an air atmosphere.
  • the specific resistance value of the film obtained by curing is 26.2 ⁇ 10 ⁇ 5 ⁇ ⁇ cm, which is extremely high in specific resistance value and inferior in conductivity compared to the conductive paste obtained in the examples. Met.
  • Comparative Example 12 The tabular Ni-coated copper powder produced in Comparative Example 11 was dispersed in a resin to obtain an electromagnetic wave shielding material.
  • the electromagnetic shielding characteristics were evaluated by measuring the attenuation rate using an electromagnetic wave having a frequency of 1 GHz. Specifically, the level in the case of the comparative example 12 in which the surface of the flat copper powder produced by mechanically flattening is coated with Ni is set as “ ⁇ ”, and the case where the level is lower than the level of the comparative example 12 is “ ⁇ ”. The case where the level was better than the level of Comparative Example 12 was evaluated as “ ⁇ ”, and the case where the level was even better was evaluated as “ ⁇ ”. Table 4 shows these results.
  • Example 64 Test using Ni-coated copper powder according to the fifth embodiment [Example 64] ⁇ Preparation of electrolytic copper powder> An electrolytic cell with a capacity of 100 L is used with a titanium electrode plate having an electrode area of 200 mm ⁇ 200 mm as a cathode and a copper electrode plate with an electrode area of 200 mm ⁇ 200 mm as an anode, and an electrolytic solution is charged into the electrolytic cell. Then, a direct current was applied thereto to deposit copper powder on the cathode plate.
  • a composition having a copper ion concentration of 10 g / L and a sulfuric acid concentration of 125 g / L was used as the electrolytic solution.
  • Janus Green B manufactured by Kanto Chemical Co., Inc.
  • a hydrochloric acid solution manufactured by Wako Pure Chemical Industries, Ltd.
  • concentration in electrolyte solution It added so that it might become 30 mg / L as chloride ion (chlorine ion) density
  • the current density of the cathode is 15 A / dm 2 under the condition that the temperature is maintained at 25 ° C. Current was applied to deposit copper powder on the cathode plate.
  • the electrolytic copper powder deposited on the cathode plate was recovered by mechanically scraping it off the bottom of the electrolytic cell using a scraper, and the recovered copper powder was washed with pure water and then put in a vacuum dryer and dried. .
  • the deposited copper powder was a main chain that grew linearly and the main trunk. It was a dendritic copper powder exhibiting a two-dimensional or three-dimensional dendritic shape in which copper particles having a shape having a plurality of branches branched linearly from the branch and branches further branched from the branch were collected. .
  • nickel sulfate 30 g / L nickel sulfate 30 g / L, sodium succinate 50 g / L, boric acid 30 g / L, ammonium chloride 30 g / L, dimethylamine borane 4 g / L were added at each concentration, Further, 500 mL of a plating solution adjusted to pH 6.0 by adding sodium hydroxide was prepared.
  • Ni-coated copper powder in which the surface of the dendritic copper powder was coated with Ni was obtained.
  • the Ni-coated copper powder was recovered and the Ni content was measured, it was 18.6% by mass with respect to 100% by mass of the entire Ni-coated copper powder.
  • the content of boron (B) contained in the Ni alloy was 6.1% by mass with respect to 100% by mass of the Ni alloy.
  • Ni-coated copper powder As a result of observing the obtained Ni-coated copper powder with a field of view of 5,000 times by SEM, at least 90% by number or more of Ni-coated copper powder was found on the surface of the dendritic copper powder before coating the Ni alloy.
  • the dendritic Ni-coated copper powder had a dendritic shape.
  • the copper particles constituting the main trunk and branches of the dendritic Ni-coated copper powder had a flat cross-sectional thickness of 0.09 ⁇ m on average, and had fine convex portions on the surface.
  • the average height of the convex portions formed on the surface was 0.06 ⁇ m.
  • the average particle diameter (D50) of the dendritic Ni-coated copper powder was 21.2 ⁇ m.
  • the bulk density of the obtained dendritic Ni-coated copper powder was 1.25 g / cm 3 .
  • the BET specific surface area was 1.7 m 2 / g.
  • Example 65 ⁇ Preparation of electrolytic copper powder> An electrolytic solution having a copper ion concentration of 10 g / L and a sulfuric acid concentration of 125 g / L is used, and Janus Green B as an additive is added to the electrolytic solution to a concentration of 150 mg / L in the electrolytic solution. Copper powder was deposited on the cathode plate under the same conditions as in Example 64 except that the hydrochloric acid solution was further added so that the chlorine ion concentration in the electrolytic solution was 100 mg / L.
  • nickel sulfate 20 g / L, sodium hypophosphite 25 g / L, sodium acetate 10 g / L, sodium citrate 10 g / L are added at each concentration, and sodium hydroxide is further added.
  • 500 mL of a plating solution adjusted to pH 5.0 by adding the above was prepared.
  • Ni-coated copper powder in which the surface of the dendritic copper powder was coated with Ni alloy containing phosphorus (P) was obtained.
  • Ni-coated copper powder was recovered and the Ni content was measured, it was 13.1% by mass with respect to 100% by mass of the entire Ni-coated copper powder.
  • content of P contained in Ni alloy was 8.1 mass% with respect to 100 mass of Ni alloy.
  • Ni-coated copper powder As a result of observing the obtained Ni-coated copper powder with a field of view of 5,000 times by SEM, at least 90% by number or more of Ni-coated copper powder was found on the surface of the dendritic copper powder before coating the Ni alloy.
  • the dendritic Ni-coated copper powder had a dendritic shape.
  • the copper particles constituting the main trunk and branches of the dendritic Ni-coated copper powder were flat plate having an average cross-sectional thickness of 0.11 ⁇ m and had fine convex portions on the surface.
  • the height of the convex portions formed on the surface was 0.23 ⁇ m on average.
  • the average particle diameter (D50) of the dendritic Ni-coated copper powder was 8.3 ⁇ m.
  • the bulk density of the obtained dendritic Ni-coated copper powder was 2.77 g / cm 3 .
  • the BET specific surface area was 1.2 m 2 / g.
  • Example 66 ⁇ Preparation of dendritic Ni-coated copper powder (reducing agent: hydrazine compound)> Using 100 g of the dendritic copper powder obtained in Example 65, Ni was coated on the surface of the copper powder by electroless Ni plating to prepare a Ni-coated copper powder. Electroless Ni plating using a hydrazine compound as a reducing agent was performed.
  • nickel acetate was added to a slurry in which 100 g of the dendritic copper powder obtained in Example 65 was dispersed in 500 mL of water to a concentration of 12.4 g / L, and an aqueous solution of 80% by mass of hydrazine monohydrate. 6 g was added dropwise into the bath with slow stirring over 60 minutes. At this time, the bath temperature was controlled to 60 ° C.
  • Ni-coated copper powder in which the surface of the dendritic copper powder was coated with Ni was obtained.
  • the Ni-coated copper powder was recovered and the Ni content was measured, it was 7.7% by mass with respect to 100% by mass of the entire Ni-coated copper powder.
  • Ni-coated copper powder As a result of observing the obtained Ni-coated copper powder with a field of view of 5,000 times by SEM, at least 90% by number or more of Ni-coated copper powder was found on the surface of the dendritic copper powder before coating the Ni alloy.
  • a two-dimensional or three-dimensional dendritic shape uniformly coated with Ni having a main trunk grown into a dendritic shape, a plurality of branches branched from the main trunk, and branches further branched from the branch
  • the dendritic Ni-coated copper powder had a dendritic shape.
  • the copper particles constituting the main trunk and branches of the dendritic Ni-coated copper powder had a flat shape with an average cross-sectional thickness of 0.15 ⁇ m and had fine convex portions on the surface.
  • the height of the convex portions formed on the surface was 0.27 ⁇ m on average.
  • the average particle diameter (D50) of the dendritic Ni-coated copper powder was 9.6 ⁇ m.
  • the bulk density of the obtained dendritic Ni-coated copper powder was 2.92 g / cm 3 .
  • the BET specific surface area was 1.6 m 2 / g.
  • nickel acetate was added to a slurry in which 100 g of the dendritic copper powder obtained in Example 65 was dispersed in 500 mL of water to a concentration of 12.4 g / L, and hydrazine 3. 2 g was added dropwise into the bath over 60 minutes with slow stirring. The bath temperature was controlled to 60 ° C.
  • each metal compound was added to a bath containing a copper powder slurry and nickel acetate, and hydrazine was gradually added so that each desired Ni alloy film was formed.
  • a metal compound in Example 67, 1.5 g of sodium tungstate was added to form a Ni—W alloy film.
  • Example 68 2 g of cobalt sulfate was added to form a Ni—Co alloy film.
  • Example 69 4 g each of zinc sulfate heptahydrate and sodium citrate were added to form a Ni—Zn alloy coating.
  • Example 70 2 g of palladium chloride was added to form a Ni—Pd alloy film.
  • Example 71 2 g of potassium tetrachloroplatinate and 1 g of glycine were added to form a Ni—Pt alloy film.
  • Example 72 1 g each of sodium molybdate and trisodium citrate was added to form a Ni—Mo alloy film.
  • Example 73 1 g of sodium stannate was added to form a Ni—Sn alloy film.
  • Ni-coated copper powder in which the surface of the dendritic copper powder was coated with Ni was obtained.
  • the Ni-coated copper powder was recovered and the Ni alloy coating amount was measured. Table 5 shows the results of measuring the content of Ni with respect to 100% by mass of the entire Ni-coated copper powder and the content of elements that become Ni alloys with respect to 100% by mass of the Ni alloy.
  • the Ni-coated copper powder is dendritic before coating with the Ni alloy.
  • the dendritic Ni-coated copper powder had a dendritic shape having a plurality of branches and a branch further branched from the branches.
  • Example 74 ⁇ Preparation of dendritic Ni-coated copper powder (hypophosphite + tungsten compound)>
  • 100 g of the dendritic copper powder prepared in Example 64 was used, and the copper powder surface was coated with a Ni alloy by electroless plating.
  • electroless Ni plating solution a plating solution containing hypophosphite as the same reducing agent as in Example 64 was used, and a metal other than Ni was added to the plating solution to produce a Ni alloy.
  • an electroless Ni plating solution a plating solution in which nickel sulfate 20 g / L, sodium hypophosphite 25 g / L, sodium acetate 10 g / L, and sodium citrate 10 g / L are added at each concentration, 500 g of a plating solution prepared by adding 1.5 g of sodium tungstate and adjusting the pH to 5.0 by adding sodium hydroxide was prepared.
  • Ni-coated copper powder coated with a Ni—WP alloy was obtained.
  • Ni-coated copper powder was recovered and the Ni content was measured, it was 12.3% by mass relative to 100% by mass of the entire Ni-coated copper powder.
  • the content of P contained in the Ni alloy was 7.1% by mass with respect to 100% by mass of the Ni alloy.
  • content of W contained in Ni alloy was 5.5 mass% with respect to 100 mass of Ni alloy.
  • Ni-coated copper powder As a result of observing the obtained Ni-coated copper powder with a field of view of 5,000 times by SEM, at least 90% by number or more of Ni-coated copper powder was found on the surface of the dendritic copper powder before coating the Ni alloy.
  • the dendritic Ni-coated copper powder had a dendritic shape.
  • the copper particles constituting the main trunk and branches of the dendritic Ni-coated copper powder had a flat cross-sectional thickness of 0.09 ⁇ m on average, and had fine convex portions on the surface.
  • the average height of the convex portions formed on the surface was 0.06 ⁇ m.
  • the average particle diameter (D50) of the dendritic Ni-coated copper powder was 21.2 ⁇ m.
  • the bulk density of the obtained dendritic Ni-coated copper powder was 1.25 g / cm 3 .
  • the BET specific surface area was 1.7 m 2 / g.
  • Example 75 30 g of the dendritic Ni-coated copper powder obtained in Example 64 was mixed with 15 g of a phenol resin (PL-2211 manufactured by Gunei Chemical Co., Ltd.) and 10 g of butyl cellosolve (manufactured by Kanto Chemical Co., Ltd., deer special grade). Using a kneader (Nippon Seiki Seisakusho, non-bubbling kneader NBK-1), kneading at 1200 rpm for 3 minutes was repeated three times to form a paste. The obtained conductive paste was printed on glass with a metal squeegee and cured at 200 ° C. for 30 minutes in an air atmosphere.
  • a phenol resin PL-2211 manufactured by Gunei Chemical Co., Ltd.
  • butyl cellosolve manufactured by Kanto Chemical Co., Ltd., deer special grade
  • the specific resistance value of the film obtained by curing was 9.0 ⁇ 10 ⁇ 5 ⁇ ⁇ cm, and it was found that excellent conductivity was exhibited.
  • Example 76 30 g of the dendritic Ni-coated copper powder obtained in Example 65 is mixed with 20 g of a phenol resin (manufactured by Gunei Chemical Co., Ltd., PL-2211) and 10 g of butyl cellosolve (manufactured by Kanto Chemical Co., Ltd., deer special grade). Using a kneader (Nippon Seiki Seisakusho, non-bubbling kneader NBK-1), kneading at 1200 rpm for 3 minutes was repeated three times to form a paste. The obtained conductive paste was printed on glass with a metal squeegee and cured at 200 ° C. for 30 minutes in an air atmosphere.
  • a phenol resin manufactured by Gunei Chemical Co., Ltd., PL-2211
  • butyl cellosolve manufactured by Kanto Chemical Co., Ltd., deer special grade
  • the specific resistance value of the film obtained by curing was 9.2 ⁇ 10 ⁇ 5 ⁇ ⁇ cm, and it was found that excellent electrical conductivity was exhibited.
  • Example 77 The dendritic Ni-coated copper powder produced in Example 64 was dispersed in a resin to obtain an electromagnetic wave shielding material.
  • Example 64 100 g of vinyl chloride resin and 200 g of methyl ethyl ketone were mixed with 30 g of the dendritic Ni-coated copper powder obtained in Example 64, and kneading was performed at 1200 rpm for 3 minutes using a small kneader.
  • the paste was made by repeating the process once. During pasting, the copper powder was uniformly dispersed in the resin without agglomeration. This was coated and dried using a Mayer bar on a substrate made of a transparent polyethylene terephthalate sheet having a thickness of 100 ⁇ m to form an electromagnetic wave shielding layer having a thickness of 25 ⁇ m.
  • the electromagnetic shielding characteristics were evaluated by measuring the attenuation rate using an electromagnetic wave having a frequency of 1 GHz. Table 5 shows these results.
  • Ni-coated copper powder (reducing agent: hypophosphite)> Next, Ni coat copper powder was produced using the obtained copper powder.
  • nickel sulfate 20 g / L, sodium hypophosphite 25 g / L, sodium acetate 10 g / L, sodium citrate 10 g / L are added at each concentration, and sodium hydroxide is further added.
  • 500 mL of a plating solution adjusted to pH 5.0 by adding the above was prepared.
  • the powder was filtered, washed with water, and dried through ethanol.
  • a Ni-coated copper powder in which a Ni alloy containing P was coated on the surface of the copper powder was obtained.
  • the Ni-coated copper powder was recovered and the Ni content was measured, it was 13.6% by mass relative to 100% by mass of the entire Ni-coated copper powder.
  • the content of P contained in the Ni alloy was 7.8% by mass with respect to 100% by mass of the Ni alloy.
  • FIG. 25 shows the result of observing the shape of the obtained Ni-coated copper powder with a SEM field of view at a magnification of 1,000 times.
  • the shape of the obtained Ni-coated copper powder is a dendritic shape in which particulate copper particles are aggregated, and the surface of the copper powder is coated with a Ni alloy. It was. Moreover, the average particle diameter (D50) of the Ni-coated copper powder was 22.5 ⁇ m. In addition, the fine convex part was not formed in the dendritic part.
  • the obtained conductive paste was printed on glass with a metal squeegee and cured at 200 ° C. for 30 minutes in the air atmosphere.
  • the specific resistance value of the film obtained by curing is 63.8 ⁇ 10 ⁇ 5 ⁇ ⁇ cm, which is higher in specific resistance value and inferior in conductivity than the conductive paste obtained in the examples. there were.
  • the flat copper powder was prepared by mechanically flattening granular electrolytic copper powder. Specifically, 5 g of stearic acid was added to 500 g of granular atomized copper powder (manufactured by Mekin Metal Powders Co., Ltd.) having an average particle size of 5.4 ⁇ m, and flattened with a ball mill. The ball mill was charged with 5 kg of 3 mm zirconia beads and rotated for 90 minutes at a rotation speed of 500 rpm.
  • Ni-coated copper powder (reducing agent: borohydride)> With respect to 100 g of the obtained flat copper powder, the surface of the copper powder was coated with Ni by electroless plating.
  • nickel sulfate 30 g / L nickel sulfate 30 g / L, sodium succinate 50 g / L, boric acid 30 g / L, ammonium chloride 30 g / L, dimethylamine borane 4 g / L were added at each concentration, Further, 500 mL of a plating solution adjusted to pH 6.0 by adding sodium hydroxide was prepared.
  • Ni-coated copper powder in which the surface of the flat copper powder was coated with a Ni alloy was obtained.
  • Ni-coated copper powder was recovered and the Ni content was measured, it was 18.2% by mass with respect to 100% by mass of the entire Ni-coated copper powder.
  • content of B contained in Ni alloy was 6.7 mass% with respect to 100 mass of Ni alloy.
  • the plate-like Ni-coated copper powder produced in this way was measured with a laser diffraction / scattering particle size distribution analyzer, and as a result, the average particle size (D50) was 21.8 ⁇ m. Moreover, the thickness (cross-sectional average thickness) of the plate-like Ni-coated copper powder measured by SEM observation was 0.40 ⁇ m. In the flat Ni-coated copper powder, no fine protrusions were observed on the surface.
  • the obtained conductive paste was printed on a glass with a metal squeegee and cured at 200 ° C. for 30 minutes in an air atmosphere.
  • the specific resistance value of the film obtained by curing is 26.5 ⁇ 10 ⁇ 5 ⁇ ⁇ cm, which is extremely high in specific resistance value and inferior in conductivity compared to the conductive paste obtained in the examples. Met.
  • Comparative Example 15 The plate-like Ni-coated copper powder produced in Comparative Example 14 was dispersed in a resin to obtain an electromagnetic wave shielding material.
  • the electromagnetic shielding characteristics were evaluated by measuring the attenuation rate using an electromagnetic wave having a frequency of 1 GHz. Specifically, the level in the case of Comparative Example 15 that does not use the dendritic Ni-coated copper powder is set as “ ⁇ ”, and the level that is worse than the level of Comparative Example 15 is set as “X”. The case where it was better than the level was evaluated as “ ⁇ ”, and the case where it was superior was evaluated as “ ⁇ ”. Table 5 shows these results.
  • Ni-coated copper powder (dendritic Ni-coated copper powder) 12 Main trunk 13, 13a, 13b Branch 14 Maximum length in horizontal direction (XY direction) with respect to flat plate surface 15 Maximum height in vertical direction with respect to flat plate surface (XY plane) 21 Copper powder (dendritic copper powder) 22 Copper particle D1 Thickness of branch part 31 Ni-coated copper powder (dendritic Ni-coated copper powder) 32 backbone 33, 33a, 33b branch 41 Ni-coated copper powder (flat Ni-coated copper particle agglomerated powder) 42 Copper particles d Major axis diameter of flat Ni-coated copper particles 51 Copper particles 52 Main trunks (of copper particles) 53, 53a, 53b (copper particles) branches

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electrochemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

Provided is a Ni-coated copper powder which increases the number of contact points between Ni-coated copper powder particles, thereby ensuring excellent conductivity and preventing agglomeration between the copper powder particles. Thus, the Ni-coated copper powder may be preferably used for conductive pastes, electromagnetic shields or the like. The Ni-coated copper powder according to the present invention is formed via the agglomeration of copper particles having specific shapes and Ni- or Ni alloy-coated surfaces into a dendritic shape or an agglomerate of the copper particles. This Ni-coated copper powder has a larger number of contact points between copper powder particles and thus exhibits excellent conductivity.

