Nothing Special   »   [go: up one dir, main page]

WO2017057159A1 - Scroll-type compressor - Google Patents

Scroll-type compressor Download PDF

Info

Publication number
WO2017057159A1
WO2017057159A1 PCT/JP2016/077915 JP2016077915W WO2017057159A1 WO 2017057159 A1 WO2017057159 A1 WO 2017057159A1 JP 2016077915 W JP2016077915 W JP 2016077915W WO 2017057159 A1 WO2017057159 A1 WO 2017057159A1
Authority
WO
WIPO (PCT)
Prior art keywords
eccentric shaft
fitting hole
drive shaft
bush
shaft
Prior art date
Application number
PCT/JP2016/077915
Other languages
French (fr)
Japanese (ja)
Inventor
裕展 出口
Original Assignee
株式会社ヴァレオジャパン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ヴァレオジャパン filed Critical 株式会社ヴァレオジャパン
Publication of WO2017057159A1 publication Critical patent/WO2017057159A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/02Couplings for rigidly connecting two coaxial shafts or other movable machine elements for connecting two abutting shafts or the like

Definitions

  • the present invention relates to a scroll compressor, and more particularly to a structure of a revolution mechanism for revolving a movable scroll.
  • an eccentric shaft constituting a revolving mechanism for revolving the movable scroll is engaged with a drive shaft and a bush.
  • the engagement between the eccentric shaft and the drive shaft is generally performed by press-fitting the eccentric shaft into a fitting hole formed in the drive shaft.
  • a rotary shaft (drive shaft) and an eccentric shaft are separately formed, and the eccentric shaft is coupled to the eccentric position of the rotary shaft by press-fitting (see FIG. Patent Document 1).
  • an object of the present invention is to provide a scroll compressor capable of preventing deterioration of the durability of the bearing while avoiding an increase in manufacturing process and cost. .
  • a scroll compressor includes an end plate and a fixed scroll member having a spiral wall erected from the end plate, the movement of which is restricted at least in the radial direction with respect to the housing.
  • the orbiting scroll member having an end plate and a spiral wall erected from the end plate, a drive shaft for transmitting rotational power, and an end of the drive shaft.
  • An eccentric shaft provided at a position shifted from the axis of the drive shaft, a radial bearing fitted in a boss formed on the back surface of the orbiting scroll member, and an insertion hole into which the eccentric shaft is inserted.
  • a bushing that is externally fitted to the eccentric shaft through the insertion hole and is engaged with the radial bearing and the eccentric shaft so as to be relatively rotatable.
  • Is fitting hole that mates with the eccentric shaft is formed at one end of the axial direction, the eccentric shaft and the fitting hole is characterized in that is fitted with clearance fit.
  • the bush or the eccentric shaft is provided with movement restricting means for restricting the eccentric shaft from moving in the axial direction. Since the eccentric shaft and the fitting hole are fitted by clearance fitting, it is assumed that the eccentric shaft moves in the axial direction, but with such a configuration, the eccentric shaft moves. It is possible to prevent contact with the orbiting scroll.
  • the movement restricting means is constituted by a bottom portion provided in the insertion hole of the bush.
  • the total clearance of the axial clearance between the eccentric shaft and the bottom and the axial clearance between the eccentric shaft and the bottom surface of the fitting hole is the sum of the bush and the drive shaft.
  • the movement restricting means is constituted by a flange portion provided between the bush of the eccentric shaft and the drive shaft.
  • the movement of the eccentric shaft is restricted by the flange portion, and the eccentric shaft can be prevented from contacting the orbiting scroll.
  • the load that the inner peripheral surface of the fitting hole receives from the eccentric shaft is dispersed, and wear can be reduced.
  • the fitting hole is provided with a relief portion that avoids contact with the outer peripheral surface of the eccentric shaft, and the inner diameter surface of the opening edge portion of the fitting hole is enlarged in the circumferential direction. And it is formed in a concave shape.
  • the fitting hole is provided with a protrusion projecting radially inward from the inner peripheral surface, and the outer peripheral surface of the eccentric shaft is brought into contact with the tip of the protrusion and the side surface of the fitting hole. It comes to touch.
  • the fitting hole may be hardened. By performing the hardening process on the mating hole, it is possible to reduce the wear of the fitting hole.
  • the eccentric shaft and the fitting hole can be fitted by clearance fitting to prevent the eccentric shaft from tilting and the drive shaft from being deformed.
  • the bearing comes into contact evenly.
  • the finishing process for the outer peripheral surface of the eccentric shaft and the drive shaft is not necessary. Therefore, it is possible to prevent deterioration of the durability of the bearing while avoiding an increase in manufacturing process and cost.
  • an increase in cost can be avoided.
  • FIG. 1 is a cross-sectional view showing an example of the overall structure of a scroll compressor according to the present invention.
  • FIG. 2 shows a scroll compressor according to the present invention, in which a bush is externally fitted to an eccentric shaft provided at an end of a drive shaft, and this bush is engaged with a radial bearing provided at a boss portion of an orbiting scroll member. It is sectional drawing of Example 1 which shows the state made to do.
  • FIG. 3 is a cross-sectional view showing another example of the overall structure of the scroll compressor according to the present invention, and shows an example in which a passage connecting the fitting hole and the suction passage is provided inside the drive shaft. .
  • FIG. 4 shows a scroll compressor according to the present invention, in which a bush is externally fitted to an eccentric shaft provided at an end of a drive shaft, and this bush is engaged with a radial bearing provided at a boss portion of the orbiting scroll member.
  • Example 2 shows the state made to do.
  • FIG. 5 shows a scroll compressor according to the present invention, in which a bush is externally fitted to an eccentric shaft provided at an end portion of a drive shaft, and this bush is engaged with a radial bearing provided at a boss portion of an orbiting scroll member.
  • Example 3 shows the state made to do.
  • FIG. 6 shows a scroll compressor according to the present invention, in which a bush is externally fitted to an eccentric shaft provided at an end of a drive shaft, and this bush is engaged with a radial bearing provided at a boss portion of the orbiting scroll member.
  • FIG. 7 shows a scroll compressor according to the present invention, in which a bush is externally fitted to an eccentric shaft provided at an end portion of a drive shaft, and this bush is engaged with a radial bearing provided at a boss portion of an orbiting scroll member.
  • Example 5 shows the state made to do.
  • a scroll compressor 1 is an electric compressor suitable for a refrigeration cycle using a refrigerant as a working fluid, and a compression mechanism 3 is arranged on the left side in the figure in a housing 2 made of an aluminum alloy.
  • an electric motor 4 for driving the compression mechanism 3 is disposed on the right side in the drawing.
  • the right side in the drawing is the front of the scroll compressor 1
  • the left side in the drawing is the rear of the compressor.
  • the housing 2 includes a compression mechanism housing member 2 a that houses the compression mechanism 3, an electric motor housing member 2 b that houses the electric motor 4 that drives the compression mechanism 3, and an inverter that houses an inverter device (not shown) that drives and controls the electric motor 4.
  • the housing member 2c is positioned with the positioning pins 7 and fastened in the axial direction with the fastening bolts 8.
  • a partition wall 10 formed integrally with a shaft support portion 9a is provided on the side of the motor housing housing member 2b that faces the compression mechanism housing housing member 2a, and is opposed to the motor housing housing member 2b of the inverter housing housing member 2c.
  • a partition wall 11 in which a shaft support portion 9b is integrally formed is provided on the side to be supported, and a drive shaft 12 is rotatably supported by the shaft support portions 9a and 9b of the partition walls 10 and 11 via bearings 13 and 14, respectively.
  • the inverter accommodating portion 15c is defined by fixing the lid body 16 to the inverter accommodating housing member 2c with a bolt or the like (not shown).
  • the compression mechanism 3 is of a scroll type having a fixed scroll member 21 and an orbiting scroll member 22 disposed to face the fixed scroll member 21, and the fixed scroll member 21 is allowed to move in the axial direction with respect to the housing 2.
  • the movement in the radial direction is restricted by the positioning pin 28, a disc-shaped end plate 21a, and a cylinder that is provided over the entire periphery along the outer edge of the end plate 21a and is erected forward.
  • An outer peripheral wall 21b and a spiral spiral wall 21c extending forward from the end plate 21a inside the outer peripheral wall 21b.
  • the orbiting scroll member 22 is composed of a disc-shaped end plate 22a and a spiral spiral wall 22c erected rearward from the end plate 22a, and is erected on the back surface of the end plate 22a.
  • An eccentric shaft 17 provided at the rear end portion of the drive shaft 12 and eccentric with respect to the axis of the drive shaft 12 is engaged with the boss portion 22 b via a bush 23 and a radial bearing 24.
  • the bush 23 engages with the eccentric shaft 17 and the radial bearing 24 so as to be relatively rotatable, and the orbiting scroll member 22 is provided so as to be capable of revolving around the axis of the drive shaft 12.
  • the radial bearing 24 and the boss portion 22b of the orbiting scroll member 22, and the outer peripheral surfaces of the radial bearing 24 and the bush 23 are engaged by clearance fitting.
  • the radial bearing 24 is an inner / outer ring integrated ball bearing, but is not limited thereto, and may be an outer ring integrated needle bearing or a sliding bearing.
  • the fixed scroll member 21 and the orbiting scroll member 22 are meshed with each other with their respective spiral walls 21c and 22c.
  • a compression chamber 25 is defined in a space surrounded by the wall 22c.
  • a thin plate-shaped annular thrust trace 26 is sandwiched between the outer peripheral wall 21 b of the fixed scroll member 21 and the partition wall 10, and the fixed scroll member 21 and the partition wall 10 are interposed via the thrust trace 26. It is faced.
  • the thrust trace 26 is formed of a material having excellent wear resistance, and a central hole through which a boss portion 22b of the orbiting scroll member 22 and an Oldham ring 27 described later are inserted is formed in the center.
  • the fixed scroll member 21, the thrust trace 26, and the motor housing housing member 2 b are defined in the radial direction by positioning pins 28 that are inserted into pin insertion holes formed in the thrust trace 26.
  • the shaft support portion 9a formed integrally with the partition wall 10 of the electric motor housing member 2b has a through hole in the center, and the inner surface thereof is formed in a stepwise manner toward the thrust trace 26, From the front side farthest from the thrust trace 26, the bearing housing 31 in which the bearing 13 is housed, is integrally formed with the bush 23, or is externally fitted to the bush so as not to rotate relative to the bush 23.
  • a weight accommodating portion that accommodates a balance weight 32 that rotates with the rotation of the drive shaft 12 (in this example, the balance weight 32 is formed separately from the bush 23 and is fitted on the bush 23 so as not to rotate relative to the bush 23). 33, formed following the weight accommodating portion 33, and prevents the orbiting scroll member 22 from rotating with the orbiting scroll member 22.
  • Oldham Oldham accommodating portion 34 for accommodating the ring 27 is formed that.
  • the orbiting scroll member 22 is rotated by the rotation of the drive shaft 12, but revolves around the axis of the drive shaft 12 while the rotation is restricted by the Oldham ring 27.
  • the mechanism for preventing rotation is not limited to the Oldham ring, but may be a pin-hole, pin-ring, pin-link, or the like.
