Nothing Special   »   [go: up one dir, main page]

WO2017045496A1 - 一种下行控制方法及装置 - Google Patents

一种下行控制方法及装置 Download PDF

Info

Publication number
WO2017045496A1
WO2017045496A1 PCT/CN2016/094388 CN2016094388W WO2017045496A1 WO 2017045496 A1 WO2017045496 A1 WO 2017045496A1 CN 2016094388 W CN2016094388 W CN 2016094388W WO 2017045496 A1 WO2017045496 A1 WO 2017045496A1
Authority
WO
WIPO (PCT)
Prior art keywords
downlink control
short tti
short
control channel
spdcch
Prior art date
Application number
PCT/CN2016/094388
Other languages
English (en)
French (fr)
Inventor
石靖
夏树强
苟伟
戴博
戴谦
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US15/761,074 priority Critical patent/US10873931B2/en
Publication of WO2017045496A1 publication Critical patent/WO2017045496A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2603Signal structure ensuring backward compatibility with legacy system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • This document relates to, but is not limited to, the field of communications, and in particular, to a downlink control method and apparatus.
  • LTE Long-Term Evolution
  • LTE-Advance/LTE-A Long-Term Evolution Advance
  • 5G 5th Generation mobile communication technology
  • next-generation mobile communication systems should have features such as ultra-high speed, ultra-high capacity, ultra-high reliability, and ultra-low-latency transmission characteristics.
  • ultra-low latency index in 5G systems it is currently recognized that the air interface delay is on the order of 1 millisecond.
  • a method for effectively implementing the ultra-low latency is to reduce the processing delay interval by reducing the TTI (Transmission Time Interval) of the LTE system to support the characteristic requirement of the 1 millisecond air interface delay.
  • TTI Transmission Time Interval
  • the PDCCH Physical Downlink Control Channel
  • the EPDCCH Enhanced Physical Downlink Control Channel
  • PRB Physical Resource Block
  • the short TTI in the related art, the downlink control channel does not well support the short TTI of the new granularity.
  • the embodiments of the present invention provide a downlink control method and apparatus, which can solve at least the downlink control channel usage problem in a short TTI including fewer OFDM symbols, and ensure low-latency communication requirements.
  • a downlink control method includes:
  • Determining, by the base station, the at least one downlink control channel in the first downlink control channel and the second downlink control channel including: determining to use the second downlink control channel in a short transmission time interval TTI outside the first downlink control channel scheduling range; or Determining a downlink control channel used in a short TTI according to predefined or system configuration information;
  • the base station transmits downlink control information DCI using the determined downlink control channel.
  • the predefined or system configuration information indicates that all the short TTIs use the second downlink control channel; and the case where the all TTIs use the second downlink control channel includes at least one of the following: all short TTIs Both use the second downlink control channel, part of the short TTI uses the second downlink control channel, and all short TTIs do not use the second downlink control channel.
  • the using the second downlink control channel by the partial short TTI includes at least one of the following situations:
  • the second downlink control channel is used by the remaining short TTIs except that the first or the last P short TTIs do not use the second downlink control channel;
  • the second downlink control channel is used by the remaining short TTIs except that the first or the first Q short TTIs do not use the second downlink control channel;
  • the first short TTI uses the second downlink control channel and the subsequent short TTI portion uses the second downlink control channel;
  • P and Q are integers greater than one and less than R; R is the number of short TTIs included in the TTI whose time domain length is 1 millisecond.
  • the time domain length of the short TTI is predefined or signaled; the signaling includes any one or any of the following: system information block SIB information, radio resource control RRC message, physical layer signaling
  • the physical layer signaling includes DCI and/or control format indication CFI.
  • the first downlink control channel is a physical downlink control channel PDCCH
  • the second downlink control channel is a short physical downlink control channel SPDCCH
  • the short TTI is a TTI with a time domain length less than 1 millisecond
  • the SPDCCH refers to a physical downlink control channel that occupies part or all of resource units in a short TTI and whose time domain length is less than or equal to the time domain length of the occupied short TTI.
  • the DCI is used to notify the terminal of the corresponding service receiving manner, including: when the DCI of the terminal is located in the PDCCH, the service receiving manner is to perform service receiving in the first short TTI, and/or Service reception is performed in a TTI with a time domain length of 1 millisecond.
  • the SPDCCH uses the resource unit in the short TTI in the short TTI and the short physical downlink shared channel SPDSCH according to any one of the following resource multiplexing manners: time division multiplexing, frequency division multiplexing, code division multiplexing, Time-frequency division multiplexing; the SPDSCH refers to a physical downlink shared channel occupying part or all of resource units in a short TTI, and the time domain length is less than or equal to the time domain length of the occupied short TTI.
  • the SPDCCH and the SPDSCH are multiplexed in a short TTI by using frequency division or code division multiplexing; wherein the frequency division manner includes: using a single resource unit RE or X RE is a unit OFDM using a single OFDM symbol resource, X is a positive integer greater than 1; or SPDCCH uses all or part of an even RE or even RE group, one RE group includes X REs, SPDSCH uses remaining RE or RE groups; or SPDCCH Using all or part of an odd RE or an odd RE group, one RE group includes X REs, and the SPDSCH uses the remaining RE or RE groups.
  • the frequency division manner includes: using a single resource unit RE or X RE is a unit OFDM using a single OFDM symbol resource, X is a positive integer greater than 1; or SPDCCH uses all or part of an even RE or even RE group, one RE group includes X REs, SPDSCH uses remaining RE or RE groups; or SPDCCH Using all or part of an odd RE or an odd RE group, one RE group includes
  • the SPDCCH uses the short control channel unit SCCE as the granularity for resource occupation;
  • the SCCE distribution mode in the SPDCCH region is any one of the following: time-frequency division occupation, interlace occupation, frequency division occupation Time occupation, code division occupation;
  • the SCCE is a control channel element whose time domain length is less than or equal to the time domain length of the short TTI.
  • the SPDCCH bearer information includes any one or any of the following: an uplink grant UL grant, a downlink grant DL grant, an uplink and downlink joint grant UL and DL grant, and a single terminal Authentic/error feedback information ACK/NACK, multi-terminal correct/error feedback information ACK/NACK.
  • resources other than the PDCCH region in one subframe are used by a terminal with different delay requirements according to a frequency division multiplexing manner
  • Resources in different subframes or radio frames are used by time-division multiplexing in a terminal with different delay requirements.
  • the PDCCH and/or the SPDCCH are both in the same short TTI as the scheduled downlink data information
  • the determining to use the second downlink control channel in the short TTI outside the first downlink control channel scheduling range includes:
  • the time domain length of the short TTI is greater than or equal to the time domain length of the PDCCH, determining to use the SPDCCH in one or more short TTIs after the first short TTI including the PDCCH; when the time domain length of the short TTI is smaller than the PDCCH When the domain length is determined, it is determined that one or more short TTIs after the PDCCH region use the SPDCCH.
  • the method further includes:
  • the base station uses the short physical hybrid automatic retransmission indication channel SPHICH to transmit feedback information about whether the physical uplink shared channel SPUSCH transmission of the short TTI is correct or not in the short TTI using the SPDCCH;
  • the SPHICH refers to occupying all in the short TTI Or a part of the resource unit, and the time domain length is less than or equal to the physical hybrid automatic repeat indication channel of the time domain length of the occupied short TTI;
  • the SPUSCH refers to occupying all or part of the resource unit in the short TTI, and the time domain length a physical uplink shared channel that is less than or equal to the time domain length of the occupied short TTI;
  • the SPHICH is punctured and transmitted in the resource occupied by the SPDCCH, or the SPHICH is used to transmit part of the resource independently of the resource occupied by the SPDCCH.
  • the size of the granularity RBG of the resource allocation RA used by the scheduling short TTI is greater than or equal to the size of the RBG used by the TTI with the scheduling time domain length of 1 millisecond in the same system bandwidth.
  • the transport block size TBS configuration table used for scheduling the short TTI is determined according to the ratio of the time domain length of the short TTI to the ratio of 1 millisecond, Y% ⁇ Y ⁇ 100%, in the predetermined TBS configuration table. Multiply the TBS by Y and round up or down to get the TBS match used to schedule the short TTI Set the TBS in the table.
  • the PDCCH schedules the traffic channel in the short TTI of the downlink DL even number
  • the SPDCCH schedules the traffic channel in the short TTI of the DL odd number
  • the PDCCH and the SPDCCH scheduling subframe n+k For the uplink UL service, k is any of the following: 2, 4, 8, and n is the number of the current subframe.
  • the method further includes:
  • the base station transmits feedback information on whether the SPUSCH transmission of the odd short TTI is correct or not using the SPHICH at the odd short TTI.
  • the PDCCH and/or the SPDCCH are located in the same or different short TTIs as the scheduled downlink data information
  • Determining, according to the predefined or system configuration information, the downlink control channel used in the short TTI includes:
  • each short TTI after the TTI in which the PDCCH is located in the subframe does not use the SPDCCH, or part of the TTI uses the SPDCCH, or all the short TTIs use the SPDCCH.
  • the method further includes:
  • the base station uses the SPHICH in a short TTI that does not include a PDCCH or a short TTI outside the PDCCH region; when the SPDCCH is in the short TTI, the SPHICH is punctured in the resource occupied by the SPDCCH, or the SPHICH is independent of If the SPDCCH is not used in the short TTI, the SPHICH is transmitted independently of the resource occupied by the SPDSCH, or the feedback of the SPUSCH transmission of the short TTI is correct.
  • the information is jointly encoded with the downlink data of the same terminal and transmitted in the SPDSCH.
  • the determining, according to the predefined or system configuration information, the downlink control channel used in the short TTI includes:
  • the SPDCCH occupies an even short TTI or an odd short TTI according to a predetermined 1 bit in the DCI in the PDCCH;
  • the data in the SPDCCH or the PDCCH in the PDCCH is used to indicate that the data scheduled by the SPDCCH or the PDCCH is located therein.
  • a short TTI or a plurality of short TTIs, x being a positive integer, m ⁇ x.
  • the method further includes:
  • the base station uses the SPHICH in an odd short TTI, and the SPHICH only carries feedback information on whether the SPUSCH transmission of the odd short TTI is correct or not;
  • the base station uses SPHICH for all short TTIs or short TTIs other than the first short TTI in the subframe with the time domain length of 1 millisecond.
  • the SPHICH only carries feedback information about whether the SPUSCH transmission of all short TTIs or short TTIs other than the first short TTI in the subframe with a time domain length of 1 millisecond is correct.
  • a downlink control method includes:
  • Determining, by the terminal, the at least one downlink control channel in the first downlink control channel and the second downlink control channel including: determining to use the second downlink control channel in a short transmission time interval TTI outside the first downlink control channel scheduling range; or Determining a downlink control channel used in a short TTI according to predefined or system configuration information;
  • the terminal receives the downlink control information DCI using the determined downlink control channel.
  • the predefined or system configuration information indicates that all the short TTIs use the second downlink control channel; and the case where the all TTIs use the second downlink control channel includes at least one of the following: all short TTIs Both use the second downlink control channel, part of the short TTI uses the second downlink control channel, and all short TTIs do not use the second downlink control channel.
  • the using the second downlink control channel by the partial short TTI includes at least one of the following situations:
  • the second downlink control channel is used by the remaining short TTIs except that the first or the last P short TTIs do not use the second downlink control channel;
  • the second downlink control channel is used by the remaining short TTIs except that the first or the first Q short TTIs do not use the second downlink control channel;
  • the first short TTI uses the second downlink control channel and the subsequent short TTI portion uses the second downlink control channel;
  • P and Q are integers greater than one and less than R; R is the number of short TTIs included in the TTI whose time domain length is 1 millisecond.
  • the time domain length of the short TTI is predefined or signaled; the signaling includes any one or any of the following: system information block SIB information, radio resource control RRC message, physical layer signaling
  • the physical layer signaling includes DCI and/or control format indication CFI.
  • the first downlink control channel is a physical downlink control channel PDCCH
  • the second downlink control channel is a short physical downlink control channel SPDCCH
  • the short TTI is a TTI with a time domain length less than 1 millisecond
  • the SPDCCH refers to a physical downlink control channel that occupies part or all of resource units in a short TTI and whose time domain length is less than or equal to the time domain length of the occupied short TTI.
  • the method further includes:
  • the terminal performs a corresponding service receiving manner according to the detected DCI, including:
  • the terminal When the terminal detects the DCI of the terminal in the PDCCH, the terminal performs service reception in the first short TTI;
  • the terminal When the terminal detects the DCI of the terminal in the PDCCH, the terminal performs service reception in a TTI with a time domain length of 1 millisecond.
  • the SPDCCH uses the resource unit in the short TTI in the short TTI and the short physical downlink shared channel SPDSCH according to any one of the following resource multiplexing manners: time division multiplexing, frequency division multiplexing, code division multiplexing, Time-frequency division multiplexing; the SPDSCH refers to a physical downlink shared channel occupying part or all of resource units in a short TTI, and the time domain length is less than or equal to the time domain length of the occupied short TTI.
  • the SPDCCH bearer information includes any one or any of the following: an uplink grant UL grant, a downlink grant DL grant, an uplink and downlink joint grant UL and DL grant, a single terminal correct/error feedback information ACK/NACK, and multiple Terminal correct/error feedback information ACK/NACK.
  • the PDCCH and/or the SPDCCH are both in the same short TTI as the scheduled downlink data information
  • the determining to use the second downlink control channel in the short TTI outside the first downlink control channel scheduling range includes:
  • the time domain length of the short TTI is greater than or equal to the time domain length of the PDCCH, determining to use the SPDCCH in one or more short TTIs after the first short TTI including the PDCCH; when the time domain length of the short TTI is smaller than the PDCCH When the domain length is determined, it is determined that one or more short TTIs after the PDCCH region use the SPDCCH.
  • the method further includes:
  • the terminal receives the short physical hybrid automatic retransmission indication channel SPHICH in the short TTI using the SPDCCH, and obtains feedback information about whether the SPUSCH transmission of the short TTI is correct or not;
  • the SPHICH refers to occupying part or all of the resources in the short TTI. a unit, and the time domain length is less than or equal to the physical hybrid automatic repeat indication channel of the time domain length of the occupied short TTI;
  • the SPUSCH refers to occupying part or all resource units in the short TTI, and the time domain length is less than or equal to a physical uplink shared channel of a time domain length of the occupied short TTI;
  • the SPHICH is punctured and transmitted in the resources occupied by the SPDCCH, or the SPHICH is used to transmit part of the resources independently of the resources occupied by the SPDCCH.
  • the method further includes:
  • the terminal receives the SPHICH at an odd short TTI, and obtains feedback information on whether the SPUSCH transmission of the odd short TTI is correct or not.
  • the PDCCH and/or the SPDCCH are located in the same or different short TTIs as the scheduled downlink data information
  • Determining, according to the predefined or system configuration information, the downlink control channel used in the short TTI includes:
  • each short TTI after the TTI where the PDCCH is located in the subframe does not receive the SPDCCH, or part of the TTI receives the SPDCCH, or all the short TTIs receive the SPDCCH.
  • the method further includes:
  • the terminal receives the SPHICH in a short TTI that does not include the short TTI or the PDCCH region of the PDCCH; when there is an SPDCCH in the short TTI, the SPHICH is punctured and transmitted in the resource occupied by the SPDCCH, or the SPHICH is independent of the resources occupied by the SPDCCH. If the SPDCCH is not used in the short TTI, the SPHICH is transmitted independently of the resource occupied by the SPDSCH, or the feedback information of the SPUSCH transmission of the short TTI is correct.
  • the downlink data of the same terminal is jointly encoded and transmitted in the SPDSCH.
  • the determining, according to the predefined or system configuration information, the downlink control channel used in the short TTI includes:
  • the time domain length of the short TTI is 0.5 milliseconds, determining that the SPDCCH is not received; determining whether the SPDSCH occupies an even short TTI or an odd short TTI according to a predetermined one bit in the DCI in the PDCCH;
  • Short TTI, x is a positive integer, m ⁇ x.
  • the method further includes:
  • the terminal When the time domain length of the short TTI is 0.5 milliseconds, the terminal receives the SPHICH at an odd short TTI, and the SPHICH only carries feedback information of whether the SPUSCH transmission of the odd short TTI is correct or not;
  • the terminal uses all the short TTIs or short TTIs other than the first short TTI in the subframe with the time domain length of 1 millisecond.
  • SPHICH the SPHICH only carries feedback information about whether the SPUSCH transmission of all short TTIs or short TTIs other than the first short TTI in the subframe with a time domain length of 1 millisecond is correct.
  • a downlink control device is disposed at the base station, and includes:
  • the first determining module is configured to determine the at least one downlink control channel in the first downlink control channel and the second downlink control channel, including: determining to use the short transmission time interval TTI outside the first downlink control channel scheduling range a downlink control channel; or determining a downlink control channel used in the short TTI according to the predefined or system configuration information;
  • the sending module is configured to send the downlink control information DCI using the determined downlink control channel.
  • the first downlink control channel is a physical downlink control channel PDCCH
  • the second downlink control channel is a short physical downlink control channel SPDCCH
  • the short TTI is a TTI with a time domain length less than 1 millisecond
  • the SPDCCH refers to a physical downlink control channel that occupies part or all of resource units in a short TTI and whose time domain length is less than or equal to the time domain length of the occupied short TTI.
  • a downlink control device is disposed at the terminal, and includes:
  • the second determining module is configured to determine the at least one downlink control channel in the first downlink control channel and the second downlink control channel, including: determining to use the short transmission time interval TTI outside the first downlink control channel scheduling range a downlink control channel; or determining a downlink control channel used in the short TTI according to the predefined or system configuration information;
  • the receiving module is configured to receive the downlink control information DCI using the determined downlink control channel.
  • the first downlink control channel is a physical downlink control channel PDCCH
  • the second downlink control channel is a short physical downlink control channel SPDCCH
  • the short TTI is a TTI with a time domain length less than 1 millisecond
  • the SPDCCH refers to a physical downlink control channel that occupies part or all of resource units in a short TTI and whose time domain length is less than or equal to the time domain length of the occupied short TTI.
  • a computer readable storage medium storing computer executable instructions for performing the above method.
  • the downlink control scheme proposed in the embodiment of the present invention can solve the downlink control channel usage problem in a short TTI including fewer OFDM symbols, and can obtain a shorter RTT (Round-Trip) correspondingly in the case of using a short TTI with a new granularity. Time, round-trip delay), to ensure low-latency communication needs.
  • FIG. 1 is a schematic flow chart of a downlink control method according to Embodiment 1;
  • FIG. 2 is a schematic diagram of resource multiplexing of SPDCCH and SPDSCH when a short TTI is a single OFDM symbol length in Embodiment 1;
  • 3(a) to (c) are schematic diagrams showing the manner of SCCE distribution in the SPDCCH region in the first embodiment
  • FIG. 5 is a schematic diagram of resource usage of Embodiment 1; FIG.
  • Embodiment 6 is a schematic diagram of resource usage of Embodiment 2.
  • Embodiment 7 is a schematic diagram of resource usage of Embodiment 3.
  • Embodiment 8 is a schematic diagram of resource usage of Embodiment 4.
  • Embodiment 9 is a schematic diagram of resource usage of Embodiment 5.
  • FIG. 10 is a schematic diagram of a downlink control apparatus of Embodiment 3.
  • FIG. 11 is a schematic diagram of a downlink control device of Embodiment 4.
  • Embodiment 1 A downlink control method, which can be applied to a base station side, as shown in FIG. 1 , includes steps S110-S120:
  • the determining, by the base station, the at least one downlink control channel in the first downlink control channel and the second downlink control channel including: determining, in a short TTI in which the first downlink control channel cannot be scheduled, using the second downlink control channel, that is, Determining to use the second downlink control channel in the short TTI outside the first downlink control channel scheduling range; or determining the downlink control channel used in the short TTI according to the predefined or system configuration information, such as, but not limited to, through the MIB ( Management Information Base, Management Information Base, SIB (System Information Block), RRC (Radio Resource Control), etc.
  • MIB Management Information Base
  • SIB System Information Block
  • RRC Radio Resource Control
  • the base station sends downlink control information DCI by using the determined downlink control channel.
  • the first downlink control channel may be, but not limited to, a PDCCH
  • the second downlink control channel may be, but not limited to, an SPDCCH (Short PDCCH).
  • the short TTI may be a TTI whose time domain length is less than 1 ms (millisecond); the SPDCCH may refer to a time domain length that occupies all or part of resource units in a short TTI, and the time domain length is less than or equal to the occupied short TTI.
  • the predefined or system configuration information indicates that all the short TTIs use the second downlink control channel; and the case where the all TTIs use the second downlink control channel includes at least one of the following: all short TTIs Both use the second downlink control channel and use a second downlink for part of the short TTI. The control channel and all short TTIs do not use the second downlink control channel.