Description

Niコート銅粉、及びそれを用いた導電性ペースト、導電性塗料、導電性シート、並びにNiコート銅粉の製造方法Ni-coated copper powder, and conductive paste, conductive paint, conductive sheet using the same, and method for producing Ni-coated copper powder
 本発明は、表面にニッケル(Ni)又はNi合金を被覆した銅粉(Niコート銅粉)に関するものであり、より詳しくは、導電性ペースト等の材料として用いることで導電性を改善させることのできる新たな形状を有するNiコート銅粉に関する。 The present invention relates to copper powder (Ni-coated copper powder) whose surface is coated with nickel (Ni) or a Ni alloy, and more specifically, to improve conductivity by using it as a material such as a conductive paste. The present invention relates to a Ni-coated copper powder having a new shape.
 電子機器における配線層や電極等の形成には、樹脂型ペーストや焼成型ペースト、電磁波シールド塗料のような、銅粉、銀粉等の金属フィラーを使用したペーストや塗料が多く用いられている。銅粉、銀粉等の金属フィラーペーストは、各種基材上に塗布又は印刷され、加熱硬化や加熱焼成の処理を受けて、配線層や電極等となる導電膜を形成する。 For the formation of wiring layers, electrodes, and the like in electronic devices, many pastes and paints using metal fillers such as copper powder and silver powder, such as resin pastes, fired pastes, and electromagnetic wave shielding paints, are used. Metal filler pastes such as copper powder and silver powder are applied or printed on various base materials, and are subjected to heat curing or heat baking treatment to form a conductive film to be a wiring layer or an electrode.
 例えば、樹脂型導電性ペーストは、金属フィラーと、樹脂、硬化剤、溶剤等からなり、導電体回路パターン又は端子の上に印刷され、100℃~200℃で加熱硬化させて導電膜として配線や電極を形成する。樹脂型導電性ペーストは、熱によって熱硬化型樹脂が硬化収縮するため、金属フィラーが圧着されて接触することで金属フィラーが重なり、電気的に接続した電流パスが形成される。この樹脂型導電性ペーストは、硬化温度が200℃以下で処理されることから、プリント配線板等の熱に弱い材料を使用している基板に用いられている。 For example, a resin-type conductive paste is made of a metal filler, a resin, a curing agent, a solvent, etc., printed on a conductor circuit pattern or terminal, and cured by heating at 100 ° C. to 200 ° C. An electrode is formed. In the resin-type conductive paste, since the thermosetting resin is cured and contracted by heat, when the metal filler is pressed and brought into contact, the metal filler overlaps and an electrically connected current path is formed. Since this resin-type conductive paste is processed at a curing temperature of 200 ° C. or less, it is used for a substrate using a heat-sensitive material such as a printed wiring board.
 また、焼成型導電性ペーストは、金属フィラーと、ガラス、溶剤等からなり、導電体回路パターン又は端子の上に印刷され、600℃~800℃に加熱焼成させて導電膜として配線や電極を形成する。焼成型導電性ペーストは、高い温度によって処理することで、金属フィラーが焼結して導通性が確保されるものである。この焼成型導電性ペーストは、焼成温度が高いため、樹脂材料を使用するようなプリント配線基板には使用できないものの、高温処理で金属フィラーが焼結することから低抵抗を実現することが可能となる。そのため、焼成型導電性ペーストは、積層セラミックコンデンサの外部電極等に用いられる。 Firing-type conductive paste consists of a metal filler, glass, solvent, etc., printed on a conductor circuit pattern or terminal, and heated and fired at 600 ° C. to 800 ° C. to form wiring and electrodes as a conductive film. To do. The fired conductive paste is processed at a high temperature to sinter the metal filler and ensure conductivity. Although this firing-type conductive paste has a high firing temperature, it cannot be used for printed wiring boards that use resin materials, but it can realize low resistance because the metal filler is sintered by high-temperature treatment. Become. Therefore, the fired conductive paste is used for an external electrode of a multilayer ceramic capacitor.
 一方、電磁波シールドは、電子機器からの電磁気的なノイズの発生を防止するために使用されるもので、特に近年では、パソコンや携帯の筐体が樹脂製になったことから、筐体に導電性を確保するために、蒸着法やスパッタ法で薄い金属皮膜を形成する方法や、導電性の塗料を塗布する方法、導電性のシートを必要な箇所に貼り付けて電磁波をシールドする方法等が提案されている。その中でも、樹脂中に金属フィラーを分散させて塗布する方法や樹脂中に金属フィラーを分散させてシート状に加工してそれを筐体に貼り付ける方法では、加工工程において特殊な設備を必要とせず自由度に優れており多用されている。 On the other hand, electromagnetic wave shields are used to prevent the generation of electromagnetic noise from electronic equipment. Especially in recent years, personal computers and mobile phone cases have been made of resin, so that the case is made conductive. In order to secure the properties, there are a method of forming a thin metal film by a vapor deposition method or a sputtering method, a method of applying a conductive paint, a method of attaching a conductive sheet to a necessary place and shielding an electromagnetic wave, etc. Proposed. Among them, special methods are required in the processing process for the method of applying the metal filler dispersed in the resin and the method of dispersing the metal filler in the resin and processing it into a sheet and attaching it to the housing. It has excellent flexibility and is widely used.
 しかしながら、このような金属フィラーを樹脂中に分散させて塗布する場合やシート状に加工する場合においては、金属フィラーの樹脂中における分散状態が一様にならないため、電磁波シールドの効率を得るために金属フィラーの充填率を高める等の方法が必要となる。ところが、その場合には、多量の金属フィラーの添加することによってシート重量が重くなるとともに、樹脂シートの可撓性を損なう等の問題が発生していた。そのため、例えば特許文献1においては、それらの問題を解決するために平板状の金属フィラーを使用する方法が提案されており、このことによって、電磁波シールド効果に優れ、可撓性も良好な薄いシートを形成することができるとしている。 However, in the case where such a metal filler is dispersed in a resin and applied or processed into a sheet shape, the dispersion state of the metal filler in the resin is not uniform. A method such as increasing the filling rate of the metal filler is required. However, in such a case, the addition of a large amount of metal filler causes problems such as an increase in sheet weight and a loss of flexibility of the resin sheet. Therefore, for example, in Patent Document 1, a method of using a flat metal filler has been proposed in order to solve these problems, and as a result, a thin sheet having excellent electromagnetic shielding effect and good flexibility. Can be formed.
 このような導電性ペーストや電磁波シールド材の金属フィラーとして用いられる金属粉材料としての銅粉は、酸化すると表面が酸化銅で覆われ、焼結性、耐食性、あるいは導電性に悪影響を与える原因となる。このため、銅粉の酸化を防止するために、銅粒子表面にPt、Pd、Ag、Au等の貴金属でコートしたものや、SiO系の酸化物でコートしたもの、またはNiでコートして耐酸化性を高めたもの等が知られている。例えば、特許文献2には、銅粉表面にニッケル(Ni)を被覆したNiコート銅粉が開示されている。 Copper powder as a metal powder material used as a metal filler for such conductive paste and electromagnetic wave shielding material is covered with copper oxide when oxidized, causing adverse effects on sinterability, corrosion resistance, or conductivity Become. For this reason, in order to prevent oxidation of the copper powder, the surface of the copper particles is coated with a noble metal such as Pt, Pd, Ag, Au, etc., coated with a SiO 2 oxide, or coated with Ni. Those with improved oxidation resistance are known. For example, Patent Document 2 discloses Ni-coated copper powder in which nickel (Ni) is coated on the surface of copper powder.
 一方、金属フィラーとして使用される銅粉の形状は、球状、平板状、樹枝状等が用いられており、特に平板状の銅粉は、粒状や樹枝状の銅粉に比べてフィラー同士の接点面積を多く確保できることから、低抵抗の導電性ペーストの用途として広く使われている。このような平板状の銅粉を作製する方法としては、特許文献3に、球状銅粉を機械的に扁平状に加工してフレーク状銅粉を得る方法が開示されている。具体的には、平均粒径0.5μm~10μmの球状銅粉を原料として、ボールミルや振動ミルを用いて、ミル内に装填したメディアの機械的エネルギーにより機械的に平板状に加工するものである。 On the other hand, the shape of the copper powder used as the metal filler is spherical, flat, dendritic, etc., and in particular, the flat copper powder is a contact point between fillers compared to granular or dendritic copper powder. Since a large area can be secured, it is widely used as a low-resistance conductive paste. As a method for producing such a flat copper powder, Patent Document 3 discloses a method of obtaining a flaky copper powder by mechanically processing a spherical copper powder into a flat shape. Specifically, a spherical copper powder having an average particle size of 0.5 μm to 10 μm is used as a raw material, and it is mechanically processed into a flat plate shape by a mechanical energy of a medium loaded in the mill using a ball mill or a vibration mill. is there.
 また、例えば特許文献4では、導電性ペースト用銅粉末、詳しくはスルーホール用及び外部電極用銅ペーストとして高性能が得られる円盤状銅粉末及びその製造方法に関する技術が開示されている。具体的には、粒状アトマイズ銅粉末を媒体撹拌ミルに投入し、粉砕媒体として1/8インチ~1/4インチ径のスチールボールを使用して、銅粉末に対して脂肪酸を重量で0.5%~1%添加し、空気中あるいは不活性雰囲気中で粉砕することによって平板状に加工するものである。 Also, for example, Patent Document 4 discloses a technique relating to a copper powder for conductive paste, more specifically, a disk-shaped copper powder that provides high performance as a copper paste for through holes and external electrodes, and a method for producing the same. Specifically, the granular atomized copper powder is put into a medium agitating mill, and a steel ball having a diameter of 1/8 inch to 1/4 inch is used as a grinding medium. % To 1% and processed into a flat plate shape by pulverization in air or in an inert atmosphere.
 ここで、これら導電性ペーストや電磁波シールド用に使用されている金属フィラーとしては、銀粉が用いられており、また上述のように、銅粒子表面にPt、Pd、Ag、Au等の貴金属をコートして十分な耐酸化性を付与したものが用いられている。しかしながら、これらは高価なためコストアップになる。その中でも、銅粉に対してAgをコートしたものでは、比較的低価格に抑えることも可能であるが、Agではマイグレーションが発生しやすいといった問題がある。また、銅粉に対してSiO系の酸化物で表面をコートする場合も、耐酸化性を確保できるものの、焼結性が悪くなる等の問題がある。 Here, silver powder is used as the metal filler used for these conductive pastes and electromagnetic wave shields, and as described above, the surface of the copper particles is coated with a noble metal such as Pt, Pd, Ag, or Au. Thus, those having sufficient oxidation resistance are used. However, since these are expensive, the cost increases. Among them, a copper powder coated with Ag can be kept at a relatively low price, but there is a problem that migration tends to occur with Ag. Also, when the surface of the copper powder is coated with a SiO 2 -based oxide, oxidation resistance can be secured, but there are problems such as poor sinterability.
 耐酸化性等を確保しつつ、低価格であって、しかも焼結性が比較的良好なものとして、銅粉に対してNiをコートする方法が挙げられる。 A method for coating copper powder with Ni is mentioned as a low cost and relatively good sinterability while ensuring oxidation resistance and the like.
 銅粉の表面にNiを被覆する方法としては、無電解ニッケルめっきによる方法が挙げられる。無電解ニッケルめっきによる被覆方法は、めっき液中のニッケルイオンを還元剤によって還元することによって銅粉表面にニッケル被覆を行うもので、還元剤の種類としては、次亜リン酸塩、ホウ水素化合物、及びヒドラジン化合物等が挙げられる。具体的に、還元剤として次亜リン酸塩を用いたニッケル被膜処理では、還元反応中にリンが被膜中に含有するため、Ni-P合金被膜が形成される。また、還元剤としてホウ水素化合物を用いたニッケル被膜処理では、還元反応中にボロンが被膜中に含有するため、Ni-B合金被膜が形成される。また、還元剤としてヒドラジン化合物を用いたニッケル被膜処理では、不純物の少ない高純度なNi被膜が形成される。 As a method for coating the surface of the copper powder with Ni, a method by electroless nickel plating may be mentioned. The coating method by electroless nickel plating is to perform nickel coating on the copper powder surface by reducing nickel ions in the plating solution with a reducing agent. The types of reducing agents are hypophosphites and borohydrides. And hydrazine compounds. Specifically, in nickel coating treatment using hypophosphite as a reducing agent, a Ni—P alloy coating is formed because phosphorus is contained in the coating during the reduction reaction. Further, in the nickel coating treatment using a borohydride compound as a reducing agent, a Ni—B alloy coating is formed because boron is contained in the coating during the reduction reaction. Further, in the nickel coating process using a hydrazine compound as a reducing agent, a high-purity Ni coating with few impurities is formed.
 さて、銅粉としては、デンドライト状と呼ばれる樹枝状に析出した電解銅粉が知られており、形状が樹枝状になっていることから表面積が大きいことが特徴となっている。このようにデンドライト状の形状であることにより、これを導電膜等に用いた場合には、そのデンドライトの枝が重なり合い、導通が通りやすく、また球状粒子に比べて粒子同士の接点数が多くなることから、導電性ペースト等の導電性フィラーの量を少なくすることができるという利点がある。例えば、特許文献5には、銅表面にNi合金層を形成しその上にAgコートを行って耐酸化性を確保する技術が開示され、ここで用いられる銅粉として、樹枝状の電解銅粉が粒子同士のからみあいの観点から好適である旨が記載されている。 Now, as copper powder, electrolytic copper powder deposited in dendritic shape called dendritic shape is known, and since the shape is dendritic, it is characterized by a large surface area. Due to the dendritic shape as described above, when this is used for a conductive film or the like, the dendritic branches are overlapped with each other, conduction is easy, and the number of contact points between particles is larger than that of spherical particles. Therefore, there is an advantage that the amount of conductive filler such as conductive paste can be reduced. For example, Patent Document 5 discloses a technique for ensuring oxidation resistance by forming an Ni alloy layer on a copper surface and performing Ag coating thereon, and the copper powder used here is a dendritic electrolytic copper powder. Is preferable from the viewpoint of entanglement between particles.
 一方、電解銅粉の樹枝を発達させると、導電性ペースト等に用いた場合に電解銅粉同士が必要以上に絡み合って凝集が発生してしまい樹脂中に均一に分散しなくなり、また流動性が低下して非常に扱い難くなり、印刷等による配線形成に問題が生じて生産性を低下させることの指摘が特許文献6に示されている。なお、特許文献6では、電解銅粉自体の強度を高めるため、電解銅粉を析出させるための電解液の硫酸銅水溶液中にタングステン酸塩を添加することで、電解銅粉自体の強度を向上させ、樹枝を折れ難くし、高い強度に成形することができるとしている。 On the other hand, when developing a branch of electrolytic copper powder, when used in conductive paste, etc., the electrolytic copper powder is entangled more than necessary and agglomeration occurs, so that it does not disperse uniformly in the resin, and the fluidity is It is pointed out in Patent Document 6 that it decreases and becomes very difficult to handle, causing problems in wiring formation by printing or the like and reducing productivity. In addition, in patent document 6, in order to raise the intensity | strength of electrolytic copper powder itself, the intensity | strength of electrolytic copper powder itself is improved by adding tungstate in the copper sulfate aqueous solution of the electrolyte solution for depositing electrolytic copper powder. It is said that it is difficult to break the branches and can be molded with high strength.
 このように、樹枝状の銅粉を導電性ペースト等の金属フィラーとして用いるのは容易でなく、ペーストの導電性の改善がなかなか進まない原因ともなっていた。 As described above, it is not easy to use the dendritic copper powder as a metal filler such as a conductive paste, and the improvement of the conductivity of the paste has been difficult.
特開2003-258490号公報JP 2003-258490 A 特開平5-342908号公報JP-A-5-342908 特開2005-200734号公報Japanese Patent Laid-Open No. 2005-200734 特開2002-15622号公報JP 2002-15622 A 特開2002-075057号公報Japanese Patent Laid-Open No. 2002-075057 特開2011-58027号公報JP 2011-58027 A
 本発明は、このような実情に鑑みて提案されたものであり、Niを被覆した銅粉同士が接触する際における接点を多くして優れた導電性を確保しつつ、銅粉同士の凝集を防止して、導電性ペーストや電磁波シールド等の用途として好適に利用することができるNiコート銅粉を提供することを目的とする。 The present invention has been proposed in view of such circumstances, and agglomeration between copper powders while ensuring excellent conductivity by increasing the number of contacts when the copper powders coated with Ni are in contact with each other. An object of the present invention is to provide a Ni-coated copper powder that can be suitably used for applications such as conductive paste and electromagnetic wave shielding.
 本発明者は、上述した課題を解決するために鋭意検を重ねた。その結果、表面にNi又はNi合金が被覆された特定の形状の銅粒子が集合して、樹枝状形状あるいはその銅粒子の凝集体の形態を有してなるNiコート銅粉であることにより、その銅粉同士の接点が多くなり優れた導電性を示すことを見出し、本発明を完成するに至った。すなわち、本発明は以下のものを提供する。 The inventor has conducted intensive examinations to solve the above-described problems. As a result, the copper particles of a specific shape coated with Ni or Ni alloy on the surface are gathered, and the Ni-coated copper powder having a dendritic shape or an aggregate form of the copper particles, It has been found that the number of contacts between the copper powders increases and exhibits excellent conductivity, and the present invention has been completed. That is, the present invention provides the following.
 [1]本発明の第1の発明は、表面にニッケル(Ni)又はNi合金が被覆された銅粒子が集合して、直線的に成長した主幹と該主幹から分かれた複数の枝を有する樹枝状の形状を構成したNiコート銅粉であって、前記表面にNi又はNi合金が被覆された銅粒子は、走査電子顕微鏡(SEM)観察より求められる断面平均厚さが0.02μm~5.0μmである平板状であり、前記銅粒子が集合して構成された当該Niコート銅粉は、平均粒子径(D50)が1.0μm~100μmであり、前記銅粒子の平板状の面に対して垂直方向への最大高さが、該平板状の面の水平方向への最大長さに対して1/10以下である、Niコート銅粉である。 [1] A first aspect of the present invention is a tree branch having a main trunk that is linearly grown with copper particles coated with nickel (Ni) or Ni alloy on the surface and a plurality of branches separated from the main trunk. The copper particles having a Ni-shaped copper powder having a surface shape coated with Ni or a Ni alloy have an average cross-sectional thickness of 0.02 μm to 5.5 mm as determined by scanning electron microscope (SEM) observation. The Ni-coated copper powder, which has a flat shape of 0 μm and is constituted by aggregating the copper particles, has an average particle diameter (D50) of 1.0 μm to 100 μm, and is equal to the flat surface of the copper particles. Thus, the maximum height in the vertical direction is 1/10 or less of the maximum length in the horizontal direction of the flat plate-like surface.
 [2]本発明の第2の発明は、表面にニッケル(Ni)又はNi合金が被覆された銅粒子が集合して、複数の枝を有する樹枝状の形状を構成したNiコート銅粉であって、前記表面にNi又はNi合金が被覆された銅粒子は、短軸平均径が0.2μm~0.5μm、かつ、長軸平均径が0.5μm~2.0μmの範囲の大きさの楕円体であり、前記銅粒子が集合して構成された当該Niコート銅粉は、平均粒子径(D50)が5.0μm~20μmである、Niコート銅粉である。 [2] A second invention of the present invention is a Ni-coated copper powder in which copper particles whose surfaces are coated with nickel (Ni) or Ni alloy are assembled to form a dendritic shape having a plurality of branches. The copper particles coated with Ni or Ni alloy on the surface have a minor axis average diameter of 0.2 μm to 0.5 μm and a major axis average diameter of 0.5 μm to 2.0 μm. The Ni-coated copper powder that is an ellipsoid and is configured by aggregating the copper particles is Ni-coated copper powder having an average particle diameter (D50) of 5.0 μm to 20 μm.
 [3]本発明の第3の発明は、第2の発明において、樹枝状の形状を構成する前記枝部分の平均太さが0.5μm~2.0μmである、Niコート銅粉である。 [3] A third invention of the present invention is the Ni-coated copper powder according to the second invention, wherein the average thickness of the branch portions constituting the dendritic shape is 0.5 μm to 2.0 μm.
 [4]本発明の第4の発明は、表面にニッケル(Ni)又はNi合金が被覆された銅粒子が集合して、直線的に成長した主幹と該主幹から分かれた複数の枝を有する樹枝状の形状を構成したNiコート銅粉であって、前記表面にNi又はNi合金が被覆された銅粒子は、断面平均厚さが0.2μm~5.0μmの平板状であり、前記銅粒子が集合して構成された当該Niコート銅粉は、平均粒子径(D50)が1.0μm~100μmである、Niコート銅粉である。 [4] A fourth aspect of the present invention is a tree branch having a main trunk that is linearly grown with copper particles coated with nickel (Ni) or Ni alloy on the surface and a plurality of branches separated from the main trunk. A copper particle having a Ni-shaped copper powder having a surface shape, the surface of which is coated with Ni or a Ni alloy is a flat plate having a cross-sectional average thickness of 0.2 μm to 5.0 μm. The Ni-coated copper powder composed of the above is Ni-coated copper powder having an average particle diameter (D50) of 1.0 μm to 100 μm.
 [5]本発明の第5の発明は、表面にニッケル(Ni)又はNi合金が被覆された個片状の銅粒子が複数集合して凝集体の形態を有してなるNiコート銅粉であって、前記Ni又はNi合金が被覆された銅粒子は、走査型電子顕微鏡(SEM)観察により求められる平均長軸径が0.5μm~5.0μmで、断面平均厚さが0.02μm~1.0μmである平板状であり、前記銅粒子が集合して構成された当該Niコート銅粉は、平均粒子径(D50)が1.0μm~30μmである、Niコート銅粉である。 [5] A fifth invention of the present invention is a Ni-coated copper powder in which a plurality of individual copper particles whose surfaces are coated with nickel (Ni) or a Ni alloy are aggregated to have an aggregate form. The copper particles coated with Ni or Ni alloy have an average major axis diameter determined by observation with a scanning electron microscope (SEM) of 0.5 μm to 5.0 μm and an average cross-sectional thickness of 0.02 μm to The Ni-coated copper powder, which has a flat plate shape of 1.0 μm and is configured by the aggregation of the copper particles, is an Ni-coated copper powder having an average particle diameter (D50) of 1.0 μm to 30 μm.
 [6]本発明の第6の発明は、表面にニッケル(Ni)又はNi合金が被覆された銅粒子が集合して、直線的に成長した主幹と該主幹から分かれた複数の枝を有する樹枝状の形状を構成したNiコート銅粉であって、前記表面にNi又はNi合金が被覆された銅粒子は、樹枝状に成長した主幹と該主幹から分かれた複数の枝とを有する樹枝状であって、該銅粒子の主幹及び枝の断面平均厚さが0.02μm~0.5μmの平板状であり、前記銅粒子が集合して構成された当該Niコート銅粉は、平均粒子径(D50)が1.0μm~30μmである、Niコート銅粉である。 [6] A sixth aspect of the present invention is a tree branch having a main trunk that is linearly grown with copper particles coated with nickel (Ni) or Ni alloy on the surface and a plurality of branches separated from the main trunk. The copper particles having a Ni-shaped copper powder having a surface shape coated with Ni or a Ni alloy are dendritic having a main trunk grown in a dendritic shape and a plurality of branches separated from the main trunk. The Ni-coated copper powder, which is a flat plate having a cross-sectional average thickness of the main trunk and branches of the copper particles of 0.02 μm to 0.5 μm and is configured by aggregating the copper particles, has an average particle diameter ( D50) is a Ni-coated copper powder having a thickness of 1.0 to 30 μm.
 [7]本発明の第7の発明は、第6の発明において、前記銅粒子の表面に微細な凸部があり、該凸部の平均高さが0.01μm~0.4μmである、Niコート銅粉である。 [7] A seventh invention of the present invention is the Ni according to the sixth invention, wherein the surface of the copper particles has fine convex portions, and the average height of the convex portions is 0.01 μm to 0.4 μm. Coated copper powder.
 [8]本発明の第8の発明は、第1乃至第7のいずれかの発明において、Ni又はNi合金として被覆されるNi含有量が、Ni又はNi合金で被覆した当該Niコート銅粉全体の質量100%に対して1質量%~50質量%である、Niコート銅粉である。 [8] The eighth invention of the present invention is the entire Ni-coated copper powder coated with Ni or Ni alloy in which the Ni content coated as Ni or Ni alloy in any of the first to seventh inventions The Ni-coated copper powder is 1 to 50% by mass with respect to 100% by mass.
 [9]本発明の第9の発明は、第1乃至第8のいずれかの発明において、前記銅粒子の表面にNi合金が被覆されており、コバルト、亜鉛、タングステン、モリブデン、パラジウム、白金、スズ、リン、及びボロンからなる群から選ばれる少なくとも1種以上を、前記Ni合金の質量100%に対して0.1質量%~20質量%の含有量で含むNi合金で被覆されている、Niコート銅粉である。 [9] According to a ninth aspect of the present invention, in any one of the first to eighth aspects, the surface of the copper particles is coated with a Ni alloy, and cobalt, zinc, tungsten, molybdenum, palladium, platinum, Coated with a Ni alloy containing at least one selected from the group consisting of tin, phosphorus, and boron at a content of 0.1% by mass to 20% by mass with respect to 100% by mass of the Ni alloy. Ni-coated copper powder.
 [10]本発明の第10の発明は、第1乃至第9のいずれかの発明において、嵩密度が0.5g/cm~5.0g/cmの範囲である、Niコート銅粉である。 [10] A tenth aspect of the present invention is the Ni-coated copper powder according to any one of the first to ninth aspects, wherein the bulk density is in the range of 0.5 g / cm 3 to 5.0 g / cm 3. is there.
 [11]本発明の第11の発明は、第1乃至第10のいずれかの発明において、BET比表面積値が0.2m/g~5.0m/gである、Niコート銅粉である。 [11] Eleventh aspect of the present invention, in any one of the first to 10, BET specific surface area is 0.2m 2 /g~5.0m 2 / g, a Ni-coated copper powder is there.
 [12]本発明の第12の発明は、第1乃至第11のいずれかの発明に係るNiコート銅粉を、全体の20質量%以上の割合で含有している、金属フィラーである。 [12] A twelfth invention of the present invention is a metal filler containing the Ni-coated copper powder according to any one of the first to eleventh inventions in a proportion of 20% by mass or more of the whole.
 [13]本発明の第13の発明は、第12の発明に係る金属フィラーを樹脂に混合させてなる、導電性ペーストである。 [13] A thirteenth invention of the present invention is a conductive paste obtained by mixing a metal filler according to the twelfth invention with a resin.
 [14]本発明の第14の発明は、第12の発明に係る金属フィラーを用いてなる、電磁波シールド用導電性塗料である。 [14] A fourteenth aspect of the present invention is a conductive paint for electromagnetic wave shielding using the metal filler according to the twelfth aspect of the present invention.
 [15]本発明の第15の発明は、第12の発明に係る金属フィラーを用いてなる、電磁波シールド用導電性シートである。 [15] A fifteenth aspect of the present invention is an electromagnetic wave shielding conductive sheet using the metal filler according to the twelfth aspect of the present invention.
 [16]本発明の第16の発明は、第1の発明に係るNiコート銅粉を製造する方法であって、電解法により電解液から陰極上に銅粉を析出させる工程と、前記銅粉にニッケル(Ni)又はNi合金を被覆する工程と、を有し、前記電解液に、銅イオンと、下記式(1)で表されるフェナジン構造を有する化合物、下記式(2)で表されるアゾベンゼン構造を有する化合物、及び下記式(3)で表される、フェナジン構造とアゾベンゼン構造とを有する化合物からなる群から選ばれる1種又は2種以上と、ノニオン界面活性剤の1種類以上と、を含有させて電解を行う、Niコート銅粉の製造方法である。
Figure JPOXMLDOC01-appb-C000006
[式(1)中、R、R、R、R、R、R、R、Rは、それぞれ別個に、水素、ハロゲン、アミノ、OH、=O、CN、SCN、SH、COOH、COO塩、COOエステル、SOH、SO塩、SOエステル、ベンゼンスルホン酸、及びC1~C8アルキルからなる群から選択される基であり、Rは、水素、ハロゲン、アミノ、OH、-O、CN、SCN、SH、COOH、COO塩、COOエステル、SOH、SO塩、SOエステル、ベンゼンスルホン酸、低級アルキル、及びアリールからなる群から選択される基であり、Aがハライドアニオンである。]
Figure JPOXMLDOC01-appb-C000007
[式(2)中、R、R、R、R、R、R、R、R、R、R10は、それぞれ別個に、水素、ハロゲン、アミノ、OH、=O、CN、SCN、SH、COOH、COO塩、COOエステル、SOH、SO塩、SOエステル、ベンゼンスルホン酸、低級アルキル、及びアリールからなる群から選択される基である。]
Figure JPOXMLDOC01-appb-C000008
[式(3)中、R、R、R、R、R、R、R、R、R10、R11、R12、R13は、それぞれ別個に、水素、ハロゲン、アミノ、OH、=O、CN、SCN、SH、COOH、COO塩、COOエステル、SOH、SO塩、SOエステル、ベンゼンスルホン酸、及びC1~C8アルキルからなる群から選択される基であり、Rは、水素、ハロゲン、アミノ、OH、=O、CN、SCN、SH、COOH、COO塩、COOエステル、SOH、SO塩、SOエステル、ベンゼンスルホン酸、低級アルキル、及びアリールからなる群から選択される基であり、Aがハライドアニオンである。]
[16] A sixteenth invention of the present invention is a method for producing a Ni-coated copper powder according to the first invention, wherein the copper powder is deposited on the cathode from the electrolyte by an electrolytic method, and the copper powder A step of coating nickel (Ni) or a Ni alloy, and the electrolytic solution is represented by the following formula (2), a copper ion and a compound having a phenazine structure represented by the following formula (1): One or more selected from the group consisting of a compound having an azobenzene structure and a compound having a phenazine structure and an azobenzene structure represented by the following formula (3), and one or more nonionic surfactants: Is a method for producing Ni-coated copper powder.
Figure JPOXMLDOC01-appb-C000006
[In Formula (1), R 1 , R 2 , R 3 , R 4 , R 6 , R 7 , R 8 , R 9 are each independently hydrogen, halogen, amino, OH, ═O, CN, SCN. , SH, COOH, COO salt, COO ester, SO 3 H, SO 3 salt, SO 3 ester, benzenesulfonic acid, and C1-C8 alkyl, R 5 is hydrogen, halogen , Amino, OH, —O, CN, SCN, SH, COOH, COO salt, COO ester, SO 3 H, SO 3 salt, SO 3 ester, benzenesulfonic acid, lower alkyl, and aryl. And A is a halide anion. ]
Figure JPOXMLDOC01-appb-C000007
[In the formula (2), R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 are each independently hydrogen, halogen, amino, OH, = O, CN, SCN, SH, COOH, COO salt, COO ester, SO 3 H, SO 3 salt, SO 3 ester, a group selected from the group consisting of benzenesulfonic acid, lower alkyl, and aryl. ]
Figure JPOXMLDOC01-appb-C000008
[In the formula (3), R 1 , R 2 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 are each independently hydrogen, Selected from the group consisting of halogen, amino, OH, ═O, CN, SCN, SH, COOH, COO salt, COO ester, SO 3 H, SO 3 salt, SO 3 ester, benzenesulfonic acid, and C1-C8 alkyl R 3 is hydrogen, halogen, amino, OH, ═O, CN, SCN, SH, COOH, COO salt, COO ester, SO 3 H, SO 3 salt, SO 3 ester, benzenesulfonic acid, A group selected from the group consisting of lower alkyl and aryl, and A is a halide anion. ]
 [17]本発明の第17の発明は、第16の発明において、前記電解液に、さらに塩化物イオンを含有させる、Niコート銅粉の製造方法である。 [17] The seventeenth invention of the present invention is the method for producing Ni-coated copper powder in the sixteenth invention, wherein the electrolytic solution further contains chloride ions.
 [18]本発明の第18の発明は、第2又は3の発明に係るNiコート銅粉を製造する方法であって、電解法により電解液から陰極上に銅粉を析出させる工程と、前記銅粉にニッケル(Ni)又はNi合金を被覆する工程と、を有し、前記電解液に、銅イオンと、ポリエーテル化合物と、を含有させて電解を行う、Niコート銅粉の製造方法である。 [18] An eighteenth invention of the present invention is a method for producing a Ni-coated copper powder according to the second or third invention, wherein the copper powder is deposited on the cathode from the electrolytic solution by an electrolysis method, A process for coating nickel powder with nickel (Ni) or a nickel alloy, wherein the electrolytic solution contains copper ions and a polyether compound for electrolysis. is there.
 [19]本発明の第19の発明は、第4の発明に係るNiコート銅粉を製造する方法であって、電解法により電解液から陰極上に銅粉を析出させる工程と、前記銅粉にニッケル(Ni)又はNi合金を被覆する工程と、を有し、前記電解液に、銅イオンと、下記式(1)で表されるフェナジン構造を有する化合物から選択される1種又は2種以上と、を含有させて電解を行う、Niコート銅粉の製造方法である。
Figure JPOXMLDOC01-appb-C000009
[式(1)中、R、R、R、R、R、R、R、Rは、それぞれ別個に、水素、ハロゲン、アミノ、OH、=O、CN、SCN、SH、COOH、COO塩、COOエステル、SOH、SO塩、SOエステル、ベンゼンスルホン酸、及びC1~C8アルキルからなる群から選択される基であり、Rは、水素、ハロゲン、アミノ、OH、-O、CN、SCN、SH、COOH、COO塩、COOエステル、SOH、SO塩、SOエステル、ベンゼンスルホン酸、低級アルキル、及びアリールからなる群から選択される基であり、Aがハライドアニオンである。]
[19] A nineteenth invention of the present invention is a method for producing a Ni-coated copper powder according to the fourth invention, wherein the copper powder is deposited on the cathode from the electrolyte by an electrolytic method, and the copper powder A step of coating nickel (Ni) or a Ni alloy on the electrolyte solution, and the electrolytic solution includes one or two selected from copper ions and a compound having a phenazine structure represented by the following formula (1) This is a method for producing Ni-coated copper powder in which electrolysis is carried out.
Figure JPOXMLDOC01-appb-C000009
[In Formula (1), R 1 , R 2 , R 3 , R 4 , R 6 , R 7 , R 8 , R 9 are each independently hydrogen, halogen, amino, OH, ═O, CN, SCN. , SH, COOH, COO salt, COO ester, SO 3 H, SO 3 salt, SO 3 ester, benzenesulfonic acid, and C1-C8 alkyl, R 5 is hydrogen, halogen , Amino, OH, —O, CN, SCN, SH, COOH, COO salt, COO ester, SO 3 H, SO 3 salt, SO 3 ester, benzenesulfonic acid, lower alkyl, and aryl. And A is a halide anion. ]
 [20]本発明の第20の発明は、第6又は7の発明に係るNiコート銅粉を製造する方法であって、電解法により電解液から陰極上に銅粉を析出させる工程と、前記銅粉にニッケル(Ni)又はNi合金を被覆する工程と、を有し、前記電解液に、銅イオンと、下記式(3)で表される、フェナジン構造とアゾベンゼン構造とを有する化合物から選択される1種又は2種以上と、を含有させて電解を行う、Niコート銅粉の製造方法。
Figure JPOXMLDOC01-appb-C000010
[式(3)中、R、R、R、R、R、R、R、R、R10、R11、R12、R13は、それぞれ別個に、水素、ハロゲン、アミノ、OH、=O、CN、SCN、SH、COOH、COO塩、COOエステル、SOH、SO塩、SOエステル、ベンゼンスルホン酸、及びC1~C8アルキルからなる群から選択される基である。また、Rは、水素、ハロゲン、アミノ、OH、=O、CN、SCN、SH、COOH、COO塩、COOエステル、SOH、SO塩、SOエステル、ベンゼンスルホン酸、低級アルキル、及びアリールからなる群から選択される基である。また、Aは、ハライドアニオンである。]
[20] A twentieth invention of the present invention is a method for producing a Ni-coated copper powder according to the sixth or seventh invention, wherein the copper powder is deposited on the cathode from the electrolytic solution by an electrolysis method, A step of coating copper powder with nickel (Ni) or Ni alloy, and the electrolytic solution is selected from compounds having a phenazine structure and an azobenzene structure represented by the following formula (3): copper ions The manufacturing method of Ni coat | court copper powder which electrolyzes containing 1 type, or 2 or more types.
Figure JPOXMLDOC01-appb-C000010
[In the formula (3), R 1 , R 2 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 are each independently hydrogen, Selected from the group consisting of halogen, amino, OH, ═O, CN, SCN, SH, COOH, COO salt, COO ester, SO 3 H, SO 3 salt, SO 3 ester, benzenesulfonic acid, and C1-C8 alkyl It is a group. R 3 is hydrogen, halogen, amino, OH, ═O, CN, SCN, SH, COOH, COO salt, COO ester, SO 3 H, SO 3 salt, SO 3 ester, benzenesulfonic acid, lower alkyl, And a group selected from the group consisting of aryl. A is a halide anion. ]
 本発明によれば、接点を多く確保することができるとともに接触面積を大きくとることができ、優れた導電性を確保し、また銅粉同士の凝集を防止することができ、導電性ペーストや電磁波シールド等の用途に好適に利用することができる。 According to the present invention, it is possible to secure a large number of contacts and a large contact area, to ensure excellent conductivity, and to prevent agglomeration between copper powders. It can utilize suitably for uses, such as a shield.
第1の実施形態に係る樹枝状Niコート銅粉の具体的な形状を模式的に示した図である。It is the figure which showed typically the specific shape of the dendritic Ni coat | court copper powder which concerns on 1st Embodiment. 第1の実施形態に係る樹枝状Niコート銅粉の具体的な形状を模式的に示した図である。It is the figure which showed typically the specific shape of the dendritic Ni coat | court copper powder which concerns on 1st Embodiment. 第1の実施形態において、Niを被覆する前の樹枝状銅粉をSEMにより倍率1,000倍で観察したときの観察像を示す写真図である。In 1st Embodiment, it is a photograph figure which shows an observation image when the dendritic copper powder before coat | covering Ni is observed by SEM with 1000-times multiplication factor. 第1の実施形態において、Niを被覆する前の樹枝状銅粉をSEMにより倍率5,000倍で観察したときの観察像を示す写真図である。In 1st Embodiment, it is a photograph figure which shows an observation image when dendritic copper powder before coat | covering Ni is observed by SEM with a magnification of 5,000 times. 第1の実施形態に係る樹枝状Niコート銅粉をSEMにより倍率1,000倍で観察したときの観察像を示す写真図である。It is a photograph figure which shows an observation image when the dendritic Ni coat copper powder which concerns on 1st Embodiment is observed by 1000-times multiplication factor by SEM. 第1の実施形態に係る樹枝状Niコート銅粉をSEMにより倍率1,000倍で観察したときの観察像を示す写真図である。It is a photograph figure which shows an observation image when the dendritic Ni coat copper powder which concerns on 1st Embodiment is observed by 1000-times multiplication factor by SEM. 第2の実施形態において、Niを被覆する前の樹枝状銅粉の具体的な形状を模式的に示した図である。In 2nd Embodiment, it is the figure which showed typically the specific shape of the dendritic copper powder before coat | covering Ni. 第2の実施形態において、Niを被覆する前の樹枝状銅粉をSEMにより倍率5,000倍で観察したときの観察像の一例を示す写真図である。In 2nd Embodiment, it is a photograph figure which shows an example of an observation image when the dendritic copper powder before coat | covering Ni is observed by SEM with a magnification of 5,000 times. 第2の実施形態に係る樹枝状Niコート銅粉をSEMにより倍率5,000倍で観察したときの観察像の一例を示す写真図である。It is a photograph figure which shows an example of an observation image when the dendritic Ni coat | court copper powder which concerns on 2nd Embodiment is observed by 5,000 times by SEM. 第2の実施形態に係る樹枝状Niコート銅粉をSEMにより倍率10,000倍で観察したときの観察像の一例を示す写真図である。It is a photograph figure which shows an example of an observation image when the dendritic Ni coat | court copper powder which concerns on 2nd Embodiment is observed by 10,000 times with SEM. 第3の実施形態に係る樹枝状Niコート銅粉の具体的な形状を模式的に示した図である。It is the figure which showed typically the specific shape of the dendritic Ni coat | court copper powder which concerns on 3rd Embodiment. 第3の実施形態において、Niを被覆する前の樹枝状銅粉をSEMにより倍率5,000倍で観察したときの観察像の一例を示す写真図である。In 3rd Embodiment, it is a photograph figure which shows an example of an observation image when the dendritic copper powder before coat | covering Ni is observed by SEM with a magnification of 5,000 times. 第3の実施形態に係る樹枝状Niコート銅粉をSEMにより倍率5,000倍で観察したときの観察像の一例を示す写真図である。It is a photograph figure which shows an example of an observation image when the dendritic Ni coat | court copper powder which concerns on 3rd Embodiment is observed by 5,000 times magnification by SEM. 第3の実施形態に係る樹枝状Niコート銅粉をSEMにより倍率1,000倍で観察したときの観察像の一例を示す写真図である。It is a photograph figure which shows an example of an observation image when the dendritic Ni coat | court copper powder which concerns on 3rd Embodiment is observed by 1000-times multiplication factor by SEM. 第4の実施形態に係るNiコート銅粉の具体的な形状を模式的に示した図である。It is the figure which showed typically the specific shape of the Ni coat copper powder which concerns on 4th Embodiment. 第4の実施形態に係るNiコート銅粉をSEMにより倍率5,000倍で観察したときの観察像の一例を示す写真図である。It is a photograph figure which shows an example of an observed image when the Ni coat copper powder which concerns on 4th Embodiment is observed by SEM with a magnification of 5,000 times. 第4の実施形態に係るNiコート銅粉をSEMにより倍率10,000倍で観察したときの観察像の一例を示す写真図である。It is a photograph figure which shows an example of an observation image when the Ni coat copper powder which concerns on 4th Embodiment is observed by 10,000 times by SEM. 第5の実施形態に係る樹枝状Niコート銅粉を構成するNi又はNi合金が被覆された銅粒子の具体的な形状を模式的に示した図である。It is the figure which showed typically the specific shape of the copper particle with which Ni or Ni alloy which comprises the dendritic Ni coat copper powder concerning 5th Embodiment was coat | covered. 第5の実施形態において、Niを被覆する前の樹枝状銅粉をSEMにより倍率10,000倍で観察したときの観察像の一例を示す写真図である。In 5th Embodiment, it is a photograph figure which shows an example of an observation image when dendritic copper powder before coat | covering Ni is observed by SEM by 10,000 time magnification. 第5の実施形態に係る樹枝状Niコート銅粉をSEMにより倍率5,000倍で観察したときの観察像の一例を示す写真図である。It is a photograph figure which shows an example of an observation image when the dendritic Ni coat | court copper powder which concerns on 5th Embodiment is observed by 5,000 times magnification by SEM. 第5の実施形態に係る樹枝状ニッケルコート銅粉の別の箇所をSEMにより倍率10,000倍で観察したときの観察像の一例を示す写真図である。It is a photograph figure which shows an example of the observation image when another location of the dendritic nickel coat copper powder which concerns on 5th Embodiment is observed by magnification by 10,000 times with SEM. 第5の実施形態に係る樹枝状ニッケルコート銅粉の別の箇所をSEMにより倍率1,000倍で観察したときの観察像の一例を示す写真図である。It is a photograph figure which shows an example of an observed image when another location of the dendritic nickel coat copper powder which concerns on 5th Embodiment is observed by 1000-times multiplication factor by SEM. 比較例7にて得られたNiコート銅粉をSEMにより倍率5,000倍で観察したときの観察像を示す写真図である。It is a photograph figure which shows an observation image when the Ni coat copper powder obtained in the comparative example 7 is observed by 5,000 times by SEM. 比較例10にて得られたNiコート銅粉をSEMにより倍率5,000倍で観察したときの観察像を示す写真図である。It is a photograph figure which shows an observation image when the Ni coat copper powder obtained in the comparative example 10 is observed by 5,000 times by SEM. 比較例13にて得られたNiコート銅粉をSEMにより倍率1,000倍で観察したときの観察像を示す写真図である。It is a photograph figure which shows an observation image when Ni coat copper powder obtained in the comparative example 13 is observed by 1000-times multiplication factor by SEM.
 以下、本発明の具体的な実施形態(以下、「本実施の形態」という)について、図面を参照しながら詳細に説明するが、本発明は以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲で種々の変更が可能である。なお、本明細書にて、「X~Y」(X、Yは任意の数値)との表記は、「X以上Y以下」の意味である。 Hereinafter, specific embodiments of the present invention (hereinafter referred to as “present embodiments”) will be described in detail with reference to the drawings. However, the present invention is not limited to the following embodiments, and Various modifications can be made without departing from the scope of the invention. In this specification, the notation “X to Y” (X and Y are arbitrary numerical values) means “X or more and Y or less”.
 ≪1.ニッケル(Ni)コート銅粉≫
 本発明に係るニッケルコート銅粉は、表面にニッケル(Ni)又はNi合金が被覆された銅粉である。なお、本明細書において、ニッケルコート銅粉を「Niコート銅粉」と表記する。また、被覆するニッケル又はニッケル合金を、それぞれ、「Ni」、「Ni合金」と表記し、Niを銅粉表面にコートする場合もNi合金を銅粉表面にコートする場合も、総じて「Niコート」と称する。
<< 1. Nickel (Ni) coated copper powder >>
The nickel-coated copper powder according to the present invention is a copper powder having a surface coated with nickel (Ni) or a Ni alloy. In this specification, nickel-coated copper powder is referred to as “Ni-coated copper powder”. Further, nickel or nickel alloy to be coated is expressed as “Ni” and “Ni alloy”, respectively, and when Ni is coated on the surface of copper powder or Ni alloy is coated on the surface of copper powder, “Ni coating” is generally used. ".
 <1-1.第1の実施形態>
 [Niコート銅粉の構成について]
 第1の実施形態に係るNiコート銅粉は、走査型電子顕微鏡(SEM)を用いて観察したとき、直線的に成長した主幹とその主幹から分かれた複数の枝とを有する樹枝状の形状をなすものであり、その主幹及び枝は、特定の断面平均厚さを有する平板状の銅粒子が集合して構成され、これら平板状の銅粒子の表面にNi又はNi合金が被覆されている。なお、以下では、このNiコート銅粉を「樹枝状Niコート銅粉」ともいう。
<1-1. First Embodiment>
[Configuration of Ni-coated copper powder]
When the Ni-coated copper powder according to the first embodiment is observed using a scanning electron microscope (SEM), the Ni-coated copper powder has a dendritic shape having a main trunk that grows linearly and a plurality of branches separated from the main trunk. The main trunk and the branch are constituted by a collection of tabular copper particles having a specific cross-sectional average thickness, and the surface of the tabular copper particles is coated with Ni or a Ni alloy. Hereinafter, this Ni-coated copper powder is also referred to as “dendritic Ni-coated copper powder”.
 より具体的に、この樹枝状Niコート銅粉においては、主幹及び枝が、SEM観察より求められる断面平均厚さが0.02μm~5.0μmの平板状の銅粒子が集合して構成されており、このように平板状の銅粒子が集合して構成される当該Niコート銅粉の平均粒子径(D50)が1.0μm~100μmである。そして、この樹枝状Niコート銅粉では、平板状の銅粒子のその平板状の面に対して垂直方向への高さが、水平方向への最大長さに対して1/10以下となっており、垂直方向への成長を抑制した平滑な面を有することを特徴としている。 More specifically, in this dendritic Ni-coated copper powder, the main trunk and branches are composed of flat copper particles having an average cross-sectional thickness of 0.02 μm to 5.0 μm determined by SEM observation. Thus, the average particle diameter (D50) of the Ni-coated copper powder composed of flat copper particles is 1.0 μm to 100 μm. In this dendritic Ni-coated copper powder, the height of the flat copper particles in the vertical direction with respect to the flat surface is 1/10 or less with respect to the maximum length in the horizontal direction. It has a smooth surface that suppresses growth in the vertical direction.
 このような樹枝状Niコート銅粉は、詳しくは後述するが、例えば、銅イオンを含む硫酸酸性の電解液に陽極と陰極を浸漬し、直流電流を流して電気分解することにより陰極上に銅粉を析出させ、そしてその得られた銅粉の表面に無電解めっき法等によりNi又はNi合金を被覆することで作製することができる。 Although such dendritic Ni-coated copper powder will be described in detail later, for example, the anode and the cathode are immersed in a sulfuric acid acidic electrolyte solution containing copper ions, and a direct current is applied to perform electrolysis so that the copper is deposited on the cathode. It can be produced by depositing powder and coating the surface of the obtained copper powder with Ni or a Ni alloy by an electroless plating method or the like.
 図1及び図2は、第1の実施形態に係る樹枝状Niコート銅粉の具体的な形状を模式的に示した図である。図1に示すように、樹枝状Niコート銅粉11は、直線的に成長した主幹12とその主幹12から分かれた複数の枝13とを有する樹枝状の形状を有している。なお、樹枝状Niコート銅粉11における枝13は、主幹12から分岐した枝13aだけでなく、その枝13aからさらに分岐した枝13bの両方を意味する。 1 and 2 are diagrams schematically showing a specific shape of the dendritic Ni-coated copper powder according to the first embodiment. As shown in FIG. 1, the dendritic Ni-coated copper powder 11 has a dendritic shape having a main trunk 12 grown linearly and a plurality of branches 13 separated from the main trunk 12. Note that the branches 13 in the dendritic Ni-coated copper powder 11 mean not only the branches 13a branched from the main trunk 12 but also the branches 13b further branched from the branches 13a.
 そして、上述したように、主幹12及び枝13は、SEM観察より求められる断面平均厚さが0.02μm~5.0μmの平板状の銅粒子が集合して構成されている。このような平板状の銅粒子が形成されることは、後述するように、銅粉を電解析出させるに際して電解液中に添加した特定の添加剤が銅粒子の表面に吸着することで成長を抑制され、その結果として平板状に成長するものと考えられる。なお、このような平板状の銅粒子の表面にNi又はNi合金が被覆されることによって、Niコート銅粉11が構成されている。 As described above, the main trunk 12 and the branch 13 are constituted by a collection of tabular copper particles having an average cross-sectional thickness of 0.02 μm to 5.0 μm determined by SEM observation. The formation of such flat copper particles is caused by the fact that specific additives added to the electrolytic solution when electrolytically depositing copper powder are adsorbed on the surface of the copper particles, as will be described later. As a result, it is thought that it grows flat. The Ni-coated copper powder 11 is constituted by coating the surface of such flat copper particles with Ni or a Ni alloy.
 ところが、例えば図2に示す平板状の面に対して垂直方向(図2中のZ方向)にも銅粉の成長が生じると、それぞれ成長した枝の銅粒子自体は平板状となるものの、垂直方向にも銅粒子が突起のように成長した銅粉が形成される。なお、図2は、平板状の面に水平な方向(平板方向)とその平板状の面に対して垂直な方向を示す図であり、平板方向とはX-Y方向を示し、垂直方向とはZ方向を示す。 However, for example, when copper powder grows in a direction perpendicular to the flat surface shown in FIG. 2 (the Z direction in FIG. 2), the copper particles of the grown branches themselves become flat, but the vertical Copper powder in which copper particles grow like protrusions is also formed in the direction. FIG. 2 is a diagram showing a horizontal direction (flat plate direction) to the flat plate surface and a direction perpendicular to the flat plate surface. The flat plate direction indicates the XY direction, and the vertical direction. Indicates the Z direction.
 ここで、図3は、Niを被覆する前の樹枝状銅粉において、平板状の面に対して垂直方向にも成長した銅粉をSEM(倍率1,000倍)により観察したときの観察像の一例を示す写真図である。この写真図に示す樹枝状銅粉では、平板状の面に対して垂直方向に銅粒子が成長して突起が形成され、また一部の平板状の面が折れ曲がって垂直方向に高さを有する形状となっている。 Here, FIG. 3 shows an observation image when the copper powder grown in the direction perpendicular to the flat plate-like surface is observed by SEM (magnification 1,000 times) in the dendritic copper powder before coating with Ni. It is a photograph figure which shows an example. In the dendritic copper powder shown in this photograph, copper particles grow in a direction perpendicular to the flat surface to form protrusions, and some flat surfaces are bent to have a height in the vertical direction. It has a shape.
 図3の写真図に示すように銅粒子が垂直方向に成長すると、例えばその銅粉に基づいて作製されたNiコート銅粉を導電性ペーストや導電塗料等の用途に利用した場合に、その垂直方向への銅粒子の成長により銅粉が嵩高くなるために充填密度が得られなくなり、導電性を十分に確保できなくなる問題が発生する。 When the copper particles grow in the vertical direction as shown in the photograph of FIG. 3, for example, when the Ni-coated copper powder produced based on the copper powder is used for a conductive paste or conductive paint, the vertical Since the copper powder becomes bulky due to the growth of the copper particles in the direction, the filling density cannot be obtained, and there is a problem that sufficient conductivity cannot be ensured.
 これに対して、第1の実施形態に係るNiコート銅粉11では、平板状の面に対して垂直方向への成長が抑制されて、ほぼ平滑な面を有する銅粉となっている。具体的に、図2に示すように、Niコート銅粉11は、平板状の面に対して垂直方向への最大高さ(図2中の符号「15」)が、平板状の面の水平方向への長尺となる最大長さ(図2中の符号「14」)に対して1/10以下になる。なお、平板状の面に対して垂直方向への最大高さ15とは、平板状の面の厚さではなく、例えば平板状の面に突起が形成されている場合はその突起の高さであり、平板状の「面」を基準として厚さ方向とは逆方向の“高さ”のことを意味する。また、平板状の面に対して水平方向への最大長さ14とは、平板状の面の長軸長さを意味する。 On the other hand, in the Ni-coated copper powder 11 according to the first embodiment, the growth in the vertical direction with respect to the flat plate-like surface is suppressed, and the copper powder has a substantially smooth surface. Specifically, as shown in FIG. 2, the Ni-coated copper powder 11 has a maximum height in the vertical direction (reference numeral “15” in FIG. 2) with respect to the plate-like surface. It becomes 1/10 or less with respect to the maximum length (symbol “14” in FIG. 2) that is long in the direction. Note that the maximum height 15 in the direction perpendicular to the flat surface is not the thickness of the flat surface, but, for example, when the protrusion is formed on the flat surface, the height of the protrusion. Yes, it means the “height” in the direction opposite to the thickness direction with respect to the flat “surface”. Moreover, the maximum length 14 in the horizontal direction with respect to the flat surface means the major axis length of the flat surface.
 ここで、図4は、Ni又はNi合金を被覆する前の樹枝状銅粉についてSEM(倍率1,000倍)により観察したときの観察像、つまり、平板状の面に対して垂直方向への成長を抑制した平板状の樹枝状銅粉の観察像の一例を示す写真図である。また、図5は、図4に示した垂直方向への成長を抑制した樹枝状銅粉にNi又はNi合金を被覆した樹枝状Niコート銅粉についてSEM(倍率5,000倍)により観察したときの観察像を示す写真図である。また、図6は、同様にして、垂直方向への成長を抑制した樹枝状銅粉にNi又はNi合金を被覆した樹枝状Niコート銅粉の別の箇所についてSEM(倍率1,000倍)により観察したときの観察像を示す写真図である。これらの写真図に示されるように、平板状の面に対して垂直方向への成長が抑制されて、ほぼ平滑な面を有する樹枝状であって平板な銅粉となっていることが分かる。 Here, FIG. 4 shows an observation image when the dendritic copper powder before being coated with Ni or Ni alloy is observed by SEM (magnification 1,000 times), that is, in a direction perpendicular to the flat surface. It is a photograph figure which shows an example of the observation image of the flat dendritic copper powder which suppressed the growth. FIG. 5 is a graph showing the dendritic Ni-coated copper powder in which Ni or Ni alloy is coated on the dendritic copper powder whose growth in the vertical direction shown in FIG. It is a photograph figure which shows the observation image of. In addition, FIG. 6 is similar to FIG. 6 for another part of the dendritic Ni-coated copper powder obtained by coating Ni or Ni alloy on the dendritic copper powder whose growth in the vertical direction is suppressed by SEM (magnification 1,000 times). It is a photograph figure which shows the observation image when it observes. As shown in these photographic diagrams, it can be seen that the growth in the vertical direction with respect to the flat surface is suppressed, and a dendritic and flat copper powder having a substantially smooth surface is obtained.
 このような垂直方向への成長が抑制された平板な樹枝状Niコート銅粉11であることにより、銅粉同士の接触面積を大きく確保することができる。そして、その接触面積が大きくなることで、低抵抗、すなわち高導電率を実現することができる。このことにより、より一層に導電性に優れ、またその導電性を良好に維持することができ、導電性塗料や導電性ペーストの用途に好適に用いることができる。また、樹枝状Niコート銅粉11が平板状の銅粒子が集合して構成されていることにより、配線材等の薄型化にも貢献することができる。 Such a flat dendritic Ni-coated copper powder 11 in which the growth in the vertical direction is suppressed can ensure a large contact area between the copper powders. And since the contact area becomes large, low resistance, that is, high conductivity can be realized. Thereby, it is further excellent in electroconductivity, can maintain the electroconductivity favorably, and can be used suitably for the use of an electroconductive coating material or an electroconductive paste. Moreover, when the dendritic Ni-coated copper powder 11 is formed by aggregating flat copper particles, it can contribute to thinning of the wiring material and the like.
 上述したように、樹枝状Niコート銅粉11において主幹12及び枝13を構成する、Ni又はNi合金が被覆された平板状の銅粒子は、その断面平均厚さが0.02μm~5.0μmである。Ni又はNi合金が被覆された平板状の銅粒子の断面平均厚さは、より薄い方が平板としての効果が発揮されることになる。すなわち、断面平均厚さが5.0μm以下である、Niが被覆された平板状の銅粒子によって主幹12及び枝13が構成されることで、銅粒子同士、またそれにより構成される樹枝状Niコート銅粉11同士が接触する面積を大きく確保することができる。 As described above, the tabular copper particles coated with Ni or Ni alloy constituting the main trunk 12 and the branches 13 in the dendritic Ni-coated copper powder 11 have an average cross-sectional thickness of 0.02 μm to 5.0 μm. It is. As for the cross-sectional average thickness of the flat copper particles coated with Ni or Ni alloy, the thinner one will exhibit the effect as a flat plate. That is, the trunk 12 and the branches 13 are constituted by flat copper particles coated with Ni having a cross-sectional average thickness of 5.0 μm or less, so that the copper particles and dendritic Ni formed thereby are formed. A large area where the coated copper powders 11 come into contact with each other can be secured.
 なお、Ni又はNi合金が被覆された平板状の銅粒子の断面平均厚さは、薄くなればなるほど、樹枝状Niコート銅粉11同士が接触する際における接点の数が少なくなってしまう。Ni又はNi合金が被覆された銅粒子の断面平均厚さが0.02μm以上あれば、十分な接点の数を確保することができ、より好ましくは0.2μm以上であり、これにより接点の数を有効に増やすことができる。 In addition, as the cross-sectional average thickness of the tabular copper particles coated with Ni or Ni alloy becomes thinner, the number of contacts when the dendritic Ni-coated copper powders 11 come into contact with each other decreases. If the cross-sectional average thickness of the copper particles coated with Ni or Ni alloy is 0.02 μm or more, a sufficient number of contacts can be secured, and more preferably 0.2 μm or more. Can be increased effectively.
 また、第1の実施形態に係る樹枝状Niコート銅粉11においては、その平均粒子径(D50)が1.0μm~100μmである。平均粒子径は、後述する電解条件を変更することで制御可能である。また、必要に応じて、ジェットミル、サンプルミル、サイクロンミル、ビーズミル等の機械的な粉砕や解砕を付加することによって、所望とする大きさにさらに調整することが可能である。なお、平均粒子径(D50)は、例えば、レーザー回折散乱式粒度分布測定法により測定することができる。 Further, in the dendritic Ni-coated copper powder 11 according to the first embodiment, the average particle diameter (D50) is 1.0 μm to 100 μm. The average particle diameter can be controlled by changing the electrolysis conditions described later. Further, if necessary, it can be further adjusted to a desired size by adding mechanical crushing or crushing such as a jet mill, a sample mill, a cyclone mill, or a bead mill. In addition, an average particle diameter (D50) can be measured by the laser diffraction scattering type particle size distribution measuring method, for example.
 ここで、例えば特許文献1でも指摘されているように、樹枝状Niコート銅粉の問題点としては、導電性ペーストや電磁波シールド用の樹脂等の金属フィラーとして利用する場合に、樹脂中の金属フィラーが樹枝状に発達した形状であることにより、樹枝状の銅粉同士が絡み合って凝集が発生し、樹脂中に均一に分散しないことが挙げられる。また、その凝集により、ペーストの粘度が上昇して印刷による配線形成に問題が生じる。このことは、樹枝状Niコート銅粉の形状(粒子径)が大きいために発生するものであり、樹枝状の形状を有効に活かしながらこの問題を解決するためには、樹枝状Niコート銅粉の形状を小さくすることが必要となる。ところが、樹枝状Niコート銅粉の粒子径を小さくし過ぎると、その樹枝状形状を確保することができなくなる。そのため、樹枝状形状であることの効果、すなわち3次元的形状であることにより表面積が大きく成形性や焼結性に優れ、また枝状の箇所を介して強固に連結されて高い強度で成形できるという効果を確保するには、樹枝状Niコート銅粉が所定以上の大きさであることが必要となる。 Here, as pointed out in, for example, Patent Document 1, as a problem of dendritic Ni-coated copper powder, when used as a metal filler such as a conductive paste or a resin for electromagnetic wave shielding, the metal in the resin It is mentioned that when the filler has a dendritic shape, the dendritic copper powders are entangled with each other and agglomerate occurs and is not uniformly dispersed in the resin. In addition, the agglomeration increases the viscosity of the paste and causes problems in wiring formation by printing. This occurs because the dendritic Ni-coated copper powder has a large shape (particle diameter). In order to solve this problem while effectively utilizing the dendritic shape, the dendritic Ni-coated copper powder is used. It is necessary to reduce the shape of the. However, if the particle diameter of the dendritic Ni-coated copper powder is too small, the dendritic shape cannot be secured. Therefore, the effect of being in a dendritic shape, that is, a three-dimensional shape, has a large surface area and excellent moldability and sinterability, and can be molded with high strength by being firmly connected via a branch-like portion. In order to secure the effect, it is necessary that the dendritic Ni-coated copper powder has a size larger than a predetermined size.
 この点において、第1の実施形態に係る樹枝状Niコート銅粉11では、その平均粒子径が1.0μm~100μmであることにより、表面積が大きくなり、良好な成形性や焼結性を確保することができる。そして、この樹枝状Niコート銅粉11は、樹枝状の形状であることに加えて、主幹12及び枝13が平板状の銅粒子の集合体により構成されているため、樹枝状であることの3次元的効果と、その樹枝状の形状を構成する銅粒子が平板状であることの効果により、銅粉同士の接点をより多く確保することができる。 In this respect, in the dendritic Ni-coated copper powder 11 according to the first embodiment, the average particle diameter is 1.0 μm to 100 μm, so that the surface area is increased and good moldability and sinterability are ensured. can do. The dendritic Ni-coated copper powder 11 has a dendritic shape because the main trunk 12 and the branch 13 are composed of an aggregate of tabular copper particles in addition to the dendritic shape. Due to the three-dimensional effect and the effect that the copper particles constituting the dendritic shape are flat, more contacts between copper powders can be secured.
 平板状のNiコート銅粉を作製する方法として、特許文献3や特許文献4には、粉砕等の機械的な方法により平板状にすることが示されている。この機械的な方法では、例えば球状銅粉を平板状にする場合には、機械的加工時に銅の酸化を防止する必要があるため、脂肪酸を添加し、空気中あるいは不活性雰囲気中で粉砕することによって平板状に加工している。しかしながら、完全に酸化を防止することができないことや、加工時に添加している脂肪酸がペースト化するときに分散性に影響を及ぼすことがあるため、加工終了後に除去することが必要となるが、その脂肪酸が機械加工時の圧力で銅表面に強固に固着する場合があり、完全に除去できないという問題が発生する。すると、導電性ペーストや電磁波シールド用の樹脂等の金属フィラーとして利用する場合に、その酸化被膜や脂肪酸の付着が抵抗を大きくする原因となる。 As a method for producing a flat Ni-coated copper powder, Patent Document 3 and Patent Document 4 show that a flat plate is formed by a mechanical method such as pulverization. In this mechanical method, for example, when spherical copper powder is formed into a flat plate shape, it is necessary to prevent copper oxidation during mechanical processing. Therefore, fatty acid is added and pulverized in air or in an inert atmosphere. This is processed into a flat plate shape. However, it cannot be completely prevented from oxidation, and the fatty acid added at the time of processing may affect the dispersibility when it is made into a paste. The fatty acid may firmly adhere to the copper surface due to the pressure during machining, which causes a problem that it cannot be completely removed. Then, when it uses as metal fillers, such as an electrically conductive paste and resin for electromagnetic wave shielding, the adhesion of the oxide film or fatty acid becomes a cause of increasing resistance.
 これに対して、第1の実施形態に係る樹枝状Niコート銅粉11では、機械的な加工を行うことなく直接電解によって成長させて平板の形状にすることができるため、これまでの機械的な方法で問題となっていた酸化の問題や脂肪酸の残留による問題は生じず、表面状態が良好な銅粉となり、電気導電性としては極めて良好な状態とすることができる。これにより、導電性ペーストや電磁波シールド用の樹脂等の金属フィラーとして利用する場合に、低抵抗を実現できる。なお、樹枝状Niコート銅粉11の製造方法については、後で詳述する。 On the other hand, the dendritic Ni-coated copper powder 11 according to the first embodiment can be grown by direct electrolysis to form a flat plate without performing mechanical processing. Therefore, the problem of oxidation and the problem due to the remaining fatty acid, which are problems in this method, do not occur, the surface state of the copper powder becomes good, and the electrical conductivity can be made extremely good. Thereby, when using as metal fillers, such as electroconductive paste and resin for electromagnetic wave shielding, low resistance is realizable. In addition, the manufacturing method of the dendritic Ni-coated copper powder 11 will be described in detail later.
 また、さらに低抵抗を実現するためには、金属フィラーの充填率が問題となる。より充填率を高めるためには、平板状の樹枝状Niコート銅粉の平滑性が必要となる。つまり、樹枝状Niコート銅粉11の形態は、平板状の面に対して垂直方向への最大高さが、平板状の面に対して水平な方向への最大長さに対して1/10以下であることにより、平滑性が高く充填率が上昇するとともに、銅粉同士の面での接点が増加するため、さらに低抵抗が実現できる。 Also, in order to realize further low resistance, the filling rate of the metal filler becomes a problem. In order to further increase the filling rate, the smoothness of the flat dendritic Ni-coated copper powder is required. That is, the form of the dendritic Ni-coated copper powder 11 is such that the maximum height in the direction perpendicular to the flat surface is 1/10 of the maximum length in the direction horizontal to the flat surface. By being below, since smoothness is high and a filling rate rises, since the contact in the surface of copper powder increases, further low resistance is realizable.
 なお、電子顕微鏡で観察したときに、得られたNiコート銅粉のうちに、上述したような形状の樹枝状Niコート銅粉が所定の割合で占められていれば、それ以外の形状のNiコート銅粉が混じっていても、その樹枝状Niコート銅粉のみからなる銅粉と同様の効果を得ることができる。具体的には、電子顕微鏡(例えば500倍~20,000倍)で観察したときに、上述した形状の樹枝状Niコート銅粉が全Niコート銅粉のうちの65個数%以上、好ましくは80個数%以上、より好ましくは90個数%以上の割合を占めていれば、その他の形状のNiコート銅粉が含まれていてもよい。 If the dendritic Ni-coated copper powder having the above-mentioned shape is occupied at a predetermined ratio in the obtained Ni-coated copper powder when observed with an electron microscope, Ni of other shapes Even if the coated copper powder is mixed, the same effect as that of the copper powder composed only of the dendritic Ni-coated copper powder can be obtained. Specifically, when observed with an electron microscope (for example, 500 to 20,000 times), the dendritic Ni-coated copper powder having the shape described above is 65% by number or more, preferably 80% of the total Ni-coated copper powder. As long as it occupies a ratio of several percent or more, more preferably 90 percent or more, Ni-coated copper powder of other shapes may be included.
 [Niの被覆について]
 第1の実施形態に係る樹枝状Niコート銅粉11は、上述したように、断面平均厚さが0.02μm~5.0μmの平板状であって表面にNi又はNi合金が被覆されている銅粒子によって樹枝状に構成されたものである。
[Ni coating]
As described above, the dendritic Ni-coated copper powder 11 according to the first embodiment is a flat plate having a cross-sectional average thickness of 0.02 μm to 5.0 μm, and the surface is coated with Ni or a Ni alloy. It is constituted in a dendritic shape by copper particles.
 樹枝状Niコート銅粉11は、Ni又はNi合金を被覆する前の樹枝状銅粉に、好ましくはNi被覆した当該Niコート銅粉11全体の質量100%に対してNi含有量として1質量%~50質量%の割合でNi又はNi合金が被覆されたものであり、Niの厚さ(被覆厚み)としては0.1μm以下、好ましくは0.05μm以下の極薄い被膜が被覆されている。このことから、樹枝状Niコート銅粉11は、Ni又はNi合金を被覆する前の樹枝状銅粉の形状をそのまま保持した形状になる。したがって、Ni又はNi合金を被覆する前の銅粉の形状と、銅粉にNi又はNi合金を被覆した後のNiコート銅粉の形状とは、両者共に樹枝状の形状である。 The dendritic Ni-coated copper powder 11 is preferably 1% by mass as Ni content with respect to 100% by mass of the entire Ni-coated copper powder 11 coated with Ni on the dendritic copper powder before being coated with Ni or Ni alloy. Ni or Ni alloy is coated at a ratio of ˜50 mass%, and the thickness of Ni (coating thickness) is 0.1 μm or less, preferably 0.05 μm or less. From this, the dendritic Ni-coated copper powder 11 has a shape that retains the shape of the dendritic copper powder before coating with Ni or Ni alloy. Therefore, the shape of the copper powder before coating Ni or Ni alloy and the shape of the Ni-coated copper powder after coating Ni or Ni alloy on the copper powder are both dendritic shapes.
 樹枝状Niコート銅粉11におけるNi又はNi合金として被覆されるNiの含有量は、上述したように、Ni被覆した当該Niコート銅粉1全体の質量100%に対して1質量%~50質量%の範囲であることが好ましい。Ni又はNi合金として被覆されるNiの含有量は、Ni自体の導電率が銅より低いためできるだけ少ない方が好ましいが、少なすぎると銅粉表面に均一なNi又はNi合金の被膜が確保できず、その結果銅が酸化されて導電性の低下の原因になる。そのため、Ni又はNi合金として被覆されるNiの含有量としては、Ni被覆した当該Niコート銅粉11全体の質量100%に対して1質量%以上であることが好ましく、2質量%以上であることがより好ましく、5質量%以上であることがさらに好ましい。 The content of Ni coated as Ni or Ni alloy in the dendritic Ni-coated copper powder 11 is 1% by mass to 50% by mass with respect to 100% by mass of the Ni-coated copper powder 1 as a whole as described above. % Is preferable. The content of Ni coated as Ni or Ni alloy is preferably as low as possible because the conductivity of Ni itself is lower than copper, but if it is too small, a uniform Ni or Ni alloy film cannot be secured on the copper powder surface. As a result, copper is oxidized to cause a decrease in conductivity. Therefore, the content of Ni coated as Ni or Ni alloy is preferably 1% by mass or more with respect to 100% by mass of the entire Ni-coated copper powder 11 coated with Ni, and is 2% by mass or more. It is more preferable that the content is 5% by mass or more.
 一方で、Ni又はNi合金として被覆されるNiの含有量が多くなると、導電率が低下することから好ましくない。したがって、Ni又はNi合金の被覆量としては、Ni被覆した当該Niコート銅粉11全体の質量100%に対して50質量%以下であることが好ましく、20質量%以下であることがより好ましく、10質量%以下であることがさらに好ましい。 On the other hand, if the content of Ni coated as Ni or Ni alloy is increased, the conductivity is not preferable. Therefore, the coating amount of Ni or Ni alloy is preferably 50% by mass or less, more preferably 20% by mass or less, with respect to 100% by mass of the Ni-coated copper powder 11 coated with Ni. More preferably, it is 10 mass% or less.
 また、第1の実施形態に係る樹枝状Niコート銅粉11において、樹枝状銅粉の表面に被覆するNi又はNi合金の平均厚みとしては0.0003μm~0.1μm程度であり、0.005μm~0.02μm程度であることがより好ましい。Ni又はNi合金の被覆厚みが平均で0.0003μm未満であると、銅粉の表面に均一なNi又はNi合金の被覆を確保することができず、銅の酸化を抑えられず導電性の低下の原因となる。一方で、Ni又はNi合金の被覆厚みが平均で0.1μmを超えると、導電率が低下する点から好ましくない。 In the dendritic Ni-coated copper powder 11 according to the first embodiment, the average thickness of Ni or Ni alloy coated on the surface of the dendritic copper powder is about 0.0003 μm to 0.1 μm, and 0.005 μm. More preferably, it is about 0.02 μm. If the coating thickness of Ni or Ni alloy is less than 0.0003 μm on average, a uniform Ni or Ni alloy coating cannot be secured on the surface of the copper powder, and copper conductivity cannot be suppressed, resulting in a decrease in conductivity. Cause. On the other hand, when the coating thickness of Ni or Ni alloy exceeds 0.1 μm on average, it is not preferable from the viewpoint of decreasing the electrical conductivity.
 このように、樹枝状銅粉の表面に被覆するNiの平均厚みは0.1μm以下であり、Ni又はNi合金を被覆する前の樹枝状銅粉を構成する平板状の銅粒子の断面平均厚さ(0.02μm~5.0μm)と比べて小さい。そのため、樹枝状銅粉の表面をNi又はNi合金で被覆する前後で、平板状の銅粒子の断面平均厚さは実質的に変化することはない。 Thus, the average thickness of Ni coated on the surface of the dendritic copper powder is 0.1 μm or less, and the cross-sectional average thickness of the flat copper particles constituting the dendritic copper powder before coating the Ni or Ni alloy Is smaller than 0.02 μm to 5.0 μm. Therefore, before and after coating the surface of the dendritic copper powder with Ni or Ni alloy, the cross-sectional average thickness of the tabular copper particles does not substantially change.
 さらに後述するように、樹枝状Niコート銅粉11において、樹枝状銅粉に被覆されるNiは、Ni合金でもよい。Ni合金として添加される元素としては、周期表の第6族から第14族の元素であることが好ましく、特に亜鉛、コバルト、タングステン、モリブデン、パラジウム、白金、及びスズから選ばれる1種以上が好ましい。また、後述するように、樹枝状銅粉にNiを被覆する工程で無電解めっきを用い、さらにその還元剤として次亜リン酸塩、ホウ水素化合物を使用する場合には、得られるNi被膜はそれぞれNi-P合金、Ni-B合金となる。 Further, as will be described later, in the dendritic Ni-coated copper powder 11, the Ni covered with the dendritic copper powder may be a Ni alloy. The element added as the Ni alloy is preferably an element from Group 6 to Group 14 of the periodic table, and particularly one or more selected from zinc, cobalt, tungsten, molybdenum, palladium, platinum, and tin. preferable. In addition, as will be described later, when using electroless plating in the step of coating Ni on the dendritic copper powder, and further using hypophosphite and borohydride as the reducing agent, the resulting Ni coating is They are Ni-P alloy and Ni-B alloy, respectively.
 [嵩密度について]
 樹枝状Niコート銅粉11の嵩密度としては、特に限定されないが、0.5g/cm~5.0g/cmの範囲であることが好ましい。嵩密度が0.5g/cm未満であると、樹枝状Niコート銅粉11同士の接点を十分に確保できない可能性がある。一方で、嵩密度が5.0g/cmを超えると、樹枝状Niコート銅粉11の平均粒子径も大きくなってしまい、すると表面積が小さくなって成形性や焼結性が悪化することがある。
[About bulk density]
The bulk density of the dendritic Ni-coated copper powder 11 is not particularly limited, but is preferably in the range of 0.5 g / cm 3 to 5.0 g / cm 3 . If the bulk density is less than 0.5 g / cm 3 , there is a possibility that sufficient contact between the dendritic Ni-coated copper powders 11 cannot be secured. On the other hand, if the bulk density exceeds 5.0 g / cm 3 , the average particle diameter of the dendritic Ni-coated copper powder 11 also increases, and the surface area decreases and the moldability and sinterability deteriorate. is there.
 [BET比表面積について]
 樹枝状Niコート銅粉11では、特に限定されないが、そのBET比表面積の値が0.2m/g~5.0m/gであることが好ましい。BET比表面積値が0.2m/g未満であると、Ni又はNi合金が被覆された銅粒子が上述したような平板状の所望の形状とはならないことがあり、高い導電性が得られないことがある。一方で、BET比表面積値が5.0m/gを超えると、樹枝状Niコート銅粉の表面のNi被覆が不均一となり高い導電性が得られない可能性がある。また、Niコート銅粉を構成する銅粒子が細かくなりすぎてしまい、Niコート銅粉が細かいひげ状の状態となって、導電性が低下することがある。なお、BET比表面積は、JIS Z8830:2013に準拠して測定することができる。
[BET specific surface area]
In dendritic Ni-coated copper powder 11 is not particularly limited, it is preferable the value of the BET specific surface area of 0.2m 2 /g~5.0m 2 / g. When the BET specific surface area value is less than 0.2 m 2 / g, the copper particles coated with Ni or Ni alloy may not have the desired flat plate shape as described above, and high conductivity is obtained. There may not be. On the other hand, when the BET specific surface area value exceeds 5.0 m 2 / g, the Ni coating on the surface of the dendritic Ni-coated copper powder becomes non-uniform and high conductivity may not be obtained. Moreover, the copper particle which comprises Ni coat | court copper powder may become too fine, Ni coat copper powder may become a fine beard-like state, and electroconductivity may fall. The BET specific surface area can be measured in accordance with JIS Z8830: 2013.
 <1-2.第2の実施形態>
 [Niコート銅粉の構成について]
 第2の実施形態に係るNiコート銅粉は、走査型電子顕微鏡(SEM)を用いて観察したとき、複数の枝を有する樹枝状の形状をなすものであり、特定の大きさの楕円体形状の銅粒子が集合して構成され、これら銅粒子の表面にNi又はNi合金が被覆されている。なお、以下では、このNiコート銅粉を「樹枝状Niコート銅粉」ともいう。
<1-2. Second Embodiment>
[Configuration of Ni-coated copper powder]
The Ni-coated copper powder according to the second embodiment forms a dendritic shape having a plurality of branches when observed using a scanning electron microscope (SEM), and has an ellipsoidal shape having a specific size. The copper particles are assembled and the surfaces of these copper particles are coated with Ni or a Ni alloy. Hereinafter, this Ni-coated copper powder is also referred to as “dendritic Ni-coated copper powder”.
 より具体的に、この樹枝状Niコート銅粉においては、複数の枝を有する樹枝状の形状を呈する銅粉が、短軸平均径が0.2μm~0.5μm、かつ、長軸平均径が0.5μm~2.0μmの範囲の大きさの楕円体であって表面にNi又はNi合金が被覆された銅粒子が集合して構成されている。そして、その表面にNi又はNi合金が被覆された銅粒子が集合して構成される当該Niコート銅粉の平均粒子径(D50)が5.0μm~20μmであることを特徴としている。 More specifically, in this dendritic Ni-coated copper powder, a copper powder having a dendritic shape having a plurality of branches has a minor axis average diameter of 0.2 μm to 0.5 μm and a major axis average diameter. The ellipsoid has a size in the range of 0.5 μm to 2.0 μm, and is composed of copper particles whose surfaces are coated with Ni or a Ni alloy. The average particle diameter (D50) of the Ni-coated copper powder formed by aggregating copper particles coated with Ni or Ni alloy on the surface is 5.0 μm to 20 μm.
 ここで、図7は、第2の実施形態に係るNiコート銅粉を構成する、表面にNi又はNi合金が被覆される前の樹枝状銅粉の具体的な形状を模式的に示した図である。この図7の模式図に示すように、Niコート銅粉を構成する樹枝状銅粉21は、複数の枝を有する樹枝状の形状であり、微細な銅粒子22の集合体からなっている。Niコート銅粉は、このような銅粒子22の集合体である樹枝状銅粉21の表面にNi又はNi合金が被覆されてなる。 Here, FIG. 7 is a diagram schematically showing a specific shape of the dendritic copper powder before the Ni or Ni alloy is coated on the surface, which constitutes the Ni-coated copper powder according to the second embodiment. It is. As shown in the schematic diagram of FIG. 7, the dendritic copper powder 21 constituting the Ni-coated copper powder has a dendritic shape having a plurality of branches and is composed of an aggregate of fine copper particles 22. The Ni-coated copper powder is formed by coating the surface of dendritic copper powder 21, which is an aggregate of such copper particles 22, with Ni or a Ni alloy.
 そして、樹枝状銅粉21を構成する銅粒子22は、短軸平均径が0.2μm~0.5μmであり、長軸平均径が0.5μm~2.0μmの範囲の大きさの楕円体の形状をした銅粒子である。そして、楕円体の銅粒子22の集合体である樹枝状銅粉21は、その平均粒子径(D50)が5.0μm~20μmである。なお、樹枝状銅粉21の表面にNi又はNi合金を被覆した後であっても、Niコート銅粉を構成するNiを被覆した銅粒子の短軸平均径及び長軸平均径、並びにそのNiコート銅粉の平均粒子径は、ほぼ同じである。 The copper particles 22 constituting the dendritic copper powder 21 have an ellipsoid having a minor axis average diameter of 0.2 μm to 0.5 μm and a major axis average diameter of 0.5 μm to 2.0 μm. It is the copper particle of the shape. The dendritic copper powder 21 which is an aggregate of the ellipsoidal copper particles 22 has an average particle diameter (D50) of 5.0 μm to 20 μm. Even after the surface of the dendritic copper powder 21 is coated with Ni or Ni alloy, the minor axis average diameter and major axis average diameter of the copper particles coated with Ni constituting the Ni-coated copper powder, and the Ni The average particle diameter of the coated copper powder is almost the same.
 このような樹枝状銅粉21は、詳しくは後述するが、例えば、銅イオンを含む硫酸酸性の電解液に陽極と陰極を浸漬し、直流電流を流して電気分解することにより陰極上に析出させて得ることができる。すなわち、粉砕、解砕等の物理的な処理を施すことなく、上述したような小さな形状の樹枝状銅粉21を電解により析出生成することができる。なお、従来の樹枝状銅粉は、非常に大きな形状でありそのままでは利用できないために粉砕処理を行って小さな形状として利用していたが、この場合、粉砕した形状が10μm以下の棒状銅粉となっていたことから、従来の樹枝状銅粉の形状は10μm以下の形状が集合した樹枝状銅粉であると考えられる。 Although such dendritic copper powder 21 will be described in detail later, for example, the anode and the cathode are immersed in a sulfuric acid acidic electrolyte solution containing copper ions, and a DC current is applied to cause electrolysis to deposit on the cathode. Can be obtained. That is, the dendritic copper powder 21 having a small shape as described above can be deposited and formed by electrolysis without performing physical treatment such as pulverization and crushing. In addition, since the conventional dendritic copper powder has a very large shape and cannot be used as it is, it was used as a small shape by performing a pulverization process. In this case, the crushed shape is a rod-shaped copper powder having a size of 10 μm or less. Therefore, the shape of the conventional dendritic copper powder is considered to be a dendritic copper powder in which shapes of 10 μm or less are assembled.
 図8は、Ni又はNi合金を被覆する前の樹枝状銅粉のSEM(倍率5,000倍)による観察像の一例を示す写真図である。また、図9及び図10は、第2の実施形態に係る樹枝状Niコート銅粉、すなわち樹枝状銅粉の表面にNi又はNi合金を被覆してなる樹枝状Niコート銅粉のSEMによる観察像の一例を示す写真図である(図9:倍率5,000倍、図10:倍率10,000倍)。 FIG. 8 is a photograph showing an example of an observation image obtained by SEM (magnification: 5,000 times) of the dendritic copper powder before coating with Ni or Ni alloy. 9 and 10 are SEM observations of the dendritic Ni-coated copper powder according to the second embodiment, that is, the dendritic Ni-coated copper powder obtained by coating the surface of the dendritic copper powder with Ni or a Ni alloy. It is a photograph figure which shows an example of an image (FIG. 9: 5,000 times magnification, FIG. 10: 10,000 times magnification).
 図8で観察されるように、Niを被覆する前の銅粉は、樹枝状の析出状態を呈している。そして、この樹枝状銅粉は、図7でも模式的に示したように、楕円形形状を有する微細な銅粒子が集合することで複数の枝を有する樹枝状の形状を形成している。ここで、銅粒子の大きさは、短軸平均径が0.5μm以下で、長軸平均径が2.0μm以下の楕円体の形状となっている。 As observed in FIG. 8, the copper powder before coating with Ni exhibits a dendritic precipitation state. And this dendritic copper powder has formed the dendritic shape which has a some branch by gathering the fine copper particle which has an elliptical shape, as typically shown in FIG. Here, the size of the copper particles is an ellipsoidal shape having a minor axis average diameter of 0.5 μm or less and a major axis average diameter of 2.0 μm or less.
 樹枝状銅粉1を構成する銅粒子2の形状の長軸平均径が2.0μm以下の細長い形状であることにより、樹枝状Niコート銅粉同士が接触する際における接点の数を多くすることができる。すなわち、長軸平均径が2.0μm以下の銅粒子2の集合体であることにより、図9及び図10に示す観察結果からも確認できるように、樹枝状Niコート銅粉の枝の部分には細かな突起が形成されるようになり、これが樹枝状Niコート銅粉同士の接点を多く確保できることになる。 Increasing the number of contacts when dendritic Ni-coated copper powders are in contact with each other by having a long axis average diameter of the shape of the copper particles 2 constituting the dendritic copper powder 1 is 2.0 μm or less. Can do. That is, by being an aggregate of copper particles 2 having a long axis average diameter of 2.0 μm or less, it can be confirmed from the observation results shown in FIG. 9 and FIG. As a result, fine protrusions are formed, which can secure many contacts between the dendritic Ni-coated copper powders.
 しかしながら、長軸平均径が2.0μmを超える長い形状になると、樹枝状銅粉の枝の間隔が狭くなり全体に密集した形状になるため、かえって樹枝状銅粉同士の接点が少なくなる傾向になる。また逆に、銅粒子の長軸平均径が短くなりすぎると、突起の形成が得られなくなる。そのため、銅粒子2の長軸平均径は、0.5μm~2.0μmであることが好ましい。 However, when the long axis average diameter is longer than 2.0 μm, the distance between the branches of the dendritic copper powder becomes narrower and becomes a dense shape on the whole, so that the contacts between the dendritic copper powders tend to decrease. Become. Conversely, when the major axis average diameter of the copper particles becomes too short, formation of protrusions cannot be obtained. Therefore, the major axis average diameter of the copper particles 2 is preferably 0.5 μm to 2.0 μm.
 また、銅粒子2の短軸平均径は0.5μm以下である。銅粒子2の短軸平均径が0.5μmよりも太くなると、その銅粒子を集合させて樹枝状銅粉を形成したときに、その樹枝状銅粉の枝部分の太さ(例えば図7の模式図中の「D1」)が大きくなる。枝部分の太さが大きくなると、その樹枝状銅粉の表面にNi又はNi合金を被覆した樹枝状Niコート銅粉の枝の間隔が狭くなり全体として密集した形状になることから、3次元的な樹枝状の効果を発揮できなくなる。逆に、銅粒子により構成される樹枝状銅粉の枝部分の直径が細すぎると、細かいひげ状の状態となるため、樹枝状Niコート銅粉同士が接触した場合に十分な導電性を確保できなくなる。このことから、銅粒子2の短軸平均径は、0.2μm~0.5μmの大きさであることが好ましく、これにより、3次元的な樹枝状の効果を発揮しつつ、十分な導電性を確保することができる。 Further, the minor axis average diameter of the copper particles 2 is 0.5 μm or less. When the minor axis average diameter of the copper particles 2 is thicker than 0.5 μm, when the copper particles are assembled to form a dendritic copper powder, the thickness of the branch portion of the dendritic copper powder (for example, FIG. 7). “D1”) in the schematic diagram increases. When the thickness of the branch portion is increased, the interval between the branches of the dendritic Ni-coated copper powder in which the surface of the dendritic copper powder is coated with Ni or Ni alloy is narrowed, resulting in a dense shape as a whole. No dendritic effect. Conversely, if the diameter of the branch part of the dendritic copper powder composed of copper particles is too thin, it becomes a fine whisker-like state, ensuring sufficient conductivity when the dendritic Ni-coated copper powders are in contact with each other become unable. For this reason, it is preferable that the minor axis average diameter of the copper particles 2 is 0.2 μm to 0.5 μm, thereby providing sufficient conductivity while exhibiting a three-dimensional dendritic effect. Can be secured.
 さらに、銅粒子2が集合して構成される樹枝状銅粉1の枝部分の平均太さ(D1)としては、2.0μm以下であることが好ましい。枝部分の平均太さが2.0μmを超えると、樹枝状銅粉の枝の間隔が狭くなり全体として密集した形状になる。一方で、枝部分の太さが小さすぎると、その樹枝状銅粉の表面にNi又はNi合金を被覆した樹枝状Niコート銅粉の強度が不足してしまい、特に導電性シートに成形した場合の可撓性を考慮した場合に、樹枝状Niコート銅粉の強度が低いためにその銅粉の枝の部分で折れてしまい導電性を失う可能性がある。このことから、樹枝状銅粉1の枝部分の太さとしては、0.5μm~2.0μmであることが好ましい。 Furthermore, the average thickness (D1) of the branch portion of the dendritic copper powder 1 constituted by the aggregation of the copper particles 2 is preferably 2.0 μm or less. When the average thickness of the branch portion exceeds 2.0 μm, the interval between the branches of the dendritic copper powder is narrowed and the shape becomes dense as a whole. On the other hand, if the thickness of the branch portion is too small, the strength of the dendritic Ni-coated copper powder in which the surface of the dendritic copper powder is coated with Ni or Ni alloy will be insufficient, especially when molded into a conductive sheet In consideration of the flexibility, since the strength of the dendritic Ni-coated copper powder is low, there is a possibility that it breaks at the branch portion of the copper powder and loses conductivity. Therefore, the thickness of the branch portion of the dendritic copper powder 1 is preferably 0.5 μm to 2.0 μm.
 また、第2の実施形態に係るNiコート銅粉においては、その平均粒子径(D50)が、5.0μm~20μmである。平均粒子径は、後述する電解条件を変更することで制御可能である。また、必要に応じて、ジェットミル、サンプルミル、サイクロンミル、ビーズミル等の機械的な粉砕や解砕を付加することによって、所望とする大きさにさらに調整することが可能である。Niコート銅粉がこのような大きさであることにより、3次元的な樹枝状の形状の効果によって銅粉同士の接点を多く確保できるともに、樹脂中において凝集を抑制して良好に分散させることができ、ペースト粘度の上昇を抑えることができる。なお、平均粒子径(D50)は、例えば、レーザー回折散乱式粒度分布測定法により測定することができる。 Further, in the Ni-coated copper powder according to the second embodiment, the average particle diameter (D50) is 5.0 μm to 20 μm. The average particle diameter can be controlled by changing the electrolysis conditions described later. Further, if necessary, it can be further adjusted to a desired size by adding mechanical crushing or crushing such as a jet mill, a sample mill, a cyclone mill, or a bead mill. With such a size of the Ni-coated copper powder, it is possible to secure a large number of contact points between the copper powders by the effect of the three-dimensional dendritic shape, and to suppress the aggregation in the resin and disperse it well. And increase in paste viscosity can be suppressed. In addition, an average particle diameter (D50) can be measured by the laser diffraction scattering type particle size distribution measuring method, for example.
 なお、電子顕微鏡で観察したときに、得られたNiコート銅粉のうちに、上述したような形状の樹枝状Niコート銅粉が所定の割合で占められていれば、それ以外の形状のNiコート銅粉が混じっていても、その樹枝状Niコート銅粉のみからなる銅粉と同様の効果を得ることができる。具体的には、電子顕微鏡(例えば500倍~20,000倍)で観察したときに、上述した形状の樹枝状Niコート銅粉が全Niコート銅粉のうちの65個数%以上、好ましくは80個数%以上、より好ましくは90個数%以上の割合を占めていれば、その他の形状のNiコート銅粉が含まれていてもよい。 If the dendritic Ni-coated copper powder having the above-mentioned shape is occupied at a predetermined ratio in the obtained Ni-coated copper powder when observed with an electron microscope, Ni of other shapes Even if the coated copper powder is mixed, the same effect as that of the copper powder composed only of the dendritic Ni-coated copper powder can be obtained. Specifically, when observed with an electron microscope (for example, 500 to 20,000 times), the dendritic Ni-coated copper powder having the shape described above is 65% by number or more, preferably 80% of the total Ni-coated copper powder. As long as it occupies a ratio of several percent or more, more preferably 90 percent or more, Ni-coated copper powder of other shapes may be included.
 [Niの被覆について]
 第2の実施形態に係る樹枝状Niコート銅粉は、上述したように樹枝状銅粉21(図7参照)の表面にNi又はNi合金が被覆されている。
[Ni coating]
In the dendritic Ni-coated copper powder according to the second embodiment, the surface of the dendritic copper powder 21 (see FIG. 7) is coated with Ni or a Ni alloy as described above.
 樹枝状Niコート銅粉は、Ni又はNi合金が被覆する前の樹枝状銅粉21に、好ましくはNi被覆した当該Niコート銅粉全体の質量100%に対してNi含有量として1質量%~50質量%の割合でNi又はNi合金が被覆されたものであり、Niの厚さ(被覆厚さ)としては0.1μm以下、好ましくは0.02μm以下の極薄い被膜が被覆されている。このことから、樹脂状Niコート銅粉は、Ni又はNi合金が被覆する前の樹枝状銅粉21の形状をそのまま保持した形状になる。したがって、Ni又はNi合金を被覆する前の銅粉の形状と、その銅粉にNi又はNi合金を被覆した後のNiコート銅粉の形状とは、両者共に樹枝状の形状である。 The dendritic Ni-coated copper powder has a Ni content of 1% by mass to 100% by mass of the entire Ni-coated copper powder coated with Ni on the dendritic copper powder 21 before being coated with Ni or Ni alloy. Ni or Ni alloy is coated at a ratio of 50% by mass, and the thickness of Ni (coating thickness) is 0.1 μm or less, preferably 0.02 μm or less. From this, the resinous Ni-coated copper powder has a shape that retains the shape of the dendritic copper powder 21 before being coated with Ni or Ni alloy. Therefore, both the shape of the copper powder before coating Ni or Ni alloy and the shape of the Ni-coated copper powder after coating the copper powder with Ni or Ni alloy are both dendritic shapes.
 樹枝状Niコート銅粉におけるNi又はNi合金として被覆されるNiの含有量は、上述したように、Ni被覆した当該Niコート銅粉全体の質量100%に対して1質量%~50質量%の範囲であることが好ましい。Ni又はNi合金として被覆されるNiの含有量は、Ni自体の導電率が銅より低いためできるだけ少ない方が好ましいが、少なすぎると銅粉表面に均一なNi又はNi合金の被膜が確保できず、その結果銅が酸化されて導電性の低下の原因になる。そのため、Ni又はNi合金として被覆されるNiの含有量としては、Ni被覆した当該Niコート銅粉全体の質量100%に対して1質量%以上であることが好ましく、2質量%以上であることがより好ましく、5質量%以上であることがさらに好ましい。 The content of Ni coated as Ni or Ni alloy in the dendritic Ni-coated copper powder is 1% by mass to 50% by mass with respect to 100% by mass of the entire Ni-coated copper powder coated with Ni as described above. A range is preferable. The content of Ni coated as Ni or Ni alloy is preferably as low as possible because the conductivity of Ni itself is lower than copper, but if it is too small, a uniform Ni or Ni alloy film cannot be secured on the copper powder surface. As a result, copper is oxidized to cause a decrease in conductivity. Therefore, as content of Ni coat | covered as Ni or Ni alloy, it is preferable that it is 1 mass% or more with respect to 100 mass of the whole Ni coat | covered Ni-coated copper powder, and it is 2 mass% or more. Is more preferable, and it is further more preferable that it is 5 mass% or more.
 一方で、Ni又はNi合金として被覆されるNiの含有量が多くなると、導電率が低下することから好ましくない。したがって、Ni又はNi合金の被覆量としては、Ni被覆した当該Niコート銅粉全体の質量100%に対して50質量%以下であることが好ましく、20質量%以下であることがより好ましく、10質量%以下であることがさらに好ましい。 On the other hand, if the content of Ni coated as Ni or Ni alloy is increased, the conductivity is not preferable. Therefore, the coating amount of Ni or Ni alloy is preferably 50% by mass or less, more preferably 20% by mass or less, with respect to 100% by mass of the entire Ni-coated copper powder coated with Ni. More preferably, it is at most mass%.
 また、第2の実施形態に係る樹枝状Niコート銅粉において、銅粒子の表面に被覆するNi又はNi合金の平均厚みとしては0.0003μm~0.1μm程度であり、0.005μm~0.02μm程度であることが好ましい。Ni又はNi合金の被覆厚みが平均で0.0003μm未満であると、銅粉の表面に均一なNiの被覆を確保することができず、銅の酸化を抑えられず導電性の低下の原因となる。一方で、Ni又はNi合金の被覆厚みが平均で0.1μmを超えると、導電率が低下する点から好ましくない。 In the dendritic Ni-coated copper powder according to the second embodiment, the average thickness of Ni or Ni alloy coated on the surface of the copper particles is about 0.0003 μm to 0.1 μm, and 0.005 μm to 0.00. It is preferably about 02 μm. If the coating thickness of Ni or Ni alloy is less than 0.0003 μm on average, a uniform Ni coating cannot be ensured on the surface of the copper powder, and copper oxidation cannot be suppressed, resulting in a decrease in conductivity. Become. On the other hand, when the coating thickness of Ni or Ni alloy exceeds 0.1 μm on average, it is not preferable from the viewpoint of decreasing the electrical conductivity.
 このように樹枝状Niコート銅粉の表面に被覆するNi又はNi合金の平均厚みは、0.0003μm~0.1μm程度であり、Ni又はNi合金を被覆する前の樹枝状銅粉21を構成する銅粒子22の大きさ(短軸平均径が0.2μm~0.5μm、かつ、長軸平均径が0.5μm~2.0μmの範囲の大きさの楕円体)と比べて小さい。そのため、樹枝状銅粉21の表面をNi又はNi合金で被覆する前後で、銅粉の形態は実質的に変化することはない。 Thus, the average thickness of the Ni or Ni alloy coated on the surface of the dendritic Ni-coated copper powder is about 0.0003 μm to 0.1 μm, and constitutes the dendritic copper powder 21 before coating the Ni or Ni alloy. It is smaller than the size of the copper particles 22 (an ellipsoid having a minor axis average diameter of 0.2 μm to 0.5 μm and a major axis average diameter of 0.5 μm to 2.0 μm). Therefore, the form of the copper powder is not substantially changed before and after the surface of the dendritic copper powder 21 is coated with Ni or Ni alloy.
 さらに後述するように、樹枝状Niコート銅粉において、樹枝状銅粉21に被覆されるNiは、Ni合金でもよい。Ni合金として添加される元素としては、周期表の第6族から第14族の元素であることが好ましく、特に亜鉛、コバルト、タングステン、モリブデン、パラジウム、白金、及びスズから選ばれる1種以上が好ましい。また、後述するように、樹枝状銅粉21にNiを被覆する工程で無電解めっきを用い、さらにその還元剤として次亜リン酸塩、ホウ水素化合物を使用する場合には、得られるNi被膜はそれぞれNi-P合金、Ni-B合金となる。 As described further below, in the dendritic Ni-coated copper powder, the Ni covered with the dendritic copper powder 21 may be a Ni alloy. The element added as the Ni alloy is preferably an element from Group 6 to Group 14 of the periodic table, and particularly one or more selected from zinc, cobalt, tungsten, molybdenum, palladium, platinum, and tin. preferable. Further, as will be described later, when using electroless plating in the step of coating Ni on the dendritic copper powder 21, and further using hypophosphite and borohydride as the reducing agent, the Ni coating obtained Are a Ni—P alloy and a Ni—B alloy, respectively.
 [嵩密度について]
 第2の実施形態に係る樹枝状Niコート銅粉の嵩密度としては、特に限定されないが、0.5g/cm~5.0g/cmの範囲であることが好ましい。嵩密度が0.5g/cm未満であると、樹枝状Niコート銅粉同士の接点を十分に確保することができない可能性がある。一方で、嵩密度が5.0g/cmを超えると、樹枝状Niコート銅粉の平均粒子径も大きくなってしまい、すると表面積が小さくなって成形性や焼結性が悪化することがある。
[About bulk density]
The bulk density of the dendritic Ni-coated copper powder according to the second embodiment is not particularly limited, but is preferably in the range of 0.5 g / cm 3 to 5.0 g / cm 3 . If the bulk density is less than 0.5 g / cm 3 , there is a possibility that sufficient contact between the dendritic Ni-coated copper powders cannot be ensured. On the other hand, if the bulk density exceeds 5.0 g / cm 3 , the average particle diameter of the dendritic Ni-coated copper powder also increases, and the surface area may decrease, and the formability and sinterability may deteriorate. .
 [BET比表面積について]
 第2の実施形態に係る樹枝状Niコート銅粉では、特に限定されないが、そのBET比表面積の値が0.2m/g~5.0m/gであることが好ましい。BET比表面積値が0.2m/g未満であると、Ni又はNi合金が被覆された銅粒子22(図7参照)が、上述したような所望の大きさや形状とはならないことがあり、高い導電性が得られないことがある。一方で、BET比表面積値が5.0m/gを超えると、樹枝状Niコート銅粉の表面のNi又はNi合金の被覆が不均一となり高い導電性が得られない可能性がある。また、Niコート銅粉を構成する銅粒子2が細かくなりすぎてしまい、そのNiコート銅粉が細かいひげ状の状態となって、導電性が低下することがある。なお、BET比表面積は、JIS Z8830:2013に準拠して測定することができる。
[BET specific surface area]
The dendritic Ni-coated copper powder according to the second embodiment is not particularly limited, it is preferable the value of the BET specific surface area of 0.2m 2 /g~5.0m 2 / g. If the BET specific surface area value is less than 0.2 m 2 / g, the copper particles 22 coated with Ni or Ni alloy (see FIG. 7) may not have the desired size and shape as described above. High conductivity may not be obtained. On the other hand, if the BET specific surface area value exceeds 5.0 m 2 / g, the Ni or Ni alloy coating on the surface of the dendritic Ni-coated copper powder becomes non-uniform and high conductivity may not be obtained. In addition, the copper particles 2 constituting the Ni-coated copper powder become too fine, and the Ni-coated copper powder may be in a fine whisker-like state, resulting in a decrease in conductivity. The BET specific surface area can be measured in accordance with JIS Z8830: 2013.
 <1-3.第3の実施形態>
 [Niコート銅粉の構成について]
 第3の実施形態に係るNiコート銅粉は、走査型電子顕微鏡(SEM)を用いて観察したとき、直線的に成長した主幹とその主幹から分かれた複数の枝とを有する樹枝状の形状をなすものであり、その主幹及び枝は、特定の断面平均厚さを有する平板状の銅粒子が集合して構成され、これら平板状の銅粒子の表面にNi又はNi合金が被覆されている。なお、以下では、このNiコート銅粉を「樹枝状Niコート銅粉」ともいう。
<1-3. Third Embodiment>
[Configuration of Ni-coated copper powder]
When the Ni-coated copper powder according to the third embodiment is observed using a scanning electron microscope (SEM), the Ni-coated copper powder has a dendritic shape having a main trunk that grows linearly and a plurality of branches separated from the main trunk. The main trunk and the branch are constituted by a collection of tabular copper particles having a specific cross-sectional average thickness, and the surface of the tabular copper particles is coated with Ni or a Ni alloy. Hereinafter, this Ni-coated copper powder is also referred to as “dendritic Ni-coated copper powder”.
 より具体的に、この樹枝状Niコート銅粉においては、主幹及び枝が、SEM観察より求められる断面平均厚さが0.2μm~5.0μmの平板状の銅粒子が集合して構成されており、そして、このように平板状の銅粒子が集合して構成される当該Niコート銅粉の平均粒子径(D50)が1.0μm~100μmであることを特徴としている。 More specifically, in this dendritic Ni-coated copper powder, the main trunk and branches are composed of flat copper particles having an average cross-sectional thickness of 0.2 μm to 5.0 μm determined by SEM observation. The average particle diameter (D50) of the Ni-coated copper powder composed of flat copper particles is 1.0 μm to 100 μm.
 このような樹枝状Niコート銅粉は、詳しくは後述するが、例えば、銅イオンを含む硫酸酸性の電解液に陽極と陰極を浸漬し、直流電流を流して電気分解することにより陰極上に銅粉を析出させ、そしてその得られた銅粉の表面に無電解めっき法等によりNi又はNi合金を被覆することで作製することができる。 Although such dendritic Ni-coated copper powder will be described in detail later, for example, the anode and the cathode are immersed in a sulfuric acid acidic electrolyte solution containing copper ions, and a direct current is applied to perform electrolysis so that the copper is deposited on the cathode. It can be produced by depositing powder and coating the surface of the obtained copper powder with Ni or a Ni alloy by an electroless plating method or the like.
 図11は、第3の実施形態に係るNiコート銅粉の具体的な形状を模式的に示した図である。図11に示すように、樹枝状Niコート銅粉31は、直線的に成長した主幹32とその主幹32から分かれた複数の枝33とを有する樹枝状の形状を有している。なお、樹枝状Niコート銅粉31における枝33は、主幹32から分岐した枝33aと、その枝33aからさらに分岐した枝33bの両方を意味する。 FIG. 11 is a diagram schematically showing a specific shape of the Ni-coated copper powder according to the third embodiment. As shown in FIG. 11, the dendritic Ni-coated copper powder 31 has a dendritic shape having a main trunk 32 that grows linearly and a plurality of branches 33 that are separated from the main trunk 32. The branch 33 in the dendritic Ni-coated copper powder 31 means both a branch 33a branched from the main trunk 32 and a branch 33b further branched from the branch 33a.
 この樹枝状Niコート銅粉31は、所定の断面平均厚さを有する平板状であって、表面にNi又はNi合金が被覆されている銅粒子により構成されている。 The dendritic Ni-coated copper powder 31 is a flat plate having a predetermined average cross-sectional thickness, and is composed of copper particles whose surface is coated with Ni or a Ni alloy.
 より具体的に、樹枝状Niコート銅粉31においては、主幹32及び枝33が、断面平均厚さが0.2μm~5.0μmの平板状の銅粒子が集合して構成されている。このような平板状の銅粒子が形成されることは、後述するように、銅粉を電解析出させるに際して電解液中に添加した特定の添加剤が銅粒子の表面に吸着することで成長を抑制され、その結果として平板状に成長するものと考えられる。なお、このような平板状の銅粒子の表面にNi又はNi合金が被覆されることによって、Niコート銅粉31が構成されている。 More specifically, in the dendritic Ni-coated copper powder 31, the main trunk 32 and the branch 33 are configured by aggregating tabular copper particles having a cross-sectional average thickness of 0.2 μm to 5.0 μm. The formation of such flat copper particles is caused by the fact that specific additives added to the electrolytic solution when electrolytically depositing copper powder are adsorbed on the surface of the copper particles, as will be described later. As a result, it is thought that it grows flat. The Ni-coated copper powder 31 is constituted by coating the surface of such flat copper particles with Ni or a Ni alloy.
 図12は、樹枝状Niコート銅粉31を構成する、Niを被覆する前の樹枝状銅粉についてSEM(倍率5,000倍)により観察したときの観察像の一例を示す写真図である。また、図13は、図12の樹枝状銅粉にNiを被覆した樹枝状Niコート銅粉についてSEM(倍率5,000倍)により観察したときの観察像の一例を示す写真図である。また、図14は、同様にして、樹枝状銅粉にNiを被覆した樹枝状Niコート銅粉についてSEM(倍率1,000倍)により観察したときの観察像の一例を示す写真図である。 FIG. 12 is a photograph showing an example of an observation image of the dendritic copper powder 31 constituting the dendritic Ni-coated copper powder 31 before being coated with Ni, when observed by SEM (magnification 5,000 times). FIG. 13 is a photograph showing an example of an observation image when the dendritic Ni-coated copper powder obtained by coating the dendritic copper powder of FIG. 12 with Ni is observed by SEM (magnification 5,000 times). Similarly, FIG. 14 is a photograph showing an example of an observation image when dendritic Ni-coated copper powder obtained by coating Ni on dendritic copper powder by SEM (magnification 1,000 times).
 樹枝状Niコート銅粉は、図12~図14の観察像に示されるように、主幹とその主幹から分岐した枝とを有する、2次元又は3次元の樹枝状の形状を形成している。 The dendritic Ni-coated copper powder forms a two-dimensional or three-dimensional dendritic shape having a main trunk and branches branched from the main trunk, as shown in the observation images of FIGS.
 ここで、樹枝状Niコート銅粉31において、主幹32及び枝33を構成する平板状の銅粒子は、上述したように、その断面平均厚さが0.2μm~5.0μmである。平板状の銅粒子の断面平均厚さは、より薄い方が平板としての効果が発揮されることになる。すなわち、断面平均厚さが5.0μm以下の平板状の銅粒子により主幹32及び枝33が構成されていることで、そのNi被覆された樹枝状Niコート銅粉31同士が接触する面積を大きく確保することができ、その接触面積が大きくなることで、低抵抗、すなわち高導電率を実現することができる。このことにより、より導電性に優れ、またその導電性を良好に維持することができ、導電塗料や導電性ペーストの用途に好適に用いることができる。また、樹枝状Niコート銅粉31が平板状のNiコートされた微細な銅粒子により構成されていることで、配線材等の薄型化に貢献することができる。 Here, in the dendritic Ni-coated copper powder 31, the flat copper particles constituting the main trunk 32 and the branches 33 have an average cross-sectional thickness of 0.2 μm to 5.0 μm as described above. The thinner the cross-sectional average thickness of the flat copper particles, the more the flat plate effect is exhibited. That is, since the main trunk 32 and the branch 33 are composed of flat copper particles having a cross-sectional average thickness of 5.0 μm or less, an area where the Ni-coated dendritic Ni-coated copper powders 31 are in contact with each other is increased. Since the contact area can be ensured and the contact area becomes large, low resistance, that is, high conductivity can be realized. By this, it is more excellent in electroconductivity, can maintain the electroconductivity favorably, and can use it suitably for the use of an electroconductive coating material or an electroconductive paste. Further, since the dendritic Ni-coated copper powder 31 is composed of fine copper particles coated with a flat-plate Ni, it can contribute to thinning of the wiring material and the like.
 なお、Ni又はNi合金が被覆された銅粒子の断面平均厚さが5.0μm以下の薄いものであっても、平板状の銅粒子の大きさが小さすぎると凹凸が減少することになるため、樹枝状Niコート銅粉31同士が接触する際に接点の数が少なくなってしまう。したがって、上述したように銅粒子の断面平均厚さの下限値としては0.2μm以上であることが好ましく、これにより接点の数を増やすことができる。 In addition, even if the cross-sectional average thickness of the copper particles coated with Ni or Ni alloy is as thin as 5.0 μm or less, the unevenness is reduced if the size of the flat copper particles is too small. When the dendritic Ni-coated copper powders 31 come into contact with each other, the number of contacts decreases. Therefore, as described above, the lower limit value of the average cross-sectional thickness of the copper particles is preferably 0.2 μm or more, which can increase the number of contacts.