  • a chamber 35 is formed, and the refrigerant gas compressed in the compression chamber 25 is discharged through a discharge hole 36 formed substantially at the center of the fixed scroll member 21 behind the fixed scroll member 21 in the housing.
  • a discharge chamber 37 is defined between the rear end wall of the compression mechanism housing member 2a. The refrigerant gas discharged into the discharge chamber 37 is pumped to an external refrigerant circuit through the discharge port 38.
  • a stator 41 and a rotor 42 constituting the electric motor 4 are provided in the electric motor accommodating portion 15b formed in the front part of the partition wall 10 in the housing 2.
  • the stator 41 includes a cylindrical iron core 43 and a coil 44 wound around the iron core 43, and is fixed to the inner surface of the housing 2 (electric motor housing member 2b).
  • the drive shaft 12 is fixedly mounted with a rotor 42 made of a magnet rotatably accommodated inside the stator 41, and the rotor 42 is rotated by a rotating magnetic force formed by the stator 41. It is designed to rotate.
  • the stator 41 and the rotor 42 constitute an electric motor 4 composed of a brushless DC motor.
  • a suction port 40 for sucking refrigerant gas into the motor housing portion 15b is formed on the side surface of the housing 2 (motor housing housing member 2b), and a gap between the stator 41 and the housing 2 (motor housing housing member 2b).
  • the refrigerant gas that has flowed from the suction port 40 into the motor housing portion 15b through the holes formed in the partition wall 10 and the gap formed between the fixed scroll member 21 and the housing 2 is supplied to the suction chamber 35.
  • a leading suction path 45 is configured.
  • the inverter device housed in the inverter housing member 2c is electrically connected to the stator 41 via a terminal (airtight terminal) 60 attached to a through hole 61 formed in the partition wall 11, and is connected to the motor 4. Power is supplied from the inverter device.
  • the compression chamber 25 moves while gradually reducing the volume from the outer peripheral side of the scroll walls 21c, 22c of both scroll members to the center side, so that the suction chamber 35 sucks into the compression chamber 25.
  • the compressed refrigerant gas is compressed, and the compressed refrigerant gas is discharged into the discharge chamber 37 through the discharge hole 36 formed in the end plate 21 a of the fixed scroll member 21. Then, it is sent to the external refrigerant circuit through the discharge port 38.
  • the bush 23 shown in FIG. 2 has a cylindrical shape, and has an insertion hole 23a that extends in the axial direction and can be inserted into the eccentric shaft 17 at a position shifted in the radial direction from the axial center.
  • a weight fitting margin 23c for reducing the outer diameter and fitting the balance weight 32 is formed on the periphery of the end of the motor. Note that the inner diameter of the insertion hole 23 a is slightly larger than the outer diameter of the eccentric shaft 17.
  • the front side (right side in the figure) end surface of the inner peripheral member of the radial bearing 24 can come into contact with the stepped portion provided on the bush 23, and further, the rear side (left side in the figure) of the outer peripheral member of the radial bearing 24
  • the end surface is configured to be able to come into contact with a stepped portion provided on the boss portion 22 b of the orbiting scroll member 22.
  • the balance weight 32 includes a fitting portion 32a formed in an annular shape, and a fan-shaped weight main body 32b integrally formed over a predetermined angular range on the periphery of the fitting portion 32a.
  • the portion 32 a is fitted on the outer periphery of the weight fitting allowance 23 c of the bush 23 by, for example, press fitting, and rotates together with the bush 23.
  • the balance weight 32 extends so as to approach the orbiting scroll member 22 and also extends in a direction away from the orbiting scroll member 22, thereby reducing the radial dimension, The required mass is ensured while avoiding interference.
  • One end side of the eccentric shaft 17 is inserted into an insertion hole 23 a formed in the bush 23, and the other end side is fitted into a fitting hole 12 a formed on the end surface of the drive shaft 12 facing the orbiting scroll member 22. Yes.
  • the inner diameter of the fitting hole 12a is slightly larger than the outer diameter of the eccentric shaft 17 (for example, the difference between the inner diameter and the outer diameter of these members is about 20 micrometers). Therefore, the eccentric shaft 17 and the fitting hole 12a are fitted by gap fitting.
  • the eccentric shaft 17 and the fitting hole 12a can be fitted by clearance fitting to prevent the eccentric shaft 17 from tilting and the drive shaft 12 from being deformed.
  • the bearing (radial bearing 24) or the drive shaft 12 and the bearings 13 and 14 come into contact with each other evenly. Further, the finishing process for the outer peripheral surfaces of the eccentric shaft 17 and the drive shaft 12 is not necessary. Therefore, it is possible to prevent deterioration of the durability of the bearing while avoiding an increase in manufacturing process and cost.
  • the scroll compressor 1 of the present invention may be configured such that the orbiting scroll member 22 is pressed against the fixed scroll member 21 by the back pressure of the scroll compressor 1.
  • the weight accommodating portion is compressed from the compression chamber 25 so that a force is applied to the orbiting scroll member 22 toward the fixed scroll member 21 by the pressure of the refrigerant gas introduced into the weight accommodating portion 33.
  • a passage (not shown) for the refrigerant gas leading to 33 is provided, and a passage 12b connecting the fitting hole 12a and the motor housing portion 15b for returning the refrigerant gas introduced into the weight housing portion 33 to the suction passage 45. Is provided inside the drive shaft 12.
  • the bush may be configured so as to restrict the axial movement of the eccentric shaft 17 and to prevent an axial load from being applied to the eccentric shaft 17.
  • the bush 23 includes a bottom 23 d as movement restriction means for restricting movement of the eccentric shaft 17 in the axial direction.
  • the bottom 23d is provided in the insertion hole 23a of the bush 23, and is formed so as to narrow its inner diameter from the end surface (edge surface) facing the orbiting scroll member 22 toward the inner side in the radial direction.
  • a through hole 23e communicating with the insertion hole 23a is formed.
  • the total clearance A1 between the axial clearance A1 between the eccentric shaft 17 and the bottom 23d and the axial clearance A2 between the eccentric shaft and the bottom surface of the fitting hole is the axial direction between the bush 23 and the drive shaft 12.
  • the clearance B is formed larger than the clearance B formed between the end faces facing each other.
  • the eccentric shaft 17 When an axial load is applied to the eccentric shaft 17 by the bottom portion 23d and the bottom surface of the fitting hole 12a, the eccentric shaft 17 may be inclined and the eccentric shaft 17 may strongly hit the opening edge of the fitting hole 12a. Concerned. However, the clearance A is set larger than the clearance B, so that no axial load is applied to the eccentric shaft 17 and the wear of the member can be reduced.
  • fitting hole 12a may be prevented from being worn by restricting the axial movement of the bush 23 and further dispersing the force transmitted from the eccentric shaft 17 to the drive shaft.
  • the eccentric shaft 17 serves as a movement restricting means, and is a flange portion 17 b formed to project outward in the radial direction at an intermediate portion formed between one end and the other end. It is comprised.
  • the flange portion 17b is formed in a disk shape having a diameter larger than the inner diameter of the fitting hole 12a.
  • the end face of the flange portion 17b and the end face of the drive shaft 12 facing each other are provided so as to be in contact with each other.
  • the axial movement of the eccentric shaft 17 is restricted by the flange portion 17b, and the eccentric shaft 17 can be prevented from contacting the orbiting scroll member 22. Further, the end face of the flange portion 17b and the end face of the drive shaft 12 are in contact with each other, so that the load received by the drive shaft 12, that is, the load applied to the fitting hole 12a can be dispersed, thereby preventing wear. be able to.
  • the inner diameter of the fitting hole 12a is slightly larger than the outer diameter of the eccentric shaft 17, so that a slight gap (clearance) is generated between the eccentric shaft 17 and the fitting hole 12a. There is a possibility that the eccentric shaft 17 is slightly inclined.
  • the fitting hole 12a may be configured to avoid contact with the outer peripheral surface of the eccentric shaft 17.
  • the opening edge portion of the fitting hole 12a is provided with a relief portion 12c formed in a concave shape to avoid contact with the outer peripheral surface of the eccentric shaft 17.
  • the escape portion 12c is formed in a concave shape by expanding the inner peripheral surface in the vicinity of the opening edge of the fitting hole 12a in the circumferential direction. If the depth in the radial direction of the escape portion 12c is too shallow, the eccentric shaft 17 comes into contact with the peripheral edge of the fitting hole 12a. Therefore, depending on the difference between the inner diameter of the fitting hole 12a and the outer diameter of the eccentric shaft 17. It is formed. That is, the depth in the radial direction is set according to the inclination of the eccentric shaft 17 so as to avoid the eccentric shaft 17 from contacting the opening edge portion of the fitting hole 12a.
  • the escape portion 12c is provided on the end face of the fitting hole 12a, thereby preventing the outer peripheral surface of the slightly inclined eccentric shaft 17 from coming into contact with the opening edge of the fitting hole 12a and being worn. Is possible.
  • the scroll compressor of the present invention is configured so that the orbiting scroll member 22 is pressed against the fixed scroll member 21 by the back pressure of the scroll compressor 1 in this embodiment as well. Also good.
  • the eccentric shaft 17 since the clearance is fitted, the eccentric shaft 17 may be inclined with respect to the fitting hole 12a. However, the eccentric shaft 17 extends along the inner peripheral surface of the fitting hole 12a. May be provided.
  • two through holes 12 c communicating with the fitting holes 12 a are formed on the outer peripheral surface of the drive shaft 12, and set screws 18 serving as protrusions are respectively formed in the through holes 12 c. Is provided.
  • a thread groove is formed on the inner peripheral surface of the through hole 12c.
  • the set screw 18 is screwed into this thread groove, and protrudes from the through hole 12c toward the wall surface of the fitting hole 12a facing so that the tip abuts against the side surface of the eccentric shaft 17. It has been.
  • the side surface of the eccentric shaft 17 comes into contact with both the front end of the set screw 18 and the side surface of the fitting hole 12a by being pressed (contacted) with the front end of the set screw 18. For this reason, since it can prevent that the eccentric shaft 17 inclines with respect to the fitting hole 12a, it becomes possible to prevent the drive shaft 12 from wearing.
  • the protrusions are not limited to set screws, but may be formed by press-fitting pins or caulking.
  • the fitting hole may be cured. Wearing of the fitting hole 12a can be prevented by subjecting the inner peripheral surface of the fitting hole 12a to a hardening process such as plating and quenching.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rotary Pumps (AREA)

Abstract

[Problem] To provide a scroll-type compressor with which degradation of bearing durability can be prevented while avoiding cost increase. A scroll-type compressor 1 is provided with: a fixed scroll member 21; a revolving scroll member 22; a drive shaft 12 for transmitting rotational power; an eccentric shaft 17 provided in a position that is misaligned from the axial center of the drive shaft 12; a radial bearing 24; and a bushing 23 provided with an insertion hole 23a into which the eccentric shaft 17 is inserted, the bushing 23 being fitted over the eccentric shaft 17 via the insertion hole 23a, and supported so as to be capable of rotating relative to the radial bearing 24 and the eccentric shaft 17. Formed in one axial-direction end of the drive shaft 12 is a fitting hole 12a that fits with the eccentric shaft 17, the eccentric shaft 17 and fitting hole 12a being fitted together with a loose fitting. 