  • the using the second downlink control channel of the partial short TTI includes at least one of the following situations: except that the first or the first P short TTIs do not use the second downlink control channel, and the remaining short TTIs use the second downlink control channel, except for the first The first or the last Q short TTIs do not use the second downlink control channel, the remaining short TTI portions use the second downlink control channel, the first short TTI uses the second downlink control channel, and the subsequent short TTI portion uses the second downlink control channel;
  • P and Q are integers greater than one and less than R; R is the number of short TTIs included in the TTI whose time domain length is 1 millisecond.
  • the SPDCCH uses the resource unit in the short TTI in the short TTI and the SPDSCH (Short PDSCH, short physical downlink shared channel) according to any one of the following resource multiplexing manners: time division multiplexing, frequency division multiplexing, Code division multiplexing, time-frequency division multiplexing.
  • the SPDSCH may refer to a physical downlink shared channel that occupies part or all of resource units in a short TTI and whose time domain length is less than or equal to the time domain length of the occupied short TTI.
  • the SPDCCH and the SPDSCH may be within a short TTI.
  • the frequency division method includes: interleaving a single OFDM symbol resource by a single RE (Resource Element) or X RE units, X. a positive integer greater than 1; or SPDCCH uses all or part of an even RE or even RE group, one RE group includes X REs, SPDSCH uses remaining REs or RE groups; or SPDCCH uses all or part of odd REs or odd RE groups, One RE group includes X REs, and the SPDSCH uses the remaining RE or RE groups.
  • the SPDCCH uses the SCCE (Short Control Channel Element) as the granularity of the resource, and optionally, the SPDCCH occupies 1. 2, 4, 8 SCCE, the SCCE distribution mode in the SPDCCH area can be any of the following: time-frequency division occupation, as shown in Figure 3 (a); interleaving occupancy, as shown in Figure 3 (b), frequency The occupation is divided, as shown in Fig. 3(c), the time division is occupied, the code division is occupied, and the like.
  • SCCE Short Control Channel Element
  • the SCCE is a control channel element whose time domain length is less than or equal to the time domain length of the short TTI.
  • the SPDCCH bearer information includes any one or any of the following: UL (UPlink, uplink) grant, DL (Downlink) grant, UL and DL grant (uplink and downlink DL grant), single terminal correct/error Feedback information ACK/NACK, multi-terminal correct/error feedback information ACK/NACK.
  • resources other than the PDCCH region in one subframe are used by a terminal having different delay requirements according to a frequency division multiplexing manner.
  • 2 and 5 to 9 are schematic diagrams showing a frequency division multiplexing method.
  • resources in different subframes or radio frames are used in a time division multiplexing manner by terminals having different delay requirements.
  • the terminal with different delay requirements may be, but is not limited to, a legacy terminal and a low latency terminal.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • the time domain length of the short TTI is predefined or signaled.
  • the signaling in the signaling includes the SIB information or the RRC message or the physical layer signaling.
  • the physical layer signaling includes DCI (Downlink Control Information) or CFI (Control Format Indicator).
  • the DCI is used to notify the terminal of the corresponding service receiving manner, including: when the DCI of the terminal is located in the PDCCH, the service receiving manner is to perform service receiving in the first short TTI, and/or Service reception is performed in a TTI with a time domain length of 1 ms.
  • the PDCCH and/or SPDCCH and the scheduled downlink data information can only be in the same short TTI.
  • there is no time domain scheduling information in the DCI and the PDCCH and/or the SPDCCH do not support cross-short TTI scheduling, and the service message is scheduled using the DCI in the related art.
  • the first case includes two scenarios:
  • Scenario 1 A scenario in which only PDCCH or SPDCCH is used.
  • the downlink control channel (PDCCH or SPDCCH) used is in the same short TTI as the scheduled downlink data.
  • determining to use the second downlink control channel in the short TTI outside the first downlink control channel scheduling range includes: when the time domain length of the short TTI is greater than or equal to the time domain length of the PDCCH, It is determined that the SPDCCH is used in one or more short TTIs after the first short TTI including the PDCCH. When the time domain length of the short TTI is smaller than the time domain length of the PDCCH, it is determined that one or more short TTIs after the PDCCH region use the SPDCCH.
  • the SPDCCH may further include feedback information about the correct transmission of the short physical uplink shared channel (SPUSCH) of the short TTI; the SPUSCH refers to occupying part or all of the resource units in the short TTI, and The physical uplink shared channel whose time domain length is less than or equal to the time domain length of the occupied short TTI.
  • SPUSCH short physical uplink shared channel
  • the method may further include:
  • the STPICH Short Physical Hybrid ARQ Indicator Channel
  • the STPICH Short Physical Hybrid ARQ Indicator Channel
  • the punctured transmission, or the SPHICH is used to transmit part of the resource independently of the resources occupied by the SPDCCH;
  • the SPHICH refers to a time domain that occupies part or all of the resource elements in the short TTI, and the time domain length is less than or equal to the occupied short TTI
  • the physical mix of lengths automatically retransmits the indicator channel.
  • the SPDCCH is only used for the control scheduling of the short TTI.
  • the size of the resource RBG (Resource Block Group) of the resource allocation may be greater than or equal to the RBG used by the TTI in the scheduling system with a length of 1 millisecond in the same system bandwidth. Size (that is, the size of the RBG used by the legacy terminal).
  • the method for determining the TBS (Transport Block Size) configuration table used for scheduling the short TTI may be: according to the ratio of the time domain length of the short TTI to 1 millisecond, Y% ⁇ Y ⁇ 100%, used.
  • the TBS in the predetermined TBS configuration table is multiplied by Y and rounded up or down to obtain the TBS in the TBS configuration table used for scheduling the short TTI.
  • the PDCCH may schedule a short TTI of the DL even number
  • the SPDCCH may schedule a short TTI of the DL odd number
  • the UL uplink service of the PDCCH and the SPDCCH scheduling subframe n+k, k may but not Limited to 2, 4, 8, n is the number of the current subframe (ie, the subframe where the PDCCH and SPDCCH are located).
  • the method may further include:
  • the base station may use the SPHICH to transmit feedback information on whether the SPUSCH transmission of the odd short TTI is correct or not in the odd short TTI; the SPHICH only carries feedback information on whether the SPUSCH transmission of the odd short TTI is correct or not.
  • the PDCCH and/or SPDCCH and the scheduled downlink data information are not limited to being located in the same short TTI, that is, in the same or different short TTIs.
  • the DCI sometimes has domain scheduling information and supports cross-short TTI scheduling.
  • determining, according to the predefined or system configuration information, the downlink control channel used in the short TTI includes: determining that each short TTI after the TTI of the PDCCH in the subframe does not use the SPDCCH, or using the SPDCCH for the partial TTI Or all short TTIs use SPDCCH.
  • the method may further include: the base station using the SPHICH in a short TTI that does not include a PDCCH or a short TTI outside the PDCCH region.
  • the SPHICH is punctured and transmitted in the resources occupied by the SPDCCH, or the SPHICH is used to transmit part of the resources independently of the resources occupied by the SPDCCH.
  • the SPHICH is used independently of the resources occupied by the SPDSCH.
  • Part of the resource transmission, or the feedback information carrying the correctness of the SPUSCH transmission of the short TTI is jointly encoded with the downlink data of the same terminal and transmitted in the SPDSCH.
  • Determining, according to the predefined or system configuration information, the downlink control channel used in the short TTI may include: determining that the SPDCCH is not used when the time domain length of the short TTI is 0.5 ms; determining the SPDSCH according to a predetermined one bit in the DCI in the PDCCH. Occupying an even short TTI or an odd short TTI;
  • a predetermined m bits in the DCI in the SPDCCH or the PDCCH indicate that the data scheduled by the SPDCCH or the PDCCH is located in one short TTI or a plurality of short TTIs, x Is a positive integer, x is a positive integer, m ⁇ x.
  • the method may further comprise:
  • the base station uses the SPHICH in the odd short TTI, and the SPHICH only carries the feedback information of whether the SPUSCH transmission of the odd short TTI is correct or not;
  • the time domain length of the short TTI is predefined or signaled.
  • the signaling may include any one or any of the following: SIB information, RRC message, and physical layer signaling.
  • the physical layer signaling includes DCI or CFI.
  • Embodiment 2 A downlink control method, which can be applied to a terminal, where the terminal can be, but is not limited to, a low-latency terminal; and the method, as shown in FIG. 4, includes steps S410-S420:
  • the determining, by the terminal, the at least one downlink control channel in the first downlink control channel and the second downlink control channel including: determining, in the short TTI in which the first downlink control channel cannot be scheduled, using the second downlink control channel, that is, The second downlink control channel is used in the short TTI outside the first downlink control channel scheduling range; or the downlink control channel used in the short TTI may be determined according to the predefined or system configuration information, as determined by using MIB, SIB, RRC, etc. ;
  • the terminal receives downlink control information DCI by using the determined downlink control channel.
  • This embodiment may be, but is not limited to, used in downlink control of a low latency terminal.
  • the predefined or system configuration information indicates that all the short TTIs use the second downlink control channel, and the case where the all the TTIs use the second downlink control channel includes at least: all the short TTIs use the second downlink The control channel, part of the short TTI uses the second downlink control channel, and all short TTIs do not use the second downlink control channel.
  • the using the second downlink control channel in the part of the short TTI may include: using the second downlink control channel except the first or the first P short TTIs, and using the second downlink control channel, except for the first or the first Q.
  • the short TTI does not use the second downlink control channel, and the remaining short TTI portion uses the second downlink control channel, the first short TTI uses the second downlink control channel, and the subsequent short TTI portion uses the first Two downlink control channels;
  • P and Q are integers greater than one and less than R; R is the number of short TTIs included in the TTI whose time domain length is 1 millisecond.
  • the time domain length of the short TTI is predefined or signaled; the signaling includes any one or any of the following: system information block SIB information, radio resource control RRC message, physical layer signaling
  • the physical layer signaling includes DCI and/or control format indication CFI.
  • the first downlink control channel is a PDCCH
  • the second downlink control channel is an SPDCCH.
  • the short TTI is a TTI whose time domain length is less than 1 ms;
  • the SPDCCH refers to a physical downlink control channel that occupies part or all resource units in a short TTI, and the time domain length is less than or equal to the time domain length of the occupied short TTI. .
  • the method further includes:
  • the terminal performs a corresponding service receiving manner according to the detected DCI, including:
  • the terminal When the terminal detects the DCI of the terminal in the PDCCH, the terminal performs service reception in the first short TTI;
  • the terminal When the terminal detects the DCI of the terminal in the PDCCH, the terminal performs service reception in a TTI with a time domain length of 1 millisecond.
  • a part of a 1 ms subframe performs a PDCCH scheduling first short TTI, and another part of a 1 ms subframe performs a PDCCH scheduling 1 ms TTI service reception.
  • the SPDCCH uses the resource unit in the short TTI in the short TTI and the short physical downlink shared channel SPDSCH according to any one of the following resource multiplexing manners: time division multiplexing, frequency division multiplexing, code division multiplexing, Time-frequency division multiplexing; the SPDSCH refers to a physical downlink shared channel occupying resources in a short TTI, and the time domain length is less than or equal to the time domain length of the occupied short TTI. .
  • the SPDCCH bearer information includes any one or any of the following: an uplink grant UL grant, a downlink grant DL grant, an uplink and downlink joint grant UL and DL grant, a single terminal correct/error feedback information ACK/NACK, and multiple Terminal correct/error feedback information ACK/NACK.
  • the PDCCH and/or the SPDCCH are both in the same short TTI as the scheduled downlink data information
  • the determining to use the second downlink control channel in the short TTI outside the first downlink control channel scheduling range includes:
  • the time domain length of the short TTI is greater than or equal to the time domain length of the PDCCH, determining to use the SPDCCH in one or more short TTIs after the first short TTI including the PDCCH; when the time domain length of the short TTI is smaller than the PDCCH When the domain length is determined, it is determined that one or more short TTIs after the PDCCH region use the SPDCCH.
  • the method may further include:
  • the terminal receives the short physical hybrid automatic retransmission indication channel SPHICH in the short TTI using the SPDCCH, and obtains feedback information about whether the SPUSCH transmission of the short TTI is correct or not;
  • the SPHICH refers to occupying part or all of the resources in the short TTI. a unit, and the time domain length is less than or equal to the physical hybrid automatic repeat indication channel of the time domain length of the occupied short TTI;
  • the SPUSCH refers to occupying part or all resource units in the short TTI, and the time domain length is less than or equal to a physical uplink shared channel of a time domain length of the occupied short TTI;
  • the SPHICH is punctured and transmitted in the resources occupied by the SPDCCH, or the SPHICH is used to transmit part of the resources independently of the resources occupied by the SPDCCH.
  • the method may further include:
  • the terminal receives the SPHICH at an odd short TTI, and obtains feedback information on whether the SPUSCH transmission of the odd short TTI is correct or not.
  • the PDCCH and/or the SPDCCH are located in the same or different short TTIs as the scheduled downlink data information
  • Determining, according to the predefined or system configuration information, the downlink control channel used in the short TTI includes:
  • each short TTI after the TTI where the PDCCH is located in the subframe does not receive the SPDCCH, or part of the TTI receives the SPDCCH, or all the short TTIs receive the SPDCCH.
  • the method may further include:
  • the terminal receives the SPHICH in a short TTI that does not include the short TTI or the PDCCH region of the PDCCH; when there is an SPDCCH in the short TTI, the SPHICH is punctured and transmitted in the resource occupied by the SPDCCH, or the SPHICH is used independently of the resources occupied by the SPDCCH. Partial resource transmission; When there is no SPDCCH in the short TTI, the SPHICH transmits part of the resources independently of the resources occupied by the SPDSCH, or the feedback information carrying the correctness of the SPUSCH transmission of the short TTI is jointly encoded with the downlink data of the same terminal and transmitted in the SPDSCH.
  • the determining, by using the predefined or system configuration information, the downlink control channel used in the short TTI may include:
  • the time domain length of the short TTI is 0.5 milliseconds, determining that the SPDCCH is not received; determining whether the SPDSCH occupies an even short TTI or an odd short TTI according to a predetermined one bit in the DCI in the PDCCH;
  • Short TTI, x is a positive integer, m ⁇ x.
  • the method may further include:
  • the terminal When the time domain length of the short TTI is 0.5 milliseconds, the terminal receives the SPHICH in an odd short TTI, and the SPHICH only carries feedback information about whether the SPUSCH transmission of the odd short TTI is correct or not;
  • the short TTI other than the first short TTI or the short TTI except the first short TTI is used in the subframe with the time domain length of 1 millisecond.
  • the SPHICH only carries feedback information about whether the SPUSCH transmission of all short TTIs or short TTIs other than the first short TTI in the subframe with a time domain length of 1 millisecond is correct.
  • the time slot in the frame structure of the LTE system is equivalent to the basic length time domain unit of the short TTI.
  • the remaining resources are frequency division multiplexed except for the PDCCH, PSS/SSS, and PBCH regions.
  • the PDCCH can be used for scheduling of a legacy terminal and a low latency terminal, and the PDCCH does not support cross-subframe/TTI scheduling.
  • the PDCCH area is blindly detected, and the C-RNTI (Cell Radio Network Temporary Identifier) is used to detect the terminal.
  • the corresponding PDSCH occupies a 1 ms subframe/TTI.
  • the low latency terminal detects the DCI of the terminal
  • the corresponding SPDSCH occupies a short TTI of 0.5 ms, that is, an even short TTI.
  • the frequency domain resource regions used by each are distinguished by the RA field in the DCI.
  • the EPDCCH can be used in a legacy terminal area, and only a legacy terminal can be scheduled, and a 1 ms subframe is scheduled.
  • the odd short TTI (ie, the odd slots of the LTE system) uses the SPDCCH.
  • the base station uses the PDCCH to schedule a short TTI of the DL even number, and uses the SPDCCH to schedule a short TTI of the DL odd number.
  • the SPDCCH is only used for control scheduling of odd subframes of 0.5 ms and bears feedback information for SPUSCH.
  • the PDCCH and the SPDCCH schedule n+k UL uplink services, k may be, but not limited to, 2, 4, 8.
  • the DCI format in the SPDCCH is the same as the DCI format of the PDCCH scheduling low-latency terminal.
  • the size of the granularity RBG of the RA resource allocation used for scheduling the short TTI is not less than the RBG size used by the legacy terminal under the same system bandwidth.
  • the traditional terminal area resource allocation considers the PRB allocation according to the transport block size TBS configuration table in the related art
  • the low delay terminal area resource allocation may require a new TBS configuration table to consider the PRB allocation.
  • a certain way of determining the new TBS configuration table is: multiplying YBS in the predetermined TBS configuration table by Y and up or according to the ratio of the time domain length of the short TTI to 1 ms (0% ⁇ Y ⁇ 100%)
  • the TBS in the new TBS configuration table is obtained by rounding down; the predetermined TBS configuration table may be a TBS configuration table in the related art.
  • the truncation of the TBS configuration table in the related art is as shown in Table 1.
  • Table 1 The parts of the table (Table 1) are shown in Table 2.
  • the SPDCCH is used in an odd short TTI, so that each short TTI can use the downlink control channel.
  • the RTT delay can be reduced by 0.5ms-4ms compared to the LTE system, depending on whether the corresponding processing delay is the same as or equal to half of the LTE.
  • the time slot in the frame structure of the LTE system is equivalent to the basic length time domain unit of the short TTI.
  • the remaining resources are frequency division multiplexed except for the PDCCH, PSS/SSS, and PBCH regions.
  • the PDCCH can be used for scheduling of a legacy terminal and a low latency terminal, and the PDCCH supports cross-subframe/TTI scheduling.
  • the terminal blindly detects the PDCCH region and uses different C-RNTI identifiers.
  • the legacy terminal detects the DCI of the terminal
  • the corresponding PDSCH occupies 1 ms subframe/TTI.
  • the low latency terminal detects the DCI of the terminal
  • the corresponding The SPDSCH occupies a 0.5 ms subframe/TTI.
  • a 1-bit identification bit field that distinguishes between an even TTI/subframe (this TTI/subframe k) and an odd TTI/subframe (k+1 TTI/subframe) is added in the DCI. .
  • the EPDCCH can be used in a legacy terminal area, and only a legacy terminal can be scheduled, and a 1 ms subframe is scheduled.
  • the odd short TTI (ie, the odd time slots of the LTE system) uses SPHICH.
  • the SPHICH only carries feedback information on whether the SPUSCH transmission of the odd short TTI is correct or not.
  • the PHICH feeds back the 1 ms subframe of the legacy terminal and the low latency terminal to the PUSCH on the even TTI/subframe of 0.5 ms, and the SPHICH only applies the PUSCH to the low latency terminal on the odd TTI/subframe of 0.5 ms.
  • Feedback The SPHICH uses part of the resource transmission independently of the resources occupied by the SPDSCH.
  • the PDCCH schedules the UL uplink service of n+k and also adds the distinction between the even TTI/subframe (including the current TTI/subframe and k TTI/subframe) and the odd TTI/subframe (k+1TTI/subframe) in the UL grant.
  • the 1 bit identifies the bit field, k can be, but is not limited to, 2, 4, 8.
  • the DCI format in the SPDCCH is the same as the DCI format of the PDCCH scheduling low-latency terminal.
  • the terminal area resource allocation in the related art considers the PRB allocation according to the transport block size TBS configuration table in the related art, and the low delay terminal area resource allocation may require a new TBS configuration table to consider the PRB allocation.
  • the RTT delay corresponding to the present embodiment may be the same or more than 0.5 ms as compared with the implementation example 1 in that the primary RTT delay can be reduced by 0.5 ms to 4 ms compared to the LTE system.
  • a variable length short TTI is supported in a 1 ms subframe, and the PDCCH region is used as a short TTI in a 1 ms subframe, that is, the first short TTI in a 1 ms subframe is composed of a legacy (traditional) PDCCH region.
  • the subsequent legacy PDSCH region uses the frequency division method for the legacy terminal and the low latency terminal, wherein the resource region used by the low latency terminal is variable length.
  • a DCT can be notified of a variable length short TTI pattern by the legacy PDCCH. For example, using the bitmap method, when 0 and 1 change, it is a short TTI boundary, for example, "00101001000101" is used to indicate the time domain length of each short TTI of variable length in FIG.
  • the SPDCCH and the SPDSCH in the short TTI with different time-domain lengths are used in time division multiplexing, frequency division multiplexing, code division multiplexing, or time-frequency division multiplexing.
  • Resources For example, when the short TTI is two or three OFDM symbol lengths (ie, the time domain length of the short TTI is equal to the sum of the time domain lengths of two or three OFDM symbols), the SPDCCH and the SPDSCH are used differently in time division multiplexing.
  • the OFDM symbol; or the SPDCCH uses resources in a frequency division multiplexing manner with the SPSCH only in the short TTI, and the remaining OFDM symbol resources are used by the SPDSCH.
  • the SPDCCH and the SPDSCH use a frequency division or a code division resource multiplexing manner in a short TTI, where the frequency division manner includes: interleaving a single OFDM symbol resource in units of a single RE or X REs; Or the SPDCCH uses all or part of the even RE or the even RE group, one RE group includes X REs, the SPDSCH uses the remaining REs; or the SPDCCH uses all or part of the odd REs or odd RE groups, and one RE group includes X REs, and the SPDSCH uses Remaining RE.
  • variable length short TTI is applied to the uplink subframe at the same time, that is, the time domain length division of each short TTI in the uplink 1 ms subframe is consistent with the time domain length of each short TTI in the downlink 1 ms subframe.
  • the feedback information about whether the SPUSCH transmission is correct is carried in the SPDCCH or in the SPHICH, where the SPHICH may be limited to punching transmission in the resources occupied by the SPDCCH or independently occupying part of the resource transmission outside the resources occupied by the SPDCCH.
  • variable length short TTI implementation method in the present embodiment, multiple short TTIs with different time domain lengths in subframes in the related art can be flexibly divided to ensure different service types or service QoS (Quality of Service, service).