 また、樹枝状Niコート銅粉31においては、その平均粒子径(D50)が1.0μm~100μmである。平均粒子径は、後述する電解条件を変更することで制御可能である。また、必要に応じて、ジェットミル、サンプルミル、サイクロンミル、ビーズミル等の機械的な粉砕を付加することによって、所望とする大きさにさらに調整することが可能である。なお、平均粒子径(D50)は、例えば、レーザー回折散乱式粒度分布測定法により測定することができる。 The dendritic Ni-coated copper powder 31 has an average particle diameter (D50) of 1.0 to 100 μm. The average particle diameter can be controlled by changing the electrolysis conditions described later. Further, if necessary, it can be further adjusted to a desired size by adding mechanical pulverization such as a jet mill, a sample mill, a cyclone mill, and a bead mill. In addition, an average particle diameter (D50) can be measured by the laser diffraction scattering type particle size distribution measuring method, for example.
 このように、平均粒子径が1.0μm~100μmであることにより、表面積が大きくなり、良好な成形性や焼結性を確保することができる。そして、この樹枝状Niコート銅粉31は、樹枝状形状であることに加えて、主幹32及び枝33が平板状の銅粒子から構成されているため、樹枝状であることの3次元的効果と、その樹枝形状を構成する銅粒子が平板状であることの効果により、樹枝状Niコート銅粉31同士の接点をより多く確保することができる。 Thus, when the average particle diameter is 1.0 μm to 100 μm, the surface area is increased, and good moldability and sinterability can be ensured. The dendritic Ni-coated copper powder 31 has a dendritic shape and, in addition, the main trunk 32 and the branch 33 are made of flat copper particles. As a result of the effect that the copper particles constituting the dendritic shape are flat, more contacts between the dendritic Ni-coated copper powders 31 can be secured.
 なお、電子顕微鏡で観察したときに、得られたNiコート銅粉のうちに、上述したような形状の樹枝状Niコート銅粉が所定の割合で占められていれば、それ以外の形状のNiコート銅粉が混じっていても、その樹枝状Niコート銅粉のみからなる銅粉と同様の効果を得ることができる。具体的には、電子顕微鏡(例えば500倍~20,000倍)で観察したときに、上述した形状の樹枝状Niコート銅粉が全Niコート銅粉のうちの65個数%以上、好ましくは80個数%以上、より好ましくは90個数%以上の割合を占めていれば、その他の形状のNiコート銅粉が含まれていてもよい。 If the dendritic Ni-coated copper powder having the above-mentioned shape is occupied at a predetermined ratio in the obtained Ni-coated copper powder when observed with an electron microscope, Ni of other shapes Even if the coated copper powder is mixed, the same effect as that of the copper powder composed only of the dendritic Ni-coated copper powder can be obtained. Specifically, when observed with an electron microscope (for example, 500 to 20,000 times), the dendritic Ni-coated copper powder having the shape described above is 65% by number or more, preferably 80% of the total Ni-coated copper powder. As long as it occupies a ratio of several percent or more, more preferably 90 percent or more, Ni-coated copper powder of other shapes may be included.
 [Niの被覆について]
 第3の実施形態に係る樹枝状Niコート銅粉31は、上述したように、断面平均厚さが0.2μm~5.0μmの平板状であって表面にNi又はNi合金が被覆されている銅粒子によって樹枝状に構成されたものである。
[Ni coating]
As described above, the dendritic Ni-coated copper powder 31 according to the third embodiment is a flat plate having a cross-sectional average thickness of 0.2 μm to 5.0 μm, and the surface is coated with Ni or a Ni alloy. It is constituted in a dendritic shape by copper particles.
 樹枝状Niコート銅粉31は、Ni又はNi合金を被覆する前の樹枝状銅粉に、好ましくはNi被覆した当該Niコート銅粉全体の質量100%に対してNi含有量として1質量%~50質量%の割合でNi又はNi合金が被覆されたものであり、Niの厚さ(被覆厚さ)としては0.1μm以下、好ましくは0.05μm以下の極薄い被膜が被覆されている。このことから、樹枝状Niコート銅粉31は、Ni又はNi合金を被覆する前の樹枝状銅粉の形状をそのまま保持した形状になる。したがって、Ni又はNi合金を被覆する前の銅粉の形状と、銅粉にNi又はNi合金を被覆した後のNiコート銅粉の形状とは、両者共に樹枝状の形状である。 The dendritic Ni-coated copper powder 31 preferably has a Ni content of 1% by mass to 100% by mass of the entire Ni-coated copper powder coated with Ni on the dendritic copper powder before coating with Ni or Ni alloy. Ni or Ni alloy is coated at a ratio of 50% by mass, and the thickness of Ni (coating thickness) is 0.1 μm or less, preferably 0.05 μm or less. From this, the dendritic Ni-coated copper powder 31 has a shape that retains the shape of the dendritic copper powder before coating with Ni or Ni alloy. Therefore, the shape of the copper powder before coating Ni or Ni alloy and the shape of the Ni-coated copper powder after coating Ni or Ni alloy on the copper powder are both dendritic shapes.
 樹枝状Niコート銅粉31におけるNi又はNi合金として被覆されるNiの含有量は、上述したように、Ni被覆した当該Niコート銅粉31全体の質量100%に対して1質量%~50質量%の範囲であることが好ましい。Ni又はNi合金として被覆されるNiの含有量は、Ni自体の導電率は銅よりも低いためにできるだけ少ない方が好ましいが、少なすぎると銅表面に均一なNi又はNi合金の被膜が確保できず、その結果銅が酸化されて導電性の低下の原因になる。そのため、Ni又はNi合金として被覆されるNiの含有量としては、Ni被覆した当該Niコート銅粉31全体の質量100%に対して1質量%以上であることが好ましく、2質量%以上であることがより好ましく、5質量%以上であることがさらに好ましい。 As described above, the content of Ni coated as Ni or Ni alloy in the dendritic Ni-coated copper powder 31 is 1% by mass to 50% by mass with respect to 100% by mass of the Ni-coated copper powder 31 as a whole. % Is preferable. The content of Ni coated as Ni or Ni alloy is preferably as low as possible because the conductivity of Ni itself is lower than that of copper, but if it is too small, a uniform Ni or Ni alloy film can be secured on the copper surface. As a result, copper is oxidized, resulting in a decrease in conductivity. Therefore, the content of Ni coated as Ni or Ni alloy is preferably 1% by mass or more with respect to 100% by mass of the entire Ni-coated copper powder 31 coated with Ni, and is 2% by mass or more. It is more preferable that the content is 5% by mass or more.
 一方で、Ni又はNi合金として被覆されるNiの含有量が多くなると、導電率が低下することから好ましくない。したがって、Ni又はNi合金の被覆量としては、Ni被覆した当該Niコート銅粉31全体の質量100%に対して50質量%以下であることが好ましく、20質量%以下であることがより好ましく、10質量%以下であることがさらに好ましい。 On the other hand, if the content of Ni coated as Ni or Ni alloy is increased, the conductivity is not preferable. Accordingly, the coating amount of Ni or Ni alloy is preferably 50% by mass or less, more preferably 20% by mass or less, with respect to 100% by mass of the Ni-coated copper powder 31 coated with Ni. More preferably, it is 10 mass% or less.
 また、第3の実施形態に係る樹枝状Niコート銅粉31において、樹枝状銅粉の表面に被覆するNi又はNi合金の平均厚みとしては0.0003μm~0.1μm程度であり、0.005μm~0.02μm程度であることがより好ましい。Ni又はNi合金の被覆厚みが平均で0.0003μm未満であると、銅粉の表面に均一なNi又はNi合金の被覆を確保することができず、銅の酸化が抑えられず導電性の低下の原因となる。一方で、Ni又はNi合金の被覆厚みが平均で0.1μmを超えると、導電率が低下する点から好ましくない。 In the dendritic Ni-coated copper powder 31 according to the third embodiment, the average thickness of Ni or Ni alloy coated on the surface of the dendritic copper powder is about 0.0003 μm to 0.1 μm, and 0.005 μm. More preferably, it is about 0.02 μm. When the coating thickness of Ni or Ni alloy is less than 0.0003 μm on average, a uniform Ni or Ni alloy coating cannot be secured on the surface of the copper powder, and copper oxidation cannot be suppressed, resulting in a decrease in conductivity. Cause. On the other hand, when the coating thickness of Ni or Ni alloy exceeds 0.1 μm on average, it is not preferable from the viewpoint of decreasing the electrical conductivity.
 このように、樹枝状銅粉の表面に被覆されるNiの平均厚みは、0.0003μm~0.1μm程度であり、樹枝状銅粉を構成する平板状の銅粒子の断面平均厚さと比べて極めて小さい。そのため、樹枝状銅粉の表面をNi又はNi合金で被覆する前後で、平板状の銅粒子の断面平均厚さは実質的に変化することはない。 Thus, the average thickness of Ni coated on the surface of the dendritic copper powder is about 0.0003 μm to 0.1 μm, compared with the cross-sectional average thickness of the tabular copper particles constituting the dendritic copper powder. Very small. Therefore, before and after coating the surface of the dendritic copper powder with Ni or Ni alloy, the cross-sectional average thickness of the tabular copper particles does not substantially change.
 さらに後述するように、樹枝状Niコート銅粉31において、樹枝状銅粉に被覆されるNiは、Ni合金でもよい。Ni合金として添加される元素としては、周期表の第6族から第14族の元素であることが好ましく、特に亜鉛、コバルト、タングステン、モリブデン、パラジウム、白金、及びスズから選ばれる1種以上が好ましい。また、後述するように、樹枝状銅粉にNiを被覆する工程で無電解めっきを用い、さらにその還元剤として次亜リン酸塩、ホウ水素化合物を使用する場合には、得られるNi被膜はそれぞれNi-P合金、Ni-B合金となる。 Further, as will be described later, in the dendritic Ni-coated copper powder 31, the Ni covered with the dendritic copper powder may be a Ni alloy. The element added as the Ni alloy is preferably an element from Group 6 to Group 14 of the periodic table, and particularly one or more selected from zinc, cobalt, tungsten, molybdenum, palladium, platinum, and tin. preferable. In addition, as will be described later, when using electroless plating in the step of coating Ni on the dendritic copper powder, and further using hypophosphite and borohydride as the reducing agent, the resulting Ni coating is They are Ni-P alloy and Ni-B alloy, respectively.
 [嵩密度について]
 樹枝状Niコート銅粉31の嵩密度としては、特に限定されないが、0.5g/cm~5.0g/cmの範囲であることが好ましい。嵩密度が0.5g/cm未満であると、樹枝状Niコート銅粉31同士の接点を十分に確保できない可能性がある。一方で、嵩密度が5.0g/cmを超えると、樹枝状Niコート銅粉31の平均粒子径も大きくなってしまい、すると表面積が小さくなって成形性や焼結性が悪化することがある。
[About bulk density]
The bulk density of the dendritic Ni-coated copper powder 31 is not particularly limited, but is preferably in the range of 0.5 g / cm 3 to 5.0 g / cm 3 . If the bulk density is less than 0.5 g / cm 3 , there is a possibility that sufficient contact between the dendritic Ni-coated copper powders 31 cannot be secured. On the other hand, if the bulk density exceeds 5.0 g / cm 3 , the average particle diameter of the dendritic Ni-coated copper powder 31 also increases, and the surface area decreases and the formability and sinterability deteriorate. is there.
 [BET比表面積]
 樹枝状Niコート銅粉31では、特に限定されないが、そのBET比表面積の値が0.2m/g~5.0m/gであることが好ましい。BET比表面積値が0.2m/g未満であると、Ni又はNi合金が被覆された銅粒子が上述したような平板状の所望の形状とはならないことがあり、高い導電性が得られないことがある。一方で、BET比表面積値が5.0m/gを超えると、樹枝状Niコート銅粉の表面のNi被覆が不均一となり高い導電性が得られない可能性がある。また、Niコート銅粉を構成する銅粒子が細かくなりすぎてしまい、Niコート銅粉が細かいひげ状の状態となって、導電性が低下することがある。なお、BET比表面積は、JIS Z8830:2013に準拠して測定することができる。
[BET specific surface area]
In dendritic Ni-coated copper powder 31 is not particularly limited, it is preferable the value of the BET specific surface area of 0.2m 2 /g~5.0m 2 / g. When the BET specific surface area value is less than 0.2 m 2 / g, the copper particles coated with Ni or Ni alloy may not have the desired flat plate shape as described above, and high conductivity is obtained. There may not be. On the other hand, when the BET specific surface area value exceeds 5.0 m 2 / g, the Ni coating on the surface of the dendritic Ni-coated copper powder becomes non-uniform and high conductivity may not be obtained. Moreover, the copper particle which comprises Ni coat | court copper powder may become too fine, Ni coat copper powder may become a fine beard-like state, and electroconductivity may fall. The BET specific surface area can be measured in accordance with JIS Z8830: 2013.
 <1-4.第4の実施形態>
 [Niコート銅粉の構成について]
 第4の実施の形態に係るNiコート銅粉は、走査型電子顕微鏡(SEM)を用いて観察したとき、表面にNi又はNi合金が被覆された個片状の銅粒子が複数集合して凝集体の形態を有してなるものである。
<1-4. Fourth Embodiment>
[Configuration of Ni-coated copper powder]
When the Ni-coated copper powder according to the fourth embodiment is observed using a scanning electron microscope (SEM), a plurality of individual copper particles whose surfaces are coated with Ni or Ni alloy are aggregated and aggregated. It has the form of a collection.
 ここで、図15は、第4の実施形態に係るNiコート銅粉の具体的な形状を示した模式図である。この図15の模式図に示すように、Niコート銅粉41は、個片化した平板状の銅粒子42が2次元又は3次元的に凝集した形態を有する銅粉の表面にNi又はNi合金を被覆したものであり、その銅粒子42は平板形状となっている。なお、以下では、このNiコート銅粉を「平板状Niコート銅粒子凝集粉41」ともいう。 Here, FIG. 15 is a schematic diagram showing a specific shape of the Ni-coated copper powder according to the fourth embodiment. As shown in the schematic diagram of FIG. 15, the Ni-coated copper powder 41 is made of Ni or Ni alloy on the surface of the copper powder having a form in which the separated flat copper particles 42 are aggregated two-dimensionally or three-dimensionally. The copper particles 42 have a flat plate shape. Hereinafter, this Ni-coated copper powder is also referred to as “flat Ni-coated copper particle aggregated powder 41”.
 より具体的に、平板状Niコート銅粒子凝集粉41は、表面がNi又はNi合金で被覆された銅粒子42が複数集合して凝集体となった凝集銅粉の形態をなし、その平板状の銅粒子42は、長軸径dの平均(平均長軸径)が0.5μm~5.0μmであり、断面平均厚さが0.02μm~1.0μmである平板状となっている。そして、その平板状の銅粒子2が複数集合して凝集体となった当該平板状Niコート銅粒子凝集粉41は、その平均粒子径(D50)が1.0μm~30μmであることを特徴としている。 More specifically, the plate-like Ni-coated copper particle aggregated powder 41 is in the form of an aggregated copper powder in which a plurality of copper particles 42 whose surfaces are coated with Ni or Ni alloy are aggregated to form an aggregate. The copper particles 42 are in the form of a flat plate having an average major axis diameter d (average major axis diameter) of 0.5 μm to 5.0 μm and an average cross-sectional thickness of 0.02 μm to 1.0 μm. The tabular Ni-coated copper particle aggregated powder 41 obtained by aggregating a plurality of tabular copper particles 2 into an aggregate is characterized in that the average particle diameter (D50) is 1.0 μm to 30 μm. Yes.
 このような平板状Niコート銅粒子凝集粉41は、詳しくは後述するが、例えば、銅イオンを含む硫酸酸性の電解液に陽極と陰極を浸漬し、直流電流を流して電気分解することによって陰極上に凝集粉を析出させ、そしてその得られた凝集粉の表面に無電解めっき法等によりNi又はNi合金を被覆することで作製することができる。 The flat Ni-coated copper particle agglomerated powder 41 is described later in detail. For example, the anode and the cathode are immersed in a sulfuric acid electrolyte containing copper ions, and the cathode is electrolyzed by flowing a direct current. The agglomerated powder is deposited on the surface, and the surface of the obtained agglomerated powder can be produced by coating Ni or a Ni alloy by an electroless plating method or the like.
 図16及び図17は、平板状Niコート銅粒子凝集粉41についてSEM(図16:倍率5,000倍、図17:倍率10,000倍)により観察したときの観察像の一例を示す写真図である。 FIG.16 and FIG.17 is a photograph figure which shows an example of the observation image when it observes by SEM (FIG. 16: 5,000 times magnification, FIG. 17: 10,000 times magnification) about the tabular Ni coat copper particle aggregated powder 41. It is.
 図16で観察されるように、平板状Niコート銅粒子凝集粉41は、平板状の銅粒子が凝集した形態を呈している。また、図17で観察されるように、この平板状の銅粒子は個片化しており、平面や曲面を有する平板状の形状を有している。 As observed in FIG. 16, the tabular Ni-coated copper particle aggregated powder 41 has a form in which tabular copper particles are aggregated. Moreover, as observed in FIG. 17, the flat copper particles are singulated and have a flat shape having a flat surface or a curved surface.
 ここで、図15の模式図で示したように、平板状の銅粒子42は、略楕円形、小判形、又はいわゆるコーンフレーク状等の周囲が滑らかな平板形状の面を有しており、後述する特定の範囲の断面平均厚さを有する形状である。もちろん、略楕円形状等の面は、その断面平均厚さの2倍程度以下の高さを有する突起や付着粒子を有していてもよい。 Here, as shown in the schematic diagram of FIG. 15, the flat copper particles 42 have a flat surface having a smooth periphery, such as a substantially oval shape, an oval shape, or a so-called corn flake shape, which will be described later. The shape has a cross-sectional average thickness within a specific range. Of course, the surface having a substantially elliptic shape or the like may have protrusions and attached particles having a height of about twice or less the average cross-sectional thickness.
 上述したように、これら平板状であって表面にNi又はNi合金が被覆された銅粒子42の平均長軸径dは、0.5μm~5.0μmであり、より好ましくは0.7μm~4.0μmである。また、銅粒子42の断面平均厚さは、0.02μm~1.0μmであり、より好ましくは0.05μm~0.4μmである。ここで、平板状の銅粒子42の平均長軸径dとは、図15に示すように、略楕円等の形状をもつ平板形状の面の最大幅のことを指す。また、平均長軸径d及び断面平均厚さは、SEM観察により求めることができる。 As described above, the average major axis diameter d of the copper particles 42 which are flat and whose surfaces are coated with Ni or Ni alloy is 0.5 μm to 5.0 μm, more preferably 0.7 μm to 4 μm. 0.0 μm. The average cross-sectional thickness of the copper particles 42 is 0.02 μm to 1.0 μm, more preferably 0.05 μm to 0.4 μm. Here, the average major axis diameter d of the flat copper particles 42 indicates the maximum width of a flat surface having a shape such as an ellipse, as shown in FIG. Further, the average major axis diameter d and the cross-sectional average thickness can be obtained by SEM observation.
 平板状の銅粒子42の平均長軸径dが0.5μm未満であったり、その断面平均厚さが1.0μmを超える場合には、これらが凝集して集合体となった凝集粉同士が接触する面積を大きく確保することができなくなり、導電率が低下することがある。一方で、平板状の銅粒子42の平均長軸径dの上限値としては特に限定されないが、後述する電気分解により陰極上に析出させる方法では、5.0μm程度が上限となる。また、平板状の銅粒子42の断面平均厚さの下限値も特に限定されないが、同じく電気分解により陰極上に析出させる方法では、0.02μm程度が下限となる。 When the average major axis diameter d of the tabular copper particles 42 is less than 0.5 μm, or the cross-sectional average thickness exceeds 1.0 μm, the aggregated powders formed by aggregation of these particles are aggregated. A large contact area cannot be secured, and the electrical conductivity may decrease. On the other hand, the upper limit value of the average major axis diameter d of the tabular copper particles 42 is not particularly limited. However, in the method of depositing on the cathode by electrolysis described later, the upper limit is about 5.0 μm. Further, the lower limit value of the cross-sectional average thickness of the flat copper particles 42 is not particularly limited, but in the same method of depositing on the cathode by electrolysis, the lower limit is about 0.02 μm.
 平板状の銅粒子42が凝集して凝集体となった平板状Niコート銅粒子凝集粉41の大きさは、平均粒子径(D50)で1.0μm~30μmである。平均粒子径は、後述する電解条件を変更することで制御可能である。また、必要に応じて、ジェットミル、サンプルミル、サイクロンミル、ビーズミル等の機械的な粉砕を付加することによって、所望とする大きさにさらに調整することが可能である。なお、平板状Niコート銅粒子凝集粉41の平均粒子径(D50)は、レーザー回折散乱式粒度分布測定法により測定することができる。 The size of the tabular Ni-coated copper particle aggregated powder 41 obtained by aggregating the tabular copper particles 42 into an aggregate is 1.0 μm to 30 μm in average particle diameter (D50). The average particle diameter can be controlled by changing the electrolysis conditions described later. Further, if necessary, it can be further adjusted to a desired size by adding mechanical pulverization such as a jet mill, a sample mill, a cyclone mill, and a bead mill. The average particle diameter (D50) of the tabular Ni-coated copper particle aggregated powder 41 can be measured by a laser diffraction / scattering particle size distribution measurement method.
 このように、断面平均厚さが0.02μm~1.0μmの平板状の銅粒子2が凝集して平板状Niコート銅粒子凝集粉41を形成することで、上述した所望の大きさの銅粉となり、その平板状Niコート銅粒子凝集粉41同士、また平板上の銅粒子42同士が接触する面積を大きく確保することができる。そして、その接触面積が大きくなることで、低抵抗、すなわち高導電率を実現することができる。このことにより、より導電性に優れ、導電塗料や導電性ペーストの用途に好適に用いることができる。 In this way, the tabular copper particles 2 having an average cross-sectional thickness of 0.02 μm to 1.0 μm are aggregated to form the tabular Ni-coated copper particle aggregated powder 41, so that the copper having a desired size described above is formed. It becomes a powder, and it is possible to secure a large area where the flat Ni-coated copper particle aggregated powders 41 and the copper particles 42 on the flat plate contact each other. And since the contact area becomes large, low resistance, that is, high conductivity can be realized. By this, it is more excellent in electroconductivity and can be used suitably for the use of a conductive paint and a conductive paste.
 ここで、例えば特許文献1でも指摘されているように、導電性ペーストや電磁波シールド用の樹脂等の金属フィラーとして利用する場合に、樹脂中の金属フィラーが樹枝状に発達した形状であると、樹枝状の銅粉同士が絡み合って凝集が発生し、樹脂中に均一に分散しないことがある。また、その凝集により、ペーストの粘度が上昇して印刷による配線形成に問題が生じる。このことは、樹枝状銅粉の形状が針状に成長した形であるためで、凝集を防止しようとすると樹枝状銅粉の形状を小さくすることになるが、そうすると針状に成長した形が無くなることで接点を確保するという効果が得られなくなる。 Here, as pointed out in Patent Document 1, for example, when used as a metal filler such as a conductive paste or a resin for electromagnetic wave shielding, the metal filler in the resin has a dendritic shape, Dendritic copper powders are entangled with each other and agglomeration occurs, which may not be uniformly dispersed in the resin. In addition, the agglomeration increases the viscosity of the paste and causes problems in wiring formation by printing. This is because the shape of the dendritic copper powder grows in a needle shape, and when trying to prevent agglomeration, the shape of the dendritic copper powder is reduced. It becomes impossible to obtain the effect of securing the contact by eliminating.
 また、特許文献3や特許文献4の機械的な方法で平板状にする場合は、機械的加工時に銅の酸化を防止する必要があるため、例えば脂肪酸を添加した上で、空気中あるいは不活性雰囲気中で粉砕して平板状に加工している。しかしながら、酸化を完全に防止することはできず、また、加工時に添加している脂肪酸がペースト化する際に分散性に影響を及ぼすために加工終了後に除去を要するが、機械加工時の圧力で銅表面に強固に固着することがあり、脂肪酸を完全に除去できないという問題が発生する。また、機械的加工によって平板にするために表面が平滑な表面になり、また機械的圧力によって平板にするために得られる平板状銅粉をフラットな面とすることは難しく、反った形になる。表面が平滑で反った状態の銅粉は、接点の確保が難しいため、金属フィラーとして利用する際には平板状の銅粉だけでなく粒状の銅粉を混ぜ合わせる等の方法によって、金属フィラー同士の接点を確保することが必要となる。 Further, in the case where the plate is formed by the mechanical method of Patent Document 3 or Patent Document 4, it is necessary to prevent copper oxidation at the time of mechanical processing. For example, after adding a fatty acid, in the air or inactive It is crushed in an atmosphere and processed into a flat plate shape. However, oxidation cannot be completely prevented, and the fatty acid added at the time of processing needs to be removed after processing to affect dispersibility when it is made into a paste. There is a problem that the fatty acid cannot be completely removed because it may firmly adhere to the copper surface. Moreover, it becomes difficult to make the flat copper powder obtained to make a flat plate by mechanical pressure flat because it becomes flat by mechanical processing, and it becomes warped. . Since copper powder with a smooth and warped surface is difficult to secure contact points, when using it as a metal filler, not only flat copper powder but also granular copper powder can be mixed with other metal fillers. It is necessary to secure the contact points.
 これに対して、平板状Niコート銅粒子凝集粉41では、平板状の銅粒子42が凝集した形状を呈しているため、それぞれの平板状の銅粒子42が3次元的な形状で集合した状態であり、2次元的な接触効果と3次元的な接触効果とを同時に満たす構造となっている。さらに、その平板状Niコート銅粒子凝集粉41が、平均粒子径(D50)で1.0μm~30μmの大きさであることにより、表面積が大きくなり、良好な成形性や焼結性を確保することができる。 On the other hand, in the tabular Ni-coated copper particle aggregated powder 41, since the tabular copper particles 42 are aggregated, the respective tabular copper particles 42 are aggregated in a three-dimensional shape. It has a structure that simultaneously satisfies a two-dimensional contact effect and a three-dimensional contact effect. Further, the flat Ni-coated copper particle aggregated powder 41 has an average particle size (D50) of 1.0 μm to 30 μm, thereby increasing the surface area and ensuring good moldability and sinterability. be able to.
 このことは、例えば特許第4059486号公報に記載された形状の銀粉を用いることで金属フィラー同士の接触率が向上することと同じ効果を発揮するものであり、平板状Niコート銅粒子凝集銅粉41は、3次元的な凹凸構造であることから金属フィラー同士の接触率が向上し、ペースト中に含有するフィラー重量を少なくすることができ、コストを大幅に削減できる。 This demonstrates the same effect that the contact rate between metal fillers is improved by using silver powder having a shape described in, for example, Japanese Patent No. 4059486, and is a flat Ni-coated copper particle aggregated copper powder. Since 41 is a three-dimensional uneven structure, the contact rate between metal fillers is improved, the filler weight contained in the paste can be reduced, and the cost can be greatly reduced.
 なお、電子顕微鏡で観察したときに、得られたNiコート銅粉のうちに、上述したような形状のNiコート銅粉が所定の割合で占められていれば、それ以外の形状のNiコート銅粉が混じっていても、そのNiコート銅粉のみからなる銅粉と同様の効果を得ることができる。具体的には、電子顕微鏡(例えば500倍~20,000倍)で観察したときに、上述した形状のNiコート銅粉が全Niコート銅粉のうちの65個数%以上、好ましくは80個数%以上、より好ましくは90個数%以上の割合を占めていれば、その他の形状のNiコート銅粉が含まれていてもよい。 If the Ni-coated copper powder having the above-mentioned shape is occupied at a predetermined ratio in the obtained Ni-coated copper powder when observed with an electron microscope, Ni-coated copper of other shapes Even if the powder is mixed, the same effect as the copper powder consisting only of the Ni-coated copper powder can be obtained. Specifically, when observed with an electron microscope (for example, 500 to 20,000 times), the Ni-coated copper powder having the shape described above is 65% by number or more, preferably 80% by number, of the total Ni-coated copper powder. As described above, Ni-coated copper powder having other shapes may be included as long as it accounts for 90% by number or more.
 [Niの被覆について]
 第4の実施形態に係る平板状Niコート銅粒子凝集粉41は、上述したように、平均長軸径が0.5μm~5.0μmで、断面平均厚さが0.02~1.0μmの平板状であって表面にNi又はNi合金が被覆されている銅粒子42が複数集合して凝集体となって構成されたものである。
[Ni coating]
As described above, the flat Ni-coated copper particle aggregated powder 41 according to the fourth embodiment has an average major axis diameter of 0.5 μm to 5.0 μm and an average cross-sectional thickness of 0.02 to 1.0 μm. A plurality of copper particles 42 having a flat plate shape and coated with Ni or Ni alloy are aggregated to form an aggregate.
 平板状Niコート銅粒子凝集粉41は、Ni又はNi合金が被覆する前の平板状銅粒子凝集粉に、好ましくはNi被覆した当該Niコート銅粉41全体の質量100%に対してNi含有量として1質量%~50質量%の割合でNi又はNi合金が被覆されたものであり、Niの厚さ(被覆厚さ)としては0.1μm以下、好ましくは0.02μm以下の極薄い被膜が被覆されている。このことから、平板状Niコート銅粒子凝集粉41は、Ni又はNi合金が被覆する前の平板状銅粒子凝集粉の形状をそのまま保持した形状になる。したがって、Ni又はNi合金を被覆する前の平板状銅粒子凝集粉の形状と、Ni又はNi合金を被覆した後の平板状Niコート銅粒子凝集粉41の形状とは、両者共に、2次元又は3次元の形態である平板が凝集した形状である。 The flat Ni-coated copper particle aggregated powder 41 has a Ni content with respect to 100% of the total mass of the Ni-coated copper powder 41 coated with Ni on the tabular copper particle aggregated powder before being coated with Ni or Ni alloy. The Ni or Ni alloy is coated at a ratio of 1% by mass to 50% by mass, and the thickness of Ni (coating thickness) is 0.1 μm or less, preferably 0.02 μm or less. It is covered. From this, the flat-plate Ni coat copper particle aggregated powder 41 becomes a shape which maintained the shape of the flat-plate copper particle aggregated powder before Ni or Ni alloy coat | covers as it is. Accordingly, the shape of the tabular copper particle aggregated powder before coating with Ni or Ni alloy and the shape of the tabular Ni-coated copper particle aggregated powder 41 after coating with Ni or Ni alloy are both two-dimensional or It is the shape which the flat plate which is a three-dimensional form aggregated.
 平板状Niコート銅粒子凝集粉41におけるNi又はNi合金として被覆されるNiの含有量は、上述したように、Ni被覆した当該Niコート銅粉41全体の質量100%に対して1質量%~50質量%の範囲であることが好ましい。Ni又はNi合金として被覆されるNiの含有量は、Ni自体の導電率が銅よりも低いためにできるだけ少ない方が好ましいが、少なすぎると銅表面に均一なNi又はNi合金の被膜を確保できず、その結果銅が酸化されて導電性の低下の原因になる。そのため、Ni又はNi合金として被覆されるNiの含有量としては、Ni被覆した当該Niコート銅粉41全体の質量100%に対して1質量%以上であることが好ましく、2質量%以上であることがより好ましく、5質量%以上であることがさらに好ましい。 As described above, the content of Ni coated as Ni or Ni alloy in the flat Ni-coated copper particle aggregated powder 41 is 1% by mass to 100% by mass of the Ni-coated copper powder 41 coated with Ni. A range of 50% by mass is preferred. The content of Ni coated as Ni or Ni alloy is preferably as low as possible because the conductivity of Ni itself is lower than that of copper, but if it is too small, a uniform Ni or Ni alloy film can be secured on the copper surface. As a result, copper is oxidized, resulting in a decrease in conductivity. Therefore, the content of Ni coated as Ni or Ni alloy is preferably 1% by mass or more with respect to 100% by mass of the entire Ni-coated copper powder 41 coated with Ni, and is 2% by mass or more. It is more preferable that the content is 5% by mass or more.
 一方で、Ni又はNi合金として被覆されるNiの含有量が多くなると、導電率が低下する点から好ましくなく、Ni又はNi合金として被覆されるNiの含有量としては、当該Niコート銅粉41全体の質量100%に対して50質量%以下であることが好ましく、20質量%以下であることがより好ましく、10質量%以下であることがさらに好ましい。 On the other hand, when the content of Ni coated as Ni or Ni alloy increases, it is not preferable from the viewpoint of decreasing the electrical conductivity. As the content of Ni coated as Ni or Ni alloy, the Ni coated copper powder 41 It is preferably 50% by mass or less, more preferably 20% by mass or less, and further preferably 10% by mass or less with respect to 100% of the total mass.
 また、第4の実施形態に係る平板状Niコート銅粒子凝集粉41において、平板形状の銅粒子の表面に被覆されるNi又はNi合金の平均厚みとしては0.0003μm~0.1μm程度であり、0.005μm~0.02μm程度であることが好ましい。Ni又はNi合金の被覆厚みが平均で0.0003μm未満であると、銅粉の表面に均一なNi又はNi合金の被覆を確保することができず、銅の酸化が抑えられなくなり導電性の低下の原因となる。一方で、Ni又はNi合金の被覆厚みが平均で0.1μmを超えると、導電率が低下する点から好ましくない。 In the flat Ni-coated copper particle aggregated powder 41 according to the fourth embodiment, the average thickness of Ni or Ni alloy coated on the surface of the flat copper particles is about 0.0003 μm to 0.1 μm. The thickness is preferably about 0.005 μm to 0.02 μm. When the Ni or Ni alloy coating thickness is less than 0.0003 μm on average, a uniform Ni or Ni alloy coating cannot be secured on the surface of the copper powder, and copper oxidation cannot be suppressed, resulting in a decrease in conductivity. Cause. On the other hand, when the coating thickness of Ni or Ni alloy exceeds 0.1 μm on average, it is not preferable from the viewpoint of decreasing the electrical conductivity.
 このように平板状Niコート銅粒子凝集粉41の表面に被覆されるNi又はNi合金の平均厚みは、0.0003μm~0.1μm程度であり、Ni又はNi合金を被覆する前の平板状銅粒子凝集粉を構成する平板形状の銅粒子42の断面平均厚さ(0.02μm~0.5μm)と比べて小さい。そのため、平板状銅粒子凝集粉の表面をNi又はNi合金で被覆する前後で、平板形状の銅粒子の形態は実質的に変化することはない。 Thus, the average thickness of the Ni or Ni alloy coated on the surface of the tabular Ni-coated copper particle aggregated powder 41 is about 0.0003 μm to 0.1 μm, and the tabular copper before coating the Ni or Ni alloy. It is smaller than the cross-sectional average thickness (0.02 μm to 0.5 μm) of the flat copper particles 42 constituting the particle aggregated powder. Therefore, the form of the tabular copper particles is not substantially changed before and after the surface of the tabular copper particle aggregated powder is coated with Ni or Ni alloy.
 さらに後述するように、平板状Niコート銅粒子凝集粉41において、平板形状の銅粒子42に被覆されるNiは、Ni合金でもよい。Ni合金として添加される元素としては、周期表の第6族から第14族の元素であることが好ましく、特に亜鉛、コバルト、タングステン、モリブデン、パラジウム、白金、及びスズから選ばれる1種以上が好ましい。また、後述するように、平板状銅粒子凝集粉にNiを被覆する工程で無電解めっきを用い、さらにその還元剤として次亜リン酸塩、ホウ水素化合物を使用する場合には、得られるNi被膜はそれぞれNi-P合金、Ni-B合金となる。 Further, as will be described later, in the tabular Ni-coated copper particle agglomerated powder 41, the Ni coated with the tabular copper particles 42 may be a Ni alloy. The element added as the Ni alloy is preferably an element from Group 6 to Group 14 of the periodic table, and particularly one or more selected from zinc, cobalt, tungsten, molybdenum, palladium, platinum, and tin. preferable. Further, as will be described later, when electroless plating is used in the step of coating Ni on the flat copper particle agglomerated powder, and hypophosphite and a borohydride compound are used as the reducing agent, the Ni obtained The coatings are Ni—P alloy and Ni—B alloy, respectively.
 [嵩密度について]
 第4の実施形態に係る平板状Niコート銅粒子凝集粉41では、特に限定されないが、その嵩密度(タップ密度)が0.5g/cm~5.0g/cmの範囲であることが好ましい。タップ密度が0.5g/cm未満であると、Niコート銅粉同士の接点を十分に確保することができない可能性がある。一方で、タップ密度が5.0g/cmを超えると、Niコート銅粉の平均粒子径も大きくなり、表面積が小さくなって成形性や焼結性が悪化することがある。
[About bulk density]
The tabular Ni-coated copper particle aggregated powder 41 according to the fourth embodiment is not particularly limited, but its bulk density (tap density) is in the range of 0.5 g / cm 3 to 5.0 g / cm 3. preferable. If the tap density is less than 0.5 g / cm 3 , there is a possibility that sufficient contact between the Ni-coated copper powders cannot be secured. On the other hand, when the tap density exceeds 5.0 g / cm 3 , the average particle diameter of the Ni-coated copper powder increases, the surface area decreases, and the moldability and sinterability may deteriorate.
 [BET比表面積]
 また、平板状Niコート銅粒子凝集粉41のBET比表面積としては、特に限定されないが、0.2m/g~5.0m/gの範囲であることが好ましい。BET比表面積が5.0m/gを超えると、Niコート銅粉同士の接点を十分に確保することができない可能性がある。一方で、BET比表面積が0.2m/g未満になると、Niコート銅粉の平均粒子径も大きくなり、表面積が小さくなって成形性や焼結性が悪化することがある。なお、BET比表面積はJIS Z8830:2013に準拠して測定することができる。
[BET specific surface area]
As the BET specific surface area of the tabular Ni-coated copper particles agglomerated powder 41 is not particularly limited, it is preferably in the range of 0.2m 2 /g~5.0m 2 / g. When the BET specific surface area exceeds 5.0 m 2 / g, there is a possibility that sufficient contact between the Ni-coated copper powders cannot be ensured. On the other hand, when the BET specific surface area is less than 0.2 m 2 / g, the average particle diameter of the Ni-coated copper powder is also increased, the surface area is decreased, and the formability and the sinterability may be deteriorated. The BET specific surface area can be measured in accordance with JIS Z8830: 2013.
 <1-5.第5の実施形態>
 [Niコート銅粉の構成について]
 第5の実施形態に係るNiコート銅粉は、走査型電子顕微鏡(SEM)を用いて観察したとき、直線的に成長した主幹とその主幹から分かれた複数の枝とを有する樹枝状の形状をなすものであり、その主幹及び枝は、樹枝状に成長した主幹とその主幹から分かれた複数の枝とを有する樹枝状であって表面にNi又はNi合金で被覆された銅粒子が集合して構成されている。なお、以下では、このNiコート銅粉を「樹枝状Niコート銅粉」ともいう。
<1-5. Fifth Embodiment>
[Configuration of Ni-coated copper powder]
When the Ni-coated copper powder according to the fifth embodiment is observed using a scanning electron microscope (SEM), the Ni-coated copper powder has a dendritic shape having a main trunk that grows linearly and a plurality of branches separated from the main trunk. The main trunk and branches are dendritic having a main trunk grown in a dendritic manner and a plurality of branches separated from the main trunk, and copper particles coated with Ni or Ni alloy on the surface are assembled. It is configured. Hereinafter, this Ni-coated copper powder is also referred to as “dendritic Ni-coated copper powder”.
 図18は、第5の実施形態に係るNiコート銅粉を構成する、表面にNi又はNi合金が被覆された銅粒子の具体的な形状を示した模式図である。図18の模式図に示すように、Ni又はNi合金が被覆された銅粒子51は、2次元又は3次元の形態である樹枝状の形状を有している。 FIG. 18 is a schematic diagram showing the specific shape of the copper particles whose surface is coated with Ni or Ni alloy, which constitutes the Ni-coated copper powder according to the fifth embodiment. As shown in the schematic diagram of FIG. 18, the copper particles 51 coated with Ni or Ni alloy have a dendritic shape that is a two-dimensional or three-dimensional form.
 より具体的に、Ni又はNi合金が被覆された銅粒子51は、樹枝状に成長した主幹52とその主幹52から分かれた複数の枝53を有する形状を有しており、この銅粒子51は、断面平均厚さが0.02μm~0.5μmの平板状である。なお、銅粒子51における枝53は、主幹52から分岐した枝53aと、その枝53aからさらに分岐した枝53bの両方を意味する。 More specifically, the copper particles 51 coated with Ni or Ni alloy have a shape having a main trunk 52 grown in a dendritic shape and a plurality of branches 53 separated from the main trunk 52. The plate has a flat cross-sectional average thickness of 0.02 μm to 0.5 μm. The branch 53 in the copper particle 51 means both a branch 53a branched from the main trunk 52 and a branch 53b further branched from the branch 53a.
 第5の実施形態に係るNiコート銅粉は、このような平板状の銅粒子51が集合して構成された、主幹と複数の枝とを有する樹枝状形状の銅粉(樹枝状銅粉)の表面にNi又はNi合金が被覆されたNiコート銅粉であり(図20~図22のNiコート銅粉のSEM像参照)、この平板状の銅粒子51から構成される樹枝状Niコート銅粉の平均粒子径(D50)は、1.0μm~30μmである。 The Ni-coated copper powder according to the fifth embodiment is a dendritic copper powder (dendritic copper powder) having a main trunk and a plurality of branches, which is configured by aggregating such flat copper particles 51. Ni-coated copper powder with Ni or Ni alloy coated on its surface (see SEM images of Ni-coated copper powder in FIGS. 20 to 22), and dendritic Ni-coated copper composed of the flat copper particles 51 The average particle size (D50) of the powder is 1.0 μm to 30 μm.
 第5の実施形態に係る樹枝状Niコート銅粉は、詳しくは後述するが、例えば、銅イオンを含む硫酸酸性の電解液に陽極と陰極を浸漬し、直流電流を流して電気分解することにより陰極上に樹枝状銅粉を析出させ、そしてその得られた樹枝状銅粉の表面に無電解めっき法等によりNi又はNi合金を被覆することで作製することができる。 Although the dendritic Ni-coated copper powder according to the fifth embodiment will be described in detail later, for example, by immersing an anode and a cathode in a sulfuric acid acidic electrolyte solution containing copper ions and flowing a direct current to perform electrolysis It can be produced by depositing dendritic copper powder on the cathode and coating the surface of the obtained dendritic copper powder with Ni or a Ni alloy by an electroless plating method or the like.
 図19は、Ni又はNi合金を被覆する前の樹枝状銅粉についてSEM(倍率10,000倍)により観察したときの観察像の一例を示す写真図である。また、図20は、図19の樹枝状銅粉にNi又はNi合金を被覆した樹枝状Niコート銅粉についてSEM(倍率5,000倍)により観察したときの観察像の一例を示す写真図である。また、図21及び図22は、同様にして樹枝状銅粉にNi又はNi合金を被覆した樹枝状Niコート銅粉の別の箇所についてSEM(図21:倍率10,000倍、図22:倍率1,000倍)により観察したときの観察像の一例を示す写真図である。 FIG. 19 is a photograph showing an example of an observation image when the dendritic copper powder before being coated with Ni or Ni alloy is observed by SEM (magnification 10,000 times). 20 is a photographic diagram showing an example of an observation image when the dendritic Ni-coated copper powder obtained by coating the dendritic copper powder of FIG. 19 with Ni or a Ni alloy is observed by SEM (5,000 times magnification). is there. FIG. 21 and FIG. 22 show SEM (FIG. 21: Magnification 10,000 times, FIG. 22: Magnification) of another part of dendritic Ni-coated copper powder in which dendritic copper powder is similarly coated with Ni or Ni alloy. It is a photograph figure which shows an example of an observation image when it observes by 1,000 times.
 図19~図22の観察像に示されるように、Niコート銅粉は、主幹とその主幹から分岐した枝とを有する、2次元又は3次元の樹枝状の析出状態を呈している。また、その主幹及び枝が、平板状であって樹枝状の形状を有してNi又はNi合金で被覆された銅粒子が集合して構成されており、さらにその銅粒子1は、表面に微細な凸部を有している。 As shown in the observation images of FIGS. 19 to 22, the Ni-coated copper powder exhibits a two-dimensional or three-dimensional dendritic precipitation state having a main trunk and branches branched from the main trunk. Further, the main trunk and the branch are formed in a flat plate shape and have a dendritic shape and are formed by aggregation of copper particles covered with Ni or Ni alloy, and the copper particles 1 are fine on the surface. It has a convex part.
 ここで、樹枝状Niコート銅粉を構成し、主幹52及び枝53を有するNi又はNi合金が被覆された平板状の銅粒子51は、その断面平均厚さが0.02μm~0.5μmである。Ni又はNi合金が被覆された平板状の銅粒子51の断面平均厚さは、より薄い方が平板としての効果が発揮されることになる。すなわち、断面平均厚さが0.5μm以下の平板状の銅粒子51によって樹枝状銅粉の主幹及び枝が構成されることで、銅粒子51同士、またそれにより構成される樹枝状Niコート銅粉同士が接触する面積を大きく確保することができる。そして、その接触面積が大きくなることで、低抵抗、すなわち高導電率を実現することができる。このことにより、より導電性に優れ、またその導電性を良好に維持することができ、導電性塗料や導電性ペーストの用途に好適に用いることができる。また、樹枝状Niコート銅粉が平板状の銅粒子51により構成されていることで、配線材等の薄型化にも貢献することができる。 Here, the flat copper particles 51 constituting the dendritic Ni-coated copper powder and coated with Ni or Ni alloy having the main trunk 52 and the branches 53 have an average cross-sectional thickness of 0.02 μm to 0.5 μm. is there. The thinner the cross-sectional average thickness of the flat copper particles 51 coated with Ni or Ni alloy, the more effective the flat plate will be. That is, the main trunk and the branch of the dendritic copper powder are constituted by the flat copper particles 51 having a cross-sectional average thickness of 0.5 μm or less, so that the copper particles 51 and the dendritic Ni-coated copper constituted thereby. A large area where the powders come into contact with each other can be secured. And since the contact area becomes large, low resistance, that is, high conductivity can be realized. Thereby, it is more excellent in electroconductivity, can maintain the electroconductivity favorably, and can be used suitably for the use of an electroconductive coating material or an electroconductive paste. Further, since the dendritic Ni-coated copper powder is composed of the flat copper particles 51, it is possible to contribute to thinning of the wiring material and the like.
 なお、Ni又はNi合金が被覆された平板状の銅粒子51の断面平均厚さは、薄くなればなるほど、樹枝状Niコート銅粉同士が接触する際における接点の数が少なくなってしまう。銅粒子51の断面平均厚さが0.02μm以上あれば、十分な接点の数を確保することができ、より好ましくは0.2μm以上であり、これにより接点の数を有効に増やすことができる。 In addition, as the cross-sectional average thickness of the tabular copper particles 51 coated with Ni or Ni alloy becomes thinner, the number of contacts when the dendritic Ni-coated copper powders contact with each other decreases. If the cross-sectional average thickness of the copper particles 51 is 0.02 μm or more, a sufficient number of contacts can be ensured, and more preferably 0.2 μm or more, thereby effectively increasing the number of contacts. .
 また、第5の実施形態に係る樹枝状Niコート銅粉においては、その平均粒子径(D50)が1.0μm~30μmである。平均粒子径は、後述する電解条件を変更することで制御可能である。また、必要に応じて、ジェットミル、サンプルミル、サイクロンミル、ビーズミル等の機械的な粉砕を付加することによって、所望とする大きさにさらに調整することが可能である。なお、平均粒子径(D50)は、例えば、レーザー回折散乱式粒度分布測定法により測定することができる。 Further, in the dendritic Ni-coated copper powder according to the fifth embodiment, the average particle diameter (D50) is 1.0 μm to 30 μm. The average particle diameter can be controlled by changing the electrolysis conditions described later. Further, if necessary, it can be further adjusted to a desired size by adding mechanical pulverization such as a jet mill, a sample mill, a cyclone mill, and a bead mill. In addition, an average particle diameter (D50) can be measured by the laser diffraction scattering type particle size distribution measuring method, for example.
 このように、平均粒子径が1.0μm~30μmであることにより、表面積が大きくなり、良好な成形性や焼結性を確保することができる。そして、この樹枝状Niコート銅粉では、樹枝状の形状であることに加えて、主幹2及び枝3を有する樹枝状であって平板形状を有する銅粒子51が集合して構成されているため、樹枝状であることの3次元的効果と、その樹枝形状を構成する銅粒子1が平板状であることの効果により、銅粉同士の接点をより多く確保することができる。 Thus, when the average particle size is 1.0 μm to 30 μm, the surface area is increased, and good moldability and sinterability can be ensured. And in this dendritic Ni coat copper powder, in addition to being dendritic shape, the dendritic shape which has the main trunk 2 and the branch 3 and the copper particle 51 which has a flat plate shape is comprised, and is comprised. More contact points between the copper powders can be secured by the three-dimensional effect of being dendritic and the effect that the copper particles 1 constituting the dendritic shape are flat.
 また、第5の実施形態に係る樹枝状Niコート銅粉において、その平板状の銅粒子51は、表面に微細な凸部を有する。そして、その表面に有する凸部の平均高さが0.01μm~0.4μmであることが好ましい。 Further, in the dendritic Ni-coated copper powder according to the fifth embodiment, the flat copper particles 51 have fine convex portions on the surface. The average height of the convex portions on the surface is preferably 0.01 μm to 0.4 μm.
 ここで、特許文献3や特許文献4に記載されているように、機械的な方法で例えば球状銅粉を平板状にする場合には、機械的加工時に銅の酸化を防止する必要があるため、脂肪酸を添加し、空気中あるいは不活性雰囲気中で粉砕することによって平板状に加工している。しかしながら、完全に酸化を防止することができないことや、加工時に添加している脂肪酸がペースト化するときに分散性に影響を及ぼすことがあるため、加工終了後に除去することが必要となるが、その脂肪酸が機械加工時の圧力で銅表面に強固に固着する場合があり、完全に除去できないという問題が発生する。また、機械的加工によって平板にするため表面は平滑なものとなり、また機械的な圧力によって平板にするために形成された平板状銅粉は水平な面ではなく、反った形になる。そのことから、導電性ペーストや電磁波シールド用の樹脂等の金属フィラーとして利用する場合に金属フィラー同士の接点を確保しようとすると、機械的に平板にした銅粉は表面が平滑で反った状態となるため、接点の確保が困難となり、利用時には平板状の銅粉だけでなく粒状の銅粉を混ぜ合わせる等の方法によって、金属フィラー同士の接点を確保しなければならない。 Here, as described in Patent Document 3 and Patent Document 4, when spherical copper powder is flattened by a mechanical method, for example, it is necessary to prevent copper oxidation during mechanical processing. It is processed into a flat plate shape by adding a fatty acid and pulverizing it in air or in an inert atmosphere. However, it cannot be completely prevented from oxidation, and the fatty acid added at the time of processing may affect the dispersibility when it is made into a paste. The fatty acid may firmly adhere to the copper surface due to the pressure during machining, which causes a problem that it cannot be completely removed. Further, since the surface is flattened by mechanical processing, the surface becomes smooth, and the flat copper powder formed for flattening by mechanical pressure is not a horizontal surface but a warped shape. Therefore, when using as a metal filler such as conductive paste and resin for electromagnetic wave shielding, when trying to secure the contact between the metal fillers, the mechanically flattened copper powder has a smooth and warped surface. Therefore, it becomes difficult to secure the contacts, and when used, the contacts between the metal fillers must be secured by a method of mixing not only the flat copper powder but also the granular copper powder.
 これに対して、第5の実施形態に係る樹枝状Niコート銅粉を構成する平板状の銅粒子51は、その表面に微細な凸部を有し、その凸部の平均高さが好ましくは0.01μm~0.4μmであることにより、その樹枝状Niコート銅粉では、機械的に加工して得られた平板状銅粉に比べて金属フィラー同士の接点を容易に確保できるという特徴を有する。つまり、この樹枝状Niコート銅粉では、それを構成する平板状の銅粒子51の表面に微細な凸部があるため、導電性ペーストや電磁波シールド用の樹脂等の金属フィラーとして利用する場合に、その平板状の銅粒子51の表面の凸部によって容易に接点を確保することができる。さらに、この樹枝状Niコート銅粉は、機械的な加工を行うことなく直接電解により平板状の銅粒子を析出させ樹枝状銅粉の形状に成長させて作製されるため、機械加工で問題となる酸化の発生や脂肪酸の除去は必要なく、電気導電性の特性を極めて良好な状態とすることができる。 On the other hand, the flat copper particles 51 constituting the dendritic Ni-coated copper powder according to the fifth embodiment have fine convex portions on the surface, and the average height of the convex portions is preferably The dendritic Ni-coated copper powder has a feature that the contact between the metal fillers can be easily secured as compared with the plate-like copper powder obtained by mechanical processing, by being 0.01 μm to 0.4 μm. Have. That is, in this dendritic Ni-coated copper powder, since there are fine convex portions on the surface of the flat copper particles 51 constituting the dendritic Ni-coated copper powder, when used as a metal filler such as a conductive paste or a resin for electromagnetic wave shielding The contact point can be easily secured by the convex portions on the surface of the flat copper particles 51. Furthermore, this dendritic Ni-coated copper powder is produced by depositing tabular copper particles by direct electrolysis and growing into the shape of dendritic copper powder without performing mechanical processing. Occurrence of oxidation and removal of fatty acids are not necessary, and the electrical conductivity characteristics can be made extremely good.
 平板状の銅粒子51の表面にある微細な凸部の平均高さは、上述したように、0.01μm~0.4μmであることが好ましい。平均高さが0.01μm未満であると、接点を確保するための形状としては十分な効果が得られず、一方で、平均高さが0.4μmを超えると、導電性ペースト等に利用した場合にペースト中の金属フィラーの充填率が上がらず、かえって満足できる抵抗値が得られなくなる可能性がある。 As described above, the average height of the fine protrusions on the surface of the flat copper particles 51 is preferably 0.01 μm to 0.4 μm. When the average height is less than 0.01 μm, a sufficient effect cannot be obtained as a shape for securing the contacts. On the other hand, when the average height exceeds 0.4 μm, it is used for a conductive paste or the like. In some cases, the filling rate of the metal filler in the paste does not increase, and a satisfactory resistance value may not be obtained.
 なお、電子顕微鏡で観察したときに、得られたNiコート銅粉のうちに、上述したような形状の樹枝状Niコート銅粉が所定の割合で占められていれば、それ以外の形状のNiコート銅粉が混じっていても、その樹枝状Niコート銅粉のみからなる銅粉と同様の効果を得ることができる。具体的には、電子顕微鏡(例えば500倍~20,000倍)で観察したときに、上述した形状の樹枝状Niコート銅粉が全Niコート銅粉のうちの65個数%以上、好ましくは80個数%以上、より好ましくは90個数%以上の割合を占めていれば、その他の形状のNiコート銅粉が含まれていてもよい。 If the dendritic Ni-coated copper powder having the above-mentioned shape is occupied at a predetermined ratio in the obtained Ni-coated copper powder when observed with an electron microscope, Ni of other shapes Even if the coated copper powder is mixed, the same effect as that of the copper powder composed only of the dendritic Ni-coated copper powder can be obtained. Specifically, when observed with an electron microscope (for example, 500 to 20,000 times), the dendritic Ni-coated copper powder having the shape described above is 65% by number or more, preferably 80% of the total Ni-coated copper powder. As long as it occupies a ratio of several percent or more, more preferably 90 percent or more, Ni-coated copper powder of other shapes may be included.
 [Niの被覆について]
 第5の実施形態に係る樹枝状Niコート銅粉は、上述したように、主幹52及び枝53を有する樹枝状であって断面平均厚さが0.02μm~0.5μmの平板状の形状の銅粒子51によって樹枝状に構成されており、その銅粒子51の表面にはNi又はNi合金が被覆されている。
[Ni coating]
As described above, the dendritic Ni-coated copper powder according to the fifth embodiment is a dendritic shape having a main trunk 52 and a branch 53, and has a plate-like shape with a cross-sectional average thickness of 0.02 μm to 0.5 μm. The copper particles 51 are configured in a dendritic shape, and the surfaces of the copper particles 51 are coated with Ni or a Ni alloy.
 この樹枝状Niコート銅粉は、Ni又はNi合金が被覆する前の樹枝状銅粉に、好ましくはNi被覆した当該Niコート銅粉全体の質量100%に対してNiの含有量として1質量%~50質量%の割合でNi又はNi合金が被覆されたものであり、Niの厚さ(被覆厚さ)としては0.1μm以下、好ましくは0.02μm以下の極薄い被膜が被覆されている。このことから、樹枝状Niコート銅粉は、Ni又はNi合金が被覆する前の樹枝状銅粉の形状をそのまま保持した形状になる。したがって、Ni又はNi合金を被覆する前の樹枝状銅粉の形状と、銅粉にNi又はNi合金を被覆した後の樹枝状Niコート銅粉の形状とは、両者共に、2次元又は3次元の形態である樹枝状の形状である。 This dendritic Ni-coated copper powder is preferably 1% by mass as Ni content with respect to 100% by mass of the entire Ni-coated copper powder coated with Ni on the dendritic copper powder before coating with Ni or Ni alloy. Ni or Ni alloy is coated at a ratio of ˜50% by mass, and the Ni thickness (coating thickness) is 0.1 μm or less, preferably 0.02 μm or less. . From this, the dendritic Ni-coated copper powder has a shape that retains the shape of the dendritic copper powder before being coated with Ni or Ni alloy. Therefore, the shape of the dendritic copper powder before coating with Ni or Ni alloy and the shape of the dendritic Ni-coated copper powder after coating Ni or Ni alloy on the copper powder are both two-dimensional or three-dimensional. It is a dendritic shape that is a form of
 この樹枝状Niコート銅粉におけるNi又はNi合金として被覆されるNiの含有量は、上述したように、Ni被覆した当該Niコート銅粉全体の質量100%に対して1質量%~50質量%の範囲であることが好ましい。Ni又はNi合金として被覆されるNiの含有量は、Ni自体の導電率が銅よりも低いためにできるだけ少ない方が好ましいが、少なすぎると銅表面に均一なNi又はNi合金の被膜を確保できず、銅が酸化されて導電性の低下の原因になる。そのため、Ni又はNi合金として被覆されるNiの含有量としては、Ni被覆した当該Niコート銅粉全体の質量100%に対して1質量%以上であることが好ましく、2質量%以上であることがより好ましく、5質量%以上であることがさらに好ましい。 The content of Ni coated as Ni or Ni alloy in the dendritic Ni-coated copper powder is 1% by mass to 50% by mass with respect to 100% by mass of the entire Ni-coated copper powder coated with Ni as described above. It is preferable that it is the range of these. The content of Ni coated as Ni or Ni alloy is preferably as low as possible because the conductivity of Ni itself is lower than that of copper, but if it is too small, a uniform Ni or Ni alloy film can be secured on the copper surface. In other words, copper is oxidized to cause a decrease in conductivity. Therefore, as content of Ni coat | covered as Ni or Ni alloy, it is preferable that it is 1 mass% or more with respect to 100 mass of the whole Ni coat | covered Ni-coated copper powder, and it is 2 mass% or more. Is more preferable, and it is further more preferable that it is 5 mass% or more.
 一方で、Ni又はNi合金として被覆されるNiの含有量が多くなると、導電率が低下する点から好ましくなく、Ni又はNi合金として被覆されるNiの含有量としては、Ni被覆した当該Niコート銅粉全体の質量100%に対して50質量%以下であることが好ましく、20質量%以下であることがより好ましく、10質量%以下であることがさらに好ましい。 On the other hand, when the content of Ni coated as Ni or Ni alloy increases, it is not preferable from the viewpoint of decreasing the electrical conductivity. The content of Ni coated as Ni or Ni alloy is the Ni coated Ni coating. It is preferable that it is 50 mass% or less with respect to 100 mass of the whole copper powder, It is more preferable that it is 20 mass% or less, It is further more preferable that it is 10 mass% or less.
 また、第5の実施形態に係る樹枝状Niコート銅粉において、銅粒子の表面に被覆するNi又はNi合金の平均厚みとしては0.0003μm~0.1μm程度であり、0.005μm~0.02μm程度であることが好ましい。Ni又はNi合金の被覆厚みが平均で0.0003μm未満であると、銅粉の表面に均一なNi又はNi合金の被覆を確保することができず、銅の酸化が抑えられなくなり導電性の低下の原因となる。一方、Ni又はNi合金の被覆厚みが平均で0.1μmを超えると、導電率が低下する点から好ましくない。 In the dendritic Ni-coated copper powder according to the fifth embodiment, the average thickness of Ni or Ni alloy coated on the surface of the copper particles is about 0.0003 μm to 0.1 μm, and 0.005 μm to 0.00. It is preferably about 02 μm. When the Ni or Ni alloy coating thickness is less than 0.0003 μm on average, a uniform Ni or Ni alloy coating cannot be secured on the surface of the copper powder, and copper oxidation cannot be suppressed, resulting in a decrease in conductivity. Cause. On the other hand, if the coating thickness of Ni or Ni alloy exceeds 0.1 μm on average, it is not preferable from the viewpoint of decreasing the electrical conductivity.
 このように樹枝状Niコート銅粉の表面に被覆されるNi又はNi合金の平均厚みは、0.0003μm~0.1μm程度であり、Ni又はNi合金を被覆する前の樹枝状銅粉を構成する樹枝状の銅粒子51の断面平均厚さ(0.02μm~0.5μm)と比べて小さい。そのため、樹枝状銅粉の表面をNi又はNi合金で被覆する前後で、樹枝状銅粉の形態は実質的に変化することはない。 Thus, the average thickness of the Ni or Ni alloy coated on the surface of the dendritic Ni-coated copper powder is about 0.0003 μm to 0.1 μm, and constitutes the dendritic copper powder before coating the Ni or Ni alloy. This is smaller than the average cross-sectional thickness (0.02 μm to 0.5 μm) of the dendritic copper particles 51. Therefore, before and after coating the surface of the dendritic copper powder with Ni or Ni alloy, the form of the dendritic copper powder does not substantially change.
 さらに後述するように、樹枝状Niコート銅粉において、樹枝状銅粉に被覆されるNiは、Ni合金でもよい。Ni合金として添加される元素としては、周期表の第6族から第14族の元素であることが好ましく、特に亜鉛、コバルト、タングステン、モリブデン、パラジウム、白金、及びスズから選ばれる1種以上が好ましい。また、後述するように、樹枝状銅粉にNiを被覆する工程で無電解めっきを用い、さらにその還元剤として次亜リン酸塩、ホウ水素化合物を使用する場合には、得られるNi被膜はそれぞれNi-P合金、Ni-B合金となる。 Further, as will be described later, in the dendritic Ni-coated copper powder, the Ni coated with the dendritic copper powder may be a Ni alloy. The element added as the Ni alloy is preferably an element from Group 6 to Group 14 of the periodic table, and particularly one or more selected from zinc, cobalt, tungsten, molybdenum, palladium, platinum, and tin. preferable. In addition, as will be described later, when using electroless plating in the step of coating Ni on the dendritic copper powder, and further using hypophosphite and borohydride as the reducing agent, the resulting Ni coating is They are Ni-P alloy and Ni-B alloy, respectively.
 [嵩密度について]
 第5の実施形態に係る樹枝状Niコート銅粉の嵩密度としては、特に限定されないが、0.5g/cm~5.0g/cmの範囲であることが好ましい。嵩密度が0.5g/cm未満であると、樹枝状Niコート銅粉同士の接点を十分に確保することができない可能性がある。一方で、嵩密度が5.0g/cmを超えると、樹枝状Niコート銅粉の平均粒子径も大きくなってしまい、すると表面積が小さくなって成形性や焼結性が悪化することがある。
[About bulk density]
The bulk density of the dendritic Ni-coated copper powder according to the fifth embodiment is not particularly limited, but is preferably in the range of 0.5 g / cm 3 to 5.0 g / cm 3 . If the bulk density is less than 0.5 g / cm 3 , there is a possibility that sufficient contact between the dendritic Ni-coated copper powders cannot be ensured. On the other hand, if the bulk density exceeds 5.0 g / cm 3 , the average particle diameter of the dendritic Ni-coated copper powder also increases, and the surface area may decrease, and the formability and sinterability may deteriorate. .
 [BET比表面積について]
 第5の実施形態に係る樹枝状Niコート銅粉では、特に限定されないが、そのBET比表面積の値が0.2m/g~5.0m/gであることが好ましい。BET比表面積の値が0.2m/g未満であると、Ni又はNi合金が被覆された銅粒子が、上述したような所望の形状とはならないことがあり、高い導電性が得られないことがある。一方で、BET比表面積の値が5.0m/gを超えると、樹枝状Niコート銅粉の表面のNi又はNi合金の被覆が不均一となり高い導電性が得られない可能性がある。また、樹枝状Niコート銅粉を構成する銅粒子が細かくなりすぎてしまい、樹枝状Niコート銅粉が細かいひげ状の状態となって、導電性が低下することがある。なお、BET比表面積は、JIS Z8830:2013に準拠して測定することができる。
[BET specific surface area]
The dendritic Ni-coated copper powder according to the fifth embodiment is not particularly limited, it is preferable the value of the BET specific surface area of 0.2m 2 /g~5.0m 2 / g. If the value of the BET specific surface area is less than 0.2 m 2 / g, the copper particles coated with Ni or Ni alloy may not have the desired shape as described above, and high conductivity cannot be obtained. Sometimes. On the other hand, if the value of the BET specific surface area exceeds 5.0 m 2 / g, the Ni or Ni alloy coating on the surface of the dendritic Ni-coated copper powder becomes non-uniform and high conductivity may not be obtained. In addition, the copper particles constituting the dendritic Ni-coated copper powder become too fine, and the dendritic Ni-coated copper powder becomes a fine whisker-like state, and the conductivity may decrease. The BET specific surface area can be measured in accordance with JIS Z8830: 2013.
 ≪2.Niコート銅粉の製造方法≫
 次に、本発明に係るNiコート銅粉の製造方法について説明する。以下では、先ず、Niコート銅粉を構成するNi被覆する前の銅粉の製造方法について説明し、続いて、その銅粉に対してNi又はNi合金を被覆してNiコート銅粉を得る方法について説明する。
≪2. Manufacturing method of Ni-coated copper powder >>
Next, the manufacturing method of Ni coat copper powder concerning the present invention is explained. Below, the manufacturing method of the copper powder before Ni coating | cover which comprises Ni coat | court copper powder is demonstrated first, Then, Ni or Ni alloy is coat | covered with respect to the copper powder, and the method of obtaining Ni coat copper powder Will be described.
 なお、上述した第1~第5の実施形態に係るNiコート銅粉の製造方法について順に説明し、それぞれの実施形態において共通する項目については適宜説明を省略する。 In addition, the manufacturing method of the Ni coat copper powder which concerns on the 1st-5th embodiment mentioned above is demonstrated in order, and description is abbreviate | omitted suitably about the item which is common in each embodiment.
 <2-1.第1の実施形態に係るNiコート銅粉の製造方法>
 第1の実施形態に係るNiコート銅粉は、表面にNi又はNi合金が被覆された銅粒子が集合して、直線的に成長した主幹とその主幹から分かれた複数の枝を有する樹枝状の形状を構成したNiコート銅粉である。そして、表面にNi又はNi合金が被覆された銅粒子は、SEM観察より求められる断面平均厚さが0.02μm~5.0μmである平板状であり、その銅粒子が集合して構成された当該Niコート銅粉は、平均粒子径(D50)が1.0μm~100μmであり、銅粒子の平板状の面に対して垂直方向への最大高さが、その平板状の面の水平方向への最大長さに対して1/10以下である。
<2-1. Manufacturing Method of Ni Coated Copper Powder According to First Embodiment>
The Ni-coated copper powder according to the first embodiment has a dendritic shape in which copper particles whose surfaces are coated with Ni or a Ni alloy are aggregated and have a main trunk that grows linearly and a plurality of branches that are separated from the main trunk. It is Ni coat copper powder which constituted the shape. The copper particles whose surfaces are coated with Ni or Ni alloy have a flat plate shape with an average cross-sectional thickness of 0.02 μm to 5.0 μm determined by SEM observation, and the copper particles are assembled to form a copper particle. The Ni-coated copper powder has an average particle diameter (D50) of 1.0 μm to 100 μm, and the maximum height in a direction perpendicular to the flat surface of the copper particles is in the horizontal direction of the flat surface. It is 1/10 or less with respect to the maximum length.
  <2-1-1.銅粉の製造方法>
 第1の実施形態に係るNiコート銅粉(樹枝状Niコート銅粉)は、上述したように、樹枝状銅粉の表面にNi又はNi合金が被覆されてなり、その樹枝状銅粉は、例えば、銅イオンを含有する硫酸酸性溶液を電解液として用いて所定の電解法により製造することができる。
<2-1-1. Manufacturing method of copper powder>
As described above, the Ni-coated copper powder (dendritic Ni-coated copper powder) according to the first embodiment is coated with Ni or a Ni alloy on the surface of the dendritic copper powder. For example, it can be manufactured by a predetermined electrolytic method using a sulfuric acid acidic solution containing copper ions as an electrolytic solution.
 電解に際しては、例えば、金属銅を陽極(アノード)とし、ステンレス板やチタン板等を陰極(カソード)として設置した電解槽中に、銅イオンを含有する硫酸酸性の電解液を収容し、その電解液に所定の電流密度で直流電流を通電することによって電解処理を施す。これにより、通電に伴って陰極上に微細な樹枝状銅粉を析出(電析)させることができる。特に、第1の実施形態においては、銅イオン源となる水溶性銅塩を含有する硫酸酸性の電解液に特定の添加剤とノニオン界面活性剤とを添加して電解するようにし、これにより、平板状の銅粒子が集合して構成された平板状の樹枝状銅粉を析出させることができる。また、電解液には、さらに塩化物イオンを含有させることが好ましい。 In electrolysis, for example, a sulfuric acid electrolytic solution containing copper ions is accommodated in an electrolytic cell in which metallic copper is used as an anode (anode) and a stainless steel plate or titanium plate is used as a cathode (cathode). Electrolysis is performed by passing a direct current through the liquid at a predetermined current density. Thereby, a fine dendritic copper powder can be deposited (electrodeposited) on the cathode with energization. In particular, in the first embodiment, a specific additive and a nonionic surfactant are added to the sulfuric acid electrolytic solution containing a water-soluble copper salt serving as a copper ion source to perform electrolysis. A flat dendritic copper powder composed of flat copper particles can be deposited. Further, it is preferable that the electrolytic solution further contains chloride ions.
 (1)銅イオン
 水溶性銅塩は、銅イオンを供給する銅イオン源であり、例えば硫酸銅五水和物等の硫酸銅、硝酸銅等が挙げられるが特に限定されない。また、酸化銅を硫酸溶液で溶解して硫酸酸性溶液にしてもよい。電解液中での銅イオン濃度としては、1g/L~20g/L程度、好ましくは5g/L~10g/L程度とすることができる。
(1) Copper ions The water-soluble copper salt is a copper ion source that supplies copper ions, and examples thereof include copper sulfate such as copper sulfate pentahydrate and copper nitrate, but are not particularly limited. Alternatively, copper oxide may be dissolved in a sulfuric acid solution to make a sulfuric acid acidic solution. The copper ion concentration in the electrolytic solution can be about 1 g / L to 20 g / L, preferably about 5 g / L to 10 g / L.
 (2)硫酸
 硫酸は、硫酸酸性の電解液とするためのものである。電解液中の硫酸の濃度としては、遊離硫酸濃度として20g/L~300g/L程度、好ましくは50g/L~150g/L程度とすることができる。この硫酸濃度は、電解液の電導度に影響するため、カソード上に得られる銅粉の均一性に影響する。
(2) Sulfuric acid Sulfuric acid is for making a sulfuric acid electrolyte. The concentration of sulfuric acid in the electrolytic solution can be about 20 g / L to 300 g / L, preferably about 50 g / L to 150 g / L, as the free sulfuric acid concentration. Since the sulfuric acid concentration affects the conductivity of the electrolyte, it affects the uniformity of the copper powder obtained on the cathode.
 (3)添加剤
 添加剤としては、フェナジン構造を有する化合物、アゾベンゼン構造を有する化合物、及びフェナジン構造とアゾベンゼン構造とを有する化合物からなる群から選択されるいずれかの化合物を1種類、あるいはこの群から選択される分子構造の異なる化合物を2種類以上併せて用いる。このような添加剤を、後述するノニオン界面活性剤と共に電解液に添加して電解することで、平板状の面に対して垂直方向への成長を抑えた銅粉、すなわち平滑な面を有する銅粉を製造することができる。
(3) Additive As the additive, one kind of compound selected from the group consisting of a compound having a phenazine structure, a compound having an azobenzene structure, and a compound having a phenazine structure and an azobenzene structure, or this group Two or more compounds selected from the group consisting of different molecular structures are used in combination. By adding such an additive to the electrolytic solution together with a nonionic surfactant described later and performing electrolysis, copper powder that suppresses growth in a direction perpendicular to the flat surface, that is, copper having a smooth surface Powder can be produced.
 フェナジン構造を有する化合物、アゾベンゼン構造を有する化合物、及びフェナジン構造とアゾベンゼン構造とを有する化合物からなる群から選択される1種又は2種以上の添加剤の電解液中の濃度としては、添加する化合物の合計で1mg/L~1000mg/L程度とすることが好ましい。 The concentration in the electrolyte of one or more additives selected from the group consisting of a compound having a phenazine structure, a compound having an azobenzene structure, and a compound having a phenazine structure and an azobenzene structure may be added. It is preferable that the total amount is about 1 mg / L to 1000 mg / L.
  (フェナジン構造を有する化合物)
 フェナジン構造を有する化合物は、下記式(1)によって表わすことができる。第1の実施形態においては、下記式(1)で表されるフェナジン構造を有する化合物の1種又は2種以上を添加剤として含有させることができる。
(Compound having phenazine structure)
A compound having a phenazine structure can be represented by the following formula (1). In the first embodiment, one or more compounds having a phenazine structure represented by the following formula (1) can be contained as an additive.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 ここで、式(1)中において、R、R、R、R、R、R、R、Rは、それぞれ別個に、水素、ハロゲン、アミノ、OH、=O、CN、SCN、SH、COOH、COO塩、COOエステル、SOH、SO塩、SOエステル、ベンゼンスルホン酸、及びC1~C8アルキルからなる群から選択される基である。また、Rは、水素、ハロゲン、アミノ、OH、-O、CN、SCN、SH、COOH、COO塩、COOエステル、SOH、SO塩、SOエステル、ベンゼンスルホン酸、低級アルキル、及びアリールからなる群から選択される基である。また、Aは、ハライドアニオンである。 Here, in Formula (1), R 1 , R 2 , R 3 , R 4 , R 6 , R 7 , R 8 , R 9 are each independently hydrogen, halogen, amino, OH, ═O, It is a group selected from the group consisting of CN, SCN, SH, COOH, COO salt, COO ester, SO 3 H, SO 3 salt, SO 3 ester, benzenesulfonic acid, and C1-C8 alkyl. R 5 is hydrogen, halogen, amino, OH, —O, CN, SCN, SH, COOH, COO salt, COO ester, SO 3 H, SO 3 salt, SO 3 ester, benzenesulfonic acid, lower alkyl, And a group selected from the group consisting of aryl. A is a halide anion.
 具体的に、フェナジン構造を有する化合物としては、例えば、5-メチルフェナジン-5-イウム、エルギノシンB、アエルギノシンA、5-エチルフェナジン-5-イウム、3,7-ジアミノ-5-フェニルフェナジン-5-イウム、5-エチルフェナジン-5-イウム、5-メチルフェナジン-5-イウム、3-アミノ-5-フェニル-7-(ジエチルアミノ)フェナジン-5-イウム、2,8-ジメチル-3,7-ジアミノ-5-フェニルフェナジン-5-イウム、1-メトキシ-5-メチルフェナジン-5-イウム、3-アミノ-7-(ジメチルアミノ)-1,2-ジメチル-5-(3-スルホナトフェニル)フェナジン-5-イウム、1,3-ジアミノ-5-メチルフェナジン-5-イウム、1,3-ジアミノ-5-フェニルフェナジン-5-イウム、3-アミノ-7-(ジエチルアミノ)-2-メチル-5-フェニルフェナジン-5-イウム、3,7-ビス(ジエチルアミノ)-5-フェニルフェナジン-5-イウム、2,8-ジメチル-3,7-ジアミノ-5-(4-メチルフェニル)フェナジン-5-イウム、3-(メチルアミノ)-5-メチルフェナジン-5-イウム、3-ヒドロキシ-7-(ジエチルアミノ)-5-フェニルフェナジン-5-イウム、5-アゾニアフェナジン、1-ヒドロキシ-5-メチルフェナジン-5-イウム、4H,6H-5-フェニル-3,7-ジオキソフェナジン-5-イウム、アニリノアポサフラニン、フェノサフラニン、ニュートラルレッド等が挙げられる。 Specifically, examples of the compound having a phenazine structure include 5-methylphenazine-5-ium, eruginosine B, aeruginosine A, 5-ethylphenazine-5-ium, 3,7-diamino-5-phenylphenazine-5. -Ium, 5-ethylphenazine-5-ium, 5-methylphenazine-5-ium, 3-amino-5-phenyl-7- (diethylamino) phenazine-5-ium, 2,8-dimethyl-3,7- Diamino-5-phenylphenazine-5-ium, 1-methoxy-5-methylphenazine-5-ium, 3-amino-7- (dimethylamino) -1,2-dimethyl-5- (3-sulfonatophenyl) Phenazine-5-ium, 1,3-diamino-5-methylphenazine-5-ium, 1,3-diamino-5-phenylphenol Nadin-5-ium, 3-amino-7- (diethylamino) -2-methyl-5-phenylphenazine-5-ium, 3,7-bis (diethylamino) -5-phenylphenazine-5-ium, 2,8 -Dimethyl-3,7-diamino-5- (4-methylphenyl) phenazine-5-ium, 3- (methylamino) -5-methylphenazine-5-ium, 3-hydroxy-7- (diethylamino) -5 -Phenylphenazine-5-ium, 5-azoniaphenazine, 1-hydroxy-5-methylphenazine-5-ium, 4H, 6H-5-phenyl-3,7-dioxophenazine-5-ium, anilinoap Safranin, phenosafranine, neutral red and the like can be mentioned.
  (アゾベンゼン構造を有する化合物)
 アゾベンゼン構造を有する化合物は、下記式(2)によって表わすことができる。第1の実施形態においては、下記式(2)で表されるアゾベンゼン構造を有する化合物の1種又は2種以上を添加剤として含有させることができる。
(Compound having azobenzene structure)
The compound having an azobenzene structure can be represented by the following formula (2). In 1st Embodiment, the 1 type (s) or 2 or more types of the compound which has an azobenzene structure represented by following formula (2) can be contained as an additive.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 ここで、式(2)中において、R、R、R、R、R、R、R、R、R、R10は、それぞれ別個に、水素、ハロゲン、アミノ、OH、=O、CN、SCN、SH、COOH、COO塩、COOエステル、SOH、SO塩、SOエステル、ベンゼンスルホン酸、低級アルキル、及びアリールからなる群から選択される基である。 Here, in formula (2), R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 are each independently hydrogen, halogen, amino A group selected from the group consisting of OH, ═O, CN, SCN, SH, COOH, COO salt, COO ester, SO 3 H, SO 3 salt, SO 3 ester, benzenesulfonic acid, lower alkyl, and aryl. is there.
 具体的に、アゾベンゼン構造を有する化合物としては、例えば、アゾベンゼン、4-アミノアゾベンゼン-4’-スルホン酸、4-(ジメチルアミノ)-4’-(トリフルオロメチル)アゾベンゼン、C.I.アシッドレッド13、マーキュリーオレンジ、2’,4’-ジアミノ-5’-メチルアゾベンゼン-4-スルホン酸ナトリウム、メチルレッド、メチルイエロー、メチルオレンジ、アゾベンゼン-2,4-ジアミン、アリザリンイエローGG、4-ジメチルアミノアゾベンゼン、オレンジI、サラゾスルファピリジン、4-(ジエチルアミノ)アゾベンゼン、オレンジOT、3-メトキシ-4-アミノアゾベンゼン、4-アミノアゾベンゼン、N,N,2-トリメチルアゾベンゼン-4-アミン、4-ヒドロキシアゾベンゼン、スダンI、4-アミノ-3,5-ジメチルアゾベンゼン、N,N-ジメチル-4-[(キノリン-6-イル)アゾ]ベンゼンアミン、o-アミノアゾトルエン、アリザリンイエローR、4’-(アミノスルホニル)-4-ヒドロキシアゾベンゼン-3-カルボン酸、コンゴーレッド、バイタルレッド、メタニルイエロー、オレンジII、ディスパースオレンジ3、C.I.ダイレクトオレンジ39、2,2’-ジヒドロキシアゾベンゼン、アゾベンゼン-4,4’-ジオール、ナフチルレッド、5-フェニルアゾベンゼン-2-オール、2,2’-ジメチルアゾベンゼン、C.I.モルダントイエロー12、モルダントイエロー10、アシッドイエロー、ディスパースブルー、ニューイエローRMF、ビストラミンブラウンG等が挙げられる。 Specifically, examples of the compound having an azobenzene structure include azobenzene, 4-aminoazobenzene-4'-sulfonic acid, 4- (dimethylamino) -4 '-(trifluoromethyl) azobenzene, C.I. I. Acid Red 13, Mercury Orange, 2 ', 4'-Diamino-5'-methylazobenzene-4-sulfonic acid sodium, methyl red, methyl yellow, methyl orange, azobenzene-2,4-diamine, alizarin yellow GG, 4- Dimethylaminoazobenzene, orange I, salazosulfapyridine, 4- (diethylamino) azobenzene, orange OT, 3-methoxy-4-aminoazobenzene, 4-aminoazobenzene, N, N, 2-trimethylazobenzene-4-amine, 4 -Hydroxyazobenzene, Sudan I, 4-amino-3,5-dimethylazobenzene, N, N-dimethyl-4-[(quinolin-6-yl) azo] benzenamine, o-aminoazotoluene, alizarin yellow R, 4 '-(Aminosulfonyl) 4-hydroxy-azobenzene-3-carboxylic acid, Congo red, vital red, Metanil Yellow, Orange II, Disperse Orange 3, C. I. Direct orange 39, 2,2'-dihydroxyazobenzene, azobenzene-4,4'-diol, naphthyl red, 5-phenylazobenzene-2-ol, 2,2'-dimethylazobenzene, C.I. I. Examples include Mordant Yellow 12, Mordant Yellow 10, Acid Yellow, Disperse Blue, New Yellow RMF, Vistramine Brown G, and the like.
  (フェナジン構造とアゾベンゼン構造とを有する化合物)
 フェナジン構造とアゾベンゼン構造とを有する化合物は、下記式(3)によって表わすことができる。第1の実施形態においては、下記式(3)で表されるフェナジン構造とアゾベンゼン構造とを有する化合物の1種又は2種以上を添加剤として含有させることができる。
(Compound having phenazine structure and azobenzene structure)
A compound having a phenazine structure and an azobenzene structure can be represented by the following formula (3). In the first embodiment, one or more compounds having a phenazine structure and an azobenzene structure represented by the following formula (3) can be contained as an additive.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 ここで、式(3)中において、R、R、R、R、R、R、R、R、R10、R11、R12、R13は、それぞれ別個に、水素、ハロゲン、アミノ、OH、=O、CN、SCN、SH、COOH、COO塩、COOエステル、SOH、SO塩、SOエステル、ベンゼンスルホン酸、及びC1~C8アルキルからなる群から選択される基である。また、Rは、水素、ハロゲン、アミノ、OH、=O、CN、SCN、SH、COOH、COO塩、COOエステル、SOH、SO塩、SOエステル、ベンゼンスルホン酸、低級アルキル、及びアリールからなる群から選択される基である。また、Aは、ハライドアニオンである。 Here, in Formula (3), R 1 , R 2 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 are each separately , Hydrogen, halogen, amino, OH, ═O, CN, SCN, SH, COOH, COO salt, COO ester, SO 3 H, SO 3 salt, SO 3 ester, benzenesulfonic acid, and C1-C8 alkyl Is a group selected from R 3 is hydrogen, halogen, amino, OH, ═O, CN, SCN, SH, COOH, COO salt, COO ester, SO 3 H, SO 3 salt, SO 3 ester, benzenesulfonic acid, lower alkyl, And a group selected from the group consisting of aryl. A is a halide anion.
 具体的に、フェナジン構造とアゾベンゼン構造とを有する化合物としては、例えば、3-(ジエチルアミノ)-7-[(4-ヒドロキシフェニル)アゾ]-2,8-ジメチル-5-フェニルフェナジン-5-イウム、3-[[4-(ジメチルアミノ)フェニル]アゾ]-7-(ジエチルアミノ)-5-フェニルフェナジン-5-イウム、ヤヌスグリーンB、3-アミノ-7-[(2,4-ジアミノフェニル)アゾ]-2,8-ジメチル-5-フェニルフェナジン-5-イウム、2,8-ジメチル-3-アミノ-5-フェニル-7-(2-ヒドロキシ-1-ナフチルアゾ)フェナジン-5-イウム、3-[[4-(ジメチルアミノ)フェニル]アゾ]-7-(ジメチルアミノ)-5-フェニルフェナジン-5-イウム、3-アミノ-7-[[4-(ジメチルアミノ)フェニル]アゾ]-5-フェニルフェナジン-5-イウム、2-(ジエチルアミノ)-7-[4-(メチルプロパルギルアミノ)フェニルアゾ]-9-フェニル-9-アゾニア-10-アザアントラセン、2-(ジエチルアミノ)-7-[4-(メチル4-ペンチニルアミノ)フェニルアゾ]-9-フェニル-9-アゾニア-10-アザアントラセン、2-(ジエチルアミノ)-7-[4-(メチル2,3-ジヒドロキシプロピルアミノ)フェニルアゾ]-9-フェニル-9-アゾニア-10-アザアントラセン等が挙げられる。 Specifically, as a compound having a phenazine structure and an azobenzene structure, for example, 3- (diethylamino) -7-[(4-hydroxyphenyl) azo] -2,8-dimethyl-5-phenylphenazine-5-ium , 3-[[4- (dimethylamino) phenyl] azo] -7- (diethylamino) -5-phenylphenazine-5-ium, Janus Green B, 3-amino-7-[(2,4-diaminophenyl) Azo] -2,8-dimethyl-5-phenylphenazine-5-ium, 2,8-dimethyl-3-amino-5-phenyl-7- (2-hydroxy-1-naphthylazo) phenazine-5-ium, 3 -[[4- (dimethylamino) phenyl] azo] -7- (dimethylamino) -5-phenylphenazine-5-ium, 3-amino-7-[[ -(Dimethylamino) phenyl] azo] -5-phenylphenazine-5-ium, 2- (diethylamino) -7- [4- (methylpropargylamino) phenylazo] -9-phenyl-9-azonia-10-azaanthracene 2- (diethylamino) -7- [4- (methyl-4-pentynylamino) phenylazo] -9-phenyl-9-azonia-10-azaanthracene, 2- (diethylamino) -7- [4- (methyl-2 , 3-dihydroxypropylamino) phenylazo] -9-phenyl-9-azonia-10-azaanthracene.
 (4)界面活性剤
 界面活性剤としては、ノニオン界面活性剤を含有させる。上述した添加剤と共にノニオン界面活性剤を電解液中に添加することによって、平板状の面に対して垂直方向への成長を抑えた銅粉、すなわち平滑な面を有する銅粉を製造することができる。
(4) Surfactant A nonionic surfactant is contained as the surfactant. By adding a nonionic surfactant to the electrolyte together with the above-mentioned additives, it is possible to produce copper powder that suppresses growth in a direction perpendicular to the flat surface, that is, copper powder having a smooth surface. it can.
 ノニオン界面活性剤としては、1種単独で又は2種以上を併せて用いることができ、電解液中の濃度としては合計で1mg/L~10000mg/L程度とすることができる。 As the nonionic surfactant, one kind can be used alone, or two or more kinds can be used in combination, and the total concentration in the electrolytic solution can be about 1 mg / L to 10,000 mg / L.
 ノニオン界面活性剤の数平均分子量としては、特に限定されないが、100~200,000であることが好ましく、200~15,000であることがより好ましく、1,000~10,000であることがさらに好ましい。数平均分子量が100未満の界面活性剤であると、樹枝状を呈しない微細な電解銅粉が析出される可能性がある。一方で、数平均分子量が200,000を超える界面活性剤であると、平均粒子径の大きな電解銅粉が析出して、比表面積が0.2m/g未満の樹枝状銅粉しか得られない可能性がある。なお、数平均分子量は、テトラヒドロフラン(THF)を溶媒とするゲル浸透クロマトグラフィー(GPC)によって求めたポリスチレン換算の分子量とする。 The number average molecular weight of the nonionic surfactant is not particularly limited, but is preferably from 100 to 200,000, more preferably from 200 to 15,000, and preferably from 1,000 to 10,000. Further preferred. When the surfactant has a number average molecular weight of less than 100, fine electrolytic copper powder that does not exhibit a dendritic shape may be deposited. On the other hand, when the surfactant has a number average molecular weight exceeding 200,000, electrolytic copper powder having a large average particle size is precipitated, and only dendritic copper powder having a specific surface area of less than 0.2 m 2 / g is obtained. There is no possibility. The number average molecular weight is a molecular weight in terms of polystyrene determined by gel permeation chromatography (GPC) using tetrahydrofuran (THF) as a solvent.
 ノニオン界面活性剤の種類としては、特に限定されないが、エーテル基を有する界面活性剤であることが好ましく、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレンイミン、プルロニック型界面活性剤、テトロニック型界面活性剤、ポリオキシエチレングリコール・グリセリンエーテル、ポリオキシエチレングリコール・ジアルキルエーテル、ポリオキシエチレンポリオキシプロピレングリコール・アルキルエーテル、芳香族アルコールアルコキシレート、下記(x)式で表される高分子化合物等が挙げられ、これらのノニオン界面活性剤を1種単独で、又は2種以上を併せて用いることができる。 The type of nonionic surfactant is not particularly limited, but is preferably a surfactant having an ether group, for example, polyethylene glycol, polypropylene glycol, polyethyleneimine, pluronic surfactant, tetronic surfactant. , Polyoxyethylene glycol / glycerin ether, polyoxyethylene glycol / dialkyl ether, polyoxyethylene polyoxypropylene glycol / alkyl ether, aromatic alcohol alkoxylate, polymer compound represented by the following formula (x), and the like. These nonionic surfactants can be used alone or in combination of two or more.
 より具体的に、ポリエチレングリコールとしては、例えば下記式(i)で表されるものを用いることができる。 More specifically, as the polyethylene glycol, for example, one represented by the following formula (i) can be used.
Figure JPOXMLDOC01-appb-C000014
(なお、式(i)中、n1は1~120の整数を示す。)
Figure JPOXMLDOC01-appb-C000014
(In the formula (i), n1 represents an integer of 1 to 120.)
 また、ポリプロピレングリコールとしては、例えば下記式(ii)で表されるものを用いることができる。 Further, as the polypropylene glycol, for example, one represented by the following formula (ii) can be used.
Figure JPOXMLDOC01-appb-C000015
(なお、式(ii)中、n1は1~90の整数を示す。)
Figure JPOXMLDOC01-appb-C000015
(In the formula (ii), n1 represents an integer of 1 to 90.)
 また、ポリエチレンイミンとしては、例えば下記式(iii)で表されるものを用いることができる。 Moreover, as polyethyleneimine, what is represented, for example by a following formula (iii) can be used.
Figure JPOXMLDOC01-appb-C000016
(なお、式(iii)中、n1は1~120の整数を示す。)
Figure JPOXMLDOC01-appb-C000016
(In the formula (iii), n1 represents an integer of 1 to 120.)
 また、プルロニック型界面活性剤としては、例えば下記式(iv)で表されるものを用いることができる。 Further, as the pluronic surfactant, for example, one represented by the following formula (iv) can be used.
Figure JPOXMLDOC01-appb-C000017
(なお、式(iv)中、n2及びl2は1~30の整数を示し、m2は10~100の整数を示す。)
Figure JPOXMLDOC01-appb-C000017
(In the formula (iv), n2 and l2 represent an integer of 1 to 30, and m2 represents an integer of 10 to 100.)
 また、テトロニック型界面活性剤としては、例えば下記式(v)で表されるものを用いることができる。 Further, as the tetronic surfactant, for example, one represented by the following formula (v) can be used.
Figure JPOXMLDOC01-appb-C000018
(なお、式(v)中、n3は1~200の整数を示し、m3は1~40の整数を示す。)
Figure JPOXMLDOC01-appb-C000018
(In formula (v), n3 represents an integer of 1 to 200, and m3 represents an integer of 1 to 40.)
 また、ポリオキシエチレングリコール・グリセリルエーテルとしては、例えば下記式(vi)で表されるものを用いることができる。 Moreover, as polyoxyethylene glycol glyceryl ether, for example, those represented by the following formula (vi) can be used.
Figure JPOXMLDOC01-appb-C000019
(なお、式(vi)中、n4、m4、及びl4はそれぞれ1~200の整数を示す。)
Figure JPOXMLDOC01-appb-C000019
(In the formula (vi), n4, m4, and l4 each represent an integer of 1 to 200.)
 また、ポリオキシエチレングリコール・ジアルキルエーテルとしては、例えば下記式(vii)で表されるものを用いることができる。 Moreover, as polyoxyethylene glycol dialkyl ether, for example, those represented by the following formula (vii) can be used.
Figure JPOXMLDOC01-appb-C000020
(なお、式(vii)中、R及びRは水素原子又は炭素数1~5の低級アルキル基を示し、n5は2~200の整数を示す。)
Figure JPOXMLDOC01-appb-C000020
(In the formula (vii), R 1 and R 2 represent a hydrogen atom or a lower alkyl group having 1 to 5 carbon atoms, and n5 represents an integer of 2 to 200.)
 また、ポリオキシエチレンポリオキシプロピレングリコール・アルキルエーテルとしては、例えば下記式(viii)で表されるものを用いることができる。 As the polyoxyethylene polyoxypropylene glycol / alkyl ether, for example, those represented by the following formula (viii) can be used.
Figure JPOXMLDOC01-appb-C000021
(なお、式(viii)中、Rは水素原子又は炭素数1~5の低級アルキル基を示し、m6又はn6は2~100の整数を示す。)
Figure JPOXMLDOC01-appb-C000021
(In the formula (viii), R 3 represents a hydrogen atom or a lower alkyl group having 1 to 5 carbon atoms, and m6 or n6 represents an integer of 2 to 100.)
 また、芳香族アルコールアルコキシレートとしては、例えば下記式(ix)で表されるものを用いることができる。 Moreover, as an aromatic alcohol alkoxylate, what is represented, for example by a following formula (ix) can be used.
Figure JPOXMLDOC01-appb-C000022
(なお、式(ix)中、m7は1~5の整数を示し、n7は1~120の整数を示す。)
Figure JPOXMLDOC01-appb-C000022
(In the formula (ix), m7 represents an integer of 1 to 5, and n7 represents an integer of 1 to 120.)
 また、ノニオン界面活性剤として、下記(x)式で表される高分子化合物を用いることができる。 Further, as the nonionic surfactant, a polymer compound represented by the following formula (x) can be used.
Figure JPOXMLDOC01-appb-C000023
(なお、式(x)中、Rは、炭素数5~30の高級アルコールの残基、炭素数1~30のアルキル基を有するアルキルフェノールの残基、炭素数1~30のアルキル基を有するアルキルナフトールの残基、炭素数3~25の脂肪酸アミドの残基、炭素数2~5のアルキルアミンの残基、又は水酸基を示す。また、R及びRは、水素原子又はメチル基を示す。また、m及びnは、1~100の整数を示す。)
Figure JPOXMLDOC01-appb-C000023
(In the formula (x), R 1 has a higher alcohol residue having 5 to 30 carbon atoms, an alkylphenol residue having an alkyl group having 1 to 30 carbon atoms, or an alkyl group having 1 to 30 carbon atoms. A residue of alkyl naphthol, a residue of fatty acid amide having 3 to 25 carbon atoms, a residue of alkyl amine having 2 to 5 carbon atoms, or a hydroxyl group, and R 2 and R 3 are each a hydrogen atom or a methyl group. M and n are integers of 1 to 100.)
 (5)塩化物イオン
 さらに、電解液には、塩化物イオンを含有させることができる。塩化物イオンは、上述した添加剤やノニオン界面活性剤と共に、析出する銅粉の形状制御に寄与する。このように電解液中に塩化物イオンを含有させることによって、より効果的に、平板状の面に対して垂直方向への成長を抑えた、平滑な面を有する銅粉を製造することができる。
(5) Chloride ions Furthermore, the electrolyte solution can contain chloride ions. Chloride ions contribute to the shape control of the precipitated copper powder together with the above-described additives and nonionic surfactants. Thus, by containing chloride ions in the electrolytic solution, it is possible to more effectively produce a copper powder having a smooth surface that suppresses growth in a direction perpendicular to the flat surface. .
 塩化物イオンとしては、塩酸、塩化ナトリウム等の塩化物イオンを供給する化合物(塩化物イオン源)を電解液中に添加することによって含有させることができる。電解液中の塩化物イオン濃度としては、特に限定されないが、1mg/L~500mg/L程度とすることができる。 As the chloride ions, compounds that supply chloride ions such as hydrochloric acid and sodium chloride (chloride ion source) can be added to the electrolyte solution. The chloride ion concentration in the electrolytic solution is not particularly limited, but can be about 1 mg / L to 500 mg / L.
 第1の実施形態においては、例えば、上述したような組成の電解液を用いて電解することによって陰極上に銅粉を析出生成させて樹枝状銅粉を製造する。電解方法としては、公知の方法を用いることができる。例えば、電流密度としては、硫酸酸性の電解液を用いて電解するにあたっては5A/dm~30A/dmの範囲とすることが好ましく、電解液を攪拌しながら通電させる。また、電解液の液温(浴温)としては、例えば20℃~60℃程度とすることができる。 In the first embodiment, for example, electrolysis is performed using the electrolytic solution having the composition as described above, whereby copper powder is deposited on the cathode to produce dendritic copper powder. As the electrolysis method, a known method can be used. For example, the current density is preferably in the range of 5 A / dm 2 to 30 A / dm 2 in electrolysis using a sulfuric acid electrolytic solution, and the electrolytic solution is energized while stirring. The liquid temperature (bath temperature) of the electrolytic solution can be, for example, about 20 ° C. to 60 ° C.
  <2-1-2.Niの被覆方法(Niコート銅粉の製造)>
 第1の実施形態に係るNiコート銅粉は、上述した電解法により作製した樹枝状銅粉の表面に、例えば、無電解めっき法によりNiめっき液(無電解Niめっき液)を用いてNi又はNi合金を被覆することにより製造することができる。
<2-1-2. Ni Coating Method (Production of Ni Coated Copper Powder)>
The Ni-coated copper powder according to the first embodiment is formed on the surface of the dendritic copper powder prepared by the above-described electrolytic method using, for example, Ni or a Ni plating solution (electroless Ni plating solution) by an electroless plating method. It can be manufactured by coating a Ni alloy.
 樹枝状銅粉の表面に均一な厚みでNi又はNi合金を被覆するためには、Niめっきの前に洗浄を行うことが好ましく、樹枝状銅粉を洗浄液中に分散させ、攪拌しながら洗浄を行うことができる。洗浄処理としては、酸性溶液中で行うことが好ましく、洗浄後には、樹枝状銅粉のろ過、分離と、水洗とを適宜繰り返して、水中に樹枝状銅粉が分散した水スラリーとする。なお、ろ過、分離と、水洗については、公知の方法を用いればよい。 In order to coat Ni or Ni alloy with a uniform thickness on the surface of the dendritic copper powder, it is preferable to wash before the Ni plating, and the dendritic copper powder is dispersed in the cleaning liquid and washed while stirring. It can be carried out. The washing treatment is preferably performed in an acidic solution. After washing, filtration, separation and washing with water of the dendritic copper powder are repeated as appropriate to obtain a water slurry in which the dendritic copper powder is dispersed in water. In addition, what is necessary is just to use a well-known method about filtration, isolation | separation, and water washing.
 具体的に、無電解めっき法でNiコートする場合には、樹枝状銅粉を洗浄した後に得られた銅スラリーに無電解Niめっき液を加えるか、無電解Niめっき液中に銅スラリーを加え、均一に撹拌することで樹枝状銅粉の表面にNi又はNi合金をより均一に被覆させることができる。 Specifically, when Ni coating is performed by the electroless plating method, the electroless Ni plating solution is added to the copper slurry obtained after washing the dendritic copper powder, or the copper slurry is added to the electroless Ni plating solution. By uniformly stirring, the surface of the dendritic copper powder can be coated more uniformly with Ni or Ni alloy.
 無電解Niめっき液としては、特に限定されない。無電解Niめっき液は、めっき液中のNiイオンを還元剤によって還元してNi被覆を行うものであり、還元剤の種類としては、次亜リン酸塩、ホウ水素化合物、及びヒドラジン化合物が挙げられる。 The electroless Ni plating solution is not particularly limited. The electroless Ni plating solution performs Ni coating by reducing Ni ions in the plating solution with a reducing agent. Examples of the reducing agent include hypophosphites, borohydrides, and hydrazine compounds. It is done.
 具体的には、次亜リン酸塩としては、例えば、次亜リン酸カリウム、次亜リン酸ナトリウム等の次亜リン酸塩、亜リン酸カリウム、亜リン酸ナトリウム等の亜リン酸塩が挙げられる。 Specifically, examples of hypophosphites include hypophosphites such as potassium hypophosphite and sodium hypophosphite, and phosphites such as potassium phosphite and sodium phosphite. Can be mentioned.
 また、ホウ水素化合物としては、例えば、ジメチルヘキサボラン、ジメチルアミンボラン(DMAB)、ジエチルアミンボラン、モルホリンボラン、ピリジンアミンボラン、ピペリジンボラン、エチレンジアミンボラン、エチレンジアミンビスボラン、t-ブチルアミンボラン、イミダゾールボラン、メトキシエチルアミンボラン、及びホウ水素化ナトリウム等が挙げられる。 Examples of the borohydride compound include dimethylhexaborane, dimethylamineborane (DMAB), diethylamineborane, morpholineborane, pyridineamineborane, piperidineborane, ethylenediamineborane, ethylenediaminebisborane, t-butylamineborane, imidazoleborane, methoxy Examples include ethylamine borane and sodium borohydride.
 また、ヒドラジン化合物としては、ヒドラジン及びその水和物や、例えば硫酸ヒドラジン、塩酸ヒドラジン等のヒドラジン塩や、ピラゾール類、トリアゾール類、ヒドラジド類等のヒドラジン誘導体等を用いることができる。これらのヒドラジン誘導体の中で、ピラゾール類としては、ピラゾールの他に、3,5-ジメチルピラゾール、3-メチル-5-ピラゾロン等のピラゾール誘導体を用いることができる。また、トリアゾール類としては、4-アミノ-1,2,4-トリアゾール、1,2,3-トリアゾール等を用いることができる。また、ヒドラジド類としては、アジピン酸ヒドラジド、マレイン酸ヒドラジド、カルボヒドラジド等を用いることができる。また、ヒドラジン類としては、特に、硫酸ヒドラジン、塩酸ヒドラジン、アジピン酸ヒドラジド、マレイン酸ヒドラジド、カルボヒドラジド等を用いることができる。 As the hydrazine compound, hydrazine and hydrates thereof, hydrazine salts such as hydrazine sulfate and hydrazine hydrochloride, hydrazine derivatives such as pyrazoles, triazoles and hydrazides, and the like can be used. Among these hydrazine derivatives, pyrazoles such as 3,5-dimethylpyrazole and 3-methyl-5-pyrazolone can be used in addition to pyrazole. Further, as triazoles, 4-amino-1,2,4-triazole, 1,2,3-triazole, and the like can be used. As hydrazides, adipic hydrazide, maleic hydrazide, carbohydrazide, and the like can be used. As hydrazines, hydrazine sulfate, hydrazine hydrochloride, adipic hydrazide, maleic hydrazide, carbohydrazide, and the like can be used.
 ニッケル源としては、硫酸ニッケル、塩化ニッケル、酢酸ニッケル、スルファミン酸ニッケル等のニッケル塩が挙げられる。 Nickel sources include nickel salts such as nickel sulfate, nickel chloride, nickel acetate and nickel sulfamate.
 また、めっき液には、錯化剤、pH緩衝剤、pH調整剤を含有させることができる。 In addition, the plating solution can contain a complexing agent, a pH buffering agent, and a pH adjusting agent.
 具体的に、錯化剤としては、公知の錯化剤を使用することができる。例えば、グリシン等のアミノ酸、クエン酸ナトリウムやクエン酸アンモニウム等のクエン酸塩、乳酸、シュウ酸、マロン酸、リンゴ酸、酒石酸、アスパラギン酸、グルタミン酸、グルコン酸等のナトリウム塩又はアンモニウム塩、アンモニア等が挙げられる。 Specifically, a known complexing agent can be used as the complexing agent. For example, amino acids such as glycine, citrates such as sodium citrate and ammonium citrate, lactic acid, oxalic acid, malonic acid, malic acid, tartaric acid, aspartic acid, glutamic acid, gluconic acid, sodium salts or ammonium salts, ammonia, etc. Is mentioned.
 pH緩衝剤としては、公知の錯化剤を使用することができる。例えば、塩化アンモニウム、硫酸アンモニウム、ホウ酸、酢酸ナトリウム等が挙げられる。 A known complexing agent can be used as the pH buffering agent. For example, ammonium chloride, ammonium sulfate, boric acid, sodium acetate and the like can be mentioned.
 pH調整剤としては、公知の錯化剤を使用することができる。例えば、酸やアルカリの化合物を使用することができ、例えば、アンモニア、水酸化ナトリウム等のアルカリ金属の水酸化物,炭酸ニッケル、硫酸、塩酸等が挙げられる。なお、アンモニアを用いる場合、アンモニア水として供給することができる。 A known complexing agent can be used as the pH adjuster. For example, an acid or alkali compound can be used, and examples thereof include alkali metal hydroxides such as ammonia and sodium hydroxide, nickel carbonate, sulfuric acid, and hydrochloric acid. In addition, when using ammonia, it can supply as ammonia water.
 また、さらに必要に応じて、消泡剤や分散剤を使用してもよい。 Further, if necessary, an antifoaming agent or a dispersing agent may be used.
 さらに、めっき液の浸透性を向上させるために、界面活性剤を含有させることができる。界面活性剤としては、ノニオン性、カチオン性、アニオン性、両性等の界面活性剤のいずれを用いることができ、1種単独又は2種以上併せて用いることができる。 Furthermore, in order to improve the permeability of the plating solution, a surfactant can be contained. As the surfactant, any of nonionic, cationic, anionic and amphoteric surfactants can be used, and one kind can be used alone, or two or more kinds can be used in combination.
 ここで、無電解めっきによるNiコートでは、無電解Niめっき液中の還元剤である次亜リン酸浴塩、ホウ水素化合物、及びヒドラジン化合物によって析出するNi被膜が異なる。具体的に、還元剤として次亜リン酸浴塩を用いた場合、還元反応中にリンが被膜中に含有されるため、Ni-P合金被膜が形成される。また、還元剤としてホウ水素化合物を用いた場合、還元反応中にボロンが被膜中に含有されるため、Ni-B合金被膜が形成される。また、還元剤としてヒドラジン化合物を用いた場合は、不純物の少ない高純度なNi被膜が形成される。 Here, in Ni coating by electroless plating, the Ni coating deposited differs depending on the hypophosphorous acid bath salt, borohydride compound, and hydrazine compound which are reducing agents in the electroless Ni plating solution. Specifically, when hypophosphorous acid bath salt is used as the reducing agent, a Ni—P alloy film is formed because phosphorus is contained in the film during the reduction reaction. Further, when a borohydride compound is used as the reducing agent, since the boron is contained in the coating during the reduction reaction, a Ni—B alloy coating is formed. Further, when a hydrazine compound is used as the reducing agent, a high-purity Ni film with few impurities is formed.
 さらに、形成するNi被膜中にその他の元素が含有されるようにすることで、すなわち、銅粉表面に「Ni合金」の被膜を形成させることで、そのNiコート銅粉を用いて、耐熱性、耐食性にも優れた導電性ペースト等を実現することができる。 Furthermore, by making the Ni film to be formed contain other elements, that is, by forming a “Ni alloy” film on the surface of the copper powder, the Ni-coated copper powder can be used for heat resistance. In addition, a conductive paste having excellent corrosion resistance can be realized.
 具体的に、Ni被膜中に含有させる元素としては、つまりNi合金を構成するNi以外の元素としては、周期表の第6族から第14族の元素が挙げられ、その中でも、亜鉛、パラジウム、コバルト、ロジウム、鉄、白金、イリジウム、タングステン、モリブデン、クロム、及びスズ等が挙げられる。特に、亜鉛、コバルト、タングステン、モリブデン、パラジウム、白金、及びスズから選ばれる1種類以上の元素が好ましく、これらの元素を含有するNi合金とすることで導電性の優れたNi合金被膜を形成することができる。 Specifically, as an element to be included in the Ni film, that is, as an element other than Ni constituting the Ni alloy, elements of Groups 6 to 14 of the periodic table can be mentioned, and among them, zinc, palladium, Examples include cobalt, rhodium, iron, platinum, iridium, tungsten, molybdenum, chromium, and tin. In particular, one or more elements selected from zinc, cobalt, tungsten, molybdenum, palladium, platinum, and tin are preferable, and a Ni alloy film having excellent conductivity is formed by using an Ni alloy containing these elements. be able to.
 これらNi合金を構成する元素の含有量は、導電性や分散性の観点から、Ni合金の質量100%に対して0.1質量%~20質量%であることが好ましく、1質量%~15質量%であることがより好ましく、2質量%~10質量%であることがさらに好ましい。なお、上述した還元剤の種類によってそれぞれ形成されるNi-P合金やNi-B合金についても、そのリンやボロンの含有量は、同じくNi合金被膜の質量100%に対して0.1質量%~20質量%であることが好ましく、1質量%~15質量%であることがより好ましく、2質量%~10質量%であることがさらに好ましい。 The content of the elements constituting these Ni alloys is preferably 0.1% by mass to 20% by mass with respect to 100% by mass of the Ni alloy, from the viewpoint of conductivity and dispersibility, and preferably 1% by mass to 15%. More preferably, it is more preferably 2% by mass to 10% by mass. In addition, regarding the Ni—P alloy and Ni—B alloy respectively formed according to the kind of the reducing agent described above, the content of phosphorus and boron is also 0.1% by mass with respect to 100% by mass of the Ni alloy film. It is preferably ˜20% by mass, more preferably 1% by mass to 15% by mass, and further preferably 2% by mass to 10% by mass.
 Ni合金としたときにNi以外の元素の含有量が多くなりすぎると、導電性が低下する原因となることから20質量%以下とすることが好ましい。一方で、含有量が0.1質量%未満では、それらの元素をNiと共に含有させてNi合金としても耐熱性や耐食性を向上させる効果が十分に得られない。なお、Ni合金中の元素の含有量は、例えば高周波誘導結合プラズマ(ICP)発光分光分析法により、Niコート銅粉を構成する各元素の含有量を換算することによって測定できる。また、エネルギー分散型X線分光(EDX)法やオージェ電子分光(AES)法によって、Niコート銅粉の断面等からNi合金被膜中の各元素の定量分析することもできる。 When the Ni alloy is used, if the content of elements other than Ni is too large, the conductivity is lowered, so that the content is preferably 20% by mass or less. On the other hand, if the content is less than 0.1% by mass, the effect of improving the heat resistance and corrosion resistance cannot be sufficiently obtained even if these elements are contained together with Ni to form a Ni alloy. In addition, content of the element in Ni alloy can be measured by converting content of each element which comprises Ni coat | court copper powder, for example by a high frequency inductively coupled plasma (ICP) emission spectroscopy analysis method. In addition, each element in the Ni alloy coating can be quantitatively analyzed from the cross section of the Ni-coated copper powder or the like by energy dispersive X-ray spectroscopy (EDX) method or Auger electron spectroscopy (AES) method.
 Ni合金の被膜を形成する方法としては、上述した無電解Niめっき液にコバルト、亜鉛、タングステン、モリブデン、パラジウム、白金、及びスズ等のイオンを添加し、そのめっき液を用いた無電解めっきにより形成することができる。コバルト、亜鉛、タングステン、モリブデン、パラジウム、白金、及びスズ等のイオン源としては、可溶性となるそれぞれの金属塩であれば特に限定されない。 As a method for forming a Ni alloy coating, ions such as cobalt, zinc, tungsten, molybdenum, palladium, platinum, and tin are added to the above-described electroless Ni plating solution, and electroless plating using the plating solution is performed. Can be formed. The ion source such as cobalt, zinc, tungsten, molybdenum, palladium, platinum, and tin is not particularly limited as long as it is a soluble metal salt.
 具体的に、コバルトイオン源としては、コバルト化合物としてめっき液に可溶性のものであって、所定の濃度の水溶液が得られるものであれば特に限定されずに使用できる。例えば、硫酸コバルト、塩化コバルト、スルファミン酸コバルト等が挙げられる。これらのコバルト化合物は、1種単独又は2種以上を混合して用いることができる。 Specifically, the cobalt ion source can be used without particular limitation as long as it is soluble in a plating solution as a cobalt compound and can obtain an aqueous solution having a predetermined concentration. Examples thereof include cobalt sulfate, cobalt chloride, and cobalt sulfamate. These cobalt compounds can be used individually by 1 type or in mixture of 2 or more types.
 亜鉛イオン源としては、亜鉛化合物としてめっき液に可溶性のものであって、所定の濃度の水溶液が得られるものであれば特に限定されずに使用できる。例えば、塩化亜鉛、スルファミン酸亜鉛、硫酸亜鉛、酢酸亜鉛等が挙げられる。これらの亜鉛化合物は、1種単独又は2種以上を混合して用いることができる。 The zinc ion source is not particularly limited as long as it is soluble in the plating solution as a zinc compound and can obtain an aqueous solution having a predetermined concentration. For example, zinc chloride, zinc sulfamate, zinc sulfate, zinc acetate and the like can be mentioned. These zinc compounds can be used singly or in combination of two or more.
 タングステンイオン源としては、タングステン化合物としてめっき液に可溶性のものであって、所定の濃度の水溶液が得られるものであれば特に限定されずに使用できる。例えば、タングステン酸ナトリウム、タングステン酸カリウム、タングステン酸アンモニウム等が挙げられる。これらのタングステン化合物は、1種単独又は2種以上を混合して用いることができる。 The tungsten ion source is not particularly limited as long as it is soluble in the plating solution as a tungsten compound and can obtain an aqueous solution having a predetermined concentration. Examples thereof include sodium tungstate, potassium tungstate, and ammonium tungstate. These tungsten compounds can be used singly or in combination of two or more.
 モリブデンイオン源としては、モリブデン化合物としてめっき液に可溶性のものであって、所定の濃度の水溶液が得られるものであれば特に限定されずに使用できる。例えば、三酸化モリブデン、モリブデン酸ナトリウム、モリブデン酸二アンモニウム、モリブデン酸カルシウム、モリブデン酸、リンモリブデン酸、モリブデン酸グルコン酸錯体が挙げられる。これらのモリブデン化合物は、1種単独又は2種以上を混合して用いることができる。 The molybdenum ion source is not particularly limited as long as it is soluble in the plating solution as a molybdenum compound and can obtain an aqueous solution having a predetermined concentration. Examples thereof include molybdenum trioxide, sodium molybdate, diammonium molybdate, calcium molybdate, molybdic acid, phosphomolybdic acid, and molybdate gluconic acid complex. These molybdenum compounds can be used singly or in combination of two or more.