Description

スクロール型圧縮機Scroll compressor
 本発明は、スクロール型圧縮機に関し、特に、可動スクロールを公転させるための公転機構の構造に関する。 The present invention relates to a scroll compressor, and more particularly to a structure of a revolution mechanism for revolving a movable scroll.
 スクロール型圧縮機において、可動スクロールを公転させるための公転機構を構成する偏心軸は、駆動軸と、ブッシュと、に係合されている。
 この偏心軸と駆動軸との係合は、一般的には、駆動軸に形成された嵌合穴に偏心軸を圧入することによって行われている。
In the scroll compressor, an eccentric shaft constituting a revolving mechanism for revolving the movable scroll is engaged with a drive shaft and a bush.
The engagement between the eccentric shaft and the drive shaft is generally performed by press-fitting the eccentric shaft into a fitting hole formed in the drive shaft.
 このようなスクロール型圧縮機の例としては、回転軸(駆動軸)と偏心軸を別体として形成し、前記回転軸の偏心位置に前記偏心軸を圧入により結合したものが開示されている(特許文献1参照)。 As an example of such a scroll type compressor, a rotary shaft (drive shaft) and an eccentric shaft are separately formed, and the eccentric shaft is coupled to the eccentric position of the rotary shaft by press-fitting (see FIG. Patent Document 1).
 また、ブッシュと偏心軸とを一体に形成したものも開示されており、このような例としては、偏心軸の偏心回転を可動スクロールに伝えるブッシュを備え、前記ブッシュに前記偏心軸を一体に形成したものがある(特許文献2参照)。 Further, there is also disclosed a structure in which a bush and an eccentric shaft are integrally formed. As such an example, a bush that transmits the eccentric rotation of the eccentric shaft to a movable scroll is provided, and the eccentric shaft is integrally formed on the bush. (See Patent Document 2).
特開2002-371975号公報JP 2002-371975 A 特開2002-371976号公報JP 2002-371976 A
 しかしながら、特許文献1に記載のような一般的なスクロール型圧縮機においては、嵌合穴の中心は駆動軸の軸心から偏心した位置にあるため、偏心軸が嵌合穴に圧入された際に、偏心軸が周方向に受ける力が均一ではないことによって、偏心軸が駆動軸に対して傾いて圧入されたり、駆動軸の外周面が部分的に膨出するなどの変形をしたりする問題がある。 However, in a general scroll type compressor as described in Patent Document 1, the center of the fitting hole is at a position eccentric from the axis of the drive shaft, and therefore when the eccentric shaft is press-fitted into the fitting hole. In addition, since the force applied to the eccentric shaft in the circumferential direction is not uniform, the eccentric shaft is press-fitted with being inclined with respect to the drive shaft, or the outer peripheral surface of the drive shaft is partially expanded. There's a problem.
 偏心軸が傾いて圧入されると、ブッシュも傾いた状態となり、ブッシュが挿入されるベアリングとブッシュの外周面が均等に当接しなくなる。
 また、駆動軸の外周面が部分的に変形すると、駆動軸を支持するベアリングと駆動軸の外周面が均等に当接しなくなる。
 このような状態になると、ベアリングにかかる動的荷重が大きくなり、ベアリングの耐久性に影響するという問題がある。
When the eccentric shaft is tilted and press-fitted, the bush is also tilted, and the bearing into which the bush is inserted and the outer peripheral surface of the bush do not contact evenly.
In addition, when the outer peripheral surface of the drive shaft is partially deformed, the bearing that supports the drive shaft and the outer peripheral surface of the drive shaft do not contact evenly.
In such a state, there is a problem that the dynamic load applied to the bearing becomes large and affects the durability of the bearing.
 これらの問題を解決するため、駆動軸に偏心軸が圧入された後に、偏心軸や駆動軸の外周面に切削、研磨等の仕上げ加工を施す必要がある。
 しかし、これらの仕上げ加工は、製造工程を増加させ、また、コストを増加させることになる。
In order to solve these problems, after the eccentric shaft is press-fitted into the drive shaft, it is necessary to perform finishing processing such as cutting and polishing on the eccentric shaft and the outer peripheral surface of the drive shaft.
However, these finishing processes increase the manufacturing process and increase the cost.
 なお、これらの問題を解決するため、駆動軸と偏心軸を一体に形成することも考えられるが、偏心軸に要求される硬度は高くなければならないため、高価な素材を必要とし、両部材を同一の素材で構成するとコストが高くなる問題がある。 In order to solve these problems, it is conceivable to integrally form the drive shaft and the eccentric shaft, but since the hardness required for the eccentric shaft must be high, an expensive material is required, and both members are If the same material is used, the cost increases.
 また、特許文献2に記載のように、ブッシュと一体に偏心軸が形成されているスクロール型圧縮機では、偏心軸は硬度の高いものが必要となるため、ブッシュと一体に形成すると製造コストが高くなる問題がある。 Further, as described in Patent Document 2, in the scroll compressor in which the eccentric shaft is formed integrally with the bush, the eccentric shaft needs to have a high hardness. There is a problem of getting higher.
 そこで、本発明は上記問題に鑑みてなされたものであり、製造工程やコストの増加を避けつつ、ベアリングの耐久性の劣化を防ぐことが可能なスクロール型圧縮機を提供することを目的とする。 Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to provide a scroll compressor capable of preventing deterioration of the durability of the bearing while avoiding an increase in manufacturing process and cost. .
 上記課題を達成するために、本発明に係るスクロール型圧縮機は、ハウジングに対して少なくとも径方向の動きが規制され、端板及びこの端板から立設された渦巻壁を有する固定スクロール部材と、この固定スクロール部材に対向配置され、端板及びこの端板から立設された渦巻壁を有する旋回スクロール部材と、回転動力を伝達する駆動軸と、前記駆動軸の端部に設けられ、この駆動軸の軸心に対してずれた位置に設けられる偏心軸と、前記旋回スクロール部材の背面に形成されたボス部に内嵌されたラジアル軸受と、前記偏心軸が挿入される挿入穴を備え、この挿入穴を介して前記偏心軸に外嵌されると共に前記ラジアル軸受および前記偏心軸に相対回転可能に係合されるブッシュと、を備えるスクロール型圧縮機において、前記駆動軸は、前記偏心軸と嵌合する嵌合穴が軸方向の一端に形成され、前記偏心軸と前記嵌合穴とは、隙間嵌めにより嵌合されていることを特徴としている。 In order to achieve the above object, a scroll compressor according to the present invention includes an end plate and a fixed scroll member having a spiral wall erected from the end plate, the movement of which is restricted at least in the radial direction with respect to the housing. The orbiting scroll member having an end plate and a spiral wall erected from the end plate, a drive shaft for transmitting rotational power, and an end of the drive shaft. An eccentric shaft provided at a position shifted from the axis of the drive shaft, a radial bearing fitted in a boss formed on the back surface of the orbiting scroll member, and an insertion hole into which the eccentric shaft is inserted. And a bushing that is externally fitted to the eccentric shaft through the insertion hole and is engaged with the radial bearing and the eccentric shaft so as to be relatively rotatable. Is fitting hole that mates with the eccentric shaft is formed at one end of the axial direction, the eccentric shaft and the fitting hole is characterized in that is fitted with clearance fit.
 偏心軸と嵌合穴とは、隙間嵌めにより嵌合されることにより、偏心軸の圧入による嵌合穴に荷重がかかることがないため、偏心軸の傾きや駆動軸の変形を防止することができる。したがって、偏心軸や駆動軸の外周面に対する加工が不要になる。 Since the eccentric shaft and the fitting hole are fitted by clearance fitting, no load is applied to the fitting hole due to press-fitting of the eccentric shaft, so that the eccentric shaft can be prevented from tilting and the drive shaft being deformed. it can. Accordingly, machining on the outer peripheral surface of the eccentric shaft and the drive shaft is not necessary.
 請求項2の発明では、偏心軸が軸方向に移動することを規制する移動規制手段を、ブッシュまたは偏心軸に設けている。
 偏心軸と前記嵌合穴とは、隙間嵌めにより嵌合されているので、偏心軸が軸方向に移動することが想定されるが、このような構成とすることで、偏心軸が移動して旋回スクロールと接触することを防ぐことが可能となる。
In the invention of claim 2, the bush or the eccentric shaft is provided with movement restricting means for restricting the eccentric shaft from moving in the axial direction.
Since the eccentric shaft and the fitting hole are fitted by clearance fitting, it is assumed that the eccentric shaft moves in the axial direction, but with such a configuration, the eccentric shaft moves. It is possible to prevent contact with the orbiting scroll.
 請求項3の発明では、移動規制手段は、具体的には、前記ブッシュの挿入穴に設けられた底部で構成している。
 請求項4の発明では、前記偏心軸と前記底部との軸方向のクリアランスと、前記偏心軸と前記嵌合穴の底面との軸方向のクリアランスとを合計したクリアランスは、前記ブッシュと前記駆動軸との軸方向で互いに対峙する端面の間に形成されるクリアランスよりも大きくしている。
More specifically, the movement restricting means is constituted by a bottom portion provided in the insertion hole of the bush.
According to a fourth aspect of the present invention, the total clearance of the axial clearance between the eccentric shaft and the bottom and the axial clearance between the eccentric shaft and the bottom surface of the fitting hole is the sum of the bush and the drive shaft. And the clearance formed between the end faces facing each other in the axial direction.
 偏心軸と底部との軸方向のクリアランスと、偏心軸と嵌合穴の底面との軸方向のクリアランスとを合計を、ブッシュと駆動軸とのクリアランスよりも大きくすることにより、偏心軸に軸方向の荷重が加えられることを防ぐことが可能となる。 By making the sum of the axial clearance between the eccentric shaft and the bottom and the axial clearance between the eccentric shaft and the bottom surface of the fitting hole larger than the clearance between the bush and the drive shaft, the axial direction of the eccentric shaft It is possible to prevent the load of.
 請求項5の発明では、移動規制手段は、偏心軸のブッシュと駆動軸との間に設けられたフランジ部で構成している。
 このような構成においては、フランジ部によって偏心軸の移動が規制され、偏心軸が旋回スクロールと接触することを防ぐことが可能となる。
 また、フランジ部の端面と駆動軸との端面とを、互いに当接可能とすることにより、嵌合穴の内周面が偏心軸から受ける荷重が分散され、摩耗を低減することが可能となる。
In the invention of claim 5, the movement restricting means is constituted by a flange portion provided between the bush of the eccentric shaft and the drive shaft.
In such a configuration, the movement of the eccentric shaft is restricted by the flange portion, and the eccentric shaft can be prevented from contacting the orbiting scroll.
Further, by allowing the end face of the flange portion and the end face of the drive shaft to come into contact with each other, the load that the inner peripheral surface of the fitting hole receives from the eccentric shaft is dispersed, and wear can be reduced. .
 請求項6の発明では、嵌合穴に、前記偏心軸の外周面との接触を避ける逃げ部を設け、この逃げ部を、嵌合穴の開口縁部の内周面を周方向に拡径して凹状に形成している。 In the invention of claim 6, the fitting hole is provided with a relief portion that avoids contact with the outer peripheral surface of the eccentric shaft, and the inner diameter surface of the opening edge portion of the fitting hole is enlarged in the circumferential direction. And it is formed in a concave shape.
 篏合穴の端面に逃げ部が設けられることにより、隙間嵌めによって僅かに傾いた偏心軸と嵌合穴の開口縁部のエッジ部が当たることで生じる摩耗を防ぐことが可能となる。
 また、逃げ部から嵌合穴の内部にオイルを含んだガスが流入されることにより、嵌合穴の内部にオイルだまりができることになるため潤滑効果を与えることができる。
By providing the relief portion on the end surface of the mating hole, it is possible to prevent wear caused by the contact between the eccentric shaft slightly inclined by the clearance fitting and the edge portion of the opening edge of the fitting hole.
In addition, when a gas containing oil flows into the fitting hole from the escape portion, an oil pool can be formed inside the fitting hole, thereby providing a lubricating effect.
 請求項7の発明では、嵌合穴に、内周面から径方向の内側に向かって突出する突起物を設け、前記偏心軸の外周面を、突起物の先端及び嵌合穴の側面に当接するようになっている。 According to the seventh aspect of the present invention, the fitting hole is provided with a protrusion projecting radially inward from the inner peripheral surface, and the outer peripheral surface of the eccentric shaft is brought into contact with the tip of the protrusion and the side surface of the fitting hole. It comes to touch.
 偏心軸の外周面(側面)が、突起物の先端及び嵌合穴の側面に当接することにより、隙間嵌めでも、偏心軸が傾くことを防止することが可能となる。 Since the outer peripheral surface (side surface) of the eccentric shaft comes into contact with the tip of the protrusion and the side surface of the fitting hole, it is possible to prevent the eccentric shaft from tilting even when the gap is fitted.
 請求項8の発明では、嵌合穴に硬化処理を施すようにしてもよい。
 篏合穴に硬化処理がなされることによって、嵌合穴の摩耗を低減することが可能となる。
In the invention of claim 8, the fitting hole may be hardened.
By performing the hardening process on the mating hole, it is possible to reduce the wear of the fitting hole.