  • the quality packet is selected for transmission with a suitable short TTI, especially for small bursts of traffic.
  • a variable length short TTI is supported between 1 ms subframes, and the time domain length of the short TTI is determined using CFI.
  • CFI is always transmitted on the first OFDM and can be obtained first.
  • the PDCCH region is used as a short TTI in a 1 ms subframe, that is, the first short TTI in a 1 ms subframe is composed of a legacy PDCCH region, and the subsequent legacy PDSCH region is used in a frequency division manner for a legacy terminal and a low latency terminal, where low time
  • the resource region used by the terminal has a variable time domain length between different 1 ms subframes.
  • Each short TTI time domain length is the same or approximately the same within a 1 ms subframe. That is, when the CFI does not change, it is a fixed short TTI, and when the CFI is changed, the short TTI also changes.
  • the SPDCCH and the SPDSCH in the short TTI with different time-domain lengths are used in time division multiplexing, frequency division multiplexing, code division multiplexing, or time-frequency division multiplexing.
  • Resources For example, when the short TTI is two or three OFDM symbol lengths, the SPDCCH and the SPDSCH use different OFDM symbols in a time division multiplexing manner; or the SPDCCH uses resources in a frequency division multiplexing manner with the SPSCH only in the short TTI, and The remaining OFDM symbol resources are used by the SPDSCH.
  • the SPDCCH and the SPDSCH use a frequency division or a code division resource multiplexing manner in a short TTI, where the frequency division manner includes: interleaving a single OFDM symbol resource in units of a single RE or X REs; Or the SPDCCH uses all or part of the even RE or the even RE group, one RE group includes X REs, the SPDSCH uses the remaining REs; or the SPDCCH uses all or part of the odd REs or odd RE groups, and one RE group includes X REs, and the SPDSCH uses Remaining RE.
  • the short TTI of the variable length is simultaneously applied to the uplink subframe, that is, the time domain length division of each short TTI in the uplink 1 ms subframe is consistent with the time domain length of each short TTI in the downlink 1 ms subframe.
  • the feedback information about whether the SPUSCH transmission is correct is carried in the SPDCCH or in the SPHICH, where the SPHICH may be limited to punching transmission in the resources occupied by the SPDCCH or independently occupying part of the resource transmission outside the resources occupied by the SPDCCH.
  • variable length short TTI implementation method the time domain lengths of multiple TTIs are substantially the same, saving the variable length TTI signaling overhead in the implementation example 3, and the CFI signaling in the multiplexing related technology is completely Do not add any signaling overhead.
  • the short TTIs with different time domain lengths in different 1ms subframes can be flexibly divided to ensure that packets of different service types or service QoSs are selected for short TTI transmission, especially for service bursts with small data packets. transmission.
  • a fixed length short TTI is supported in the LTE frame structure. As shown in FIG. 9, the supported short TTI has a time domain length of 2 OFDM symbols.
  • the base station configures the PDCCH region as a short TTI in the 1 ms subframe, that is, the first short TTI in the 1 ms subframe is composed of the legacy PDCCH region, and the subsequent legacy PDSCH region uses the frequency division method for the legacy terminal and the low delay terminal.
  • the resource region used by the low-latency terminal has the same time domain length between different 1 ms subframes, and the time domain length of each short TTI is also the same in one 1 ms subframe.
  • a fixed short TTI is set for the low delay at this time, and does not change with time.
  • the SPDCCH and the SPDSCH in the short TTI having the same time length are used in time division multiplexing, or frequency division multiplexing, or code division multiplexing, or time-frequency division multiplexing.
  • time division multiplexing As shown in FIG. 9, there are two ways of frequency division multiplexing and time division multiplexing.
  • the SPDCCH and the SPDSCH respectively use the first OFDM symbol and the second OFDM symbol in a time division multiplexing manner; or the SPDCCH is frequency division multiplexed with the SPDSCH only in the short TTI.
  • the mode uses RE resources in two OFDM symbols; or the RE resources are used only in the first OFDM symbol frequency division and the second OFDM symbol resources are used by the SPDSCH.
  • the multiplexing mode is similar to the above; when the short TTI is 1 OFDM symbol length, the SPDCCH and the SPDSCH are multiplexed using frequency division or code division resources in a short TTI.
  • the frequency division manner comprises: using a single OFDM symbol resource in a single RE or X RE unit interleaving; or the SPDCCH uses all or part of an even RE or an even RE group, one RE group includes X REs, and the SPDSCH uses remaining REs Or the SPDCCH uses all or part of an odd RE or an odd RE group, one RE group includes X REs, and the SPDSCH uses the remaining REs.
  • the fixed length short TTI is applied to the uplink subframe at the same time, that is, the time domain length of the short TTI in the uplink 1 ms subframe is the same as the time domain length of the short TTI in the downlink 1 ms subframe.
  • the feedback information about whether the SPUSCH transmission is correct is carried in the SPDCCH or in the SPHICH, where the SPHICH may be, but is not limited to, puncturing transmission in the resources occupied by the SPDCCH or independently occupying part of the resource transmission outside the resources occupied by the SPDCCH. .
  • the time domain length of each TTI is the same, saving the variable length TTI signaling overhead in the implementation examples 3 and 4.
  • Suitable for business packages The scenario of small fixed and short TTI transmission is simple to implement, especially suitable for service burst transmission with small data packets.
  • Embodiment 3 A downlink control device is disposed at a base station, as shown in FIG. 10, and includes:
  • the first determining module 31 is configured to determine at least one downlink control channel in the first downlink control channel and the second downlink control channel, including: determining to use in a short transmission time interval TTI outside the first downlink control channel scheduling range a second downlink control channel; or determining a downlink control channel used in the short TTI according to the predefined or system configuration information;
  • the sending module 32 is configured to send the downlink control information DCI using the determined downlink control channel.
  • the predefined or system configuration information indicates that all the short TTIs use the second downlink control channel; and the case where the all TTIs use the second downlink control channel includes at least one of the following: all short TTIs Both use the second downlink control channel, part of the short TTI uses the second downlink control channel, and all short TTIs do not use the second downlink control channel.
  • the using the second downlink control channel by the partial short TTI includes at least one of the following situations:
  • the second downlink control channel is used by the remaining short TTIs except that the first or the last P short TTIs do not use the second downlink control channel;
  • the second downlink control channel is used by the remaining short TTIs except that the first or the first Q short TTIs do not use the second downlink control channel;
  • the first short TTI uses the second downlink control channel and the subsequent short TTI portion uses the second downlink control channel;
  • P and Q are integers greater than one and less than R; R is the number of short TTIs included in the TTI whose time domain length is 1 millisecond.
  • the time domain length of the short TTI is predefined or signaled; the signaling includes any one or any of the following: system information block SIB information, radio resource control RRC message, physical layer signaling
  • the physical layer signaling includes DCI and/or control format indication CFI.
  • the first downlink control channel is a physical downlink control channel PDCCH
  • the second downlink control channel is a short physical downlink control channel SPDCCH
  • the short TTI is a TTI with a time domain length less than 1 millisecond
  • SPDCCH refers to occupying some or all resource units in a short TTI
  • the physical downlink control channel whose time domain length is less than or equal to the time domain length of the occupied short TTI.
  • the DCI is used to notify the terminal of the corresponding service receiving manner, including: when the DCI of the terminal is located in the PDCCH, the service receiving manner is to perform service receiving in the first short TTI, and/or Service reception is performed in a TTI with a time domain length of 1 ms.
  • the SPDCCH uses the resource unit in the short TTI in the short TTI and the short physical downlink shared channel SPDSCH according to any one of the following resource multiplexing manners: time division multiplexing, frequency division multiplexing, code division multiplexing, Time-frequency division multiplexing; the SPDSCH refers to a physical downlink shared channel occupying part or all of resource units in a short TTI, and the time domain length is less than or equal to the time domain length of the occupied short TTI.
  • the SPDCCH and the SPDSCH are multiplexed in a short TTI by using frequency division or code division multiplexing; wherein the frequency division manner includes: using a single resource unit RE or X RE is a unit OFDM using a single OFDM symbol resource, X is a positive integer greater than 1; or SPDCCH uses all or part of an even RE or even RE group, one RE group includes X REs, SPDSCH uses remaining RE or RE groups; or SPDCCH Using all or part of an odd RE or an odd RE group, one RE group includes X REs, and the SPDSCH uses the remaining RE or RE groups.
  • the frequency division manner includes: using a single resource unit RE or X RE is a unit OFDM using a single OFDM symbol resource, X is a positive integer greater than 1; or SPDCCH uses all or part of an even RE or even RE group, one RE group includes X REs, SPDSCH uses remaining RE or RE groups; or SPDCCH Using all or part of an odd RE or an odd RE group, one RE group includes
  • the SPDCCH uses the short control channel unit SCCE as the granularity for resource occupation;
  • the SCCE distribution mode in the SPDCCH region is any one of the following: time-frequency division occupation, interlace occupation, frequency division occupation Time occupation, code division occupation;
  • the SCCE is a control channel element whose time domain length is less than or equal to the time domain length of the short TTI.
  • the SPDCCH bearer information includes any one or any of the following: an uplink grant UL grant, a downlink grant DL grant, an uplink and downlink joint grant UL and DL grant, a single terminal correct/error feedback information ACK/NACK, and multiple Terminal correct/error feedback information ACK/NACK.
  • resources other than the PDCCH region in one subframe are used by a terminal with different delay requirements according to a frequency division multiplexing manner
  • Resources in different subframes or radio frames are used by time-division multiplexing in a terminal with different delay requirements.
  • the terminal with different delay requirements may include, but is not limited to, a legacy terminal and a low latency terminal.
  • the PDCCH and/or the SPDCCH are both in the same short TTI as the scheduled downlink data information
  • the determining, by the first determining module 31, that the second downlink control channel is used in the short TTI outside the first downlink control channel scheduling range includes:
  • the first determining module 31 determines to use the SPDCCH in one or more short TTIs after the first short TTI including the PDCCH when the time domain length of the short TTI is greater than or equal to the time domain length of the PDCCH; when the short TTI is used When the time domain length is smaller than the time domain length of the PDCCH, it is determined that one or more short TTIs after the PDCCH region use the SPDCCH.
  • the sending module 32 is further configured to: in the short TTI using the SPDCCH, use the short physical hybrid automatic retransmission indication channel SPHICH to send feedback information about whether the physical uplink shared channel SPUSCH transmission of the short TTI is correct or not;
  • the SPHICH refers to a physical hybrid automatic retransmission indication channel that occupies all or part of resource units in a short TTI, and the time domain length is less than or equal to the time domain length of the occupied short TTI;
  • the SPUSCH refers to occupying all in a short TTI. Or a part of the resource unit, and the time domain length is less than or equal to the physical uplink shared channel of the time domain length of the occupied short TTI;
  • the SPHICH is punctured and transmitted in the resource occupied by the SPDCCH, or the SPHICH is used to transmit part of the resource independently of the resource occupied by the SPDCCH.
  • the size of the RBG of the resource allocation RA used by the scheduling short TTI is greater than or equal to the size of the RBG used by the TTI with the scheduling time domain length of 1 millisecond in the same system bandwidth (ie, the size of the RBG used by the legacy terminal).
  • the transport block size TBS configuration table used for scheduling the short TTI is determined according to the ratio of the time domain length of the short TTI to the ratio of 1 millisecond, Y% ⁇ Y ⁇ 100%, in the predetermined TBS configuration table.
  • the TBS is multiplied by Y and rounded up or down to obtain the TBS in the TBS configuration table used to schedule the short TTI.
  • the PDCCH schedules the traffic channel in the short TTI of the downlink DL even number
  • the SPDCCH schedules the traffic channel in the short TTI of the DL odd number
  • the PDCCH and the SPDCCH scheduling subframe n+k Uplink UL service k is any of the following: 2, 4, 8, n is the number of the current subframe.
  • the sending module 32 is further configured to receive feedback information about whether the SPUSCH transmission of the odd short TTI is correct or not using the SPHICH at the odd short TTI.
  • the PDCCH and/or the SPDCCH are located in the same or different short TTIs as the scheduled downlink data information
  • Determining, by the first determining module 31, the downlink control channel used in the short TTI according to the predefined or system configuration information includes:
  • the first determining module 31 determines that each short TTI after the TTI where the PDCCH is located in the subframe does not use the SPDCCH, or the partial TTI uses the SPDCCH, or all the short TTIs use the SPDCCH.
  • the sending module 32 is further configured to use the SPHICH in a short TTI that does not include a PDCCH or a short TTI outside the PDCCH region; when the SPDCCH is in the short TTI, the SPHICH is used in the resource occupied by the SPDCCH. If the SPDCCH is not included in the short TTI, the SPHICH is transmitted independently of the resource occupied by the SPDSCH, or the bearer is short. The feedback information of whether the SPUSCH transmission of the TTI is correctly combined with the downlink data of the same terminal is transmitted in the SPDSCH.
  • the determining, by the first determining module 31, the downlink control channel used in the short TTI according to the predefined or system configuration information includes:
  • the first determining module 31 determines that the SPDCCH is not used when the time domain length of the short TTI is 0.5 milliseconds; and determines whether the SPDSCH occupies an even short TTI or an odd short TTI according to a predetermined 1 bit in the DCI in the PDCCH;
  • the data in the SPDCCH or the PDCCH in the PDCCH is used to indicate that the data scheduled by the SPDCCH or the PDCCH is located in one short TTI or a plurality of short TTIs, x Is a positive integer, m ⁇ x.
  • the sending module 32 is further configured to: when the time domain length of the short TTI is 0.5 milliseconds, use the SPHICH in the odd short TTI, and the SPHICH only carries the feedback information of whether the SPUSCH transmission of the odd short TTI is correct or not; When a sub-frame with a domain length of 1 millisecond contains x short TTIs, all short TTIs or short TTIs other than the first short TTI in the subframe with the time domain length of 1 millisecond. Using SPHICH, the SPHICH only carries feedback information on whether the SPUSCH transmission of all short TTIs or short TTIs other than the first short TTI in the subframe with a time domain length of 1 millisecond is correct.
  • Embodiment 4 A downlink control device is disposed on the terminal, as shown in FIG. 11, and includes:
  • the second determining module 41 is configured to determine the at least one downlink control channel in the first downlink control channel and the second downlink control channel, including: determining to use in a short transmission time interval TTI outside the first downlink control channel scheduling range a second downlink control channel; or determining a downlink control channel used in the short TTI according to the predefined or system configuration information;
  • the receiving module 42 is configured to receive the downlink control information DCI using the determined downlink control channel.
  • the predefined or system configuration information indicates that all the short TTIs use the second downlink control channel; and the case where the all TTIs use the second downlink control channel includes at least one of the following: all short TTIs Both use the second downlink control channel, part of the short TTI uses the second downlink control channel, and all short TTIs do not use the second downlink control channel.
  • the using the second downlink control channel by the partial short TTI includes at least one of the following situations:
  • the second downlink control channel is used by the remaining short TTIs except that the first or the last P short TTIs do not use the second downlink control channel;
  • the second downlink control channel is used by the remaining short TTIs except that the first or the first Q short TTIs do not use the second downlink control channel;
  • the first short TTI uses the second downlink control channel and the subsequent short TTI portion uses the second downlink control channel;
  • P and Q are integers greater than one and less than R; R is the number of short TTIs included in the TTI whose time domain length is 1 millisecond.
  • the time domain length of the short TTI is predefined or signaled; the signaling includes any one or any of the following: system information block SIB information, radio resource control RRC message, physical layer signaling
  • the physical layer signaling includes DCI and/or control format indication CFI.
  • the first downlink control channel is a physical downlink control channel PDCCH
  • the second downlink control channel is a short physical downlink control channel SPDCCH
  • the short TTI is a TTI with a time domain length less than 1 millisecond
  • SPDCCH refers to occupying some or all resource units in a short TTI
  • the physical downlink control channel whose time domain length is less than or equal to the time domain length of the occupied short TTI.
  • the device further includes:
  • An execution module configured to perform, according to the DCI detected by the receiving module, a corresponding service receiving manner, including:
  • the receiving module detects the DCI of the terminal in the PDCCH, the service is received in the first short TTI;
  • the receiving module When the receiving module detects the DCI of the terminal in the PDCCH, the service is received in the TTI with a time domain length of 1 millisecond.
  • the SPDCCH uses the resource unit in the short TTI in the short TTI and the short physical downlink shared channel SPDSCH according to any one of the following resource multiplexing manners: time division multiplexing, frequency division multiplexing, code division multiplexing, Time-frequency division multiplexing; the SPDSCH refers to a physical downlink shared channel occupying part or all of resource units in a short TTI, and the time domain length is less than or equal to the time domain length of the occupied short TTI.
  • the SPDCCH bearer information includes any one or any of the following: an uplink grant UL grant, a downlink grant DL grant, an uplink and downlink joint grant UL and DL grant, a single terminal correct/error feedback information ACK/NACK, and multiple Terminal correct/error feedback information ACK/NACK.
  • the PDCCH and/or the SPDCCH are both in the same short TTI as the scheduled downlink data information
  • the second determining module 41 determines that using the second downlink control channel in the short TTI outside the first downlink control channel scheduling range includes:
  • the second determining module 41 determines to use the SPDCCH in one or more short TTIs after the first short TTI including the PDCCH when the time domain length of the short TTI is greater than or equal to the time domain length of the PDCCH; when the short TTI is used When the time domain length is smaller than the time domain length of the PDCCH, it is determined that one or more short TTIs after the PDCCH region use the SPDCCH.
  • the receiving module 42 is further configured to: in the short TTI using the SPDCCH, receive the short physical hybrid automatic retransmission indication channel SPHICH, and obtain feedback information about whether the SPUSCH transmission of the short TTI is correct or not;
  • the SPHICH refers to Occupying some or all of the resource units in a short TTI,
  • the physical hybrid automatic retransmission indication channel whose time domain length is less than or equal to the time domain length of the occupied short TTI;
  • the SPUSCH refers to occupying part or all resource units in the short TTI, and the time domain length is less than or equal to the occupied a physical uplink shared channel of a short TTI time domain length;
  • the SPHICH is punctured and transmitted in the resources occupied by the SPDCCH, or the SPHICH is used to transmit part of the resources independently of the resources occupied by the SPDCCH.
  • the receiving module 42 is further configured to receive the SPHICH at an odd short TTI, and obtain feedback information about whether the SPUSCH transmission of the odd short TTI is correct.
  • the PDCCH and/or the SPDCCH are located in the same or different short TTIs as the scheduled downlink data information
  • the determining, by the second determining module 41, the downlink control channel used in the short TTI according to the predefined or system configuration information includes:
  • the second determining module 41 determines that each short TTI after the TTI where the PDCCH is located in the subframe does not receive the SPDCCH, or part of the TTI receives the SPDCCH, or all the short TTIs receive the SPDCCH.
  • the receiving module 42 is further configured to receive the SPHICH in a short TTI that does not include the PDCCH or a short TTI outside the PDCCH region; when there is an SPDCCH in the short TTI, the SPHICH is punctured in the resource occupied by the SPDCCH, or The SPHICH is used to transmit part of the resources independently of the resources occupied by the SPDCCH. When there is no SPDCCH in the short TTI, the SPHICH transmits part of the resources independently of the resources occupied by the SPDSCH, or the feedback information of whether the SPUSCH transmission of the short TTI is correct or not is the same.
  • the downlink data of the terminal is jointly encoded and transmitted in the SPDSCH.
  • the determining, by the second determining module 41, the downlink control channel used in the short TTI according to the predefined or system configuration information includes:
  • the second determining module 41 determines that the SPDCCH is not received when the time domain length of the short TTI is 0.5 milliseconds; and determines whether the SPDSCH occupies an even short TTI or an odd short TTI according to a predetermined one bit in the DCI in the PDCCH;
  • Short TTI, x is a positive integer, m ⁇ x.
  • the receiving module 42 is further configured to: when the time domain length of the short TTI is 0.5 milliseconds, Receiving a SPHICH in an odd short TTI, the SPHICH carrying only feedback information on whether the SPUSCH transmission of the odd short TTI is correct or not; when the subframe having a domain length of 1 millisecond contains x short TTIs, in the time domain
  • the SPHICH is used for all short TTIs or short TTIs other than the first short TTI in a subframe having a length of 1 millisecond, and the SPHICH only carries all short TTIs or subframes in a subframe having a time domain length of 1 millisecond.
  • the feedback information of the SPUSCH transmission of the short TTI other than the first short TTI is correct or not.
  • Embodiment 3 A computer readable storage medium storing computer executable instructions for performing the method of Embodiment 1 above.
  • the downlink control scheme proposed by the embodiment of the present invention can solve the downlink control channel usage problem in a short TTI including fewer OFDM symbols, and can obtain a shorter RTT in a case of using a short TTI with a new granularity to ensure a low time. Delay communication needs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种下行控制方法及装置;所述方法包括:基站在第一下行控制信道和第二下行控制信道中确定至少一个下行控制信道,包括:确定在第一下行控制信道调度范围外的短传输时间间隔TTI中使用第二下行控制信道;或者根据预定义或系统配置信息确定短TTI中使用的下行控制信道;所述基站使用所确定的下行控制信道发送下行控制信息DCI。