 パラジウムイオン源としては、パラジウム化合物としてめっき液に可溶性のものであって、所定の濃度の水溶液が得られるものであれば特に限定されずに使用できる。例えば、硫酸パラジウム、塩化パラジウム、酢酸パラジウム、ジクロロジエチンレジアミンパラジウム、テトラアンミンパラジウムジクロライド等の水溶性パラジウム化合物を用いることができる。また、パラジウム化合物として、パラジウムを溶液化した、いわゆるパラジウム溶液を使用することもできる。パラジウム溶液としては、例えば、ジクロロジエチレンジアミンパラジウム溶液やテトラアンミンパラジウムジクロライド溶液等を使用することができる。これらのパラジウム化合物は、1種単独又は2種以上を混合して用いることができる。 The palladium ion source is not particularly limited as long as it is soluble in a plating solution as a palladium compound and can obtain an aqueous solution having a predetermined concentration. For example, water-soluble palladium compounds such as palladium sulfate, palladium chloride, palladium acetate, dichlorodiethine rediamine palladium, and tetraammine palladium dichloride can be used. Further, as the palladium compound, a so-called palladium solution in which palladium is made into a solution can also be used. As the palladium solution, for example, a dichlorodiethylenediamine palladium solution or a tetraammine palladium dichloride solution can be used. These palladium compounds can be used individually by 1 type or in mixture of 2 or more types.
 白金イオン源としては、白金化合物としてめっき液に可溶性のものであって、所定の濃度の水溶液が得られるものであれば特に限定されずに使用できる。例えば、塩化白金、塩化白金酸、塩化白金酸塩、水酸化白金酸、水酸化白金酸塩、ジニトロジアンミン白金錯塩、ジニトロスルフィト白金錯塩、テトラアンミン白金錯塩、ヘキサアンミン白金錯塩が挙げられる。白金化合物は、1種単独又は2種以上混合して用いることができる。 The platinum ion source is not particularly limited as long as it is soluble in a plating solution as a platinum compound and can obtain an aqueous solution having a predetermined concentration. For example, platinum chloride, chloroplatinic acid, chloroplatinic acid salt, hydraulic platinum acid, hydraulic platinum acid salt, dinitrodiammine platinum complex salt, dinitrosulfitoplatinum complex salt, tetraammine platinum complex salt, hexaammine platinum complex salt. A platinum compound can be used individually by 1 type or in mixture of 2 or more types.
 スズイオン源としては、スズ化合物としてめっき液に可溶性のものであって、所定の濃度の水溶液が得られるものであれば特に限定されずに使用できる。例えば、塩化第一スズ、塩化第二スズ、硫酸第一スズ、硫酸第二スズ、ピロ燐酸スズ等のスズの無機酸塩やクエン酸第一スズ、クエン酸第二スズ、シュウ酸第一スズ、シュウ酸第二スズ等のスズのカルボン酸塩やメタンスルホン酸スズ、1-エタンスルホン酸スズ、2-エタンスルホン酸スズ、1-プロパンスルホン酸スズ、3-プロパンスルホン酸スズ等のスズのアルカンスルホン酸塩やメタノールスルホン酸スズ、ヒドロキシエタン-1-スルホン酸スズ、1-ヒドロキシプロパン-1-スルホン酸スズ、ヒドロキシエタン-2-スルホン酸スズ、1-ヒドロキシプロパン-3-スルホン酸スズ等のアルカノールスルホン酸塩、水酸化第一スズ、水酸化第二スズ等のスズの水酸化物、メタスズ酸等が挙げられる。 The tin ion source is not particularly limited as long as it is soluble in a plating solution as a tin compound and can obtain an aqueous solution having a predetermined concentration. For example, stannous chloride, stannic chloride, stannous sulfate, stannic sulfate, stannous pyrophosphate, and other inorganic acid salts of tin, stannous citrate, stannous citrate, stannous oxalate Of tin carboxylates such as stannic oxalate, tin methanesulfonate, tin 1-ethanesulfonate, tin 2-ethanesulfonate, tin 1-propanesulfonate, tin 3-propanesulfonate Alkane sulfonate, tin methanol sulfonate, tin hydroxyethane-1-sulfonate, tin 1-hydroxypropane-1-sulfonate, tin hydroxyethane-2-sulfonate, tin 1-hydroxypropane-3-sulfonate, etc. Alkanol sulfonates, tin hydroxides such as stannous hydroxide and stannic hydroxide, and metastannic acid.
 なお、Ni合金被膜を形成する方法としては、上述した無電解めっき法による方法に限定されない。例えば、Niを被覆する前の樹枝状銅粉中にNi合金を構成するNi以外の元素を含有させておき、Niのみからなる被膜(Ni被膜)を形成させた後に、あらかじめ銅粉に含有させておいた元素をそのNi被膜に拡散させることによって、Ni合金被膜を形成させることもできる。 The method for forming the Ni alloy film is not limited to the above-described electroless plating method. For example, an element other than Ni constituting the Ni alloy is included in the dendritic copper powder before coating with Ni, and after forming a film made only of Ni (Ni film), it is added to the copper powder in advance. A Ni alloy film can also be formed by diffusing the elements previously deposited into the Ni film.
 <2-2.第2の実施形態に係るNiコート銅粉の製造方法>
 第2の実施形態に係るNiコート銅粉は、表面にNi又はNi合金が被覆された銅粒子が集合して、複数の枝を有する樹枝状の形状を構成したNiコート銅粉である。そして、表面にNi又はNi合金が被覆された銅粒子は、短軸平均径が0.2μm~0.5μm、かつ、長軸平均径が0.5μm~2.0μmの範囲の大きさの楕円体であり、その銅粒子が集合して構成された当該Niコート銅粉は、平均粒子径(D50)が5.0μm~20μmである。また、樹枝状の形状を構成する枝部分の平均太さとしては、0.5μm~2.0μmであることが好ましい。
<2-2. Method for Producing Ni Coated Copper Powder According to Second Embodiment>
The Ni-coated copper powder according to the second embodiment is a Ni-coated copper powder in which copper particles whose surfaces are coated with Ni or Ni alloy are assembled to form a dendritic shape having a plurality of branches. The copper particles whose surfaces are coated with Ni or Ni alloy have an elliptical size with a minor axis average diameter of 0.2 μm to 0.5 μm and a major axis average diameter of 0.5 μm to 2.0 μm. The Ni-coated copper powder, which is a body and is constituted by aggregating the copper particles, has an average particle diameter (D50) of 5.0 to 20 μm. Further, the average thickness of the branch portions constituting the dendritic shape is preferably 0.5 μm to 2.0 μm.
  <2-2-1.銅粉の製造方法>
 第2の実施形態に係るNiコート銅粉(樹枝状Niコート銅粉)は、上述したように、樹枝状銅粉の表面にNi又はNi合金が被覆されてなり、その樹枝状銅粉は、例えば、銅イオンを含有する硫酸酸性溶液を電解液として用いて所定の電解法により製造することができる。
<2-2-1. Manufacturing method of copper powder>
As described above, the Ni-coated copper powder (dendritic Ni-coated copper powder) according to the second embodiment is obtained by coating the surface of the dendritic copper powder with Ni or a Ni alloy. For example, it can be manufactured by a predetermined electrolytic method using a sulfuric acid acidic solution containing copper ions as an electrolytic solution.
 電解に際しては、第1の実施形態における電解処理と同様に、金属銅を陽極とし、ステンレス板やチタン板等を陰極として設置した電解槽中に、銅イオンを含有する硫酸酸性の電解液を収容し、その電解液に所定の電流密度で直流電流を通電することによって電解処理を施す。これにより、通電に伴って陰極上に樹枝状銅粉を析出(電析)させることができる。特に、第2の実施形態においては、銅イオン源となる水溶性銅塩を含有する硫酸酸性の電解液に、添加剤としてポリエーテル化合物を添加して電解するようにし、これにより、電解により得られた粒状等の銅粉をボール等の媒体を用いて機械的に変形加工等することなく、その電解のみによって、楕円体の銅粒子が集合して樹枝状形状を呈した樹枝状銅粉を陰極表面に析出させることができる。 In the case of electrolysis, a sulfuric acid-containing electrolytic solution containing copper ions is contained in an electrolytic cell in which metallic copper is used as an anode and a stainless steel plate or a titanium plate is used as a cathode, as in the electrolytic treatment in the first embodiment. Then, electrolytic treatment is performed by passing a direct current through the electrolytic solution at a predetermined current density. Thereby, a dendritic copper powder can be deposited (electrodeposition) on a cathode with electricity supply. In particular, in the second embodiment, a sulfuric acid acidic electrolytic solution containing a water-soluble copper salt serving as a copper ion source is electrolyzed by adding a polyether compound as an additive. Without using a medium such as a ball to mechanically deform the obtained granular copper powder, the ellipsoidal copper particles gathered into a dendritic shape by aggregation only by electrolysis. It can be deposited on the cathode surface.
 すなわち、電解液としては、例えば、水溶性銅塩(銅イオン)と、硫酸と、ポリエーテル化合物とを含有するものを用いる。また、電解液には、さらに塩化物イオンを含有させることが好ましい。ここで、電解液中に含まれる水溶性銅塩、硫酸は、第1の実施形態に係る製造方法における態様と同様であり、詳細な説明を省略する。 That is, as the electrolytic solution, for example, an electrolytic solution containing a water-soluble copper salt (copper ion), sulfuric acid, and a polyether compound is used. Further, it is preferable that the electrolytic solution further contains chloride ions. Here, the water-soluble copper salt and sulfuric acid contained in the electrolytic solution are the same as those in the manufacturing method according to the first embodiment, and detailed description thereof is omitted.
 第2の実施形態においては、電解液中に、添加剤としてポリエーテル化合物を用いる。このポリエーテル化合物が、後述する塩化物イオンと共に、析出する銅粉の形状制御に寄与し、陰極上に析出させる銅粉を、所定の短軸平均径及び長軸平均径を有する楕円体の銅粒子が集合して樹枝状の形状とした樹枝状銅粉とすることができる。 In the second embodiment, a polyether compound is used as an additive in the electrolytic solution. This polyether compound, together with chloride ions described later, contributes to shape control of the deposited copper powder, and the copper powder deposited on the cathode is an ellipsoidal copper having a predetermined minor axis average diameter and major axis average diameter. A dendritic copper powder in which particles are aggregated into a dendritic shape can be obtained.
 具体的に、ポリエーテル化合物としては、特に限定されないが、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレンイミン、プルロニック型界面活性剤、テトロニック型界面活性剤、ポリオキシエチレングリコール・グリセリンエーテル、ポリオキシエチレングリコール・ジアルキルエーテル、ポリオキシエチレンポリオキシプロピレングリコール・アルキルエーテル、芳香族アルコールアルコキシレート等の高分子化合物等が挙げられる。 Specifically, the polyether compound is not particularly limited. For example, polyethylene glycol, polypropylene glycol, polyethyleneimine, pluronic surfactant, tetronic surfactant, polyoxyethylene glycol / glycerin ether, polyoxyethylene Examples thereof include polymer compounds such as glycol dialkyl ether, polyoxyethylene polyoxypropylene glycol alkyl ether, and aromatic alcohol alkoxylate.
 また、ポリエーテル化合物の数平均分子量としては、特に限定されないが、100~200,000であることが好ましく、200~15,000であることがより好ましく、1,000~10,000であることがさらに好ましい。数平均分子量が100未満であると、樹枝状を呈しない微細な電解銅粉が析出される可能性がある。一方で、数平均分子量が200,000を超えると、平均粒子径の大きな電解銅粉が析出して、比表面積が0.6m/g未満の樹枝状銅粉しか得られない可能性がある。なお、数平均分子量は、テトラヒドロフラン(THF)を溶媒とするゲル浸透クロマトグラフィー(GPC)によって求めたポリスチレン換算の分子量とする。 Further, the number average molecular weight of the polyether compound is not particularly limited, but is preferably 100 to 200,000, more preferably 200 to 15,000, and 1,000 to 10,000. Is more preferable. If the number average molecular weight is less than 100, fine electrolytic copper powder that does not have a dendritic shape may be deposited. On the other hand, when the number average molecular weight exceeds 200,000, electrolytic copper powder having a large average particle size is precipitated, and only dendritic copper powder having a specific surface area of less than 0.6 m 2 / g may be obtained. . The number average molecular weight is a molecular weight in terms of polystyrene determined by gel permeation chromatography (GPC) using tetrahydrofuran (THF) as a solvent.
 なお、ポリエーテル化合物としては、1種単独で添加してもよく、2種類以上を併用して添加してもよい。また、ポリエーテル化合物の添加量としては、電解液中における濃度が0.1mg/L~5,000mg/L程度の範囲となる量とすることが好ましい。 In addition, as a polyether compound, you may add individually by 1 type and may add it in combination of 2 or more types. Further, the addition amount of the polyether compound is preferably such that the concentration in the electrolytic solution is in the range of about 0.1 mg / L to 5,000 mg / L.
 塩化物イオンとしては、塩酸、塩化ナトリウム等の塩化物イオンを供給する化合物(塩化物イオン源)を電解液中に添加することによって含有させることができる。電解液中に塩化物イオンを含有させることによって、析出する銅粉の形状をより効果的に制御することができる。電解液中の塩化物イオン濃度としては、1mg/L~1000mg/L程度、好ましくは10mg/L~800mg/L程度、より好ましくは20mg/L~500mg/L程度とすることができる。 As the chloride ions, compounds that supply chloride ions such as hydrochloric acid and sodium chloride (chloride ion source) can be added to the electrolyte solution. By containing chloride ions in the electrolytic solution, the shape of the deposited copper powder can be controlled more effectively. The chloride ion concentration in the electrolytic solution can be about 1 mg / L to 1000 mg / L, preferably about 10 mg / L to 800 mg / L, more preferably about 20 mg / L to 500 mg / L.
 第2の実施形態においては、例えば、上述したような組成の電解液を用いて電解することによって陰極上に銅粉を析出生成させて樹枝状銅粉を製造する。電解方法としては、公知の方法を用いることができる。例えば、電流密度としては、硫酸酸性の電解液を用いて電解するにあたっては5A/dm~30A/dmの範囲とすることが好ましく、電解液を攪拌しながら通電させる。また、電解液の液温(浴温)としては、例えば20℃~60℃程度とすることができる。 In the second embodiment, for example, electrolysis is performed using the electrolytic solution having the composition as described above, whereby copper powder is deposited on the cathode to produce dendritic copper powder. As the electrolysis method, a known method can be used. For example, the current density is preferably in the range of 5 A / dm 2 to 30 A / dm 2 in electrolysis using a sulfuric acid electrolytic solution, and the electrolytic solution is energized while stirring. The liquid temperature (bath temperature) of the electrolytic solution can be, for example, about 20 ° C. to 60 ° C.
  <2-2-2.Niの被覆方法(Niコート銅粉の製造)>
 第2の実施形態に係るNiコート銅粉は、上述した電解法により作製した樹枝状銅粉の表面に、例えば、無電解めっき法によりNiめっき液(無電解Niめっき液)を用いてNi又はNi合金を被覆することにより製造することができる。
<2-2-2. Ni Coating Method (Production of Ni Coated Copper Powder)>
The Ni-coated copper powder according to the second embodiment is obtained by using Ni plating solution (electroless Ni plating solution) by using an electroless plating method on the surface of the dendritic copper powder produced by the above-described electrolysis method. It can be manufactured by coating a Ni alloy.
 なお、具体的な無電解めっき方法や、その無電解Niめっき液の組成(めっき液中の成分)、無電解めっきの行う前の洗浄処理等の前処理については、第1の実施形態における製造方法の態様と同様であり、詳細な説明は省略する。 The specific electroless plating method, the composition of the electroless Ni plating solution (components in the plating solution), and pretreatment such as cleaning treatment before electroless plating are performed in the first embodiment. The method is the same as that of the method, and detailed description is omitted.
 また、第1の実施形態におけるNi被膜の形成と同様に、形成するNi被膜中にその他の元素が含有されるようにすることが好ましい。銅粉表面にNi合金の被膜を形成させることで、そのNiコート銅粉を用いて、耐熱性、耐食性にも優れた導電性ペースト等を実現することができる。 Moreover, it is preferable that other elements are contained in the Ni film to be formed, similarly to the formation of the Ni film in the first embodiment. By forming a Ni alloy film on the surface of the copper powder, it is possible to realize a conductive paste having excellent heat resistance and corrosion resistance using the Ni-coated copper powder.
 具体的に、Ni被膜中に含有させる元素としては、つまりNi合金を構成するNi以外の元素としては、周期表の第6族から第14族の元素が挙げられ、その中でも、亜鉛、パラジウム、コバルト、ロジウム、鉄、白金、イリジウム、タングステン、モリブデン、クロム、及びスズ等が挙げられる。特に、亜鉛、コバルト、タングステン、モリブデン、パラジウム、白金、及びスズから選ばれる1種類以上の元素が好ましく、これらの元素を含有するNi合金とすることで導電性の優れたNi合金被膜を形成することができる。 Specifically, as an element to be included in the Ni film, that is, as an element other than Ni constituting the Ni alloy, elements of Groups 6 to 14 of the periodic table can be mentioned, and among them, zinc, palladium, Examples include cobalt, rhodium, iron, platinum, iridium, tungsten, molybdenum, chromium, and tin. In particular, one or more elements selected from zinc, cobalt, tungsten, molybdenum, palladium, platinum, and tin are preferable, and a Ni alloy film having excellent conductivity is formed by using an Ni alloy containing these elements. be able to.
 なお、Ni合金被膜の形成方法や、Ni合金中のNi以外の元素の含有量、そのNi以外の元素の元素源等については、第1の実施形態における製造方法の態様と同様であり、詳細な説明は省略する。 In addition, the formation method of the Ni alloy film, the content of elements other than Ni in the Ni alloy, the element source of the elements other than Ni, and the like are the same as the aspects of the manufacturing method in the first embodiment. The detailed explanation is omitted.
 <2-3.第3の実施形態に係るNiコート銅粉の製造方法>
 第3の実施形態に係るNiコート銅粉は、表面にNi又はNi合金が被覆された銅粒子が集合して、直線的に成長した主幹とその主幹から分かれた複数の枝を有する樹枝状の形状を構成したNiコート銅粉である。そして、表面にNi又はNi合金が被覆された銅粒子は、断面平均厚さが0.2μm~5.0μmの平板状であり、その銅粒子が集合して構成された当該Niコート銅粉は、平均粒子径(D50)が1.0μm~100μmである。
<2-3. Manufacturing Method of Ni Coated Copper Powder According to Third Embodiment>
The Ni-coated copper powder according to the third embodiment has a dendritic shape in which copper particles whose surfaces are coated with Ni or a Ni alloy are aggregated and have a main trunk that grows linearly and a plurality of branches separated from the main trunk. It is Ni coat copper powder which constituted the shape. The copper particles whose surfaces are coated with Ni or Ni alloy are in the form of a flat plate having a cross-sectional average thickness of 0.2 μm to 5.0 μm, and the Ni coated copper powder formed by assembling the copper particles is The average particle diameter (D50) is 1.0 μm to 100 μm.
  <2-3-1.銅粉の製造方法>
 第3の実施形態に係るNiコート銅粉(樹枝状Niコート銅粉)は、上述したように、樹枝状銅粉の表面にNi又はNi合金が被覆されてなり、その樹枝状銅粉は、例えば、銅イオンを含有する硫酸酸性溶液を電解液として用いて所定の電解法により製造することができる。
<2-3-1. Manufacturing method of copper powder>
As described above, the Ni-coated copper powder (dendritic Ni-coated copper powder) according to the third embodiment is coated with Ni or a Ni alloy on the surface of the dendritic copper powder. For example, it can be manufactured by a predetermined electrolytic method using a sulfuric acid acidic solution containing copper ions as an electrolytic solution.
 電解に際しては、第1の実施形態における電解処理と同様に、金属銅を陽極とし、ステンレス板やチタン板等を陰極として設置した電解槽中に、銅イオンを含有する硫酸酸性の電解液を収容し、その電解液に所定の電流密度で直流電流を通電することによって電解処理を施す。これにより、通電に伴って陰極上に樹枝状銅粉を析出(電析)させることができる。特に、第3の実施形態においては、銅イオン源となる水溶性銅塩を含有する硫酸酸性の電解液に、添加剤としてアミン化合物を添加して電解するようにし、これにより、電解により得られた粒状等の銅粉をボール等の媒体を用いて機械的に変形加工等することなく、その電解のみによって、平板状の銅粒子が集合して樹枝状を形成した樹枝状銅粉を陰極表面に析出させることができる。 In the case of electrolysis, a sulfuric acid-containing electrolytic solution containing copper ions is contained in an electrolytic cell in which metallic copper is used as an anode and a stainless steel plate or a titanium plate is used as a cathode, as in the electrolytic treatment in the first embodiment. Then, electrolytic treatment is performed by passing a direct current through the electrolytic solution at a predetermined current density. Thereby, a dendritic copper powder can be deposited (electrodeposition) on a cathode with electricity supply. In particular, in the third embodiment, an amine compound is added as an additive to a sulfuric acid electrolytic solution containing a water-soluble copper salt serving as a copper ion source, and thus electrolysis is obtained. The copper powder in the form of particles is formed by dendritic copper powder that is formed by aggregation of flat copper particles only by electrolysis without mechanical deformation using a medium such as a ball. Can be deposited.
 すなわち、電解液としては、例えば、水溶性銅塩(銅イオン)と、硫酸と、アミン化合物とを含有するものを用いる。また、電解液には、さらに塩化物イオンを含有させることが好ましい。ここで、電解液中に含まれる水溶性銅塩、硫酸は、第1の実施形態に係る製造方法における態様と同様であり、詳細な説明を省略する。 That is, as the electrolytic solution, for example, an electrolytic solution containing a water-soluble copper salt (copper ion), sulfuric acid, and an amine compound is used. Further, it is preferable that the electrolytic solution further contains chloride ions. Here, the water-soluble copper salt and sulfuric acid contained in the electrolytic solution are the same as those in the manufacturing method according to the first embodiment, and detailed description thereof is omitted.
 第3の実施形態においては、電解液中に、添加剤としてアミン化合物を用いることができる。このアミン化合物が、後述する塩化物イオンと共に、析出する銅粉の形状制御に寄与し、陰極表面に析出させる銅粉を、所定の断面平均厚さの平板状の銅粒子から構成される、主幹とその主幹から分岐した枝とを有する樹枝状銅粉とすることができる。 In the third embodiment, an amine compound can be used as an additive in the electrolytic solution. This amine compound contributes to shape control of the copper powder deposited together with chloride ions to be described later, and the copper powder deposited on the cathode surface is composed of flat copper particles having a predetermined cross-sectional average thickness. And a dendritic copper powder having a branch branched from its main trunk.
 アミン化合物としては、1種単独で添加してもよく、2種類以上を併用して添加してもよい。また、アミン化合物類の添加量としては、電解液中における濃度が0.1mg/L~500mg/Lの範囲となる量とすることが好ましく、1mg/L~400mg/Lの範囲となる量とすることがより好ましい。 As the amine compound, one kind may be added alone, or two or more kinds may be added in combination. The amount of the amine compound added is preferably an amount such that the concentration in the electrolytic solution is in the range of 0.1 mg / L to 500 mg / L, and an amount in the range of 1 mg / L to 400 mg / L. More preferably.
 具体的に、アミン化合物としては、特に限定されないが、下記(1)式によって表すことができるフェナジン構造を有する化合物を用いることができる。さらに好ましくは、例えば、サフラニン(3,7-ジアミノ-2,8-ジメチル-5-フェニル-5-フェナジニウム・クロリド、C2019Cl、CAS番号:477-73-64)を用いることができる。 Specifically, the amine compound is not particularly limited, but a compound having a phenazine structure that can be represented by the following formula (1) can be used. More preferably, for example, safranine (3,7-diamino-2,8-dimethyl-5-phenyl-5-phenazinium chloride, C 20 H 19 N 4 Cl, CAS number: 477-73-64) is used. Can do.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 ここで、式(1)中において、R、R、R、R、R、R、R、Rは、それぞれ別個に、水素、ハロゲン、アミノ、OH、=O、CN、SCN、SH、COOH、COO塩、COOエステル、SOH、SO塩、SOエステル、ベンゼンスルホン酸、及びC1~C8アルキルからなる群から選択される基である。また、Rは、水素、ハロゲン、アミノ、OH、-O、CN、SCN、SH、COOH、COO塩、COOエステル、SOH、SO塩、SOエステル、ベンゼンスルホン酸、低級アルキル、及びアリールからなる群から選択される基である。また、Aは、ハライドアニオンである。 Here, in Formula (1), R 1 , R 2 , R 3 , R 4 , R 6 , R 7 , R 8 , R 9 are each independently hydrogen, halogen, amino, OH, ═O, It is a group selected from the group consisting of CN, SCN, SH, COOH, COO salt, COO ester, SO 3 H, SO 3 salt, SO 3 ester, benzenesulfonic acid, and C1-C8 alkyl. R 5 is hydrogen, halogen, amino, OH, —O, CN, SCN, SH, COOH, COO salt, COO ester, SO 3 H, SO 3 salt, SO 3 ester, benzenesulfonic acid, lower alkyl, And a group selected from the group consisting of aryl. A is a halide anion.
 塩化物イオンとしては、塩酸、塩化ナトリウム等の塩化物イオンを供給する化合物(塩化物イオン源)を電解液中に添加することによって含有させることができる。電解液中に塩化物イオンを含有させることによって、析出する銅粉の形状をより効果的に制御することができる。電解液中の塩化物イオン濃度としては、1mg/L~1000mg/L程度、好ましくは5mg/L~800mg/L程度、より好ましくは10mg/L~500mg/L程度とすることができる。 As the chloride ions, compounds that supply chloride ions such as hydrochloric acid and sodium chloride (chloride ion source) can be added to the electrolyte solution. By containing chloride ions in the electrolytic solution, the shape of the deposited copper powder can be controlled more effectively. The chloride ion concentration in the electrolytic solution can be about 1 mg / L to 1000 mg / L, preferably about 5 mg / L to 800 mg / L, more preferably about 10 mg / L to 500 mg / L.
 第3の実施形態においては、例えば、上述したような組成の電解液を用いて電解することによって陰極上に銅粉を析出生成させて樹枝状銅粉を製造する。電解方法としては、公知の方法を用いることができる。例えば、電流密度としては、硫酸酸性の電解液を用いて電解するにあたっては5A/dm~30A/dmの範囲とすることが好ましく、電解液を攪拌しながら通電させる。また、電解液の液温(浴温)としては、例えば20℃~60℃程度とすることができる。 In the third embodiment, for example, electrolysis is performed using the electrolytic solution having the composition as described above, whereby copper powder is deposited on the cathode to produce dendritic copper powder. As the electrolysis method, a known method can be used. For example, the current density is preferably in the range of 5 A / dm 2 to 30 A / dm 2 in electrolysis using a sulfuric acid electrolytic solution, and the electrolytic solution is energized while stirring. The liquid temperature (bath temperature) of the electrolytic solution can be, for example, about 20 ° C. to 60 ° C.
  <2-3-2.Niの被覆方法(Niコート銅粉の製造)>
 第3の実施形態に係るNiコート銅粉は、上述した電解法により作製した樹枝状銅粉の表面に、例えば、無電解めっき法によりNiめっき液(無電解Niめっき液)を用いてNi又はNi合金を被覆することにより製造することができる。
<2-3-2. Ni Coating Method (Production of Ni Coated Copper Powder)>
The Ni-coated copper powder according to the third embodiment is obtained by using Ni plating solution (electroless Ni plating solution) by an electroless plating method on the surface of the dendritic copper powder produced by the above-described electrolysis method. It can be manufactured by coating a Ni alloy.
 なお、具体的な無電解めっき方法や、その無電解Niめっき液の組成(めっき液中の成分)、無電解めっきの行う前の洗浄処理等の前処理については、第1の実施形態における製造方法の態様と同様であり、詳細な説明は省略する。 The specific electroless plating method, the composition of the electroless Ni plating solution (components in the plating solution), and pretreatment such as cleaning treatment before electroless plating are performed in the first embodiment. The method is the same as that of the method, and detailed description is omitted.
 また、第1の実施形態におけるNi被膜の形成と同様に、形成するNi被膜中にその他の元素が含有されるようにすることが好ましい。銅粉表面にNi合金の被膜を形成させることで、そのNiコート銅粉を用いて、耐熱性、耐食性にも優れた導電性ペースト等を実現することができる。 Moreover, it is preferable that other elements are contained in the Ni film to be formed, similarly to the formation of the Ni film in the first embodiment. By forming a Ni alloy film on the surface of the copper powder, it is possible to realize a conductive paste having excellent heat resistance and corrosion resistance using the Ni-coated copper powder.
 具体的に、Ni被膜中に含有させる元素としては、つまりNi合金を構成するNi以外の元素としては、周期表の第6族から第14族の元素が挙げられ、その中でも、亜鉛、パラジウム、コバルト、ロジウム、鉄、白金、イリジウム、タングステン、モリブデン、クロム、及びスズ等が挙げられる。特に、亜鉛、コバルト、タングステン、モリブデン、パラジウム、白金、及びスズから選ばれる1種類以上の元素が好ましく、これらの元素を含有するNi合金とすることで導電性の優れたNi合金被膜を形成することができる。 Specifically, as an element to be included in the Ni film, that is, as an element other than Ni constituting the Ni alloy, elements of Groups 6 to 14 of the periodic table can be mentioned, and among them, zinc, palladium, Examples include cobalt, rhodium, iron, platinum, iridium, tungsten, molybdenum, chromium, and tin. In particular, one or more elements selected from zinc, cobalt, tungsten, molybdenum, palladium, platinum, and tin are preferable, and a Ni alloy film having excellent conductivity is formed by using an Ni alloy containing these elements. be able to.
 なお、Ni合金被膜の形成方法や、Ni合金中のNi以外の元素の含有量、そのNi以外の元素の元素源等については、第1の実施形態における製造方法の態様と同様であり、詳細な説明は省略する。 In addition, the formation method of the Ni alloy film, the content of elements other than Ni in the Ni alloy, the element source of the elements other than Ni, and the like are the same as the aspects of the manufacturing method in the first embodiment. The detailed explanation is omitted.
 <2-4.第4の実施形態に係るNiコート銅粉の製造方法>
 第4の実施形態に係るNiコート銅粉は、表面にNi又はNi合金が被覆された個片状の銅粒子が複数集合して凝集体の形態を有してなるNiコート銅粉である。そして、Ni又はNi合金が被覆された銅粒子は、SEM観察により求められる平均長軸径が0.5μm~5.0μmで、断面平均厚さが0.02μm~1.0μmである平板状であり、その銅粒子が集合して構成された当該Niコート銅粉は、平均粒子径(D50)が1.0μm~30μmである。
<2-4. Method for Producing Ni Coated Copper Powder According to Fourth Embodiment>
The Ni-coated copper powder according to the fourth embodiment is a Ni-coated copper powder in which a plurality of piece-like copper particles whose surfaces are coated with Ni or a Ni alloy are aggregated to form an aggregate. The copper particles coated with Ni or Ni alloy have a flat plate shape with an average major axis diameter determined by SEM observation of 0.5 μm to 5.0 μm and an average cross-sectional thickness of 0.02 μm to 1.0 μm. The Ni-coated copper powder composed of the copper particles has an average particle diameter (D50) of 1.0 μm to 30 μm.
  <2-4-1.銅粉の製造方法>
 第4の実施形態に係るNiコート銅粉(平板状Niコート銅粒子凝集粉)は、上述したように、平板状銅粒子凝集粉の表面にNi又はNi合金が被覆されてなり、その平板状銅粒子凝集粉は、例えば、銅イオンを含有する硫酸酸性溶液を電解液として用いて所定の電解法により製造することができる。
<2-4-1. Manufacturing method of copper powder>
As described above, the Ni-coated copper powder (flat Ni-coated copper particle aggregated powder) according to the fourth embodiment is obtained by coating the surface of the tabular copper particle aggregated powder with Ni or a Ni alloy. The copper particle agglomerated powder can be produced, for example, by a predetermined electrolytic method using a sulfuric acid acidic solution containing copper ions as an electrolytic solution.
 電解に際しては、第1の実施形態における電解処理と同様に、金属銅を陽極とし、ステンレス板やチタン板等を陰極として設置した電解槽中に、銅イオンを含有する硫酸酸性の電解液を収容し、その電解液に所定の電流密度で直流電流を通電することによって電解処理を施す。これにより、通電に伴って陰極上に平板状銅粒子凝集銅粉を析出(電析)させることができる。特に、第4の実施形態においては、銅イオン源となる水溶性銅塩を含有する硫酸酸性の電解液に、添加剤としてアミン化合物やノニオン界面活性剤を添加して電解するようにし、これにより、電解により得られた粒状等の銅粉をボール等の媒体を用いて機械的に変形加工等することなく、その電解のみによって、平板状の銅粒子が集合した平板状銅粒子凝集粉を陰極表面に析出させることができる。 In the case of electrolysis, a sulfuric acid-containing electrolytic solution containing copper ions is contained in an electrolytic cell in which metallic copper is used as an anode and a stainless steel plate or a titanium plate is used as a cathode, as in the electrolytic treatment in the first embodiment. Then, electrolytic treatment is performed by passing a direct current through the electrolytic solution at a predetermined current density. Thereby, flat copper particle aggregation copper powder can be deposited (electrodeposition) on a cathode with electricity supply. In particular, in the fourth embodiment, an amine compound or a nonionic surfactant is added as an additive to the sulfuric acid acidic electrolyte solution containing a water-soluble copper salt serving as a copper ion source. The granular copper powder obtained by electrolysis is not subjected to mechanical deformation processing using a medium such as a ball, and the tabular copper particle aggregated powder in which tabular copper particles are aggregated is obtained only by electrolysis. It can be deposited on the surface.
 すなわち、電解液としては、例えば、水溶性銅塩(銅イオン)と、硫酸と、アミン化合物やノニオン界面活性剤等の添加剤とを含有する物を用いる。また、電解液には、さらに塩化物イオンを含有させることが好ましい。ここで、電解液中に含まれる水溶性銅塩、硫酸は、第1の実施形態に係る製造方法における態様と同様であり、詳細な説明を省略する。 That is, as the electrolytic solution, for example, a material containing a water-soluble copper salt (copper ion), sulfuric acid, and an additive such as an amine compound or a nonionic surfactant is used. Further, it is preferable that the electrolytic solution further contains chloride ions. Here, the water-soluble copper salt and sulfuric acid contained in the electrolytic solution are the same as those in the manufacturing method according to the first embodiment, and detailed description thereof is omitted.
 第4の実施形態においては、電解液中に、添加剤として、例えばアミン化合物やノニオン界面活性剤を用いる。添加剤として添加するアミン化合物が、後述する塩化物イオンやノニオン界面活性剤と共に、析出する銅粉の形状制御に寄与し、陰極に析出させる銅粉を所定の断面平均厚さを有する平板形状の銅粒子から構成される平板状銅粒子凝集粉とすることができる。 In the fourth embodiment, for example, an amine compound or a nonionic surfactant is used as an additive in the electrolytic solution. The amine compound added as an additive contributes to the shape control of the copper powder deposited together with the chloride ions and nonionic surfactants described later, and the copper powder deposited on the cathode has a flat cross-sectional shape having a predetermined average thickness. It can be set as the tabular copper particle aggregation powder comprised from a copper particle.
 具体的に、アミン化合物としては、特に限定されないが、例えばヤヌスグリーンB(C3031Cl、CAS番号:2869-83-2)等を用いることができる。 Specifically, the amine compound is not particularly limited, and for example, Janus Green B (C 30 H 31 N 6 Cl, CAS number: 2869-83-2) can be used.
 アミン化合物としては、1種単独で添加してもよく、2種類以上を併用して添加してもよい。また、アミン化合物の添加量としては、電解液中における濃度で0.1mg/L~500mg/L程度の範囲となる量とすることが好ましい。 As the amine compound, one kind may be added alone, or two or more kinds may be added in combination. Further, the addition amount of the amine compound is preferably an amount that is in the range of about 0.1 mg / L to 500 mg / L in terms of concentration in the electrolytic solution.
 また、ノニオン界面活性剤としては、特に限定されないが、エーテル基を有するものが好ましい。具体例としては、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレンイミン、プルロニック型界面活性剤、テトロニック型界面活性剤、ポリオキシエチレングリコール・グリセリルエーテル、ポリオキシエチレングリコール・ジアルキルエーテル、ポリオキシエチレンポリオキシプロピレングリコール・アルキルエーテル、芳香族アルコールアルコキシレート、下記式(x)で表される化合物等が挙げられる。 The nonionic surfactant is not particularly limited, but those having an ether group are preferred. Specific examples include polyethylene glycol, polypropylene glycol, polyethyleneimine, pluronic surfactant, tetronic surfactant, polyoxyethylene glycol / glyceryl ether, polyoxyethylene glycol / dialkyl ether, polyoxyethylene polyoxypropylene glycol. -Alkyl ether, aromatic alcohol alkoxylate, the compound represented by following formula (x), etc. are mentioned.
Figure JPOXMLDOC01-appb-C000025
(なお、式(x)中、Rは、炭素数5~30の高級アルコールの残基、炭素数1~30のアルキル基を有するアルキルフェノールの残基、炭素数1~30のアルキル基を有するアルキルナフトールの残基、炭素数3~25の脂肪酸アミドの残基、炭素数2~5のアルキルアミンの残基又は水酸基を示し、R及びRは、水素原子又はメチル基を示し、m及びnは、1~100の整数を示す。)
Figure JPOXMLDOC01-appb-C000025
(In the formula (x), R 1 has a higher alcohol residue having 5 to 30 carbon atoms, an alkylphenol residue having an alkyl group having 1 to 30 carbon atoms, or an alkyl group having 1 to 30 carbon atoms. A residue of an alkyl naphthol, a residue of a fatty acid amide having 3 to 25 carbon atoms, a residue of an alkyl amine having 2 to 5 carbon atoms or a hydroxyl group, R 2 and R 3 represent a hydrogen atom or a methyl group, m And n represents an integer of 1 to 100.)
 ノニオン界面活性剤の数平均分子量は、特に限定されないが、100~200,000であることが好ましく、200~15,000であることがより好ましく、1,000~10,000であることがさらに好ましい。なお、数平均分子量は、テトラヒドロフラン(THF)を溶媒とするゲル浸透クロマトグラフィー(GPC)によって求めたポリスチレン換算の分子量である。 The number average molecular weight of the nonionic surfactant is not particularly limited, but is preferably 100 to 200,000, more preferably 200 to 15,000, and further preferably 1,000 to 10,000. preferable. The number average molecular weight is a molecular weight in terms of polystyrene determined by gel permeation chromatography (GPC) using tetrahydrofuran (THF) as a solvent.
 これらのノニオン界面活性剤は、1種単独で添加してもよく、2種類以上を併用して添加してもよい。また、ノニオン界面活性剤の添加量としては、特に限定されないが、電解液中の濃度で200mg/L~5000mg/L程度とすることが好ましく、500mg/L~2000mg/L程度とすることがより好ましい。 These nonionic surfactants may be added singly or in combination of two or more. The amount of the nonionic surfactant added is not particularly limited, but is preferably about 200 mg / L to 5000 mg / L, more preferably about 500 mg / L to 2000 mg / L in terms of the concentration in the electrolytic solution. preferable.
 塩化物イオンとしては、塩酸、塩化ナトリウム等の塩化物イオンを供給する化合物(塩化物イオン源)を電解液中に添加することによって含有させることができる。塩化物イオンは、上述したアミン化合物やノニオン界面活性剤の添加剤と共に、析出する銅粉の形状制御に寄与する。電解液中の塩化物イオン濃度としては、特に限定されないが、200mg/L~1000mg/L程度とすることが好ましく、250mg/L~800mg/L程度とすることがより好ましい。 As the chloride ions, compounds that supply chloride ions such as hydrochloric acid and sodium chloride (chloride ion source) can be added to the electrolyte solution. Chloride ions contribute to shape control of the deposited copper powder together with the above-described amine compound and nonionic surfactant additives. The chloride ion concentration in the electrolytic solution is not particularly limited, but is preferably about 200 mg / L to 1000 mg / L, and more preferably about 250 mg / L to 800 mg / L.
 第4の実施形態においては、例えば、上述したような組成の電解液を用いて電解することによって陰極上に銅粉を析出生成させて平板状銅粒子凝集粉を製造する。電解方法としては、公知の方法を用いることができる。例えば、電流密度としては、硫酸酸性の電解液を用いて電解するにあたっては5A/dm~40A/dmの範囲とすることが好ましく、電解液を攪拌しながら通電させる。また、電解液の液温(浴温)としては、例えば20℃~60℃程度とすることができる。 In the fourth embodiment, for example, by performing electrolysis using the electrolytic solution having the above-described composition, copper powder is deposited on the cathode to produce a tabular copper particle aggregated powder. As the electrolysis method, a known method can be used. For example, the current density is preferably in the range of 5 A / dm 2 to 40 A / dm 2 when electrolysis is performed using a sulfuric acid electrolyte, and the electrolyte is energized while stirring. The liquid temperature (bath temperature) of the electrolytic solution can be, for example, about 20 ° C. to 60 ° C.
  <2-4-2.Niの被覆方法(Niコート銅粉の製造)>
 第4の実施形態に係るNiコート銅粒は、上述した電解法により作製した平板状銅粒子凝集粉の表面に、例えば、無電解めっき法によりNiめっき液(無電解Niめっき液)を用いてNi又はNi合金を被覆することにより製造することができる。
<2-4-2. Ni Coating Method (Production of Ni Coated Copper Powder)>
The Ni-coated copper particles according to the fourth embodiment are obtained by using, for example, a Ni plating solution (electroless Ni plating solution) by an electroless plating method on the surface of the tabular copper particle aggregate powder produced by the above-described electrolytic method. It can be produced by coating Ni or Ni alloy.
 なお、具体的な無電解めっき方法や、その無電解Niめっき液の組成(めっき液中の成分)、無電解めっきの行う前の洗浄処理等の前処理については、第1の実施形態における製造方法の態様と同様であり、詳細な説明は省略する。 The specific electroless plating method, the composition of the electroless Ni plating solution (components in the plating solution), and pretreatment such as cleaning treatment before electroless plating are performed in the first embodiment. The method is the same as that of the method, and detailed description is omitted.
 また、第1の実施形態におけるNi被膜の形成と同様に、形成するNi被膜中にその他の元素が含有されるようにすることが好ましい。銅粉表面にNi合金の被膜を形成させることで、そのNiコート銅粉を用いて、耐熱性、耐食性にも優れた導電性ペースト等を実現することができる。 Moreover, it is preferable that other elements are contained in the Ni film to be formed, similarly to the formation of the Ni film in the first embodiment. By forming a Ni alloy film on the surface of the copper powder, it is possible to realize a conductive paste having excellent heat resistance and corrosion resistance using the Ni-coated copper powder.
 具体的に、Ni被膜中に含有させる元素としては、つまりNi合金を構成するNi以外の元素としては、周期表の第6族から第14族の元素が挙げられ、その中でも、亜鉛、パラジウム、コバルト、ロジウム、鉄、白金、イリジウム、タングステン、モリブデン、クロム、及びスズ等が挙げられる。特に、亜鉛、コバルト、タングステン、モリブデン、パラジウム、白金、及びスズから選ばれる1種類以上の元素が好ましく、これらの元素を含有するNi合金とすることで導電性の優れたNi合金被膜を形成することができる。 Specifically, as an element to be included in the Ni film, that is, as an element other than Ni constituting the Ni alloy, elements of Groups 6 to 14 of the periodic table can be mentioned, and among them, zinc, palladium, Examples include cobalt, rhodium, iron, platinum, iridium, tungsten, molybdenum, chromium, and tin. In particular, one or more elements selected from zinc, cobalt, tungsten, molybdenum, palladium, platinum, and tin are preferable, and a Ni alloy film having excellent conductivity is formed by using an Ni alloy containing these elements. be able to.
 なお、Ni合金被膜の形成方法や、Ni合金中のNi以外の元素の含有量、そのNi以外の元素の元素源等については、第1の実施形態における製造方法の態様と同様であり、詳細な説明は省略する。 In addition, the formation method of the Ni alloy film, the content of elements other than Ni in the Ni alloy, the element source of the elements other than Ni, and the like are the same as the aspects of the manufacturing method in the first embodiment. The detailed explanation is omitted.
 <2-5.第5の実施形態に係るNiコート銅粉の製造方法>
 第5の実施形態に係るNiコート銅粉は、表面にNi又はNi合金が被覆された銅粒子が集合して、直線的に成長した主幹とその主幹から分かれた複数の枝を有する樹枝状の形状を構成したNiコート銅粉である。そして、表面にNi又はNi合金が被覆された銅粒子は、樹枝状に成長した主幹とその主幹から分かれた複数の枝とを有する樹枝状であって、銅粒子の主幹及び枝の断面平均厚さが0.02μm~0.5μmの平板状であり、その銅粒子が集合して構成された当該Niコート銅粉は、平均粒子径(D50)が1.0μm~30μmである。また、銅粒子の表面には微細な凸部があり、その凸部の平均高さとしては0.01μm~0.4μmであることを好ましい。
<2-5. Manufacturing Method of Ni Coated Copper Powder According to Fifth Embodiment>
The Ni-coated copper powder according to the fifth embodiment has a dendritic shape in which copper particles whose surfaces are coated with Ni or a Ni alloy are aggregated and have a main trunk that grows linearly and a plurality of branches separated from the main trunk. It is Ni coat copper powder which constituted the shape. The copper particles whose surfaces are coated with Ni or Ni alloy are dendritic having a main trunk grown in a dendritic shape and a plurality of branches separated from the main trunk, and the cross-sectional average thickness of the main trunk and the branches of the copper particles. The Ni-coated copper powder, which is a flat plate having a thickness of 0.02 μm to 0.5 μm and is formed by aggregating the copper particles, has an average particle diameter (D50) of 1.0 μm to 30 μm. The surface of the copper particles has fine convex portions, and the average height of the convex portions is preferably 0.01 μm to 0.4 μm.
  <2-5-1.銅粉の製造方法>
 第5の実施形態に係るNiコート銅粉(樹枝状Niコート銅粉)は、上述したように、樹枝状銅粉の表面にNi又はNi合金が被覆されてなり、その樹枝状銅粉は、例えば、銅イオンを含有する硫酸酸性溶液を電解液として用いて所定の電解法により製造することができる。
<2-5-1. Manufacturing method of copper powder>
As described above, the Ni-coated copper powder (dendritic Ni-coated copper powder) according to the fifth embodiment is obtained by coating the surface of the dendritic copper powder with Ni or a Ni alloy. For example, it can be manufactured by a predetermined electrolytic method using a sulfuric acid acidic solution containing copper ions as an electrolytic solution.
 電解に際しては、第1の実施形態における電解処理と同様に、金属銅を陽極とし、ステンレス板やチタン板等を陰極として設置した電解槽中に、銅イオンを含有する硫酸酸性の電解液を収容し、その電解液に所定の電流密度で直流電流を通電することによって電解処理を施す。これにより、通電に伴って陰極上に樹枝状銅粉を析出(電析)させることができる。特に、本実施の形態においては、銅イオン源となる水溶性銅塩を含有する硫酸酸性の電解液に、添加剤としてアミン化合物を添加して電解するようにし、これにより、電解により得られた粒状等の銅粉をボール等の媒体を用いて機械的に変形加工等することなく、その電解のみによって、平板状の銅粒子が集合して樹枝状を形成した樹枝状銅粉を陰極表面に析出させることができる。 In the case of electrolysis, a sulfuric acid-containing electrolytic solution containing copper ions is contained in an electrolytic cell in which metallic copper is used as an anode and a stainless steel plate or a titanium plate is used as a cathode, as in the electrolytic treatment in the first embodiment. Then, electrolytic treatment is performed by passing a direct current through the electrolytic solution at a predetermined current density. Thereby, a dendritic copper powder can be deposited (electrodeposition) on a cathode with electricity supply. In particular, in the present embodiment, an amine compound is added as an additive to the sulfuric acid acidic electrolytic solution containing a water-soluble copper salt serving as a copper ion source, and thus obtained by electrolysis. Without denaturing the copper powder in a granular form using a medium such as a ball, the dendritic copper powder is formed on the surface of the cathode by gathering flat copper particles and forming a dendritic shape only by electrolysis. It can be deposited.
 すなわち、電解液としては、例えば、水溶性銅塩(銅イオン)と、硫酸と、アミン化合物とを含有するものを用いる。また、電解液には、さらに塩化物イオンを含有させることが好ましい。ここで、電解液中に含まれる水溶性銅塩、硫酸は、第1の実施形態に係る製造方法における態様と同様であり、詳細な説明を省略する。 That is, as the electrolytic solution, for example, an electrolytic solution containing a water-soluble copper salt (copper ion), sulfuric acid, and an amine compound is used. Further, it is preferable that the electrolytic solution further contains chloride ions. Here, the water-soluble copper salt and sulfuric acid contained in the electrolytic solution are the same as those in the manufacturing method according to the first embodiment, and detailed description thereof is omitted.
 第5の実施形態においては、電解液中に、添加剤としてアミン化合物を用いることができる。このアミン化合物が、後述する塩化物イオンと共に、析出する銅粉の形状制御に寄与し、陰極表面に析出させる銅粉を、所定の断面厚さの平板状の銅粒子から構成される、主幹とその主幹から分岐した枝とを有する樹枝状銅粉とすることができる。 In the fifth embodiment, an amine compound can be used as an additive in the electrolytic solution. The amine compound contributes to shape control of the copper powder to be deposited together with chloride ions to be described later, and the copper powder to be deposited on the cathode surface is composed of flat copper particles having a predetermined cross-sectional thickness; A dendritic copper powder having branches branched from the main trunk can be obtained.
 アミン化合物としては、1種単独で添加してもよく、2種類以上を併用して添加してもよい。また、アミン化合物類の添加量としては、電解液中における濃度が0.1mg/L~500mg/Lの範囲となる量とすることが好ましく、1mg/L~400mg/Lの範囲となる量とすることがより好ましい。 As the amine compound, one kind may be added alone, or two or more kinds may be added in combination. The amount of the amine compound added is preferably an amount such that the concentration in the electrolytic solution is in the range of 0.1 mg / L to 500 mg / L, and an amount in the range of 1 mg / L to 400 mg / L. More preferably.
 具体的に、アミン化合物としては、特に限定されないが、下記(3)式によって表すことができる、フェナジン構造とアゾベンゼン構造とを有する化合物を用いることができる。さらに好ましくは、例えば、ヤヌスグリーンB(C30H31N6Cl、CAS番号:2869-83-2)を用いることができる。 Specifically, the amine compound is not particularly limited, but a compound having a phenazine structure and an azobenzene structure, which can be represented by the following formula (3), can be used. More preferably, for example, Janus Green B (C30H31N6Cl, CAS number: 2869-83-2) can be used.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 ここで、式(3)中において、R、R、R、R、R、R、R、R、R10、R11、R12、R13は、それぞれ別個に、水素、ハロゲン、アミノ、OH、=O、CN、SCN、SH、COOH、COO塩、COOエステル、SOH、SO塩、SOエステル、ベンゼンスルホン酸、及びC1~C8アルキルからなる群から選択される基である。また、Rは、水素、ハロゲン、アミノ、OH、=O、CN、SCN、SH、COOH、COO塩、COOエステル、SOH、SO塩、SOエステル、ベンゼンスルホン酸、低級アルキル、及びアリールからなる群から選択される基である。また、Aは、ハライドアニオンである。 Here, in Formula (3), R 1 , R 2 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 are each separately , Hydrogen, halogen, amino, OH, ═O, CN, SCN, SH, COOH, COO salt, COO ester, SO 3 H, SO 3 salt, SO 3 ester, benzenesulfonic acid, and C1-C8 alkyl Is a group selected from R 3 is hydrogen, halogen, amino, OH, ═O, CN, SCN, SH, COOH, COO salt, COO ester, SO 3 H, SO 3 salt, SO 3 ester, benzenesulfonic acid, lower alkyl, And a group selected from the group consisting of aryl. A is a halide anion.
 具体的に、フェナジン構造とアゾベンゼン構造とを有する化合物としては、例えば、3-(ジエチルアミノ)-7-[(4-ヒドロキシフェニル)アゾ]-2,8-ジメチル-5-フェニルフェナジン-5-イウム、3-[[4-(ジメチルアミノ)フェニル]アゾ]-7-(ジエチルアミノ)-5-フェニルフェナジン-5-イウム、ヤヌスグリーンB、3-アミノ-7-[(2,4-ジアミノフェニル)アゾ]-2,8-ジメチル-5-フェニルフェナジン-5-イウム、2,8-ジメチル-3-アミノ-5-フェニル-7-(2-ヒドロキシ-1-ナフチルアゾ)フェナジン-5-イウム、3-[[4-(ジメチルアミノ)フェニル]アゾ]-7-(ジメチルアミノ)-5-フェニルフェナジン-5-イウム、3-アミノ-7-[[4-(ジメチルアミノ)フェニル]アゾ]-5-フェニルフェナジン-5-イウム、2-(ジエチルアミノ)-7-[4-(メチルプロパルギルアミノ)フェニルアゾ]-9-フェニル-9-アゾニア-10-アザアントラセン、2-(ジエチルアミノ)-7-[4-(メチル4-ペンチニルアミノ)フェニルアゾ]-9-フェニル-9-アゾニア-10-アザアントラセン、2-(ジエチルアミノ)-7-[4-(メチル2,3-ジヒドロキシプロピルアミノ)フェニルアゾ]-9-フェニル-9-アゾニア-10-アザアントラセン等が挙げられる。 Specifically, as a compound having a phenazine structure and an azobenzene structure, for example, 3- (diethylamino) -7-[(4-hydroxyphenyl) azo] -2,8-dimethyl-5-phenylphenazine-5-ium , 3-[[4- (dimethylamino) phenyl] azo] -7- (diethylamino) -5-phenylphenazine-5-ium, Janus Green B, 3-amino-7-[(2,4-diaminophenyl) Azo] -2,8-dimethyl-5-phenylphenazine-5-ium, 2,8-dimethyl-3-amino-5-phenyl-7- (2-hydroxy-1-naphthylazo) phenazine-5-ium, 3 -[[4- (dimethylamino) phenyl] azo] -7- (dimethylamino) -5-phenylphenazine-5-ium, 3-amino-7-[[ -(Dimethylamino) phenyl] azo] -5-phenylphenazine-5-ium, 2- (diethylamino) -7- [4- (methylpropargylamino) phenylazo] -9-phenyl-9-azonia-10-azaanthracene 2- (diethylamino) -7- [4- (methyl-4-pentynylamino) phenylazo] -9-phenyl-9-azonia-10-azaanthracene, 2- (diethylamino) -7- [4- (methyl-2 , 3-dihydroxypropylamino) phenylazo] -9-phenyl-9-azonia-10-azaanthracene.
 塩化物イオンとしては、塩酸、塩化ナトリウム等の塩化物イオンを供給する化合物(塩化物イオン源)を電解液中に添加することによって含有させることができる。電解液中に塩化物イオンを含有させることによって、析出する銅粉の形状をより効果的に制御することができる。電解液中の塩化物イオン濃度としては、30mg/L~1000mg/L程度、好ましくは50mg/L~800mg/L程度、より好ましくは200mg/L~500mg/L程度とすることができる。 As the chloride ions, compounds that supply chloride ions such as hydrochloric acid and sodium chloride (chloride ion source) can be added to the electrolyte solution. By containing chloride ions in the electrolytic solution, the shape of the deposited copper powder can be controlled more effectively. The chloride ion concentration in the electrolytic solution can be about 30 mg / L to 1000 mg / L, preferably about 50 mg / L to 800 mg / L, more preferably about 200 mg / L to 500 mg / L.
 第5の実施形態においては、例えば、上述したような組成の電解液を用いて電解することによって陰極上に銅粉を析出生成させて樹枝状銅粉を製造する。電解方法としては、公知の方法を用いることができる。例えば、電流密度としては、硫酸酸性の電解液を用いて電解するにあたっては5A/dm~30A/dmの範囲とすることが好ましく、電解液を攪拌しながら通電させる。また、電解液の液温(浴温)としては、例えば20℃~60℃程度とすることができる。 In the fifth embodiment, for example, electrolysis is performed using the electrolytic solution having the above-described composition, so that copper powder is deposited on the cathode to produce dendritic copper powder. As the electrolysis method, a known method can be used. For example, the current density is preferably in the range of 5 A / dm 2 to 30 A / dm 2 in electrolysis using a sulfuric acid electrolytic solution, and the electrolytic solution is energized while stirring. The liquid temperature (bath temperature) of the electrolytic solution can be, for example, about 20 ° C. to 60 ° C.
  <2-5-2.Niの被覆方法(Niコート銅粉の製造)>
 第5の実施形態に係るNiコート銅粉は、上述した電解法により作製した樹枝状銅粉の表面に、例えば、無電解めっき法によりNiめっき液(無電解Niめっき液)を用いてNi又はNi合金を被覆することにより製造することができる。
<2-5-2. Ni Coating Method (Production of Ni Coated Copper Powder)>
The Ni-coated copper powder according to the fifth embodiment is obtained by using Ni plating liquid (electroless Ni plating liquid) by an electroless plating method on the surface of the dendritic copper powder produced by the above-described electrolysis method. It can be manufactured by coating a Ni alloy.
 なお、具体的な無電解めっき方法や、その無電解Niめっき液の組成(めっき液中の成分)、無電解めっきの行う前の洗浄処理等の前処理については、第1の実施形態における製造方法の態様と同様であり、詳細な説明は省略する。 The specific electroless plating method, the composition of the electroless Ni plating solution (components in the plating solution), and pretreatment such as cleaning treatment before electroless plating are performed in the first embodiment. The method is the same as that of the method, and detailed description is omitted.
 また、第1の実施形態におけるNi被膜の形成と同様に、形成するNi被膜中にその他の元素が含有されるようにすることが好ましい。銅粉表面にNi合金の被膜を形成させることで、そのNiコート銅粉を用いて、耐熱性、耐食性にも優れた導電性ペースト等を実現することができる。 Moreover, it is preferable that other elements are contained in the Ni film to be formed, similarly to the formation of the Ni film in the first embodiment. By forming a Ni alloy film on the surface of the copper powder, it is possible to realize a conductive paste having excellent heat resistance and corrosion resistance using the Ni-coated copper powder.
 具体的に、Ni被膜中に含有させる元素としては、つまりNi合金を構成するNi以外の元素としては、周期表の第6族から第14族の元素が挙げられ、その中でも、亜鉛、パラジウム、コバルト、ロジウム、鉄、白金、イリジウム、タングステン、モリブデン、クロム、及びスズ等が挙げられる。特に、亜鉛、コバルト、タングステン、モリブデン、パラジウム、白金、及びスズから選ばれる1種類以上の元素が好ましく、これらの元素を含有するNi合金とすることで導電性の優れたNi合金被膜を形成することができる。 Specifically, as an element to be included in the Ni film, that is, as an element other than Ni constituting the Ni alloy, elements of Groups 6 to 14 of the periodic table can be mentioned, and among them, zinc, palladium, Examples include cobalt, rhodium, iron, platinum, iridium, tungsten, molybdenum, chromium, and tin. In particular, one or more elements selected from zinc, cobalt, tungsten, molybdenum, palladium, platinum, and tin are preferable, and a Ni alloy film having excellent conductivity is formed by using an Ni alloy containing these elements. be able to.
 なお、Ni合金被膜の形成方法や、Ni合金中のNi以外の元素の含有量、そのNi以外の元素の元素源等については、第1の実施形態における製造方法の態様と同様であり、詳細な説明は省略する。 In addition, the formation method of the Ni alloy film, the content of elements other than Ni in the Ni alloy, the element source of the elements other than Ni, and the like are the same as the aspects of the manufacturing method in the first embodiment. The detailed explanation is omitted.
 ≪3.導電性ペースト、電磁波シールド用導電性塗料及び導電性シートの用途≫
 本発明に係るNiコート銅粉(第1~第5の実施形態に係るNiコート銅粉)は、表面積が大きくなって成形性や焼結性に優れたものとなり、また、特定の形状をした銅粒子が集合して構成されていることにより、Niコート銅粉同士の接点の数を多く確保することができ、優れた導電性を発揮する。
≪3. Use of conductive paste, conductive paint for electromagnetic wave shield and conductive sheet >>
The Ni-coated copper powder according to the present invention (Ni-coated copper powder according to the first to fifth embodiments) has a large surface area and excellent formability and sinterability, and has a specific shape. A large number of contacts between the Ni-coated copper powders can be ensured by the aggregation of the copper particles, thereby exhibiting excellent conductivity.
 また、第1~第5の実施形態に係るNiコート銅粉では、特定の構造を有するNiコート銅粉であることにより、銅ペースト等とした場合であっても凝集を抑制することができ、樹脂中に均一に分散させることが可能となり、またペーストの粘度上昇等による印刷性不良等の発生を抑制することができる。 In addition, in the Ni-coated copper powder according to the first to fifth embodiments, the Ni-coated copper powder having a specific structure can suppress aggregation even when a copper paste or the like is used, It becomes possible to disperse uniformly in the resin, and it is possible to suppress the occurrence of poor printability due to an increase in the viscosity of the paste.
 したがって、第1~第5の実施形態に係るNiコート銅粉は、導電性ペーストや導電塗料等の用途に好適に用いることができる。 Therefore, the Ni-coated copper powder according to the first to fifth embodiments can be suitably used for applications such as conductive paste and conductive paint.
 例えば導電性ペースト(銅ペースト)としては、Niコート銅粉を金属フィラー(銅粉)として含み、バインダ樹脂、溶剤、さらに必要に応じて酸化防止剤やカップリング剤等の添加剤と混練することによって作製することができる。 For example, as conductive paste (copper paste), Ni-coated copper powder is included as a metal filler (copper powder), and kneaded with binder resin, solvent, and additives such as antioxidants and coupling agents as required. Can be produced.
 ここで、Niコート銅粉を金属フィラーとして利用するにあたっては、その金属フィラー中におけるNiコート銅粉を、20質量%以上、好ましくは30質量%以上、より好ましくは50質量%以上の量の割合で含まれるように構成する。金属フィラー中のNiコート銅粉の割合を20質量%以上とすることで、例えばその金属フィラーを銅ペーストに用いた場合に、樹脂中に均一に分散させることができ、またペーストの粘度が過度に上昇して印刷性不良が生じることを防ぐことができる。また、導電性ペーストとして、より優れた導電性を発揮させることができる。 Here, in using the Ni-coated copper powder as a metal filler, the Ni-coated copper powder in the metal filler is 20% by mass or more, preferably 30% by mass or more, more preferably 50% by mass or more. To be included. By setting the ratio of the Ni-coated copper powder in the metal filler to 20% by mass or more, for example, when the metal filler is used in the copper paste, it can be uniformly dispersed in the resin, and the paste has an excessive viscosity. It is possible to prevent the printability from being increased. Moreover, the more excellent electroconductivity can be exhibited as an electrically conductive paste.
 なお、金属フィラーとしては、上述したようにNiコート銅粉が20質量%以上の量の割合となるように含んでいればよく、その他は、例えば1μm~20μm程度の球状銅粉や球状Niコート銅粉等を混ぜ合わせてもよい。また、形状だけでなく組成の異なるフィラー、例えば銀粉等のフィラーを混ぜ合わせてもよい。 As described above, the metal filler may contain Ni-coated copper powder in a proportion of 20% by mass or more. Others include, for example, spherical copper powder of about 1 μm to 20 μm or spherical Ni-coated. You may mix copper powder etc. Also, fillers having different compositions as well as fillers such as silver powder may be mixed.
 具体的に、バインダ樹脂としては、特に限定されないが、エポキシ樹脂、フェノール樹脂等を用いることができる。また、溶剤としては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、グリセリン、ターピネオール等の有機溶剤を用いることができる。また、その有機溶剤の添加量としては、特に限定されないが、スクリーン印刷やディスペンサー等の導電膜形成方法に適した粘度となるように、Niコート銅粉の粒度を考慮して添加量を調整することができる。 Specifically, the binder resin is not particularly limited, but an epoxy resin, a phenol resin, or the like can be used. Moreover, as a solvent, organic solvents, such as ethylene glycol, diethylene glycol, triethylene glycol, glycerol, and terpineol, can be used. Moreover, the addition amount of the organic solvent is not particularly limited, but the addition amount is adjusted in consideration of the particle size of the Ni-coated copper powder so that the viscosity is suitable for a conductive film forming method such as screen printing or a dispenser. be able to.
 さらに、粘度調整のために他の樹脂成分を添加することもできる。例えば、エチルセルロースに代表されるセルロース系樹脂等が挙げられ、ターピネオール等の有機溶剤に溶解した有機ビヒクルとして添加することができる。なお、その樹脂成分の添加量としては、焼結性を阻害しない程度に抑える必要があり、好ましくは全体の5質量%以下とする。 Furthermore, other resin components can be added to adjust the viscosity. For example, a cellulose-based resin typified by ethyl cellulose can be used, and it can be added as an organic vehicle dissolved in an organic solvent such as terpineol. In addition, it is necessary to suppress the addition amount of the resin component to an extent that does not impair the sinterability, and is preferably 5% by mass or less of the whole.
 また、添加剤としては、焼成後の導電性を改善するために酸化防止剤等を添加することができる。酸化防止剤としては、特に限定されないが、例えばヒドロキシカルボン酸等を挙げることができる。より具体的には、クエン酸、リンゴ酸、酒石酸、乳酸等のヒドロキシカルボン酸が好ましく、Ni又はNi合金を被覆した銅への吸着力が高いクエン酸又はリンゴ酸が特に好ましい。酸化防止剤の添加量としては、酸化防止効果やペーストの粘度等を考慮して、例えば1質量%~15質量%程度とすることができる。 Also, as an additive, an antioxidant or the like can be added in order to improve the conductivity after firing. Although it does not specifically limit as antioxidant, For example, a hydroxycarboxylic acid etc. can be mentioned. More specifically, hydroxycarboxylic acids such as citric acid, malic acid, tartaric acid, and lactic acid are preferable, and citric acid or malic acid that has high adsorptive power to copper coated with Ni or Ni alloy is particularly preferable. The addition amount of the antioxidant can be set to, for example, about 1% by mass to 15% by mass in consideration of the antioxidant effect and the viscosity of the paste.
 次に、電磁波シールド用材料として、Niコート銅粉を金属フィラーとして利用する場合においても、特に限定された条件での使用に限れるものではなく、一般的な方法、例えば金属フィラーを樹脂と混合して使用することができる。 Next, even when Ni-coated copper powder is used as a metal filler as an electromagnetic shielding material, it is not limited to use under particularly limited conditions. For example, a metal filler is mixed with a resin. Can be used.
 例えば、電磁波シールド用導電性シートの電磁波シールド層を形成するために使用される樹脂としては、特に限定されるものではなく、従来使用されている、塩化ビニル樹脂、酢酸ビニル樹脂、塩化ビニリデン樹脂、アクリル樹脂、ポリウレタン樹脂、ポリエステル樹脂、オレフィン樹脂、塩素化オレフィン樹脂、ポリビニルアルコール系樹脂、アルキッド樹脂、フェノール樹脂などの各種重合体及び共重合体からなる熱可塑性樹脂、熱硬化性樹脂、放射線硬化型樹脂等を適宜使用することができる。 For example, the resin used for forming the electromagnetic wave shielding layer of the electromagnetic wave shielding conductive sheet is not particularly limited, and conventionally used vinyl chloride resin, vinyl acetate resin, vinylidene chloride resin, Thermoplastic resin, thermosetting resin, radiation curable type made of various polymers and copolymers such as acrylic resin, polyurethane resin, polyester resin, olefin resin, chlorinated olefin resin, polyvinyl alcohol resin, alkyd resin, phenol resin, etc. Resin etc. can be used suitably.
 電磁波シールド材を製造する方法としては、例えば、上述したような金属フィラーと樹脂とを、溶媒に分散又は溶解して塗料とし、その塗料を基材上に塗布又は印刷することによって電磁波シールド層を形成し、表面が固化する程度に乾燥することで製造することができる。また、金属フィラーを導電性シートの導電性接着剤層に利用することもできる。 As a method for producing an electromagnetic shielding material, for example, the above-described metal filler and resin are dispersed or dissolved in a solvent to form a coating material, and the coating material is applied or printed on the substrate to form the electromagnetic shielding layer. It can be manufactured by forming and drying to such an extent that the surface solidifies. Moreover, a metal filler can also be utilized for the conductive adhesive layer of a conductive sheet.
 また、Niコート銅粉を金属フィラーとして利用して電磁波シールド用導電性塗料とする場合においても、特に限定された条件での使用に限られるものではなく、一般的な方法、例えば金属フィラーを樹脂及び溶剤と混合し、さらに必要に応じて酸化防止剤、増粘剤、沈降防止剤等と混合して混練することで導電性塗料として利用することができる。 Further, when using Ni-coated copper powder as a metal filler to form a conductive coating for electromagnetic wave shielding, it is not limited to use under particularly limited conditions, but a general method, for example, using a metal filler as a resin And mixed with a solvent, and further mixed with an antioxidant, a thickener, an anti-settling agent or the like as necessary, and then kneaded and used as a conductive paint.
 このときに使用するバインダ樹脂及び溶剤についても、特に限定されるものではなく、従来使用されている、塩化ビニル樹脂、酢酸ビニル樹脂、アクリル樹脂、ポリエステル樹脂、フッ素樹脂、シリコン樹脂やフェノール樹脂等を用いることができる。また、溶剤についても、従来使用されている、イソプロパノール等のアルコール類、トルエン等の芳香族炭化水素類、酢酸メチル等のエステル類、メチルエチルケトン等のケトン類等を用いることができる。まあ、添加剤としての酸化防止剤についても、従来使用されている、脂肪酸アミド、高級脂肪酸アミン、フェニレンジアミン誘導体、チタネート系カップリング剤等を用いることができる。 The binder resin and solvent used at this time are not particularly limited, and vinyl chloride resin, vinyl acetate resin, acrylic resin, polyester resin, fluororesin, silicon resin, phenol resin, and the like that have been used in the past are used. Can be used. As the solvent, conventionally used alcohols such as isopropanol, aromatic hydrocarbons such as toluene, esters such as methyl acetate, ketones such as methyl ethyl ketone, and the like can be used. Well, conventionally used antioxidants such as fatty acid amides, higher fatty acid amines, phenylenediamine derivatives, titanate coupling agents, and the like can also be used.
 以下、本発明の実施例を比較例と共に示してさらに具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。 Hereinafter, examples of the present invention will be described in more detail with reference to comparative examples, but the present invention is not limited to the following examples.
 ≪評価方法≫
 下記の実施例及び比較例にて得られた銅粉について、以下の方法により、形状の観察、平均粒子径の測定、比表面積等の測定を行った。
≪Evaluation method≫
The copper powder obtained in the following Examples and Comparative Examples was subjected to shape observation, average particle diameter measurement, specific surface area measurement, and the like by the following methods.
  (形状の観察)
 走査型電子顕微鏡(日本電子株式会社製,JSM-7100F型)により、所定の倍率の視野で任意に20視野を観察し、その視野内に含まれるNiコート銅粉を観察した。
(Observation of shape)
With a scanning electron microscope (manufactured by JEOL Ltd., JSM-7100F type), 20 visual fields were arbitrarily observed at a predetermined magnification, and Ni-coated copper powder contained in the visual field was observed.
  (平均粒子径の測定)
 得られたNiコート銅粉の平均粒子径(D50)については、レーザー回折・散乱法粒度分布測定器(日機装株式会社製,HRA9320 X-100)を用いて測定した。
(Measurement of average particle size)
The average particle diameter (D50) of the obtained Ni-coated copper powder was measured using a laser diffraction / scattering particle size distribution analyzer (manufactured by Nikkiso Co., Ltd., HRA9320 X-100).
  (嵩密度)
 嵩密度については、振盪比重測定器(蔵持科学器械製作所製,タッピングマシンKRS-40)を用いてタップ密度として測定した。
(The bulk density)
The bulk density was measured as a tap density using a shaking specific gravity measuring device (manufactured by Kuramochi Scientific Instruments, Tapping machine KRS-40).
  (BET比表面積)
 BET比表面積については、比表面積・細孔分布測定装置(カンタクローム社製,QUADRASORB SI)を用いて測定した。
(BET specific surface area)
The BET specific surface area was measured using a specific surface area / pore distribution measuring apparatus (manufactured by Cantachrome, QUADRASORB SI).
  (比抵抗値測定)
 被膜の比抵抗値については、低抵抗率計(三菱化学株式会社製,Loresta-GP MCP-T600)を用いて四端子法によりシート抵抗値を測定し、一方で、表面粗さ形状測定器(東京精密株式会社製,SURFCOM130A)により被膜の膜厚を測定して、シート抵抗値を膜厚で除することによって求めた。
(Specific resistance measurement)
Regarding the specific resistance value of the film, the sheet resistance value was measured by a four-terminal method using a low resistivity meter (Loresta-GP MCP-T600, manufactured by Mitsubishi Chemical Corporation), while the surface roughness shape measuring instrument ( The film thickness of the coating film was measured by SURFCOM130A, manufactured by Tokyo Seimitsu Co., Ltd., and the sheet resistance value was determined by dividing the film thickness by the film thickness.
  (電磁波シールド特性)
 電磁波シールド特性の評価は、各実施例及び比較例にて得られた試料について、周波数1GHzの電磁波を用いて、その減衰率を測定して評価した。
(Electromagnetic wave shielding characteristics)
The electromagnetic shielding characteristics were evaluated by measuring the attenuation rate of the samples obtained in the examples and comparative examples using an electromagnetic wave having a frequency of 1 GHz.
 また、電磁波シールドの可撓性についても評価するために、作製した電磁波シールドを折り曲げて電磁波シールド特性が変化するか否かを確認した。 Also, in order to evaluate the flexibility of the electromagnetic wave shield, it was confirmed whether or not the electromagnetic wave shielding characteristics were changed by bending the produced electromagnetic wave shield.
 ≪実施例、比較例≫
(1)第1の実施形態に係るNiコート銅粉を用いた試験
 [実施例1]
 <電解銅粉の作製>
 容量が100Lの電解槽に、電極面積が200mm×200mmのチタン製の電極板を陰極とし、電極面積が200mm×200mmの銅製の電極板を陽極として用いて、その電解槽中に電解液を装入し、これに直流電流を通電して銅粉を陰極板に析出させた。
≪Example, comparative example≫
(1) Test using Ni-coated copper powder according to the first embodiment [Example 1]
<Preparation of electrolytic copper powder>
In an electrolytic cell having a capacity of 100 L, an electrode plate made of titanium having an electrode area of 200 mm × 200 mm is used as a cathode, and a copper electrode plate having an electrode area of 200 mm × 200 mm is used as an anode, and an electrolytic solution is loaded in the electrolytic cell. Then, a direct current was applied thereto to deposit copper powder on the cathode plate.
 このとき、電解液としては、銅イオン濃度が15g/L、硫酸濃度が100g/Lの組成のものを用いた。また、この電解液に、塩酸溶液(和光純薬工業株式会社製)を電解液中の塩化物イオン(塩素イオン)濃度として50mg/Lなるように添加した。また、この電解液には、添加剤としてフェナジン構造を有する化合物であるサフラニン(関東化学工業株式会社製)を電解液中の濃度で100mg/Lとなるように添加し、さらに、ノニオン界面活性剤である分子量1,000のポリエチレングリコール(PEG)(和光純薬工業株式会社製)を電解液中の濃度で500mg/Lとなるように添加した。 At this time, as the electrolytic solution, a composition having a copper ion concentration of 15 g / L and a sulfuric acid concentration of 100 g / L was used. Further, a hydrochloric acid solution (manufactured by Wako Pure Chemical Industries, Ltd.) was added to the electrolytic solution so that the chloride ion (chlorine ion) concentration in the electrolytic solution was 50 mg / L. In addition, safranin (manufactured by Kanto Chemical Co., Ltd.), which is a compound having a phenazine structure, is added as an additive to the electrolytic solution so that the concentration in the electrolytic solution is 100 mg / L, and a nonionic surfactant is further added. Polyethylene glycol (PEG) having a molecular weight of 1,000 (manufactured by Wako Pure Chemical Industries, Ltd.) was added to a concentration of 500 mg / L in the electrolytic solution.
 そして、上述したような濃度に調整した電解液を、ポンプを用いて15L/minの流量で循環しながら、温度を25℃に維持し、陰極の電流密度が10A/dmになるように通電して陰極板上に銅粉を析出させた。 Then, while circulating the electrolytic solution adjusted to the concentration as described above at a flow rate of 15 L / min using a pump, the temperature is maintained at 25 ° C. and the current density of the cathode is 10 A / dm 2. Then, copper powder was deposited on the cathode plate.
 陰極板上に析出した電解銅粉を、スクレーパーを用いて機械的に電解槽の槽底に掻き落として回収し、回収した銅粉を純水で洗浄した後、減圧乾燥器に入れて乾燥した。 The electrolytic copper powder deposited on the cathode plate was recovered by mechanically scraping it off the bottom of the electrolytic cell using a scraper, and the recovered copper powder was washed with pure water and then put in a vacuum dryer and dried. .
 <Niコート銅粉の製造(還元剤:ホウ水素化合物)>
 次に、得られた樹枝状銅粉100gを用いて、無電解Niめっき液によりその銅粉表面にNi被覆を行い、Niコート銅粉を作製した。なお、還元剤がホウ水素化合物である無電解Niめっき液を用いた。
<Production of Ni-coated copper powder (reducing agent: borohydride)>
Next, 100 g of the obtained dendritic copper powder was used to coat the surface of the copper powder with an electroless Ni plating solution, thereby producing a Ni-coated copper powder. In addition, the electroless Ni plating solution whose reducing agent is a borohydride compound was used.
 具体的には、無電解Niめっき液として、硫酸ニッケル30g/L、コハク酸ナトリウム50g/L、ホウ酸30g/L、塩化アンモニウム30g/L、ジメチルアミンボラン4g/Lを各濃度で添加し、さらに水酸化ナトリウムを添加してpH6.0に調整しためっき液を500mL用意した。 Specifically, as an electroless Ni plating solution, nickel sulfate 30 g / L, sodium succinate 50 g / L, boric acid 30 g / L, ammonium chloride 30 g / L, dimethylamine borane 4 g / L were added at each concentration, Further, 500 mL of a plating solution adjusted to pH 6.0 by adding sodium hydroxide was prepared.
 この無電解Niめっき液に、上述した方法で作製した電解銅粉100gを水100mL中に分散させたスラリーを入れ、25℃で10分間撹拌した後、浴温を60℃まで加熱して60分間撹拌した。 In this electroless Ni plating solution, a slurry in which 100 g of electrolytic copper powder prepared by the above-described method is dispersed in 100 mL of water is stirred for 10 minutes at 25 ° C., and then the bath temperature is heated to 60 ° C. for 60 minutes. Stir.
 反応が終了した後、粉末をろ過、水洗してエタノールを通じて乾燥させたところ、銅粉の表面にNi合金が被覆されたNiコート銅粉が得られた。得られたNiコート銅粉をSEMにより倍率5,000倍の視野で観察した結果、少なくとも90個数%以上のNiコート銅粉が、表面に均一にNi合金が被覆された平板状の銅粒子が密集して集合し、樹枝状形状を呈した樹枝状Niコート銅粉であった。その樹枝状Niコート銅粉を回収してNiの含有量を測定したところ、当該樹枝状Niコート銅粉全体の質量100%に対して18.2質量%であった。また、Ni合金中に含まれるボロン(B)の含有量はNi合金の質量100%に対して6.3質量%であった。 After the reaction was completed, the powder was filtered, washed with water, and dried through ethanol. As a result, a Ni-coated copper powder having a Ni alloy coated on the surface of the copper powder was obtained. As a result of observing the obtained Ni-coated copper powder with a field of view at a magnification of 5,000 by SEM, at least 90% by number or more of Ni-coated copper powder is a flat copper particle whose surface is uniformly coated with a Ni alloy. It was a dendritic Ni-coated copper powder that was densely gathered and exhibited a dendritic shape. When the dendritic Ni-coated copper powder was recovered and the Ni content was measured, it was 18.2% by mass with respect to 100% by mass of the entire dendritic Ni-coated copper powder. Further, the content of boron (B) contained in the Ni alloy was 6.3% by mass with respect to 100% by mass of the Ni alloy.
 また、得られた樹枝状Niコート銅粉について、SEMにより観察しながら、平板状の銅粒子の断面平均厚さと、当該樹枝状Niコート銅粉の平板状の面に対して垂直方向に成長した最大長さと平板状の面に対して水平方向の長軸長さとの比を測定した。その結果、得られた樹枝状Niコート銅粉を構成する銅粒子は、断面平均厚さが2.7μmである平板状であった。また、その樹枝状Niコート銅粉の平均粒子径(D50)は46.6μmであった。そして、そのNiコート銅粉の平板状の面から垂直方向に成長した最大長さと平板状の面に水平な方向(平板方向)の最大長さの比(垂直方向長さ/平板方向長軸長さ)は平均で0.069であった。 The obtained dendritic Ni-coated copper powder was grown in a direction perpendicular to the cross-sectional average thickness of the flat copper particles and the flat surface of the dendritic Ni-coated copper powder while observing with SEM. The ratio between the maximum length and the long axis length in the horizontal direction with respect to the flat surface was measured. As a result, the copper particles constituting the obtained dendritic Ni-coated copper powder were in the form of a flat plate having a cross-sectional average thickness of 2.7 μm. The average particle diameter (D50) of the dendritic Ni-coated copper powder was 46.6 μm. The ratio of the maximum length of the Ni-coated copper powder grown in the vertical direction from the flat surface to the maximum length in the direction horizontal to the flat surface (flat direction) (vertical length / flat length in the flat plate direction) Was an average of 0.069.
 また、得られた樹枝状Niコート銅粉の嵩密度は2.9g/cmであった。また、BET比表面積は1.15m/gであった。 Moreover, the bulk density of the obtained dendritic Ni-coated copper powder was 2.9 g / cm 3 . The BET specific surface area was 1.15 m 2 / g.
 この実施例1の結果から、電解液中に、フェナジン構造を有する化合物とノニオン界面活性剤とを添加して樹枝状の電解銅粉を作製し、得られた銅粉の表面にNi合金を被覆することによって、垂直方向への成長を抑えた平板状の樹枝状Niコート銅粉を作製することができることが分かった。 From the result of Example 1, a compound having a phenazine structure and a nonionic surfactant were added to the electrolytic solution to prepare a dendritic electrolytic copper powder, and the surface of the obtained copper powder was coated with a Ni alloy By doing this, it was found that a plate-like dendritic Ni-coated copper powder with suppressed growth in the vertical direction could be produced.
 [実施例2]
 <電解銅粉の作製>
 電解液に、塩化物イオン濃度が150mg/Lとなるように塩酸溶液(和光純薬工業株式会社製)を添加し、また添加剤としてアゾベンゼン構造を有する化合物であるメチルオレンジ(関東化学工業株式会社製)を電解液中の濃度で150mg/Lとなるように添加した。さらに、電解液に、ノニオン界面活性剤である分子量1,000のポリオキシエチレンポリオキシプロピレンブチルエーテル(日油株式会社製,商品名:ユニルーブ50MB-11)を電解液中の濃度で700mg/Lとなるように添加した。それ以外は実施例1と同じ条件で電解処理を行い、電解銅粉を作製した。
[Example 2]
<Preparation of electrolytic copper powder>
A hydrochloric acid solution (manufactured by Wako Pure Chemical Industries, Ltd.) is added to the electrolyte so that the chloride ion concentration is 150 mg / L, and methyl orange (Kanto Chemical Industries, Ltd.), which is a compound having an azobenzene structure as an additive, is added. Manufactured) was added to a concentration of 150 mg / L in the electrolytic solution. Furthermore, polyoxyethylene polyoxypropylene butyl ether having a molecular weight of 1,000, which is a nonionic surfactant, (manufactured by NOF Corporation, trade name: UNILOVE 50MB-11), as the electrolyte solution, has a concentration of 700 mg / L in the electrolyte solution. It added so that it might become. Otherwise, electrolytic treatment was performed under the same conditions as in Example 1 to produce electrolytic copper powder.
 <Niコート銅粉の製造(還元剤:次亜リン酸塩)>
 次に、得られた樹枝状銅粉100gを用いて、無電解Niめっき液によりその銅粉表面にNi被覆を行い、Niコート銅粉を作製した。なお、還元剤が次亜リン酸塩である無電解Niめっき液を用いた。
<Production of Ni-coated copper powder (reducing agent: hypophosphite)>
Next, 100 g of the obtained dendritic copper powder was used to coat the surface of the copper powder with an electroless Ni plating solution, thereby producing a Ni-coated copper powder. In addition, an electroless Ni plating solution whose reducing agent is hypophosphite was used.
 具体的には、無電解Niめっき液として、硫酸ニッケル20g/L、次亜リン酸ナトリウム25g/L、酢酸ナトリウム10g/L、クエン酸ナトリウム10g/Lを各濃度で添加し、さらに水酸化ナトリウムを添加してpH5.0に調整しためっき液を500mL用意した。 Specifically, as an electroless Ni plating solution, nickel sulfate 20 g / L, sodium hypophosphite 25 g / L, sodium acetate 10 g / L, sodium citrate 10 g / L are added at each concentration, and sodium hydroxide is further added. 500 mL of a plating solution adjusted to pH 5.0 by adding the above was prepared.
 この無電解Niめっき液に、上述した方法で作製した電解銅粉100gを水100mL中に分散させたスラリーを入れ、25℃で10分間撹拌した後、浴温を90℃まで加熱して60分間撹拌した。 In this electroless Ni plating solution, a slurry in which 100 g of electrolytic copper powder prepared by the above-described method is dispersed in 100 mL of water is stirred for 10 minutes at 25 ° C., and then the bath temperature is heated to 90 ° C. for 60 minutes. Stir.
 各水溶液の添加が終了した後、粉末をろ過、水洗してエタノールを通じて乾燥させたところ、樹枝状銅粉の表面にリン(P)を含むNi合金が被覆されたNiコート銅粉が得られた。得られたNiコート銅粉をSEMにより倍率5,000倍の視野で観察した結果、少なくとも90個数%以上のNiコート銅粉が、表面に均一にNi合金が被覆された平板状の銅粒子が密集して集合し、樹枝状形状を呈した樹枝状Niコート銅粉であった。その樹枝状Niコート銅粉を回収してNiの含有量を測定したところ、当該樹枝状Niコート銅粉全体の質量100%に対して13.3質量%であった。また、Ni合金中に含まれるPの含有量はNi合金の質量100%に対して7.2質量%であった。 After the addition of each aqueous solution was completed, the powder was filtered, washed with water, and dried through ethanol. As a result, Ni-coated copper powder in which Ni alloy containing phosphorus (P) was coated on the surface of dendritic copper powder was obtained. . As a result of observing the obtained Ni-coated copper powder with a field of view at a magnification of 5,000 by SEM, at least 90% by number or more of Ni-coated copper powder is a flat copper particle whose surface is uniformly coated with a Ni alloy. It was a dendritic Ni-coated copper powder that was densely gathered and exhibited a dendritic shape. When the dendritic Ni-coated copper powder was recovered and the Ni content was measured, it was 13.3% by mass with respect to 100% by mass of the entire dendritic Ni-coated copper powder. The content of P contained in the Ni alloy was 7.2% by mass with respect to 100% by mass of the Ni alloy.
 また、得られた樹枝状Niコート銅粉について、SEMにより観察しながら、平板状の銅粒子の断面平均厚さと、当該樹枝状Niコート銅粉の平板状の面に対して垂直方向に成長した最大長さと平板状の面に対して水平方向の長軸長さとの比を測定した。その結果、得られた樹枝状Niコート銅粉を構成する銅粒子は、断面平均厚さが1.8μmである平板状であった。また、その樹枝状Niコート銅粉の平均粒子径(D50)は34.6μmであった。そして、そのNiコート銅粉の平板状の面から垂直方向に成長した最大長さと平板状の面に水平な方向(平板方向)の最大長さの比(垂直方向長さ/平板方向長軸長さ)は平均で0.034であった。 The obtained dendritic Ni-coated copper powder was grown in a direction perpendicular to the cross-sectional average thickness of the flat copper particles and the flat surface of the dendritic Ni-coated copper powder while observing with SEM. The ratio between the maximum length and the long axis length in the horizontal direction with respect to the flat surface was measured. As a result, the copper particles constituting the obtained dendritic Ni-coated copper powder were in the form of a flat plate having a cross-sectional average thickness of 1.8 μm. The average particle diameter (D50) of the dendritic Ni-coated copper powder was 34.6 μm. The ratio of the maximum length of the Ni-coated copper powder grown in the vertical direction from the flat surface to the maximum length in the direction horizontal to the flat surface (flat direction) (vertical length / flat length in the flat plate direction) Was an average of 0.034.
 また、得られた樹枝状Niコート銅粉の嵩密度は2.1g/cmであった。また、BET比表面積は1.29m/gであった。 Moreover, the bulk density of the obtained dendritic Ni-coated copper powder was 2.1 g / cm 3 . The BET specific surface area was 1.29 m 2 / g.
 この実施例2の結果から、電解液中に、アゾベンゼン構造を有する化合物とノニオン界面活性剤とを添加して樹枝状の電解銅粉を作製し、得られた銅粉の表面にNi合金を被覆することによって、垂直方向への成長を抑えた平板状の樹枝状Niコート銅粉を作製することができることが分かった。 From the results of Example 2, a compound having an azobenzene structure and a nonionic surfactant were added to the electrolytic solution to produce a dendritic electrolytic copper powder, and the surface of the obtained copper powder was coated with a Ni alloy. By doing this, it was found that a plate-like dendritic Ni-coated copper powder with suppressed growth in the vertical direction could be produced.
 [実施例3]
 <電解銅粉の作製>
 電解液に、塩化物イオン濃度が80mg/Lとなるように塩酸溶液(和光純薬工業株式会社製)を添加し、また添加剤としてフェナジン構造とアゾベンゼン構造とを有する化合物であるヤヌスグリーンB(関東化学工業株式会社製)を電解液中の濃度で600mg/Lとなるように添加した。さらに、電解液に、ノニオン界面活性剤である分子量3,000のポリオキシエチレンポリオキシプロピレンブチルエーテル(日油株式会社製,商品名:ユニルーブ50MB-72)を電解液中の濃度で1,000mg/Lとなるように添加した。それ以外は実施例1と同じ条件で電解処理を行い、電解銅粉を作製した。
[Example 3]
<Preparation of electrolytic copper powder>
To the electrolyte, a hydrochloric acid solution (manufactured by Wako Pure Chemical Industries, Ltd.) was added so that the chloride ion concentration was 80 mg / L, and Janus Green B (a compound having a phenazine structure and an azobenzene structure as an additive) Kanto Chemical Co., Ltd.) was added at a concentration of 600 mg / L in the electrolytic solution. Furthermore, polyoxyethylene polyoxypropylene butyl ether having a molecular weight of 3,000 as a nonionic surfactant (manufactured by NOF Corporation, trade name: UNILOVE 50MB-72) is added to the electrolyte solution at a concentration of 1,000 mg / liter in the electrolyte solution. It added so that it might become L. Otherwise, electrolytic treatment was performed under the same conditions as in Example 1 to produce electrolytic copper powder.
  <Niコート銅粉の製造(還元剤:ヒドラジン化合物)>
 次に、得られた樹枝状銅粉100gを用いて、無電解Niめっきによりその銅粉表面にNi被覆を行い、Niコート銅粉を作製した。なお、還元剤をヒドラジン化合物とした無電解Niめっきを行った。
<Production of Ni-coated copper powder (reducing agent: hydrazine compound)>
Next, 100 g of the obtained dendritic copper powder was used to perform Ni coating on the surface of the copper powder by electroless Ni plating to prepare a Ni-coated copper powder. Electroless Ni plating using a hydrazine compound as a reducing agent was performed.
 具体的に、得られた電解銅粉100gを水500mL中で分散させたスラリーに、酢酸ニッケルを濃度12.4g/Lとなるよう添加し、続いてヒドラジン一水和物80質量%水溶液6gをその浴中に60分間にわたり徐々に撹拌しながら滴下した。このとき、浴温は60℃になるように管理した。 Specifically, nickel acetate was added to a slurry in which 100 g of the obtained electrolytic copper powder was dispersed in 500 mL of water to a concentration of 12.4 g / L, and then 6 g of an 80% by mass aqueous solution of hydrazine monohydrate was added. The solution was dropped into the bath with slow stirring over 60 minutes. At this time, the bath temperature was controlled to 60 ° C.
 反応が終了した後、粉末をろ過、水洗してエタノールを通じて乾燥させたところ、電解銅粉の表面にNiが被覆されたNiコート銅粉が得られた。得られたNiコート銅粉をSEMにより倍率5,000倍の視野で観察した結果、少なくとも90個数%以上のNiコート銅粉が、表面に均一にNiが被覆された平板状の銅粒子が密集して集合し、樹枝状形状を呈した樹枝状Niコート銅粉であった。その樹枝状Niコート銅粉を回収してNiの含有量を測定したところ、当該樹枝状Niコート銅粉全体の質量100%に対して7.5質量%であった。 After the reaction was completed, the powder was filtered, washed with water, and dried through ethanol. As a result, Ni-coated copper powder in which Ni was coated on the surface of the electrolytic copper powder was obtained. As a result of observing the obtained Ni-coated copper powder with a field of view of 5,000 times by SEM, at least 90% by number or more of Ni-coated copper powder is densely packed with flat copper particles whose surfaces are uniformly coated with Ni. Thus, the dendritic Ni-coated copper powder aggregated and exhibited a dendritic shape. When the dendritic Ni-coated copper powder was recovered and the Ni content was measured, it was 7.5% by mass with respect to 100% by mass of the entire dendritic Ni-coated copper powder.
 また、得られた樹枝状Niコート銅粉について、SEMにより観察しながら、平板状の銅粒子の断面平均厚さと、当該樹枝状Niコート銅粉の平板状の面に対して垂直方向に成長した最大長さと平板状の面に対して水平方向の長軸長さとの比を測定した。その結果、得られた樹枝状Niコート銅粉を構成する銅粒子は、断面平均厚さが1.3μmである平板状であった。また、その樹枝状Niコート銅粉の平均粒子径(D50)は33.7μmであった。そして、そのNiコート銅粉の平板状の面から垂直方向に成長した最大長さと平板状の面に水平な方向(平板方向)の最大長さの比(垂直方向長さ/平板方向長軸長さ)は平均で0.022であった。 The obtained dendritic Ni-coated copper powder was grown in a direction perpendicular to the cross-sectional average thickness of the flat copper particles and the flat surface of the dendritic Ni-coated copper powder while observing with SEM. The ratio between the maximum length and the long axis length in the horizontal direction with respect to the flat surface was measured. As a result, the copper particles constituting the obtained dendritic Ni-coated copper powder were flat plate having a cross-sectional average thickness of 1.3 μm. The average particle diameter (D50) of the dendritic Ni-coated copper powder was 33.7 μm. The ratio of the maximum length of the Ni-coated copper powder grown in the vertical direction from the flat surface to the maximum length in the direction horizontal to the flat surface (flat direction) (vertical length / flat length in the flat plate direction) Was an average of 0.022.
 また、得られた樹枝状Niコート銅粉の嵩密度は1.9g/cmであった。また、BET比表面積は1.98m/gであった。 Moreover, the bulk density of the obtained dendritic Ni-coated copper powder was 1.9 g / cm 3 . Moreover, the BET specific surface area was 1.98 m < 2 > / g.
 この実施例3の結果から、電解液中に、フェナジン構造とアゾベンゼン構造とを有する化合物と、ノニオン界面活性剤とを添加して樹枝状の電解銅粉を作製し、得られた銅粉の表面にNiを被覆することによって、垂直方向への成長を抑えた平板状の樹枝状Niコート銅粉を作製することができることが分かった。 From the results of Example 3, the surface of the obtained copper powder was prepared by adding a compound having a phenazine structure and an azobenzene structure and a nonionic surfactant to the electrolytic solution to form a dendritic electrolytic copper powder. It was found that a plate-like dendritic Ni-coated copper powder with suppressed growth in the vertical direction can be produced by coating Ni with Ni.
 [実施例4]
 <電解銅粉の作製>
 電解液に、塩化物イオン濃度が100mg/Lなるように塩酸溶液(和光純薬工業株式会社製)を添加し、また添加剤としてアゾベンゼン構造を有する化合物であるメチルオレンジ(関東化学工業株式会社製)を電解液中の濃度で150mg/Lとなるように添加し、さらにフェナジン構造とアゾベンゼン構造とを有する化合物であるヤヌスグリーンB(関東化学工業株式会社製)を電解液中の濃度で100mg/Lとなるように添加した。また、電解液に、ノニオン界面活性剤である分子量600のポリエチレングリコール(PEG)(和光純薬工業株式会社製)を電解液中の濃度で1,000mg/Lとなるように、さらにノニオン界面活性剤である分子量3,000のポリオキシエチレンポリオキシプロピレンブチルエーテル(日油株式会社製,商品名:ユニルーブ50MB-72)を電解液中の濃度で1,000mg/Lとなるようにそれぞれ添加し、それ以外は実施例1と同じ条件で電解処理を行い、電解銅粉を作製した。
[Example 4]
<Preparation of electrolytic copper powder>
A hydrochloric acid solution (manufactured by Wako Pure Chemical Industries, Ltd.) is added to the electrolyte so that the chloride ion concentration is 100 mg / L, and methyl orange (manufactured by Kanto Chemical Co., Ltd.), which is a compound having an azobenzene structure as an additive, is added. ) Is added at a concentration of 150 mg / L in the electrolytic solution, and Janus Green B (manufactured by Kanto Chemical Co., Ltd.), which is a compound having a phenazine structure and an azobenzene structure, is added at a concentration of 100 mg / L in the electrolytic solution. It added so that it might become L. Further, a nonionic surfactant having a molecular weight of 600 polyethylene glycol (PEG) (manufactured by Wako Pure Chemical Industries, Ltd.) is further added to the electrolyte so that the concentration in the electrolyte is 1,000 mg / L. Polyoxyethylene polyoxypropylene butyl ether having a molecular weight of 3,000 (manufactured by NOF Corporation, trade name: UNILOVE 50MB-72) as an agent was added so that the concentration in the electrolytic solution was 1,000 mg / L. Otherwise, electrolytic treatment was performed under the same conditions as in Example 1 to produce electrolytic copper powder.
 <Niコート銅粉の作製(還元剤:ホウ水素化合物)>
 次に、得られた電解銅粉に対して、実施例1と同じ手順でその表面にNi合金を被覆したところ、電解銅粉の表面にNi合金が被覆されたNiコート銅粉が得られた。
<Preparation of Ni-coated copper powder (reducing agent: borohydride)>
Next, when the surface of the obtained electrolytic copper powder was coated with a Ni alloy in the same procedure as in Example 1, a Ni-coated copper powder in which the surface of the electrolytic copper powder was coated with the Ni alloy was obtained. .
 得られたNiコート銅粉をSEMにより倍率5,000倍の視野で観察した結果、少なくとも90個数%以上のNiコート銅粉が、表面にNi合金が被覆された平板状の銅粒子が密集して集合し、樹枝状形状を呈した樹枝状Niコート銅粉であった。また、その樹枝状Niコート銅粉を回収してNiの含有量を測定したところ、当該樹枝状Niコート銅粉全体の質量100%に対して18.5質量%であった。また、Ni合金中に含まれるBの含有量はNi合金の質量100%に対して6.8質量%であった。 As a result of observing the obtained Ni-coated copper powder with a field of view at a magnification of 5,000 by SEM, at least 90% by number or more of Ni-coated copper powder is densely packed with tabular copper particles coated with a Ni alloy on the surface. The dendritic Ni-coated copper powder gathered and exhibited a dendritic shape. Moreover, when the dendritic Ni coat copper powder was collect | recovered and content of Ni was measured, it was 18.5 mass% with respect to 100 mass of the said dendritic Ni coat copper powder whole. Moreover, content of B contained in Ni alloy was 6.8 mass% with respect to 100 mass of Ni alloy.
 また、得られた樹枝状Niコート銅粉について、SEMにより観察しながら、平板状の銅粒子の断面平均厚さと、当該樹枝状Niコート銅粉の平板状の面に対して垂直方向に成長した最大長さと平板状の面に対して水平方向の長軸長さとの比を測定した。その結果、得られた樹枝状Niコート銅粉を構成する銅粒子は、断面平均厚さが0.4μmである平板状であった。また、その樹枝状Niコート銅粉の平均粒子径(D50)は18.9μmであった。そして、そのNiコート銅粉の平板状の面から垂直方向に成長した最大長さと平板状の面に水平な方向(平板方向)の最大長さの比(垂直方向長さ/平板方向長軸長さ)は平均で0.055であった。 The obtained dendritic Ni-coated copper powder was grown in a direction perpendicular to the cross-sectional average thickness of the flat copper particles and the flat surface of the dendritic Ni-coated copper powder while observing with SEM. The ratio between the maximum length and the long axis length in the horizontal direction with respect to the flat surface was measured. As a result, the copper particles constituting the obtained dendritic Ni-coated copper powder were flat plate having a cross-sectional average thickness of 0.4 μm. The average particle diameter (D50) of the dendritic Ni-coated copper powder was 18.9 μm. The ratio of the maximum length of the Ni-coated copper powder grown in the vertical direction from the flat surface to the maximum length in the direction horizontal to the flat surface (flat direction) (vertical length / flat length in the flat plate direction) Was an average of 0.055.
 また、得られた樹枝状Niコート銅粉の嵩密度は1.2g/cmであった。また、BET比表面積は2.10m/gであった。 Moreover, the bulk density of the obtained dendritic Ni-coated copper powder was 1.2 g / cm 3 . The BET specific surface area was 2.10 m 2 / g.
 この実施例4の結果から、添加剤として、アゾベンゼン構造を有する化合物と、フェナジン構造とアゾベンゼン構造とを有する化合物とを混合して添加し、さらに2種類以上のノニオン界面活性剤を添加して樹枝状の電解銅粉を作製し、得られた銅粉の表面にNi合金を被覆することによって、垂直方向への成長を抑えた平板状の樹枝状Niコート銅粉を作製することができることが分かった。 From the results of Example 4, a compound having an azobenzene structure and a compound having a phenazine structure and an azobenzene structure were added and added as additives, and two or more kinds of nonionic surfactants were further added to form a dendron. It is found that a plate-like dendritic Ni-coated copper powder with suppressed growth in the vertical direction can be produced by preparing a shaped electrolytic copper powder and coating the surface of the obtained copper powder with a Ni alloy. It was.
 [実施例5~11]
 <電解銅粉の製造>
 電解液に、塩化物イオン濃度が80mg/Lとなるように塩酸溶液(和光純薬工業株式会社製)を添加し、また添加剤としてフェナジン構造とアゾベンゼン構造とを有する化合物であるヤヌスグリーンB(関東化学工業株式会社製)を電解液中の濃度で600mg/Lとなるように添加した。さらに、電解液に、ノニオン界面活性剤である分子量3,000のポリオキシエチレンポリオキシプロピレンブチルエーテル(日油株式会社製,商品名:ユニルーブ50MB-72)を電解液中の濃度で1,000mg/Lとなるように添加した。それ以外は実施例1と同じ条件で電解処理を行い、樹枝状銅粉を作製した。
[Examples 5 to 11]
<Manufacture of electrolytic copper powder>
To the electrolyte, a hydrochloric acid solution (manufactured by Wako Pure Chemical Industries, Ltd.) was added so that the chloride ion concentration was 80 mg / L, and Janus Green B (a compound having a phenazine structure and an azobenzene structure as an additive) Kanto Chemical Co., Ltd.) was added at a concentration of 600 mg / L in the electrolytic solution. Furthermore, polyoxyethylene polyoxypropylene butyl ether having a molecular weight of 3,000 as a nonionic surfactant (manufactured by NOF Corporation, trade name: UNILOVE 50MB-72) is added to the electrolyte solution at a concentration of 1,000 mg / liter in the electrolyte solution. It added so that it might become L. Otherwise, electrolytic treatment was performed under the same conditions as in Example 1 to produce a dendritic copper powder.
 <Niコート銅粉の作製(Ni合金)>
 次に、得られた樹枝状銅粉100gを用いて、無電解めっき液によりその銅粉表面にNi合金被覆を行った。
<Preparation of Ni-coated copper powder (Ni alloy)>
Next, 100 g of the obtained dendritic copper powder was used, and the copper powder surface was coated with a Ni alloy with an electroless plating solution.
 合金用無電解Niめっき液としては、得られた電解銅粉100gを水500mL中に分散させたスラリー(銅粉スラリー)に、酢酸ニッケルを濃度12.4g/Lとなるよう添加し、さらにヒドラジン3.2gをその浴中に60分間にわたり徐々に撹拌しながら滴下した。なお、浴温は60℃になるように管理した。 As an electroless Ni plating solution for an alloy, nickel acetate is added to a slurry (copper powder slurry) in which 100 g of the obtained electrolytic copper powder is dispersed in 500 mL of water to a concentration of 12.4 g / L, and hydrazine is further added. 3.2 g was added dropwise into the bath over 60 minutes with slow stirring. The bath temperature was controlled to 60 ° C.
 このとき、それぞれ所望とするNi合金被膜が形成されるように、それぞれの金属化合物を銅粉スラリーと酢酸ニッケルとを含む浴中に添加し、さらにヒドラジンを徐々に添加した。金属化合物として、実施例5では、タングステン酸ナトリウムを1.5g添加してNi-W合金被膜を形成させた。また、実施例6では、硫酸コバルトを2g添加してNi-Co合金被膜を形成させた。また、実施例7では、硫酸亜鉛七水和物とクエン酸ナトリウムとをそれぞれ4gずつ添加してNi-Zn合金被膜を形成させた。また、実施例8では、塩化パラジウムを2g添加してNi-Pd合金被膜を形成させた。また、実施例9では、テトラクロロ白金酸カリウム2gとグリシン1gとをそれぞれ添加してNi-Pt合金被膜を形成させた。また、実施例10では、モリブデン酸ナトリウムとクエン酸三ナトリウムとをそれぞれ1gずつ添加してNi-Mo合金被膜を形成させた。また、実施例11では、スズ酸ナトリウムを1g添加してNi-Sn合金被膜を形成させた。 At this time, each metal compound was added to a bath containing a copper powder slurry and nickel acetate, and hydrazine was gradually added so that each desired Ni alloy film was formed. In Example 5, 1.5 g of sodium tungstate was added as a metal compound to form a Ni—W alloy film. In Example 6, 2 g of cobalt sulfate was added to form a Ni—Co alloy film. In Example 7, 4 g each of zinc sulfate heptahydrate and sodium citrate were added to form a Ni—Zn alloy film. In Example 8, 2 g of palladium chloride was added to form a Ni—Pd alloy film. In Example 9, 2 g of potassium tetrachloroplatinate and 1 g of glycine were added to form a Ni—Pt alloy film. In Example 10, 1 g each of sodium molybdate and trisodium citrate was added to form a Ni—Mo alloy film. In Example 11, 1 g of sodium stannate was added to form a Ni—Sn alloy film.
 それぞれ反応が終了した後、粉末をろ過、水洗してエタノールを通じて乾燥させたところ、電解銅粉の表面にNi合金が被覆されたNiコート銅粉が得られた。そのNiコート銅粉を回収してNi合金被覆量を測定した。表1に、当該樹枝状Niコート銅粉全体の質量100%に対するNiの含有量、及び、Ni合金の質量100%に対してNi合金となる元素の含有量を測定した結果をそれぞれ示す。 After each reaction, the powder was filtered, washed with water, and dried through ethanol. As a result, Ni-coated copper powder in which Ni alloy was coated on the surface of the electrolytic copper powder was obtained. The Ni-coated copper powder was recovered and the Ni alloy coating amount was measured. Table 1 shows the results of measuring the content of Ni with respect to 100% by mass of the entire dendritic Ni-coated copper powder and the content of elements that become Ni alloys with respect to 100% by mass of the Ni alloy.
 また、得られたNiコート銅粉のそれぞれをSEMにより倍率5,000倍の視野で観察した結果、いずれも、少なくとも90個数%以上のNiコート銅粉が、Ni被覆する前の電解銅粉の表面に均一にNi合金が被覆された、2次元又は3次元の樹枝状の形状の樹枝状Niコート銅粉であって、直線的に成長した主幹と、その主幹から直線的に分岐した複数の枝と、その枝からさらに分岐した枝とを有する樹枝状形状を呈した樹枝状Niコート銅粉であった。なお、表1に、得られた樹枝状Niコート銅粉の合金組成を示す。 In addition, as a result of observing each of the obtained Ni-coated copper powder with a SEM field of view at a magnification of 5,000 times, at least 90% by number or more of the Ni-coated copper powder is an electrolytic copper powder before Ni coating. A dendritic Ni-coated copper powder having a two-dimensional or three-dimensional dendritic shape, the surface of which is uniformly coated with a Ni alloy, and a main trunk that grows linearly and a plurality of linear branches branched from the main trunk The dendritic Ni-coated copper powder had a dendritic shape having a branch and a branch further branched from the branch. Table 1 shows the alloy composition of the obtained dendritic Ni-coated copper powder.
 また、得られた樹枝状Niコート銅粉について、SEMにより観察しながら、平板状の銅粒子の断面平均厚さと、当該樹枝状Niコート銅粉の平板状の面に対して垂直方向に成長した最大長さと平板状の面に対して水平方向の長軸長さとの比を測定した。表1に、それぞれの樹枝状Niコート銅粉についての測定結果を示す。 The obtained dendritic Ni-coated copper powder was grown in a direction perpendicular to the cross-sectional average thickness of the flat copper particles and the flat surface of the dendritic Ni-coated copper powder while observing with SEM. The ratio between the maximum length and the long axis length in the horizontal direction with respect to the flat surface was measured. Table 1 shows the measurement results for each dendritic Ni-coated copper powder.
 この実施例5~11の結果から、電解液中に、フェナジン構造とアゾベンゼン構造とを有する化合物と、ノニオン界面活性剤とを添加して樹枝状の電解銅粉を作製し、得られた銅粉の表面にNi-W合金、Ni-Co合金、Ni-Zn合金、Ni-Pd合金、Ni-Pt合金、Ni-Mo合金、Ni-Sn合金からなるNi合金を被覆することによって、垂直方向への成長を抑えた平板状の樹枝状Niコート銅粉を作製することができることが分かった。 From the results of Examples 5 to 11, a dendritic electrolytic copper powder was prepared by adding a compound having a phenazine structure and an azobenzene structure and a nonionic surfactant to the electrolytic solution, and the obtained copper powder. By coating the surface of Ni—W alloy, Ni—Co alloy, Ni—Zn alloy, Ni—Pd alloy, Ni—Pt alloy, Ni—Mo alloy, Ni—Sn alloy with a Ni alloy in the vertical direction It has been found that a plate-like dendritic Ni-coated copper powder with suppressed growth can be produced.
 [実施例12]
 <樹枝状Niコート銅粉の作製(次亜リン酸塩+タングステン化合物)>
 実施例12では、実施例2にて作製した樹枝状銅粉100gを用いて、無電解めっき液によりその銅粉表面にNi合金被覆を行った。
[Example 12]
<Preparation of dendritic Ni-coated copper powder (hypophosphite + tungsten compound)>
In Example 12, 100 g of the dendritic copper powder prepared in Example 2 was used, and the copper powder surface was coated with a Ni alloy with an electroless plating solution.
 無電解Niめっき液としては、実施例1と同様に還元剤として次亜リン酸塩を含むめっき液を用い、このめっき液中にNi以外の金属を添加してNi合金を作製した。 As the electroless Ni plating solution, a plating solution containing hypophosphite as a reducing agent was used in the same manner as in Example 1, and a metal other than Ni was added to the plating solution to produce a Ni alloy.
 具体的には、無電解Niめっき液として、硫酸ニッケル20g/L、次亜リン酸ナトリウム25g/L、酢酸ナトリウム10g/L、クエン酸ナトリウム10g/Lを各濃度で添加しためっき液に、さらにタングステン酸ナトリウムを1.5g添加し、水酸化ナトリウムを添加してpH5.0に調整しためっき液を500mL用意した。なお、浴温は60℃となるように管理した。 Specifically, as an electroless Ni plating solution, a plating solution in which nickel sulfate 20 g / L, sodium hypophosphite 25 g / L, sodium acetate 10 g / L, and sodium citrate 10 g / L are added at each concentration, 500 g of a plating solution prepared by adding 1.5 g of sodium tungstate and adjusting the pH to 5.0 by adding sodium hydroxide was prepared. The bath temperature was controlled to 60 ° C.
 この無電解Niめっき液に、実施例2で作製した樹枝状銅粉100gを水100mL中に分散させたスラリーを入れ、25℃で10分間撹拌した後、浴温を90℃まで加熱して60分間撹拌した。 To this electroless Ni plating solution, a slurry in which 100 g of the dendritic copper powder prepared in Example 2 was dispersed in 100 mL of water was added and stirred at 25 ° C. for 10 minutes, and then the bath temperature was heated to 90 ° C. to 60 Stir for minutes.
 反応が終了した後、粉末をろ過、水洗してエタノールを通じて乾燥させたところ、Ni-W-P合金が被覆されたNiコート銅粉が得られた。得られたNiコート銅粉をSEMにより倍率5,000倍の視野で観察した結果、少なくとも90個数%以上のNiコート銅粉が、表面に均一にNiが被覆された平板状の銅粒子が密集して集合し、樹枝状形状を呈した樹枝状Niコート銅粉であった。この樹枝状Niコート銅粉を回収してNiの含有量を測定したところ、当該樹枝状Niコート銅粉全体の質量100%に対して12.2質量%であった。また、Ni合金中に含まれるPの含有量は、Ni合金の質量100%に対して7.0質量%であった。さらに、Ni合金中に含まれるWの含有量は、Ni合金の質量100%に対して5.6質量%であった。 After the reaction was completed, the powder was filtered, washed with water, and dried through ethanol. As a result, Ni-coated copper powder coated with a Ni—WP alloy was obtained. As a result of observing the obtained Ni-coated copper powder with a field of view of 5,000 times by SEM, at least 90% by number or more of Ni-coated copper powder is densely packed with flat copper particles whose surfaces are uniformly coated with Ni. Thus, the dendritic Ni-coated copper powder aggregated and exhibited a dendritic shape. When the dendritic Ni-coated copper powder was recovered and the Ni content was measured, it was 12.2% by mass with respect to 100% by mass of the entire dendritic Ni-coated copper powder. Moreover, content of P contained in Ni alloy was 7.0 mass% with respect to 100 mass of Ni alloy. Furthermore, the content of W contained in the Ni alloy was 5.6% by mass with respect to 100% by mass of the Ni alloy.