 以上本発明によれば、偏心軸と嵌合穴とは、隙間嵌めにより嵌合さることにより、偏心軸の傾きや駆動軸の変形を防止することができ、ブッシュとベアリング、あるいは、駆動軸とベアリングが均等に当接するようになる。また、偏心軸や駆動軸の外周面に対する仕上げ加工が不要になる。したがって、製造工程やコストの増加を避けつつ、ベアリングの耐久性の劣化を防ぐことが可能となる。
 また、偏心軸を他の部材と一体に形成する必要が無いため、コストの増加を避けることができる。
As described above, according to the present invention, the eccentric shaft and the fitting hole can be fitted by clearance fitting to prevent the eccentric shaft from tilting and the drive shaft from being deformed. The bearing comes into contact evenly. Further, the finishing process for the outer peripheral surface of the eccentric shaft and the drive shaft is not necessary. Therefore, it is possible to prevent deterioration of the durability of the bearing while avoiding an increase in manufacturing process and cost.
Moreover, since it is not necessary to form an eccentric shaft integrally with other members, an increase in cost can be avoided.
図1は、本発明に係るスクロール型圧縮機の全体構造例を示す断面図である。FIG. 1 is a cross-sectional view showing an example of the overall structure of a scroll compressor according to the present invention. 図2は、本発明に係るスクロール型圧縮機において、駆動軸の端部に設けられた偏心軸にブッシュを外嵌し、このブッシュを旋回スクロール部材のボス部に設けられたラジアル軸受に係合させている状態を示す実施例1の断面図である。FIG. 2 shows a scroll compressor according to the present invention, in which a bush is externally fitted to an eccentric shaft provided at an end of a drive shaft, and this bush is engaged with a radial bearing provided at a boss portion of an orbiting scroll member. It is sectional drawing of Example 1 which shows the state made to do. 図3は、本発明に係るスクロール型圧縮機の他の全体構造例を示す断面図であり、駆動軸の内部に嵌合穴と吸入経路とを接続する通路を設けた例を示すものである。FIG. 3 is a cross-sectional view showing another example of the overall structure of the scroll compressor according to the present invention, and shows an example in which a passage connecting the fitting hole and the suction passage is provided inside the drive shaft. . 図4は、本発明に係るスクロール型圧縮機において、駆動軸の端部に設けられた偏心軸にブッシュを外嵌し、このブッシュを旋回スクロール部材のボス部に設けられたラジアル軸受に係合させている状態を示す実施例2の断面図である。FIG. 4 shows a scroll compressor according to the present invention, in which a bush is externally fitted to an eccentric shaft provided at an end of a drive shaft, and this bush is engaged with a radial bearing provided at a boss portion of the orbiting scroll member. It is sectional drawing of Example 2 which shows the state made to do. 図5は、本発明に係るスクロール型圧縮機において、駆動軸の端部に設けられた偏心軸にブッシュを外嵌し、このブッシュを旋回スクロール部材のボス部に設けられたラジアル軸受に係合させている状態を示す実施例3の断面図である。FIG. 5 shows a scroll compressor according to the present invention, in which a bush is externally fitted to an eccentric shaft provided at an end portion of a drive shaft, and this bush is engaged with a radial bearing provided at a boss portion of an orbiting scroll member. It is sectional drawing of Example 3 which shows the state made to do. 図6は、本発明に係るスクロール型圧縮機において、駆動軸の端部に設けられた偏心軸にブッシュを外嵌し、このブッシュを旋回スクロール部材のボス部に設けられたラジアル軸受に係合させている状態を示す実施例4の断面図である。FIG. 6 shows a scroll compressor according to the present invention, in which a bush is externally fitted to an eccentric shaft provided at an end of a drive shaft, and this bush is engaged with a radial bearing provided at a boss portion of the orbiting scroll member. It is sectional drawing of Example 4 which shows the state made to do. 図7は、本発明に係るスクロール型圧縮機において、駆動軸の端部に設けられた偏心軸にブッシュを外嵌し、このブッシュを旋回スクロール部材のボス部に設けられたラジアル軸受に係合させている状態を示す実施例5の断面図である。FIG. 7 shows a scroll compressor according to the present invention, in which a bush is externally fitted to an eccentric shaft provided at an end portion of a drive shaft, and this bush is engaged with a radial bearing provided at a boss portion of an orbiting scroll member. It is sectional drawing of Example 5 which shows the state made to do.
 以下、本発明に係るスクロール型圧縮機について、図面を参照しながら説明する。 Hereinafter, the scroll compressor according to the present invention will be described with reference to the drawings.
図1において、スクロール型圧縮機1は、冷媒を作動流体とする冷凍サイクルに適した電動型圧縮機であり、アルミ合金で構成されたハウジング2内に、図中左方において圧縮機構3を配設し、また、図中右側において圧縮機構3を駆動する電動機4を配設している。尚、図1において、図中右側をスクロール型圧縮機1の前方、図中左側を圧縮機の後方としている。 In FIG. 1, a scroll compressor 1 is an electric compressor suitable for a refrigeration cycle using a refrigerant as a working fluid, and a compression mechanism 3 is arranged on the left side in the figure in a housing 2 made of an aluminum alloy. In addition, an electric motor 4 for driving the compression mechanism 3 is disposed on the right side in the drawing. In FIG. 1, the right side in the drawing is the front of the scroll compressor 1, and the left side in the drawing is the rear of the compressor.
 ハウジング2は、圧縮機構3を収容する圧縮機構収容ハウジング部材2aと、圧縮機構3を駆動する電動機4を収容する電動機収容ハウジング部材2bと、電動機4を駆動制御する図示しないインバータ装置を収容するインバータ収容ハウジング部材2cとを有し、これらハウジング部材を位置決めピン7により位置決めすると共に締結ボルト8で軸方向に締結するようにしている。 The housing 2 includes a compression mechanism housing member 2 a that houses the compression mechanism 3, an electric motor housing member 2 b that houses the electric motor 4 that drives the compression mechanism 3, and an inverter that houses an inverter device (not shown) that drives and controls the electric motor 4. The housing member 2c is positioned with the positioning pins 7 and fastened in the axial direction with the fastening bolts 8.
 電動機収容ハウジング部材2bの圧縮機構収容ハウジング部材2aと対峙する側には、軸支部9aが一体に形成された仕切壁10が設けられ、また、インバータ収容ハウジング部材2cの電動機収容ハウジング部材2bと対峙する側にも軸支部9bが一体に形成された仕切壁11が設けられ、これら仕切壁10,11の軸支部9a,9bに駆動軸12がベアリング13,14を介して回転可能に支持されている。この電動機収容ハウジング部材2bとインバータ収容ハウジング部材2cとに形成されたそれぞれの仕切壁10,11によりハウジング2の内部が後方から圧縮機構3を収納する圧縮機構収容部15a、電動機4を収納する電動機収容部15b、及びインバータ装置を収容するインバータ収容部15cに仕切られている。
 尚、この例では、インバータ収容部15cは、インバータ収容ハウジング部材2cに蓋体16を図示しないボルト等によって固定することで画成されている。
A partition wall 10 formed integrally with a shaft support portion 9a is provided on the side of the motor housing housing member 2b that faces the compression mechanism housing housing member 2a, and is opposed to the motor housing housing member 2b of the inverter housing housing member 2c. A partition wall 11 in which a shaft support portion 9b is integrally formed is provided on the side to be supported, and a drive shaft 12 is rotatably supported by the shaft support portions 9a and 9b of the partition walls 10 and 11 via bearings 13 and 14, respectively. Yes. The partition wall 10, 11 formed in the motor housing housing member 2 b and the inverter housing housing member 2 c, the compression mechanism housing portion 15 a for housing the compression mechanism 3 from behind in the housing 2, and the motor for housing the motor 4. It is partitioned into a housing portion 15b and an inverter housing portion 15c that houses the inverter device.
In this example, the inverter accommodating portion 15c is defined by fixing the lid body 16 to the inverter accommodating housing member 2c with a bolt or the like (not shown).
 圧縮機構3は、固定スクロール部材21とこれに対向配置された旋回スクロール部材22とを有するスクロールタイプのもので、固定スクロール部材21は、ハウジング2に対して、軸方向の動きを許容されつつ、位置決めピン28により径方向への動きが規制されており、円板状の端板21aと、この端板21aの外縁に沿って全周に亘って設けられると共に前方に向かって立設された円筒状の外周壁21bと、その外周壁21bの内側において前記端板21aから前方に向かって延設された渦巻状の渦巻壁21cとから構成されている。 The compression mechanism 3 is of a scroll type having a fixed scroll member 21 and an orbiting scroll member 22 disposed to face the fixed scroll member 21, and the fixed scroll member 21 is allowed to move in the axial direction with respect to the housing 2. The movement in the radial direction is restricted by the positioning pin 28, a disc-shaped end plate 21a, and a cylinder that is provided over the entire periphery along the outer edge of the end plate 21a and is erected forward. An outer peripheral wall 21b and a spiral spiral wall 21c extending forward from the end plate 21a inside the outer peripheral wall 21b.
 また、旋回スクロール部材22は、円板状の端板22aと、この端板22aから後方に向かって立設された渦巻状の渦巻壁22cとから構成され、端板22aの背面に立設されたボス部22bに、駆動軸12の後端部に設けられると共に駆動軸12の軸心に対して偏心して設けられた偏心軸17がブッシュ23及びラジアル軸受24を介して係合されている。ブッシュ23は、偏心軸17およびラジアル軸受24と相対回転可能に係合し、旋回スクロール部材22は、駆動軸12の軸心を中心として公転運動可能に設けられている。
 なお、この実施形態では、ラジアル軸受24と旋回スクロール部材22のボス部22b、および、ラジアル軸受24とブッシュ23の外周面は、隙間嵌めによって係合されている。
 また、この実施例では、ラジアル軸受24は内外輪一体型ボールベアリングとなっているが、これに限らず、外輪一体型ニードルベアリングやすべり軸受けでもよい。
The orbiting scroll member 22 is composed of a disc-shaped end plate 22a and a spiral spiral wall 22c erected rearward from the end plate 22a, and is erected on the back surface of the end plate 22a. An eccentric shaft 17 provided at the rear end portion of the drive shaft 12 and eccentric with respect to the axis of the drive shaft 12 is engaged with the boss portion 22 b via a bush 23 and a radial bearing 24. The bush 23 engages with the eccentric shaft 17 and the radial bearing 24 so as to be relatively rotatable, and the orbiting scroll member 22 is provided so as to be capable of revolving around the axis of the drive shaft 12.
In this embodiment, the radial bearing 24 and the boss portion 22b of the orbiting scroll member 22, and the outer peripheral surfaces of the radial bearing 24 and the bush 23 are engaged by clearance fitting.
In this embodiment, the radial bearing 24 is an inner / outer ring integrated ball bearing, but is not limited thereto, and may be an outer ring integrated needle bearing or a sliding bearing.
 固定スクロール部材21と旋回スクロール部材22とは、それぞれの渦巻壁21c、22cをもって互いに噛み合わされており、固定スクロール部材21の端板21a及び渦巻壁21cと、旋回スクロール部材22の端板22a及び渦巻壁22cとによって囲まれた空間に圧縮室25が画成されている。 The fixed scroll member 21 and the orbiting scroll member 22 are meshed with each other with their respective spiral walls 21c and 22c. A compression chamber 25 is defined in a space surrounded by the wall 22c.
 また、固定スクロール部材21の外周壁21bと仕切壁10との間には、薄板状の環状のスラストレース26が挟持され、固定スクロール部材21と仕切壁10とは、このスラストレース26を介して突き合わされている。 Further, a thin plate-shaped annular thrust trace 26 is sandwiched between the outer peripheral wall 21 b of the fixed scroll member 21 and the partition wall 10, and the fixed scroll member 21 and the partition wall 10 are interposed via the thrust trace 26. It is faced.
 スラストレース26は、耐摩耗性に優れた素材で形成されているもので、中央に旋回スクロール部材22のボス部22bや後述するオルダムリング27が貫挿する中央孔が形成されている。また、固定スクロール部材21、スラストレース26、及び電動機収容ハウジング部材2bは、スラストレース26に形成されたピン挿通孔に挿通される位置決めピン28により、径方向の位置が規定されている。 The thrust trace 26 is formed of a material having excellent wear resistance, and a central hole through which a boss portion 22b of the orbiting scroll member 22 and an Oldham ring 27 described later are inserted is formed in the center. The fixed scroll member 21, the thrust trace 26, and the motor housing housing member 2 b are defined in the radial direction by positioning pins 28 that are inserted into pin insertion holes formed in the thrust trace 26.