Description

一种下行控制方法及装置 技术领域
本文涉及但不限于通信领域,尤其涉及一种下行控制方法及装置。
背景技术
随着4G(the 4th Generation mobile communication technology,第四代移动通信技术)LTE(Long-Term Evolution,长期演进)/LTE-Advance/LTE-A(Long-Term Evolution Advance,高级长期演进)系统商用的日益完善,对下一代移动通信技术即5G(the 5th Generation mobile communication technology,第五代移动通信技术)的技术指标要求也越来越高。业内普遍认为,下一代移动通信系统应具有超高速率、超高容量、超高可靠性、以及超低延时传输特性等特征。对于5G系统中超低时延的指标目前公认的为空口时延约1毫秒的数量级。
相关技术中,一种有效实现超低时延的方法是通过减少LTE系统的TTI(Transmission Time Interval,传输时间间隔),充分缩短处理时延单元,以支持上述1毫秒空口时延的特性需求。相关技术中存在两种缩小TTI的方法,一种是通过扩大OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)系统的子载波间隔来缩小单个OFDM符号的时长,该方法在5G的高频通信系统和超密集网络中均有涉及;另一种方法是3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)所讨论的通过减少单个TTI中OFDM符号的数量来减小TTI的时域长度(也可以成为时间长度),该方法的好处是可以和LTE系统完全兼容。
相关技术中,LTE系统中PDCCH(Physical Downlink Control Channel,物理下行控制信道)占用系统带宽中前0-4个OFDM符号的资源区域,EPDCCH(Enhanced Physical Downlink Control Channel,增强物理下行控制信道)使用PDSCH(Physical Downlink Shared Channel,物理下行共享信道)中部分PRB(Physical Resource Block,物理资源块)资源区域。对于时域长度为1毫秒的TTI的子帧,将含有较少OFDM符号的缩小TTI作为一种新粒度 的短TTI,相关技术中,下行控制信道不能很好的支持新粒度的短TTI。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提出了一种下行控制方法及装置,可以至少解决包含较少OFDM符号的短TTI中的下行控制信道使用问题,保证低时延通信需求。
本发明实施例采用如下技术方案。
一种下行控制方法,包括:
基站在第一下行控制信道和第二下行控制信道中确定至少一个下行控制信道,包括:确定在第一下行控制信道调度范围外的短传输时间间隔TTI中使用第二下行控制信道;或者根据预定义或系统配置信息确定短TTI中使用的下行控制信道;
所述基站使用所确定的下行控制信道发送下行控制信息DCI。
可选地,所述预定义或系统配置信息指示所有短TTI使用所述第二下行控制信道的情况;所述所有TTI使用所述第二下行控制信道的情况至少包括以下之一:全部短TTI都使用第二下行控制信道、部分短TTI使用第二下行控制信道、全部短TTI都不使用第二下行控制信道。
可选地,所述部分短TTI使用第二下行控制信道至少包括以下情况之一:
除了首个或前P个短TTI不使用所述第二下行控制信道,其余短TTI都使用所述第二下行控制信道;
除了首个或前Q个短TTI不使用所述第二下行控制信道,其余短TTI部分使用所述第二下行控制信道;
首个短TTI使用所述第二下行控制信道并且后续短TTI部分使用所述第二下行控制信道;
P、Q均为大于1、小于R的整数;R是时域长度为1毫秒的TTI所包含的短TTI的个数。
可选地,所述短TTI的时域长度预定义或由信令通知;所述信令包括以下任一种或任几种:系统信息块SIB信息、无线资源控制RRC消息、物理层信令;所述物理层信令包括DCI和/或控制格式指示CFI。
可选地,所述第一下行控制信道为物理下行控制信道PDCCH,所述第二下行控制信道为短物理下行控制信道SPDCCH;所述短TTI为时域长度小于1毫秒的TTI;所述SPDCCH是指在短TTI内占用部分或全部资源单元,且时域长度小于或等于所占用的短TTI的时域长度的物理下行控制信道。
可选地,所述DCI用于通知终端相应的业务接收方式,包括:当所述终端的DCI位于所述PDCCH中时,所述业务接收方式为在首个短TTI进行业务接收,和/或,在时域长度为1毫秒的TTI进行业务接收。
可选地,所述SPDCCH在所在短TTI内与短物理下行共享信道SPDSCH按照以下任一种资源复用方式使用短TTI内的资源单元:时分复用、频分复用、码分复用、时频分复用;所述SPDSCH是指在短TTI内占用部分或全部资源单元,且时域长度小于或等于所占用的短TTI的时域长度的物理下行共享信道。
可选地,当短TTI为单个OFDM符号长度时,SPDCCH与SPDSCH在短TTI内使用频分或码分复用的方式进行资源复用;其中频分方式包括:以单个资源单元RE或X个RE为单位交织使用单个OFDM符号资源,X为大于1的正整数;或者SPDCCH使用全部或部分的偶数RE或偶数RE组,一个RE组包括X个RE,SPDSCH使用剩余RE或RE组;或者SPDCCH使用全部或部分奇数RE或奇数RE组,一个RE组包括X个RE,SPDSCH使用剩余RE或RE组。
可选地,在短TTI内,在SPDCCH区域中,SPDCCH以短控制信道单元SCCE为粒度进行资源占用;SPDCCH区域内SCCE分布方式为以下任一种:时频分占用、交织占用、频分占用、时分占用、码分占用;
所述SCCE为时域长度小于或等于短TTI的时域长度的控制信道单元。
可选地,所述SPDCCH承载信息包含以下任一种或任几种:上行授权UL grant、下行授权DL grant、上下行联合授权UL and DL grant、单终端正 确/错误反馈信息ACK/NACK、多终端正确/错误反馈信息ACK/NACK。
可选地,一个子帧中除PDCCH区域以外的资源由时延需求不同的终端按照频分复用方式使用;
或者,
不同子帧或无线帧中的资源由时延需求不同的终端按照时分复用方式使用。
可选地,所述PDCCH和/或SPDCCH均与调度的下行数据信息在同一个短TTI中;
所述确定在第一下行控制信道调度范围外的短TTI中使用第二下行控制信道包括:
当短TTI的时域长度大于或等于PDCCH的时域长度时,确定在包含PDCCH的第一个短TTI之后的一个或多个短TTI中使用SPDCCH;当短TTI的时域长度小于PDCCH的时域长度时,确定在PDCCH区域之后的一个或多个短TTI使用SPDCCH。
可选地,所述的方法还包括:
所述基站在使用SPDCCH的短TTI中,使用短物理混合自动重传指示信道SPHICH发送对短TTI的物理上行共享信道SPUSCH传输正确与否的反馈信息;所述SPHICH是指在短TTI内占用全部或部分资源单元,且时域长度小于或等于所占用的短TTI的时域长度的物理混合自动重传指示信道;所述SPUSCH是指在短TTI内占用全部或部分资源单元,且时域长度小于或等于所占用的短TTI的时域长度的物理上行共享信道;
所述SPHICH在所述SPDCCH占用的资源中打孔传输,或者所述SPHICH独立于所述SPDCCH占用的资源外使用部分资源传输。
可选地,调度短TTI所使用资源分配RA的粒度RBG的大小大于或等于同等系统带宽下调度时域长度为1毫秒的TTI所使用的RBG的大小。
可选地,调度短TTI所使用的传输块大小TBS配置表的确定方式为:根据短TTI的时域长度相对于1毫秒的比例Y,0%<Y<100%,使用预定TBS配置表中的TBS乘以Y并向上或向下取整得到调度短TTI所使用的TBS配 置表中的TBS。
可选地,当短TTI的时域长度为0.5毫秒时,PDCCH调度下行DL偶数的短TTI内的业务信道,SPDCCH调度DL奇数的短TTI内的业务信道;PDCCH和SPDCCH调度子帧n+k的上行UL业务,k为以下任一:2、4、8,n为当前子帧的编号。
可选地,所述的方法还包括:
所述基站在奇数的短TTI使用SPHICH发送对奇数的短TTI的SPUSCH传输正确与否的反馈信息。
可选地,所述PDCCH和/或SPDCCH与调度的下行数据信息位于相同或不同短TTI中;
所述根据预定义或系统配置信息确定短TTI中使用的下行控制信道包括:
确定子帧中PDCCH所在TTI之后的每个短TTI不使用SPDCCH,或者部分TTI使用SPDCCH,或者所有短TTI都使用SPDCCH。
可选地,所述的方法还包括:
所述基站在不包含PDCCH的短TTI或PDCCH区域外的短TTI中使用SPHICH;当短TTI中有所述SPDCCH时,所述SPHICH在SPDCCH占用的资源中打孔传输,或者所述SPHICH独立于SPDCCH占用的资源外使用部分资源传输;当短TTI中没有所述SPDCCH时,所述SPHICH独立于SPDSCH占用的资源外使用部分资源传输,或者承载对所述短TTI的SPUSCH传输正确与否的反馈信息与同一终端的下行数据联合编码后在所述SPDSCH中传输。
可选地,所述根据预定义或系统配置信息确定短TTI中使用的下行控制信道包括:
当短TTI的时域长度为0.5毫秒时,确定不使用SPDCCH;根据PDCCH中DCI中预定的1bit确定所述SPDSCH占用偶数的短TTI还是奇数的短TTI;
当时域长度为1毫秒的子帧中含有x个短TTI时,SPDCCH或PDCCH中的DCI中使用m个bit指示本SPDCCH或PDCCH所调度的数据位于其中 一个短TTI或者其中多个短TTI,x为正整数,m≤x。
可选地,所述的方法还包括:
当短TTI的时域长度为0.5毫秒时,所述基站在奇数的短TTI使用SPHICH,所述SPHICH仅承载对奇数的短TTI的SPUSCH传输正确与否的反馈信息;
当时域长度为1毫秒的子帧中含有x个短TTI时,所述基站在所述时域长度为1毫秒的子帧中所有短TTI或除第一个短TTI以外的短TTI使用SPHICH,所述SPHICH仅承载对所述时域长度为1毫秒的子帧中所有短TTI或除第一个短TTI以外的短TTI的SPUSCH传输正确与否的反馈信息。
一种下行控制方法,包括:
终端在第一下行控制信道和第二下行控制信道中确定至少一个下行控制信道,包括:确定在第一下行控制信道调度范围外的短传输时间间隔TTI中使用第二下行控制信道;或者根据预定义或系统配置信息确定短TTI中使用的下行控制信道;
所述终端使用所确定的下行控制信道接收下行控制信息DCI。
可选地,所述预定义或系统配置信息指示所有短TTI使用所述第二下行控制信道的情况;所述所有TTI使用所述第二下行控制信道的情况至少包括以下之一:全部短TTI都使用第二下行控制信道、部分短TTI使用第二下行控制信道、全部短TTI都不使用第二下行控制信道。
可选地,所述部分短TTI使用第二下行控制信道至少包括以下情况之一:
除了首个或前P个短TTI不使用所述第二下行控制信道,其余短TTI都使用所述第二下行控制信道;
除了首个或前Q个短TTI不使用所述第二下行控制信道,其余短TTI部分使用所述第二下行控制信道;
首个短TTI使用所述第二下行控制信道并且后续短TTI部分使用所述第二下行控制信道;
P、Q均为大于1、小于R的整数;R是时域长度为1毫秒的TTI所包含的短TTI的个数。
可选地,所述短TTI的时域长度预定义或由信令通知;所述信令包括以下任一种或任几种:系统信息块SIB信息、无线资源控制RRC消息、物理层信令;所述物理层信令包括DCI和/或控制格式指示CFI。
可选地,所述第一下行控制信道为物理下行控制信道PDCCH,所述第二下行控制信道为短物理下行控制信道SPDCCH;所述短TTI为时域长度小于1毫秒的TTI;所述SPDCCH是指在短TTI内占用部分或全部资源单元,且时域长度小于或等于所占用的短TTI的时域长度的物理下行控制信道。
可选地,所述终端使用所确定的下行控制信道接收DCI后还包括:
所述终端根据检测到的所述DCI执行相应的业务接收方式,包括:
所述终端在PDCCH中检测到本终端的DCI时,在首个短TTI进行业务接收;
和/或,
所述终端在PDCCH中检测到本终端的DCI时,在时域长度为1毫秒的TTI进行业务接收。
可选地,所述SPDCCH在所在短TTI内与短物理下行共享信道SPDSCH按照以下任一种资源复用方式使用短TTI内的资源单元:时分复用、频分复用、码分复用、时频分复用;所述SPDSCH是指在短TTI内占用部分或全部资源单元,且时域长度小于或等于所占用的短TTI的时域长度的物理下行共享信道。
可选地,所述SPDCCH承载信息包含以下任一种或任几种:上行授权UL grant、下行授权DL grant、上下行联合授权UL and DL grant、单终端正确/错误反馈信息ACK/NACK、多终端正确/错误反馈信息ACK/NACK。
可选地,所述PDCCH和/或SPDCCH均与调度的下行数据信息在同一个短TTI中;
所述确定在第一下行控制信道调度范围外的短TTI中使用第二下行控制信道包括:
当短TTI的时域长度大于或等于PDCCH的时域长度时,确定在包含PDCCH的第一个短TTI之后的一个或多个短TTI中使用SPDCCH;当短TTI的时域长度小于PDCCH的时域长度时,确定在PDCCH区域之后的一个或多个短TTI使用SPDCCH。
可选地,所述的方法还包括:
所述终端在使用SPDCCH的短TTI中,接收短物理混合自动重传指示信道SPHICH,获得对短TTI的SPUSCH传输正确与否的反馈信息;所述SPHICH是指在短TTI内占用部分或全部资源单元,且时域长度小于或等于所占用的短TTI的时域长度的物理混合自动重传指示信道;所述SPUSCH是指在短TTI内占用部分或全部资源单元,且时域长度小于或等于所占用的短TTI的时域长度的物理上行共享信道;
所述SPHICH在SPDCCH占用的资源中打孔传输,或者SPHICH独立于SPDCCH占用的资源外使用部分资源传输。
可选地,所述的方法还包括:
所述终端在奇数的短TTI接收SPHICH,获得对奇数的短TTI的SPUSCH传输正确与否的反馈信息。
可选地,所述PDCCH和/或SPDCCH与调度的下行数据信息位于相同或不同短TTI中;
所述根据预定义或系统配置信息确定短TTI中使用的下行控制信道包括:
确定子帧中PDCCH所在TTI之后的每个短TTI不接收SPDCCH、或者部分TTI接收SPDCCH、或者所有短TTI都接收SPDCCH。
可选地,所述的方法还包括:
所述终端在不包含PDCCH的短TTI或PDCCH区域外的短TTI中接收SPHICH;当短TTI中有SPDCCH时,所述SPHICH在SPDCCH占用的资源中打孔传输,或者SPHICH独立于SPDCCH占用的资源外使用部分资源传输;当短TTI中没有SPDCCH时,所述SPHICH独立于SPDSCH占用的资源外使用部分资源传输,或者承载对短TTI的SPUSCH传输正确与否的反馈信息与 同一终端的下行数据联合编码后在SPDSCH中传输。
可选地,所述根据预定义或系统配置信息确定短TTI中使用的下行控制信道包括:
当短TTI的时域长度为0.5毫秒时,确定不接收SPDCCH;根据所述PDCCH中DCI中预定的1bit确定所述SPDSCH占用偶数的短TTI还是奇数的短TTI;
当时域长度为1毫秒的子帧中含有x个短TTI时,根据所述SPDCCH或PDCCH中的DCI中预定的m个bit确定该SPDCCH或PDCCH所调度的数据位于其中一个短TTI或者其中多个短TTI,x为正整数,m≤x。
可选地,所述的方法还包括:
当短TTI的时域长度为0.5毫秒时,所述终端在奇数的短TTI接收SPHICH,所述SPHICH仅承载对奇数的短TTI的SPUSCH传输正确与否的反馈信息;
当时域长度为1毫秒的子帧中含有x个短TTI时,所述终端在所述时域长度为1毫秒的子帧中所有短TTI或除第一个短TTI以外的短TTI使用所述SPHICH,所述SPHICH仅承载对所述时域长度为1毫秒的子帧中所有短TTI或除第一个短TTI以外的短TTI的SPUSCH传输正确与否的反馈信息。
一种下行控制装置,设置于基站,包括:
第一确定模块,设置成在第一下行控制信道和第二下行控制信道中确定至少一个下行控制信道,包括:确定在第一下行控制信道调度范围外的短传输时间间隔TTI中使用第二下行控制信道;或者根据预定义或系统配置信息确定短TTI中使用的下行控制信道;
发送模块,设置成使用所确定的下行控制信道发送下行控制信息DCI。
可选地,所述第一下行控制信道为物理下行控制信道PDCCH,所述第二下行控制信道为短物理下行控制信道SPDCCH;所述短TTI为时域长度小于1毫秒的TTI;所述SPDCCH是指在短TTI内占用部分或全部资源单元,且时域长度小于或等于所占用的短TTI的时域长度的物理下行控制信道。
一种下行控制装置,设置于终端,包括:
第二确定模块,设置成在第一下行控制信道和第二下行控制信道中确定至少一个下行控制信道,包括:确定在第一下行控制信道调度范围外的短传输时间间隔TTI中使用第二下行控制信道;或者根据预定义或系统配置信息确定短TTI中使用的下行控制信道;
接收模块,设置成使用所确定的下行控制信道接收下行控制信息DCI。
可选地,所述第一下行控制信道为物理下行控制信道PDCCH,所述第二下行控制信道为短物理下行控制信道SPDCCH;所述短TTI为时域长度小于1毫秒的TTI;所述SPDCCH是指在短TTI内占用部分或全部资源单元,且时域长度小于或等于所占用的短TTI的时域长度的物理下行控制信道。
一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述方法。
本发明实施例所提出的下行控制方案可以解决包含较少OFDM符号的短TTI中的下行控制信道使用问题,可以在使用新粒度的短TTI的情况下相应的获得较短的RTT(Round-Trip Time,往返时延),保证低时延通信需求。
在阅读并理解了附图和详细描述后,可以明白其它方面。
附图概述
图1为实施例一的一种下行控制方法的流程示意图;
图2为实施例一中当短TTI为单个OFDM符号长度时,SPDCCH与SPDSCH的资源复用示意图;
图3(a)~(c)为实施例一中SPDCCH区域内SCCE分布方式的示意图;
图4为实施例二的一种下行控制方法的流程示意图;
图5为实施示例1的资源使用示意图;
图6为实施示例2的资源使用示意图;
图7为实施示例3的资源使用示意图;
图8为实施示例4的资源使用示意图;
图9为实施示例5的资源使用示意图;
图10为实施例三的下行控制装置的示意图;
图11为实施例四的下行控制装置的示意图。
本发明的实施方式
需要说明的是,如果不冲突,本发明实施例以及实施例中的特征可以相互结合。另外,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
实施例一、一种下行控制方法,可以应用在基站侧,如图1所示,包括步骤S110~S120:
S110、基站在第一下行控制信道和第二下行控制信道中确定至少一个下行控制信道,包括:确定在第一下行控制信道不能调度指示的短TTI中,使用第二下行控制信道,即确定在第一下行控制信道调度范围外的短TTI中使用第二下行控制信道;或者还可以根据预定义或系统配置信息确定短TTI中使用的下行控制信道,比如可以但不限于通过MIB(Management Information Base,管理信息库)、SIB(System Information Block,系统信息块)、RRC(Radio Resource Control,无线资源控制)等确定;
S120、所述基站使用所确定的下行控制信道发送下行控制信息DCI。
其中,所述第一下行控制信道可以但不限于为PDCCH,所述第二下行控制信道可以但不限于为SPDCCH(Short PDCCH,短物理下行控制信道)。所述短TTI可以为时域长度小于1ms(毫秒)的TTI;所述SPDCCH可以是指在短TTI内占用全部或部分资源单元,且时域长度小于或等于所占用的短TTI的时域长度的物理下行控制信道。
可选地,所述预定义或系统配置信息指示所有短TTI使用所述第二下行控制信道的情况;所述所有TTI使用所述第二下行控制信道的情况至少包括以下之一:全部短TTI都使用第二下行控制信道、部分短TTI使用第二下行 控制信道、全部短TTI都不使用第二下行控制信道。
可选地所述部分短TTI使用第二下行控制信道至少包括以下情况之一:除了首个或前P个短TTI不使用第二下行控制信道其余短TTI都使用第二下行控制信道、除了首个或前Q个短TTI不使用第二下行控制信道其余短TTI部分使用第二下行控制信道、首个短TTI使用第二下行控制信道并且后续短TTI部分使用第二下行控制信道;
P、Q均为大于1、小于R的整数;R是时域长度为1毫秒的TTI所包含的短TTI的个数。