 また、得られた樹枝状Niコート銅粉について、SEMにより観察しながら、平板状の銅粒子の断面平均厚さと、当該樹枝状Niコート銅粉の平板状の面に対して垂直方向に成長した最大長さと平板状の面に対して水平方向の長軸長さとの比を測定した。その結果、得られた樹枝状Niコート銅粉を構成する銅粒子は、断面平均厚さが1.8μmである平板状であった。また、その樹枝状Niコート銅粉の平均粒子径(D50)は36.1μmであった。そして、そのNiコート銅粉の平板状の面から垂直方向に成長した最大長さと平板状の面に水平な方向(平板方向)の最大長さの比(垂直方向長さ/平板方向長軸長さ)は平均で0.037であった。 The obtained dendritic Ni-coated copper powder was grown in a direction perpendicular to the cross-sectional average thickness of the flat copper particles and the flat surface of the dendritic Ni-coated copper powder while observing with SEM. The ratio between the maximum length and the long axis length in the horizontal direction with respect to the flat surface was measured. As a result, the copper particles constituting the obtained dendritic Ni-coated copper powder were in the form of a flat plate having a cross-sectional average thickness of 1.8 μm. The average particle diameter (D50) of the dendritic Ni-coated copper powder was 36.1 μm. The ratio of the maximum length of the Ni-coated copper powder grown in the vertical direction from the flat surface to the maximum length in the direction horizontal to the flat surface (flat direction) (vertical length / flat length in the flat plate direction) Was an average of 0.037.
 また、得られた樹枝状Niコート銅粉の嵩密度は2.2g/cmであった。また、BET比表面積は1.26m/gであった。 Moreover, the bulk density of the obtained dendritic Ni-coated copper powder was 2.2 g / cm 3 . The BET specific surface area was 1.26 m 2 / g.
 この実施例12の結果から、電解液中に、アゾベンゼン構造を有する化合物とノニオン界面活性剤とを添加して樹枝状の電解銅粉を作製し、得られた銅粉の表面にNi-W-PからなるNi合金を被覆することによって、垂直方向への成長を抑えた平板状の樹枝状Niコート銅粉を作製することができることが分かった。 From the results of Example 12, a compound having an azobenzene structure and a nonionic surfactant were added to the electrolytic solution to prepare a dendritic electrolytic copper powder, and Ni—W— was formed on the surface of the obtained copper powder. It was found that by coating a Ni alloy made of P, a plate-like dendritic Ni-coated copper powder with suppressed growth in the vertical direction can be produced.
 [実施例13]
 実施例1にて得られた、比表面積が1.15m/gの樹枝状Niコート銅粉55質量部に、フェノール樹脂(群栄化学株式会社製,PL-2211)15質量部、ブチルセロソルブ(関東化学株式会社製,鹿特級)10質量部を混合し、小型ニーダー(日本精機製作所製,ノンバブリングニーダーNBK-1)を用いて、1200rpm、3分間の混錬を3回繰り返すことでペースト化した。得られた導電ペーストを金属スキージでガラス上に印刷し、大気雰囲気中にて200℃で30分間硬化させた。
[Example 13]
To 55 parts by mass of dendritic Ni-coated copper powder having a specific surface area of 1.15 m 2 / g obtained in Example 1, 15 parts by mass of phenol resin (PL-2211 manufactured by Gunei Chemical Co., Ltd.), butyl cellosolve ( Paste by mixing 10 parts by mass of Kanto Chemical Co., Ltd., deer special grade) and repeating kneading 3 times at 1200 rpm for 3 minutes using a small kneader (Nippon Seiki Seisakusho, non-bubbling kneader NBK-1). did. The obtained conductive paste was printed on glass with a metal squeegee and cured at 200 ° C. for 30 minutes in the air atmosphere.
 硬化により得られた被膜の比抵抗値は、7.6×10-5Ω・cmであった。 The specific resistance value of the film obtained by curing was 7.6 × 10 −5 Ω · cm.
 [実施例14]
 実施例2にて得られた、比表面積が1.29m/gの樹枝状Niコート銅粉55質量部に、フェノール樹脂(群栄化学株式会社製,PL-2211)15質量部、ブチルセロソルブ(関東化学株式会社製,鹿特級)10質量部を混合し、小型ニーダー(日本精機製作所製,ノンバブリングニーダーNBK-1)を用いて、1200rpm、3分間の混錬を3回繰り返すことでペースト化した。得られた導電ペーストを金属スキージでガラス上に印刷し、大気雰囲気中にて200℃で30分間硬化させた。
[Example 14]
To 55 parts by mass of the dendritic Ni-coated copper powder having a specific surface area of 1.29 m 2 / g obtained in Example 2, 15 parts by mass of a phenol resin (manufactured by Gunei Chemical Co., Ltd., PL-2211), butyl cellosolve ( Paste by mixing 10 parts by mass of Kanto Chemical Co., Ltd., deer special grade) and repeating kneading 3 times at 1200 rpm for 3 minutes using a small kneader (Nippon Seiki Seisakusho, non-bubbling kneader NBK-1). did. The obtained conductive paste was printed on glass with a metal squeegee and cured at 200 ° C. for 30 minutes in the air atmosphere.
 硬化により得られた被膜の比抵抗値は、8.1×10-5Ω・cmであった。 The specific resistance value of the film obtained by curing was 8.1 × 10 −5 Ω · cm.
 [実施例15]
 実施例4にて得られた、比表面積が2.10m/gの樹枝状Niコート銅粉55質量部に、フェノール樹脂(群栄化学株式会社製,PL-2211)15質量部、ブチルセロソルブ(関東化学株式会社製,鹿特級)10質量部を混合し、小型ニーダー(日本精機製作所製,ノンバブリングニーダーNBK-1)を用いて、1200rpm、3分間の混錬を3回繰り返すことでペースト化した。得られた導電ペーストを金属スキージでガラス上に印刷し、大気雰囲気中にて200℃で30分間硬化させた。
[Example 15]
To 55 parts by mass of dendritic Ni-coated copper powder having a specific surface area of 2.10 m 2 / g obtained in Example 4, 15 parts by mass of phenol resin (manufactured by Gunei Chemical Co., Ltd., PL-2211), butyl cellosolve ( Paste by mixing 10 parts by mass of Kanto Chemical Co., Ltd., deer special grade) and repeating kneading 3 times at 1200 rpm for 3 minutes using a small kneader (Nippon Seiki Seisakusho, non-bubbling kneader NBK-1). did. The obtained conductive paste was printed on glass with a metal squeegee and cured at 200 ° C. for 30 minutes in the air atmosphere.
 硬化により得られた被膜の比抵抗値は、7.9×10-5Ω・cmであった。 The specific resistance value of the film obtained by curing was 7.9 × 10 −5 Ω · cm.
 [実施例16]
 実施例1にて得られた比表面積が1.15m/gのNiコート銅粉と、実施例2にて得られた比表面積が1.29m/gのNiコート銅粉との異なる2種類を50:50の割合で混合させたNiコート銅粉55質量部(合計量)に、フェノール樹脂(群栄化学株式会社製,PL-2211)15質量部、ブチルセロソルブ(関東化学株式会社製,鹿特級)10質量部を混合し、小型ニーダー(日本精機製作所製,ノンバブリングニーダーNBK-1)を用いて、1200rpm、3分間の混錬を3回繰り返すことでペースト化した。得られた導電ペーストを金属スキージでガラス上に印刷し、大気雰囲気中にて200℃で30分間硬化させた。
[Example 16]
2 different between the Ni-coated copper powder having a specific surface area of 1.15 m 2 / g obtained in Example 1 and the Ni-coated copper powder having a specific surface area of 1.29 m 2 / g obtained in Example 2. 55 parts by mass (total amount) of Ni-coated copper powder mixed at a ratio of 50:50, 15 parts by mass of phenol resin (manufactured by Gunei Chemical Co., Ltd., PL-2211), butyl cellosolve (manufactured by Kanto Chemical Co., Ltd., 10 parts by weight of deer (special grade) were mixed and paste-formed by repeating kneading at 1200 rpm for 3 minutes three times using a small kneader (Nippon Seiki Seisakusho, non-bubbling kneader NBK-1). The obtained conductive paste was printed on glass with a metal squeegee and cured at 200 ° C. for 30 minutes in the air atmosphere.
 硬化により得られた被膜の比抵抗値は、8.0×10-5Ω・cmであった。 The specific resistance value of the film obtained by curing was 8.0 × 10 −5 Ω · cm.
 [実施例17]
 実施例1にて得られた、比表面積が1.15m/gの樹枝状Niコート銅粉を樹脂に分散させて電磁波シールド材とした。
[Example 17]
Dendritic Ni-coated copper powder having a specific surface area of 1.15 m 2 / g obtained in Example 1 was dispersed in a resin to obtain an electromagnetic wave shielding material.
 すなわち、実施例1にて得られた樹枝状Niコート銅粉40gに対して、塩化ビニル樹脂100gと、メチルエチルケトン200gとをそれぞれ混合し、小型ニーダーを用いて、1200rpm、3分間の混錬を3回繰り返すことによってペースト化した。ペースト化に際しては、Niコート銅粉が凝集することなく、樹脂中に均一に分散した。これを、100μmの厚さの透明ポリエチレンテレフタレートシートからなる基材の上にメイヤーバーを用いて塗布・乾燥し、厚さ25μmの電磁波シールド層を形成した。 That is, 40 g of the dendritic Ni-coated copper powder obtained in Example 1 was mixed with 100 g of vinyl chloride resin and 200 g of methyl ethyl ketone, and kneading was performed at 1200 rpm for 3 minutes using a small kneader. The paste was made by repeating the process once. During pasting, the Ni-coated copper powder was uniformly dispersed in the resin without agglomeration. This was coated and dried on a base material made of a transparent polyethylene terephthalate sheet having a thickness of 100 μm using a Mayer bar to form an electromagnetic wave shielding layer having a thickness of 25 μm.
 電磁波シールド特性については、周波数1GHzの電磁波を用いて、その減衰率を測定することによって評価した。表1に、特性評価の結果を示す。 The electromagnetic shielding characteristics were evaluated by measuring the attenuation rate using an electromagnetic wave having a frequency of 1 GHz. Table 1 shows the results of the characteristic evaluation.
 [実施例18]
 実施例2にて得られた、比表面積が1.29m/gの樹枝状Niコート銅粉を樹脂に分散させて電磁波シールド材とした。
[Example 18]
Dendritic Ni-coated copper powder having a specific surface area of 1.29 m 2 / g obtained in Example 2 was dispersed in a resin to prepare an electromagnetic wave shielding material.
 すなわち、実施例2にて得られた樹枝状Niコート銅粉40gに対して、塩化ビニル樹脂100gと、メチルエチルケトン200gとをそれぞれ混合し、小型ニーダーを用いて、1200rpm、3分間の混錬を3回繰り返すことによってペースト化した。ペースト化に際しては、Niコート銅粉が凝集することなく、樹脂中に均一に分散した。これを、100μmの厚さの透明ポリエチレンテレフタレートシートからなる基材の上にメイヤーバーを用いて塗布・乾燥し、厚さ25μmの電磁波シールド層を形成した。 That is, 40 g of dendritic Ni-coated copper powder obtained in Example 2 was mixed with 100 g of vinyl chloride resin and 200 g of methyl ethyl ketone, and kneading was performed at 1200 rpm for 3 minutes using a small kneader. The paste was made by repeating the process once. During pasting, the Ni-coated copper powder was uniformly dispersed in the resin without agglomeration. This was coated and dried on a base material made of a transparent polyethylene terephthalate sheet having a thickness of 100 μm using a Mayer bar to form an electromagnetic wave shielding layer having a thickness of 25 μm.
 電磁波シールド特性については、周波数1GHzの電磁波を用いて、その減衰率を測定することによって評価した。表1に、特性評価の結果を示す。 The electromagnetic shielding characteristics were evaluated by measuring the attenuation rate using an electromagnetic wave having a frequency of 1 GHz. Table 1 shows the results of the characteristic evaluation.
 [実施例19]
 実施例4にて得られた、比表面積が2.10m/gの樹枝状Niコート銅粉を樹脂に分散させて電磁波シールド材とした。
[Example 19]
Dendritic Ni-coated copper powder having a specific surface area of 2.10 m 2 / g obtained in Example 4 was dispersed in a resin to obtain an electromagnetic wave shielding material.
 すなわち、実施例4にて得られた樹枝状Niコート銅粉40gに対して、塩化ビニル樹脂100gと、メチルエチルケトン200gとをそれぞれ混合し、小型ニーダーを用いて、1200rpm、3分間の混錬を3回繰り返すことによってペースト化した。ペースト化に際しては、銅粉が凝集することなく、樹脂中に均一に分散した。これを、100μmの厚さの透明ポリエチレンテレフタレートシートからなる基材の上にメイヤーバーを用いて塗布・乾燥し、厚さ25μmの電磁波シールド層を形成した。 That is, 40 g of dendritic Ni-coated copper powder obtained in Example 4 was mixed with 100 g of vinyl chloride resin and 200 g of methyl ethyl ketone, and kneading was performed at 1200 rpm for 3 minutes using a small kneader. The paste was made by repeating the process once. During pasting, the copper powder was uniformly dispersed in the resin without agglomeration. This was coated and dried on a base material made of a transparent polyethylene terephthalate sheet having a thickness of 100 μm using a Mayer bar to form an electromagnetic wave shielding layer having a thickness of 25 μm.
 電磁波シールド特性については、周波数1GHzの電磁波を用いて、その減衰率を測定することによって評価した。表1に、特性評価の結果を示す。 The electromagnetic shielding characteristics were evaluated by measuring the attenuation rate using an electromagnetic wave having a frequency of 1 GHz. Table 1 shows the results of the characteristic evaluation.
 [比較例1]
 添加剤としてフェナジン構造を有する化合物であるサフラニンと、ノニオン界面活性剤である分子量1,000のポリエチレングリコール(PEG)を添加しない条件としたこと以外は、実施例1と同一の条件にて銅粉を陰極板上に析出させた。そして、引き続き、実施例1と同一の条件で、得られた銅粉の表面にNiを被覆してNiコート銅粉を得た。
[Comparative Example 1]
Copper powder under the same conditions as in Example 1 except that safranin, which is a compound having a phenazine structure, and polyethylene glycol (PEG) having a molecular weight of 1,000, which is a nonionic surfactant, are not added as additives. Was deposited on the cathode plate. Then, Ni was coated on the surface of the obtained copper powder under the same conditions as in Example 1 to obtain a Ni-coated copper powder.
 得られたNiコート銅粉の形状を、上述した走査型電子顕微鏡(SEM)による方法で観察した結果、得られたNiコート銅粉は樹枝状の形状を呈していたものの、粒状の銅粒子が集合したものであり、平板状の樹枝状Niコート銅粉ではなかった。また、得られたNiコート銅粉の比表面積は0.14m/gであった。また、Niコート銅粉のNiの含有量を測定したところ、当該Niコート銅粉全体の質量100%に対して18.9質量%であった。さらに、Ni合金中に含まれるPの含有量は、Ni合金の質量100%に対して8.2質量%であった。 As a result of observing the shape of the obtained Ni-coated copper powder by the method using the scanning electron microscope (SEM) described above, the obtained Ni-coated copper powder had a dendritic shape, but the granular copper particles were It was an aggregate and was not a flat dendritic Ni-coated copper powder. The specific surface area of the Ni-coated copper powder obtained was 0.14 m 2 / g. Moreover, when content of Ni of Ni coat copper powder was measured, it was 18.9 mass% with respect to 100 mass of the said Ni coat copper powder whole. Furthermore, the content of P contained in the Ni alloy was 8.2% by mass with respect to 100% by mass of the Ni alloy.
 次に、作製した樹枝状Niコート銅粉55質量部に、フェノール樹脂(群栄化学株式会社製,PL-2211)15質量部、ブチルセロソルブ(関東化学株式会社製,鹿特級)10質量部を混合し、小型ニーダー(日本精機製作所製,ノンバブリングニーダーNBK-1)を用いて、1200rpm、3分間の混錬を3回繰り返すことでペースト化した。得られた導電ペーストを金属スキージでガラス上に印刷し、大気雰囲気中にて200℃で30分間硬化させた。 Next, 55 parts by mass of the dendritic Ni-coated copper powder was mixed with 15 parts by mass of a phenol resin (manufactured by Gunei Chemical Co., Ltd., PL-2211) and 10 parts by mass of butyl cellosolve (manufactured by Kanto Chemical Co., Ltd., deer special grade). Then, using a small kneader (Nippon Seiki Seisakusho, non-bubbling kneader NBK-1), it was made into a paste by repeating kneading at 1200 rpm for 3 minutes three times. The obtained conductive paste was printed on glass with a metal squeegee and cured at 200 ° C. for 30 minutes in the air atmosphere.
 硬化により得られた被膜の比抵抗値は、65.2×10-5Ω・cmであった。 The specific resistance value of the film obtained by curing was 65.2 × 10 −5 Ω · cm.
 [比較例2]
 従来の平板状銅粉にNiを被覆させたNiコート銅粉による導電性ペーストの特性を評価し、実施例における樹枝状Niコート銅粉を用いて作製した導電性ペーストの特性と比較した。
[Comparative Example 2]
The characteristic of the conductive paste by Ni coat copper powder which coat | covered Ni with the conventional flat copper powder was evaluated, and it compared with the characteristic of the conductive paste produced using the dendritic Ni coat copper powder in an Example.
 平板状銅粉は、粒状の電解銅粉を機械的に扁平化させて作製した。具体的には、平均粒子径7.9μmの粒状アトマイズ銅粉(メイキンメタルパウダーズ社製)500gにステアリン酸5gを添加し、ボールミルで扁平化処理を行った。ボールミルには3mmのジルコニアビーズを5kg投入し、500rpmの回転速度で90分間回転させることによって扁平化処理を行った。 The flat copper powder was prepared by mechanically flattening granular electrolytic copper powder. Specifically, 5 g of stearic acid was added to 500 g of granular atomized copper powder (manufactured by Mekin Metal Powders Co., Ltd.) having an average particle diameter of 7.9 μm, and flattened with a ball mill. The ball mill was charged with 5 kg of 3 mm zirconia beads, and flattened by rotating for 90 minutes at a rotation speed of 500 rpm.
 得られた平板状銅粉に対して、実施例2と同じ方法でNiを被覆した。作製した平板状Niコート銅粉のNiの含有量は、当該平板状Niコート銅粉の質量100%に対して13.8質量%であった。また、Ni合金中に含まれるPの含有量は、Ni合金の質量100%に対して8.6質量%であった。 The obtained flat copper powder was coated with Ni in the same manner as in Example 2. The content of Ni in the produced tabular Ni-coated copper powder was 13.8% by mass with respect to 100% by mass of the tabular Ni-coated copper powder. Moreover, content of P contained in Ni alloy was 8.6 mass% with respect to 100 mass of Ni alloy.
 このようにして作製した平板状のNiコート銅粉について、レーザー回折・散乱法粒度分布測定器で測定した結果、平均粒子径(D50)が21.8μmであった。また、SEMで観察した結果、その断面平均厚さは0.4μmであった。 The plate-like Ni-coated copper powder thus produced was measured with a laser diffraction / scattering particle size distribution analyzer, and as a result, the average particle size (D50) was 21.8 μm. Moreover, as a result of observing with SEM, the cross-sectional average thickness was 0.4 micrometer.
 次に、得られた平板状のNiコート銅粉40gに対して、フェノール樹脂(群栄化学株式会社製,PL-2211)20gと、ブチルセロソルブ(関東化学株式会社製,鹿特級)10gとを混合し、小型ニーダー(株式会社日本精機製作所製,ノンバブリングニーダーNBK-1)を用いて、1200rpm、3分間の混錬を3回繰り返すことによってペースト化した。ペースト化に際しては、銅粉が凝集することなく、樹脂中に均一に分散した。得られた導電ペーストを金属スキージでガラス上に印刷し、大気雰囲気中にて200℃で30分間かけて硬化させた。 Next, 20 g of a phenolic resin (manufactured by Gunei Chemical Co., Ltd., PL-2211) and 10 g of butyl cellosolve (manufactured by Kanto Chemical Co., Ltd., deer special grade) are mixed with 40 g of the obtained flat Ni-coated copper powder. Then, using a small kneader (manufactured by Nippon Seiki Seisakusho Co., Ltd., non-bubbling kneader NBK-1), it was made into a paste by repeating kneading at 1200 rpm for 3 minutes three times. During pasting, the copper powder was uniformly dispersed in the resin without agglomeration. The obtained conductive paste was printed on a glass with a metal squeegee and cured at 200 ° C. for 30 minutes in an air atmosphere.
 硬化により得られた被膜の比抵抗値を測定した結果、31.6×10-5Ω・cmであり、実施例1にて得られた銅ペーストと比較して比抵抗値が高く導電性が劣るものであった。 As a result of measuring the specific resistance value of the film obtained by curing, it was 31.6 × 10 −5 Ω · cm, and the specific resistance value was higher than that of the copper paste obtained in Example 1, and the conductivity was high. It was inferior.
 [比較例3]
 比較例2にて用いたものと同様に粒状の電解銅粉を機械的に扁平化させて作製した平板状銅粉にNiを被覆させたNiコート銅粉を作製した。そして、そのNiコート銅粉による電磁波シールドの特性を評価し、実施例における樹枝状Niコート銅粉を用いて作製した電磁波シールドの特性と比較して、樹枝状形状効果を調べた。なお、使用した平板状Niコート銅粉のNiの含有量は、当該平板状Niコート銅粉の質量100%に対して13.8質量%であった。また、Ni合金中に含まれるPの含有量は、Ni合金の質量100%に対して8.6質量%であった。
[Comparative Example 3]
Similar to the one used in Comparative Example 2, a Ni-coated copper powder in which Ni was coated on a flat copper powder prepared by mechanically flattening a granular electrolytic copper powder was prepared. And the characteristic of the electromagnetic wave shield by the Ni coat copper powder was evaluated, and compared with the characteristic of the electromagnetic wave shield produced using the dendritic Ni coat copper powder in an Example, the dendritic shape effect was investigated. In addition, content of Ni of the used flat Ni coat copper powder was 13.8 mass% with respect to 100 mass of the flat Ni coat copper powder. Moreover, content of P contained in Ni alloy was 8.6 mass% with respect to 100 mass of Ni alloy.
 具体的には、平板状のNiコート銅粉40gに対して、塩化ビニル樹脂100gと、メチルエチルケトン200gとをそれぞれ混合し、小型ニーダーを用いて、1200rpm、3分間の混錬を3回繰り返すことによってペースト化した。ペースト化に際しては、銅粉が凝集することなく、樹脂中に均一に分散した。これを100μmの厚さの透明ポリエチレンテレフタレートシートからなる基材の上にメイヤーバーを用いて塗布・乾燥し、厚さ25μmの電磁波シールド層を形成した。 Specifically, 100 g of vinyl chloride resin and 200 g of methyl ethyl ketone are mixed with 40 g of flat Ni-coated copper powder, respectively, and kneading at 1200 rpm for 3 minutes is repeated three times using a small kneader. Pasted. During pasting, the copper powder was uniformly dispersed in the resin without agglomeration. This was coated and dried using a Mayer bar on a substrate made of a transparent polyethylene terephthalate sheet having a thickness of 100 μm to form an electromagnetic wave shielding layer having a thickness of 25 μm.
 電磁波シールド特性については、周波数1GHzの電磁波を用いて、その減衰率を測定することによって評価した。具体的には、樹枝状Niコート銅粉を使用していない比較例3の場合のレベルを『△』として、その比較例3のレベルよりも悪い場合を『×』とし、その比較例3のレベルよりも良好な場合を『○』とし、さらに優れている場合を『◎』として評価した。表1に結果を示す。 The electromagnetic shielding characteristics were evaluated by measuring the attenuation rate using an electromagnetic wave having a frequency of 1 GHz. Specifically, the level of Comparative Example 3 in which no dendritic Ni-coated copper powder is used is “△”, and the level worse than that of Comparative Example 3 is “×”. The case where it was better than the level was evaluated as “◯”, and the case where it was superior was evaluated as “◎”. Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
 ≪実施例、比較例≫
(2)第2の実施形態に係るNiコート銅粉を用いた試験
 [実施例20]
 <電解銅粉の作製>
 容量が100Lの電解槽に、電極面積が200mm×200mmのチタン製の電極板を陰極とし、電極面積が200mm×200mmの銅製の電極板を陽極として用い、その電解槽中に電解液を装入し、これに直流電流を通電して銅粉を陰極板上に析出させた。
≪Example, comparative example≫
(2) Test using Ni-coated copper powder according to the second embodiment [Example 20]
<Preparation of electrolytic copper powder>
An electrolytic cell with a capacity of 100 L is used with a titanium electrode plate having an electrode area of 200 mm × 200 mm as a cathode and a copper electrode plate with an electrode area of 200 mm × 200 mm as an anode, and an electrolytic solution is charged into the electrolytic cell. Then, a direct current was applied thereto to deposit copper powder on the cathode plate.
 このとき、電解液としては、銅イオン濃度が10g/L、硫酸濃度が100g/Lの組成のものを用いた。また、この電解液に、添加剤として分子量400のポリエチレングリコール(PEG)(和光純薬工業株式会社製)を電解液中の濃度として500mg/Lになるように添加し、さらに塩酸溶液(和光純薬工業株式会社製)を塩化物イオン(塩素イオン)濃度として50mg/Lなるように添加した。 At this time, an electrolytic solution having a composition with a copper ion concentration of 10 g / L and a sulfuric acid concentration of 100 g / L was used. Further, polyethylene glycol (PEG) having a molecular weight of 400 (manufactured by Wako Pure Chemical Industries, Ltd.) as an additive was added to this electrolytic solution so that the concentration in the electrolytic solution was 500 mg / L, and a hydrochloric acid solution (Wako Pure Chemical Industries, Ltd.) was further added. Yakuhin Kogyo Co., Ltd.) was added at a chloride ion (chlorine ion) concentration of 50 mg / L.
 そして、上述のように濃度を調整した電解液を、定量ポンプを用いて10L/minの流量で循環しながら、温度を30℃に維持した条件で、陰極の電流密度が20A/dmになるように通電して陰極板上に銅粉を析出させた。 Then, the current density of the cathode is 20 A / dm 2 under the condition that the temperature is maintained at 30 ° C. while circulating the electrolytic solution whose concentration is adjusted as described above at a flow rate of 10 L / min using a metering pump. In this way, copper powder was deposited on the cathode plate.
 陰極板上に析出した電解銅粉を、機械的に電解槽の槽底に掻き落として回収し、回収した銅粉を純水で洗浄した後、減圧乾燥器に入れて乾燥した。 The electrolytic copper powder deposited on the cathode plate was mechanically scraped and collected on the bottom of the electrolytic cell, and the collected copper powder was washed with pure water, and then placed in a vacuum dryer and dried.
 こうして得られた銅粉の形状を、上述した走査型電子顕微鏡(SEM)による方法で倍率5,000倍の視野で観察した結果、析出した銅粉は、短軸平均径が0.2μm~0.5μmであり、長軸平均径が0.5μm~2.0μmの楕円体の銅粒子が集合して構成された樹枝状の形状をした樹枝状銅粉であった。また、その銅粒子が集合して形成された樹枝状銅粉の平均粒子径(D50)は5.0μm~20μmであった。また、その銅粒子が集合して枝の部分の平均太さが0.5μm~2.0μmになった樹枝状銅粉が形成されていることが確認された。 As a result of observing the shape of the copper powder thus obtained with a scanning electron microscope (SEM) in the field of view of a magnification of 5,000, the deposited copper powder had a minor axis average diameter of 0.2 μm to 0 μm. It was a dendritic copper powder having a dendritic shape composed of ellipsoidal copper particles having a major axis average diameter of 0.5 μm to 2.0 μm. The average particle diameter (D50) of the dendritic copper powder formed by aggregation of the copper particles was 5.0 μm to 20 μm. It was also confirmed that the copper particles were aggregated to form a dendritic copper powder having an average thickness of the branch portion of 0.5 μm to 2.0 μm.
 <樹枝状Niコート銅粉の作製(還元剤:ホウ水素化合物)>
 得られた樹枝状銅粉100gを用いて、無電解めっきによりその銅粉表面にNi被覆を行い、Niコート銅粉を作製した。なお、還元剤がホウ水素化合物である無電解Niめっき液を用いた。
<Preparation of dendritic Ni-coated copper powder (reducing agent: borohydride)>
Using 100 g of the obtained dendritic copper powder, Ni was coated on the surface of the copper powder by electroless plating to prepare a Ni-coated copper powder. In addition, the electroless Ni plating solution whose reducing agent is a borohydride compound was used.
 具体的に、無電解Niめっき液として、硫酸ニッケル30g/L、コハク酸ナトリウム50g/L、ホウ酸30g/L、塩化アンモニウム30g/L、ジメチルアミンボラン4g/Lを各濃度で添加し、さらに水酸化ナトリウムを添加してpH6.0に調整しためっき液を500mL用意した。 Specifically, as an electroless Ni plating solution, nickel sulfate 30 g / L, sodium succinate 50 g / L, boric acid 30 g / L, ammonium chloride 30 g / L, dimethylamine borane 4 g / L were added at each concentration, 500 mL of a plating solution adjusted to pH 6.0 by adding sodium hydroxide was prepared.
 この無電解Niめっき液に、上述した方法で作製した樹枝状銅粉100gを水100mL中に分散させたスラリーを入れ、25℃で10分間撹拌した後、浴温を60℃まで加熱して60分間撹拌した。 In this electroless Ni plating solution, a slurry in which 100 g of the dendritic copper powder prepared by the above method is dispersed in 100 mL of water is stirred for 10 minutes at 25 ° C., and then the bath temperature is heated to 60 ° C. to 60 ° C. Stir for minutes.
 反応が終了した後、粉末をろ過、水洗してエタノールを通じて乾燥させたところ、樹枝状銅粉の表面にNiが被覆されたNiコート銅粉が得られた。そのNiコート銅粉を回収してNiの含有量を測定したところ、当該Niコート銅粉全体の質量100%に対して18.6質量%であった。また、Ni合金中に含まれるボロン(B)の含有量はNi合金の質量100%に対して6.1質量%であった。 After the reaction was completed, the powder was filtered, washed with water, and dried through ethanol. As a result, Ni-coated copper powder in which the surface of the dendritic copper powder was coated with Ni was obtained. When the Ni-coated copper powder was recovered and the Ni content was measured, it was 18.6% by mass with respect to 100% by mass of the entire Ni-coated copper powder. Further, the content of boron (B) contained in the Ni alloy was 6.1% by mass with respect to 100% by mass of the Ni alloy.
 また、得られたNiコート銅粉をSEMにより倍率5,000倍の視野で観察した結果、少なくとも90個数%以上のNiコート銅粉は、銅粒子が集合して樹枝状の形状を呈し、その銅粒子の表面に均一にNi合金が被覆された、樹枝状Niコート銅粉であった。また、Niコート銅粉を構成している、表面にNi合金が被覆された銅粒子は、短軸平均径が0.2μm~0.5μmであって平均で0.39μmであり、長軸平均径が0.5μm~2.0μmであって平均で1.6μmの大きさの楕円体であった。 Moreover, as a result of observing the obtained Ni-coated copper powder with a field of view at a magnification of 5,000 by SEM, at least 90% by number or more of the Ni-coated copper powder has a dendritic shape in which copper particles are aggregated, It was dendritic Ni-coated copper powder in which the Ni alloy was uniformly coated on the surface of the copper particles. The copper particles constituting the Ni-coated copper powder and coated with a Ni alloy on the surface have a minor axis average diameter of 0.2 μm to 0.5 μm and an average of 0.39 μm. It was an ellipsoid having a diameter of 0.5 μm to 2.0 μm and an average size of 1.6 μm.
 また、これらNi合金が被覆された楕円体の銅粒子が集合して形成された樹枝状Niコート銅粉の平均粒子径(D50)は21.2μmであり、その枝部分の平均太さは1.5μmであった。 The average particle diameter (D50) of the dendritic Ni-coated copper powder formed by aggregating ellipsoidal copper particles coated with these Ni alloys is 21.2 μm, and the average thickness of the branch portion is 1 It was 5 μm.
 さらに、得られたNiコート銅粉の嵩密度は1.25g/cmであった。また、BET比表面積は1.7m/gであった。 Furthermore, the bulk density of the obtained Ni-coated copper powder was 1.25 g / cm 3 . The BET specific surface area was 1.7 m 2 / g.
 [実施例21]
 <電解銅粉の製造>
 電解液として、銅イオン濃度が10g/L、硫酸濃度が125g/Lの組成のものを用い、その電解液に、添加剤としてポリエチレングリコール(PEG)を電解液中の濃度として150mg/Lとなるように添加し、さらに塩酸溶液を電解液中の塩素イオン濃度として100mg/Lとなるように添加したこと以外は、実施例20と同じ条件で銅粉(樹枝状銅粉)を陰極板上に析出させた。
[Example 21]
<Manufacture of electrolytic copper powder>
As the electrolytic solution, a composition having a copper ion concentration of 10 g / L and a sulfuric acid concentration of 125 g / L is used, and polyethylene glycol (PEG) as an additive is 150 mg / L as an additive in the electrolytic solution. Copper powder (dendritic copper powder) on the cathode plate under the same conditions as in Example 20, except that the hydrochloric acid solution was added to a concentration of 100 mg / L as the chloride ion concentration in the electrolyte solution. Precipitated.
  <樹枝状Niコート銅粉の製造(還元剤:次亜リン酸塩)>
 次に、上述した方法で作製した電解銅粉を用い、無電解めっきによりNiコート銅粉を作製した。なお、還元剤が次亜リン酸塩である無電解Niめっき液を用いた。
<Production of dendritic Ni-coated copper powder (reducing agent: hypophosphite)>
Next, using the electrolytic copper powder produced by the method described above, Ni-coated copper powder was produced by electroless plating. In addition, an electroless Ni plating solution whose reducing agent is hypophosphite was used.
 具体的に、無電解Niめっき液として、硫酸ニッケル20g/L、次亜リン酸ナトリウム25g/L、酢酸ナトリウム10g/L、クエン酸ナトリウム10g/Lを各濃度で添加し、さらに水酸化ナトリウムを添加してpH5.0に調整しためっき液を500mL用意した。 Specifically, as an electroless Ni plating solution, nickel sulfate 20 g / L, sodium hypophosphite 25 g / L, sodium acetate 10 g / L, sodium citrate 10 g / L were added at each concentration, and sodium hydroxide was further added. 500 mL of a plating solution adjusted to pH 5.0 by addition was prepared.
 この無電解Niめっき液に、上述した方法で作製した電解銅粉100gを水100mL中に分散させたスラリーを入れ、25℃で10分間撹拌した後、浴温を90℃まで加熱して60分間撹拌した。 In this electroless Ni plating solution, a slurry in which 100 g of electrolytic copper powder prepared by the above-described method is dispersed in 100 mL of water is stirred for 10 minutes at 25 ° C., and then the bath temperature is heated to 90 ° C. for 60 minutes. Stir.
 反応が終了した後、粉末をろ過、水洗してエタノールを通じて乾燥させたところ、樹枝状銅粉の表面にリン(P)を含むNi合金が被覆されたNiコート銅粉が得られた。そのNiコート銅粉を回収してNiの含有量を測定したところ、当該Niコート銅粉全体の質量100%に対して13.1質量%であった。また、Ni合金中に含まれるPの含有量はNi合金の質量100%に対して8.1質量%であった。 After the reaction was completed, the powder was filtered, washed with water, and dried through ethanol. As a result, Ni-coated copper powder in which the surface of the dendritic copper powder was coated with Ni alloy containing phosphorus (P) was obtained. When the Ni-coated copper powder was recovered and the Ni content was measured, it was 13.1% by mass with respect to 100% by mass of the entire Ni-coated copper powder. Moreover, content of P contained in Ni alloy was 8.1 mass% with respect to 100 mass of Ni alloy.
 また、得られたNiコート銅粉をSEMにより倍率5,000倍の視野で観察した結果、少なくとも90個数%以上のNiコート銅粉は、銅粒子が集合して樹枝状の形状を呈し、その銅粒子の表面に均一にNi合金が被覆されたNiコート銅粉であった。また、Niコート銅粉を構成している、表面にNi合金が被覆された銅粒子は、短軸平均径が0.2μm~0.5μmであって平均で0.27μmであり、長軸平均径が0.5μm~2.0μmであって平均で1.2μmの大きさの楕円体であった。 Moreover, as a result of observing the obtained Ni-coated copper powder with a field of view at a magnification of 5,000 by SEM, at least 90% by number or more of the Ni-coated copper powder has a dendritic shape in which copper particles are aggregated, It was Ni coat copper powder by which Ni alloy was uniformly coat | covered on the surface of the copper particle. The copper particles constituting the Ni-coated copper powder and coated with a Ni alloy on the surface have a minor axis average diameter of 0.2 μm to 0.5 μm and an average of 0.27 μm. It was an ellipsoid having a diameter of 0.5 μm to 2.0 μm and an average size of 1.2 μm.
 また、これらNi合金が被覆された楕円体の銅粒子が集合して形成された樹枝状Niコート銅粉の平均粒子径(D50)は8.3μmであり、その枝部分の平均太さは1.1μmであった。 The average particle diameter (D50) of dendritic Ni-coated copper powder formed by agglomeration of ellipsoidal copper particles coated with these Ni alloys is 8.3 μm, and the average thickness of the branch portion is 1 .1 μm.
 さらに、得られたNiコート銅粉の嵩密度は2.77g/cmであった。また、BET比表面積は1.2m/gであった。 Furthermore, the bulk density of the obtained Ni-coated copper powder was 2.77 g / cm 3 . The BET specific surface area was 1.2 m 2 / g.
 [実施例22]
 <樹枝状Niコート銅粉の作製(還元剤:ヒドラジン化合物)>
 実施例21で得られた樹枝状銅粉100gを用いて、無電解めっきによりその銅粉表面にNi被覆を行い、Niコート銅粉を作製した。なお、還元剤をヒドラジン化合物とした無電解Niめっきを行った。
[Example 22]
<Preparation of dendritic Ni-coated copper powder (reducing agent: hydrazine compound)>
Using 100 g of the dendritic copper powder obtained in Example 21, Ni was coated on the surface of the copper powder by electroless plating to prepare a Ni-coated copper powder. Electroless Ni plating using a hydrazine compound as a reducing agent was performed.
 具体的に、実施例21で得られた樹枝状銅粉100gを水500mL中に分散させたスラリーに酢酸ニッケルを濃度12.4g/Lとなるよう添加し、ヒドラジン一水和物80質量%水溶液6gをその浴中に60分間にわたり徐々に撹拌しながら滴下した。このとき、浴温は60℃になるように管理した。 Specifically, nickel acetate was added to a slurry in which 100 g of the dendritic copper powder obtained in Example 21 was dispersed in 500 mL of water to a concentration of 12.4 g / L, and an aqueous solution of 80% by mass of hydrazine monohydrate. 6 g was added dropwise into the bath with slow stirring over 60 minutes. At this time, the bath temperature was controlled to 60 ° C.
 反応が終了した後、粉末をろ過、水洗してエタノールを通じて乾燥させたところ、樹枝状銅粉の表面にNiが被覆されたNiコート銅粉が得られた。そのNiコート銅粉を回収してNiの含有量を測定したところ、当該Niコート銅粉全体の質量100%に対して7.7質量%であった。 After the reaction was completed, the powder was filtered, washed with water, and dried through ethanol. As a result, Ni-coated copper powder in which the surface of the dendritic copper powder was coated with Ni was obtained. When the Ni-coated copper powder was recovered and the Ni content was measured, it was 7.7% by mass with respect to 100% by mass of the entire Ni-coated copper powder.
 また、得られたNiコート銅粉をSEMにより倍率5,000倍の視野で観察した結果、少なくとも90個数%以上のNiコート銅粉は、銅粒子が集合して樹枝状の形状を呈し、その銅粒子の表面に均一にNiが被覆されたNiコート銅粉であった。また、Niコート銅粉を構成している、表面にNiが被覆された銅粒子は、短軸平均径が0.2μm~0.5μmであって平均で0.24μmであり、長軸平均径が0.5μm~2.0μmであって平均で1.1μmの大きさの楕円体であった。 Moreover, as a result of observing the obtained Ni-coated copper powder with a field of view at a magnification of 5,000 by SEM, at least 90% by number or more of the Ni-coated copper powder has a dendritic shape in which copper particles are aggregated, It was Ni coat copper powder by which Ni was uniformly coat | covered on the surface of the copper particle. Further, the copper particles constituting the Ni-coated copper powder and coated with Ni on the surface have a minor axis average diameter of 0.2 to 0.5 μm and an average of 0.24 μm, and a major axis average diameter. Was an ellipsoid having a size of 0.5 μm to 2.0 μm and an average size of 1.1 μm.
 また、Niが被覆された楕円体の銅粒子が集合して形成された樹枝状Niコート銅粉の平均粒子径(D50)は9.6μmであり、その枝部分の平均太さは1.3μmであった。 The average particle diameter (D50) of the dendritic Ni-coated copper powder formed by agglomeration of ellipsoidal copper particles coated with Ni is 9.6 μm, and the average thickness of the branch portion is 1.3 μm. Met.
 さらに、得られたNiコート銅粉の嵩密度は2.92g/cmであった。また、BET比表面積は1.6m/gであった。 Furthermore, the bulk density of the obtained Ni-coated copper powder was 2.92 g / cm 3 . Further, the BET specific surface area was 1.6 m 2 / g.
 [実施例23~29]
 <樹枝状Niコート銅粉の作製(Ni合金)>
 実施例21で得られた樹枝状銅粉100gを用いて、無電解めっきによりその銅粉表面にNi合金被覆を行った。
[Examples 23 to 29]
<Preparation of dendritic Ni-coated copper powder (Ni alloy)>
Using 100 g of the dendritic copper powder obtained in Example 21, the surface of the copper powder was coated with a Ni alloy by electroless plating.
 合金用無電解Niめっき液としては、実施例2で得られた樹枝状銅粉100gを水500mL中に分散させたスラリーに酢酸ニッケルを濃度12.4g/Lとなるよう添加し、ヒドラジン3.2gをその浴中に60分間にわたり徐々に撹拌しながら滴下した。なお、浴温は60℃になるように管理した。 As an electroless Ni plating solution for an alloy, nickel acetate was added to a slurry in which 100 g of the dendritic copper powder obtained in Example 2 was dispersed in 500 mL of water to a concentration of 12.4 g / L, and hydrazine 3. 2 g was added dropwise into the bath over 60 minutes with slow stirring. The bath temperature was controlled to 60 ° C.
 このとき、それぞれ所望とするNi合金被膜が形成されるように、それぞれの金属化合物を銅粉スラリーと酢酸ニッケルを含む浴中に添加し、さらにヒドラジンを徐々に添加した。金属化合物としては、実施例23では、タングステン酸ナトリウムを1.5g添加してNi-W合金被膜を形成させた。また、実施例24では、硫酸コバルトを2g添加してNi-Co合金被膜を形成させた。また、実施例25では、硫酸亜鉛七水和物とクエン酸ナトリウムとをそれぞれ4gずつ添加してNi-Zn合金被膜を形成させた。また、実施例26では、塩化パラジウムを2g添加してNi-Pd合金被膜を形成させた。また、実施例27では、テトラクロロ白金酸カリウム2gとグリシン1gとをそれぞれ添加してNi-Pt合金被膜を形成させた。また、実施例28では、モリブデン酸ナトリウムとクエン酸三ナトリウムとをそれぞれ1gずつ添加してNi-Mo合金被膜を形成させた。また、実施例29では、スズ酸ナトリウムを1g添加してNi-Sn合金被膜を形成させた。 At this time, each metal compound was added to a bath containing a copper powder slurry and nickel acetate, and hydrazine was gradually added so that each desired Ni alloy film was formed. As the metal compound, in Example 23, 1.5 g of sodium tungstate was added to form a Ni—W alloy film. In Example 24, 2 g of cobalt sulfate was added to form a Ni—Co alloy film. In Example 25, 4 g each of zinc sulfate heptahydrate and sodium citrate were added to form a Ni—Zn alloy film. In Example 26, 2 g of palladium chloride was added to form a Ni—Pd alloy film. In Example 27, 2 g of potassium tetrachloroplatinate and 1 g of glycine were added to form a Ni—Pt alloy film. In Example 28, 1 g each of sodium molybdate and trisodium citrate was added to form a Ni—Mo alloy coating. In Example 29, 1 g of sodium stannate was added to form a Ni—Sn alloy film.
 それぞれ反応が終了した後、粉末をろ過、水洗してエタノールを通じて乾燥させたところ、樹枝状銅粉の表面にNi合金が被覆されたNiコート銅粉が得られた。そのNiコート銅粉を回収してNi合金被覆量を測定した。表1に、当該Niコート銅粉全体の質量100%に対するNiの含有量、及びNi合金の質量100%に対してNi合金となる元素の含有量を測定した結果を示す。 After completion of the respective reactions, the powder was filtered, washed with water and dried through ethanol. As a result, Ni-coated copper powder in which the surface of the dendritic copper powder was coated with Ni alloy was obtained. The Ni-coated copper powder was recovered and the Ni alloy coating amount was measured. Table 1 shows the results of measuring the content of Ni with respect to 100% by mass of the entire Ni-coated copper powder and the content of elements that become Ni alloys with respect to 100% by mass of the Ni alloy.
 また、得られたNiコート銅粉のそれぞれをSEMにより倍率5,000倍の視野で観察した結果、いずれも、少なくとも90個数%以上のNiコート銅粉は、銅粒子が集合して樹枝状の形状を呈し、その銅粒子の表面に均一にNi合金が被覆されたNiコート銅粉であった。また、Niコート銅粉を構成している、表面にNiが被覆された銅粒子は、短軸平均径が0.2μm~0.5μmであり、長軸平均径が0.5μm~2.0μmの大きさの楕円体であった。 In addition, as a result of observing each of the obtained Ni-coated copper powders with a field of view of 5,000 times by SEM, at least 90% by number or more of Ni-coated copper powders are aggregated with copper particles in a dendritic shape. It was a Ni-coated copper powder that had a shape and was uniformly coated with a Ni alloy on the surface of the copper particles. The copper particles constituting the Ni-coated copper powder and coated with Ni on the surface have an average minor axis diameter of 0.2 μm to 0.5 μm and an average major axis diameter of 0.5 μm to 2.0 μm. It was an ellipsoid of the size.
 また、これらNi合金が被覆された楕円体の銅粒子が集合して形成された樹枝状Niコート銅粉について、その平均粒子径(D50)、嵩密度、BET比表面積を測定した。表1に、これらの測定結果をまとめて示す。 Further, the average particle diameter (D50), bulk density, and BET specific surface area of the dendritic Ni-coated copper powder formed by aggregating ellipsoidal copper particles coated with these Ni alloys were measured. Table 1 summarizes these measurement results.
 [実施例30]
 <樹枝状Niコート銅粉の作製(次亜リン酸塩+タングステン化合物)>
 実施例30では、実施例20にて作製した樹枝状銅粉100gを用いて、無電解めっきによりその銅粉表面にNi合金被覆を行った。
[Example 30]
<Preparation of dendritic Ni-coated copper powder (hypophosphite + tungsten compound)>
In Example 30, 100 g of the dendritic copper powder produced in Example 20 was used, and the copper powder surface was coated with a Ni alloy by electroless plating.
 無電解Niめっき液としては、実施例20と同じ還元剤として次亜リン酸塩を含むめっき液を用い、このめっき液中にNi以外の金属を添加してNi合金を作製した。 As the electroless Ni plating solution, a plating solution containing hypophosphite as the same reducing agent as in Example 20 was used, and a metal other than Ni was added to the plating solution to produce a Ni alloy.
 具体的には、無電解Niめっき液として、硫酸ニッケル20g/L、次亜リン酸ナトリウム25g/L、酢酸ナトリウム10g/L、クエン酸ナトリウム10g/Lを各濃度で添加しためっき液に、さらにタングステン酸ナトリウムを1.5g添加し、水酸化ナトリウムを添加してpH5.0に調整しためっき液を500mL用意した。なお、浴温は60℃となるように管理した。 Specifically, as an electroless Ni plating solution, a plating solution in which nickel sulfate 20 g / L, sodium hypophosphite 25 g / L, sodium acetate 10 g / L, and sodium citrate 10 g / L are added at each concentration, 500 g of a plating solution prepared by adding 1.5 g of sodium tungstate and adjusting the pH to 5.0 by adding sodium hydroxide was prepared. The bath temperature was controlled to 60 ° C.
 この無電解Niめっき液に、実施例1にて作製した樹枝状銅粉100gを水100mL中に分散させたスラリーを入れ、25℃で10分間撹拌した後、浴温を90℃まで加熱して60分間撹拌した。 In this electroless Ni plating solution, a slurry in which 100 g of the dendritic copper powder prepared in Example 1 was dispersed in 100 mL of water was added and stirred at 25 ° C. for 10 minutes, and then the bath temperature was heated to 90 ° C. Stir for 60 minutes.
 反応が終了した後、粉末をろ過、水洗してエタノールを通じて乾燥させたところ、Ni-W-P合金が被覆されたNiコート銅粉が得られた。得られたNiコート銅粉を回収してNiの含有量を測定したところ、当該Niコート銅粉全体の質量100%に対して12.3質量%であった。また、Ni合金中に含まれるPの含有量はNi合金の質量100%に対して7.1質量%であった。また、Ni合金中に含まれるWの含有量はNi合金の質量100%に対して5.5質量%であった。 After the reaction was completed, the powder was filtered, washed with water, and dried through ethanol. As a result, Ni-coated copper powder coated with a Ni—WP alloy was obtained. When the obtained Ni-coated copper powder was recovered and the content of Ni was measured, it was 12.3% by mass with respect to 100% by mass of the entire Ni-coated copper powder. The content of P contained in the Ni alloy was 7.1% by mass with respect to 100% by mass of the Ni alloy. Moreover, content of W contained in Ni alloy was 5.5 mass% with respect to 100 mass of Ni alloy.
 また、得られたNiコート銅粉をSEMにより倍率5,000倍の視野で観察した結果、少なくとも90個数%以上のNiコート銅粉は、銅粒子が集合して樹枝状の形状を呈し、その銅粒子の表面に均一にNi合金が被覆されたNiコート銅粉であった。また、Niコート銅粉を構成している、表面にNi合金が被覆された銅粒子は、短軸平均径が0.2μm~0.5μmであって平均で0.34μmであり、長軸平均径が0.5μm~2.0μmであって平均で1.6μmの大きさの楕円体であった。 Moreover, as a result of observing the obtained Ni-coated copper powder with a field of view at a magnification of 5,000 by SEM, at least 90% by number or more of the Ni-coated copper powder has a dendritic shape in which copper particles are aggregated, It was Ni coat copper powder by which Ni alloy was uniformly coat | covered on the surface of the copper particle. The copper particles constituting the Ni-coated copper powder and coated with Ni alloy on the surface have a minor axis average diameter of 0.2 μm to 0.5 μm and an average of 0.34 μm. It was an ellipsoid having a diameter of 0.5 μm to 2.0 μm and an average size of 1.6 μm.
 また、これらNi合金が被覆された楕円体の銅粒子が集合して形成された樹枝状Niコート銅粉の平均粒子径(D50)は21.2μmであり、その枝部分の平均太さは1.5μmであった。 The average particle diameter (D50) of the dendritic Ni-coated copper powder formed by aggregating ellipsoidal copper particles coated with these Ni alloys is 21.2 μm, and the average thickness of the branch portion is 1 It was 5 μm.
 さらに、得られたNiコート銅粉の嵩密度は1.25g/cmであった。また、BET比表面積は1.7m/gであった。 Furthermore, the bulk density of the obtained Ni-coated copper powder was 1.25 g / cm 3 . The BET specific surface area was 1.7 m 2 / g.
 [実施例31]
 実施例20にて得られた樹枝状Niコート銅粉30gに、フェノール樹脂(群栄化学株式会社製、PL-2211)15g、ブチルセロソルブ(関東化学株式会社製、鹿特級)10gを混合し、小型ニーダー(日本精機製作所製、ノンバブリングニーダーNBK-1)を用いて、1200rpm、3分間の混錬を3回繰り返すことでペースト化した。得られた導電ペーストを金属スキージでガラス上に印刷し、空気雰囲気中にて200℃で30分間硬化させた。
[Example 31]
30 g of the dendritic Ni-coated copper powder obtained in Example 20 was mixed with 15 g of a phenol resin (PL-2211 manufactured by Gunei Chemical Co., Ltd.) and 10 g of butyl cellosolve (manufactured by Kanto Chemical Co., Ltd., deer special grade). Using a kneader (Nippon Seiki Seisakusho, non-bubbling kneader NBK-1), kneading at 1200 rpm for 3 minutes was repeated three times to form a paste. The obtained conductive paste was printed on glass with a metal squeegee and cured at 200 ° C. for 30 minutes in an air atmosphere.
 硬化により得られた被膜の比抵抗値は、9.0×10-5Ω・cmであり、優れた導電性を示すことが分かった。表2に、これらの結果を示す。 The specific resistance value of the film obtained by curing was 9.0 × 10 −5 Ω · cm, and it was found that excellent conductivity was exhibited. Table 2 shows these results.
 [実施例32]
 実施例21にて得られた樹枝状Niコート銅粉30gに、フェノール樹脂(群栄化学株式会社製,PL-2211)20g、ブチルセロソルブ(関東化学株式会社製,鹿特級)10gを混合し、小型ニーダー(日本精機製作所製,ノンバブリングニーダーNBK-1)を用いて、1200rpm、3分間の混錬を3回繰り返すことでペースト化した。得られた導電ペーストを金属スキージでガラス上に印刷し、空気雰囲気中にて200℃で30分間硬化させた。
[Example 32]
30 g of dendritic Ni-coated copper powder obtained in Example 21 was mixed with 20 g of a phenolic resin (manufactured by Gunei Chemical Co., Ltd., PL-2211) and 10 g of butyl cellosolve (manufactured by Kanto Chemical Co., Ltd., deer special grade). Using a kneader (Nippon Seiki Seisakusho, non-bubbling kneader NBK-1), kneading at 1200 rpm for 3 minutes was repeated three times to form a paste. The obtained conductive paste was printed on glass with a metal squeegee and cured at 200 ° C. for 30 minutes in an air atmosphere.
 硬化により得られた被膜の比抵抗値は、9.2×10-5Ω・cmであり、優れた導電性を示すことが分かった。表2に、これらの結果を示す。 The specific resistance value of the film obtained by curing was 9.2 × 10 −5 Ω · cm, and it was found that excellent electrical conductivity was exhibited. Table 2 shows these results.
 [実施例33]
 実施例20にて得られた樹枝状Niコート銅粉を樹脂に分散させて電磁波シールド材とした。
[Example 33]
The dendritic Ni-coated copper powder obtained in Example 20 was dispersed in a resin to obtain an electromagnetic wave shielding material.
 すなわち、実施例20にて得られた樹枝状Niコート銅粉30gに対して、塩化ビニル樹脂100gと、メチルエチルケトン200gとをそれぞれ混合し、小型ニーダーを用いて、1200rpm、3分間の混錬を3回繰り返すことによってペースト化した。ペースト化に際しては、銅粉が凝集することなく、樹脂中に均一に分散した。これを100μmの厚さの透明ポリエチレンテレフタレートシートからなる基材の上にメイヤーバーを用いて塗布・乾燥し、厚さ25μmの電磁波シールド層を形成した。 That is, 30 g of dendritic Ni-coated copper powder obtained in Example 20 was mixed with 100 g of vinyl chloride resin and 200 g of methyl ethyl ketone, and kneaded at 1200 rpm for 3 minutes using a small kneader. The paste was made by repeating the process once. During pasting, the copper powder was uniformly dispersed in the resin without agglomeration. This was coated and dried using a Mayer bar on a substrate made of a transparent polyethylene terephthalate sheet having a thickness of 100 μm to form an electromagnetic wave shielding layer having a thickness of 25 μm.
 電磁波シールド特性については、周波数1GHzの電磁波を用いて、その減衰率を測定することによって評価した。表2に、これらの結果を示す。 The electromagnetic shielding characteristics were evaluated by measuring the attenuation rate using an electromagnetic wave having a frequency of 1 GHz. Table 2 shows these results.
 [比較例4]
 電解液中に、添加剤としてのPEGと、塩素イオンとを添加しない条件としたこと以外は、実施例20と同様にして銅粉を陰極板上に析出させた。そして、引き続き、実施例1と同様にして、得られた銅粉の表面にNi合金を被覆してNiコート銅粉を得た。
[Comparative Example 4]
Copper powder was deposited on the cathode plate in the same manner as in Example 20 except that PEG as an additive and chlorine ions were not added to the electrolytic solution. Subsequently, in the same manner as in Example 1, the surface of the obtained copper powder was coated with a Ni alloy to obtain a Ni-coated copper powder.
 なお、そのNiコート銅粉のNiの含有量は、Ni合金を被覆したNiコート銅粉全体の重量100に対して18.3質量%であった。また、Ni合金中に含まれるBの含有量はNi合金の質量100%に対して6.0質量%であった。 The Ni content of the Ni-coated copper powder was 18.3% by mass with respect to 100 as the total weight of the Ni-coated copper powder coated with the Ni alloy. Moreover, content of B contained in Ni alloy was 6.0 mass% with respect to 100 mass of Ni alloy.
 得られたNiコート銅粉の形状をSEMにより倍率10,000倍の視野で観察した結果、得られたNiコート銅粉は樹枝状の形状を呈していたものの、枝部分の太さが10μmを超える非常に大きな樹枝状Niコート銅粉であることが確認された。また、そのNiコート銅粉の平均粒子径(D50)は22.3μmであった。 As a result of observing the shape of the obtained Ni-coated copper powder with a field of view of 10,000 times by SEM, the obtained Ni-coated copper powder had a dendritic shape, but the thickness of the branch portion was 10 μm. It was confirmed that this was a very large dendritic Ni-coated copper powder. Moreover, the average particle diameter (D50) of the Ni-coated copper powder was 22.3 μm.
 次に、上述した方法で作製した樹枝状Niコート銅粉60gに対して、フェノール樹脂(群栄化学株式会社製,PL-2211)15gと、ブチルセロソルブ(関東化学株式会社製,鹿特級)10gとを混合し、小型ニーダー(株式会社日本精機製作所製,ノンバブリングニーダーNBK-1)を用いて、1200rpm、3分間の混錬を3回繰り返すことによってペースト化した。ペースト化に際しては、混練を繰り返す毎に粘度の上昇が発生した。このことは、銅粉の一部が凝集していることが原因であると考えられ、均一分散が困難であった。得られた導電性ペーストを金属スキージでガラス上に印刷し、大気雰囲気中にて200℃で30分間かけて硬化させた。 Next, with respect to 60 g of dendritic Ni-coated copper powder produced by the above-described method, 15 g of phenol resin (manufactured by Gunei Chemical Co., Ltd., PL-2211) and 10 g of butyl cellosolve (manufactured by Kanto Chemical Co., Ltd., deer special grade) Were mixed using a small kneader (Nippon Seiki Seisakusho Co., Ltd., non-bubbling kneader NBK-1) and kneaded at 1200 rpm for 3 minutes three times to form a paste. During pasting, the viscosity increased every time kneading was repeated. This is considered to be caused by a part of the copper powder being aggregated, and uniform dispersion was difficult. The obtained conductive paste was printed on glass with a metal squeegee and cured at 200 ° C. for 30 minutes in the air atmosphere.
 硬化により得られた被膜の比抵抗値は、6.7×10-4Ω・cmであり、実施例にて得られた導電性ペーストと比較して極めて比抵抗値が高く導電性が劣るものであった。 The specific resistance value of the film obtained by curing is 6.7 × 10 −4 Ω · cm, and the specific resistance value is extremely high and inferior in conductivity compared to the conductive paste obtained in the examples. Met.
 [比較例5]
 球状Niコート銅粉による導電性ペーストの特性を評価し、実施例における樹枝状Niコート銅粉を用いて作製した導電性ペーストの特性と比較した。なお、使用した球状Niコート銅粉は、電解銅粉を粉砕して粒状としたものを用いた。
[Comparative Example 5]
The characteristic of the conductive paste by spherical Ni coat copper powder was evaluated, and it compared with the characteristic of the conductive paste produced using the dendritic Ni coat copper powder in an Example. The spherical Ni-coated copper powder used was obtained by pulverizing electrolytic copper powder into a granular form.
 すなわち、平均粒径が30.5μmの電解銅粉(ネクセルジャパン製、商品名:電解銅粉Cu-300)を、高圧ジェット気流旋回渦方式ジェットミル(株式会社徳寿工作所製,NJ式ナノグラインディングミルNJ-30)を用いて、空気流量200リットル/分、粉砕圧力10kg/cm、約400g/時間で8パス実施して、粉砕・微粉化することによって球状銅粉を作製した。得られた球状銅粉は、SEMにより倍率5,000倍の視野で観察して粒状であることを確認した。また、その球状銅粉の平均粒子径(D50)は5.6μmであった。 That is, an electrolytic copper powder having an average particle size of 30.5 μm (trade name: electrolytic copper powder Cu-300, manufactured by Nexel Japan) was applied to a high-pressure jet airflow swirl vortex jet mill (manufactured by Tokusu Kogakusha Co., Ltd., NJ Nanogrine) Using a Ding mill NJ-30), spherical copper powder was prepared by grinding and pulverizing by performing 8 passes at an air flow rate of 200 liters / minute, a grinding pressure of 10 kg / cm 2 and about 400 g / hour. The obtained spherical copper powder was observed by SEM with a field of view of 5,000 times magnification and confirmed to be granular. Moreover, the average particle diameter (D50) of the spherical copper powder was 5.6 μm.
 得られた球状銅粉を、実施例22で示したものと同様の方法で無電解めっきによりその銅粉表面にNi被覆を行った。そして、無電解めっき後の球状Niコート銅粉を回収してNiの含有量を測定したところ、当該Niコート銅粉全体の重量100に対して7.4質量%であった。 The obtained spherical copper powder was coated with Ni on the surface of the copper powder by electroless plating in the same manner as shown in Example 22. And when spherical Ni coat copper powder after electroless plating was collect | recovered and content of Ni was measured, it was 7.4 mass% with respect to the weight 100 of the said Ni coat copper powder whole.
 また、得られた球状Niコート銅粉の平均粒子径(D50)は5.8μmであり、嵩密度は3.83g/cmであった。また、BET比表面積は0.16m/gであった。 The obtained spherical Ni-coated copper powder had an average particle size (D50) of 5.8 μm and a bulk density of 3.83 g / cm 3 . Further, the BET specific surface area was 0.16 m 2 / g.
 次に、この球状Niコート銅粉60gに対して、フェノール樹脂(群栄化学株式会社製,PL-2211)15gと、ブチルセロソルブ(関東化学株式会社製,鹿特級)10gとを混合し、小型ニーダー(株式会社日本精機製作所製,ノンバブリングニーダーNBK-1)を用いて、1200rpm、3分間の混錬を3回繰り返すことによってペースト化した。ペースト化に際しては、銅粉が凝集することなく、樹脂中に均一に分散した。得られた導電性ペーストを金属スキージでガラス上に印刷し、大気雰囲気中にて200℃で30分間かけて硬化させた。 Next, 60 g of this spherical Ni-coated copper powder was mixed with 15 g of a phenol resin (PLE 2211, manufactured by Gunei Chemical Co., Ltd.) and 10 g of butyl cellosolve (manufactured by Kanto Chemical Co., Ltd., deer special grade), and a small kneader. Using a non-bubbling kneader NBK-1 (manufactured by Nippon Seiki Seisakusho Co., Ltd.), kneading at 1200 rpm for 3 minutes was repeated three times to form a paste. During pasting, the copper powder was uniformly dispersed in the resin without agglomeration. The obtained conductive paste was printed on glass with a metal squeegee and cured at 200 ° C. for 30 minutes in the air atmosphere.
 硬化により得られた被膜の比抵抗値は、8.2×10-4Ω・cmであり、実施例にて得られた導電性ペーストと比較して極めて比抵抗値が高く導電性が劣るものであった。 The specific resistance value of the film obtained by curing is 8.2 × 10 −4 Ω · cm, which is extremely high in specific resistance value and inferior in conductivity compared to the conductive paste obtained in the examples. Met.
 [比較例6]
 球状Niコート銅粉による電磁波シールド材の特性を評価し、実施例20における樹枝状Niコート銅粉を用いて作製した電磁波シールド材の特性と比較した。なお、使用した球状Niコート銅粉は、比較例5で作製した球状Niコート銅粉を用いた。
[Comparative Example 6]
The characteristics of the electromagnetic shielding material by the spherical Ni-coated copper powder were evaluated and compared with the characteristics of the electromagnetic shielding material produced using the dendritic Ni-coated copper powder in Example 20. In addition, the spherical Ni coat copper powder produced in the comparative example 5 was used for the used spherical Ni coat copper powder.
 具体的には、球状Niコート銅粉50gに対して、塩化ビニル樹脂100gと、メチルエチルケトン200gとをそれぞれ混合し、小型ニーダーを用いて、1200rpm、3分間の混錬を3回繰り返すことによってペースト化した。ペースト化に際しては、銅粉が凝集することなく、樹脂中に均一に分散した。これを100μmの厚さの透明ポリエチレンテレフタレートシートからなる基材の上にメイヤーバーを用いて塗布・乾燥し、厚さ30μmの電磁波シールド層を形成した。 Specifically, 100 g of vinyl chloride resin and 200 g of methyl ethyl ketone are mixed with 50 g of spherical Ni-coated copper powder, and the mixture is made into a paste by repeating kneading at 1200 rpm for 3 minutes three times using a small kneader. did. During pasting, the copper powder was uniformly dispersed in the resin without agglomeration. This was applied and dried on a substrate made of a transparent polyethylene terephthalate sheet having a thickness of 100 μm using a Mayer bar to form an electromagnetic wave shielding layer having a thickness of 30 μm.
 電磁波シールド特性については、周波数1GHzの電磁波を用いて、その減衰率を測定することによって評価した。具体的には、樹枝状Niコート銅粉を使用していない比較例6の場合のレベルを『△』として、その比較例6のレベルよりも悪い場合を『×』とし、その比較例6のレベルよりも良好な場合を『○』とし、さらに優れている場合を『◎』として評価した。表2に結果を示す。 The electromagnetic shielding characteristics were evaluated by measuring the attenuation rate using an electromagnetic wave having a frequency of 1 GHz. Specifically, the level of Comparative Example 6 that does not use dendritic Ni-coated copper powder is set as “Δ”, and the level worse than the level of Comparative Example 6 is set as “X”. The case where it was better than the level was evaluated as “◯”, and the case where it was superior was evaluated as “◎”. Table 2 shows the results.
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
 ≪実施例、比較例≫
(3)第3の実施形態に係るNiコート銅粉を用いた試験
 [実施例34]
 <電解銅粉の作製>
 容量が100Lの電解槽に、電極面積が200mm×200mmのチタン製の電極板を陰極とし、電極面積が200mm×200mmの銅製の電極板を陽極として用い、その電解槽中に電解液を装入し、これに直流電流を通電して銅粉を陰極板上に析出させた。
≪Example, comparative example≫
(3) Test using Ni-coated copper powder according to the third embodiment [Example 34]
<Preparation of electrolytic copper powder>
An electrolytic cell with a capacity of 100 L is used with a titanium electrode plate having an electrode area of 200 mm × 200 mm as a cathode and a copper electrode plate with an electrode area of 200 mm × 200 mm as an anode, and an electrolytic solution is charged into the electrolytic cell. Then, a direct current was applied thereto to deposit copper powder on the cathode plate.
 このとき、電解液としては、銅イオン濃度が10g/L、硫酸濃度が125g/Lの組成のものを用いた。また、この電解液に、添加剤としてサフラニン(関東化学株式会社製)を電解液中の濃度として85mg/Lとなるように添加し、さらに塩酸溶液(和光純薬工業株式会社製)を電解液中の塩化物イオン(塩素イオン)濃度として55mg/Lとなるように添加した。 At this time, as the electrolytic solution, a composition having a copper ion concentration of 10 g / L and a sulfuric acid concentration of 125 g / L was used. In addition, safranin (manufactured by Kanto Chemical Co., Inc.) as an additive is added to the electrolytic solution so that the concentration in the electrolytic solution is 85 mg / L, and a hydrochloric acid solution (manufactured by Wako Pure Chemical Industries, Ltd.) is further added to the electrolytic solution. It added so that it might become 55 mg / L as a chloride ion (chlorine ion) density | concentration in it.
 そして、上述のように濃度調整した電解液を、定量ポンプを用いて15L/minの流量で循環しながら、温度を25℃に維持した条件で、陰極の電流密度が18A/dmになるように通電して陰極板上に銅粉を析出させた。 Then, the current density of the cathode is 18 A / dm 2 under the condition that the temperature is maintained at 25 ° C. while circulating the electrolytic solution whose concentration is adjusted as described above at a flow rate of 15 L / min using a metering pump. Was energized to deposit copper powder on the cathode plate.
 陰極板上に析出した電解銅粉を、スクレーパーを用いて機械的に電解槽の槽底に掻き落として回収し、回収した銅粉を純水で洗浄した後、減圧乾燥器に入れて乾燥した。 The electrolytic copper powder deposited on the cathode plate was recovered by mechanically scraping it off the bottom of the electrolytic cell using a scraper, and the recovered copper powder was washed with pure water and then put in a vacuum dryer and dried. .
 こうして得られた銅粉の形状を、上述した走査型電子顕微鏡(SEM)による方法で倍率1,000倍の視野で観察した結果、析出した銅粉は、直線的に成長した主幹と、その主幹から直線的に分岐した複数の枝と、その枝からさらに分岐した枝とを有する、2次元又は3次元の樹枝状形状を呈した樹枝状銅粉であった。 As a result of observing the shape of the copper powder thus obtained in the field of view with a magnification of 1,000 times by the method using the scanning electron microscope (SEM) described above, the deposited copper powder was a main chain that grew linearly and the main trunk. It was a dendritic copper powder having a two-dimensional or three-dimensional dendritic shape having a plurality of branches branched linearly from and branches further branched from the branches.
 <樹枝状Niコート銅粉の製造(還元剤:次亜リン酸塩)>
 次に、上述した方法で作製した樹枝状銅粉を用いて、無電解Niめっきによりその銅粉表面にNi被覆を行い、Niコート銅粉を作製した。なお、還元剤が次亜リン酸塩である無電解Niめっき液を用いた。
<Production of dendritic Ni-coated copper powder (reducing agent: hypophosphite)>
Next, using the dendritic copper powder produced by the above-described method, Ni was coated on the surface of the copper powder by electroless Ni plating to produce Ni-coated copper powder. In addition, an electroless Ni plating solution whose reducing agent is hypophosphite was used.
 具体的には、無電解Niめっき液として、硫酸ニッケル20g/L、次亜リン酸ナトリウム25g/L、酢酸ナトリウム10g/L、クエン酸ナトリウム10g/Lを各濃度で添加し、さらに水酸化ナトリウムを添加してpH5.0に調整しためっき液を500mL用意した。 Specifically, as an electroless Ni plating solution, nickel sulfate 20 g / L, sodium hypophosphite 25 g / L, sodium acetate 10 g / L, sodium citrate 10 g / L are added at each concentration, and sodium hydroxide is further added. 500 mL of a plating solution adjusted to pH 5.0 by adding the above was prepared.
 この無電解Niめっき液に、上述した方法で作製した樹枝状銅粉100gを水100mL中に分散させたスラリーを入れ、25℃で10分間撹拌した後、浴温を90℃まで加熱して60分間撹拌した。 In this electroless Ni plating solution, a slurry in which 100 g of the dendritic copper powder prepared by the above method is dispersed in 100 mL of water is stirred for 10 minutes at 25 ° C., and then the bath temperature is heated to 90 ° C. to 60 ° C. Stir for minutes.
 反応が終了した後、粉末をろ過、水洗してエタノールを通じて乾燥させたところ、樹枝状銅粉の表面にリン(P)を含むNi合金が被覆されたNiコート銅粉が得られた。そのNiコート銅粉を回収してNiの含有量を測定したところ、当該Niコート銅粉全体の質量100%に対して13.5質量%であった。また、Ni合金中に含まれるPの含有量はNi合金の質量100%に対して8.2質量%であった。 After the reaction was completed, the powder was filtered, washed with water, and dried through ethanol. As a result, Ni-coated copper powder in which the surface of the dendritic copper powder was coated with Ni alloy containing phosphorus (P) was obtained. When the Ni-coated copper powder was recovered and the Ni content was measured, it was 13.5% by mass with respect to 100% by mass of the entire Ni-coated copper powder. Moreover, content of P contained in Ni alloy was 8.2 mass% with respect to 100 mass of Ni alloy.
 また、得られたNiコート銅粉をSEMにより倍率5,000倍の視野で観察した結果、少なくとも90個数%以上のNiコート銅粉は、Ni被覆する前の樹枝状銅粉の表面に均一にNi合金が被覆された、2次元又は3次元の樹枝状の形状のNiコート銅粉であって、直線的に成長した主幹と、その主幹から直線的に分岐した複数の枝と、さらにその枝からさらに分岐した枝とを有する樹枝状形状を呈した樹枝状Niコート銅粉であった。 Further, as a result of observing the obtained Ni-coated copper powder with a field of view of 5,000 times by SEM, at least 90% by number or more of Ni-coated copper powder is uniformly on the surface of the dendritic copper powder before Ni coating. A Ni-coated copper powder coated with a Ni alloy and having a two-dimensional or three-dimensional dendritic shape, the main trunk growing linearly, a plurality of branches linearly branched from the main trunk, and the branches It was a dendritic Ni-coated copper powder having a dendritic shape having branches further branched from.
 また、その樹枝状Niコート銅粉の主幹及び枝を構成する銅粒子は、断面厚さが平均で0.42μmの平板状の形状であり、この銅粒子により樹枝状の形状に構成されていた。また、その樹枝状Niコート銅粉の平均粒子径(D50)は25.1μmであった。 Further, the copper particles constituting the main trunk and branches of the dendritic Ni-coated copper powder had a flat plate shape with an average cross-sectional thickness of 0.42 μm, and the copper particles were formed into a dendritic shape. . The average particle diameter (D50) of the dendritic Ni-coated copper powder was 25.1 μm.
 さらに、得られた樹枝状Niコート銅粉の嵩密度は0.53g/cmであった。また、BET比表面積は0.82m/gであった。 Furthermore, the bulk density of the obtained dendritic Ni-coated copper powder was 0.53 g / cm 3 . Moreover, the BET specific surface area was 0.82 m < 2 > / g.
 <導電性ペースト化>
 次に、得られた樹枝状Niコート銅粉をペースト化して導電性ペーストを作製した。
<Conductive paste>
Next, the obtained dendritic Ni-coated copper powder was made into a paste to produce a conductive paste.
 すなわち、作製した樹枝状Niコート銅粉40gに対して、フェノール樹脂(群栄化学株式会社製,PL-2211)20gと、ブチルセロソルブ(関東化学株式会社製,鹿特級)10gを混と合し、小型ニーダー(株式会社日本精機製作所製,ノンバブリングニーダーNBK-1)を用いて、1200rpm、3分間の混錬を3回繰り返すことによってペースト化した。ペースト化に際しては、銅粉が凝集することなく、樹脂中に均一に分散した。得られた導電ペーストを金属スキージでガラス上に印刷し、大気雰囲気中にて200℃で30分間かけて硬化させた。 That is, 20 g of phenol resin (manufactured by Gunei Chemical Co., Ltd., PL-2211) and 10 g of butyl cellosolve (manufactured by Kanto Chemical Co., Ltd., deer special grade) are mixed with 40 g of the prepared dendritic Ni-coated copper powder, Using a small kneader (Nippon Seiki Seisakusho Co., Ltd., non-bubbling kneader NBK-1), it was made into a paste by repeating kneading at 1200 rpm for 3 minutes three times. During pasting, the copper powder was uniformly dispersed in the resin without agglomeration. The obtained conductive paste was printed on a glass with a metal squeegee and cured at 200 ° C. for 30 minutes in an air atmosphere.
 硬化により得られた被膜の比抵抗値は、8.8×10-5Ω・cmであり、優れた導電性を示すことが分かった。 The specific resistance value of the film obtained by curing was 8.8 × 10 −5 Ω · cm, and it was found that excellent conductivity was exhibited.
 [実施例35]
 <電解銅粉の作製>
 電解液として、銅イオン濃度が10g/L、硫酸濃度が125g/Lの組成のものを用い、その電解液に、添加剤としてサフラニンを電解液中の濃度として150mg/Lとなるように添加し、さらに塩酸溶液を電解液中の塩化物イオン濃度として100mg/Lとなるように添加したこと以外は、実施例34と同じ条件で電解銅粉(樹枝状銅粉)を陰極板上に析出させた。
[Example 35]
<Preparation of electrolytic copper powder>
As the electrolytic solution, a composition having a copper ion concentration of 10 g / L and a sulfuric acid concentration of 125 g / L is used, and safranin is added to the electrolytic solution so that the concentration in the electrolytic solution is 150 mg / L. Further, an electrolytic copper powder (dendritic copper powder) was deposited on the cathode plate under the same conditions as in Example 34 except that a hydrochloric acid solution was added so that the chloride ion concentration in the electrolytic solution was 100 mg / L. It was.
 <樹枝状Niコート銅粉の作製(還元剤:ホウ水素化合物)>
 次に、得られた樹枝状銅粉100gを用いて、無電解Niめっきによりその銅粉表面にNi被覆を行い、Niコート銅粉を作製した。なお、還元剤がホウ水素化合物である無電解Niめっき液を用いた。
<Preparation of dendritic Ni-coated copper powder (reducing agent: borohydride)>
Next, 100 g of the obtained dendritic copper powder was used to perform Ni coating on the surface of the copper powder by electroless Ni plating to prepare a Ni-coated copper powder. In addition, the electroless Ni plating solution whose reducing agent is a borohydride compound was used.
 具体的には、無電解Niめっき液として、硫酸ニッケル30g/L、コハク酸ナトリウム50g/L、ホウ酸30g/L、塩化アンモニウム30g/L、ジメチルアミンボラン4g/Lを各濃度で添加し、さらに水酸化ナトリウムを添加してpH6.0に調整しためっき液を500mL用意した。 Specifically, as an electroless Ni plating solution, nickel sulfate 30 g / L, sodium succinate 50 g / L, boric acid 30 g / L, ammonium chloride 30 g / L, dimethylamine borane 4 g / L were added at each concentration, Further, 500 mL of a plating solution adjusted to pH 6.0 by adding sodium hydroxide was prepared.
 この無電解Niめっき液に、上述した方法で作製した樹枝状銅粉100gを水100mL中に分散させたスラリーをNiめっき液中に入れ、25℃で10分間撹拌した後、浴温を60℃まで加熱して60分間撹拌した。 In this electroless Ni plating solution, a slurry in which 100 g of the dendritic copper powder prepared by the above-described method is dispersed in 100 mL of water is placed in the Ni plating solution and stirred at 25 ° C. for 10 minutes, and then the bath temperature is set to 60 ° C. And stirred for 60 minutes.
 反応が終了した後、粉末をろ過、水洗してエタノールを通じて乾燥させたところ、樹枝状銅粉の表面にNi合金が被覆されたNiコート銅粉が得られた。そのNiコート銅粉を回収してNiの含有量を測定したところ、当該Niコート銅粉全体の質量100%に対して18.8質量%であった。また、Ni合金中に含まれるボロン(B)の含有量はNi合金の質量100%に対して6.4質量%であった。 After the reaction was completed, the powder was filtered, washed with water, and dried through ethanol. As a result, Ni-coated copper powder in which the surface of the dendritic copper powder was coated with Ni alloy was obtained. When the Ni-coated copper powder was recovered and the Ni content was measured, it was 18.8% by mass with respect to 100% by mass of the entire Ni-coated copper powder. Further, the content of boron (B) contained in the Ni alloy was 6.4% by mass with respect to 100% by mass of the Ni alloy.
 また、得られたNiコート銅粉をSEMにより倍率5,000倍の視野で観察した結果、少なくとも90個数%以上のNiコート銅粉は、Ni被覆する前の樹枝状銅粉の表面に均一にNiが被覆された、2次元又は3次元の樹枝状の形状のNiコート銅粉であって、直線的に成長した主幹と、その主幹から直線的に分岐した複数の枝と、さらにその枝からさらに分岐した枝とを有する樹枝状形状を呈した樹枝状Niコート銅粉であった。 Further, as a result of observing the obtained Ni-coated copper powder with a field of view of 5,000 times by SEM, at least 90% by number or more of Ni-coated copper powder is uniformly on the surface of the dendritic copper powder before Ni coating. Ni-coated copper powder having a Ni-coated two-dimensional or three-dimensional dendritic shape, the main trunk growing linearly, a plurality of branches linearly branching from the main trunk, and further from the branches Furthermore, it was a dendritic Ni-coated copper powder having a dendritic shape having branched branches.
 また、その樹枝状Niコート銅粉の主幹及び枝を構成する銅粒子は、その断面厚さが平均0.23μmの平板状の形状であった。また、この樹枝状Niコート銅粉の平均粒子径(D50)は9.4μmであった。 Further, the copper particles constituting the main trunk and branches of the dendritic Ni-coated copper powder had a flat plate shape with an average cross-sectional thickness of 0.23 μm. Moreover, the average particle diameter (D50) of this dendritic Ni coat copper powder was 9.4 micrometers.
 さらに、得られた樹枝状Niコート銅粉銅粉の嵩密度は0.53g/cmであった。また、BET比表面積は1.94m/gであった。 Furthermore, the bulk density of the obtained dendritic Ni-coated copper powder copper powder was 0.53 g / cm 3 . Further, the BET specific surface area was 1.94 m 2 / g.
 <導電性ペースト化>
 次に、得られた樹枝状Niコート銅粉をペースト化して導電性ペーストを作製した。
<Conductive paste>
Next, the obtained dendritic Ni-coated copper powder was made into a paste to produce a conductive paste.
 すなわち、作製した樹枝状Niコート銅粉40gに対して、フェノール樹脂(群栄化学株式会社製,PL-2211)20gと、ブチルセロソルブ(関東化学株式会社製,鹿特級)10gとを混合し、小型ニーダー(株式会社日本精機製作所製,ノンバブリングニーダーNBK-1)を用いて、1200rpm、3分間の混錬を3回繰り返すことによってペースト化した。ペースト化に際しては、銅粉が凝集することなく、樹脂中に均一に分散した。得られた導電ペーストを金属スキージでガラス上に印刷し、大気雰囲気中にて200℃で30分間かけて硬化させた。 That is, 20 g of a phenol resin (manufactured by Gunei Chemical Co., Ltd., PL-2211) and 10 g of butyl cellosolve (manufactured by Kanto Chemical Co., Ltd., deer special grade) are mixed with 40 g of the prepared dendritic Ni-coated copper powder to produce a small size. Using a kneader (manufactured by Nippon Seiki Seisakusho Co., Ltd., non-bubbling kneader NBK-1), kneading at 1200 rpm for 3 minutes was repeated three times to form a paste. During pasting, the copper powder was uniformly dispersed in the resin without agglomeration. The obtained conductive paste was printed on a glass with a metal squeegee and cured at 200 ° C. for 30 minutes in an air atmosphere.
 硬化により得られた被膜の比抵抗値は、8.4×10-5Ω・cmであり、優れた導電性を示すことが分かった。 The specific resistance value of the film obtained by curing was 8.4 × 10 −5 Ω · cm, and it was found that excellent conductivity was exhibited.
 [実施例36]
 <樹枝状Niコート銅粉の製造(還元剤:ヒドラジン化合物)>
 実施例35で得られた樹枝状銅粉100gを用いて、無電解Niめっきによりその銅粉表面にNi被覆を行い、Niコート銅粉を作製した。なお、還元剤をヒドラジン化合物とした無電解Niめっきを行った。
[Example 36]
<Production of dendritic Ni-coated copper powder (reducing agent: hydrazine compound)>
Using 100 g of the dendritic copper powder obtained in Example 35, Ni was coated on the surface of the copper powder by electroless Ni plating to prepare a Ni-coated copper powder. Electroless Ni plating using a hydrazine compound as a reducing agent was performed.
 具体的に、実施例35で得られた樹枝状銅粉100gを水500mL中に分散させたスラリーに酢酸ニッケルを濃度12.4g/Lとなるよう添加し、ヒドラジン一水和物80質量%水溶液6gをその浴中に60分間にわたり徐々に撹拌しながら滴下した。このとき、浴温は60℃になるように管理した。 Specifically, nickel acetate was added to a slurry in which 100 g of the dendritic copper powder obtained in Example 35 was dispersed in 500 mL of water to a concentration of 12.4 g / L, and an 80% by mass aqueous solution of hydrazine monohydrate. 6 g was added dropwise into the bath with slow stirring over 60 minutes. At this time, the bath temperature was controlled to 60 ° C.
 反応が終了した後、粉末をろ過、水洗してエタノールを通じて乾燥させたところ、樹枝状銅粉の表面にNiが被覆されたNiコート銅粉が得られた。そのNiコート銅粉を回収してNiの含有量を測定したところ、当該Niコート銅粉全体の質量100%に対して7.6質量%であった。 After the reaction was completed, the powder was filtered, washed with water, and dried through ethanol. As a result, Ni-coated copper powder in which the surface of the dendritic copper powder was coated with Ni was obtained. When the Ni-coated copper powder was recovered and the Ni content was measured, it was 7.6% by mass with respect to 100% by mass of the entire Ni-coated copper powder.
 また、得られたNiコート銅粉をSEMにより倍率5,000倍の視野で観察した結果、少なくとも90個数%以上のNiコート銅粉は、Ni被覆する前の樹枝状銅粉の表面に均一にNiが被覆された、2次元又は3次元の樹枝状の形状の樹枝状Niコート銅粉であって、直線的に成長した主幹と、その主幹から直線的に分岐した複数の枝と、さらにその枝からさらに分岐した枝とを有する樹枝状形状を呈した樹枝状Niコート銅粉であった。 Further, as a result of observing the obtained Ni-coated copper powder with a field of view of 5,000 times by SEM, at least 90% by number or more of Ni-coated copper powder is uniformly on the surface of the dendritic copper powder before Ni coating. A dendritic Ni-coated copper powder coated with Ni and having a two-dimensional or three-dimensional dendritic shape, the main trunk growing linearly, and a plurality of branches linearly branched from the main trunk, and The dendritic Ni-coated copper powder had a dendritic shape having branches further branched from the branches.
 また、その樹枝状Niコート銅粉の主幹及び枝を構成する銅粒子は、その断面厚さが平均0.23μmの平板状の形状であった。また、この樹枝状Niコート銅粉の平均粒子径(D50)は9.6μmであった。 Further, the copper particles constituting the main trunk and branches of the dendritic Ni-coated copper powder had a flat plate shape with an average cross-sectional thickness of 0.23 μm. Moreover, the average particle diameter (D50) of this dendritic Ni coat copper powder was 9.6 micrometers.
 また、得られた樹枝状Niコート銅粉の嵩密度は0.52g/cmであった。また、BET比表面積は1.98m/gであった。 Moreover, the bulk density of the obtained dendritic Ni-coated copper powder was 0.52 g / cm 3 . Moreover, the BET specific surface area was 1.98 m < 2 > / g.
 <導電性ペースト化>
 次に、得られた樹枝状Niコート銅粉をペースト化して導電性ペーストを作製した。
<Conductive paste>
Next, the obtained dendritic Ni-coated copper powder was made into a paste to produce a conductive paste.
 すなわち、作製した樹枝状Niコート銅粉40gに対して、フェノール樹脂(群栄化学株式会社製,PL-2211)20gと、ブチルセロソルブ(関東化学株式会社製,鹿特級)10gとを混合し、小型ニーダー(株式会社日本精機製作所製,ノンバブリングニーダーNBK-1)を用いて、1200rpm、3分間の混錬を3回繰り返すことによってペースト化した。ペースト化に際しては、銅粉が凝集することなく、樹脂中に均一に分散した。得られた導電ペーストを金属スキージでガラス上に印刷し、大気雰囲気中にて200℃で30分間かけて硬化させた。 That is, 20 g of a phenol resin (manufactured by Gunei Chemical Co., Ltd., PL-2211) and 10 g of butyl cellosolve (manufactured by Kanto Chemical Co., Ltd., deer special grade) are mixed with 40 g of the prepared dendritic Ni-coated copper powder to produce a small size. Using a kneader (manufactured by Nippon Seiki Seisakusho Co., Ltd., non-bubbling kneader NBK-1), kneading at 1200 rpm for 3 minutes was repeated three times to form a paste. During pasting, the copper powder was uniformly dispersed in the resin without agglomeration. The obtained conductive paste was printed on a glass with a metal squeegee and cured at 200 ° C. for 30 minutes in an air atmosphere.
 硬化により得られた被膜の比抵抗値は、6.2×10-5Ω・cmであり、優れた導電性を示すことが分かった。 The specific resistance value of the film obtained by curing was 6.2 × 10 −5 Ω · cm, and it was found that the film exhibited excellent conductivity.
 [実施例37~43]
 <樹枝状Niコート銅粉の製造(Ni合金)>
 実施例35で得られた樹枝状銅粉100gを用いて、無電解めっきによりその銅粉表面にNi合金被覆を行った。
[Examples 37 to 43]
<Manufacture of dendritic Ni-coated copper powder (Ni alloy)>
Using 100 g of the dendritic copper powder obtained in Example 35, the surface of the copper powder was coated with a Ni alloy by electroless plating.
 合金用無電解Niめっき液としては、実施例35で得られた樹枝状銅粉100gを水500mL中に分散させたスラリーに酢酸ニッケルを濃度12.4g/Lとなるよう添加し、ヒドラジン3.2gをその浴中に60分間にわたり徐々に撹拌しながら滴下した。なお、浴温は60℃になるように管理した。 As an electroless Ni plating solution for alloys, nickel acetate was added to a slurry in which 100 g of the dendritic copper powder obtained in Example 35 was dispersed in 500 mL of water to a concentration of 12.4 g / L, and hydrazine 3. 2 g was added dropwise into the bath over 60 minutes with slow stirring. The bath temperature was controlled to 60 ° C.
 このとき、それぞれ所望とするNi合金被膜が形成されるように、それぞれの金属化合物を銅粉スラリーと酢酸ニッケルを含む浴中に添加し、さらにヒドラジンを徐々に添加した。金属化合物としては、実施例37では、タングステン酸ナトリウムを1.5g添加してNi-W合金被膜を形成させた。また、実施例38では、硫酸コバルトを2g添加してNi-Co合金被膜を形成させた。また、実施例39では、硫酸亜鉛七水和物とクエン酸ナトリウムとをそれぞれ4gずつ添加してNi-Zn合金被膜を形成させた。また、実施例40では、塩化パラジウムを2g添加してNi-Pd合金被膜を形成させた。また、実施例41では、テトラクロロ白金酸カリウム2gとグリシン1gとをそれぞれ添加してNi-Pt合金被膜を形成させた。また、実施例42では、モリブデン酸ナトリウムとクエン酸三ナトリウムとをそれぞれ1gずつ添加してNi-Mo合金被膜を形成させた。また、実施例43では、スズ酸ナトリウムを1g添加してNi-Sn合金被膜を形成させた。 At this time, each metal compound was added to a bath containing a copper powder slurry and nickel acetate, and hydrazine was gradually added so that each desired Ni alloy film was formed. In Example 37, as the metal compound, 1.5 g of sodium tungstate was added to form a Ni—W alloy film. In Example 38, 2 g of cobalt sulfate was added to form a Ni—Co alloy film. In Example 39, 4 g each of zinc sulfate heptahydrate and sodium citrate were added to form a Ni—Zn alloy coating. In Example 40, 2 g of palladium chloride was added to form a Ni—Pd alloy film. In Example 41, 2 g of potassium tetrachloroplatinate and 1 g of glycine were added to form a Ni—Pt alloy film. In Example 42, 1 g of each of sodium molybdate and trisodium citrate was added to form a Ni—Mo alloy film. In Example 43, 1 g of sodium stannate was added to form a Ni—Sn alloy film.
 それぞれ反応が終了した後、粉末をろ過、水洗してエタノールを通じて乾燥させたところ、樹枝状銅粉の表面にNiが被覆されたNiコート銅粉が得られた。そのNiコート銅粉を回収してNi合金被覆量を測定した。表3に、当該Niコート銅粉全体の質量100%に対するNiの含有量、及びNi合金の質量100%に対してNi合金となる元素の含有量を測定した結果を示す。 After the reaction was completed, the powder was filtered, washed with water and dried through ethanol. As a result, Ni-coated copper powder in which the surface of the dendritic copper powder was coated with Ni was obtained. The Ni-coated copper powder was recovered and the Ni alloy coating amount was measured. Table 3 shows the results of measuring the content of Ni with respect to 100% by mass of the entire Ni-coated copper powder and the content of elements that become Ni alloys with respect to 100% by mass of the Ni alloy.
 また、得られたNiコート銅粉のそれぞれをSEMにより倍率5,000倍の視野で観察した結果、いずれも、少なくとも90個数%以上のNiコート銅粉は、Ni被覆する前の樹枝状銅粉の表面に均一にNiが被覆された、2次元又は3次元の樹枝状の形状の樹枝状Niコート銅粉であって、直線的に成長した主幹と、その主幹から直線的に分岐した複数の枝と、さらにその枝からさらに分岐した枝とを有する樹枝状形状を呈した樹枝状Niコート銅粉であった。 In addition, as a result of observing each of the obtained Ni-coated copper powder with a field of view of 5,000 times by SEM, at least 90% by number or more of Ni-coated copper powder is dendritic copper powder before Ni coating. A Ni-coated copper powder having a two-dimensional or three-dimensional dendritic shape in which Ni is uniformly coated on the surface of the main body, and a plurality of linearly branched main trunks and a plurality of linear branches from the main trunk The dendritic Ni-coated copper powder had a dendritic shape having a branch and a branch further branched from the branch.
 また、これら樹枝状Niコート銅粉について、その平均粒子径(D50)、嵩密度、BET比表面積を測定した。表3に、これらの測定結果をまとめて示す。 Further, the average particle diameter (D50), bulk density, and BET specific surface area of these dendritic Ni-coated copper powders were measured. Table 3 summarizes these measurement results.
 <導電性ペースト化>
 次に、得られた各樹枝状Niコート銅粉をペースト化して導電性ペーストを作製した。
<Conductive paste>
Next, each obtained dendritic Ni-coated copper powder was made into a paste to produce a conductive paste.
 すなわち、作製した樹枝状Niコート銅粉40gに対して、フェノール樹脂(群栄化学株式会社製,PL-2211)20gと、ブチルセロソルブ(関東化学株式会社製,鹿特級)10gとを混合し、小型ニーダー(株式会社日本精機製作所製,ノンバブリングニーダーNBK-1)を用いて、1200rpm、3分間の混錬を3回繰り返すことによってペースト化した。ペースト化に際しては、銅粉が凝集することなく、樹脂中に均一に分散した。得られた導電ペーストを金属スキージでガラス上に印刷し、大気雰囲気中にて200℃で30分間かけて硬化させた。 That is, 20 g of a phenol resin (manufactured by Gunei Chemical Co., Ltd., PL-2211) and 10 g of butyl cellosolve (manufactured by Kanto Chemical Co., Ltd., deer special grade) are mixed with 40 g of the prepared dendritic Ni-coated copper powder to produce a small size. Using a kneader (manufactured by Nippon Seiki Seisakusho Co., Ltd., non-bubbling kneader NBK-1), kneading at 1200 rpm for 3 minutes was repeated three times to form a paste. During pasting, the copper powder was uniformly dispersed in the resin without agglomeration. The obtained conductive paste was printed on a glass with a metal squeegee and cured at 200 ° C. for 30 minutes in an air atmosphere.
 表3に、硬化により得られた被膜の比抵抗値を測定した結果を示す。表3に示すように、いずれの被膜も優れた導電性を示すことが分かった。 Table 3 shows the result of measuring the specific resistance value of the coating obtained by curing. As shown in Table 3, it was found that all the coating films showed excellent conductivity.
 [実施例44]
 <樹枝状Niコート銅粉の製造(次亜リン酸塩+タングステン化合物)>
 実施例44では、実施例34にて作製した樹枝状銅粉100gを用いて、無電解めっきによりその銅粉表面にNi合金被覆を行った。
[Example 44]
<Manufacture of dendritic Ni-coated copper powder (hypophosphite + tungsten compound)>
In Example 44, 100 g of the dendritic copper powder prepared in Example 34 was used, and the copper powder surface was coated with a Ni alloy by electroless plating.
 無電解Niめっき液としては、実施例1と同じ還元剤として次亜リン酸塩を含むめっき液を用い、このめっき液中にNi以外の金属を添加してNi合金を作製した。 As the electroless Ni plating solution, a plating solution containing hypophosphite as the same reducing agent as in Example 1 was used, and a metal other than Ni was added to the plating solution to produce a Ni alloy.
 具体的には、無電解Niめっき液として、硫酸ニッケル20g/L、次亜リン酸ナトリウム25g/L、酢酸ナトリウム10g/L、クエン酸ナトリウム10g/Lを各濃度で添加しためっき液に、さらにタングステン酸ナトリウムを1.5g添加し、水酸化ナトリウムを添加してpH5.0に調整しためっき液を500mL用意した。 Specifically, as an electroless Ni plating solution, a plating solution in which nickel sulfate 20 g / L, sodium hypophosphite 25 g / L, sodium acetate 10 g / L, and sodium citrate 10 g / L are added at each concentration, 500 g of a plating solution prepared by adding 1.5 g of sodium tungstate and adjusting the pH to 5.0 by adding sodium hydroxide was prepared.
 この無電解Niめっき液に、実施例34にて作製した樹枝状銅粉100gを水100mL中に分散させたスラリーを入れ、25℃で10分間撹拌した後、浴温を90℃まで加熱して60分間撹拌した。 In this electroless Ni plating solution, a slurry obtained by dispersing 100 g of the dendritic copper powder prepared in Example 34 in 100 mL of water was stirred for 10 minutes at 25 ° C., and then the bath temperature was heated to 90 ° C. Stir for 60 minutes.
 反応が終了した後、粉末をろ過、水洗してエタノールを通じて乾燥させたところ、Ni-W-P合金が被覆されたNiコート銅粉が得られた。そのNiコート銅粉を回収してNiの含有量を測定したところ、当該Niコート銅粉全体の質量100%に対して12.4質量%であった。また、Ni合金中に含まれるPの含有量はNi合金の質量100%に対して7.4質量%であった。また、Ni合金中に含まれるWの含有量はNi合金の質量100%に対して5.4質量%であった。 After the reaction was completed, the powder was filtered, washed with water, and dried through ethanol. As a result, Ni-coated copper powder coated with a Ni—WP alloy was obtained. When the Ni-coated copper powder was recovered and the Ni content was measured, it was 12.4% by mass with respect to 100% by mass of the entire Ni-coated copper powder. The content of P contained in the Ni alloy was 7.4% by mass with respect to 100% by mass of the Ni alloy. Moreover, content of W contained in Ni alloy was 5.4 mass% with respect to 100 mass of Ni alloy.
 得られたNiコート銅粉をSEMにより倍率5,000倍の視野で観察した結果、少なくとも90個数%以上のNiコート銅粉は、Ni被覆する前の樹枝状銅粉の表面に均一にNi合金が被覆された、2次元又は3次元の樹枝状の形状の樹枝状Niコート銅粉であって、直線的に成長した主幹と、その主幹から直線的に分岐した複数の枝と、さらにその枝からさらに分岐した枝とを有する樹枝状形状を呈した樹枝状Niコート銅粉であった。 As a result of observing the obtained Ni-coated copper powder with a field of view at a magnification of 5,000 by SEM, at least 90% Ni-coated copper powder is uniformly Ni alloy on the surface of the dendritic copper powder before Ni coating. A two-dimensional or three-dimensional dendritic Ni-coated copper powder coated with a main body that grows linearly, a plurality of branches that branch linearly from the main trunk, and the branches It was a dendritic Ni-coated copper powder having a dendritic shape having branches further branched from.
 また、その樹枝状Niコート銅粉の主幹及び枝を構成する銅粒子は、断面厚さが平均で0.43μmの平板状の形状であり、この銅粒子により樹枝状の形状に構成されていた。また、その樹枝状Niコート銅粉の平均粒子径(D50)は25.6μmであった。 Further, the copper particles constituting the main trunk and branches of the dendritic Ni-coated copper powder had a flat plate shape with an average cross-sectional thickness of 0.43 μm, and the copper particles were formed into a dendritic shape. . The average particle diameter (D50) of the dendritic Ni-coated copper powder was 25.6 μm.
 また、得られた樹枝状Niコート銅粉の嵩密度は1.87g/cmであった。また、BET比表面積は0.88m/gであった。 Moreover, the bulk density of the obtained dendritic Ni-coated copper powder was 1.87 g / cm 3 . Moreover, the BET specific surface area was 0.88 m < 2 > / g.
 <導電性ペースト化>
 次に、得られた各樹枝状Niコート銅粉をペースト化して導電性ペーストを作製した。
<Conductive paste>
Next, each obtained dendritic Ni-coated copper powder was made into a paste to produce a conductive paste.
 すなわち、作製した樹枝状Niコート銅粉10gと、球状の形状を呈した球状Niコート銅粉30gとに対して、フェノール樹脂(群栄化学株式会社製,PL-2211)20gと、ブチルセロソルブ(関東化学株式会社製,鹿特級)10gとを混合し、小型ニーダー(株式会社日本精機製作所製,ノンバブリングニーダーNBK-1)を用いて、1200rpm、3分間の混錬を3回繰り返すことによってペースト化した。ペースト化に際しては、銅粉が凝集することなく、樹脂中に均一に分散した。得られた導電ペーストを金属スキージでガラス上に印刷し、大気雰囲気中にて200℃で30分間かけて硬化させた。 That is, 10 g of the prepared dendritic Ni-coated copper powder and 30 g of spherical Ni-coated copper powder having a spherical shape, 20 g of phenol resin (PL-2211 manufactured by Gunei Chemical Co., Ltd.) and butyl cellosolve (Kanto) 10g made by Kagaku Co., Ltd., deer special grade), and paste using a small kneader (Nippon Seiki Seisakusho, non-bubbling kneader NBK-1) by repeating kneading at 1200 rpm for 3 minutes three times. did. During pasting, the copper powder was uniformly dispersed in the resin without agglomeration. The obtained conductive paste was printed on a glass with a metal squeegee and cured at 200 ° C. for 30 minutes in an air atmosphere.
 硬化により得られた被膜の比抵抗値は、9.8×10-5Ω・cmであり、優れた導電性を示すことが分かった。 The specific resistance value of the film obtained by curing was 9.8 × 10 −5 Ω · cm, and it was found that excellent conductivity was exhibited.
 [実施例45]
 <電解銅粉の作製>
 電解液として、銅イオン濃度が5g/L、硫酸濃度が150g/Lの組成のものを用い、その電解液に、添加剤としてサフラニンを電解液中の濃度として100mg/Lとなるように添加し、さらに塩酸溶液を電解液中の塩化物イオン濃度として10mg/Lとなるように添加したこと以外は、実施例34と同じ条件で電解銅粉(樹枝状銅粉)を陰極板上に析出させた。
[Example 45]
<Preparation of electrolytic copper powder>
As the electrolytic solution, a composition having a copper ion concentration of 5 g / L and a sulfuric acid concentration of 150 g / L was used, and safranin was added to the electrolytic solution so that the concentration in the electrolytic solution was 100 mg / L. Further, an electrolytic copper powder (dendritic copper powder) was deposited on the cathode plate under the same conditions as in Example 34 except that a hydrochloric acid solution was added so that the chloride ion concentration in the electrolytic solution was 10 mg / L. It was.
 <樹枝状Niコート銅粉の製造(還元剤:次亜リン酸塩)>
 次に、上述した方法で作製した樹枝状銅粉を用い、樹枝状銅粉の表面に実施例34と同じ条件でNi-P合金被膜を形成させた。
<Production of dendritic Ni-coated copper powder (reducing agent: hypophosphite)>
Next, using the dendritic copper powder produced by the method described above, a Ni—P alloy film was formed on the surface of the dendritic copper powder under the same conditions as in Example 34.
 反応が終了した後、粉末をろ過、水洗してエタノールを通じて乾燥させたところ、樹枝状銅粉の表面にPを含むNi合金が被覆されたNiコート銅粉が得られた。そのNiコート銅粉を回収してNiの含有量を測定したところ、当該Niコート銅粉全体の質量100%に対して13.1質量%であった。また、Ni合金中に含まれるPの含有量はNi合金の質量100%に対して8.6質量%であった。 After completion of the reaction, the powder was filtered, washed with water, and dried through ethanol. As a result, Ni-coated copper powder in which Ni alloy containing P was coated on the surface of dendritic copper powder was obtained. When the Ni-coated copper powder was recovered and the Ni content was measured, it was 13.1% by mass with respect to 100% by mass of the entire Ni-coated copper powder. The content of P contained in the Ni alloy was 8.6% by mass with respect to 100% by mass of the Ni alloy.
 また、得られた樹枝状Niコート銅粉をSEMにより倍率5,000倍の視野で観察した結果、少なくとも90個数%以上のNiコート銅粉は、Ni被覆する前の樹枝状銅粉の表面に均一にNiが被覆された、2次元又は3次元の樹枝状の形状のNiコート銅粉であって、直線的に成長した主幹と、その主幹から直線的に分岐した複数の枝と、さらにその枝からさらに分岐した枝とを有する樹枝状形状を呈した樹枝状Niコート銅粉であった。 Moreover, as a result of observing the obtained dendritic Ni-coated copper powder with a field of view of 5,000 times by SEM, at least 90% by number or more of Ni-coated copper powder was found on the surface of the dendritic copper powder before Ni coating. A Ni-coated copper powder having a two-dimensional or three-dimensional dendritic shape uniformly coated with Ni, and a main trunk that grows linearly, and a plurality of branches that linearly branch from the main trunk, and further The dendritic Ni-coated copper powder had a dendritic shape having branches further branched from the branches.
 また、その樹枝状Niコート銅粉の主幹及び枝を構成する銅粒子は、断面厚さが平均で3.7μmの平板状の形状であり、この銅粒子により樹枝状の形状に構成されていた。また、その樹枝状Niコート銅粉の平均粒子径(D50)は61.8μmであった。 Further, the copper particles constituting the main trunk and branches of the dendritic Ni-coated copper powder had a flat plate shape with an average cross-sectional thickness of 3.7 μm, and the copper particles were formed into a dendritic shape. . The average particle diameter (D50) of the dendritic Ni-coated copper powder was 61.8 μm.
 また、得られた樹枝状Niコート銅粉の嵩密度は3.2g/cmであった。また、BET比表面積は1.02m/gであった。 Moreover, the bulk density of the obtained dendritic Ni-coated copper powder was 3.2 g / cm 3 . The BET specific surface area was 1.02 m 2 / g.
 <導電性ペースト化>
 次に、得られた樹枝状Niコート銅粉をペースト化して導電性ペーストを作製した。
<Conductive paste>
Next, the obtained dendritic Ni-coated copper powder was made into a paste to produce a conductive paste.
 すなわち、作製した樹枝状Niコート銅粉40gに対して、フェノール樹脂(群栄化学株式会社製,PL-2211)20gと、ブチルセロソルブ(関東化学株式会社製,鹿特級)10gとを混合し、小型ニーダー(株式会社日本精機製作所製,ノンバブリングニーダーNBK-1)を用いて、1200rpm、3分間の混錬を3回繰り返すことによってペースト化した。ペースト化に際しては、銅粉が凝集することなく、樹脂中に均一に分散した。得られた導電ペーストを金属スキージでガラス上に印刷し、大気雰囲気中にて200℃で30分間かけて硬化させた。 That is, 20 g of a phenol resin (manufactured by Gunei Chemical Co., Ltd., PL-2211) and 10 g of butyl cellosolve (manufactured by Kanto Chemical Co., Ltd., deer special grade) are mixed with 40 g of the prepared dendritic Ni-coated copper powder to produce a small size. Using a kneader (manufactured by Nippon Seiki Seisakusho Co., Ltd., non-bubbling kneader NBK-1), kneading at 1200 rpm for 3 minutes was repeated three times to form a paste. During pasting, the copper powder was uniformly dispersed in the resin without agglomeration. The obtained conductive paste was printed on a glass with a metal squeegee and cured at 200 ° C. for 30 minutes in an air atmosphere.
 硬化により得られた被膜の比抵抗値は、9.2×10-5Ω・cmであり、優れた導電性を示すことが分かった。 The specific resistance value of the film obtained by curing was 9.2 × 10 −5 Ω · cm, and it was found that excellent electrical conductivity was exhibited.
 [実施例46]
 実施例34にて作製した樹枝状Niコート銅粉を樹脂に分散させて電磁波シールド材とした。なお、樹枝状Niコート銅粉を作製するための樹枝状銅粉の作製、及び、その樹枝状銅粉にNi合金を被覆して樹枝状Niコート銅粉を作製するまでの条件は、実施例1と同様とし、その樹枝状Niコート銅粉のNiの含有量は、当該樹枝状Niコート銅粉全体の質量100%に対して13.5質量%で、Ni合金中に含まれるPの含有量はNi合金の質量100%に対して8.2質量%である樹枝状Niコート銅粉を使用した。
[Example 46]
The dendritic Ni-coated copper powder produced in Example 34 was dispersed in a resin to obtain an electromagnetic wave shielding material. The preparation of the dendritic copper powder for producing the dendritic Ni-coated copper powder, and the conditions until the dendritic copper powder is coated with a Ni alloy to produce the dendritic Ni-coated copper powder are described in the Examples. 1, the Ni content of the dendritic Ni-coated copper powder is 13.5% by mass with respect to 100% by mass of the entire dendritic Ni-coated copper powder, and the content of P contained in the Ni alloy The amount of dendritic Ni-coated copper powder was 8.2% by mass with respect to 100% by mass of the Ni alloy.
 この樹枝状Niコート銅粉40gに対して、塩化ビニル樹脂100gと、メチルエチルケトン200gとをそれぞれ混合し、小型ニーダーを用いて、1200rpm、3分間の混錬を3回繰り返すことによってペースト化した。ペースト化に際しては、銅粉が凝集することなく、樹脂中に均一に分散した。これを100μmの厚さの透明ポリエチレンテレフタレートシートからなる基材の上にメイヤーバーを用いて塗布・乾燥し、厚さ25μmの電磁波シールド層を形成した。 A 40 g of this dendritic Ni-coated copper powder was mixed with 100 g of vinyl chloride resin and 200 g of methyl ethyl ketone, and paste was made by repeating kneading at 1200 rpm for 3 minutes three times using a small kneader. During pasting, the copper powder was uniformly dispersed in the resin without agglomeration. This was coated and dried using a Mayer bar on a substrate made of a transparent polyethylene terephthalate sheet having a thickness of 100 μm to form an electromagnetic wave shielding layer having a thickness of 25 μm.
 電磁波シールド特性については、周波数1GHzの電磁波を用いて、その減衰率を測定することによって評価した。表3に、これらの結果を示す。 The electromagnetic shielding characteristics were evaluated by measuring the attenuation rate using an electromagnetic wave having a frequency of 1 GHz. Table 3 shows these results.
 [実施例47]
 実施例38にて作製した樹枝状Niコート銅粉を樹脂に分散させて電磁波シールド材とした。なお、樹枝状Niコート銅粉を作製するための樹枝状銅粉の作製、及び、その樹枝状銅粉にNi合金を被覆して樹枝状Niコート銅粉を作製するまでの条件は、実施例38と同様とし、その樹枝状Niコート銅粉のNiの含有量は、当該樹枝状Niコート銅粉全体の質量100%に対して12.4質量%、Ni合金中に含まれるPの含有量はNi合金の質量100%に対して7.4質量%、Ni合金中に含まれるWの含有量はNi合金の質量100%に対して5.4質量%である樹枝状Niコート銅粉を使用した。
[Example 47]
The dendritic Ni-coated copper powder produced in Example 38 was dispersed in a resin to obtain an electromagnetic wave shielding material. The preparation of the dendritic copper powder for producing the dendritic Ni-coated copper powder, and the conditions until the dendritic copper powder is coated with a Ni alloy to produce the dendritic Ni-coated copper powder are described in the Examples. 38. The Ni content of the dendritic Ni-coated copper powder is 12.4% by mass with respect to 100% by mass of the entire dendritic Ni-coated copper powder, and the content of P contained in the Ni alloy The dendritic Ni-coated copper powder is 7.4% by mass with respect to 100% by mass of the Ni alloy, and the W content in the Ni alloy is 5.4% by mass with respect to 100% by mass of the Ni alloy. used.
 この樹枝状Niコート銅粉40gに対して、塩化ビニル樹脂100gと、メチルエチルケトン200gとをそれぞれ混合し、小型ニーダーを用いて、1200rpm、3分間の混錬を3回繰り返すことによってペースト化した。ペースト化に際しては、銅粉が凝集することなく、樹脂中に均一に分散した。これを100μmの厚さの透明ポリエチレンテレフタレートシートからなる基材の上にメイヤーバーを用いて塗布・乾燥し、厚さ25μmの電磁波シールド層を形成した。 A 40 g of this dendritic Ni-coated copper powder was mixed with 100 g of vinyl chloride resin and 200 g of methyl ethyl ketone, and paste was made by repeating kneading at 1200 rpm for 3 minutes three times using a small kneader. During pasting, the copper powder was uniformly dispersed in the resin without agglomeration. This was coated and dried using a Mayer bar on a substrate made of a transparent polyethylene terephthalate sheet having a thickness of 100 μm to form an electromagnetic wave shielding layer having a thickness of 25 μm.
 電磁波シールド特性については、周波数1GHzの電磁波を用いて、その減衰率を測定することによって評価した。表3に、これらの結果を示す。 The electromagnetic shielding characteristics were evaluated by measuring the attenuation rate using an electromagnetic wave having a frequency of 1 GHz. Table 3 shows these results.
 [実施例48]
 実施例45にて作製した樹枝状Niコート銅粉を樹脂に分散させて電磁波シールド材とした。なお、樹枝状Niコート銅粉を作製するための樹枝状銅粉の作製、及び、その樹枝状銅粉にNi合金を被覆して樹枝状Niコート銅粉を作製するまでの条件は、実施例45と同様とし、その樹枝状Niコート銅粉のNiの含有量は、当該樹枝状Niコート銅粉全体の質量100%に対して13.1質量%で、Ni合金中に含まれるPの含有量はNi合金の質量100%に対して8.6質量%である樹枝状Niコート銅粉を使用した。
[Example 48]
The dendritic Ni-coated copper powder produced in Example 45 was dispersed in a resin to obtain an electromagnetic wave shielding material. The preparation of the dendritic copper powder for producing the dendritic Ni-coated copper powder, and the conditions until the dendritic copper powder is coated with a Ni alloy to produce the dendritic Ni-coated copper powder are described in the Examples. 45. The Ni content of the dendritic Ni-coated copper powder is 13.1% by mass with respect to 100% by mass of the entire dendritic Ni-coated copper powder, and the content of P contained in the Ni alloy The amount of dendritic Ni-coated copper powder was 8.6% by mass with respect to 100% by mass of the Ni alloy.
 この樹枝状Niコート銅粉40gに対して、塩化ビニル樹脂100gと、メチルエチルケトン200gとをそれぞれ混合し、小型ニーダーを用いて、1200rpm、3分間の混錬を3回繰り返すことによってペースト化した。ペースト化に際しては、銅粉が凝集することなく、樹脂中に均一に分散した。これを100μmの厚さの透明ポリエチレンテレフタレートシートからなる基材の上にメイヤーバーを用いて塗布・乾燥し、厚さ25μmの電磁波シールド層を形成した。 A 40 g of this dendritic Ni-coated copper powder was mixed with 100 g of vinyl chloride resin and 200 g of methyl ethyl ketone, and paste was made by repeating kneading at 1200 rpm for 3 minutes three times using a small kneader. During pasting, the copper powder was uniformly dispersed in the resin without agglomeration. This was coated and dried using a Mayer bar on a substrate made of a transparent polyethylene terephthalate sheet having a thickness of 100 μm to form an electromagnetic wave shielding layer having a thickness of 25 μm.
 電磁波シールド特性については、周波数1GHzの電磁波を用いて、その減衰率を測定することによって評価した。表3に、これらの結果を示す。 The electromagnetic shielding characteristics were evaluated by measuring the attenuation rate using an electromagnetic wave having a frequency of 1 GHz. Table 3 shows these results.
 [実施例49]
 実施例34にて作製した樹枝状Niコート銅粉に球状Niコート銅粉を混合し、それらを樹脂に分散させて電磁波シールド材とした。
[Example 49]
Spherical Ni-coated copper powder was mixed with the dendritic Ni-coated copper powder prepared in Example 34, and these were dispersed in a resin to obtain an electromagnetic wave shielding material.