 電動機収容ハウジング部材2bの仕切壁10に一体に形成された軸支部9aは、中央に貫通孔を有し、その内面がスラストレース26に向かって径が段階的に大きく形成されているもので、スラストレース26から最も離れた前方側から、ベアリング13が収容されるベアリング収容部31、前記ブッシュ23に一体に形成され又はブッシュに対して相対回転不能に外嵌されてブッシュ23と一体をなして駆動軸12の回転に伴って回転するバランスウエイト32(この例では、バランスウエイト32がブッシュ23と別体に形成されてブッシュ23に相対回転不能に外嵌されている)を収容するウエイト収容部33、このウエイト収容部33に続いて形成され、旋回スクロール部材22との間で当該旋回スクロール部材22の自転を防止するオルダムリング27を収容するオルダム収容部34が形成されている。 The shaft support portion 9a formed integrally with the partition wall 10 of the electric motor housing member 2b has a through hole in the center, and the inner surface thereof is formed in a stepwise manner toward the thrust trace 26, From the front side farthest from the thrust trace 26, the bearing housing 31 in which the bearing 13 is housed, is integrally formed with the bush 23, or is externally fitted to the bush so as not to rotate relative to the bush 23. A weight accommodating portion that accommodates a balance weight 32 that rotates with the rotation of the drive shaft 12 (in this example, the balance weight 32 is formed separately from the bush 23 and is fitted on the bush 23 so as not to rotate relative to the bush 23). 33, formed following the weight accommodating portion 33, and prevents the orbiting scroll member 22 from rotating with the orbiting scroll member 22. Oldham Oldham accommodating portion 34 for accommodating the ring 27 is formed that.
 したがって、旋回スクロール部材22は、駆動軸12の回転により自転力が発生するが、オルダムリング27により自転が規制されつつ駆動軸12の軸心に対して公転運動するようになっている。
 なお、自転を防止する機構は、オルダムリングに限らず、ピン・ホール、ピン・リング、ピン・リンクなどの方式でもよい。
Therefore, the orbiting scroll member 22 is rotated by the rotation of the drive shaft 12, but revolves around the axis of the drive shaft 12 while the rotation is restricted by the Oldham ring 27.
The mechanism for preventing rotation is not limited to the Oldham ring, but may be a pin-hole, pin-ring, pin-link, or the like.
 前述した固定スクロール部材21の外周壁21bと旋回スクロール部材22の渦巻壁22cの最外周部との間には、後述する吸入口40から導入された冷媒ガスを吸入経路45を介して吸入する吸入室35が形成され、また、ハウジング内の固定スクロール部材21の背後には、圧縮室25で圧縮された冷媒ガスが固定スクロール部材21の略中央に形成された吐出孔36を介して吐出される吐出室37が圧縮機構収容ハウジング部材2aの後端壁との間に画成されている。この吐出室37に吐出された冷媒ガスは、吐出口38を介して外部冷媒回路へ圧送されるようになっている。 Suction for sucking refrigerant gas introduced from a suction port 40 (described later) through a suction path 45 between the outer peripheral wall 21b of the fixed scroll member 21 and the outermost peripheral portion of the spiral wall 22c of the orbiting scroll member 22. A chamber 35 is formed, and the refrigerant gas compressed in the compression chamber 25 is discharged through a discharge hole 36 formed substantially at the center of the fixed scroll member 21 behind the fixed scroll member 21 in the housing. A discharge chamber 37 is defined between the rear end wall of the compression mechanism housing member 2a. The refrigerant gas discharged into the discharge chamber 37 is pumped to an external refrigerant circuit through the discharge port 38.
 これに対して、ハウジング2内の仕切壁10より前方の部分に形成された電動機収容部15bには、電動機4を構成するステータ41とロータ42とが設けられている。ステータ41は、円筒状をなす鉄心43とこれに巻回されたコイル44とで構成され、ハウジング2(電動機収容ハウジング部材2b)の内面に固定されている。また、駆動軸12には、ステータ41の内側において回転可能に収容されたマグネットからなるロータ42が固装され、このロータ42が、ステータ41によって形成される回転磁力により回転され、駆動軸12を回転するようになっている。これらステータ41やロータ42によって、ブラシレスDCモータからなる電動機4が構成されている。 On the other hand, a stator 41 and a rotor 42 constituting the electric motor 4 are provided in the electric motor accommodating portion 15b formed in the front part of the partition wall 10 in the housing 2. The stator 41 includes a cylindrical iron core 43 and a coil 44 wound around the iron core 43, and is fixed to the inner surface of the housing 2 (electric motor housing member 2b). The drive shaft 12 is fixedly mounted with a rotor 42 made of a magnet rotatably accommodated inside the stator 41, and the rotor 42 is rotated by a rotating magnetic force formed by the stator 41. It is designed to rotate. The stator 41 and the rotor 42 constitute an electric motor 4 composed of a brushless DC motor.
 そして、ハウジング2(電動機収容ハウジング部材2b)の側面には、電動機収容部15bに冷媒ガスを吸入する吸入口40が形成され、ステータ41とハウジング2(電動機収容ハウジング部材2b)との間の隙間や、仕切壁10に形成された孔、及び固定スクロール部材21とハウジング2との間に形成される隙間を介して、吸入口40から電動機収容部15bに流入した冷媒ガスを前記吸入室35に導く吸入経路45が構成されている。 A suction port 40 for sucking refrigerant gas into the motor housing portion 15b is formed on the side surface of the housing 2 (motor housing housing member 2b), and a gap between the stator 41 and the housing 2 (motor housing housing member 2b). In addition, the refrigerant gas that has flowed from the suction port 40 into the motor housing portion 15b through the holes formed in the partition wall 10 and the gap formed between the fixed scroll member 21 and the housing 2 is supplied to the suction chamber 35. A leading suction path 45 is configured.
 尚、インバータ収容ハウジング部材2cに収容されるインバータ装置は、仕切壁11に形成された貫通孔61に取付けられるターミナル(気密端子)60を介してステータ41と電気的に接続し、電動機4に対してインバータ装置から給電するようにしている。 The inverter device housed in the inverter housing member 2c is electrically connected to the stator 41 via a terminal (airtight terminal) 60 attached to a through hole 61 formed in the partition wall 11, and is connected to the motor 4. Power is supplied from the inverter device.
 したがって、電動機4への給電により、ロータ42が回転して駆動軸12が回転すると、圧縮機構3において、旋回スクロール部材22が偏心軸17およびブッシュ23を介して駆動される。この際、旋回スクロール部材22は、オルダムリング27からなる自転阻止機構によって自転が阻止されているので、固定スクロール部材21に対して公転運動のみが許容される。 Therefore, when the rotor 42 rotates and the drive shaft 12 rotates by supplying power to the electric motor 4, the orbiting scroll member 22 is driven via the eccentric shaft 17 and the bush 23 in the compression mechanism 3. At this time, since the orbiting scroll member 22 is prevented from rotating by the rotation preventing mechanism including the Oldham ring 27, only the revolving motion is allowed with respect to the fixed scroll member 21.
 この旋回スクロール部材22の公転運動により、圧縮室25は両スクロール部材の渦巻壁21c、22cの外周側から中心側へ容積を徐々に小さくしつつ移動するので、吸入室35から圧縮室25に吸入された冷媒ガスは圧縮され、この圧縮された冷媒ガスは固定スクロール部材21の端板21aに形成された吐出孔36を介して吐出室37に吐出される。そして、吐出口38を介して外部冷媒回路へ送出される。 Due to the revolving motion of the orbiting scroll member 22, the compression chamber 25 moves while gradually reducing the volume from the outer peripheral side of the scroll walls 21c, 22c of both scroll members to the center side, so that the suction chamber 35 sucks into the compression chamber 25. The compressed refrigerant gas is compressed, and the compressed refrigerant gas is discharged into the discharge chamber 37 through the discharge hole 36 formed in the end plate 21 a of the fixed scroll member 21. Then, it is sent to the external refrigerant circuit through the discharge port 38.
 以上の構成において、図2に示すブッシュ23は、円柱形状のもので、軸心から径方向にずらした位置に、軸方向に延設されて前記偏心軸17を挿入可能とする挿入穴23aが形成され、電動機側の端部周縁には外径を小さくしてバランスウエイト32を外嵌するウエイト嵌合代23cが形成されている。
 なお、挿入穴23aの内径は、偏心軸17の外径よりも僅かに大きく形成されている。
In the above configuration, the bush 23 shown in FIG. 2 has a cylindrical shape, and has an insertion hole 23a that extends in the axial direction and can be inserted into the eccentric shaft 17 at a position shifted in the radial direction from the axial center. A weight fitting margin 23c for reducing the outer diameter and fitting the balance weight 32 is formed on the periphery of the end of the motor.
Note that the inner diameter of the insertion hole 23 a is slightly larger than the outer diameter of the eccentric shaft 17.
 また、ラジアル軸受24の内周部材の前方側(図中右側)端面は、ブッシュ23に設けられた段差部と当接可能に、さらに、ラジアル軸受24の外周部材の後方側(図中左側)端面は、旋回スクロール部材22のボス部22bに設けられた段差部と当接可能に構成されている。この構成によって、ブッシュ23の軸方向の移動が規制され、ブッシュ23が旋回スクロール部材22と接触することが防止されている。 Moreover, the front side (right side in the figure) end surface of the inner peripheral member of the radial bearing 24 can come into contact with the stepped portion provided on the bush 23, and further, the rear side (left side in the figure) of the outer peripheral member of the radial bearing 24 The end surface is configured to be able to come into contact with a stepped portion provided on the boss portion 22 b of the orbiting scroll member 22. With this configuration, the axial movement of the bush 23 is restricted, and the bush 23 is prevented from coming into contact with the orbiting scroll member 22.
 バランスウエイト32は、環状に形成された嵌合部32aと、この嵌合部32aの周縁に所定の角度範囲に亘って一体形成された扇状のウエイト本体32bとを有して構成され、嵌合部32aをブッシュ23のウエイト嵌合代23cの外周に例えば圧入にて外嵌し、ブッシュ23と共に回転するようになっている。 The balance weight 32 includes a fitting portion 32a formed in an annular shape, and a fan-shaped weight main body 32b integrally formed over a predetermined angular range on the periphery of the fitting portion 32a. The portion 32 a is fitted on the outer periphery of the weight fitting allowance 23 c of the bush 23 by, for example, press fitting, and rotates together with the bush 23.
 このバランスウエイト32は、旋回スクロール部材22に近づくように張り出すと共に、旋回スクロール部材22から遠ざかる方向にも張り出すように形成されており、これにより径方向の寸法を短くし、オルダムリング27との干渉を回避しつつ要求される質量を確保するようにしている。 The balance weight 32 extends so as to approach the orbiting scroll member 22 and also extends in a direction away from the orbiting scroll member 22, thereby reducing the radial dimension, The required mass is ensured while avoiding interference.
 偏心軸17は、その一端側がブッシュ23に形成された挿入穴23aに挿入され、他端側は旋回スクロール部材22と対峙する駆動軸12の端面に形成された嵌合穴12aに嵌合されている。 One end side of the eccentric shaft 17 is inserted into an insertion hole 23 a formed in the bush 23, and the other end side is fitted into a fitting hole 12 a formed on the end surface of the drive shaft 12 facing the orbiting scroll member 22. Yes.
 また、嵌合穴12aの内径は、偏心軸17の外径よりも僅かに大きく(例えば、これらの部材の内径と外径の差が20マイクロメートル程度)形成されている。
 したがって、偏心軸17と嵌合穴12aとは、隙間嵌めにより嵌合されている。
The inner diameter of the fitting hole 12a is slightly larger than the outer diameter of the eccentric shaft 17 (for example, the difference between the inner diameter and the outer diameter of these members is about 20 micrometers).
Therefore, the eccentric shaft 17 and the fitting hole 12a are fitted by gap fitting.
 以上、本実施例によれば、偏心軸17と嵌合穴12aとは、隙間嵌めにより嵌合さることにより、偏心軸17の傾きや駆動軸12の変形を防止することができ、ブッシュ23とベアリング(ラジアル軸受24)、あるいは、駆動軸12とベアリング13,14が均等に当接するようになる。また、偏心軸17や駆動軸12の外周面に対する仕上げ加工が不要になる。したがって、製造工程やコストの増加を避けつつ、ベアリングの耐久性の劣化を防ぐことが可能となる。 As described above, according to the present embodiment, the eccentric shaft 17 and the fitting hole 12a can be fitted by clearance fitting to prevent the eccentric shaft 17 from tilting and the drive shaft 12 from being deformed. The bearing (radial bearing 24) or the drive shaft 12 and the bearings 13 and 14 come into contact with each other evenly. Further, the finishing process for the outer peripheral surfaces of the eccentric shaft 17 and the drive shaft 12 is not necessary. Therefore, it is possible to prevent deterioration of the durability of the bearing while avoiding an increase in manufacturing process and cost.
 なお、スクロール型圧縮機1の背圧によって、旋回スクロール部材22を固定スクロール部材21に押し付けるように本発明のスクロール型圧縮機1を構成してもよい。 Note that the scroll compressor 1 of the present invention may be configured such that the orbiting scroll member 22 is pressed against the fixed scroll member 21 by the back pressure of the scroll compressor 1.
 具体的には、図3に示すように、ウエイト収容部33に導入された冷媒ガスの圧力によって、旋回スクロール部材22を固定スクロール部材21側に力が加わるように、圧縮室25からウエイト収容部33に通じる冷媒ガスの通路(図示せず)を設け、また、ウエイト収容部33に導入された冷媒ガスを吸入経路45に戻すために、嵌合穴12aと電動機収容部15bとを繋ぐ通路12bを駆動軸12の内部に設ける。 Specifically, as shown in FIG. 3, the weight accommodating portion is compressed from the compression chamber 25 so that a force is applied to the orbiting scroll member 22 toward the fixed scroll member 21 by the pressure of the refrigerant gas introduced into the weight accommodating portion 33. A passage (not shown) for the refrigerant gas leading to 33 is provided, and a passage 12b connecting the fitting hole 12a and the motor housing portion 15b for returning the refrigerant gas introduced into the weight housing portion 33 to the suction passage 45. Is provided inside the drive shaft 12.