可选地,所述SPDCCH在所在短TTI内与SPDSCH(Short PDSCH,短物理下行共享信道)按照以下任一种资源复用方式使用短TTI内的资源单元:时分复用、频分复用、码分复用、时频分复用。
所述SPDSCH可以是指在短TTI内占用部分或全部资源单元,且时域长度小于或等于所占用的短TTI的时域长度的物理下行共享信道。
本可选方案的一种备选方案中,当短TTI为单个OFDM符号长度(即:所述短TTI的时域长度等于单个OFDM符号的时域长度)时,SPDCCH与SPDSCH可以在短TTI内使用频分或码分复用的方式进行资源占用,如图2所示,其中频分方式包括:以单个RE(Resource Element,资源单元)或X个RE为单位交织使用单个OFDM符号资源,X为大于1的正整数;或者SPDCCH使用全部或部分的偶数RE或偶数RE组,一个RE组包括X个RE,SPDSCH使用剩余RE或RE组;或者SPDCCH使用全部或部分奇数RE或奇数RE组,一个RE组包括X个RE,SPDSCH使用剩余RE或RE组。
本可选方案的一种备选方案中,在短TTI内,在SPDCCH区域中,SPDCCH以SCCE(Short Control Channel Element,短控制信道单元)为粒度进行资源占用,可选地,SPDCCH占用1、2、4、8个SCCE,SPDCCH区域内SCCE的分布方式可选为以下任一种:时频分占用,如图3(a)所示;交织占用,如图3(b)所示,频分占用,如图3(c)所示,时分占用,码分占用等等。
所述SCCE为时域长度小于或等于短TTI的时域长度的控制信道单元。
所述SPDCCH承载信息包含以下任一种或任几种:UL(UPlink,上行)grant(授权)、DL(Downlink,下行)grant、UL and DL grant(上下行联合授权)、单终端正确/错误反馈信息ACK/NACK、多终端正确/错误反馈信息ACK/NACK。
可选地,一个子帧中除PDCCH区域以外的资源由时延需求不同的终端按照频分复用方式使用。其中,附图2、5~9所示均为频分复用方式的示意图。或者,不同子帧或无线帧中的资源由时延需求不同的终端按照时分复用方式使用。
所述时延需求不同的终端可以但不限于是指传统终端和低时延终端。
其中,除了PDCCH、PSS(Primary Synchronization Signal,主同步信号)/SSS(Secondary Synchronization Signal,辅同步信号)、PBCH(Physical Broadcast Channel,物理广播信道)区域以外,其余资源可以由时延需求不同的终端按照频分复用的方式使用。
可选地,所述短TTI的时域长度预定义或由信令通知。其中信令通知中信令包括SIB信息或RRC消息或物理层信令。其中物理层信令包括DCI(Downlink Control Information,下行控制信息)或CFI(Control Format Indicator,控制格式指示)。
可选地,所述DCI用于通知终端相应的业务接收方式,包括:当所述终端的DCI位于所述PDCCH中时,所述业务接收方式为在首个短TTI进行业务接收,和/或,在时域长度为1ms的TTI进行业务接收。
下面分两种情况描述本实施例的方案。
第一种情况,所述PDCCH和/或SPDCCH与调度的下行数据信息只能在同一个短TTI中。此时DCI中无时域调度信息,PDCCH和/或SPDCCH不支持跨短TTI调度,使用相关技术中的DCI调度业务消息。
第一种情况包括两种场景:
场景1、只使用PDCCH或SPDCCH的场景;该场景下,所使用的下行控制信道(PDCCH或SPDCCH)与调度的下行数据信息在同一个短TTI中。
场景2、PDCCH和SPDCCH都使用的场景;该场景下有三种可能:只有 PDCCH与调度的下行数据信息在同一个短TTI中、只有SPDCCH与调度的下行数据信息在同一个短TTI中、PDCCH和SPDCCH均与调度的下行数据信息在同一个短TTI中。
可选地,第一种情况中,确定在第一下行控制信道调度范围外的短TTI中使用第二下行控制信道包括:当短TTI的时域长度大于或等于PDCCH的时域长度时,确定在包含PDCCH的第一个短TTI之后的一个或多个短TTI中使用SPDCCH。当短TTI的时域长度小于PDCCH的时域长度时,确定在PDCCH区域之后的一个或多个短TTI使用SPDCCH。
其中,SPDCCH中还可以包含对短TTI的SPUSCH(Short Physical Uplink Shared Channel,短物理上行共享信道)传输正确与否的反馈信息;所述SPUSCH是指在短TTI内占用部分或全部资源单元,且时域长度小于或等于所占用的短TTI的时域长度的物理上行共享信道。
其中,所述方法还可以包括:
所述基站在使用SPDCCH的短TTI中,使用SPHICH(Short Physical Hybrid ARQ Indicator Channel,短物理混合自动重传指示信道)发送对短TTI的SPUSCH传输正确与否的反馈信息;SPHICH在SPDCCH占用的资源中打孔传输,或者SPHICH独立于SPDCCH占用的资源外使用部分资源传输;所述SPHICH是指在短TTI内占用部分或全部资源单元,且时域长度小于或等于所占用的短TTI的时域长度的物理混合自动重传指示信道。
此时SPDCCH仅用于短TTI的控制调度。
其中,调度短TTI所使用RA(Resource Allocation,资源分配的粒度RBG(Resource Block Group,资源块组)的大小可以大于或等于同等系统带宽下调度时域长度为1毫秒的TTI所使用的RBG的大小(即传统终端所使用的RBG的大小)。
其中,调度短TTI所使用的TBS(Transport Block Size,传输块大小)配置表的确定方式可以为:根据短TTI的时域长度相对于1毫秒的比例Y,0%<Y<100%,使用预定TBS配置表中的TBS乘以Y并向上或向下取整得到调度短TTI所使用的TBS配置表中的TBS。
其中,当短TTI的时域长度为0.5ms时,PDCCH可以调度DL偶数的短TTI,SPDCCH可以调度DL奇数的短TTI;PDCCH和SPDCCH调度子帧n+k的UL上行业务,k可以但不限于为2、4、8,n为当前子帧(即所述PDCCH和SPDCCH所在子帧)的编号。
相应地,所述方法还可以包括:
所述基站在奇数的短TTI可以使用SPHICH发送对奇数的短TTI的SPUSCH传输正确与否的反馈信息;所述SPHICH仅承载对奇数的短TTI的SPUSCH传输正确与否的反馈信息。
第二种情况,所述PDCCH和/或SPDCCH与调度的下行数据信息不限于位于相同短TTI中,即:位于相同或不同的短TTI中均可。此时DCI中有时域调度信息,支持跨短TTI调度。
可选地,第二种情况中,根据预定义或系统配置信息确定短TTI中使用的下行控制信道包括:确定子帧中PDCCH所在TTI之后的每个短TTI不使用SPDCCH、或者部分TTI使用SPDCCH、或者所有短TTI都使用SPDCCH。
其中,所述方法还可以包括:所述基站在不包含PDCCH的短TTI或PDCCH区域外的短TTI中使用SPHICH。当短TTI中有SPDCCH时,SPHICH在SPDCCH占用的资源中打孔传输,或者SPHICH独立于SPDCCH占用的资源外使用部分资源传输;当短TTI中没有SPDCCH时,SPHICH独立于SPDSCH占用的资源外使用部分资源传输,或者承载对短TTI的SPUSCH传输正确与否的反馈信息与同一终端的下行数据联合编码后在SPDSCH中传输。
其中,根据预定义或系统配置信息确定短TTI中使用的下行控制信道可以包括:当短TTI的时域长度为0.5ms时,确定不使用SPDCCH;根据PDCCH中DCI中预定的1bit确定所述SPDSCH占用偶数的短TTI还是奇数的短TTI;
当时域长度为1ms的子帧中含有x个短TTI时,SPDCCH或PDCCH中的DCI中预定的m个bit指示本SPDCCH或PDCCH所调度的数据位于其中一个短TTI或者其中多个短TTI,x为正整数,x为正整数,m≤x。
相应地,所述方法可以还包括:
所述基站当短TTI的时域长度为0.5ms时,在奇数的短TTI使用SPHICH,SPHICH仅承载对奇数的短TTI的SPUSCH传输正确与否的反馈信息;
当时域长度为1ms的子帧中含有x个短TTI时,在所述时域长度为1ms的子帧中所有短TTI或除第一个短TTI以外的短TTI使用SPHICH,SPHICH仅承载对所述时域长度为1ms的子帧中所有短TTI或除第一个短TTI以外的短TTI的SPUSCH传输正确与否的反馈信息。
可选地,所述短TTI的时域长度预定义或由信令通知。其中所述信令可以包括以下任一种或任几种:SIB信息、RRC消息、物理层信令。其中物理层信令包括DCI或CFI。
实施例二、一种下行控制方法,可以应用在终端侧,所述终端可以但不限于为低时延终端;所述方法如图4所示,包括步骤S410~S420:
S410、终端在第一下行控制信道和第二下行控制信道中确定至少一个下行控制信道,包括:确定在第一下行控制信道不能调度指示的短TTI中,使用第二下行控制信道,即在第一下行控制信道调度范围外的短TTI中使用第二下行控制信道;或者还可以根据预定义或系统配置信息确定短TTI中使用的下行控制信道,如通过MIB、SIB、RRC等确定;
S420、所述终端使用所确定的下行控制信道接收下行控制信息DCI。
本实施例可以但不限于用于低时延终端的下行控制中。
可选地,所述预定义或系统配置信息指示所有短TTI使用第二下行控制信道的情况,所述所有TTI使用所述第二下行控制信道的情况至少包括:全部短TTI都使用第二下行控制信道、部分短TTI使用第二下行控制信道、全部短TTI都不使用第二下行控制信道。
其中,所述部分短TTI使用第二下行控制信道可以包括:除了首个或前P个短TTI不使用第二下行控制信道其余短TTI都使用第二下行控制信道、除了首个或前Q个短TTI不使用第二下行控制信道其余短TTI部分使用第二下行控制信道、首个短TTI使用第二下行控制信道和后续短TTI部分使用第 二下行控制信道;
P、Q均为大于1、小于R的整数;R是时域长度为1毫秒的TTI所包含的短TTI的个数。
可选地,所述短TTI的时域长度预定义或由信令通知;所述信令包括以下任一种或任几种:系统信息块SIB信息、无线资源控制RRC消息、物理层信令;所述物理层信令包括DCI和/或控制格式指示CFI。
可选地,所述第一下行控制信道为PDCCH,所述第二下行控制信道为SPDCCH。所述短TTI为时域长度小于1ms的TTI;所述SPDCCH是指在短TTI内占用部分或全部资源单元,且时域长度小于或等于所占用的短TTI的时域长度的物理下行控制信道。
可选地,所述终端使用所确定的下行控制信道接收DCI后还包括:
所述终端根据检测到的所述DCI执行相应的业务接收方式,包括:
所述终端在PDCCH中检测到本终端的DCI时,在首个短TTI进行业务接收;
和/或,
所述终端在PDCCH中检测到本终端的DCI时,在时域长度为1毫秒的TTI进行业务接收。
即:对于低时延终端,一部分1ms子帧执行PDCCH调度首个短TTI,另一部分1ms子帧执行PDCCH调度1msTTI的业务接收
可选地,所述SPDCCH在所在短TTI内与短物理下行共享信道SPDSCH按照以下任一种资源复用方式使用短TTI内的资源单元:时分复用、频分复用、码分复用、时频分复用;所述SPDSCH是指在短TTI内占用资源,且时域长度小于或等于所占用的短TTI的时域长度的物理下行共享信道。。
可选地,所述SPDCCH承载信息包含以下任一种或任几种:上行授权UL grant、下行授权DL grant、上下行联合授权UL and DL grant、单终端正确/错误反馈信息ACK/NACK、多终端正确/错误反馈信息ACK/NACK。
可选地,所述PDCCH和/或SPDCCH均与调度的下行数据信息在同一个短TTI中;
所述确定在第一下行控制信道调度范围外的短TTI中使用第二下行控制信道包括:
当短TTI的时域长度大于或等于PDCCH的时域长度时,确定在包含PDCCH的第一个短TTI之后的一个或多个短TTI中使用SPDCCH;当短TTI的时域长度小于PDCCH的时域长度时,确定在PDCCH区域之后的一个或多个短TTI使用SPDCCH。
其中,所述方法还可以包括:
所述终端在使用SPDCCH的短TTI中,接收短物理混合自动重传指示信道SPHICH,获得对短TTI的SPUSCH传输正确与否的反馈信息;所述SPHICH是指在短TTI内占用部分或全部资源单元,且时域长度小于或等于所占用的短TTI的时域长度的物理混合自动重传指示信道;所述SPUSCH是指在短TTI内占用部分或全部资源单元,且时域长度小于或等于所占用的短TTI的时域长度的物理上行共享信道;
所述SPHICH在SPDCCH占用的资源中打孔传输,或者SPHICH独立于SPDCCH占用的资源外使用部分资源传输。
其中,所述方法还可以包括:
所述终端在奇数的短TTI接收SPHICH,获得对奇数的短TTI的SPUSCH传输正确与否的反馈信息。
可选地,所述PDCCH和/或SPDCCH与调度的下行数据信息位于相同或不同短TTI中;
所述根据预定义或系统配置信息确定短TTI中使用的下行控制信道包括:
确定子帧中PDCCH所在TTI之后的每个短TTI不接收SPDCCH、或者部分TTI接收SPDCCH、或者所有短TTI都接收SPDCCH。
其中,所述方法还可以包括:
所述终端在不包含PDCCH的短TTI或PDCCH区域外的短TTI中接收SPHICH;当短TTI中有SPDCCH时,SPHICH在SPDCCH占用的资源中打孔传输,或者SPHICH独立于SPDCCH占用的资源外使用部分资源传输;当 短TTI中没有SPDCCH时,SPHICH独立于SPDSCH占用的资源外使用部分资源传输,或者承载对短TTI的SPUSCH传输正确与否的反馈信息与同一终端的下行数据联合编码后在SPDSCH中传输。
其中,所述根据预定义或系统配置信息确定短TTI中使用的下行控制信道可以包括:
当短TTI的时域长度为0.5毫秒时,确定不接收SPDCCH;根据所述PDCCH中DCI中预定的1bit确定所述SPDSCH占用偶数的短TTI还是奇数的短TTI;
当时域长度为1毫秒的子帧中含有x个短TTI时,根据所述SPDCCH或PDCCH中的DCI中预定的m个bit确定该SPDCCH或PDCCH所调度的数据位于其中一个短TTI或者其中多个短TTI,x为正整数,m≤x。
相应地,所述方法还可以包括:
所述终端当短TTI的时域长度为0.5毫秒时,在奇数的短TTI接收SPHICH,所述SPHICH仅承载对奇数的短TTI的SPUSCH传输正确与否的反馈信息;
当时域长度为1毫秒的子帧中含有x个短TTI时,在所述时域长度为1毫秒的子帧中所有短TTI或除第一个短TTI以外的短TTI使用所述SPHICH,所述SPHICH仅承载对所述时域长度为1毫秒的子帧中所有短TTI或除第一个短TTI以外的短TTI的SPUSCH传输正确与否的反馈信息。
下面用5个实施示例说明实施例一及实施例二。
实施示例1
当短TTI=0.5ms时,如图5所示,对于低时延终端,相当于以LTE系统帧结构中的时隙作为短TTI的基本长度时域单位。除了PDCCH、PSS/SSS、PBCH区域以外,其余资源频分复用。
其中,PDCCH可用于传统终端和低时延终端的调度,并且PDCCH不支持跨子帧/TTI调度。盲检PDCCH区域,通过不同C-RNTI(Cell Radio Network Temporary Identifier,小区无线网络临时标识),当传统终端检测到本终端的 DCI,则相应的PDSCH占用的是1ms子帧/TTI,当低时延终端检测到本终端的DCI,则相应的SPDSCH占用的是0.5ms的短TTI,即偶数的短TTI。通过DCI中的RA域区分各自使用的频域资源区域。对于传统终端,EPDCCH在传统终端区域可以使用,仅能调度传统终端,调度1ms子帧。
对于低时延终端,奇数的短TTI(即LTE系统的奇数时隙)使用SPDCCH。基站使用PDCCH调度DL偶数的短TTI,使用SPDCCH调度DL奇数的短TTI。SPDCCH仅用于0.5ms的奇数子帧的控制调度以及承载对SPUSCH的反馈信息。PDCCH和SPDCCH调度n+k的UL上行业务,k可以但不限于是2、4、8。
可选地,SPDCCH中的DCI格式与PDCCH调度低时延终端的DCI格式相同。
可选地,调度短TTI所使用RA资源分配的粒度RBG的大小不小于同等系统带宽下传统终端所使用的RBG大小。
可选地,相关技术中,传统终端区域资源分配根据相关技术中的传输块大小TBS配置表考虑PRB分配,低时延终端区域资源分配可能需要新的TBS配置表考虑PRB分配。新的TBS配置表的一种确定方式为:根据短TTI的时域长度相对于1ms的比例Y(0%<Y<100%),使用预定TBS配置表中的TBS乘以Y并向上或向下取整得到新的TBS配置表中的TBS;预定TBS配置表可以为相关技术中的TBS配置表。例如:相关技术中的TBS配置表部分截选如表1所示,此时短TTI=0.5ms,因此Y=50%,因此新的TBS配置表中对应于部分截选相关技术中的TBS配置表(表1)的部分如表2所示。
表1、相关技术中的TBS配置表
Figure PCTCN2016094388-appb-000001
表2、新的TBS配置表
Figure PCTCN2016094388-appb-000002
通过本实施示例的方案,对于短TTI=0.5ms的情况,在奇数的短TTI使用SPDCCH,使得每个短TTI均可以使用下行控制信道。同时可以将一次RTT时延相较于LTE系统减少0.5ms-4ms,取决于相应的处理时延是否与LTE相同或等比例减少一半。
实施示例2
当短TTI=0.5ms时,如图6所示,对于低时延终端,相当于以LTE系统帧结构中的时隙作为短TTI的基本长度时域单位。除了PDCCH、PSS/SSS、PBCH区域以外,其余资源频分复用。
其中,PDCCH可用于传统终端和低时延终端的调度,并且PDCCH支持跨子帧/TTI调度。终端盲检PDCCH区域,通过不同C-RNTI标识,当传统终端检测到本终端的DCI,则相应的PDSCH占用的是1ms子帧/TTI,当低时延终端检测到本终端的DCI,则相应的SPDSCH占用的是0.5ms子帧/TTI,此时DCI中增加区分偶数TTI/子帧(本TTI/子帧k)和奇数TTI/子帧(k+1TTI/子帧)的1bit标识比特域。根据DCI的标识指示,确定相应的SPDSCH占用的是偶数还是奇数的0.5ms短TTI。通过DCI中的RA域区分各自的使用的频域资源区域。对于传统终端,EPDCCH在传统终端区域可以使用,仅能调度传统终端,调度1ms子帧。
对于低时延终端,奇数的短TTI(即LTE系统的奇数时隙)使用SPHICH。 SPHICH仅承载对奇数的短TTI的SPUSCH传输正确与否的反馈信息。此时PHICH对传统终端的1ms子帧反馈以及对低时延终端在0.5ms的偶数TTI/子帧上对PUSCH反馈,SPHICH仅对低时延终端在0.5ms的奇数TTI/子帧上对PUSCH反馈。SPHICH独立于SPDSCH占用的资源外使用部分资源传输。
PDCCH调度n+k的UL上行业务且UL grant中也增加区分偶数TTI/子帧(包括本TTI/子帧及k TTI/子帧)和奇数TTI/子帧(k+1TTI/子帧)的1bit标识比特域,k可以但不限于为2、4、8。
可选地,SPDCCH中的DCI格式与PDCCH调度低时延终端的DCI格式相同。
可选地,相关技术中的终端区域资源分配根据相关技术中的传输块大小TBS配置表考虑PRB分配,低时延终端区域资源分配可能需要新的TBS配置表考虑PRB分配。
通过本实施示例的方案,对于短TTI=0.5ms的情况,通过PDCCH本子帧调度偶数TTI和跨子帧调度奇数TTI使得无需使用SPDCCH,仅在奇数TTI中使用SPHICH,使得控制信息占用总资源减少,资源利用率提升。相较于实施示例1可以将一次RTT时延相较于LTE系统减少0.5ms-4ms而言,本实施示例对应的RTT时延与实施示例1相比可能相同或多0.5ms。
实施示例3
如图7所示,在一个1ms子帧中支持可变长度的短TTI,PDCCH区域作为1ms子帧中一个短TTI,即1ms子帧中第一个短TTI是由legacy(传统)PDCCH区域构成,之后的legacy PDSCH区域使用频分方式供传统终端和低时延终端使用,其中低时延终端使用的资源区域为可变长度。可由legacy PDCCH新增DCI通知可变长度的短TTI pattern(模式)。例如使用bitmap(位图)方式,当0和1发生变化时,为短TTI边界,例如使用“00101001000101”指示图7中可变长度的每个短TTI的时域长度。
在低时延终端的资源区域中,多个时域长度不等的短TTI内SPDCCH与SPDSCH以时分复用、或频分复用、或码分复用、或时频分复用的方式使用 资源。例如,当短TTI为两个或三个OFDM符号长度(即:短TTI的时域长度等于两个或三个OFDM符号的时域长度之和)时,SPDCCH与SPDSCH以时分复用方式使用不同的OFDM符号;或者SPDCCH仅在该短TTI内与SPSCH以频分复用方式使用资源,而剩余OFDM符号资源由SPDSCH使用。当短TTI为单个OFDM符号长度时,SPDCCH与SPDSCH在短TTI内使用频分或码分资源复用方式,其中频分方式包括:以单个RE或X个RE为单位交织使用单个OFDM符号资源;或者SPDCCH使用全部或部分的偶数RE或偶数RE组,一个RE组包括X个RE,SPDSCH使用剩余RE;或者SPDCCH使用全部或部分奇数RE或奇数RE组,一个RE组包括X个RE,SPDSCH使用剩余RE。
可选地,所述可变长度的短TTI同时应用于上行子帧,即上行1ms子帧中每个短TTI的时域长度划分与下行1ms子帧中每个短TTI的时域长度划分一致。
可选地,对于SPUSCH传输正确与否的反馈信息承载在SPDCCH中或SPHICH中,所述SPHICH可以但不限于在SPDCCH占用的资源中打孔传输或在SPDCCH占用的资源外独立占用部分资源传输。
通过本实施示例所述的可变长度的短TTI实现方法,可以灵活划分相关技术中的子帧中多个时域长度不等的短TTI,保证不同业务类型或业务QoS(Quality of Service,服务质量)的数据包选择合适的短TTI进行传输,尤其适合数据包较小的业务突发传输。
实施示例4
如图8所示,在1ms子帧间支持可变长度的短TTI,使用CFI确定短TTI的时域长度。CFI总是在第一个OFDM上传输,可以最先获得。PDCCH区域作为1ms子帧中一个短TTI,即1ms子帧中第一个短TTI是由legacy PDCCH区域构成,之后的legacy PDSCH区域使用频分方式供传统终端和低时延终端使用,其中低时延终端使用的资源区域在不同的1ms子帧间时域长度可变。在一个1ms子帧内每个短TTI时域长度相同或近似相同。即CFI不改变时,为固定的短TTI,CFI改变时,短TTI也改变。
对于CFI=1时,该CFI所在1ms子帧内所有短TTI均执行TTI=1OFDM symbol(符号);对于CFI=2时,该CFI所在1ms子帧内所有短TTI均执行TTI=2OFDM symbol;对于CFI=3时,normal(普通)CP时,1ms子帧中由4个3OFDM符号长度的短TTI(即:短TTI为三个OFDM符号长度)和1个2OFDM符号长度的短TTI(即:短TTI为两个OFDM符号长度)组成;使用长CP时,1ms子帧中由4个3OFDM符号长度的短TTI组成。
在低时延终端的资源区域中,多个时域长度不等的短TTI内SPDCCH与SPDSCH以时分复用、或频分复用、或码分复用、或时频分复用的方式使用资源。例如,当短TTI为两个或三个OFDM符号长度时,SPDCCH与SPDSCH以时分复用方式使用不同的OFDM符号;或者SPDCCH仅在该短TTI内与SPSCH以频分复用方式使用资源,而剩余OFDM符号资源由SPDSCH使用。对于短TTI为单个OFDM符号长度时,SPDCCH与SPDSCH在短TTI内使用频分或码分资源复用方式,其中频分方式包括:以单个RE或X个RE为单位交织使用单个OFDM符号资源;或者SPDCCH使用全部或部分的偶数RE或偶数RE组,一个RE组包括X个RE,SPDSCH使用剩余RE;或者SPDCCH使用全部或部分奇数RE或奇数RE组,一个RE组包括X个RE,SPDSCH使用剩余RE。
可选地,所述可变长短的短TTI同时应用于上行子帧,即上行1ms子帧中每个短TTI的时域长度划分与下行1ms子帧中每个短TTI的时域长度划分一致。
可选地,对于SPUSCH传输正确与否的反馈信息承载在SPDCCH中或SPHICH中,所述SPHICH可以但不限于在SPDCCH占用的资源中打孔传输或在SPDCCH占用的资源外独立占用部分资源传输。
通过本实施示例所述的可变长度的短TTI实现方法,多个TTI的时域长度基本相同,节省实施示例3中的变长TTI信令通知开销,复用相关技术中的CFI信令完全做到不增加任何信令开销。可以灵活划分相关技术中的不同的1ms子帧间时域长度不等的短TTI,保证不同业务类型或业务QoS的数据包选择合适的短TTI进行传输,尤其适合数据包较小的业务突发传输。
实施示例5
在LTE帧结构中支持固定长度的短TTI。如图9所示,支持的短TTI的时域长度为2个OFDM符号。其中基站配置PDCCH区域作为1ms子帧中一个短TTI,即1ms子帧中第一个短TTI是由legacy PDCCH区域构成,之后的legacy PDSCH区域使用频分方式供传统终端和低时延终端使用,其中低时延终端使用的资源区域在不同的1ms子帧间时域长度相同,在一个1ms子帧内每个短TTI的时域长度也相同。可选地,此时为低时延设置固定的短TTI,不随时间改变。
在低时延终端的资源区域中,多个时域长度相同的短TTI内SPDCCH与SPDSCH以时分复用、或频分复用、或码分复用、或时频分复用的方式使用资源,如图9中所示其中频分复用和时分复用两种方式。例如,对于短TTI为两个OFDM符号长度时,SPDCCH与SPDSCH以时分复用方式分别使用第一个OFDM符号和第二个OFDM符号;或者SPDCCH仅在该短TTI内与SPDSCH以频分复用方式使用两个OFDM符号中的RE资源;或者仅在第一个OFDM符号频分使用RE资源而第二个OFDM符号资源由SPDSCH使用。另外,对于短TTI为3个或3个以上OFDM符号时,复用方式与上述类似;对于短TTI为1个OFDM符号长度时,SPDCCH与SPDSCH在短TTI内使用频分或码分资源复用方式,其中频分方式包括:以单个RE或X个RE为单位交织使用单个OFDM符号资源;或者SPDCCH使用全部或部分的偶数RE或偶数RE组,一个RE组包括X个RE,SPDSCH使用剩余RE;或者SPDCCH使用全部或部分奇数RE或奇数RE组,一个RE组包括X个RE,SPDSCH使用剩余RE。
可选地,所述固定长度的短TTI同时应用于上行子帧,即上行1ms子帧中短TTI的时域长度与下行1ms子帧中短TTI的时域长度相同。
可选地,对于SPUSCH传输正确与否的反馈信息承载在SPDCCH中或SPHICH中,所述SPHICH可以但不限于为在SPDCCH占用的资源中打孔传输或在SPDCCH占用的资源外独立占用部分资源传输。
通过本实施示例所述的固定长度的短TTI实现方法,每个TTI的时域长度相同,节省实施示例3和4中的变长TTI信令通知开销。适用于业务包大 小相对固定并使用短TTI进行传输的场景,实施简单,尤其适合数据包较小的业务突发传输。
实施例三、一种下行控制装置,设置于基站,如图10所示,包括:
第一确定模块31,设置成在第一下行控制信道和第二下行控制信道中确定至少一个下行控制信道,包括:确定在第一下行控制信道调度范围外的短传输时间间隔TTI中使用第二下行控制信道;或者根据预定义或系统配置信息确定短TTI中使用的下行控制信道;
发送模块32,设置成使用所确定的下行控制信道发送下行控制信息DCI。
可选地,所述预定义或系统配置信息指示所有短TTI使用所述第二下行控制信道的情况;所述所有TTI使用所述第二下行控制信道的情况至少包括以下之一:全部短TTI都使用第二下行控制信道、部分短TTI使用第二下行控制信道、全部短TTI都不使用第二下行控制信道。
可选地,所述部分短TTI使用第二下行控制信道至少包括以下情况之一:
除了首个或前P个短TTI不使用所述第二下行控制信道,其余短TTI都使用所述第二下行控制信道;
除了首个或前Q个短TTI不使用所述第二下行控制信道,其余短TTI部分使用所述第二下行控制信道;
首个短TTI使用所述第二下行控制信道并且后续短TTI部分使用所述第二下行控制信道;
P、Q均为大于1、小于R的整数;R是时域长度为1毫秒的TTI所包含的短TTI的个数。
可选地,所述短TTI的时域长度预定义或由信令通知;所述信令包括以下任一种或任几种:系统信息块SIB信息、无线资源控制RRC消息、物理层信令;所述物理层信令包括DCI和/或控制格式指示CFI。
可选地,所述第一下行控制信道为物理下行控制信道PDCCH,所述第二下行控制信道为短物理下行控制信道SPDCCH;所述短TTI为时域长度小于1毫秒的TTI;所述SPDCCH是指在短TTI内占用部分或全部资源单元,且 时域长度小于或等于所占用的短TTI的时域长度的物理下行控制信道。
可选地,所述DCI用于通知终端相应的业务接收方式,包括:当所述终端的DCI位于所述PDCCH中时,所述业务接收方式为在首个短TTI进行业务接收,和/或,在时域长度为1ms的TTI进行业务接收。
可选地,所述SPDCCH在所在短TTI内与短物理下行共享信道SPDSCH按照以下任一种资源复用方式使用短TTI内的资源单元:时分复用、频分复用、码分复用、时频分复用;所述SPDSCH是指在短TTI内占用部分或全部资源单元,且时域长度小于或等于所占用的短TTI的时域长度的物理下行共享信道。
可选地,当短TTI为单个OFDM符号长度时,SPDCCH与SPDSCH在短TTI内使用频分或码分复用的方式进行资源复用;其中频分方式包括:以单个资源单元RE或X个RE为单位交织使用单个OFDM符号资源,X为大于1的正整数;或者SPDCCH使用全部或部分的偶数RE或偶数RE组,一个RE组包括X个RE,SPDSCH使用剩余RE或RE组;或者SPDCCH使用全部或部分奇数RE或奇数RE组,一个RE组包括X个RE,SPDSCH使用剩余RE或RE组。
可选地,在短TTI内,在SPDCCH区域中,SPDCCH以短控制信道单元SCCE为粒度进行资源占用;SPDCCH区域内SCCE分布方式为以下任一种:时频分占用、交织占用、频分占用、时分占用、码分占用;
所述SCCE为时域长度小于或等于短TTI的时域长度的控制信道单元。
可选地,所述SPDCCH承载信息包含以下任一种或任几种:上行授权UL grant、下行授权DL grant、上下行联合授权UL and DL grant、单终端正确/错误反馈信息ACK/NACK、多终端正确/错误反馈信息ACK/NACK。
可选地,一个子帧中除PDCCH区域以外的资源由时延需求不同的终端按照频分复用方式使用;
或者,
不同子帧或无线帧中的资源由时延需求不同的终端按照时分复用方式使用。
所述时延需求不同的终端可以但不限于包括传统终端和低时延终端。
可选地,所述PDCCH和/或SPDCCH均与调度的下行数据信息在同一个短TTI中;
所述第一确定模块31确定在第一下行控制信道调度范围外的短TTI中使用第二下行控制信道包括:
所述第一确定模块31当短TTI的时域长度大于或等于PDCCH的时域长度时,确定在包含PDCCH的第一个短TTI之后的一个或多个短TTI中使用SPDCCH;当短TTI的时域长度小于PDCCH的时域长度时,确定在PDCCH区域之后的一个或多个短TTI使用SPDCCH。
可选地,所述发送模块32还设置成在使用SPDCCH的短TTI中,使用短物理混合自动重传指示信道SPHICH发送对短TTI的物理上行共享信道SPUSCH传输正确与否的反馈信息;所述SPHICH是指在短TTI内占用全部或部分资源单元,且时域长度小于或等于所占用的短TTI的时域长度的物理混合自动重传指示信道;所述SPUSCH是指在短TTI内占用全部或部分资源单元,且时域长度小于或等于所占用的短TTI的时域长度的物理上行共享信道;
所述SPHICH在所述SPDCCH占用的资源中打孔传输,或者所述SPHICH独立于所述SPDCCH占用的资源外使用部分资源传输。
可选地,调度短TTI所使用资源分配RA的粒度RBG的大小大于或等于同等系统带宽下调度时域长度为1毫秒的TTI所使用的RBG的大小(即传统终端所使用的RBG的大小)。
可选地,调度短TTI所使用的传输块大小TBS配置表的确定方式为:根据短TTI的时域长度相对于1毫秒的比例Y,0%<Y<100%,使用预定TBS配置表中的TBS乘以Y并向上或向下取整得到调度短TTI所使用的TBS配置表中的TBS。
可选地,当短TTI的时域长度为0.5毫秒时,PDCCH调度下行DL偶数的短TTI内的业务信道,SPDCCH调度DL奇数的短TTI内的业务信道;PDCCH和SPDCCH调度子帧n+k的上行UL业务,k为以下任一:2、4、8, n为当前子帧的编号。
可选地,所述发送模块32还设置成在奇数的短TTI使用SPHICH接收对奇数的短TTI的SPUSCH传输正确与否的反馈信息。
可选地,所述PDCCH和/或SPDCCH与调度的下行数据信息位于相同或不同短TTI中;
所述第一确定模块31根据预定义或系统配置信息确定短TTI中使用的下行控制信道包括:
所述第一确定模块31确定子帧中PDCCH所在TTI之后的每个短TTI不使用SPDCCH,或者部分TTI使用SPDCCH,或者所有短TTI都使用SPDCCH。
可选地,所述发送模块32还设置成在不包含PDCCH的短TTI或PDCCH区域外的短TTI中使用SPHICH;当短TTI中有所述SPDCCH时,所述SPHICH在SPDCCH占用的资源中打孔传输,或者所述SPHICH独立于SPDCCH占用的资源外使用部分资源传输;当短TTI中没有所述SPDCCH时,所述SPHICH独立于SPDSCH占用的资源外使用部分资源传输,或者承载对所述短TTI的SPUSCH传输正确与否的反馈信息与同一终端的下行数据联合编码后在所述SPDSCH中传输。
可选地,所述第一确定模块31根据预定义或系统配置信息确定短TTI中使用的下行控制信道包括:
所述第一确定模块31当短TTI的时域长度为0.5毫秒时,确定不使用SPDCCH;根据PDCCH中DCI中预定的1bit确定所述SPDSCH占用偶数的短TTI还是奇数的短TTI;
当时域长度为1毫秒的子帧中含有x个短TTI时,SPDCCH或PDCCH中的DCI中使用m个bit指示本SPDCCH或PDCCH所调度的数据位于其中一个短TTI或者其中多个短TTI,x为正整数,m≤x。
可选地,所述发送模块32还设置成当短TTI的时域长度为0.5毫秒时,在奇数的短TTI使用SPHICH,SPHICH仅承载对奇数的短TTI的SPUSCH传输正确与否的反馈信息;当时域长度为1毫秒的子帧中含有x个短TTI时,在所述时域长度为1毫秒的子帧中所有短TTI或除第一个短TTI以外的短TTI 使用SPHICH,SPHICH仅承载对所述时域长度为1毫秒的子帧中所有短TTI或除第一个短TTI以外的短TTI的SPUSCH传输正确与否的反馈信息。
实施例四、一种下行控制装置,设置于终端,如图11所示,包括:
第二确定模块41,设置成在第一下行控制信道和第二下行控制信道中确定至少一个下行控制信道,包括:确定在第一下行控制信道调度范围外的短传输时间间隔TTI中使用第二下行控制信道;或者根据预定义或系统配置信息确定短TTI中使用的下行控制信道;
接收模块42,设置成使用所确定的下行控制信道接收下行控制信息DCI。
可选地,所述预定义或系统配置信息指示所有短TTI使用所述第二下行控制信道的情况;所述所有TTI使用所述第二下行控制信道的情况至少包括以下之一:全部短TTI都使用第二下行控制信道、部分短TTI使用第二下行控制信道、全部短TTI都不使用第二下行控制信道。
可选地,所述部分短TTI使用第二下行控制信道至少包括以下情况之一:
除了首个或前P个短TTI不使用所述第二下行控制信道,其余短TTI都使用所述第二下行控制信道;
除了首个或前Q个短TTI不使用所述第二下行控制信道,其余短TTI部分使用所述第二下行控制信道;
首个短TTI使用所述第二下行控制信道并且后续短TTI部分使用所述第二下行控制信道;
P、Q均为大于1、小于R的整数;R是时域长度为1毫秒的TTI所包含的短TTI的个数。
可选地,所述短TTI的时域长度预定义或由信令通知;所述信令包括以下任一种或任几种:系统信息块SIB信息、无线资源控制RRC消息、物理层信令;所述物理层信令包括DCI和/或控制格式指示CFI。
可选地,所述第一下行控制信道为物理下行控制信道PDCCH,所述第二下行控制信道为短物理下行控制信道SPDCCH;所述短TTI为时域长度小于1毫秒的TTI;所述SPDCCH是指在短TTI内占用部分或全部资源单元,且 时域长度小于或等于所占用的短TTI的时域长度的物理下行控制信道。
可选地,所述的装置还包括:
执行模块,用于根据所述接收模块检测到的所述DCI执行相应的业务接收方式,包括:
当所述接收模块在PDCCH中检测到所在终端的DCI时,在首个短TTI进行业务接收;
和/或,
当所述接收模块在PDCCH中检测到所在终端的DCI时,在时域长度为1毫秒的TTI进行业务接收。
可选地,所述SPDCCH在所在短TTI内与短物理下行共享信道SPDSCH按照以下任一种资源复用方式使用短TTI内的资源单元:时分复用、频分复用、码分复用、时频分复用;所述SPDSCH是指在短TTI内占用部分或全部资源单元,且时域长度小于或等于所占用的短TTI的时域长度的物理下行共享信道。
可选地,所述SPDCCH承载信息包含以下任一种或任几种:上行授权UL grant、下行授权DL grant、上下行联合授权UL and DL grant、单终端正确/错误反馈信息ACK/NACK、多终端正确/错误反馈信息ACK/NACK。
可选地,所述PDCCH和/或SPDCCH均与调度的下行数据信息在同一个短TTI中;
所述第二确定模块41确定在第一下行控制信道调度范围外的短TTI中使用第二下行控制信道包括:
所述第二确定模块41当短TTI的时域长度大于或等于PDCCH的时域长度时,确定在包含PDCCH的第一个短TTI之后的一个或多个短TTI中使用SPDCCH;当短TTI的时域长度小于PDCCH的时域长度时,确定在PDCCH区域之后的一个或多个短TTI使用SPDCCH。
可选地,所述接收模块42还设置成在使用SPDCCH的短TTI中,接收短物理混合自动重传指示信道SPHICH,获得对短TTI的SPUSCH传输正确与否的反馈信息;所述SPHICH是指在短TTI内占用部分或全部资源单元, 且时域长度小于或等于所占用的短TTI的时域长度的物理混合自动重传指示信道;所述SPUSCH是指在短TTI内占用部分或全部资源单元,且时域长度小于或等于所占用的短TTI的时域长度的物理上行共享信道;
所述SPHICH在SPDCCH占用的资源中打孔传输,或者SPHICH独立于SPDCCH占用的资源外使用部分资源传输。
可选地,所述接收模块42还设置成在奇数的短TTI接收SPHICH,获得对奇数的短TTI的SPUSCH传输正确与否的反馈信息。
可选地,所述PDCCH和/或SPDCCH与调度的下行数据信息位于相同或不同短TTI中;
所述第二确定模块41根据预定义或系统配置信息确定短TTI中使用的下行控制信道包括:
所述第二确定模块41确定子帧中PDCCH所在TTI之后的每个短TTI不接收SPDCCH、或者部分TTI接收SPDCCH、或者所有短TTI都接收SPDCCH。
可选地,所述接收模块42还设置成在不包含PDCCH的短TTI或PDCCH区域外的短TTI中接收SPHICH;当短TTI中有SPDCCH时,SPHICH在SPDCCH占用的资源中打孔传输,或者SPHICH独立于SPDCCH占用的资源外使用部分资源传输;当短TTI中没有SPDCCH时,SPHICH独立于SPDSCH占用的资源外使用部分资源传输,或者承载对短TTI的SPUSCH传输正确与否的反馈信息与同一终端的下行数据联合编码后在SPDSCH中传输。
可选地,所述第二确定模块41根据预定义或系统配置信息确定短TTI中使用的下行控制信道包括:
所述第二确定模块41当短TTI的时域长度为0.5毫秒时,确定不接收SPDCCH;根据所述PDCCH中DCI中预定的1bit确定所述SPDSCH占用偶数的短TTI还是奇数的短TTI;
当时域长度为1毫秒的子帧中含有x个短TTI时,根据所述SPDCCH或PDCCH中的DCI中预定的m个bit确定该SPDCCH或PDCCH所调度的数据位于其中一个短TTI或者其中多个短TTI,x为正整数,m≤x。
可选地,所述接收模块42还设置成当短TTI的时域长度为0.5毫秒时, 在奇数的短TTI接收SPHICH,所述SPHICH仅承载对奇数的短TTI的SPUSCH传输正确与否的反馈信息;当时域长度为1毫秒的子帧中含有x个短TTI时,在所述时域长度为1毫秒的子帧中所有短TTI或除第一个短TTI以外的短TTI使用所述SPHICH,所述SPHICH仅承载对所述时域长度为1毫秒的子帧中所有短TTI或除第一个短TTI以外的短TTI的SPUSCH传输正确与否的反馈信息。
实施例三、一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述实施例一的方法。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。相应地,上述实施例中的模块/单元可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。本发明实施例不限制于任何特定形式的硬件和软件的结合。
工业实用性
本发明实施例所提出的下行控制方案可以解决包含较少OFDM符号的短TTI中的下行控制信道使用问题,可以在使用新粒度的短TTI的情况下相应的获得较短的RTT,保证低时延通信需求。

Claims (40)

  1. 一种下行控制方法,包括:
    基站在第一下行控制信道和第二下行控制信道中确定至少一个下行控制信道,包括:确定在第一下行控制信道调度范围外的短传输时间间隔TTI中使用第二下行控制信道;或者根据预定义或系统配置信息确定短TTI中使用的下行控制信道;
    所述基站使用所确定的下行控制信道发送下行控制信息DCI。
  2. 如权利要求1所述的方法,其中:
    所述预定义或系统配置信息指示所有短TTI使用所述第二下行控制信道的情况;所述所有TTI使用所述第二下行控制信道的情况至少包括以下之一:全部短TTI都使用第二下行控制信道、部分短TTI使用第二下行控制信道、全部短TTI都不使用第二下行控制信道。
  3. 如权利要求2所述的方法,其中,所述部分短TTI使用第二下行控制信道至少包括以下情况之一:
    除了首个或前P个短TTI不使用所述第二下行控制信道,其余短TTI都使用所述第二下行控制信道;
    除了首个或前Q个短TTI不使用所述第二下行控制信道,其余短TTI部分使用所述第二下行控制信道;
    首个短TTI使用所述第二下行控制信道并且后续短TTI部分使用所述第二下行控制信道;
    P、Q均为大于1、小于R的整数;R是时域长度为1毫秒的TTI所包含的短TTI的个数。
  4. 如权利要求1所述的方法,其中:
    所述短TTI的时域长度预定义或由信令通知;所述信令包括以下任一种或任几种:系统信息块SIB信息、无线资源控制RRC消息、物理层信令;所述物理层信令包括DCI和/或控制格式指示CFI。
  5. 如权利要求1~4中任一项所述的方法,其中:
    所述第一下行控制信道为物理下行控制信道PDCCH,所述第二下行控制信道为短物理下行控制信道SPDCCH;所述短TTI为时域长度小于1毫秒的TTI;所述SPDCCH是指在短TTI内占用部分或全部资源单元,且时域长度小于或等于所占用的短TTI的时域长度的物理下行控制信道。
  6. 如权利要求5所述的方法,其中:
    所述DCI用于通知终端相应的业务接收方式,包括:当所述终端的DCI位于所述PDCCH中时,所述业务接收方式为在首个短TTI进行业务接收,和/或,在时域长度为1毫秒的TTI进行业务接收。
  7. 如权利要求5所述的方法,其中:
    所述SPDCCH在所在短TTI内与短物理下行共享信道SPDSCH按照以下任一种资源复用方式使用短TTI内的资源单元:时分复用、频分复用、码分复用、时频分复用;所述SPDSCH是指在短TTI内占用部分或全部资源单元,且时域长度小于或等于所占用的短TTI的时域长度的物理下行共享信道。
  8. 如权利要求7所述的方法,其中:
    当短TTI为单个OFDM符号长度时,SPDCCH与SPDSCH在短TTI内使用频分或码分复用的方式进行资源复用;其中频分方式包括:以单个资源单元RE或X个RE为单位交织使用单个OFDM符号资源,X为大于1的正整数;或者SPDCCH使用全部或部分的偶数RE或偶数RE组,一个RE组包括X个RE,SPDSCH使用剩余RE或RE组;或者SPDCCH使用全部或部分奇数RE或奇数RE组,一个RE组包括X个RE,SPDSCH使用剩余RE或RE组。
  9. 如权利要求5所述的方法,其中:
    在短TTI内,在SPDCCH区域中,SPDCCH以短控制信道单元SCCE为粒度进行资源占用;SPDCCH区域内SCCE分布方式为以下任一种:时频分占用、交织占用、频分占用、时分占用、码分占用;
    所述SCCE为时域长度小于或等于短TTI的时域长度的控制信道单元。
  10. 如权利要求5所述的方法,其中:
    所述SPDCCH承载信息包含以下任一种或任几种:上行授权UL grant、下行授权DL grant、上下行联合授权UL and DL grant、单终端正确/错误反馈信息ACK/NACK、多终端正确/错误反馈信息ACK/NACK。
  11. 如权利要求5所述的方法,其中:
    一个子帧中除PDCCH区域以外的资源由时延需求不同的终端按照频分复用方式使用;
    或者,
    不同子帧或无线帧中的资源由时延需求不同的终端按照时分复用方式使用。
  12. 如权利要求5所述的方法,其中:
    所述PDCCH和/或SPDCCH均与调度的下行数据信息在同一个短TTI中;
    所述确定在第一下行控制信道调度范围外的短TTI中使用第二下行控制信道包括:
    当短TTI的时域长度大于或等于PDCCH的时域长度时,确定在包含PDCCH的第一个短TTI之后的一个或多个短TTI中使用SPDCCH;当短TTI的时域长度小于PDCCH的时域长度时,确定在PDCCH区域之后的一个或多个短TTI使用SPDCCH。
  13. 如权利要求12所述的方法,还包括:
    所述基站在使用SPDCCH的短TTI中,使用短物理混合自动重传指示信道SPHICH发送对短TTI的物理上行共享信道SPUSCH传输正确与否的反馈信息;所述SPHICH是指在短TTI内占用全部或部分资源单元,且时域长度小于或等于所占用的短TTI的时域长度的物理混合自动重传指示信道;所述SPUSCH是指在短TTI内占用全部或部分资源单元,且时域长度小于或等于所占用的短TTI的时域长度的物理上行共享信道;
    所述SPHICH在所述SPDCCH占用的资源中打孔传输,或者所述SPHICH 独立于所述SPDCCH占用的资源外使用部分资源传输。
  14. 如权利要求12所述的方法,其中:
    调度短TTI所使用资源分配RA的粒度RBG的大小大于或等于同等系统带宽下调度时域长度为1毫秒的TTI所使用的RBG的大小。
  15. 如权利要求12所述的方法,其中:
    调度短TTI所使用的传输块大小TBS配置表的确定方式为:根据短TTI的时域长度相对于1毫秒的比例Y,0%<Y<100%,使用预定TBS配置表中的TBS乘以Y并向上或向下取整得到调度短TTI所使用的TBS配置表中的TBS。
  16. 如权利要求12所述的方法,其中:
    当短TTI的时域长度为0.5毫秒时,PDCCH调度下行DL偶数的短TTI内的业务信道,SPDCCH调度DL奇数的短TTI内的业务信道;PDCCH和SPDCCH调度子帧n+k的上行UL业务,k为以下任一:2、4、8,n为当前子帧的编号。
  17. 如权利要求16所述的方法,还包括:
    所述基站在奇数的短TTI使用SPHICH发送对奇数的短TTI的SPUSCH传输正确与否的反馈信息。
  18. 如权利要求5所述的方法,其中:
    所述PDCCH和/或SPDCCH与调度的下行数据信息位于相同或不同短TTI中;
    所述根据预定义或系统配置信息确定短TTI中使用的下行控制信道包括:
    确定子帧中PDCCH所在TTI之后的每个短TTI不使用SPDCCH,或者部分TTI使用SPDCCH,或者所有短TTI都使用SPDCCH。
  19. 如权利要求18所述的方法,还包括:
    所述基站在不包含PDCCH的短TTI或PDCCH区域外的短TTI中使用SPHICH;当短TTI中有所述SPDCCH时,所述SPHICH在SPDCCH占用的资源中打孔传输,或者所述SPHICH独立于SPDCCH占用的资源外使用部分资源传输;当短TTI中没有所述SPDCCH时,所述SPHICH独立于SPDSCH占用的资源外使用部分资源传输,或者承载对所述短TTI的SPUSCH传输正确与否的反馈信息与同一终端的下行数据联合编码后在所述SPDSCH中传输。
  20. 如权利要求18所述的方法,其中,所述根据预定义或系统配置信息确定短TTI中使用的下行控制信道包括:
    当短TTI的时域长度为0.5毫秒时,确定不使用SPDCCH;根据PDCCH中DCI中预定的1bit确定所述SPDSCH占用偶数的短TTI还是奇数的短TTI;
    当时域长度为1毫秒的子帧中含有x个短TTI时,SPDCCH或PDCCH中的DCI中使用m个bit指示本SPDCCH或PDCCH所调度的数据位于其中一个短TTI或者其中多个短TTI,x为正整数,m≤x。
  21. 如权利要求20所述的方法,还包括:
    当短TTI的时域长度为0.5毫秒时,所述基站在奇数的短TTI使用SPHICH,所述SPHICH仅承载对奇数的短TTI的SPUSCH传输正确与否的反馈信息;
    当时域长度为1毫秒的子帧中含有x个短TTI时,所述基站在所述时域长度为1毫秒的子帧中所有短TTI或除第一个短TTI以外的短TTI使用SPHICH,所述SPHICH仅承载对所述时域长度为1毫秒的子帧中所有短TTI或除第一个短TTI以外的短TTI的SPUSCH传输正确与否的反馈信息。
  22. 一种下行控制方法,包括:
    终端在第一下行控制信道和第二下行控制信道中确定至少一个下行控制信道,包括:确定在第一下行控制信道调度范围外的短传输时间间隔TTI中使用第二下行控制信道;或者根据预定义或系统配置信息确定短TTI中使用的下行控制信道;
    所述终端使用所确定的下行控制信道接收下行控制信息DCI。
  23. 如权利要求22所述的方法,其中:
    所述预定义或系统配置信息指示所有短TTI使用所述第二下行控制信道的情况;所述所有TTI使用所述第二下行控制信道的情况至少包括以下之一:全部短TTI都使用第二下行控制信道、部分短TTI使用第二下行控制信道、全部短TTI都不使用第二下行控制信道。
  24. 如权利要求23所述的方法,其中,所述部分短TTI使用第二下行控制信道至少包括以下情况之一:
    除了首个或前P个短TTI不使用所述第二下行控制信道,其余短TTI都使用所述第二下行控制信道;
    除了首个或前Q个短TTI不使用所述第二下行控制信道,其余短TTI部分使用所述第二下行控制信道;
    首个短TTI使用所述第二下行控制信道并且后续短TTI部分使用所述第二下行控制信道;
    P、Q均为大于1、小于R的整数;R是时域长度为1毫秒的TTI所包含的短TTI的个数。
  25. 如权利要求22所述的方法,其中:
    所述短TTI的时域长度预定义或由信令通知;所述信令包括以下任一种或任几种:系统信息块SIB信息、无线资源控制RRC消息、物理层信令;所述物理层信令包括DCI和/或控制格式指示CFI。
  26. 如权利要求22~25中任一项所述的方法,其中:
    所述第一下行控制信道为物理下行控制信道PDCCH,所述第二下行控制信道为短物理下行控制信道SPDCCH;所述短TTI为时域长度小于1毫秒的TTI;所述SPDCCH是指在短TTI内占用部分或全部资源单元,且时域长度小于或等于所占用的短TTI的时域长度的物理下行控制信道。
  27. 如权利要求26所述的方法,其中,所述终端使用所确定的下行控制 信道接收DCI后还包括:
    所述终端根据检测到的所述DCI执行相应的业务接收方式,包括:
    所述终端在PDCCH中检测到本终端的DCI时,在首个短TTI进行业务接收;
    和/或,
    所述终端在PDCCH中检测到本终端的DCI时,在时域长度为1毫秒的TTI进行业务接收。
  28. 如权利要求26所述的方法,其中:
    所述SPDCCH在所在短TTI内与短物理下行共享信道SPDSCH按照以下任一种资源复用方式使用短TTI内的资源单元:时分复用、频分复用、码分复用、时频分复用;所述SPDSCH是指在短TTI内占用部分或全部资源单元,且时域长度小于或等于所占用的短TTI的时域长度的物理下行共享信道。
  29. 如权利要求26所述的方法,其中:
    所述SPDCCH承载信息包含以下任一种或任几种:上行授权UL grant、下行授权DL grant、上下行联合授权UL and DL grant、单终端正确/错误反馈信息ACK/NACK、多终端正确/错误反馈信息ACK/NACK。
  30. 如权利要求26所述的方法,其中:
    所述PDCCH和/或SPDCCH均与调度的下行数据信息在同一个短TTI中;
    所述确定在第一下行控制信道调度范围外的短TTI中使用第二下行控制信道包括:
    当短TTI的时域长度大于或等于PDCCH的时域长度时,确定在包含PDCCH的第一个短TTI之后的一个或多个短TTI中使用SPDCCH;当短TTI的时域长度小于PDCCH的时域长度时,确定在PDCCH区域之后的一个或多个短TTI使用SPDCCH。
  31. 如权利要求30所述的方法,还包括:
    所述终端在使用SPDCCH的短TTI中,接收短物理混合自动重传指示信道SPHICH,获得对短TTI的SPUSCH传输正确与否的反馈信息;所述SPHICH是指在短TTI内占用部分或全部资源单元,且时域长度小于或等于所占用的短TTI的时域长度的物理混合自动重传指示信道;所述SPUSCH是指在短TTI内占用部分或全部资源单元,且时域长度小于或等于所占用的短TTI的时域长度的物理上行共享信道;
    所述SPHICH在SPDCCH占用的资源中打孔传输,或者SPHICH独立于SPDCCH占用的资源外使用部分资源传输。
  32. 如权利要求31所述的方法,还包括:
    所述终端在奇数的短TTI接收SPHICH,获得对奇数的短TTI的SPUSCH传输正确与否的反馈信息。
  33. 如权利要求26所述的方法,其中:
    所述PDCCH和/或SPDCCH与调度的下行数据信息位于相同或不同短TTI中;
    所述根据预定义或系统配置信息确定短TTI中使用的下行控制信道包括:
    确定子帧中PDCCH所在TTI之后的每个短TTI不接收SPDCCH、或者部分TTI接收SPDCCH、或者所有短TTI都接收SPDCCH。
  34. 如权利要求33所述的方法,还包括:
    所述终端在不包含PDCCH的短TTI或PDCCH区域外的短TTI中接收SPHICH;当短TTI中有SPDCCH时,所述SPHICH在SPDCCH占用的资源中打孔传输,或者SPHICH独立于SPDCCH占用的资源外使用部分资源传输;当短TTI中没有SPDCCH时,所述SPHICH独立于SPDSCH占用的资源外使用部分资源传输,或者承载对短TTI的SPUSCH传输正确与否的反馈信息与同一终端的下行数据联合编码后在SPDSCH中传输。
  35. 如权利要求33所述的方法,其中,所述根据预定义或系统配置信息确定短TTI中使用的下行控制信道包括:
    当短TTI的时域长度为0.5毫秒时,确定不接收SPDCCH;根据所述PDCCH中DCI中预定的1bit确定所述SPDSCH占用偶数的短TTI还是奇数的短TTI;
    当时域长度为1毫秒的子帧中含有x个短TTI时,根据所述SPDCCH或PDCCH中的DCI中预定的m个bit确定该SPDCCH或PDCCH所调度的数据位于其中一个短TTI或者其中多个短TTI,x为正整数,m≤x。
  36. 如权利要求35所述的方法,还包括:
    当短TTI的时域长度为0.5毫秒时,所述终端在奇数的短TTI接收SPHICH,所述SPHICH仅承载对奇数的短TTI的SPUSCH传输正确与否的反馈信息;
    当时域长度为1毫秒的子帧中含有x个短TTI时,所述终端在所述时域长度为1毫秒的子帧中所有短TTI或除第一个短TTI以外的短TTI使用所述SPHICH,所述SPHICH仅承载对所述时域长度为1毫秒的子帧中所有短TTI或除第一个短TTI以外的短TTI的SPUSCH传输正确与否的反馈信息。
  37. 一种下行控制装置,设置于基站,包括:
    第一确定模块,设置成在第一下行控制信道和第二下行控制信道中确定至少一个下行控制信道,包括:确定在第一下行控制信道调度范围外的短传输时间间隔TTI中使用第二下行控制信道;或者根据预定义或系统配置信息确定短TTI中使用的下行控制信道;
    发送模块,设置成使用所确定的下行控制信道发送下行控制信息DCI。
  38. 如权利要求37所述的装置,其中:
    所述第一下行控制信道为物理下行控制信道PDCCH,所述第二下行控制信道为短物理下行控制信道SPDCCH;所述短TTI为时域长度小于1毫秒的TTI;所述SPDCCH是指在短TTI内占用部分或全部资源单元,且时域长度小于或等于所占用的短TTI的时域长度的物理下行控制信道。
  39. 一种下行控制装置,设置于终端,包括:
    第二确定模块,设置成在第一下行控制信道和第二下行控制信道中确定至少一个下行控制信道,包括:确定在第一下行控制信道调度范围外的短传输时间间隔TTI中使用第二下行控制信道;或者根据预定义或系统配置信息确定短TTI中使用的下行控制信道;
    接收模块,设置成使用所确定的下行控制信道接收下行控制信息DCI。
  40. 如权利要求39所述的装置,其中:
    所述第一下行控制信道为物理下行控制信道PDCCH,所述第二下行控制信道为短物理下行控制信道SPDCCH;所述短TTI为时域长度小于1毫秒的TTI;所述SPDCCH是指在短TTI内占用部分或全部资源单元,且时域长度小于或等于所占用的短TTI的时域长度的物理下行控制信道。
PCT/CN2016/094388 2015-09-18 2016-08-10 一种下行控制方法及装置 WO2017045496A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/761,074 US10873931B2 (en) 2015-09-18 2016-08-10 Downlink control method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510599120.2 2015-09-18
CN201510599120.2A CN106550459B (zh) 2015-09-18 2015-09-18 一种下行控制方法及装置

Publications (1)

Publication Number Publication Date
WO2017045496A1 true WO2017045496A1 (zh) 2017-03-23

Family

ID=58288506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/094388 WO2017045496A1 (zh) 2015-09-18 2016-08-10 一种下行控制方法及装置

Country Status (3)

Country Link
US (1) US10873931B2 (zh)
CN (1) CN106550459B (zh)
WO (1) WO2017045496A1 (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017049531A1 (zh) * 2015-09-24 2017-03-30 华为技术有限公司 数据传输方法及装置
US10873420B2 (en) * 2015-10-07 2020-12-22 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and terminal for data transmission
DK3372034T3 (da) * 2015-11-03 2020-12-21 Ericsson Telefon Ab L M Fremgangsmåder og indretning til planlægning i uplink
MY198116A (en) * 2015-12-18 2023-08-04 Fraunhofer Ges Forschung Data signal transmission in a wireless communication system with reduced end-to-end latency
WO2017122959A1 (en) * 2016-01-13 2017-07-20 Lg Electronics Inc. Method and user equipment for receiving downlink channel, and method and base station for transmitting downlink channel
JP6439883B2 (ja) * 2016-01-26 2018-12-19 ソニー株式会社 端末装置、基地局装置および通信方法
WO2017132910A1 (zh) * 2016-02-03 2017-08-10 华为技术有限公司 一种随机接入的方法、装置、基站及ue
AU2017214892A1 (en) * 2016-02-03 2018-07-12 Sony Corporation Wireless communication device, communication method, computer program, and wireless communication system
CN107154837B (zh) * 2016-03-03 2018-03-23 上海朗帛通信技术有限公司 一种降低无线通信中的延迟的方法和装置
US20170289985A1 (en) 2016-04-01 2017-10-05 Mediatek Inc. Wireless Communication System Design
CN107371272B (zh) * 2016-05-13 2022-04-29 中兴通讯股份有限公司 下行控制信息的传输方法、装置及系统
CN107872415B (zh) * 2016-09-23 2022-07-15 中兴通讯股份有限公司 一种数据传输方法及装置
CN114666837A (zh) * 2016-09-30 2022-06-24 瑞典爱立信有限公司 用于urllc通信的方法和装置
US10897776B2 (en) * 2016-11-01 2021-01-19 Apple Inc. Downlink control information design with shorter TTI
US20180270797A1 (en) * 2017-03-14 2018-09-20 Kt Corporation Method of transmitting and receiving downlink channel in short tti frame structure and apparatus thereof
CN108810991B (zh) * 2017-05-02 2021-12-28 华为技术有限公司 子载波间隔类型的确定方法、装置
CN108811150B (zh) * 2017-05-05 2023-04-07 中兴通讯股份有限公司 一种信息传输方法及装置
US10624072B2 (en) * 2017-06-10 2020-04-14 Qualcomm Incorporated Shortened transmission time interval (STTI) configuration for low latency communications
CN109218244B (zh) * 2017-07-04 2022-04-26 展讯通信(上海)有限公司 数据传输方法、装置、用户终端及计算机可读存储介质
CN109309951A (zh) * 2017-07-28 2019-02-05 珠海市魅族科技有限公司 低延时业务控制信道发送方法、终端及基站
CN109688623B (zh) * 2017-10-18 2023-03-31 中国电信股份有限公司 无线帧结构及其配置方法和配置装置及物理信道结构
US11457472B2 (en) * 2017-12-18 2022-09-27 Samsung Electronics Co., Ltd. Method and apparatus for initial access block on stand-alone NR unlicensed spectrum
AU2018430965B2 (en) * 2018-07-05 2024-05-23 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Control information transmission method and apparatus, resource pool configuration method and apparatus, and communication device
WO2021019276A1 (en) * 2019-07-26 2021-02-04 Telefonaktiebolaget Lm Ericsson (Publ) Dual-connectivity single uplink schemes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102017693A (zh) * 2008-02-29 2011-04-13 株式会社Ntt都科摩 移动通信系统、基站装置、用户装置以及方法
US20140226607A1 (en) * 2011-09-21 2014-08-14 Nokia Solutions And Networks Oy Apparatus and Method for Communication
EP2816858A1 (en) * 2013-06-17 2014-12-24 Alcatel Lucent Base station and method of operating a base station
CN104620629A (zh) * 2012-09-12 2015-05-13 华为技术有限公司 用于自适应发送时间间隔(tti)结构的系统和方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6967970B2 (en) * 2001-10-19 2005-11-22 Interdigital Technology Corporation User equipment having improved power savings during full and partial DTX modes of operation
JP3594086B2 (ja) * 2002-02-08 2004-11-24 ソニー株式会社 移動体通信における情報多重方法、伝送フォーマット組合せ識別子のデコード方法および装置、移動局装置、基地局装置および移動体通信システム
JP4844751B2 (ja) * 2007-03-30 2011-12-28 日本電気株式会社 ネットワークリソース管理システム、方法及び無線制御装置
WO2009132204A2 (en) * 2008-04-24 2009-10-29 Interdigital Patent Holdings, Inc. Method and apparatus for harq autonomous retransmissions
JP2011217058A (ja) * 2010-03-31 2011-10-27 Sony Corp 通信制御装置、通信制御方法、プログラム、端末装置および無線通信システム
US9705654B2 (en) * 2011-11-08 2017-07-11 Apple Inc. Methods and apparatus for an extensible and scalable control channel for wireless networks
US9635658B2 (en) * 2012-02-27 2017-04-25 Samsung Electronics Co., Ltd. Adaptation of control signaling transmissions to variations in respective resources
EP2635082A1 (en) * 2012-02-29 2013-09-04 Panasonic Corporation Dynamic subframe bundling
TW201446019A (zh) * 2013-02-07 2014-12-01 Interdigital Patent Holdings 低潛時毫米波(mmw)回載系統實體層(phy)設計
WO2014189429A1 (en) * 2013-05-21 2014-11-27 Telefonaktiebolaget L M Ericsson (Publ) Improved tti switching
US9844072B2 (en) * 2014-09-26 2017-12-12 Qualcomm Incorporated Ultra-low latency LTE uplink frame structure
WO2016064048A1 (en) * 2014-10-21 2016-04-28 Lg Electronics Inc. Method for monitoring downlink control channel in wireless communication system and apparatus for the same
US10560245B2 (en) * 2014-10-21 2020-02-11 Lg Electronics Inc. Data transmission/reception method in wireless communication system that supports low latency, and apparatus therefor
WO2016072570A1 (ko) * 2014-11-04 2016-05-12 엘지전자 주식회사 무선통신 시스템의 특정 프레임에서 서비스 별로 데이터를 수신하는 방법 및 이를 위한 장치
US9814040B2 (en) * 2014-11-21 2017-11-07 Qualcomm Incorporated UL/DL waveform and numerology design for low latency communication
CN112217622B (zh) * 2015-02-11 2024-09-20 苹果公司 使用统一的灵活5g空中接口的设备、系统和方法
US20180192420A1 (en) * 2015-07-02 2018-07-05 Nokia Solutions And Networks Oy Method, apparatus and system
WO2017023352A1 (en) * 2015-08-06 2017-02-09 Intel IP Corporation Performing mission critical communications at a user equipment (ue)
EP3324693B1 (en) * 2015-08-12 2020-10-07 Huawei Technologies Co., Ltd. Data transmission method, apparatus and computer-readable storage medium
JP7030686B2 (ja) * 2016-04-08 2022-03-07 株式会社Nttドコモ 端末、基地局、無線通信方法及びシステム
CN109075894B (zh) * 2016-05-09 2021-01-29 华为技术有限公司 一种数据传输的方法及装置
WO2018097586A1 (en) * 2016-11-22 2018-05-31 Samsung Electronics Co., Ltd. Method and apparatus for multiplexing uplink channels in wireless cellular communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102017693A (zh) * 2008-02-29 2011-04-13 株式会社Ntt都科摩 移动通信系统、基站装置、用户装置以及方法
US20140226607A1 (en) * 2011-09-21 2014-08-14 Nokia Solutions And Networks Oy Apparatus and Method for Communication
CN104620629A (zh) * 2012-09-12 2015-05-13 华为技术有限公司 用于自适应发送时间间隔(tti)结构的系统和方法
EP2816858A1 (en) * 2013-06-17 2014-12-24 Alcatel Lucent Base station and method of operating a base station

Also Published As

Publication number Publication date
US10873931B2 (en) 2020-12-22
CN106550459B (zh) 2020-03-13
CN106550459A (zh) 2017-03-29
US20180310282A1 (en) 2018-10-25

Similar Documents

Publication Publication Date Title
WO2017045496A1 (zh) 一种下行控制方法及装置
US12081328B2 (en) Offset parameters for uplink control information
US11012999B2 (en) Method and apparatus for indicating time domain resource allocation of data transmission in a wireless communication system
CN115225232B (zh) 使用时分双工方案的无线通信系统的用户设备及操作方法
US10271316B2 (en) User equipments, base stations and methods
US12137443B2 (en) Terminal and communication method
CN107027184B (zh) 一种下行控制信息传输方法及装置
US11140713B2 (en) Preemptive retransmissions on Listen-Before-Talk cells
CN112491522B (zh) 在无线通信系统中传输用于终端的控制信道的方法和装置
WO2018103702A1 (zh) 一种上行信息处理的方法及装置
WO2017157181A1 (zh) 一种资源调度和分配的方法和装置
CN110536464A (zh) 一种传输方法、装置、通信节点及介质
CN114175830A (zh) 在无线通信系统中发送和接收物理上行链路共享信道(pusch)的方法、装置和系统
EP3186914B1 (en) Communications device and methods
WO2013077633A1 (ko) 무선 통신 시스템에서 ack/nack 전송 방법 및 장치
WO2010133043A1 (zh) 多子帧调度方法、系统及终端、基站
US20190052414A1 (en) Multiplexing mechanism for uplink control information
US20190053206A1 (en) Control channel monitoring
WO2013071754A1 (zh) 下行控制信息传输方法和系统
KR20200036995A (ko) Nr v2x 시스템을 위한 harq 동작을 수행하는 방법 및 장치
CN115066964A (zh) 用于发送网络协作通信的控制信息的方法和设备
CN107294897A (zh) 下行信息发送、接收方法及装置
WO2016189464A1 (en) Systems and methods for downlink scheduling that mitigate pdcch congestion
CN113273271A (zh) Nr-u中的逻辑信道优先级排序的增强
WO2012134115A2 (ko) Tdd 기반 무선 통신 시스템에서 mbsfn 서브프레임을 이용한 통신 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16845610

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15761074

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16845610

Country of ref document: EP

Kind code of ref document: A1