 なお、樹枝状Niコート銅粉を作製するための樹枝状銅粉の作製、及び、その樹枝状銅粉にNi合金を被覆して樹枝状Niコート銅粉を作製するまでの条件は、実施例34と同様とし、その樹枝状Niコート銅粉のNiの含有量は、当該樹枝状Niコート銅粉全体の質量100%に対して13.5質量%で、Ni合金中に含まれるPの含有量はNi合金の質量100%に対して8.2質量%である樹枝状Niコート銅粉を使用した。 The preparation of the dendritic copper powder for producing the dendritic Ni-coated copper powder, and the conditions until the dendritic copper powder is coated with a Ni alloy to produce the dendritic Ni-coated copper powder are described in the Examples. 34, and the Ni content of the dendritic Ni-coated copper powder is 13.5% by mass with respect to 100% by mass of the entire dendritic Ni-coated copper powder, and the content of P contained in the Ni alloy The amount of dendritic Ni-coated copper powder was 8.2% by mass with respect to 100% by mass of the Ni alloy.
 また、球状Niコート銅粉は、平均粒子径7.9μmの粒状アトマイズ銅粉(メイキンメタルパウダーズ社製)を使用し、実施例34と同様な方法でNi被覆を行って球状Niコート銅粉を作製した。この球状Niコート銅粉のNiの含有量は、当該Niコート銅粉全体の質量100%に対して12.8質量%で、Ni合金中に含まれるPの含有量はNi合金の質量100%に対して8.8質量%である球状Niコート銅粉を使用した。 In addition, the spherical Ni-coated copper powder uses a granular atomized copper powder (manufactured by Mekin Metal Powders Co., Ltd.) having an average particle size of 7.9 μm, and Ni is coated in the same manner as in Example 34 to form a spherical Ni-coated copper powder. Was made. The Ni content of the spherical Ni-coated copper powder is 12.8% by mass with respect to 100% by mass of the entire Ni-coated copper powder, and the content of P contained in the Ni alloy is 100% by mass of the Ni alloy. Spherical Ni-coated copper powder having a mass of 8.8% by mass was used.
 具体的に、樹枝状Niコート銅粉15gと、球状Niコート銅粉25gとに対して、塩化ビニル樹脂100gと、メチルエチルケトン200gとをそれぞれ混合し、小型ニーダーを用いて、1200rpm、3分間の混錬を3回繰り返すことによってペースト化した。ペースト化に際しては、銅粉が凝集することなく、樹脂中に均一に分散した。これを100μmの厚さの透明ポリエチレンテレフタレートシートからなる基材の上にメイヤーバーを用いて塗布・乾燥し、厚さ25μmの電磁波シールド層を形成した。 Specifically, 15 g of dendritic Ni-coated copper powder and 25 g of spherical Ni-coated copper powder are mixed with 100 g of vinyl chloride resin and 200 g of methyl ethyl ketone, and mixed at 1200 rpm for 3 minutes using a small kneader. Paste was made by repeating smelting three times. During pasting, the copper powder was uniformly dispersed in the resin without agglomeration. This was coated and dried using a Mayer bar on a substrate made of a transparent polyethylene terephthalate sheet having a thickness of 100 μm to form an electromagnetic wave shielding layer having a thickness of 25 μm.
 電磁波シールド特性については、周波数1GHzの電磁波を用いて、その減衰率を測定することによって評価した。表3に、これらの結果を示す。 The electromagnetic shielding characteristics were evaluated by measuring the attenuation rate using an electromagnetic wave having a frequency of 1 GHz. Table 3 shows these results.
 [比較例7]
 電解液中に、添加剤としてのサフラニンと、塩素イオンとを添加しない条件としたこと以外は、実施例34と同様にして電解銅粉を陰極板上に析出させた。そして、得られた電解銅粉に対して、実施例34と同様にしてその表面にNi合金を被覆し、Niコート銅粉を得た。そのNiコート銅粉のNiの含有量を測定したところ、当該Niコート銅粉全体の質量100%に対して12.6質量%であった。また、Ni合金中に含まれるPの含有量はNi合金の質量100%に対して7.9質量%であった。
[Comparative Example 7]
The electrolytic copper powder was deposited on the cathode plate in the same manner as in Example 34, except that the conditions were such that safranin as an additive and chlorine ions were not added to the electrolytic solution. Then, the surface of the obtained electrolytic copper powder was coated with a Ni alloy in the same manner as in Example 34 to obtain a Ni-coated copper powder. When the Ni content of the Ni-coated copper powder was measured, it was 12.6% by mass relative to 100% by mass of the entire Ni-coated copper powder. Moreover, content of P contained in Ni alloy was 7.9 mass% with respect to 100 mass of Ni alloy.
 図23に、得られたNiコート銅粉の形状を、SEMにより倍率1,000倍の視野で観察した結果を示す。図23の写真図に示すように、得られたNiコート銅粉の形状は、樹枝状の形状を呈していたものの、粒子状の銅が集合した形成されたものであった。また、その銅粉の表面にNiが被覆された状態となっており、Niコート銅粉の平均粒子径(D50)は18.6μmであった。 FIG. 23 shows the result of observing the shape of the obtained Ni-coated copper powder with a SEM field of view at a magnification of 1,000 times. As shown in the photograph of FIG. 23, the obtained Ni-coated copper powder had a dendritic shape but was formed by aggregation of particulate copper. Moreover, it was in the state by which the surface of the copper powder was coat | covered with Ni, and the average particle diameter (D50) of Ni coat copper powder was 18.6 micrometers.
 次に、上述した方法で作製したNiコート銅粉40gに対して、フェノール樹脂(群栄化学株式会社製,PL-2211)20gと、ブチルセロソルブ(関東化学株式会社製,鹿特級)10gとを混合し、小型ニーダー(株式会社日本精機製作所製,ノンバブリングニーダーNBK-1)を用いて、1200rpm、3分間の混錬を3回繰り返すことによってペースト化した。ペースト化に際しては、混練を繰り返す毎に粘度の上昇が発生した。このことは銅粉の一部が凝集していることが原因であると考えられ、均一分散が困難であった。得られた導電ペーストを金属スキージでガラス上に印刷し、大気雰囲気中にて200℃で30分間かけて硬化させた。 Next, 20 g of phenolic resin (manufactured by Gunei Chemical Co., Ltd., PL-2211) and 10 g of butyl cellosolve (manufactured by Kanto Chemical Co., Ltd., deer special grade) are mixed with 40 g of Ni-coated copper powder produced by the above-described method. Then, using a small kneader (manufactured by Nippon Seiki Seisakusho Co., Ltd., non-bubbling kneader NBK-1), it was made into a paste by repeating kneading at 1200 rpm for 3 minutes three times. During pasting, the viscosity increased every time kneading was repeated. This is considered to be caused by a part of the copper powder being aggregated, and uniform dispersion was difficult. The obtained conductive paste was printed on a glass with a metal squeegee and cured at 200 ° C. for 30 minutes in an air atmosphere.
 硬化により得られた被膜の比抵抗値は、6.7×10-4Ω・cmであり、実施例にて得られた導電性ペーストと比較して極めて比抵抗値が高く導電性が劣るものであった。 The specific resistance value of the film obtained by curing is 6.7 × 10 −4 Ω · cm, and the specific resistance value is extremely high and inferior in conductivity compared to the conductive paste obtained in the examples. Met.
 [比較例8]
 従来の平板状銅粉にNiを被覆させたNiコート銅粉による導電性ペーストの特性を評価し、実施例における樹枝状Niコート銅粉を用いて作製した導電性ペーストの特性と比較した。
[Comparative Example 8]
The characteristic of the conductive paste by Ni coat copper powder which coat | covered Ni with the conventional flat copper powder was evaluated, and it compared with the characteristic of the conductive paste produced using the dendritic Ni coat copper powder in an Example.
 平板状銅粉は、粒状の電解銅粉を機械的に扁平化させて作製した。具体的には、平均粒子径7.9μmの粒状アトマイズ銅粉(メイキンメタルパウダーズ社製)500gにステアリン酸5gを添加し、ボールミルで扁平化処理を行った。ボールミルには3mmのジルコニアビーズを5kg投入し、500rpmの回転速度で90分間回転させることによって扁平化処理を行った。 The flat copper powder was prepared by mechanically flattening granular electrolytic copper powder. Specifically, 5 g of stearic acid was added to 500 g of granular atomized copper powder (manufactured by Mekin Metal Powders Co., Ltd.) having an average particle diameter of 7.9 μm, and flattened with a ball mill. The ball mill was charged with 5 kg of 3 mm zirconia beads, and flattened by rotating for 90 minutes at a rotation speed of 500 rpm.
 得られた平板状銅粉に対して、実施例34と同様の方法でNiを被覆した。作製した平板状Niコート銅粉のNiの含有量は、当該平板状Niコート銅粉の質量100%に対して13.8質量%であった。また、Ni合金中に含まれるPの含有量はNi合金の質量100%に対して8.6質量%であった。 The obtained flat copper powder was coated with Ni in the same manner as in Example 34. The content of Ni in the produced tabular Ni-coated copper powder was 13.8% by mass with respect to 100% by mass of the tabular Ni-coated copper powder. The content of P contained in the Ni alloy was 8.6% by mass with respect to 100% by mass of the Ni alloy.
 このようにして作製した平板状のNiコート銅粉について、レーザー回折・散乱法粒度分布測定器で測定した結果、平均粒子径(D50)は21.8μmであり、SEMで観察した結果、その断面平均厚さは0.4μmであった。 The plate-like Ni-coated copper powder thus produced was measured with a laser diffraction / scattering particle size distribution measuring instrument. As a result, the average particle size (D50) was 21.8 μm, and the cross-section was observed by SEM. The average thickness was 0.4 μm.
 次に、得られた平板状のNiコート銅粉40gに対して、フェノール樹脂(群栄化学株式会社製,PL-2211)20gと、ブチルセロソルブ(関東化学株式会社製,鹿特級)10gとを混合し、小型ニーダー(株式会社日本精機製作所製,ノンバブリングニーダーNBK-1)を用いて、1200rpm、3分間の混錬を3回繰り返すことによってペースト化した。ペースト化に際しては、銅粉が凝集することなく、樹脂中に均一に分散した。得られた導電ペーストを金属スキージでガラス上に印刷し、大気雰囲気中にて200℃で30分間かけて硬化させた。 Next, 20 g of a phenolic resin (manufactured by Gunei Chemical Co., Ltd., PL-2211) and 10 g of butyl cellosolve (manufactured by Kanto Chemical Co., Ltd., deer special grade) are mixed with 40 g of the obtained flat Ni-coated copper powder. Then, using a small kneader (manufactured by Nippon Seiki Seisakusho Co., Ltd., non-bubbling kneader NBK-1), it was made into a paste by repeating kneading at 1200 rpm for 3 minutes three times. During pasting, the copper powder was uniformly dispersed in the resin without agglomeration. The obtained conductive paste was printed on a glass with a metal squeegee and cured at 200 ° C. for 30 minutes in an air atmosphere.
 硬化により得られた被膜の比抵抗値は、2.6×10-4Ω・cmであり、実施例にて得られた導電性ペーストと比較して極めて比抵抗値が高く導電性が劣るものであった。 The specific resistance value of the film obtained by curing is 2.6 × 10 −4 Ω · cm, which is extremely high in specific resistance value and inferior in conductivity compared to the conductive paste obtained in the examples. Met.
 [比較例9]
 比較例8にて用いたものと同様に粒状の電解銅粉を機械的に扁平化させて作製した平板状銅粉にNiを被覆させたNiコート銅粉を作製した。そして、そのNiコート銅粉による電磁波シールドの特性を評価し、実施例における樹枝状Niコート銅粉を用いて作製した電磁波シールドの特性と比較して、樹枝状形状効果を調べた。なお、使用した平板状Niコート銅粉のNiの含有量は、当該平板状Niコート銅粉の質量100%に対して13.8質量%であった。Ni合金中に含まれるPの含有量はNi合金の質量100%に対して8.6質量%であった。
[Comparative Example 9]
Similar to the one used in Comparative Example 8, a Ni-coated copper powder in which Ni was coated on a flat copper powder prepared by mechanically flattening a granular electrolytic copper powder was prepared. And the characteristic of the electromagnetic wave shield by the Ni coat copper powder was evaluated, and compared with the characteristic of the electromagnetic wave shield produced using the dendritic Ni coat copper powder in an Example, the dendritic shape effect was investigated. In addition, content of Ni of the used flat Ni coat copper powder was 13.8 mass% with respect to 100 mass of the flat Ni coat copper powder. The content of P contained in the Ni alloy was 8.6% by mass with respect to 100% by mass of the Ni alloy.
 具体的には、平板状のNiコート銅粉40gに対して、塩化ビニル樹脂100gと、メチルエチルケトン200gとをそれぞれ混合し、小型ニーダーを用いて、1200rpm、3分間の混錬を3回繰り返すことによってペースト化した。ペースト化に際しては、銅粉が凝集することなく、樹脂中に均一に分散した。これを100μmの厚さの透明ポリエチレンテレフタレートシートからなる基材の上にメイヤーバーを用いて塗布・乾燥し、厚さ25μmの電磁波シールド層を形成した。 Specifically, 100 g of vinyl chloride resin and 200 g of methyl ethyl ketone are mixed with 40 g of flat Ni-coated copper powder, respectively, and kneading at 1200 rpm for 3 minutes is repeated three times using a small kneader. Pasted. During pasting, the copper powder was uniformly dispersed in the resin without agglomeration. This was coated and dried using a Mayer bar on a substrate made of a transparent polyethylene terephthalate sheet having a thickness of 100 μm to form an electromagnetic wave shielding layer having a thickness of 25 μm.
 電磁波シールド特性については、周波数1GHzの電磁波を用いて、その減衰率を測定することによって評価した。具体的には、樹枝状Niコート銅粉を使用していない比較例9の場合のレベルを『△』として、その比較例9のレベルよりも悪い場合を『×』とし、その比較例9のレベルよりも良好な場合を『○』とし、さらに優れている場合を『◎』として評価した。表3に結果を示す。 The electromagnetic shielding characteristics were evaluated by measuring the attenuation rate using an electromagnetic wave having a frequency of 1 GHz. Specifically, the level of Comparative Example 9 in which no dendritic Ni-coated copper powder is used is “△”, and the level worse than that of Comparative Example 9 is “×”. The case where it was better than the level was evaluated as “◯”, and the case where it was superior was evaluated as “◎”. Table 3 shows the results.
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
 ≪実施例、比較例≫
(4)第4の実施形態に係るNiコート銅粉を用いた試験
 [実施例50]
 <平板状銅粒子凝集粉の作製>
 容量が100Lの電解槽に、電極面積が200mm×200mmのチタン製の電極板を陰極とし、電極面積が200mm×200mmの銅製の板を陽極として用いて、その電解槽中に電解液を装入し、これに直流電流を通電して銅粉を陰極板に析出させた。
≪Example, comparative example≫
(4) Test using Ni-coated copper powder according to the fourth embodiment [Example 50]
<Preparation of flat copper particle agglomerated powder>
An electrolytic cell with a capacity of 100 L is charged with an electrolytic solution in the electrolytic cell using a titanium electrode plate with an electrode area of 200 mm × 200 mm as a cathode and a copper plate with an electrode area of 200 mm × 200 mm as an anode. Then, a direct current was passed through this to deposit copper powder on the cathode plate.
 このとき、電解液としては、銅イオン濃度が10g/L、硫酸濃度が100g/Lの組成のものを用いた。また、この電解液に、添加剤としてヤヌスグリーンB(和光純薬工業株式会社製)を電解液中の濃度として120mg/Lとなるように添加し、分子量2,000のポリエチレングルコール(和光純薬工業株式会社製)を電解液中の濃度として850mg/Lとなるように添加した。さらに、塩酸溶液(和光純薬工業株式会社製)を電解液中の塩化物イオン(塩素イオン)濃度として50mg/Lとなるように添加した。 At this time, an electrolytic solution having a composition with a copper ion concentration of 10 g / L and a sulfuric acid concentration of 100 g / L was used. In addition, Janus Green B (manufactured by Wako Pure Chemical Industries, Ltd.) as an additive was added to the electrolyte so as to have a concentration of 120 mg / L in the electrolyte, and polyethylene glycol having a molecular weight of 2,000 (Wako Pure Chemical Industries, Ltd.) was added. Yakuhin Kogyo Co., Ltd.) was added so that the concentration in the electrolyte was 850 mg / L. Furthermore, a hydrochloric acid solution (manufactured by Wako Pure Chemical Industries, Ltd.) was added so that the chloride ion (chlorine ion) concentration in the electrolyte solution was 50 mg / L.
 そして、上述したような濃度に調整した電解液を、ポンプを用いて10L/minの流量で循環しながら、温度を30℃に維持し、陰極の電流密度が25A/dmになるように通電して陰極板上に銅粉を析出させた。 Then, while circulating the electrolyte adjusted to the concentration as described above at a flow rate of 10 L / min using a pump, the temperature is maintained at 30 ° C. and the current density of the cathode is 25 A / dm 2. Then, copper powder was deposited on the cathode plate.
 陰極板上に析出した電解銅粉を、スクレーパーを用いて機械的に電解槽の槽底に掻き落として回収し、回収した銅粉を純水で洗浄した後、減圧乾燥器に入れて乾燥した。 The electrolytic copper powder deposited on the cathode plate was recovered by mechanically scraping it off the bottom of the electrolytic cell using a scraper, and the recovered copper powder was washed with pure water and then put in a vacuum dryer and dried. .
 得られた電解銅粉の形状を、上述した走査型電子顕微鏡(SEM)による方法で倍率1,000倍の視野で観察した結果、析出した銅粉は、平板状の銅粒子が凝集した形状を呈した銅粉(平板状銅粒子凝集粉)であった。 As a result of observing the shape of the obtained electrolytic copper powder in a field of view with a magnification of 1,000 times by the method using the scanning electron microscope (SEM) described above, the deposited copper powder has a shape in which flat copper particles are aggregated. It was the presented copper powder (flat copper particle aggregated powder).
 また、その平板状の銅粒子は、その断面平均厚さが0.3μmであり、大きさは平均長軸径(図1の模式図における「d」で示す径と同等)が2.7μmであった。そして、その平板状銅粒子が複数集合して凝集体となった平板状銅粒子凝集粉の大きさは、レーザー回折・散乱法粒度分布測定器で測定した平均粒子径(D50)で7.9μmであった。 The flat copper particles have an average cross-sectional thickness of 0.3 μm, and an average major axis diameter (equivalent to the diameter indicated by “d” in the schematic diagram of FIG. 1) is 2.7 μm. there were. And the magnitude | size of the tabular copper particle aggregated powder which the aggregate of the tabular copper particle became the aggregate was the average particle diameter (D50) measured with the laser diffraction and the scattering method particle size distribution measuring device 7.9 micrometer. Met.
 <平板状Niコート銅粒子凝集粉の製造(還元剤:次亜リン酸塩)>
 次に、上述した方法で作製した平板状銅粒子凝集粉を用いて、無電解Niめっきによりその銅粉表面にNi被覆を行い、Niコート銅粉を作製した。なお、還元剤次亜リン酸塩である無電解Niめっき液を用いた。
<Production of flat Ni-coated copper particle aggregated powder (reducing agent: hypophosphite)>
Next, Ni was coated on the surface of the copper powder by electroless Ni plating using the tabular copper particle aggregated powder prepared by the above-described method to prepare a Ni-coated copper powder. An electroless Ni plating solution that is a reducing agent hypophosphite was used.
 具体的には、無電解Niめっき液として、硫酸ニッケル20g/L、次亜リン酸ナトリウム25g/L、酢酸ナトリウム10g/L、クエン酸ナトリウム10g/Lを各濃度で添加し、さらに水酸化ナトリウムを添加してpH5.0に調整しためっき液を500mL用意した。 Specifically, as an electroless Ni plating solution, nickel sulfate 20 g / L, sodium hypophosphite 25 g / L, sodium acetate 10 g / L, sodium citrate 10 g / L are added at each concentration, and sodium hydroxide is further added. 500 mL of a plating solution adjusted to pH 5.0 by adding the above was prepared.
 この無電解Niめっき液に、上述した方法で作製した平板状銅粒子凝集粉100gを水100mL中に分散させたスラリーを入れ、25℃で10分間撹拌した後、浴温を90℃まで加熱して60分間撹拌した。 In this electroless Ni plating solution, a slurry obtained by dispersing 100 g of tabular copper particle agglomerated powder prepared in the above-described method in 100 mL of water is stirred for 10 minutes at 25 ° C., and then the bath temperature is heated to 90 ° C. And stirred for 60 minutes.
 反応が終了した後、粉末をろ過、水洗してエタノールを通じて乾燥させたところ、平板状銅粒子凝集粉の表面にリン(P)を含むNi合金が被覆されたNiコート銅粉が得られた。そのNiコート銅粉を回収してNiの含有量を測定したところ、当該Niコート銅粉全体の質量100%に対して13.4質量%であった。また、Ni合金中に含まれるPの含有量はNi合金の質量100%に対して7.8質量%であった。 After completion of the reaction, the powder was filtered, washed with water, and dried through ethanol. As a result, Ni-coated copper powder in which Ni alloy containing phosphorus (P) was coated on the surface of the tabular copper particle aggregated powder was obtained. When the Ni-coated copper powder was recovered and the Ni content was measured, it was 13.4% by mass with respect to 100% by mass of the entire Ni-coated copper powder. The content of P contained in the Ni alloy was 7.8% by mass with respect to 100% by mass of the Ni alloy.
 また、得られたNiコート銅粉をSEMにより倍率5,000倍の視野で観察した結果、Ni合金を被覆する前の銅粉の表面に均一にNi合金が被覆されたNiコート銅粉であり、形状が平板状になったNiコート銅粒子が複数集合して凝集体となった凝集粉の形状をなす平板状Niコート銅粒子凝集粉であった。 In addition, as a result of observing the obtained Ni-coated copper powder with a field of view of 5,000 times by SEM, the Ni-coated copper powder was uniformly coated with the Ni alloy on the surface of the copper powder before being coated with the Ni alloy. A flat Ni-coated copper particle aggregated powder having a shape of agglomerated powder in which a plurality of Ni-coated copper particles having a flat plate shape are aggregated to form an aggregate.
 また、得られたNiコート銅粉は、Ni合金の被覆厚さが薄いため、形状はNi合金を被覆する前の平板状銅粒子凝集粉と同じ形状であった。具体的に、Niコート銅粉を構成する平板状のNiコート銅粒子は、その断面厚さ(断面平均厚さ)が0.3μmの平板状であり、その大きさは平均長軸径(図1の模式図における「d」で示す径)が2.7μmであった。そして、この平板状Niコート銅粒子が複数集合して凝集体となった凝集銅粉の大きさは、平均粒子径(D50)で7.9μmであり、測定誤差を考慮するといずれもNi合金を被覆前の平板状銅粒子凝集粉と同じ値を示した。 Moreover, since the Ni-coated copper powder obtained had a thin Ni alloy coating thickness, the shape was the same as the flat copper particle aggregated powder before coating the Ni alloy. Specifically, the plate-like Ni-coated copper particles constituting the Ni-coated copper powder have a plate-like shape with a cross-sectional thickness (cross-sectional average thickness) of 0.3 μm, and the size is the average major axis diameter (see FIG. (Diameter indicated by “d” in the schematic diagram of FIG. 1) was 2.7 μm. The size of the aggregated copper powder formed by aggregating a plurality of the flat plate-like Ni-coated copper particles into an aggregate is 7.9 μm in average particle diameter (D50). The same value as the flat copper particle aggregated powder before coating was shown.
 さらに、得られたNiコート銅粉のタップ密度は2.9g/cmであった。また、BET比表面積は2.5m/gであった。 Furthermore, the tap density of the obtained Ni-coated copper powder was 2.9 g / cm 3 . The BET specific surface area was 2.5 m 2 / g.
 [実施例51]
 <平板状銅粒子凝集粉の作製>
 電解液として、銅イオン濃度が8g/L、硫酸濃度が110g/Lの組成のものを用い、その電解液に、添加剤としてヤヌスグリーンBを電解液中の濃度として160mg/Lとなるように添加し、また分子量2,000のポリエチレングルコール(和光純薬工業株式会社製)を電解液中の濃度として800mg/Lとなるように添加した。さらに、塩酸溶液を電解液中の塩化物イオン濃度として125mg/Lとなるように添加した。
[Example 51]
<Preparation of flat copper particle agglomerated powder>
An electrolytic solution having a copper ion concentration of 8 g / L and a sulfuric acid concentration of 110 g / L is used, and Janus Green B as an additive is added to the electrolytic solution to a concentration of 160 mg / L in the electrolytic solution. Further, polyethylene glycol having a molecular weight of 2,000 (manufactured by Wako Pure Chemical Industries, Ltd.) was added so that the concentration in the electrolytic solution was 800 mg / L. Further, a hydrochloric acid solution was added so that the chloride ion concentration in the electrolytic solution was 125 mg / L.
 そして、上述したような濃度に調整した電解液を、ポンプを用いて20L/minの流量で循環しながら、温度を35℃に維持し、陰極の電流密度が30A/dmになるように通電し、これら以外は実施例50と同様にして陰極板上に銅粉を析出させた。 Then, while circulating the electrolyte adjusted to the concentration as described above at a flow rate of 20 L / min using a pump, the temperature is maintained at 35 ° C. and the current density of the cathode is 30 A / dm 2. Except for these, copper powder was deposited on the cathode plate in the same manner as in Example 50.
 得られた電解銅粉の形状を、上述したSEMによる方法で観察した結果、析出した銅粉は、平板状の銅粒子が凝集した形状を呈した銅粉(板状銅粒子凝集粉)であった。また、その平板状の銅粒子は、断面平均厚さが0.2μmで、その大きさは平均長軸径が3.8μmであった。そして、その平板状銅粒子が複数集合して凝集体となった凝集銅粉の大きさは、レーザー回折・散乱法粒度分布測定器で測定した平均粒子径(D50)で12.9μmであった。 As a result of observing the shape of the obtained electrolytic copper powder by the SEM method described above, the deposited copper powder was a copper powder (plate copper particle aggregated powder) having a shape in which flat copper particles were aggregated. It was. The tabular copper particles had an average cross-sectional thickness of 0.2 μm and an average major axis diameter of 3.8 μm. The size of the agglomerated copper powder in which a plurality of tabular copper particles aggregated to form an aggregate was 12.9 μm in terms of the average particle diameter (D50) measured with a laser diffraction / scattering particle size distribution analyzer. .
 <平板状Niコート銅粒子凝集粉の製造(還元剤:ホウ水素化合物)>
 次に、得られた平板状銅粒子凝集粉100gを用いて、無電解Niめっきによりその銅粉表面にNi被覆を行い、Niコート銅粉を作製した。なお、還元剤がホウ水素化合物である無電解Niめっき液を用いた。
<Production of flat Ni-coated copper particle agglomerated powder (reducing agent: borohydride)>
Next, using the obtained tabular copper particle aggregate powder 100g, Ni coating was performed on the surface of the copper powder by electroless Ni plating to prepare a Ni-coated copper powder. In addition, the electroless Ni plating solution whose reducing agent is a borohydride compound was used.
 具体的には、無電解Niめっき液としては、硫酸ニッケル30g/L、コハク酸ナトリウム50g/L、ホウ酸30g/L、塩化アンモニウム30g/L、ジメチルアミンボラン4g/Lを各濃度で添加し、さらに水酸化ナトリウムを添加してpH6.0に調整しためっき液を500mL用意した。 Specifically, as the electroless Ni plating solution, nickel sulfate 30 g / L, sodium succinate 50 g / L, boric acid 30 g / L, ammonium chloride 30 g / L, dimethylamine borane 4 g / L are added at each concentration. Further, 500 mL of a plating solution adjusted to pH 6.0 by adding sodium hydroxide was prepared.
 この無電解Niめっき液に、上述した方法で作製した平板状銅粒子凝集粉100gを水100mL中に分散させたスラリーを入れ、25℃で10分間撹拌した後、浴温を60℃まで加熱して60分間撹拌した。 Into this electroless Ni plating solution, a slurry in which 100 g of the tabular copper particle aggregate powder prepared by the above-described method is dispersed in 100 mL of water is stirred for 10 minutes at 25 ° C., and then the bath temperature is heated to 60 ° C. And stirred for 60 minutes.
 反応が終了した後、粉末をろ過、水洗してエタノールを通じて乾燥させたところ、平板状銅粒子凝集粉の表面にNi合金が被覆されたNiコート銅粉が得られた。そのNiコート銅粉を回収してNiの含有量を測定したところ、Niコート銅粉全体の質量100%に対して18.5質量%であった。Ni合金中に含まれるBの含有量はNi合金の質量100%に対して6.5質量%であった。 After the reaction was completed, the powder was filtered, washed with water, and dried through ethanol. As a result, Ni-coated copper powder in which the surface of the tabular copper particle aggregated powder was coated with Ni alloy was obtained. When the Ni-coated copper powder was recovered and the Ni content was measured, it was 18.5% by mass with respect to 100% by mass of the entire Ni-coated copper powder. The content of B contained in the Ni alloy was 6.5% by mass with respect to 100% by mass of the Ni alloy.
 また、得られたNiコート銅粉をSEMにより倍率5,000倍の視野で観察した結果、Ni合金を被覆する前の銅粉の表面に均一にNi合金が被覆されたNiコート銅粉であり、Niコート銅粒子の形状が平板状になったNiコート銅粒子が複数集合して凝集体となった凝集粉の形状をなす平板状Niコート銅粒子凝集粉であった。 In addition, as a result of observing the obtained Ni-coated copper powder with a field of view of 5,000 times by SEM, the Ni-coated copper powder was uniformly coated with the Ni alloy on the surface of the copper powder before being coated with the Ni alloy. The Ni-coated copper particles were in the form of agglomerated powder formed by aggregating a plurality of Ni-coated copper particles in which the shape of the Ni-coated copper particles was flat.
 また、作製されたNiコート銅粉は、Ni合金の被覆厚さが薄いため、形状はNi合金を被覆する前の平板状銅粒子凝集粉と同じ形状であった。具体的には、平板状のNiコート銅粒子は、その断面厚さ(断面平均厚さ)が0.2μmの平板状で、その大きさは平均長軸径が3.8μmであった。そして、この平板状Niコート銅粒子が複数集合して凝集体となった凝集銅粉の大きさは、平均粒子径(D50)で12.9μmであり、測定誤差を考慮するといずれもNi合金を被覆前の平板状銅粒子凝集粉と同じ値を示した。 Further, since the Ni-coated copper powder produced had a thin Ni alloy coating thickness, the shape was the same as the flat copper particle aggregated powder before coating the Ni alloy. Specifically, the plate-like Ni-coated copper particles had a plate shape with a cross-sectional thickness (average cross-sectional thickness) of 0.2 μm, and the size thereof had an average major axis diameter of 3.8 μm. The size of the aggregated copper powder formed by aggregating a plurality of the flat Ni-coated copper particles into an aggregate is 12.9 μm in terms of the average particle diameter (D50). The same value as the flat copper particle aggregated powder before coating was shown.
 さらに、得られたNiコート銅粉のタップ密度は3.8g/cmであった。また、BET比表面積は1.8m/gであった。 Furthermore, the tap density of the obtained Ni-coated copper powder was 3.8 g / cm 3 . The BET specific surface area was 1.8 m 2 / g.
 [実施例52]
 <平板状銅粒子凝集粉の作製>
 容量が100Lの電解槽に、電極面積が200mm×200mmのチタン製の電極板を陰極とし、電極面積が200mm×200mmの銅製の電極板を陽極として用いて、その電解槽中に電解液を装入し、これに直流電流を通電して銅粉を陰極板に析出させた。
[Example 52]
<Preparation of flat copper particle agglomerated powder>
In an electrolytic cell having a capacity of 100 L, an electrode plate made of titanium having an electrode area of 200 mm × 200 mm is used as a cathode, and a copper electrode plate having an electrode area of 200 mm × 200 mm is used as an anode, and an electrolytic solution is loaded in the electrolytic cell. Then, a direct current was applied thereto to deposit copper powder on the cathode plate.
 このとき、電解液としては、銅イオン濃度が10g/L、硫酸濃度が125g/Lの組成のものを用いた。また、この電解液に、添加剤としてヤヌスグリーンB(和光純薬工業株式会社製)を電解液中の濃度として130mg/Lとなるように添加し、分子量2,000のポリエチレングルコール(和光純薬工業株式会社製)を電解液中の濃度として900mg/Lとなるように添加した。さらに、塩酸溶液(和光純薬工業株式会社製)を電解液中の塩素イオン濃度として50mg/Lとなるように添加した。 At this time, as the electrolytic solution, a composition having a copper ion concentration of 10 g / L and a sulfuric acid concentration of 125 g / L was used. In addition, Janus Green B (manufactured by Wako Pure Chemical Industries, Ltd.) as an additive was added to the electrolyte so as to have a concentration of 130 mg / L in the electrolyte, and polyethylene glycol having a molecular weight of 2,000 (Wako Pure Chemical Industries, Ltd.). Yakuhin Kogyo Co., Ltd.) was added as a concentration in the electrolyte solution to 900 mg / L. Furthermore, a hydrochloric acid solution (manufactured by Wako Pure Chemical Industries, Ltd.) was added so that the chlorine ion concentration in the electrolytic solution was 50 mg / L.
 そして、上述したような濃度に調整した電解液を、ポンプを用いて10L/minの流量で循環しながら、温度を30℃に維持し、陰極の電流密度が25A/dmになるように通電して陰極板上に銅粉を析出させた。 Then, while circulating the electrolyte adjusted to the concentration as described above at a flow rate of 10 L / min using a pump, the temperature is maintained at 30 ° C. and the current density of the cathode is 25 A / dm 2. Then, copper powder was deposited on the cathode plate.
 陰極板上に析出した電解銅粉を、スクレーパーを用いて機械的に電解槽の槽底に掻き落として回収し、回収した銅粉を純水で洗浄した後、減圧乾燥器に入れて乾燥した。 The electrolytic copper powder deposited on the cathode plate was recovered by mechanically scraping it off the bottom of the electrolytic cell using a scraper, and the recovered copper powder was washed with pure water and then put in a vacuum dryer and dried. .
 得られた電解銅粉の形状を、上述した走査型電子顕微鏡(SEM)による方法で倍率5,000倍の視野で観察した結果、析出した銅粉は、平板状の銅粒子が凝集した形状を呈した銅粉(板状銅粒子凝集粉)であった。 As a result of observing the shape of the obtained electrolytic copper powder in a field of view with a magnification of 5,000 times by the method using the scanning electron microscope (SEM) described above, the deposited copper powder has a shape in which flat copper particles are aggregated. It was the exhibited copper powder (plate-like copper particle aggregated powder).
 また、その平板状の銅粒子は、その断面厚さ(断面平均厚さ)が0.1μmであり、大きさは平均長軸径(図15の模式図における「d」で示す径と同等)が2.9μmであった。そして、その平板状銅粒子が複数集合して凝集体となった凝集銅粉の大きさは、レーザー回折・散乱法粒度分布測定器で測定した平均粒子径(D50)で7.1μmであった。 The tabular copper particles have a cross-sectional thickness (average cross-sectional thickness) of 0.1 μm and an average major axis diameter (equivalent to the diameter indicated by “d” in the schematic diagram of FIG. 15). Was 2.9 μm. The size of the agglomerated copper powder in which a plurality of the tabular copper particles were aggregated to form an aggregate was 7.1 μm as an average particle diameter (D50) measured with a laser diffraction / scattering particle size distribution analyzer. .
 <平板状Niコート銅粒子凝集粉の製造(還元剤:ヒドラジン化合物)>
 次に、得られた平板状銅粒子凝集粉100gを用いて、無電解Niめっきによりその銅粉表面にNi被覆を行い、Niコート銅粉を作製した。なお、還元剤をヒドラジン化合物とした無電解Niめっきを行った。
<Production of flat Ni-coated copper particle aggregated powder (reducing agent: hydrazine compound)>
Next, using the obtained tabular copper particle aggregate powder 100g, Ni coating was performed on the surface of the copper powder by electroless Ni plating to prepare a Ni-coated copper powder. Electroless Ni plating using a hydrazine compound as a reducing agent was performed.
 具体的に、実施例51で得られた平板状銅粒子凝集粉100gを水500mL中に分散させたスラリーに酢酸ニッケルを濃度12.4g/Lになるよう添加し、ヒドラジン一水和物80質量%水溶液6gをその浴中に60分間にわたり徐々に撹拌しながら滴下した。このとき、浴温は60℃になるように管理した。 Specifically, nickel acetate was added to a slurry in which 100 g of the tabular copper particle aggregated powder obtained in Example 51 was dispersed in 500 mL of water to a concentration of 12.4 g / L, and hydrazine monohydrate 80 mass. 6 g of a% aqueous solution was added dropwise to the bath over 60 minutes with slow stirring. At this time, the bath temperature was controlled to 60 ° C.
 反応が終了した後、粉末をろ過、水洗してエタノールを通じて乾燥させたところ、平板状銅粒子凝集粉の表面にNiが被覆されたNiコート銅粉が得られた。そのNiコート銅粉を回収してNiの含有量を測定したところ、Niコート銅粉全体の質量100%に対して7.5質量%であった。 After the reaction was completed, the powder was filtered, washed with water, and dried through ethanol. As a result, Ni-coated copper powder in which Ni was coated on the surface of the tabular copper particle aggregated powder was obtained. When the Ni-coated copper powder was recovered and the Ni content was measured, it was 7.5% by mass with respect to 100% by mass of the entire Ni-coated copper powder.
 また、得られたNiコート銅粉をSEMにより倍率5,000倍の視野で観察した結果、Ni合金を被覆する前の銅粉の表面に均一にNi合金が被覆されたNiコート銅粉であり、形状が平板状になったNiコート銅粒子が複数集合して凝集体となった凝集粉の形状をなしていた。 In addition, as a result of observing the obtained Ni-coated copper powder with a field of view of 5,000 times by SEM, the Ni-coated copper powder was uniformly coated with the Ni alloy on the surface of the copper powder before being coated with the Ni alloy. The shape of the agglomerated powder was formed by aggregating a plurality of Ni-coated copper particles having a flat plate shape.
 また、得られたNiコート銅粉は、Ni合金の被覆厚さが薄いため、形状はNi合金を被覆する前の平板状銅粒子凝集粉と同じ形状であった。具体的に、Niコート銅粉を構成する平板状のNiコート銅粒子は、その断面厚さ(断面平均厚さ)が0.1μmの平板状であり、その大きさは平均長軸径(図15の模式図における「d」で示す径)が2.9μmであった。そして、この平板状Niコート銅粒子が複数集合して凝集体となった凝集銅粉の大きさは、平均粒子径(D50)で7.1μmであり、測定誤差を考慮するといずれもNi合金を被覆前の平板状銅粒子凝集粉と同じ値を示した。 Moreover, since the Ni-coated copper powder obtained had a thin Ni alloy coating thickness, the shape was the same as the flat copper particle aggregated powder before coating the Ni alloy. Specifically, the plate-like Ni-coated copper particles constituting the Ni-coated copper powder have a plate-like shape with a cross-sectional thickness (cross-sectional average thickness) of 0.1 μm, and the size is an average major axis diameter (see FIG. 15) (diameter indicated by “d” in the schematic diagram) was 2.9 μm. The size of the aggregated copper powder formed by aggregating a plurality of the flat plate-like Ni-coated copper particles into an aggregate is 7.1 μm in terms of the average particle diameter (D50). The same value as the flat copper particle aggregated powder before coating was shown.
 さらに、得られたNiコート銅粉のタップ密度は2.8g/cmであった。また、BET比表面積は2.4m/gであった。 Furthermore, the tap density of the obtained Ni-coated copper powder was 2.8 g / cm 3 . The BET specific surface area was 2.4 m 2 / g.
 [実施例53~59]
 <平板状Niコート銅粒子凝集粉の製造(Ni合金)>
 実施例52で得られた平板状銅粒子凝集粉100gを用いて、無電解めっきによりその銅粉表面にNi合金被覆を行った。
[Examples 53 to 59]
<Manufacture of flat Ni-coated copper particle agglomerated powder (Ni alloy)>
Using 100 g of the tabular copper particle aggregate powder obtained in Example 52, the surface of the copper powder was coated with a Ni alloy by electroless plating.
 合金用無電解Niめっき液としては、実施例52で得られた平板状銅粒子凝集粉100gを水500mL中に分散させたスラリーに酢酸ニッケルを濃度12.4g/Lになるよう添加し、ヒドラジン3.2gをその浴中に60分間にわたり徐々に撹拌しながら滴下した。なお、浴温は60℃になるように管理した。 As an electroless Ni plating solution for an alloy, nickel acetate was added to a slurry in which 100 g of the tabular copper particle aggregate powder obtained in Example 52 was dispersed in 500 mL of water to a concentration of 12.4 g / L, and hydrazine was added. 3.2 g was added dropwise into the bath over 60 minutes with slow stirring. The bath temperature was controlled to 60 ° C.
 このとき、それぞれ所望とするNi合金被膜が形成されるように、それぞれの金属化合物を銅粉スラリーと酢酸ニッケルを含む浴中に添加し、さらにヒドラジンを徐々に添加した。金属化合物としては、実施例53では、タングステン酸ナトリウムを1.5g添加してNi-W合金被膜を形成させた。また、実施例54では、硫酸コバルトを2g添加してNi-Co合金被膜を形成させた。また、実施例55では、硫酸亜鉛七水和物とクエン酸ナトリウムとをそれぞれ4gずつ添加してNi-Zn合金被膜を形成させた。また、実施例56では、塩化パラジウムを2g添加してNi-Pd合金被膜を形成させた。また、実施例57では、テトラクロロ白金酸カリウム2gとグリシン1gとをそれぞれ添加してNi-Pt合金被膜を形成させた。また、実施例58では、モリブデン酸ナトリウムとクエン酸三ナトリウムとをそれぞれ1gずつ添加してNi-Mo合金被膜を形成させた。また、実施例59では、スズ酸ナトリウムを1g添加してNi-Sn合金被膜を形成させた。 At this time, each metal compound was added to a bath containing a copper powder slurry and nickel acetate, and hydrazine was gradually added so that each desired Ni alloy film was formed. As the metal compound, in Example 53, 1.5 g of sodium tungstate was added to form a Ni—W alloy film. In Example 54, 2 g of cobalt sulfate was added to form a Ni—Co alloy film. In Example 55, 4 g each of zinc sulfate heptahydrate and sodium citrate were added to form a Ni—Zn alloy film. In Example 56, 2 g of palladium chloride was added to form a Ni—Pd alloy film. In Example 57, 2 g of potassium tetrachloroplatinate and 1 g of glycine were added to form a Ni—Pt alloy film. In Example 58, 1 g each of sodium molybdate and trisodium citrate was added to form a Ni—Mo alloy coating. In Example 59, 1 g of sodium stannate was added to form a Ni—Sn alloy film.
 それぞれ反応が終了した後、粉末をろ過、水洗してエタノールを通じて乾燥させたところ、平板状銅粒子の表面にNiが被覆されたNiコート銅粉が得られた。そのNiコート銅粉を回収してNi合金被覆量を測定した。表4に、当該Niコート銅粉全体の質量100%に対するNiの含有量、及びNi合金の質量100%に対してNi合金となる元素の含有量を測定した結果を示す。 After each reaction, the powder was filtered, washed with water, and dried through ethanol. As a result, Ni-coated copper powder with Ni coated on the surface of the tabular copper particles was obtained. The Ni-coated copper powder was recovered and the Ni alloy coating amount was measured. Table 4 shows the results of measuring the content of Ni with respect to 100% by mass of the entire Ni-coated copper powder and the content of elements that become Ni alloys with respect to 100% by mass of the Ni alloy.
 また、得られたNiコート銅粉をそれぞれSEMにより倍率5,000倍の視野で観察した結果、いずれも、Ni合金を被覆する前の銅粉の表面に均一にNi合金が被覆されたNiコート銅粉であり、形状が平板状になったNiコート銅粒子が複数集合して凝集体となった凝集粉の形状をなす平板状Niコート銅粒子凝集粉であった。 In addition, as a result of observing the obtained Ni-coated copper powder with a field of view at a magnification of 5,000 times by SEM, the Ni coating in which the Ni alloy was uniformly coated on the surface of the copper powder before coating the Ni alloy. It was a copper powder and was a flat Ni-coated copper particle aggregated powder in the form of an aggregated powder in which a plurality of Ni-coated copper particles having a flat plate shape were aggregated to form an aggregate.
 また、これらNiコート銅粉について、平板状の銅粒子の断面平均厚さ、その平均長軸径(図15の模式図における「d」で示す径)、平板状Niコート銅粒子凝集粉の平均粒子径(D50)、タップ密度、BET比表面積を測定した。表4に、これらの測定結果をまとめて示す。 Moreover, about these Ni coat copper powder, the cross-sectional average thickness of a flat copper particle, the average major axis diameter (diameter shown by "d" in the schematic diagram of FIG. 15), the average of flat Ni coat copper particle aggregated powder The particle diameter (D50), tap density, and BET specific surface area were measured. Table 4 summarizes these measurement results.
 [実施例60]
 <平板状Niコート銅粒子凝集粉の製造(次亜リン酸塩+タングステン化合物)>
 実施例60では、実施例1にて作製した平板状銅粒子凝集粉100gを用いて、無電解めっきによりその銅粉表面にNi合金被覆を行った。
[Example 60]
<Production of flat Ni-coated copper particle aggregated powder (hypophosphite + tungsten compound)>
In Example 60, Ni alloy coating was performed on the surface of the copper powder by electroless plating using 100 g of the tabular copper particle aggregate powder prepared in Example 1.
 無電解Niめっき液としては、実施例1と同じ還元剤として次亜リン酸塩を含むめっき液を用い、このめっき液中にNi以外の金属を添加してNi合金を作製した。 As the electroless Ni plating solution, a plating solution containing hypophosphite as the same reducing agent as in Example 1 was used, and a metal other than Ni was added to the plating solution to produce a Ni alloy.
 具体的には、無電解Niめっき液として、硫酸ニッケル20g/L、次亜リン酸ナトリウム25g/L、酢酸ナトリウム10g/L、クエン酸ナトリウム10g/Lを各濃度で添加しためっき液に、さらにタングステン酸ナトリウムを1.5g添加し、水酸化ナトリウムを添加してpH5.0に調整しためっき液を500mL用意した。 Specifically, as an electroless Ni plating solution, a plating solution in which nickel sulfate 20 g / L, sodium hypophosphite 25 g / L, sodium acetate 10 g / L, and sodium citrate 10 g / L are added at each concentration, 500 g of a plating solution prepared by adding 1.5 g of sodium tungstate and adjusting the pH to 5.0 by adding sodium hydroxide was prepared.
 この無電解Niめっき液に、実施例50にて作製した平板状銅粒子凝集粉100gを水100mL中に分散させたスラリーを入れ、25℃で10分間撹拌した後、浴温を90℃まで加熱して60分間撹拌した。 In this electroless Ni plating solution, a slurry obtained by dispersing 100 g of the tabular copper particle aggregate powder prepared in Example 50 in 100 mL of water was stirred for 10 minutes at 25 ° C., and then the bath temperature was heated to 90 ° C. And stirred for 60 minutes.
 反応が終了した後、粉末をろ過、水洗してエタノールを通じて乾燥させたところ、Ni-W-P合金が被覆されたNiコート銅粉が得られた。そのNiコート銅粉を回収してNiの含有量を測定したところ、当該Niコート銅粉全体の質量100%に対して12.5質量%であった。また、Ni合金中に含まれるPの含有量はNi合金の質量100%に対して7.3質量%であった。また、Ni合金中に含まれるWの含有量はNi合金の質量100%に対して5.2%質量であった。 After the reaction was completed, the powder was filtered, washed with water, and dried through ethanol. As a result, Ni-coated copper powder coated with a Ni—WP alloy was obtained. When the Ni-coated copper powder was recovered and the Ni content was measured, it was 12.5% by mass with respect to 100% by mass of the entire Ni-coated copper powder. Moreover, content of P contained in Ni alloy was 7.3 mass% with respect to 100 mass of Ni alloy. The content of W contained in the Ni alloy was 5.2% by mass with respect to 100% by mass of the Ni alloy.
 また、得られたNiコート銅粉をSEMにより倍率5,000倍の視野で観察した結果、Ni合金を被覆する前の銅粉の表面に均一にNi合金が被覆されたNiコート銅粉であり、形状が平板状になったNiコート銅粒子が複数集合して凝集体となった凝集粉の形状をなす平板状Niコート銅粒子凝集粉であった。 In addition, as a result of observing the obtained Ni-coated copper powder with a field of view of 5,000 times by SEM, the Ni-coated copper powder was uniformly coated with the Ni alloy on the surface of the copper powder before being coated with the Ni alloy. A flat Ni-coated copper particle aggregated powder having a shape of agglomerated powder in which a plurality of Ni-coated copper particles having a flat plate shape are aggregated to form an aggregate.
 また、得られたNiコート銅粉は、Ni合金の被覆厚さが薄いため、形状はNi合金を被覆する前の平板状銅粒子凝集粉と同じ形状であった。具体的に、Niコート銅粉を構成する平板状のNiコート銅粒子は、その断面厚さ(断面平均厚さ)が0.3μmの平板状であり、その大きさは平均長軸径(図15の模式図における「d」で示す径)が2.7μmであった。そして、この平板状Niコート銅粒子が複数集合して凝集体となった凝集銅粉の大きさは、平均粒子径(D50)で7.2μmであり、測定誤差を考慮するといずれもNi合金を被覆前の平板状銅粒子凝集粉と同じ値を示した。 Moreover, since the Ni-coated copper powder obtained had a thin Ni alloy coating thickness, the shape was the same as the flat copper particle aggregated powder before coating the Ni alloy. Specifically, the plate-like Ni-coated copper particles constituting the Ni-coated copper powder have a plate-like shape with a cross-sectional thickness (cross-sectional average thickness) of 0.3 μm, and the size is the average major axis diameter (see FIG. 15) (diameter indicated by “d” in the schematic diagram) was 2.7 μm. The size of the aggregated copper powder formed by aggregating a plurality of the flat Ni-coated copper particles into an aggregate is 7.2 μm in terms of the average particle diameter (D50). The same value as the flat copper particle aggregated powder before coating was shown.
 さらに、得られたNiコート銅粉のタップ密度は2.9g/cmであった。また、BET比表面積は2.5m/gであった。 Furthermore, the tap density of the obtained Ni-coated copper powder was 2.9 g / cm 3 . The BET specific surface area was 2.5 m 2 / g.
 [実施例61]
 実施例50で得られた平板状Niコート銅粒子凝集粉30gに、フェノール樹脂(群栄化学株式会社製、PL-2211)15g、ブチルセロソルブ(関東化学株式会社製、鹿特級)10gを混合し、小型ニーダー(日本精機製作所製、ノンバブリングニーダーNBK-1)を用いて、1200rpm、3分間の混錬を3回繰り返すことでペースト化した。得られた導電ペーストを金属スキージでガラス上に印刷し、空気雰囲気中にて200℃で30分間硬化させた。
[Example 61]
15 g of a phenolic resin (manufactured by Gunei Chemical Co., Ltd., PL-2211) and 10 g of butyl cellosolve (manufactured by Kanto Chemical Co., Ltd., deer special grade) are mixed with 30 g of the tabular Ni-coated copper particle aggregated powder obtained in Example 50. Using a small kneader (manufactured by Nippon Seiki Seisakusho, non-bubbling kneader NBK-1), kneading at 1200 rpm for 3 minutes was repeated three times to form a paste. The obtained conductive paste was printed on glass with a metal squeegee and cured at 200 ° C. for 30 minutes in an air atmosphere.
 硬化により得られた被膜の比抵抗値は、8.3×10-5Ω・cmであり、優れた導電性を示すことが分かった。表4に、これらの結果を示す。 The specific resistance value of the film obtained by curing was 8.3 × 10 −5 Ω · cm, and it was found that the film exhibited excellent conductivity. Table 4 shows these results.
 [実施例62]
 実施例51で得られた平板状Niコート銅粒子凝集粉30gに、フェノール樹脂(群栄化学株式会社製,PL-2211)20g、ブチルセロソルブ(関東化学株式会社製,鹿特級)10gを混合し、小型ニーダー(日本精機製作所製,ノンバブリングニーダーNBK-1)を用いて、1200rpm、3分間の混錬を3回繰り返すことでペースト化した。得られた導電ペーストを金属スキージでガラス上に印刷し、空気雰囲気中にて200℃で30分間硬化させた。
[Example 62]
20 g of a phenolic resin (manufactured by Gunei Chemical Co., Ltd., PL-2211) and 10 g of butyl cellosolve (manufactured by Kanto Kagaku Co., Ltd., deer special grade) are mixed with 30 g of the tabular Ni-coated copper particle aggregated powder obtained in Example 51. Using a small kneader (manufactured by Nippon Seiki Seisakusho, non-bubbling kneader NBK-1), the mixture was kneaded at 1200 rpm for 3 minutes three times to make a paste. The obtained conductive paste was printed on glass with a metal squeegee and cured at 200 ° C. for 30 minutes in an air atmosphere.
 硬化により得られた被膜の比抵抗値は、8.9×10-5Ω・cmであり、優れた導電性を示すことが分かった。表4に、これらの結果を示す。 The specific resistance value of the film obtained by curing was 8.9 × 10 −5 Ω · cm, and it was found that excellent conductivity was exhibited. Table 4 shows these results.
 [実施例63]
 実施例50で作製した平板状Niコート銅粒子凝集粉を樹脂に分散させて電磁波シールド材とした。
[Example 63]
The tabular Ni-coated copper particle aggregate powder produced in Example 50 was dispersed in a resin to obtain an electromagnetic wave shielding material.
 すなわち、得られた平板状Niコート銅粒子凝集粉30gに対して、塩化ビニル樹脂100gと、メチルエチルケトン200gとをそれぞれ混合し、小型ニーダーを用いて、1200rpm、3分間の混錬を3回繰り返すことによってペースト化した。ペースト化に際しては、銅粉が凝集することなく、樹脂中に均一に分散した。これを100μmの厚さの透明ポリエチレンテレフタレートシートからなる基材の上にメイヤーバーを用いて塗布・乾燥し、厚さ25μmの電磁波シールド層を形成した。 That is, 100 g of vinyl chloride resin and 200 g of methyl ethyl ketone are mixed with 30 g of the obtained tabular Ni-coated copper particle agglomerated powder, and kneading at 1200 rpm for 3 minutes is repeated three times using a small kneader. To make a paste. During pasting, the copper powder was uniformly dispersed in the resin without agglomeration. This was coated and dried using a Mayer bar on a substrate made of a transparent polyethylene terephthalate sheet having a thickness of 100 μm to form an electromagnetic wave shielding layer having a thickness of 25 μm.
 電磁波シールド特性については、周波数1GHzの電磁波を用いて、その減衰率を測定することによって評価した。表4に、これらの結果を示す。 The electromagnetic shielding characteristics were evaluated by measuring the attenuation rate using an electromagnetic wave having a frequency of 1 GHz. Table 4 shows these results.
 [比較例10]
 <電解銅粉の作製>
 電解液に、添加剤としてのヤヌスグリーンBと、ポリエチレングリコールと、塩化物イオンとを添加しない条件としたこと以外は、実施例50と同じ条件で銅粉を陰極板上に析出させた。
[Comparative Example 10]
<Preparation of electrolytic copper powder>
Copper powder was deposited on the cathode plate under the same conditions as in Example 50 except that Janus Green B as an additive, polyethylene glycol, and chloride ions were not added to the electrolytic solution.
 得られた電解銅粉の形状を、上述したSEMによる方法で倍率5,000倍の視野で観察した結果、得られた銅粉は樹枝状の形状を呈した銅粉であり、実施例にて得られた銅粉のように平板状の個片が凝集した形状ではなかった。 As a result of observing the shape of the obtained electrolytic copper powder in the field of view of 5,000 times magnification by the method by SEM described above, the obtained copper powder is a copper powder having a dendritic shape, and in the examples It was not a shape in which flat pieces were aggregated like the obtained copper powder.
 <Niコート銅粉の製造(還元剤:次亜リン酸塩)>
 次に、得られた銅粉を用いてNiコート銅粉を作製した。
<Production of Ni-coated copper powder (reducing agent: hypophosphite)>
Next, Ni coat copper powder was produced using the obtained copper powder.
 具体的には、無電解Niめっき液として、硫酸ニッケル20g/L、次亜リン酸ナトリウム25g/L、酢酸ナトリウム10g/L、クエン酸ナトリウム10g/Lを各濃度で添加し、さらに水酸化ナトリウムを添加してpH5.0に調整しためっき液を500mL用意した。 Specifically, as an electroless Ni plating solution, nickel sulfate 20 g / L, sodium hypophosphite 25 g / L, sodium acetate 10 g / L, sodium citrate 10 g / L are added at each concentration, and sodium hydroxide is further added. 500 mL of a plating solution adjusted to pH 5.0 by adding the above was prepared.
 この無電解Niめっき液に、上述した方法で作製した銅粉100gを水100mL中に分散させたスラリーを入れ、25℃で10分間撹拌した後、浴温を90℃まで加熱して60分間撹拌した。 In this electroless Ni plating solution, a slurry in which 100 g of the copper powder prepared by the above-described method is dispersed in 100 mL of water is stirred and stirred at 25 ° C. for 10 minutes, and then the bath temperature is heated to 90 ° C. and stirred for 60 minutes. did.
 反応が終了した後、粉末をろ過、水洗してエタノールを通じて乾燥させたところ、銅粉の表面にPを含むNi合金が被覆されたNiコート銅粉が得られた。そのNiコート銅粉を回収してNiの含有量を測定したところ、Niコート銅粉全体の質量100%に対して13.7質量%であった。また、Ni合金中に含まれるPの含有量はNi合金の質量100%に対して7.9質量%であった。 After the reaction was completed, the powder was filtered, washed with water, and dried through ethanol. As a result, a Ni-coated copper powder in which a Ni alloy containing P was coated on the surface of the copper powder was obtained. When the Ni-coated copper powder was recovered and the Ni content was measured, it was 13.7% by mass with respect to 100% by mass of the entire Ni-coated copper powder. Moreover, content of P contained in Ni alloy was 7.9 mass% with respect to 100 mass of Ni alloy.
 図24に、得られたNiコート銅粉の形状をSEMにより倍率5,000倍の視野で観察した結果を示す。図24の写真図に示すように、得られたNiコート銅粉は樹枝状の形状を呈した銅粉で、Ni合金を被覆する前の銅粉の表面に均一にNi合金が被覆されたものであり。実施例にて得られた銅粉のように平板状の個片が凝集した形状ではなかった。また、このNiコート銅粉の平均粒子径(D50)は17.6μmであった。 FIG. 24 shows the result of observing the shape of the obtained Ni-coated copper powder with a SEM field of view at a magnification of 5,000 times. As shown in the photograph of FIG. 24, the obtained Ni-coated copper powder is a copper powder having a dendritic shape, and the surface of the copper powder before being coated with the Ni alloy is uniformly coated with the Ni alloy. It is. It was not a shape in which flat pieces were aggregated like the copper powder obtained in the examples. The average particle size (D50) of this Ni-coated copper powder was 17.6 μm.
 次に、得られたNiコート銅粉55質量部に、フェノール樹脂(群栄化学株式会社製,PL-2211)15質量部、ブチルセロソルブ(関東化学株式会社製,鹿特級)10質量部を混合し、小型ニーダー(日本精機製作所製,ノンバブリングニーダーNBK-1)を用いて、1200rpm、3分間の混錬を3回繰り返すことでペースト化した。得られた導電ペーストを金属スキージでガラス上に印刷し、大気雰囲気中にて200℃で30分間硬化させた。 Next, 55 parts by mass of the obtained Ni-coated copper powder was mixed with 15 parts by mass of phenol resin (manufactured by Gunei Chemical Co., Ltd., PL-2211) and 10 parts by mass of butyl cellosolve (manufactured by Kanto Chemical Co., Ltd., deer special grade). Using a small kneader (manufactured by Nippon Seiki Seisakusho, non-bubbling kneader NBK-1), kneading at 1200 rpm for 3 minutes was repeated three times to form a paste. The obtained conductive paste was printed on glass with a metal squeegee and cured at 200 ° C. for 30 minutes in the air atmosphere.
 硬化により得られた被膜の比抵抗値は、68.2×10-5Ω・cmであり、実施例にて得られた導電性ペーストと比較して極めて比抵抗値が高く導電性が劣るものであった。 The specific resistance value of the film obtained by curing is 68.2 × 10 −5 Ω · cm, which is extremely high in specific resistance value and inferior in conductivity compared to the conductive paste obtained in the examples. Met.
 [比較例11]
 <機械的に扁平化した平板状銅粉の作製>
 従来の平板状銅粉にNiを被覆させたNiコート銅粉による導電性ペーストの特性を評価し、実施例における平板状Niコート銅粒子凝集粉を用いて作製した導電性ペーストの特性と比較した。
[Comparative Example 11]
<Production of mechanically flattened flat copper powder>
The characteristics of the conductive paste by Ni-coated copper powder obtained by coating Ni on a conventional flat copper powder were evaluated and compared with the characteristics of the conductive paste prepared using the flat Ni-coated copper particle agglomerated powder in the examples. .
 平板状銅粉は、粒状の電解銅粉を機械的に扁平化させて作製した。具体的には、平均粒子径5.4μmの粒状アトマイズ銅粉(メイキンメタルパウダーズ社製)500gにステアリン酸5gを添加し、ボールミルで扁平化処理を行った。ボールミルには3mmのジルコニアビーズを5kg投入し、500rpmの回転速度で90分間回転した。 The flat copper powder was prepared by mechanically flattening granular electrolytic copper powder. Specifically, 5 g of stearic acid was added to 500 g of granular atomized copper powder (manufactured by Mekin Metal Powders Co., Ltd.) having an average particle size of 5.4 μm, and flattened with a ball mill. The ball mill was charged with 5 kg of 3 mm zirconia beads and rotated for 90 minutes at a rotation speed of 500 rpm.
 得られた平板状銅粉に対して、レーザー回折・散乱法粒度分布測定器で測定した結果、平均粒子径は21.8μmであった。また、SEM観察により測定した平板状銅粉の厚さ(断面平均厚さ)は0.4μmであった。 As a result of measuring the obtained flat copper powder with a laser diffraction / scattering particle size distribution analyzer, the average particle diameter was 21.8 μm. Moreover, the thickness (cross-sectional average thickness) of the flat copper powder measured by SEM observation was 0.4 μm.
 <Niコート銅粉の製造(還元剤:ホウ水素化合物)>
 扁平化して作製した平板状銅粉100gを用いて、無電解Niめっきによりその銅粉表面にNi被覆を行った。
<Production of Ni-coated copper powder (reducing agent: borohydride)>
Using 100 g of flat copper powder produced by flattening, the surface of the copper powder was coated with Ni by electroless Ni plating.
 具体的には、無電解Niめっき液として、硫酸ニッケル30g/L、コハク酸ナトリウム50g/L、ホウ酸30g/L、塩化アンモニウム30g/L、ジメチルアミンボラン4g/Lを各濃度で添加し、さらに水酸化ナトリウムを添加してpH6.0に調整しためっき液を500mL用意した。 Specifically, as an electroless Ni plating solution, nickel sulfate 30 g / L, sodium succinate 50 g / L, boric acid 30 g / L, ammonium chloride 30 g / L, dimethylamine borane 4 g / L were added at each concentration, Further, 500 mL of a plating solution adjusted to pH 6.0 by adding sodium hydroxide was prepared.
 この無電解Niめっき液に、上述した方法で作製した平板状銅粉100gを水100mL中に分散させたスラリーを入れ、25℃で10分間撹拌した後、浴温を60℃まで加熱して60分間撹拌した。 In this electroless Ni plating solution, a slurry in which 100 g of the flat copper powder prepared by the above-described method is dispersed in 100 mL of water is stirred for 10 minutes at 25 ° C., and then the bath temperature is heated to 60 ° C. to 60 ° C. Stir for minutes.
 反応が終了した後、粉末をろ過、水洗してエタノールを通じて乾燥させたところ、平板状銅粉の表面にNi合金が被覆されたNiコート銅粉(平板状Niコート銅粉)が得られた。そのNiコート銅粉を回収してNi合金被覆量を測定したところ、当該Niコート銅粉全体の質量100%に対して18.3質量%であった。また、Ni合金中に含まれるBの含有量はNi合金の質量100%に対して6.8質量%であった。 After the reaction was completed, the powder was filtered, washed with water, and dried through ethanol. As a result, Ni-coated copper powder (flat Ni-coated copper powder) in which a Ni alloy was coated on the surface of the flat copper powder was obtained. When the Ni-coated copper powder was recovered and the Ni alloy coating amount was measured, it was 18.3% by mass relative to 100% by mass of the entire Ni-coated copper powder. Moreover, content of B contained in Ni alloy was 6.8 mass% with respect to 100 mass of Ni alloy.
 また、得られた平板状銅粉について、レーザー回折・散乱法粒度分布測定器で測定した結果、平均粒子径は21.8μmであった。また、SEM観察により測定した平板状銅粉の厚さ(断面平均厚さ)は0.40μmであった。 Further, the obtained flat copper powder was measured with a laser diffraction / scattering particle size distribution measuring instrument, and as a result, the average particle size was 21.8 μm. Moreover, the thickness (cross-sectional average thickness) of the flat copper powder measured by SEM observation was 0.40 μm.
 次に、上述した方法で作製したNiコート銅粉40gに対して、フェノール樹脂(群栄化学株式会社製,PL-2211)20gと、ブチルセロソルブ(関東化学株式会社製,鹿特級)10gとを混合し、小型ニーダー(株式会社日本精機製作所製,ノンバブリングニーダーNBK-1)を用いて、1200rpm、3分間の混錬を3回繰り返すことによってペースト化した。ペースト化に際しては、混練を繰り返す毎に粘度の上昇が発生した。このことは銅粉の一部が凝集していることが原因であると考えられ、均一分散が困難であった。得られた導電ペーストを金属スキージでガラス上に印刷し、大気雰囲気中にて200℃で30分間かけて硬化させた。 Next, 20 g of phenolic resin (manufactured by Gunei Chemical Co., Ltd., PL-2211) and 10 g of butyl cellosolve (manufactured by Kanto Chemical Co., Ltd., deer special grade) are mixed with 40 g of Ni-coated copper powder produced by the above-described method. Then, using a small kneader (manufactured by Nippon Seiki Seisakusho Co., Ltd., non-bubbling kneader NBK-1), it was made into a paste by repeating kneading at 1200 rpm for 3 minutes three times. During pasting, the viscosity increased every time kneading was repeated. This is considered to be caused by a part of the copper powder being aggregated, and uniform dispersion was difficult. The obtained conductive paste was printed on a glass with a metal squeegee and cured at 200 ° C. for 30 minutes in an air atmosphere.
 硬化により得られた被膜の比抵抗値は、26.2×10-5Ω・cmであり、実施例にて得られた導電性ペーストと比較して極めて比抵抗値が高く導電性が劣るものであった。 The specific resistance value of the film obtained by curing is 26.2 × 10 −5 Ω · cm, which is extremely high in specific resistance value and inferior in conductivity compared to the conductive paste obtained in the examples. Met.
 [比較例12]
 比較例11にて作製した平板状Niコート銅粉を樹脂に分散させて電磁波シールド材とした。
[Comparative Example 12]
The tabular Ni-coated copper powder produced in Comparative Example 11 was dispersed in a resin to obtain an electromagnetic wave shielding material.
 具体的には、得られた平板状Niコート銅粉40gに対して、塩化ビニル樹脂100gと、メチルエチルケトン200gとをそれぞれ混合し、小型ニーダーを用いて、1200rpm、3分間の混錬を3回繰り返すことによってペースト化した。ペースト化に際しては、銅粉が凝集することなく、樹脂中に均一に分散した。これを100μmの厚さの透明ポリエチレンテレフタレートシートからなる基材の上にメイヤーバーを用いて塗布・乾燥し、厚さ25μmの電磁波シールド層を形成した。 Specifically, 100 g of vinyl chloride resin and 200 g of methyl ethyl ketone are mixed with 40 g of the obtained tabular Ni-coated copper powder, and kneading at 1200 rpm for 3 minutes is repeated three times using a small kneader. To make a paste. During pasting, the copper powder was uniformly dispersed in the resin without agglomeration. This was coated and dried using a Mayer bar on a substrate made of a transparent polyethylene terephthalate sheet having a thickness of 100 μm to form an electromagnetic wave shielding layer having a thickness of 25 μm.
 電磁波シールド特性については、周波数1GHzの電磁波を用いて、その減衰率を測定することによって評価した。具体的には、機械的に扁平化して作製した平板状銅粉の表面をNiで被覆した比較例12の場合のレベルを『△』として、その比較例12のレベルよりも悪い場合を『×』、その比較例12のレベルよりも良好な場合を『○』、さらに優れている場合を『◎』として評価した。表4に、これらの結果を示す。 The electromagnetic shielding characteristics were evaluated by measuring the attenuation rate using an electromagnetic wave having a frequency of 1 GHz. Specifically, the level in the case of the comparative example 12 in which the surface of the flat copper powder produced by mechanically flattening is coated with Ni is set as “Δ”, and the case where the level is lower than the level of the comparative example 12 is “×”. The case where the level was better than the level of Comparative Example 12 was evaluated as “◯”, and the case where the level was even better was evaluated as “◎”. Table 4 shows these results.
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
 ≪実施例、比較例≫
(5)第5の実施形態に係るNiコート銅粉を用いた試験
 [実施例64]
 <電解銅粉の作製>
 容量が100Lの電解槽に、電極面積が200mm×200mmのチタン製の電極板を陰極とし、電極面積が200mm×200mmの銅製の電極板を陽極として用い、その電解槽中に電解液を装入し、これに直流電流を通電して銅粉を陰極板上に析出させた。
≪Example, comparative example≫
(5) Test using Ni-coated copper powder according to the fifth embodiment [Example 64]
<Preparation of electrolytic copper powder>
An electrolytic cell with a capacity of 100 L is used with a titanium electrode plate having an electrode area of 200 mm × 200 mm as a cathode and a copper electrode plate with an electrode area of 200 mm × 200 mm as an anode, and an electrolytic solution is charged into the electrolytic cell. Then, a direct current was applied thereto to deposit copper powder on the cathode plate.
 このとき、電解液としては、銅イオン濃度が10g/L、硫酸濃度が125g/Lの組成のものを用いた。また、この電解液に、添加剤としてヤヌスグリーンB(関東化学株式会社製)を電解液中の濃度として80mg/Lとなるように添加し、さらに塩酸溶液(和光純薬工業株式会社製)を電解液中の塩化物イオン(塩素イオン)濃度として30mg/Lとなるように添加した。 At this time, as the electrolytic solution, a composition having a copper ion concentration of 10 g / L and a sulfuric acid concentration of 125 g / L was used. In addition, Janus Green B (manufactured by Kanto Chemical Co., Inc.) as an additive is added to the electrolytic solution so that the concentration in the electrolytic solution is 80 mg / L, and a hydrochloric acid solution (manufactured by Wako Pure Chemical Industries, Ltd.) is further added. It added so that it might become 30 mg / L as chloride ion (chlorine ion) density | concentration in electrolyte solution.
 そして、上述のように濃度調整した電解液を、ポンプを用いて15L/minの流量で循環しながら、温度を25℃に維持した条件で、陰極の電流密度が15A/dmになるように通電して陰極板上に銅粉を析出させた。 Then, while circulating the electrolytic solution whose concentration is adjusted as described above at a flow rate of 15 L / min using a pump, the current density of the cathode is 15 A / dm 2 under the condition that the temperature is maintained at 25 ° C. Current was applied to deposit copper powder on the cathode plate.
 陰極板上に析出した電解銅粉を、スクレーパーを用いて機械的に電解槽の槽底に掻き落として回収し、回収した銅粉を純水で洗浄した後、減圧乾燥器に入れて乾燥した。 The electrolytic copper powder deposited on the cathode plate was recovered by mechanically scraping it off the bottom of the electrolytic cell using a scraper, and the recovered copper powder was washed with pure water and then put in a vacuum dryer and dried. .
 こうして得られた銅粉の形状を、上述した走査型電子顕微鏡(SEM)による方法で倍率1,000倍の視野で観察した結果、析出した銅粉は、直線的に成長した主幹と、その主幹から直線的に分岐した複数の枝と、その枝からさらに分岐した枝とを有する形状の銅粒子が集合してなる、2次元又は3次元の樹枝状形状を呈した樹枝状銅粉であった。 As a result of observing the shape of the copper powder thus obtained in the field of view with a magnification of 1,000 times by the method using the scanning electron microscope (SEM) described above, the deposited copper powder was a main chain that grew linearly and the main trunk. It was a dendritic copper powder exhibiting a two-dimensional or three-dimensional dendritic shape in which copper particles having a shape having a plurality of branches branched linearly from the branch and branches further branched from the branch were collected. .
 <樹枝状Niコート銅粉の作製(還元剤:ホウ水素化合物)>
 次に、上述した方法で作製した樹枝状銅粉を用いて、無電解Niめっきによりその銅粉表面にNi被覆を行い、Niコート銅粉を作製した。なお、還元剤がホウ水素化合物である無電解Niめっき液を用いた。
<Preparation of dendritic Ni-coated copper powder (reducing agent: borohydride)>
Next, using the dendritic copper powder produced by the above-described method, Ni was coated on the surface of the copper powder by electroless Ni plating to produce Ni-coated copper powder. In addition, the electroless Ni plating solution whose reducing agent is a borohydride compound was used.
 具体的には、無電解Niめっき液として、硫酸ニッケル30g/L、コハク酸ナトリウム50g/L、ホウ酸30g/L、塩化アンモニウム30g/L、ジメチルアミンボラン4g/Lを各濃度で添加し、さらに水酸化ナトリウムを添加してpH6.0に調整しためっき液を500mL用意した。 Specifically, as an electroless Ni plating solution, nickel sulfate 30 g / L, sodium succinate 50 g / L, boric acid 30 g / L, ammonium chloride 30 g / L, dimethylamine borane 4 g / L were added at each concentration, Further, 500 mL of a plating solution adjusted to pH 6.0 by adding sodium hydroxide was prepared.
 この無電解Niめっき液に、上述した方法で作製した樹枝状銅粉100gを水100mL中に分散させたスラリーを入れ、25℃で10分間撹拌した後、浴温を60℃まで加熱して60分間撹拌した。 In this electroless Ni plating solution, a slurry in which 100 g of the dendritic copper powder prepared by the above method is dispersed in 100 mL of water is stirred for 10 minutes at 25 ° C., and then the bath temperature is heated to 60 ° C. to 60 ° C. Stir for minutes.
 反応が終了した後、粉末をろ過、水洗してエタノールを通じて乾燥させたところ、樹枝状銅粉の表面にNiが被覆されたNiコート銅粉が得られた。そのNiコート銅粉を回収してNiの含有量を測定したところ、当該Niコート銅粉全体の質量100%に対して18.6質量%であった。また、Ni合金中に含まれるボロン(B)の含有量はNi合金の質量100%に対して6.1質量%であった。 After the reaction was completed, the powder was filtered, washed with water, and dried through ethanol. As a result, Ni-coated copper powder in which the surface of the dendritic copper powder was coated with Ni was obtained. When the Ni-coated copper powder was recovered and the Ni content was measured, it was 18.6% by mass with respect to 100% by mass of the entire Ni-coated copper powder. Further, the content of boron (B) contained in the Ni alloy was 6.1% by mass with respect to 100% by mass of the Ni alloy.
 また、得られたNiコート銅粉をSEMにより倍率5,000倍の視野で観察した結果、少なくとも90個数%以上のNiコート銅粉は、Ni合金を被覆する前の樹枝状銅粉の表面に均一にNi合金が被覆された、2次元又は3次元の樹枝状の形状であって、樹枝状に成長した主幹と、その主幹から分岐した複数の枝と、その枝からさらに分岐した枝とを有する樹枝状形状を呈した樹枝状Niコート銅粉であった。 Further, as a result of observing the obtained Ni-coated copper powder with a field of view of 5,000 times by SEM, at least 90% by number or more of Ni-coated copper powder was found on the surface of the dendritic copper powder before coating the Ni alloy. A two-dimensional or three-dimensional dendritic shape uniformly coated with a Ni alloy, a main trunk that has grown into a dendritic shape, a plurality of branches branched from the main trunk, and a branch further branched from the branch The dendritic Ni-coated copper powder had a dendritic shape.
 また、その樹枝状Niコート銅粉の主幹及び枝を構成する銅粒子は、断面厚さが平均で0.09μmの平板状であり、その表面に微細な凸部を有していた。なお、その表面に形成されている凸部の高さは平均で0.06μmであった。 Further, the copper particles constituting the main trunk and branches of the dendritic Ni-coated copper powder had a flat cross-sectional thickness of 0.09 μm on average, and had fine convex portions on the surface. In addition, the average height of the convex portions formed on the surface was 0.06 μm.
 また、その樹枝状Niコート銅粉の平均粒子径(D50)は21.2μmであった。 The average particle diameter (D50) of the dendritic Ni-coated copper powder was 21.2 μm.
 さらに、得られた樹枝状Niコート銅粉の嵩密度は1.25g/cmであった。また、BET比表面積は1.7m/gであった。 Furthermore, the bulk density of the obtained dendritic Ni-coated copper powder was 1.25 g / cm 3 . The BET specific surface area was 1.7 m 2 / g.
 [実施例65]
 <電解銅粉の作製>
 電解液として、銅イオン濃度が10g/L、硫酸濃度が125g/Lの組成のものを用い、その電解液に、添加剤としてヤヌスグリーンBを電解液中の濃度として150mg/Lとなるように添加し、さらに塩酸溶液を電解液中の塩素イオン濃度として100mg/Lとなるように添加したこと以外は、実施例64と同じ条件で銅粉を陰極板上に析出させた。
[Example 65]
<Preparation of electrolytic copper powder>
An electrolytic solution having a copper ion concentration of 10 g / L and a sulfuric acid concentration of 125 g / L is used, and Janus Green B as an additive is added to the electrolytic solution to a concentration of 150 mg / L in the electrolytic solution. Copper powder was deposited on the cathode plate under the same conditions as in Example 64 except that the hydrochloric acid solution was further added so that the chlorine ion concentration in the electrolytic solution was 100 mg / L.
 <樹枝状Niコート銅粉の製造(還元剤:次亜リン酸塩)>
 次に、上述した方法で作製した樹枝状銅粉を用いて、無電解Niめっきによりその銅粉表面にNi被覆を行い、Niコート銅粉を作製した。なお、還元剤が次亜リン酸塩である無電解Niめっき液を用いた。
<Production of dendritic Ni-coated copper powder (reducing agent: hypophosphite)>
Next, using the dendritic copper powder produced by the above-described method, Ni was coated on the surface of the copper powder by electroless Ni plating to produce Ni-coated copper powder. In addition, an electroless Ni plating solution whose reducing agent is hypophosphite was used.
 具体的には、無電解Niめっき液として、硫酸ニッケル20g/L、次亜リン酸ナトリウム25g/L、酢酸ナトリウム10g/L、クエン酸ナトリウム10g/Lを各濃度で添加し、さらに水酸化ナトリウムを添加してpH5.0に調整しためっき液を500mL用意した。 Specifically, as an electroless Ni plating solution, nickel sulfate 20 g / L, sodium hypophosphite 25 g / L, sodium acetate 10 g / L, sodium citrate 10 g / L are added at each concentration, and sodium hydroxide is further added. 500 mL of a plating solution adjusted to pH 5.0 by adding the above was prepared.
 この無電解Niめっき液に、上述した方法で作製した樹枝状銅粉100gを水100mL中に分散させたスラリーを入れ、25℃で10分間撹拌した後、浴温を90℃まで加熱して60分間撹拌した。 In this electroless Ni plating solution, a slurry in which 100 g of the dendritic copper powder prepared by the above method is dispersed in 100 mL of water is stirred for 10 minutes at 25 ° C., and then the bath temperature is heated to 90 ° C. to 60 ° C. Stir for minutes.
 反応が終了した後、粉末をろ過、水洗してエタノールを通じて乾燥させたところ、樹枝状銅粉の表面にリン(P)を含むNi合金が被覆されたNiコート銅粉が得られた。そのNiコート銅粉を回収してNiの含有量を測定したところ、当該Niコート銅粉全体の質量100%に対して13.1質量%であった。また、Ni合金中に含まれるPの含有量はNi合金の質量100%に対して8.1質量%であった。 After the reaction was completed, the powder was filtered, washed with water, and dried through ethanol. As a result, Ni-coated copper powder in which the surface of the dendritic copper powder was coated with Ni alloy containing phosphorus (P) was obtained. When the Ni-coated copper powder was recovered and the Ni content was measured, it was 13.1% by mass with respect to 100% by mass of the entire Ni-coated copper powder. Moreover, content of P contained in Ni alloy was 8.1 mass% with respect to 100 mass of Ni alloy.
 また、得られたNiコート銅粉をSEMにより倍率5,000倍の視野で観察した結果、少なくとも90個数%以上のNiコート銅粉は、Ni合金を被覆する前の樹枝状銅粉の表面に均一にNi合金が被覆された、2次元又は3次元の樹枝状の形状であって、樹枝状に成長した主幹と、その主幹から分岐した複数の枝と、その枝からさらに分岐した枝とを有する樹枝状形状を呈した樹枝状Niコート銅粉であった。 Further, as a result of observing the obtained Ni-coated copper powder with a field of view of 5,000 times by SEM, at least 90% by number or more of Ni-coated copper powder was found on the surface of the dendritic copper powder before coating the Ni alloy. A two-dimensional or three-dimensional dendritic shape uniformly coated with a Ni alloy, a main trunk that has grown into a dendritic shape, a plurality of branches branched from the main trunk, and a branch further branched from the branch The dendritic Ni-coated copper powder had a dendritic shape.
 また、その樹枝状Niコート銅粉の主幹及び枝を構成する銅粒子は、断面厚さが平均で0.11μmの平板状であり、その表面に微細な凸部を有していた。なお、その表面に形成されている凸部の高さは平均で0.23μmであった。 Moreover, the copper particles constituting the main trunk and branches of the dendritic Ni-coated copper powder were flat plate having an average cross-sectional thickness of 0.11 μm and had fine convex portions on the surface. The height of the convex portions formed on the surface was 0.23 μm on average.
 また、その樹枝状Niコート銅粉の平均粒子径(D50)は8.3μmであった。 The average particle diameter (D50) of the dendritic Ni-coated copper powder was 8.3 μm.
 さらに、得られた樹枝状Niコート銅粉の嵩密度は2.77g/cmであった。また、BET比表面積は1.2m/gであった。 Furthermore, the bulk density of the obtained dendritic Ni-coated copper powder was 2.77 g / cm 3 . The BET specific surface area was 1.2 m 2 / g.
 [実施例66]
 <樹枝状Niコート銅粉の作製(還元剤:ヒドラジン化合物)>
 実施例65で得られた樹枝状銅粉100gを用いて、無電解Niめっきによりその銅粉表面にNi被覆を行い、Niコート銅粉を作製した。なお、還元剤をヒドラジン化合物とした無電解Niめっきを行った。
[Example 66]
<Preparation of dendritic Ni-coated copper powder (reducing agent: hydrazine compound)>
Using 100 g of the dendritic copper powder obtained in Example 65, Ni was coated on the surface of the copper powder by electroless Ni plating to prepare a Ni-coated copper powder. Electroless Ni plating using a hydrazine compound as a reducing agent was performed.
 具体的に、実施例65で得られた樹枝状銅粉100gを水500mL中に分散させたスラリーに酢酸ニッケルを濃度12.4g/Lとなるよう添加し、ヒドラジン一水和物80質量%水溶液6gをその浴中に60分間にわたり徐々に撹拌しながら滴下した。このとき、浴温は60℃になるように管理した。 Specifically, nickel acetate was added to a slurry in which 100 g of the dendritic copper powder obtained in Example 65 was dispersed in 500 mL of water to a concentration of 12.4 g / L, and an aqueous solution of 80% by mass of hydrazine monohydrate. 6 g was added dropwise into the bath with slow stirring over 60 minutes. At this time, the bath temperature was controlled to 60 ° C.
 反応が終了した後、粉末をろ過、水洗してエタノールを通じて乾燥させたところ、樹枝状銅粉の表面にNiが被覆されたNiコート銅粉が得られた。そのNiコート銅粉を回収してNiの含有量を測定したところ、当該Niコート銅粉全体の質量100%に対して7.7質量%であった。 After the reaction was completed, the powder was filtered, washed with water, and dried through ethanol. As a result, Ni-coated copper powder in which the surface of the dendritic copper powder was coated with Ni was obtained. When the Ni-coated copper powder was recovered and the Ni content was measured, it was 7.7% by mass with respect to 100% by mass of the entire Ni-coated copper powder.
 また、得られたNiコート銅粉をSEMにより倍率5,000倍の視野で観察した結果、少なくとも90個数%以上のNiコート銅粉は、Ni合金を被覆する前の樹枝状銅粉の表面に均一にNiが被覆された、2次元又は3次元の樹枝状の形状であって、樹枝状に成長した主幹と、その主幹から分岐した複数の枝と、その枝からさらに分岐した枝とを有する樹枝状形状を呈した樹枝状Niコート銅粉であった。 Further, as a result of observing the obtained Ni-coated copper powder with a field of view of 5,000 times by SEM, at least 90% by number or more of Ni-coated copper powder was found on the surface of the dendritic copper powder before coating the Ni alloy. A two-dimensional or three-dimensional dendritic shape uniformly coated with Ni, having a main trunk grown into a dendritic shape, a plurality of branches branched from the main trunk, and branches further branched from the branch The dendritic Ni-coated copper powder had a dendritic shape.
 また、その樹枝状Niコート銅粉の主幹及び枝を構成する銅粒子は、その断面厚さが平均0.15μmの平板状であり、その表面に微細な凸部を有していた。なお、その表面に形成されている凸部の高さは平均で0.27μmであった。 Further, the copper particles constituting the main trunk and branches of the dendritic Ni-coated copper powder had a flat shape with an average cross-sectional thickness of 0.15 μm and had fine convex portions on the surface. The height of the convex portions formed on the surface was 0.27 μm on average.
 また、その樹枝状Niコート銅粉の平均粒子径(D50)は9.6μmであった。 The average particle diameter (D50) of the dendritic Ni-coated copper powder was 9.6 μm.
 さらに、得られた樹枝状Niコート銅粉の嵩密度は2.92g/cmであった。また、BET比表面積は1.6m/gであった。 Furthermore, the bulk density of the obtained dendritic Ni-coated copper powder was 2.92 g / cm 3 . Further, the BET specific surface area was 1.6 m 2 / g.
 [実施例67~73]
 <樹枝状Niコート銅粉の製造(Ni合金)>
 実施例65で得られた樹枝状銅粉100gを用いて、無電解めっきによりその銅粉表面にNi合金被覆を行った。
[Examples 67 to 73]
<Manufacture of dendritic Ni-coated copper powder (Ni alloy)>
Using 100 g of the dendritic copper powder obtained in Example 65, the surface of the copper powder was coated with a Ni alloy by electroless plating.
 合金用無電解Niめっき液としては、実施例65で得られた樹枝状銅粉100gを水500mL中に分散させたスラリーに酢酸ニッケルを濃度12.4g/Lとなるよう添加し、ヒドラジン3.2gをその浴中に60分間にわたり徐々に撹拌しながら滴下した。なお、浴温は60℃になるように管理した。 As an electroless Ni plating solution for alloys, nickel acetate was added to a slurry in which 100 g of the dendritic copper powder obtained in Example 65 was dispersed in 500 mL of water to a concentration of 12.4 g / L, and hydrazine 3. 2 g was added dropwise into the bath over 60 minutes with slow stirring. The bath temperature was controlled to 60 ° C.
 このとき、それぞれ所望とするNi合金被膜が形成されるように、それぞれの金属化合物を銅粉スラリーと酢酸ニッケルを含む浴中に添加し、さらにヒドラジンを徐々に添加した。金属化合物としては、実施例67では、タングステン酸ナトリウムを1.5g添加してNi-W合金被膜を形成させた。また、実施例68では、硫酸コバルトを2g添加してNi-Co合金被膜を形成させた。また、実施例69では、硫酸亜鉛七水和物とクエン酸ナトリウムとをそれぞれ4gずつ添加してNi-Zn合金被膜を形成させた。また、実施例70では、塩化パラジウムを2g添加してNi-Pd合金被膜を形成させた。また、実施例71では、テトラクロロ白金酸カリウム2gとグリシン1gとをそれぞれ添加してNi-Pt合金被膜を形成させた。また、実施例72では、モリブデン酸ナトリウムとクエン酸三ナトリウムとをそれぞれ1gずつ添加してNi-Mo合金被膜を形成させた。また、実施例73では、スズ酸ナトリウムを1g添加してNi-Sn合金被膜を形成させた。 At this time, each metal compound was added to a bath containing a copper powder slurry and nickel acetate, and hydrazine was gradually added so that each desired Ni alloy film was formed. As a metal compound, in Example 67, 1.5 g of sodium tungstate was added to form a Ni—W alloy film. In Example 68, 2 g of cobalt sulfate was added to form a Ni—Co alloy film. In Example 69, 4 g each of zinc sulfate heptahydrate and sodium citrate were added to form a Ni—Zn alloy coating. In Example 70, 2 g of palladium chloride was added to form a Ni—Pd alloy film. In Example 71, 2 g of potassium tetrachloroplatinate and 1 g of glycine were added to form a Ni—Pt alloy film. In Example 72, 1 g each of sodium molybdate and trisodium citrate was added to form a Ni—Mo alloy film. In Example 73, 1 g of sodium stannate was added to form a Ni—Sn alloy film.
 それぞれ反応が終了した後、粉末をろ過、水洗してエタノールを通じて乾燥させたところ、樹枝状銅粉の表面にNiが被覆されたNiコート銅粉が得られた。そのNiコート銅粉を回収してNi合金被覆量を測定した。表5に、当該Niコート銅粉全体の質量100%に対するNiの含有量、及びNi合金の質量100%に対してNi合金となる元素の含有量を測定した結果を示す。 After the reaction was completed, the powder was filtered, washed with water and dried through ethanol. As a result, Ni-coated copper powder in which the surface of the dendritic copper powder was coated with Ni was obtained. The Ni-coated copper powder was recovered and the Ni alloy coating amount was measured. Table 5 shows the results of measuring the content of Ni with respect to 100% by mass of the entire Ni-coated copper powder and the content of elements that become Ni alloys with respect to 100% by mass of the Ni alloy.
 また、得られたNiコート銅粉のそれぞれをSEMにより倍率5,000倍の視野で観察した結果、いずれも、少なくとも90個数%以上のNiコート銅粉は、Ni合金を被覆する前の樹枝状銅粉の表面に均一にNi合金が被覆された、2次元又は3次元の樹枝状の形状の樹枝状Niコート銅粉であって、直線的に成長した主幹と、その主幹から直線的に分岐した複数の枝と、さらにその枝からさらに分岐した枝とを有する樹枝状形状を呈した樹枝状Niコート銅粉であった。 In addition, as a result of observing each of the obtained Ni-coated copper powder with a field of view of 5,000 times by SEM, at least 90% by number or more of the Ni-coated copper powder is dendritic before coating with the Ni alloy. A two-dimensional or three-dimensional dendritic Ni-coated copper powder in which the Ni powder is uniformly coated on the surface of the copper powder, and the main trunk that grows linearly and the main trunk that branches linearly The dendritic Ni-coated copper powder had a dendritic shape having a plurality of branches and a branch further branched from the branches.
 また、これら樹枝状Niコート銅粉について、その平均粒子径(D50)、嵩密度、BET比表面積を測定した。表5に、これらの測定結果をまとめて示す。 Further, the average particle diameter (D50), bulk density, and BET specific surface area of these dendritic Ni-coated copper powders were measured. Table 5 summarizes these measurement results.
 [実施例74]
 <樹枝状Niコート銅粉の作製(次亜リン酸塩+タングステン化合物)>
 実施例74では、実施例64にて作製した樹枝状銅粉100gを用いて、無電解めっきによりその銅粉表面にNi合金被覆を行った。
[Example 74]
<Preparation of dendritic Ni-coated copper powder (hypophosphite + tungsten compound)>
In Example 74, 100 g of the dendritic copper powder prepared in Example 64 was used, and the copper powder surface was coated with a Ni alloy by electroless plating.
 無電解Niめっき液としては、実施例64と同じ還元剤として次亜リン酸塩を含むめっき液を用い、このめっき液中にNi以外の金属を添加してNi合金を作製した。 As the electroless Ni plating solution, a plating solution containing hypophosphite as the same reducing agent as in Example 64 was used, and a metal other than Ni was added to the plating solution to produce a Ni alloy.
 具体的には、無電解Niめっき液として、硫酸ニッケル20g/L、次亜リン酸ナトリウム25g/L、酢酸ナトリウム10g/L、クエン酸ナトリウム10g/Lを各濃度で添加しためっき液に、さらにタングステン酸ナトリウムを1.5g添加し、水酸化ナトリウムを添加してpH5.0に調整しためっき液を500mL用意した。 Specifically, as an electroless Ni plating solution, a plating solution in which nickel sulfate 20 g / L, sodium hypophosphite 25 g / L, sodium acetate 10 g / L, and sodium citrate 10 g / L are added at each concentration, 500 g of a plating solution prepared by adding 1.5 g of sodium tungstate and adjusting the pH to 5.0 by adding sodium hydroxide was prepared.
 この無電解Niめっき液に、実施例64にて作製した樹枝状銅粉100gを水100mL中に分散させたスラリーを入れ、25℃で10分間撹拌した後、浴温を90℃まで加熱して60分間撹拌した。 In this electroless Ni plating solution, a slurry obtained by dispersing 100 g of the dendritic copper powder prepared in Example 64 in 100 mL of water was stirred for 10 minutes at 25 ° C., and then the bath temperature was heated to 90 ° C. Stir for 60 minutes.
 反応が終了した後、粉末をろ過、水洗してエタノールを通じて乾燥させたところ、Ni-W-P合金が被覆されたNiコート銅粉が得られた。そのNiコート銅粉を回収してNiの含有量を測定したところ、当該Niコート銅粉全体の質量100%に対して12.3質量%であった。また、Ni合金中に含まれるPの含有量はNi合金の質量100%に対して7.1質量%であった。また、Ni合金中に含まれるWの含有量はNi合金の質量100%に対して5.5質量%であった。 After the reaction was completed, the powder was filtered, washed with water, and dried through ethanol. As a result, Ni-coated copper powder coated with a Ni—WP alloy was obtained. When the Ni-coated copper powder was recovered and the Ni content was measured, it was 12.3% by mass relative to 100% by mass of the entire Ni-coated copper powder. The content of P contained in the Ni alloy was 7.1% by mass with respect to 100% by mass of the Ni alloy. Moreover, content of W contained in Ni alloy was 5.5 mass% with respect to 100 mass of Ni alloy.
 また、得られたNiコート銅粉をSEMにより倍率5,000倍の視野で観察した結果、少なくとも90個数%以上のNiコート銅粉は、Ni合金を被覆する前の樹枝状銅粉の表面に均一にNi合金が被覆された、2次元又は3次元の樹枝状の形状であって、樹枝状に成長した主幹と、その主幹から分岐した複数の枝と、その枝からさらに分岐した枝とを有する樹枝状形状を呈した樹枝状Niコート銅粉であった。 Further, as a result of observing the obtained Ni-coated copper powder with a field of view of 5,000 times by SEM, at least 90% by number or more of Ni-coated copper powder was found on the surface of the dendritic copper powder before coating the Ni alloy. A two-dimensional or three-dimensional dendritic shape uniformly coated with a Ni alloy, a main trunk that has grown into a dendritic shape, a plurality of branches branched from the main trunk, and a branch further branched from the branch The dendritic Ni-coated copper powder had a dendritic shape.
 また、その樹枝状Niコート銅粉の主幹及び枝を構成する銅粒子は、断面厚さが平均で0.09μmの平板状であり、その表面に微細な凸部を有していた。なお、その表面に形成されている凸部の高さは平均で0.06μmであった。 Further, the copper particles constituting the main trunk and branches of the dendritic Ni-coated copper powder had a flat cross-sectional thickness of 0.09 μm on average, and had fine convex portions on the surface. In addition, the average height of the convex portions formed on the surface was 0.06 μm.
 また、その樹枝状Niコート銅粉の平均粒子径(D50)は21.2μmであった。 The average particle diameter (D50) of the dendritic Ni-coated copper powder was 21.2 μm.
 さらに、得られた樹枝状Niコート銅粉の嵩密度は1.25g/cmであった。また、BET比表面積は1.7m/gであった。 Furthermore, the bulk density of the obtained dendritic Ni-coated copper powder was 1.25 g / cm 3 . The BET specific surface area was 1.7 m 2 / g.
 [実施例75]
 実施例64にて得られた樹枝状Niコート銅粉30gに、フェノール樹脂(群栄化学株式会社製、PL-2211)15g、ブチルセロソルブ(関東化学株式会社製、鹿特級)10gを混合し、小型ニーダー(日本精機製作所製、ノンバブリングニーダーNBK-1)を用いて、1200rpm、3分間の混錬を3回繰り返すことでペースト化した。得られた導電ペーストを金属スキージでガラス上に印刷し、空気雰囲気中にて200℃で30分間硬化させた。
[Example 75]
30 g of the dendritic Ni-coated copper powder obtained in Example 64 was mixed with 15 g of a phenol resin (PL-2211 manufactured by Gunei Chemical Co., Ltd.) and 10 g of butyl cellosolve (manufactured by Kanto Chemical Co., Ltd., deer special grade). Using a kneader (Nippon Seiki Seisakusho, non-bubbling kneader NBK-1), kneading at 1200 rpm for 3 minutes was repeated three times to form a paste. The obtained conductive paste was printed on glass with a metal squeegee and cured at 200 ° C. for 30 minutes in an air atmosphere.
 硬化により得られた被膜の比抵抗値は、9.0×10-5Ω・cmであり、優れた導電性を示すことが分かった。 The specific resistance value of the film obtained by curing was 9.0 × 10 −5 Ω · cm, and it was found that excellent conductivity was exhibited.
 [実施例76]
 実施例65にて得られた樹枝状Niコート銅粉30gに、フェノール樹脂(群栄化学株式会社製,PL-2211)20g、ブチルセロソルブ(関東化学株式会社製,鹿特級)10gを混合し、小型ニーダー(日本精機製作所製,ノンバブリングニーダーNBK-1)を用いて、1200rpm、3分間の混錬を3回繰り返すことでペースト化した。得られた導電ペーストを金属スキージでガラス上に印刷し、空気雰囲気中にて200℃で30分間硬化させた。
[Example 76]
30 g of the dendritic Ni-coated copper powder obtained in Example 65 is mixed with 20 g of a phenol resin (manufactured by Gunei Chemical Co., Ltd., PL-2211) and 10 g of butyl cellosolve (manufactured by Kanto Chemical Co., Ltd., deer special grade). Using a kneader (Nippon Seiki Seisakusho, non-bubbling kneader NBK-1), kneading at 1200 rpm for 3 minutes was repeated three times to form a paste. The obtained conductive paste was printed on glass with a metal squeegee and cured at 200 ° C. for 30 minutes in an air atmosphere.
 硬化により得られた被膜の比抵抗値は、9.2×10-5Ω・cmであり、優れた導電性を示すことが分かった。 The specific resistance value of the film obtained by curing was 9.2 × 10 −5 Ω · cm, and it was found that excellent electrical conductivity was exhibited.
 [実施例77]
 実施例64にて作製した樹枝状Niコート銅粉を樹脂に分散させて電磁波シールド材とした。
[Example 77]
The dendritic Ni-coated copper powder produced in Example 64 was dispersed in a resin to obtain an electromagnetic wave shielding material.
 すなわち、実施例64にて得られた樹枝状Niコート銅粉30gに対して、塩化ビニル樹脂100gと、メチルエチルケトン200gとをそれぞれ混合し、小型ニーダーを用いて、1200rpm、3分間の混錬を3回繰り返すことによってペースト化した。ペースト化に際しては、銅粉が凝集することなく、樹脂中に均一に分散した。これを100μmの厚さの透明ポリエチレンテレフタレートシートからなる基材の上にメイヤーバーを用いて塗布・乾燥し、厚さ25μmの電磁波シールド層を形成した。 That is, 100 g of vinyl chloride resin and 200 g of methyl ethyl ketone were mixed with 30 g of the dendritic Ni-coated copper powder obtained in Example 64, and kneading was performed at 1200 rpm for 3 minutes using a small kneader. The paste was made by repeating the process once. During pasting, the copper powder was uniformly dispersed in the resin without agglomeration. This was coated and dried using a Mayer bar on a substrate made of a transparent polyethylene terephthalate sheet having a thickness of 100 μm to form an electromagnetic wave shielding layer having a thickness of 25 μm.
 電磁波シールド特性については、周波数1GHzの電磁波を用いて、その減衰率を測定することによって評価した。表5に、これらの結果を示す。 The electromagnetic shielding characteristics were evaluated by measuring the attenuation rate using an electromagnetic wave having a frequency of 1 GHz. Table 5 shows these results.
 [比較例13]
 <電解銅粉の作製>
 電解液中に、添加剤としてのヤヌスグリーンBと、塩素イオンとを添加しない条件としたこと以外は、実施例64と同様にして銅粉を陰極板上に析出させた。得られたNiコート銅粉の形状は、粒子状の銅が集合した樹枝状の形状であって、微細な凸部は形成されていなかった。
[Comparative Example 13]
<Preparation of electrolytic copper powder>
Copper powder was deposited on the cathode plate in the same manner as in Example 64 except that Janus Green B as an additive and chlorine ions were not added to the electrolytic solution. The shape of the obtained Ni-coated copper powder was a dendritic shape in which particulate copper was aggregated, and no fine convex portions were formed.
 <Niコート銅粉の製造(還元剤:次亜リン酸塩)>
 次に、得られた銅粉を用いてNiコート銅粉を作製した。
<Production of Ni-coated copper powder (reducing agent: hypophosphite)>
Next, Ni coat copper powder was produced using the obtained copper powder.
 具体的には、無電解Niめっき液として、硫酸ニッケル20g/L、次亜リン酸ナトリウム25g/L、酢酸ナトリウム10g/L、クエン酸ナトリウム10g/Lを各濃度で添加し、さらに水酸化ナトリウムを添加してpH5.0に調整しためっき液を500mL用意した。 Specifically, as an electroless Ni plating solution, nickel sulfate 20 g / L, sodium hypophosphite 25 g / L, sodium acetate 10 g / L, sodium citrate 10 g / L are added at each concentration, and sodium hydroxide is further added. 500 mL of a plating solution adjusted to pH 5.0 by adding the above was prepared.
 この無電解Niめっき液に、上述した方法で作製した銅粉100gを水100mL中に分散させたスラリーを入れ、25℃で10分間撹拌した後、浴温を90℃まで加熱して60分間撹拌した。 In this electroless Ni plating solution, a slurry in which 100 g of the copper powder prepared by the above-described method is dispersed in 100 mL of water is stirred and stirred at 25 ° C. for 10 minutes, and then the bath temperature is heated to 90 ° C. and stirred for 60 minutes. did.
 反応が終了した後、粉末をろ過、水洗してエタノールを通じて乾燥させたところ、銅粉の表面にPを含むNi合金が被覆されたNiコート銅粉が得られた。また、そのNiコート銅粉を回収してNiの含有量を測定したところ、当該Niコート銅粉全体の質量100%に対して13.6質量%であった。また、Ni合金中に含まれるPの含有量はNi合金の質量100%に対して7.8質量%であった。 After the reaction was completed, the powder was filtered, washed with water, and dried through ethanol. As a result, a Ni-coated copper powder in which a Ni alloy containing P was coated on the surface of the copper powder was obtained. Moreover, when the Ni-coated copper powder was recovered and the Ni content was measured, it was 13.6% by mass relative to 100% by mass of the entire Ni-coated copper powder. The content of P contained in the Ni alloy was 7.8% by mass with respect to 100% by mass of the Ni alloy.
 図25に、得られたNiコート銅粉の形状を、SEMにより倍率1,000倍の視野で観察した結果を示す。図25の写真図に示すように、得られたNiコート銅粉の形状は、粒子状の銅粒子が集合した樹枝状の形状であって、その銅粉の表面にNi合金が被覆された状態となっていた。また、そのNiコート銅粉の平均粒子径(D50)は22.5μmであった。なお、樹枝状の部分には、微細な凸部は形成されていなかった。 FIG. 25 shows the result of observing the shape of the obtained Ni-coated copper powder with a SEM field of view at a magnification of 1,000 times. As shown in the photograph of FIG. 25, the shape of the obtained Ni-coated copper powder is a dendritic shape in which particulate copper particles are aggregated, and the surface of the copper powder is coated with a Ni alloy. It was. Moreover, the average particle diameter (D50) of the Ni-coated copper powder was 22.5 μm. In addition, the fine convex part was not formed in the dendritic part.
 <導電性ペースト評価>
 次に、上述した方法で作製したNiコート銅粉40gに対して、フェノール樹脂(群栄化学株式会社製,PL-2211)20gと、ブチルセロソルブ(関東化学株式会社製,鹿特級)10gとを混合し、小型ニーダー(株式会社日本精機製作所製,ノンバブリングニーダーNBK-1)を用いて、1200rpm、3分間の混錬を3回繰り返すことによってペースト化した。ペースト化に際しては、混練を繰り返す毎に粘度の上昇が発生した。このことは銅粉の一部が凝集していることが原因であると考えられ、均一分散が困難であった。得られた導電性ペーストを金属スキージでガラス上に印刷し、大気雰囲気中にて200℃で30分間かけて硬化させた。
<Evaluation of conductive paste>
Next, 20 g of phenolic resin (manufactured by Gunei Chemical Co., Ltd., PL-2211) and 10 g of butyl cellosolve (manufactured by Kanto Chemical Co., Ltd., deer special grade) are mixed with 40 g of Ni-coated copper powder produced by the above-described method. Then, using a small kneader (manufactured by Nippon Seiki Seisakusho Co., Ltd., non-bubbling kneader NBK-1), it was made into a paste by repeating kneading at 1200 rpm for 3 minutes three times. During pasting, the viscosity increased every time kneading was repeated. This is considered to be caused by a part of the copper powder being aggregated, and uniform dispersion was difficult. The obtained conductive paste was printed on glass with a metal squeegee and cured at 200 ° C. for 30 minutes in the air atmosphere.
 硬化により得られた被膜の比抵抗値は、63.8×10-5Ω・cmであり、実施例にて得られた導電性ペーストと比較して比抵抗値が高く導電性が劣るものであった。 The specific resistance value of the film obtained by curing is 63.8 × 10 −5 Ω · cm, which is higher in specific resistance value and inferior in conductivity than the conductive paste obtained in the examples. there were.
 [比較例14]
 <機械的に扁平化した平板状銅粉の作製>
 従来の平板状銅粉にNiを被覆させたNiコート銅粉による導電性ペーストの特性を評価し、実施例における樹枝状Niコート銅粉を用いて作製した導電性ペーストの特性と比較した。
[Comparative Example 14]
<Production of mechanically flattened flat copper powder>
The characteristic of the conductive paste by Ni coat copper powder which coat | covered Ni with the conventional flat copper powder was evaluated, and it compared with the characteristic of the conductive paste produced using the dendritic Ni coat copper powder in an Example.
 平板状銅粉は、粒状の電解銅粉を機械的に扁平化させて作製した。具体的には、平均粒子径5.4μmの粒状アトマイズ銅粉(メイキンメタルパウダーズ社製)500gにステアリン酸5gを添加し、ボールミルで扁平化処理を行った。ボールミルには3mmのジルコニアビーズを5kg投入し、500rpmの回転速度で90分間回転した。 The flat copper powder was prepared by mechanically flattening granular electrolytic copper powder. Specifically, 5 g of stearic acid was added to 500 g of granular atomized copper powder (manufactured by Mekin Metal Powders Co., Ltd.) having an average particle size of 5.4 μm, and flattened with a ball mill. The ball mill was charged with 5 kg of 3 mm zirconia beads and rotated for 90 minutes at a rotation speed of 500 rpm.
 <Niコート銅粉の製造(還元剤:ホウ水素化合物)>
 得られた平板状銅粉100gに対して、無電解めっきによりその銅粉表面にNi被覆を行った。
<Production of Ni-coated copper powder (reducing agent: borohydride)>
With respect to 100 g of the obtained flat copper powder, the surface of the copper powder was coated with Ni by electroless plating.
 具体的には、無電解Niめっき液として、硫酸ニッケル30g/L、コハク酸ナトリウム50g/L、ホウ酸30g/L、塩化アンモニウム30g/L、ジメチルアミンボラン4g/Lを各濃度で添加し、さらに水酸化ナトリウムを添加してpH6.0に調整しためっき液を500mL用意した。 Specifically, as an electroless Ni plating solution, nickel sulfate 30 g / L, sodium succinate 50 g / L, boric acid 30 g / L, ammonium chloride 30 g / L, dimethylamine borane 4 g / L were added at each concentration, Further, 500 mL of a plating solution adjusted to pH 6.0 by adding sodium hydroxide was prepared.
 この無電解Niめっき液に、上述した方法で作製した平板上銅粉100gを水100mL中に分散させたスラリーを入れ、25℃で10分間撹拌した後、浴温を60℃まで加熱して60分間撹拌した。 In this electroless Ni plating solution, a slurry in which 100 g of copper powder on a flat plate prepared by the above method is dispersed in 100 mL of water is stirred for 10 minutes at 25 ° C., and then the bath temperature is heated to 60 ° C. to 60 ° C. Stir for minutes.
 反応が終了した後、粉末をろ過、水洗してエタノールを通じて乾燥させたところ、平板状銅粉の表面にNi合金が被覆されたNiコート銅粉が得られた。そのNiコート銅粉を回収してNiの含有量を測定したところ、当該Niコート銅粉全体の質量100%に対して18.2質量%であった。また、Ni合金中に含まれるBの含有量はNi合金の質量100%に対して6.7質量%であった。 After the reaction was completed, the powder was filtered, washed with water, and dried through ethanol. As a result, a Ni-coated copper powder in which the surface of the flat copper powder was coated with a Ni alloy was obtained. When the Ni-coated copper powder was recovered and the Ni content was measured, it was 18.2% by mass with respect to 100% by mass of the entire Ni-coated copper powder. Moreover, content of B contained in Ni alloy was 6.7 mass% with respect to 100 mass of Ni alloy.
 このように作製した平板状Niコート銅粉について、レーザー回折・散乱法粒度分布測定器で測定した結果、平均粒子径(D50)は21.8μmであった。また、SEM観察により測定した平板状Niコート銅粉の厚さ(断面平均厚さ)は0.40μmであった。なお、その平板状Niコート銅粉には、その表面に微細な凸部は観察されなかった。 The plate-like Ni-coated copper powder produced in this way was measured with a laser diffraction / scattering particle size distribution analyzer, and as a result, the average particle size (D50) was 21.8 μm. Moreover, the thickness (cross-sectional average thickness) of the plate-like Ni-coated copper powder measured by SEM observation was 0.40 μm. In the flat Ni-coated copper powder, no fine protrusions were observed on the surface.
 <導電性ペースト評価>
 次に、上述した方法で作製したNiコート銅粉40gに対して、フェノール樹脂(群栄化学株式会社製,PL-2211)20gと、ブチルセロソルブ(関東化学株式会社製,鹿特級)10gとを混合し、小型ニーダー(株式会社日本精機製作所製,ノンバブリングニーダーNBK-1)を用いて、1200rpm、3分間の混錬を3回繰り返すことによってペースト化した。ペースト化に際しては、混練を繰り返す毎に粘度の上昇が発生した。このことは銅粉の一部が凝集していることが原因であると考えられ、均一分散が困難であった。得られた導電ペーストを金属スキージでガラス上に印刷し、大気雰囲気中にて200℃で30分間かけて硬化させた。
<Evaluation of conductive paste>
Next, 20 g of phenolic resin (manufactured by Gunei Chemical Co., Ltd., PL-2211) and 10 g of butyl cellosolve (manufactured by Kanto Chemical Co., Ltd., deer special grade) are mixed with 40 g of Ni-coated copper powder produced by the above-described method. Then, using a small kneader (manufactured by Nippon Seiki Seisakusho Co., Ltd., non-bubbling kneader NBK-1), it was made into a paste by repeating kneading at 1200 rpm for 3 minutes three times. During pasting, the viscosity increased every time kneading was repeated. This is considered to be caused by a part of the copper powder being aggregated, and uniform dispersion was difficult. The obtained conductive paste was printed on a glass with a metal squeegee and cured at 200 ° C. for 30 minutes in an air atmosphere.
 硬化により得られた被膜の比抵抗値は、26.5×10-5Ω・cmであり、実施例にて得られた導電性ペーストと比較して極めて比抵抗値が高く導電性が劣るものであった。 The specific resistance value of the film obtained by curing is 26.5 × 10 −5 Ω · cm, which is extremely high in specific resistance value and inferior in conductivity compared to the conductive paste obtained in the examples. Met.
 [比較例15]
 比較例14にて作製した平板状Niコート銅粉を樹脂に分散させて電磁波シールド材とした。
[Comparative Example 15]
The plate-like Ni-coated copper powder produced in Comparative Example 14 was dispersed in a resin to obtain an electromagnetic wave shielding material.
 具体的には、得られた平板状Niコート銅粉40gに対して、塩化ビニル樹脂100gと、メチルエチルケトン200gとをそれぞれ混合し、小型ニーダーを用いて、1200rpm、3分間の混錬を3回繰り返すことによってペースト化した。ペースト化に際しては、銅粉が凝集することなく、樹脂中に均一に分散した。これを100μmの厚さの透明ポリエチレンテレフタレートシートからなる基材の上にメイヤーバーを用いて塗布・乾燥し、厚さ25μmの電磁波シールド層を形成した。 Specifically, 100 g of vinyl chloride resin and 200 g of methyl ethyl ketone are mixed with 40 g of the obtained tabular Ni-coated copper powder, and kneading at 1200 rpm for 3 minutes is repeated three times using a small kneader. To make a paste. During pasting, the copper powder was uniformly dispersed in the resin without agglomeration. This was coated and dried using a Mayer bar on a substrate made of a transparent polyethylene terephthalate sheet having a thickness of 100 μm to form an electromagnetic wave shielding layer having a thickness of 25 μm.
 電磁波シールド特性については、周波数1GHzの電磁波を用いて、その減衰率を測定することによって評価した。具体的には、樹枝状Niコート銅粉を使用していない比較例15の場合のレベルを『△』として、その比較例15のレベルよりも悪い場合を『×』とし、その比較例15のレベルよりも良好な場合を『○』とし、さらに優れている場合を『◎』として評価した。表5に、これらの結果を示す。 The electromagnetic shielding characteristics were evaluated by measuring the attenuation rate using an electromagnetic wave having a frequency of 1 GHz. Specifically, the level in the case of Comparative Example 15 that does not use the dendritic Ni-coated copper powder is set as “Δ”, and the level that is worse than the level of Comparative Example 15 is set as “X”. The case where it was better than the level was evaluated as “◯”, and the case where it was superior was evaluated as “◎”. Table 5 shows these results.
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
 11  Niコート銅粉(樹枝状Niコート銅粉)
 12  主幹
 13,13a,13b  枝
 14  平板状の面に対して水平方向(X-Y方向)への最大長さ
 15  平板状の面(X-Y面)に対して垂直方向への最大高さ
 21  銅粉(樹枝状銅粉)
 22  銅粒子
 D1  枝部分の太さ
 31  Niコート銅粉(樹枝状Niコート銅粉)
 32  主幹
 33,33a,33b  枝
 41  Niコート銅粉(平板状Niコート銅粒子凝集粉)
 42  銅粒子
 d  平板状のNiコート銅粒子の長軸径
 51  銅粒子
 52  (銅粒子の)主幹
 53,53a,53b  (銅粒子の)枝
11 Ni-coated copper powder (dendritic Ni-coated copper powder)
12 Main trunk 13, 13a, 13b Branch 14 Maximum length in horizontal direction (XY direction) with respect to flat plate surface 15 Maximum height in vertical direction with respect to flat plate surface (XY plane) 21 Copper powder (dendritic copper powder)
22 Copper particle D1 Thickness of branch part 31 Ni-coated copper powder (dendritic Ni-coated copper powder)
32 backbone 33, 33a, 33b branch 41 Ni-coated copper powder (flat Ni-coated copper particle agglomerated powder)
42 Copper particles d Major axis diameter of flat Ni-coated copper particles 51 Copper particles 52 Main trunks (of copper particles) 53, 53a, 53b (copper particles) branches

Claims (20)

  1.  表面にニッケル(Ni)又はNi合金が被覆された銅粒子が集合して、直線的に成長した主幹と該主幹から分かれた複数の枝を有する樹枝状の形状を構成したNiコート銅粉であって、
     前記表面にNi又はNi合金が被覆された銅粒子は、走査電子顕微鏡(SEM)観察より求められる断面平均厚さが0.02μm~5.0μmである平板状であり、
     前記銅粒子が集合して構成された当該Niコート銅粉は、平均粒子径(D50)が1.0μm~100μmであり、
     前記銅粒子の平板状の面に対して垂直方向への最大高さが、該平板状の面の水平方向への最大長さに対して1/10以下である
     Niコート銅粉。
    This is a Ni-coated copper powder in which copper particles coated with nickel (Ni) or Ni alloy are gathered on the surface to form a dendritic shape having a main trunk that grows linearly and a plurality of branches separated from the main trunk. And
    The copper particles coated with Ni or Ni alloy on the surface are in the form of a flat plate having a cross-sectional average thickness of 0.02 μm to 5.0 μm determined by scanning electron microscope (SEM) observation.
    The Ni-coated copper powder constituted by the aggregation of the copper particles has an average particle diameter (D50) of 1.0 μm to 100 μm,
    The Ni coat copper powder whose maximum height to the perpendicular direction with respect to the flat surface of the said copper particle is 1/10 or less with respect to the maximum length to the horizontal direction of this flat surface.
  2.  表面にニッケル(Ni)又はNi合金が被覆された銅粒子が集合して、複数の枝を有する樹枝状の形状を構成したNiコート銅粉であって、
     前記表面にNi又はNi合金が被覆された銅粒子は、短軸平均径が0.2μm~0.5μm、かつ、長軸平均径が0.5μm~2.0μmの範囲の大きさの楕円体であり、
     前記銅粒子が集合して構成された当該Niコート銅粉は、平均粒子径(D50)が5.0μm~20μmである
     Niコート銅粉。
    Copper particles coated with nickel (Ni) or Ni alloy on the surface are assembled to form a dendritic shape having a plurality of branches, Ni-coated copper powder,
    The copper particles coated with Ni or Ni alloy on the surface have an ellipsoid having a minor axis average diameter of 0.2 μm to 0.5 μm and a major axis average diameter of 0.5 μm to 2.0 μm. And
    The Ni-coated copper powder composed of the copper particles is an Ni-coated copper powder having an average particle diameter (D50) of 5.0 μm to 20 μm.
  3.  樹枝状の形状を構成する前記枝部分の平均太さが0.5μm~2.0μmである
     請求項2に記載のNiコート銅粉。
    The Ni-coated copper powder according to claim 2, wherein an average thickness of the branch portions constituting the dendritic shape is 0.5 μm to 2.0 μm.
  4.  表面にニッケル(Ni)又はNi合金が被覆された銅粒子が集合して、直線的に成長した主幹と該主幹から分かれた複数の枝を有する樹枝状の形状を構成したNiコート銅粉であって、
     前記表面にNi又はNi合金が被覆された銅粒子は、断面平均厚さが0.2μm~5.0μmの平板状であり、
     前記銅粒子が集合して構成された当該Niコート銅粉は、平均粒子径(D50)が1.0μm~100μmである
     Niコート銅粉。
    This is a Ni-coated copper powder in which copper particles coated with nickel (Ni) or Ni alloy are gathered on the surface to form a dendritic shape having a main trunk that grows linearly and a plurality of branches separated from the main trunk. And
    The copper particles coated with Ni or Ni alloy on the surface are in the form of a flat plate having a cross-sectional average thickness of 0.2 μm to 5.0 μm,
    The Ni-coated copper powder composed of the copper particles is an Ni-coated copper powder having an average particle diameter (D50) of 1.0 μm to 100 μm.
  5.  表面にニッケル(Ni)又はNi合金が被覆された個片状の銅粒子が複数集合して凝集体の形態を有してなるNiコート銅粉であって、
     前記Ni又はNi合金が被覆された銅粒子は、走査型電子顕微鏡(SEM)観察により求められる平均長軸径が0.5μm~5.0μmで、断面平均厚さが0.02μm~1.0μmである平板状であり、
     前記銅粒子が集合して構成された当該Niコート銅粉は、平均粒子径(D50)が1.0μm~30μmである
     Niコート銅粉。
    A Ni-coated copper powder comprising a plurality of pieces of individual copper particles coated with nickel (Ni) or Ni alloy on the surface and having an aggregate form,
    The copper particles coated with the Ni or Ni alloy have an average major axis diameter determined by observation with a scanning electron microscope (SEM) of 0.5 μm to 5.0 μm and an average cross-sectional thickness of 0.02 μm to 1.0 μm. Is a flat plate shape,
    The Ni-coated copper powder composed of the copper particles is an Ni-coated copper powder having an average particle diameter (D50) of 1.0 μm to 30 μm.
  6.  表面にニッケル(Ni)又はNi合金が被覆された銅粒子が集合して、直線的に成長した主幹と該主幹から分かれた複数の枝を有する樹枝状の形状を構成したNiコート銅粉であって、
     前記表面にNi又はNi合金が被覆された銅粒子は、樹枝状に成長した主幹と該主幹から分かれた複数の枝とを有する樹枝状であって、該銅粒子の主幹及び枝の断面平均厚さが0.02μm~0.5μmの平板状であり、
     前記銅粒子が集合して構成された当該Niコート銅粉は、平均粒子径(D50)が1.0μm~30μmである
     Niコート銅粉。
    This is a Ni-coated copper powder in which copper particles coated with nickel (Ni) or Ni alloy are gathered on the surface to form a dendritic shape having a main trunk that grows linearly and a plurality of branches separated from the main trunk. And
    The copper particles coated with Ni or Ni alloy on the surface have a dendritic shape having a main trunk grown in a dendritic shape and a plurality of branches separated from the main trunk, and the cross-sectional average thickness of the main trunk and the branches of the copper particles Is a flat plate of 0.02 μm to 0.5 μm,
    The Ni-coated copper powder composed of the copper particles is an Ni-coated copper powder having an average particle diameter (D50) of 1.0 μm to 30 μm.
  7.  前記銅粒子の表面に微細な凸部があり、該凸部の平均高さが0.01μm~0.4μmである
     請求項6に記載のNiコート銅粉。
    The Ni-coated copper powder according to claim 6, wherein the surface of the copper particles has fine convex portions, and the average height of the convex portions is 0.01 μm to 0.4 μm.
  8.  Ni又はNi合金として被覆されるNi含有量が、Ni又はNi合金で被覆した当該Niコート銅粉全体の質量100%に対して1質量%~50質量%である
     請求項1乃至7のいずれか1項に記載のNiコート銅粉。
    The Ni content coated as Ni or Ni alloy is 1% by mass to 50% by mass with respect to 100% by mass of the entire Ni-coated copper powder coated with Ni or Ni alloy. 2. Ni-coated copper powder according to item 1.
  9.  前記銅粒子の表面にNi合金が被覆されており、
     コバルト、亜鉛、タングステン、モリブデン、パラジウム、白金、スズ、リン、及びボロンからなる群から選ばれる少なくとも1種以上を、前記Ni合金の質量100%に対して0.1質量%~20質量%の含有量で含むNi合金で被覆されている
     請求項1乃至8のいずれか1項に記載のNiコート銅粉。
    Ni alloy is coated on the surface of the copper particles,
    At least one selected from the group consisting of cobalt, zinc, tungsten, molybdenum, palladium, platinum, tin, phosphorus, and boron is 0.1% by mass to 20% by mass with respect to 100% by mass of the Ni alloy. The Ni-coated copper powder according to any one of claims 1 to 8, wherein the Ni-coated copper powder is coated with a Ni alloy contained in a content.
  10.  嵩密度が0.5g/cm~5.0g/cmの範囲である
     請求項1乃至9のいずれか1項に記載のNiコート銅粉。
    The Ni-coated copper powder according to any one of claims 1 to 9, wherein a bulk density is in a range of 0.5 g / cm 3 to 5.0 g / cm 3 .
  11.  BET比表面積値が0.2m/g~5.0m/gである
     請求項1乃至10のいずれか1項に記載のNiコート銅粉。
    Ni-coated copper powder according to any one of claims 1 to 10 BET specific surface area is 0.2m 2 /g~5.0m 2 / g.
  12.  請求項1乃至11のいずれかに記載のNiコート銅粉を、全体の20質量%以上の割合で含有している、金属フィラー。 Metal filler which contains the Ni coat copper powder in any one of Claims 1 thru | or 11 in the ratio of 20 mass% or more of the whole.
  13.  請求項12に記載の金属フィラーを樹脂に混合させてなる、導電性ペースト。 An electrically conductive paste obtained by mixing the metal filler according to claim 12 with a resin.
  14.  請求項12に記載の金属フィラーを用いてなる、電磁波シールド用導電性塗料。 A conductive paint for electromagnetic wave shielding, comprising the metal filler according to claim 12.
  15.  請求項12に記載の金属フィラーを用いてなる、電磁波シールド用導電性シート。 A conductive sheet for electromagnetic wave shielding, comprising the metal filler according to claim 12.
  16.  請求項1に記載のNiコート銅粉を製造する方法であって、
     電解法により電解液から陰極上に銅粉を析出させる工程と、
     前記銅粉にニッケル(Ni)又はNi合金を被覆する工程と、を有し、
     前記電解液に、
     銅イオンと、
     下記式(1)で表されるフェナジン構造を有する化合物、下記式(2)で表されるアゾベンゼン構造を有する化合物、及び下記式(3)で表される、フェナジン構造とアゾベンゼン構造とを有する化合物からなる群から選ばれる1種又は2種以上と、
     ノニオン界面活性剤の1種類以上と、
     を含有させて電解を行う
     Niコート銅粉の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、R、R、R、R、R、R、R、Rは、それぞれ別個に、水素、ハロゲン、アミノ、OH、=O、CN、SCN、SH、COOH、COO塩、COOエステル、SOH、SO塩、SOエステル、ベンゼンスルホン酸、及びC1~C8アルキルからなる群から選択される基であり、Rは、水素、ハロゲン、アミノ、OH、-O、CN、SCN、SH、COOH、COO塩、COOエステル、SOH、SO塩、SOエステル、ベンゼンスルホン酸、低級アルキル、及びアリールからなる群から選択される基であり、Aがハライドアニオンである。]
    Figure JPOXMLDOC01-appb-C000002
    [式(2)中、R、R、R、R、R、R、R、R、R、R10は、それぞれ別個に、水素、ハロゲン、アミノ、OH、=O、CN、SCN、SH、COOH、COO塩、COOエステル、SOH、SO塩、SOエステル、ベンゼンスルホン酸、低級アルキル、及びアリールからなる群から選択される基である。]
    Figure JPOXMLDOC01-appb-C000003
    [式(3)中、R、R、R、R、R、R、R、R、R10、R11、R12、R13は、それぞれ別個に、水素、ハロゲン、アミノ、OH、=O、CN、SCN、SH、COOH、COO塩、COOエステル、SOH、SO塩、SOエステル、ベンゼンスルホン酸、及びC1~C8アルキルからなる群から選択される基であり、Rは、水素、ハロゲン、アミノ、OH、=O、CN、SCN、SH、COOH、COO塩、COOエステル、SOH、SO塩、SOエステル、ベンゼンスルホン酸、低級アルキル、及びアリールからなる群から選択される基であり、Aがハライドアニオンである。]
    A method for producing the Ni-coated copper powder according to claim 1,
    A step of depositing copper powder on the cathode from the electrolyte by an electrolytic method;
    Coating the copper powder with nickel (Ni) or Ni alloy,
    In the electrolyte,
    Copper ions,
    A compound having a phenazine structure represented by the following formula (1), a compound having an azobenzene structure represented by the following formula (2), and a compound having a phenazine structure and an azobenzene structure represented by the following formula (3) One or more selected from the group consisting of:
    One or more types of nonionic surfactants;
    The manufacturing method of the Ni coat copper powder which electrolyzes by containing.
    Figure JPOXMLDOC01-appb-C000001
    [In Formula (1), R 1 , R 2 , R 3 , R 4 , R 6 , R 7 , R 8 , R 9 are each independently hydrogen, halogen, amino, OH, ═O, CN, SCN. , SH, COOH, COO salt, COO ester, SO 3 H, SO 3 salt, SO 3 ester, benzenesulfonic acid, and C1-C8 alkyl, R 5 is hydrogen, halogen , Amino, OH, —O, CN, SCN, SH, COOH, COO salt, COO ester, SO 3 H, SO 3 salt, SO 3 ester, benzenesulfonic acid, lower alkyl, and aryl. And A is a halide anion. ]
    Figure JPOXMLDOC01-appb-C000002
    [In the formula (2), R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 are each independently hydrogen, halogen, amino, OH, = O, CN, SCN, SH, COOH, COO salt, COO ester, SO 3 H, SO 3 salt, SO 3 ester, a group selected from the group consisting of benzenesulfonic acid, lower alkyl, and aryl. ]
    Figure JPOXMLDOC01-appb-C000003
    [In the formula (3), R 1 , R 2 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 are each independently hydrogen, Selected from the group consisting of halogen, amino, OH, ═O, CN, SCN, SH, COOH, COO salt, COO ester, SO 3 H, SO 3 salt, SO 3 ester, benzenesulfonic acid, and C1-C8 alkyl R 3 is hydrogen, halogen, amino, OH, ═O, CN, SCN, SH, COOH, COO salt, COO ester, SO 3 H, SO 3 salt, SO 3 ester, benzenesulfonic acid, A group selected from the group consisting of lower alkyl and aryl, and A is a halide anion. ]
  17.  前記電解液に、さらに塩化物イオンを含有させる
     請求項16に記載のNiコート銅粉の製造方法。
    The method for producing Ni-coated copper powder according to claim 16, further comprising chloride ions in the electrolytic solution.
  18.  請求項2又は3に記載のNiコート銅粉を製造する方法であって、
     電解法により電解液から陰極上に銅粉を析出させる工程と、
     前記銅粉にニッケル(Ni)又はNi合金を被覆する工程と、を有し、
     前記電解液に、
     銅イオンと、ポリエーテル化合物と、を含有させて電解を行う
     Niコート銅粉の製造方法。
    A method for producing the Ni-coated copper powder according to claim 2 or 3,
    A step of depositing copper powder on the cathode from the electrolyte by an electrolytic method;
    Coating the copper powder with nickel (Ni) or Ni alloy,
    In the electrolyte,
    The manufacturing method of Ni coat copper powder which electrolyzes containing a copper ion and a polyether compound.
  19.  請求項4に記載のNiコート銅粉を製造する方法であって、
     電解法により電解液から陰極上に銅粉を析出させる工程と、
     前記銅粉にニッケル(Ni)又はNi合金を被覆する工程と、を有し、
     前記電解液に、
     銅イオンと、
     下記式(1)で表されるフェナジン構造を有する化合物から選択される1種又は2種以上と、
     を含有させて電解を行う
     Niコート銅粉の製造方法。
    Figure JPOXMLDOC01-appb-C000004
    [式(1)中、R、R、R、R、R、R、R、Rは、それぞれ別個に、水素、ハロゲン、アミノ、OH、=O、CN、SCN、SH、COOH、COO塩、COOエステル、SOH、SO塩、SOエステル、ベンゼンスルホン酸、及びC1~C8アルキルからなる群から選択される基であり、Rは、水素、ハロゲン、アミノ、OH、-O、CN、SCN、SH、COOH、COO塩、COOエステル、SOH、SO塩、SOエステル、ベンゼンスルホン酸、低級アルキル、及びアリールからなる群から選択される基であり、Aがハライドアニオンである。]
    A method for producing the Ni-coated copper powder according to claim 4,
    A step of depositing copper powder on the cathode from the electrolyte by an electrolytic method;
    Coating the copper powder with nickel (Ni) or Ni alloy,
    In the electrolyte,
    Copper ions,
    One or more selected from compounds having a phenazine structure represented by the following formula (1);
    The manufacturing method of the Ni coat copper powder which electrolyzes by containing.
    Figure JPOXMLDOC01-appb-C000004
    [In Formula (1), R 1 , R 2 , R 3 , R 4 , R 6 , R 7 , R 8 , R 9 are each independently hydrogen, halogen, amino, OH, ═O, CN, SCN. , SH, COOH, COO salt, COO ester, SO 3 H, SO 3 salt, SO 3 ester, benzenesulfonic acid, and C1-C8 alkyl, R 5 is hydrogen, halogen , Amino, OH, —O, CN, SCN, SH, COOH, COO salt, COO ester, SO 3 H, SO 3 salt, SO 3 ester, benzenesulfonic acid, lower alkyl, and aryl. And A is a halide anion. ]
  20.  請求項6又は7に記載のNiコート銅粉を製造する方法であって、
     電解法により電解液から陰極上に銅粉を析出させる工程と、
     前記銅粉にニッケル(Ni)又はNi合金を被覆する工程と、を有し、
     前記電解液に、
     銅イオンと、
     下記式(3)で表される、フェナジン構造とアゾベンゼン構造とを有する化合物から選択される1種又は2種以上と、
     を含有させて電解を行う
     Niコート銅粉の製造方法。
    Figure JPOXMLDOC01-appb-C000005
    [式(3)中、R、R、R、R、R、R、R、R、R10、R11、R12、R13は、それぞれ別個に、水素、ハロゲン、アミノ、OH、=O、CN、SCN、SH、COOH、COO塩、COOエステル、SOH、SO塩、SOエステル、ベンゼンスルホン酸、及びC1~C8アルキルからなる群から選択される基である。また、Rは、水素、ハロゲン、アミノ、OH、=O、CN、SCN、SH、COOH、COO塩、COOエステル、SOH、SO塩、SOエステル、ベンゼンスルホン酸、低級アルキル、及びアリールからなる群から選択される基である。また、Aは、ハライドアニオンである。]
    A method for producing the Ni-coated copper powder according to claim 6 or 7,
    A step of depositing copper powder on the cathode from the electrolyte by an electrolytic method;
    Coating the copper powder with nickel (Ni) or Ni alloy,
    In the electrolyte,
    Copper ions,
    One or more selected from compounds having a phenazine structure and an azobenzene structure represented by the following formula (3);
    The manufacturing method of the Ni coat copper powder which electrolyzes by containing.
    Figure JPOXMLDOC01-appb-C000005
    [In the formula (3), R 1 , R 2 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 are each independently hydrogen, Selected from the group consisting of halogen, amino, OH, ═O, CN, SCN, SH, COOH, COO salt, COO ester, SO 3 H, SO 3 salt, SO 3 ester, benzenesulfonic acid, and C1-C8 alkyl It is a group. R 3 is hydrogen, halogen, amino, OH, ═O, CN, SCN, SH, COOH, COO salt, COO ester, SO 3 H, SO 3 salt, SO 3 ester, benzenesulfonic acid, lower alkyl, And a group selected from the group consisting of aryl. A is a halide anion. ]
PCT/JP2016/078181 2015-09-28 2016-09-26 Ni-COATED COPPER POWDER, CONDUCTIVE PASTE, CONDUCTIVE PAINT AND CONDUCTIVE SHEET USING SAME, AND METHOD FOR MANUFACTURING Ni-COATED COPPER POWDER WO2017057231A1 (en)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2015190482A JP2017066445A (en) 2015-09-28 2015-09-28 Ni-COATED COPPER POWDER, AND CONDUCTIVE PASTE, CONDUCTIVE PAINT AND CONDUCTIVE SHEET USING THE SAME, AND METHOD FOR PRODUCING Ni-COATED COPPER POWDER
JP2015190479A JP2017066442A (en) 2015-09-28 2015-09-28 Ni-COATED COPPER POWDER, AND CONDUCTIVE PASTE, CONDUCTIVE PAINT AND CONDUCTIVE SHEET USING THE SAME, AND METHOD FOR PRODUCING Ni-COATED COPPER POWDER
JP2015-190481 2015-09-28
JP2015-190480 2015-09-28
JP2015190481A JP2017066444A (en) 2015-09-28 2015-09-28 Ni-COATED COPPER POWDER, AND CONDUCTIVE PASTE, CONDUCTIVE PAINT AND CONDUCTIVE SHEET USING THE SAME, AND METHOD FOR PRODUCING Ni-COATED COPPER POWDER
JP2015190480A JP2017066443A (en) 2015-09-28 2015-09-28 Ni-COATED COPPER POWDER, AND CONDUCTIVE PASTE, CONDUCTIVE PAINT AND CONDUCTIVE SHEET USING THE SAME
JP2015-190479 2015-09-28
JP2015-190482 2015-09-28
JP2015192151A JP2017066463A (en) 2015-09-29 2015-09-29 Ni-COATED COPPER POWDER, AND CONDUCTIVE PASTE, CONDUCTIVE PAINT AND CONDUCTIVE SHEET USING THE SAME, AND METHOD FOR PRODUCING Ni-COATED COPPER POWDER
JP2015-192151 2015-09-29