 このような構成においては、オイルを含んだ冷媒ガスが、嵌合穴12aに流入することになるため、嵌合穴12aの内周面の摩耗を防ぐことが可能となる。
 また、この冷媒ガスを吸入経路45に戻すためには、絞りを設ける必要があるが、嵌合穴12aと偏心軸17の間に形成された隙間を冷媒ガスの通路として使用することで、絞りの効果が得られ、新たに絞りを設けることなく構成することが可能となる。
In such a configuration, since the refrigerant gas containing oil flows into the fitting hole 12a, it is possible to prevent the inner peripheral surface of the fitting hole 12a from being worn.
Further, in order to return the refrigerant gas to the suction path 45, it is necessary to provide a throttle. However, by using the gap formed between the fitting hole 12a and the eccentric shaft 17 as a refrigerant gas passage, Thus, it is possible to configure without newly providing a diaphragm.
 さらに、この冷媒ガスが吸入経路45に導入される過程においては、電動機収容部15bに設けられたベアリング14を潤滑することも可能となる。 Furthermore, in the process in which the refrigerant gas is introduced into the suction passage 45, it is possible to lubricate the bearing 14 provided in the motor housing 15b.
 なお、ブッシュは、偏心軸17の軸方向の移動を規制し、さらに、偏心軸17に軸方向の荷重が加えられることがないように構成してもよい。 Note that the bush may be configured so as to restrict the axial movement of the eccentric shaft 17 and to prevent an axial load from being applied to the eccentric shaft 17.
 具体的には、図4に示すように、ブッシュ23は、偏心軸17の軸方向の移動を規制する移動規制手段として底部23dを備えている。
 底部23dは、ブッシュ23の挿入穴23aに設けられるもので、旋回スクロール部材22と対峙する端面(縁面)から径方向の内側に向かってその内径を狭めるように形成され、その中心には、挿入穴23aと通じる通穴23eが形成されている。
Specifically, as shown in FIG. 4, the bush 23 includes a bottom 23 d as movement restriction means for restricting movement of the eccentric shaft 17 in the axial direction.
The bottom 23d is provided in the insertion hole 23a of the bush 23, and is formed so as to narrow its inner diameter from the end surface (edge surface) facing the orbiting scroll member 22 toward the inner side in the radial direction. A through hole 23e communicating with the insertion hole 23a is formed.
 ここで、偏心軸17と底部23dとの軸方向のクリアランスA1と、偏心軸と嵌合穴の底面との軸方向のクリアランスA2とを合計したクリアランスAは、ブッシュ23と駆動軸12の軸方向の互いに対峙する端面の間に形成されるクリアランスBよりも大きく形成されている。 Here, the total clearance A1 between the axial clearance A1 between the eccentric shaft 17 and the bottom 23d and the axial clearance A2 between the eccentric shaft and the bottom surface of the fitting hole is the axial direction between the bush 23 and the drive shaft 12. The clearance B is formed larger than the clearance B formed between the end faces facing each other.
 底部23dと嵌合穴12aの底面とによって偏心軸17に軸方向の荷重が加えられた場合、偏心軸17が傾き、偏心軸17が嵌合穴12aの開口縁部に強くエッジ当りすることが懸念される。
 しかしながら、クリアランスAは、クリアランスBよりも大きく設定されることにより、偏心軸17に軸方向の荷重が加えられることが無くなり、部材の摩耗を低減することが可能となる。
When an axial load is applied to the eccentric shaft 17 by the bottom portion 23d and the bottom surface of the fitting hole 12a, the eccentric shaft 17 may be inclined and the eccentric shaft 17 may strongly hit the opening edge of the fitting hole 12a. Concerned.
However, the clearance A is set larger than the clearance B, so that no axial load is applied to the eccentric shaft 17 and the wear of the member can be reduced.
 また、ブッシュ23の軸方向の移動を規制し、さらに、偏心軸17から駆動軸に伝わる力を分散させることにより、嵌合穴12aの摩耗を防ぐようにしてもよい。 Further, the fitting hole 12a may be prevented from being worn by restricting the axial movement of the bush 23 and further dispersing the force transmitted from the eccentric shaft 17 to the drive shaft.
 具体的には、図5に示すように、偏心軸17は、移動規制手段として、一端と他端の間に形成される中間部位において径方向の外側に向かって突出して形成されたフランジ部17bを有して構成されている。 Specifically, as shown in FIG. 5, the eccentric shaft 17 serves as a movement restricting means, and is a flange portion 17 b formed to project outward in the radial direction at an intermediate portion formed between one end and the other end. It is comprised.
 フランジ部17bは、嵌合穴12aの内径よりも拡径して円盤状に形成されている。
 フランジ部17bの端面と、駆動軸12との互いに対峙する端面とは、当接可能とするように設けられている。
The flange portion 17b is formed in a disk shape having a diameter larger than the inner diameter of the fitting hole 12a.
The end face of the flange portion 17b and the end face of the drive shaft 12 facing each other are provided so as to be in contact with each other.
 以上のように、フランジ部17bによって、偏心軸17の軸方向の移動が規制され、偏心軸17が旋回スクロール部材22と接触することを防ぐことができる。また、フランジ部17bの端面と駆動軸12との端面とは、互いに当接することにより、駆動軸12が受ける荷重、すなわち、嵌合穴12aに掛かる荷重を分散させることができるため、摩耗を防ぐことができる。 As described above, the axial movement of the eccentric shaft 17 is restricted by the flange portion 17b, and the eccentric shaft 17 can be prevented from contacting the orbiting scroll member 22. Further, the end face of the flange portion 17b and the end face of the drive shaft 12 are in contact with each other, so that the load received by the drive shaft 12, that is, the load applied to the fitting hole 12a can be dispersed, thereby preventing wear. be able to.
 上述の実施例においては、嵌合穴12aの内径は、偏心軸17の外径よりも僅かに大きく形成されるため、偏心軸17と嵌合穴12aの間に僅かな隙間(クリアランス)が生じ、偏心軸17が僅かに傾いた状態となる可能性がある。 In the above-described embodiment, the inner diameter of the fitting hole 12a is slightly larger than the outer diameter of the eccentric shaft 17, so that a slight gap (clearance) is generated between the eccentric shaft 17 and the fitting hole 12a. There is a possibility that the eccentric shaft 17 is slightly inclined.
 このような状態のままスクロール型圧縮機1を稼働すると、駆動軸12の外周面と嵌合穴12aの開口縁部とが擦れ、摩耗する恐れがある。
 そこで、これらの部材17,12aの摩耗を防ぐため、偏心軸17の外周面との接触を避けるように嵌合穴12aを構成してもよい。
If the scroll compressor 1 is operated in such a state, the outer peripheral surface of the drive shaft 12 and the opening edge of the fitting hole 12a may be rubbed and worn.
Therefore, in order to prevent wear of these members 17 and 12a, the fitting hole 12a may be configured to avoid contact with the outer peripheral surface of the eccentric shaft 17.
 具体的には、図6に示すように、嵌合穴12aの開口縁部には、偏心軸17の外周面との接触を避ける凹状に形成された逃げ部12cが設けられている。 Specifically, as shown in FIG. 6, the opening edge portion of the fitting hole 12a is provided with a relief portion 12c formed in a concave shape to avoid contact with the outer peripheral surface of the eccentric shaft 17.
 逃げ部12cは、嵌合穴12aの開口縁部の近傍の内周面を周方向に拡径して凹状に形成されたものである。
 逃げ部12cの径方向の深さは、浅すぎれば嵌合穴12aの周縁に偏心軸17が接触することになるため、嵌合穴12aの内径と偏心軸17の外径の差に応じて形成される。
 すなわち、偏心軸17の傾きに応じて径方向の深さを設定し、偏心軸17が嵌合穴12aの開口縁部に接触することを避けるように設けられている。
The escape portion 12c is formed in a concave shape by expanding the inner peripheral surface in the vicinity of the opening edge of the fitting hole 12a in the circumferential direction.
If the depth in the radial direction of the escape portion 12c is too shallow, the eccentric shaft 17 comes into contact with the peripheral edge of the fitting hole 12a. Therefore, depending on the difference between the inner diameter of the fitting hole 12a and the outer diameter of the eccentric shaft 17. It is formed.
That is, the depth in the radial direction is set according to the inclination of the eccentric shaft 17 so as to avoid the eccentric shaft 17 from contacting the opening edge portion of the fitting hole 12a.
 以上のように、嵌合穴12aの端面に逃げ部12cが設けられることにより、僅かに傾斜した偏心軸17の外周面が嵌合穴12aの開口縁部と接触して摩耗することを防ぐことが可能となる。 As described above, the escape portion 12c is provided on the end face of the fitting hole 12a, thereby preventing the outer peripheral surface of the slightly inclined eccentric shaft 17 from coming into contact with the opening edge of the fitting hole 12a and being worn. Is possible.
 また、上記実施例で説明したように、本実施例においてもスクロール型圧縮機1の背圧によって、旋回スクロール部材22を固定スクロール部材21に押し付けるように本発明のスクロール型圧縮機を構成してもよい。 Further, as described in the above embodiment, the scroll compressor of the present invention is configured so that the orbiting scroll member 22 is pressed against the fixed scroll member 21 by the back pressure of the scroll compressor 1 in this embodiment as well. Also good.
 この場合は、逃げ部12cから嵌合穴12aの内部に冷媒ガスが流入されることにより、嵌合穴12aの内部にオイルだまりができることになるため、さらなる潤滑効果を与えることができ、部材の摩耗を軽減することができる。 In this case, when the refrigerant gas flows into the fitting hole 12a from the escape portion 12c, the oil pool can be accumulated in the fitting hole 12a, so that a further lubrication effect can be given. Wear can be reduced.
 上述の実施例においては、隙間嵌めであるため、偏心軸17は嵌合穴12aに対して傾く可能性のあるものであったが、嵌合穴12aの内周面に沿うように偏心軸17を設けて実施してもよい。 In the above-described embodiment, since the clearance is fitted, the eccentric shaft 17 may be inclined with respect to the fitting hole 12a. However, the eccentric shaft 17 extends along the inner peripheral surface of the fitting hole 12a. May be provided.
 具体的には、図7に示すように、駆動軸12の外周面には、嵌合穴12aに通じる貫通孔12cが2箇所に形成され、この貫通孔12cにそれぞれ突起物としてのセットスクリュー18が設けられている。 Specifically, as shown in FIG. 7, two through holes 12 c communicating with the fitting holes 12 a are formed on the outer peripheral surface of the drive shaft 12, and set screws 18 serving as protrusions are respectively formed in the through holes 12 c. Is provided.
 貫通孔12cの内周面には、ネジ溝が形成されている。
 また、セットスクリュー18は、このネジ溝に螺合して設けられており、貫通孔12cから対峙する嵌合穴12aの壁面に向かって先端が偏心軸17の側面に当接するように突出して設けられている。
A thread groove is formed on the inner peripheral surface of the through hole 12c.
The set screw 18 is screwed into this thread groove, and protrudes from the through hole 12c toward the wall surface of the fitting hole 12a facing so that the tip abuts against the side surface of the eccentric shaft 17. It has been.
 したがって、偏心軸17の側面は、セットスクリュー18の先端に押される(当接される)ことにより、セットスクリュー18の先端及び嵌合穴12aの側面の両方に当接することになる。このため、嵌合穴12aに対して偏心軸17が傾くことを防止することができるため、駆動軸12の摩耗を防ぐことが可能となる。
 なお、突起物は、セットスクリューに限らず、圧入ピン、あるいは、カシメ加工等により形成されるものでもよい。
Therefore, the side surface of the eccentric shaft 17 comes into contact with both the front end of the set screw 18 and the side surface of the fitting hole 12a by being pressed (contacted) with the front end of the set screw 18. For this reason, since it can prevent that the eccentric shaft 17 inclines with respect to the fitting hole 12a, it becomes possible to prevent the drive shaft 12 from wearing.
The protrusions are not limited to set screws, but may be formed by press-fitting pins or caulking.
 さらに、嵌合穴に硬化処理を施してもよい。
 嵌合穴12aの内周面に、メッキ、焼き入れ等の硬化処理が施されることで、嵌合穴12aの摩耗を防ぐことができる。
Further, the fitting hole may be cured.
Wearing of the fitting hole 12a can be prevented by subjecting the inner peripheral surface of the fitting hole 12a to a hardening process such as plating and quenching.
 1 スクロール型圧縮機
 12 駆動軸
 12a 嵌合穴
 12c 逃げ部
 17 偏心軸
 17b フランジ部
 18セットスクリュー(突起物)
 2 ハウジング
 21 固定スクロール部材
 21a 端板(固定スクロール部材)
 21c 渦巻壁(固定スクロール部材)
 22 旋回スクロール部材
 22a 端板(旋回スクロール部材)
 22c 渦巻壁(旋回スクロール部材)
 23 ブッシュ
 23a 挿入穴
 23d 底部
 24 ラジアル軸受
 32 バランスウエイト、
DESCRIPTION OF SYMBOLS 1 Scroll type compressor 12 Drive shaft 12a Fitting hole 12c Escape part 17 Eccentric shaft 17b Flange part 18 Set screw (projection)
2 Housing 21 Fixed scroll member 21a End plate (fixed scroll member)
21c spiral wall (fixed scroll member)
22 orbiting scroll member 22a end plate (orbiting scroll member)
22c spiral wall (orbiting scroll member)
23 bush 23a insertion hole 23d bottom 24 radial bearing 32 balance weight,

Claims (8)

  1.  ハウジングに対して少なくとも径方向の動きが規制され、端板及びこの端板から立設された渦巻壁を有する固定スクロール部材と、この固定スクロール部材に対向配置され、端板及びこの端板から立設された渦巻壁を有する旋回スクロール部材と、回転動力を伝達する駆動軸と、前記駆動軸の端部に設けられ、この駆動軸の軸心に対してずれた位置に設けられる偏心軸と、前記旋回スクロール部材の背面に形成されたボス部に内嵌されたラジアル軸受と、前記偏心軸が挿入される挿入穴を備え、この挿入穴を介して前記偏心軸に外嵌されると共に前記ラジアル軸受および偏心軸に相対回転可能に係合されるブッシュと、を備えるスクロール型圧縮機において、
     前記駆動軸は、前記偏心軸と嵌合する嵌合穴が軸方向の一端に形成され、
     前記偏心軸と前記嵌合穴とは、隙間嵌めにより嵌合されていることを特徴とするスクロール型圧縮機。
    A movement of at least the radial direction with respect to the housing is restricted, a fixed scroll member having an end plate and a spiral wall standing from the end plate, and a fixed scroll member disposed opposite to the fixed scroll member, An orbiting scroll member having a spiral wall provided, a drive shaft for transmitting rotational power, an eccentric shaft provided at an end of the drive shaft and deviated from the axis of the drive shaft; A radial bearing internally fitted in a boss formed on the back surface of the orbiting scroll member, and an insertion hole into which the eccentric shaft is inserted. The radial shaft is externally fitted to the eccentric shaft through the insertion hole and the radial A scroll compressor comprising a bearing and a bush engaged with the eccentric shaft in a relatively rotatable manner,
    In the drive shaft, a fitting hole for fitting with the eccentric shaft is formed at one end in the axial direction,
    The scroll type compressor, wherein the eccentric shaft and the fitting hole are fitted by gap fitting.
  2.  前記偏心軸が軸方向に移動することを規制する移動規制手段が、前記ブッシュまたは前記偏心軸に設けられていることを特徴とする請求項1に記載のスクロール型圧縮機。 The scroll compressor according to claim 1, wherein a movement restricting means for restricting the eccentric shaft from moving in the axial direction is provided on the bush or the eccentric shaft.
  3.  前記移動規制手段は、前記ブッシュの挿入穴に設けられた底部であることを特徴とする請求項2に記載のスクロール型圧縮機。 3. The scroll compressor according to claim 2, wherein the movement restricting means is a bottom portion provided in an insertion hole of the bush.
  4.  前記偏心軸と前記底部との軸方向のクリアランスと、前記偏心軸と前記嵌合穴の底面との軸方向のクリアランスとを合計したクリアランスは、前記ブッシュと前記駆動軸との軸方向で互いに対峙する端面の間に形成されるクリアランスよりも大きいことを特徴とする請求項3に記載のスクロール型圧縮機。 The total clearance of the axial clearance between the eccentric shaft and the bottom portion and the axial clearance between the eccentric shaft and the bottom surface of the fitting hole is opposite to each other in the axial direction of the bush and the drive shaft. The scroll compressor according to claim 3, wherein the scroll compressor is larger than a clearance formed between the end faces.
  5.  前記移動規制手段は、前記偏心軸の前記ブッシュと前記駆動軸との間に設けられたフランジ部であることを特徴とする請求項2に記載のスクロール型圧縮機。 3. The scroll compressor according to claim 2, wherein the movement restricting means is a flange portion provided between the bush of the eccentric shaft and the drive shaft.
  6.  前記嵌合穴は、前記偏心軸の外周面との接触を避ける逃げ部を有し、
     前記逃げ部は、前記嵌合穴の開口縁部の内周面を周方向に拡径して凹状に形成されていることを特徴とする請求項1乃至5のいずれかに記載のスクロール型圧縮機。
    The fitting hole has an escape portion that avoids contact with the outer peripheral surface of the eccentric shaft,
    The scroll-type compression according to any one of claims 1 to 5, wherein the escape portion is formed in a concave shape by expanding an inner peripheral surface of an opening edge portion of the fitting hole in a circumferential direction. Machine.
  7.  前記嵌合穴は、内周面から径方向の内側に向かって突出する突起物が設けられ、
     前記偏心軸の外周面は、前記突起物の先端及び前記嵌合穴の側面に当接することを特徴とする請求項1乃至6のいずれかに記載のスクロール型圧縮機。
    The fitting hole is provided with a protrusion that protrudes radially inward from the inner peripheral surface,
    The scroll compressor according to any one of claims 1 to 6, wherein an outer peripheral surface of the eccentric shaft is in contact with a tip of the protrusion and a side surface of the fitting hole.
  8.  前記嵌合穴は、硬化処理が施されていることを特徴とする請求項1乃至7のいずれかに記載のスクロール型圧縮機。 The scroll compressor according to any one of claims 1 to 7, wherein the fitting hole is subjected to a curing process.
PCT/JP2016/077915 2015-09-28 2016-09-22 Scroll-type compressor WO2017057159A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-189510 2015-09-28
JP2015189510 2015-09-28