Publications (1)

Publication Number Publication Date
WO2017057231A1 true WO2017057231A1 (en) 2017-04-06

Family

ID=58427538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078181 WO2017057231A1 (en) 2015-09-28 2016-09-26 Ni-COATED COPPER POWDER, CONDUCTIVE PASTE, CONDUCTIVE PAINT AND CONDUCTIVE SHEET USING SAME, AND METHOD FOR MANUFACTURING Ni-COATED COPPER POWDER

Country Status (2)

Country Link
TW (1) TW201726973A (en)
WO (1) WO2017057231A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020204052A (en) * 2019-06-14 2020-12-24 清川メッキ工業株式会社 Dendritic nickel crystal particle, and method of producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64718A (en) * 1987-06-23 1989-01-05 Toshiba Corp Base metal powder for ceramic capacitor electrode
JP2004162164A (en) * 2002-09-20 2004-06-10 Dowa Mining Co Ltd Copper powder for conductive paste and its production method
JP2012140661A (en) * 2010-12-28 2012-07-26 Mitsui Mining & Smelting Co Ltd Flat copper particle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64718A (en) * 1987-06-23 1989-01-05 Toshiba Corp Base metal powder for ceramic capacitor electrode
JP2004162164A (en) * 2002-09-20 2004-06-10 Dowa Mining Co Ltd Copper powder for conductive paste and its production method
JP2012140661A (en) * 2010-12-28 2012-07-26 Mitsui Mining & Smelting Co Ltd Flat copper particle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020204052A (en) * 2019-06-14 2020-12-24 清川メッキ工業株式会社 Dendritic nickel crystal particle, and method of producing the same
JP6990437B2 (en) 2019-06-14 2022-01-12 清川メッキ工業株式会社 Dendrite nickel crystal particles and their manufacturing method
JP2022016669A (en) * 2019-06-14 2022-01-21 清川メッキ工業株式会社 Dendritic nickel crystal grains and production method thereof
JP7349747B2 (en) 2019-06-14 2023-09-25 清川メッキ工業株式会社 Dendritic nickel crystal particles and method for producing the same

Also Published As

Publication number Publication date
TW201726973A (en) 2017-08-01

Similar Documents

Publication Publication Date Title
JP5858201B1 (en) Copper powder and copper paste, conductive paint, conductive sheet using the same
WO2016038914A1 (en) Silver-coated copper powder, and conductive paste, conductive coating material and conductive sheet, each of which uses said silver-coated copper powder
JP5907301B1 (en) Silver-coated copper powder, copper paste using the same, conductive paint, conductive sheet, and method for producing silver-coated copper powder
JP5920541B1 (en) Silver coated copper powder and conductive paste, conductive paint, conductive sheet using the same
WO2016031286A1 (en) Silver-coated copper powder, and conductive paste, conductive coating material and conductive sheet each of which uses same
JP5920540B1 (en) Copper powder and copper paste, conductive paint, conductive sheet using the same
JP5907302B1 (en) Copper powder, copper paste using the same, conductive paint, conductive sheet, and method for producing copper powder
WO2017061443A1 (en) Sn-COATED COPPER POWDER, CONDUCTIVE PASTE USING SAME, AND PRODUCING METHOD FOR Sn-COATED COPPER POWDER
JP2017071819A (en) Silver powder and conductive paste, conductive coating and conductive sheet using the same
JP6274076B2 (en) Copper powder and copper paste, conductive paint, conductive sheet using the same
WO2017057231A1 (en) Ni-COATED COPPER POWDER, CONDUCTIVE PASTE, CONDUCTIVE PAINT AND CONDUCTIVE SHEET USING SAME, AND METHOD FOR MANUFACTURING Ni-COATED COPPER POWDER
JP5790900B1 (en) Silver coated copper powder and conductive paste, conductive paint, conductive sheet using the same
JP2017066443A (en) Ni-COATED COPPER POWDER, AND CONDUCTIVE PASTE, CONDUCTIVE PAINT AND CONDUCTIVE SHEET USING THE SAME
JP6350475B2 (en) Method for producing copper powder and method for producing conductive paste using the same
JP2017071824A (en) Method for producing silver powder and method for producing conductive paste using the same
JP2016060966A (en) Silver coat copper powder and conductive paste using the same, conductive coating and conductive sheet
JP2016204687A (en) Silver coated copper powder and conductive paste using the same, conductive coating and conductive sheet
JP2017066463A (en) Ni-COATED COPPER POWDER, AND CONDUCTIVE PASTE, CONDUCTIVE PAINT AND CONDUCTIVE SHEET USING THE SAME, AND METHOD FOR PRODUCING Ni-COATED COPPER POWDER
JP6332058B2 (en) Copper powder, and copper paste, conductive paint, and conductive sheet using the same
JP2016008333A (en) Copper powder and copper paste using the same
JP2017066445A (en) Ni-COATED COPPER POWDER, AND CONDUCTIVE PASTE, CONDUCTIVE PAINT AND CONDUCTIVE SHEET USING THE SAME, AND METHOD FOR PRODUCING Ni-COATED COPPER POWDER
JP2017066462A (en) Method for manufacturing silver coated copper powder and method for manufacturing conductive paste using the same
JP2017066444A (en) Ni-COATED COPPER POWDER, AND CONDUCTIVE PASTE, CONDUCTIVE PAINT AND CONDUCTIVE SHEET USING THE SAME, AND METHOD FOR PRODUCING Ni-COATED COPPER POWDER
JP2017066442A (en) Ni-COATED COPPER POWDER, AND CONDUCTIVE PASTE, CONDUCTIVE PAINT AND CONDUCTIVE SHEET USING THE SAME, AND METHOD FOR PRODUCING Ni-COATED COPPER POWDER
JP2017071823A (en) Sn-COATED COPPER POWDER AND CONDUCTIVE PASTE USING THE SAME, AND PRODUCTION PROCESS FOR Sn-COATED COPPER POWDER

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851402

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16851402

Country of ref document: EP

Kind code of ref document: A1