Publications (1)

Publication Number Publication Date
WO2017057159A1 true WO2017057159A1 (en) 2017-04-06

Family

ID=58423490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077915 WO2017057159A1 (en) 2015-09-28 2016-09-22 Scroll-type compressor

Country Status (1)

Country Link
WO (1) WO2017057159A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10830236B2 (en) 2013-01-22 2020-11-10 Emerson Climate Technologies, Inc. Compressor including bearing and unloader assembly
WO2020248578A1 (en) * 2019-06-10 2020-12-17 珠海格力节能环保制冷技术研究中心有限公司 Scroll compressor, vehicle air conditioner and vehicle
US11002276B2 (en) 2018-05-11 2021-05-11 Emerson Climate Technologies, Inc. Compressor having bushing
US11015598B2 (en) 2018-04-11 2021-05-25 Emerson Climate Technologies, Inc. Compressor having bushing
US11268511B2 (en) * 2018-11-29 2022-03-08 Hyunda Mobis Co., Ltd. Motor driven compressor apparatus including swing pin

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11336780A (en) * 1998-05-26 1999-12-07 Tomoe Tech Res Co Coupling of rotary shaft
JP2001164990A (en) * 1999-12-08 2001-06-19 Unisia Jecs Corp Piston for internal combustion engine
JP2002371975A (en) * 2001-06-13 2002-12-26 Toyota Industries Corp Revolving mechanism of scroll type compressor
JP2008049915A (en) * 2006-08-25 2008-03-06 Denso Corp Fan shroud mounting structure
JP2013176825A (en) * 2012-02-29 2013-09-09 Hamai Co Ltd Polishing device
WO2015025615A1 (en) * 2013-08-22 2015-02-26 株式会社椿本チエイン Conveyor chain

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11336780A (en) * 1998-05-26 1999-12-07 Tomoe Tech Res Co Coupling of rotary shaft
JP2001164990A (en) * 1999-12-08 2001-06-19 Unisia Jecs Corp Piston for internal combustion engine
JP2002371975A (en) * 2001-06-13 2002-12-26 Toyota Industries Corp Revolving mechanism of scroll type compressor
JP2008049915A (en) * 2006-08-25 2008-03-06 Denso Corp Fan shroud mounting structure
JP2013176825A (en) * 2012-02-29 2013-09-09 Hamai Co Ltd Polishing device
WO2015025615A1 (en) * 2013-08-22 2015-02-26 株式会社椿本チエイン Conveyor chain

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10830236B2 (en) 2013-01-22 2020-11-10 Emerson Climate Technologies, Inc. Compressor including bearing and unloader assembly
US11015598B2 (en) 2018-04-11 2021-05-25 Emerson Climate Technologies, Inc. Compressor having bushing
US11002276B2 (en) 2018-05-11 2021-05-11 Emerson Climate Technologies, Inc. Compressor having bushing
US11268511B2 (en) * 2018-11-29 2022-03-08 Hyunda Mobis Co., Ltd. Motor driven compressor apparatus including swing pin
WO2020248578A1 (en) * 2019-06-10 2020-12-17 珠海格力节能环保制冷技术研究中心有限公司 Scroll compressor, vehicle air conditioner and vehicle
US11982271B2 (en) 2019-06-10 2024-05-14 Gree Green Refrigeration Technology Center Co., Ltd. Of Zhuhai Scroll compressor, vehicle air conditioner and vehicle

Similar Documents

Publication Publication Date Title
WO2017057159A1 (en) Scroll-type compressor
JP5594846B2 (en) Scroll compressor
JP6587636B2 (en) Electric scroll compressor
WO2015060038A1 (en) Electric scroll compressor
US10393116B2 (en) Scroll type fluid machine
JP2017078361A (en) Scroll fluid machine
JP2012026294A (en) Fluid pump
US11047385B2 (en) Electric compressor having compression portion and motor chamber communication via passage in flange of shaft support member
US20170350396A1 (en) Compressor Having A Sleeve Guide Assembly
CN110319003B (en) Orbiting scroll drive assembly and scroll compressor
WO2017158665A1 (en) Scroll compressor
JP5697968B2 (en) Scroll compressor
WO2015177851A1 (en) Scroll compressor
CN108700067B (en) Scroll fluid machine and method of assembling the same
JP7166177B2 (en) scroll type fluid machinery
JP2017078360A (en) Scroll fluid machinery
JP2003021065A (en) Compressor
JP2020165394A (en) Scroll type electric compressor
KR102008940B1 (en) Scroll compressor
CN219733630U (en) Rotation preventing device and scroll compressor
KR20140095702A (en) Scroll compressor
KR101952374B1 (en) apparatus for preventing rotation of orbiting scroll of scroll compressor
CN219774350U (en) Drive shaft of scroll compressor and scroll compressor comprising same
WO2016120982A1 (en) Electrically driven compressor
JPH04365901A (en) Scroll type fluid machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851333

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16851333

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP