WO2017043115A1 - Grossite ceramics, kiln equipment using same, and method for manufacturing grossite ceramics - Google Patents
Grossite ceramics, kiln equipment using same, and method for manufacturing grossite ceramics Download PDFInfo
- Publication number
- WO2017043115A1 WO2017043115A1 PCT/JP2016/059826 JP2016059826W WO2017043115A1 WO 2017043115 A1 WO2017043115 A1 WO 2017043115A1 JP 2016059826 W JP2016059826 W JP 2016059826W WO 2017043115 A1 WO2017043115 A1 WO 2017043115A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature
- ceramic
- ceramics
- grosite
- dimension
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/44—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
Definitions
- the present invention relates to a grosite ceramic, a kiln tool using the same, and a method for producing the grosite ceramic.
- Non-Patent Document 1 discloses a ceramic containing glocyte having a thermal expansion coefficient ⁇ of 3.9 ⁇ 10 ⁇ 6 / K when heated from 20 ° C. to 800 ° C. (Table 3).
- Patent Document 1 includes calcium aluminate containing a main phase of CaAl 4 O 7 and a subphase of CaAl 2 O 4 , and has a temperature range of about 25 ⁇ 10 ⁇ 7 / 8 over a temperature range of about 27 ° C. to about 800 ° C.
- Patent Document 2 discloses low melting points such as ZrO 2 , K 2 O, Li 2 O, B 2 O 3 , CaF 2 , MgO, TiO 2 , ZnO, SnO, SrO, Y 2 O 3 , Fe 2 O 3 , and BaO. It is described that the thermal expansion of ceramics containing grosite is reduced by adding an additive for crystallization.
- Non-patent document 1 describes a ceramic containing grosite (hereinafter also referred to as “glossite ceramic”), which has a high thermal expansion coefficient and insufficient spalling resistance.
- glosssite ceramic a ceramic containing grosite
- the gloccite ceramics composed of calcium aluminate containing a CaAl 4 O 7 main phase and a CaAl 2 O 4 subphase described in Patent Document 1 has CaAl 2 O 4 less CaAl 4 O 7 than CaAl 4 O 7. Since it is stable and weak against deflection due to high temperature, it was difficult to repeatedly use it at high temperature.
- the grosite ceramics having a low thermal expansion coefficient with an additive for forming a low-melting-point composition has a low creep property at high temperatures and is easily bent or softened. There was concern about a decrease in high-temperature strength, and it was not suitable for practical use as a kiln tool for firing electronic components.
- an object of the present invention is to provide a grosite ceramic that can eliminate the various disadvantages of the above-described prior art, a kiln tool using the same, and a method for producing the grosite ceramic.
- the present invention provides a grosite ceramic having a coefficient of thermal expansion of not more than 2.0 ⁇ 10 ⁇ 6 / K measured from 27 ° C. to 300 ° C. in an air atmosphere.
- the present invention provides a kiln tool using the above-mentioned grosite ceramics.
- the present invention is a preferred method for producing the above-mentioned grosite ceramics, A mixed powder of alumina particles having a volume cumulative particle size D 50 of 5 ⁇ m or less and a calcium carbonate particle having a volume cumulative particle size D 50 of 25 ⁇ m or less measured by a laser diffraction / scattering particle size distribution measurement method.
- the present invention provides a method for producing a glossite ceramic, comprising a step of molding and firing the obtained molded body at a temperature of 1450 ° C. or higher.
- the glossite ceramic of the present invention has a low degree of thermal expansion at a high temperature and has a high spalling resistance. Such a glossite ceramic of the present invention can withstand repeated thermal cycles with severe temperature rise and cooling conditions and can be used in the firing process of electronic components for a long period of time. Therefore, according to the kiln tool of the present invention using the glossite ceramic of the present invention, the running cost can be reduced and the yield of electronic parts can be improved. Moreover, the manufacturing method of the glocytic ceramics of this invention can manufacture said glocytic ceramics efficiently.
- FIG. 1 is an X-ray diffraction chart of the glossite ceramic obtained in Example 1.
- FIG. 2 is a dimension-temperature graph obtained by thermomechanical analysis of the globite ceramic obtained in Example 1.
- FIG. 3 is a photomicrograph of the cross section of the glossite ceramic obtained in Example 1, and is a photo used to measure the number and length of microcracks.
- FIG. 4 is a photomicrograph of the cross section of the grosite ceramic obtained in Example 1, and is a photograph used for measuring the crystal grain size.
- FIG. 5 is a dimension-temperature graph obtained by thermomechanical analysis of the globite ceramics obtained in Example 3.
- FIG. 6 is a schematic diagram illustrating a method for measuring spalling resistance.
- the composition of calcium aluminate in the glossite ceramic of the present invention is substantially a CaAl 4 O 7 single phase.
- CaAl 4 O 7 is more stable than CaAl 2 O 4 , is resistant to high temperature deflection, and can be used repeatedly at high temperatures.
- the grosite ceramic of the present invention is repeatedly used at a higher temperature than when CaAl 2 O 4 is contained as a subphase. It can use suitably for uses, such as a kiln tool.
- CaAl 2 O 4 having high solubility in water can make the grosite ceramic of the present invention easy to handle in various other applications.
- the glow site ceramics of the present invention is substantially free of CaAl 2 O 4.
- powder X-ray diffraction measurement is usually performed.
- I B / I A in Gros site ceramic of the present invention the smaller well, preferably 0.01 or less, more preferably 0.005 or less, 0.001 or less Is most preferred. It is preferable from the standpoint of ease of quality control As the lower limit of I B / I A to 0.0004 or more.
- Gro site ceramics value of I B / I A is equal to or less than the upper limit described above, in the manufacturing method of Gros sites ceramic to be described later, by adjusting the ratio of the alumina particles and calcium carbonate particles and the firing conditions of the mixed powder It can be obtained by adjusting or the like.
- One characteristic of the glossite ceramics of the present invention is that the degree of thermal expansion when heated from room temperature to a relatively low specific temperature is low.
- the present inventors examined the relationship between the grosite ceramics in which calcium aluminate is composed of a CaAl 4 O 7 single phase and thermal expansion at a high temperature (eg, 800 ° C. or higher). As a result, it has been found that a low degree of thermal expansion to a relatively low temperature is important for reducing the degree of thermal expansion at a high temperature.
- the glossite ceramic of the present invention has a coefficient of thermal expansion from 27 ° C. to 300 ° C. of 2.0 ⁇ 10 ⁇ 6 / K or less as measured in an air atmosphere.
- the glow site ceramics of the present invention can reduce the thermal expansion coefficient at high temperature, and become high in spalling resistance.
- the coefficient of thermal expansion from 27 ° C. to 300 ° C. measured in the atmospheric atmosphere of the grosite ceramic is preferably 1.5 ⁇ 10 ⁇ 6 / K or less, and more preferably 1.0 ⁇ 10 ⁇ 6 / K or less, particularly preferably 0.5 ⁇ 10 ⁇ 6 / K or less.
- the lower limit of the thermal expansion coefficient is preferably ⁇ 10.0 ⁇ 10 ⁇ 6 / K or more from the viewpoint of fracture strength. This thermal expansion coefficient is a linear expansion coefficient, and can be measured by the method described in Examples described later.
- the grosite ceramic of the present invention has a specific dimension-temperature graph obtained by thermomechanical analysis (TMA). It has the shape of Specifically, in the grosite ceramic of the present invention, in a thermomechanical analysis when heated in an air atmosphere, a temperature region in which the size decreases is observed in the shape of the obtained size-temperature graph, Alternatively, a plateau temperature region where the dimensions do not change substantially is observed. Thereby, the thermal expansion coefficient at a high temperature of the glossite ceramic can be more reliably lowered, and the spalling resistance can be improved.
- TMA thermomechanical analysis
- Such a temperature range is more preferably observed in a thermomechanical analysis when the grosite ceramic is heated from 27 ° C. to 600 ° C. in an air atmosphere, and a thermomechanical machine when heated from 27 ° C. to 300 ° C. It is particularly preferred to be observed in the analysis.
- the temperature range where the dimension decreases is the area where the slope of the graph has decreased with respect to the dimension before the test, and a plateau temperature range where the dimension does not change substantially.
- the term “region” refers to a region in which the dimensional variation due to temperature variation is smaller than the pre-test size.
- the ratio to the previous dimension L ( ⁇ L / L, unit:%) is the vertical axis.
- the temperature region in which the dimension decreases refers to a region where a dimensional decrease of more than 0.05% is observed with respect to the dimension L before the test.
- the plateau temperature range in which the dimensions do not substantially change is that the thermal expansion amount (absolute amount of elongation or shrinkage
- the difference between the lowest temperature T L and the highest temperature T H is preferably 100 ° C. or higher, and more preferably 150 ° C. or higher.
- the upper limit of the temperature difference (T H ⁇ T L ) may be 500 ° C. or less from the viewpoint of the availability of the grosite ceramics.
- the difference (T ′ H ⁇ T ′ L ) between the lowest temperature T ′ L and the highest temperature T ′ H in one “plateau temperature region in which the dimensions do not substantially change” is the coefficient of thermal expansion. From the viewpoint of further reducing the temperature, it is preferably 100 ° C. or higher, more preferably 150 ° C. or higher. As the upper limit of this temperature difference (T ′ H ⁇ T ′ L ), 500 ° C. or less can be mentioned from the viewpoint of availability of grosite ceramics.
- the obtained dimension-temperature graph shows a convex curve toward the direction in which the dimension decreases.
- it has a plateau temperature range in which the dimension does not substantially change and a temperature range in which the subsequent dimension increases.
- the dimension-temperature graph of the grosite ceramic of the present invention is a convex curve toward the direction in which the dimension decreases in the thermomechanical analysis when heated from 27 ° C. to 600 ° C., or It has a plateau temperature region in which the dimension does not substantially change and a temperature region in which the subsequent dimension increases.
- the dimension-temperature graph after a dimensional decrease of more than 0.05% with respect to the pre-test dimension L is observed, the dimensional increase with respect to the pre-test dimension L is less than 0.05%. Observed.
- the temperature at which the dimension decreases most in the range of 27 to 600 ° C. is also called the inflection point.
- the dimension reduction at the inflection point is preferably 0.06% or more with respect to the dimension L before the test from the viewpoint of enhancing the effect of the present invention, and is preferably 1% or less from the viewpoint of the ease of manufacturing of the grosite ceramics. Further, the inflection point in this case is preferably observed within a range of 100 ° C. or higher and 600 ° C. or lower, and more preferably observed within a range of 150 ° C. or higher and 500 ° C. or lower.
- a region where the thermal expansion amount (absolute amount of elongation or shrinkage
- the temperature at which the transition from the region where the thermal expansion amount is 0.05% or less to the region where it exceeds 0.05% occurs is preferably 250 ° C. or more and 600 ° C. or less, and 300 ° C. or more and 450 ° C. The following is more preferable.
- hysteresis is observed in the obtained dimension-temperature graph in the thermomechanical analysis when heated from 27 ° C. to 800 ° C. in the atmosphere and then cooled in this temperature range. It is preferable.
- This hysteresis means that the TMA curve during temperature rise does not match the TMA curve during cooling.
- the inventors of the present invention show that the glossite ceramic of the present invention in which hysteresis is observed in the dimension-temperature graph can further reduce the thermal expansion when heated to a high temperature and has high spalling resistance. Found out.
- the difference in dimensions at the same temperature is observed during the heating and the subsequent cooling.
- the grosite ceramics of the present invention may be produced by the production method described later and the raw material type, firing temperature, etc. may be adjusted.
- the difference between the dimension at the time of temperature rise and the dimension at the time of cooling caused by the hysteresis is the same.
- the maximum value is preferably 0.02% or more, more preferably 0.025% or more, and particularly preferably 0.03% or more with respect to the dimension before the test.
- the dimensional difference here is an absolute value of the dimensional difference.
- this maximum value is preferably 0.1% or less, and 0.08% or less with respect to the dimensions before the test. It is more preferable that it is 0.06% or less.
- the grosite ceramic of the present invention has a dimensional difference between heating and cooling in the thermomechanical analysis (The temperature range in which the absolute value) is 0.01% or more with respect to the dimension before the test is preferably 60% or more, more preferably 80% or more of the range from 27 ° C to 800 ° C. .
- the temperature range here Is the sum of the ratios of the plurality of temperature regions.
- the degree of thermal expansion at a high temperature is excellent in the glossite ceramic of the present invention.
- the coefficient of thermal expansion from 27 ° C. to 800 ° C. is 3.4 ⁇ 10 ⁇ 6 / K or less for the glossite ceramics measured in an air atmosphere.
- Such a glossite ceramic of the present invention has high spalling resistance suitable for a kiln tool for rapid firing of electronic parts.
- the coefficient of thermal expansion from 27 ° C. to 800 ° C. measured in the atmospheric atmosphere of the grosite ceramics is preferably 3.0 ⁇ 10 ⁇ 6 / K or less, more preferably 2.5 ⁇ . 10 ⁇ 6 / K or less, particularly preferably 2.0 ⁇ 10 ⁇ 6 / K or less.
- the lower limit of the thermal expansion coefficient is preferably ⁇ 2.0 ⁇ 10 ⁇ 6 / K or more from the viewpoint of fracture strength.
- the grosite ceramic of the present invention may be produced by the production method described later.
- microcracks are observed in a microscopic image with the cross section enlarged 150 times from the viewpoint of more reliably reducing the degree of thermal expansion.
- the microcrack usually has a shape having a width direction and a longitudinal direction longer than the width direction. From the viewpoint of reducing the degree of thermal expansion, the microcrack of the present invention has a microscopic image in which the cross section is magnified 150 times.
- One or more observations per one field of view of 0.84 mm ⁇ 0.59 mm are preferable, three or more observations are more preferable, and ten or more observations are particularly preferable.
- Microscopic observation can be performed using a scanning electron microscope (SEM) as a microscope, for example, by a method of an example described later.
- a microcrack is observed as a white elongated image on the cross-section of the grosite ceramic under the condition that the acceleration voltage is 15 kV using a scanning electron microscope (SEM).
- the number of the microcracks in the glossite ceramic of the present invention can be represented by, for example, an average value for 10 different visual fields in a microscopic image.
- One or more micro cracks having a specific length or more are observed per field of view in the gloucite ceramics. When ten different fields are observed under the above observation conditions, one or more micro cracks are observed in each field of view. That's fine.
- the shape of the microcracks may be, for example, a linear shape such as a curved line, a straight line, or an intermittent line, may be a band, may or may not have a bent portion, Or may be discontinuous.
- the length along the longitudinal direction is the length of the path from the end to the end of the microcrack along the bend when the microcrack has a bent portion or the like and is not a straight line.
- the total length per one visual field of the microcracks having a length along the longitudinal direction of 50 ⁇ m or more is: It is preferably 500 ⁇ m or more, more preferably 1000 ⁇ m or more, and even more preferably 1500 ⁇ m or more.
- the total length here is the total length along the longitudinal direction of the microcracks observed per one visual field.
- the total length per field of view is preferably 7000 ⁇ m or less, more preferably 5000 ⁇ m or less, and particularly preferably 4500 ⁇ m or less.
- the total length of the microcracks in the glossite ceramic of the present invention can be represented by, for example, an average value for 10 different visual fields in a microscopic image. As described above, it is preferable that one or more microcracks having a length along the longitudinal direction of 50 ⁇ m or more in each visual field are observed in each of the visual fields when observed for 10 different visual fields.
- the glossite ceramic of the present invention has a cross-section so that the grain boundary can be properly recognized according to the crystal grain size from the viewpoint of being suitable for thermal expansion and spalling resistance for obtaining a microcrack structure. Is preferably 5 ⁇ m or more on average in a microscopic image obtained by magnifying the film from 150 to 1500 times.
- the crystal grain size is obtained by polishing the cross-section of the globite ceramics obtained as follows, then firing in the air at 1400 ° C. (keep time 0 minutes), and thermal etching. Next, the etched surface is photographed using a scanning electron microscope (SEM) under the condition of an acceleration voltage of 15 kV to obtain an image.
- SEM scanning electron microscope
- the cord length of the obtained image is measured by the intercept method, and the crystal grain size is calculated.
- a crystal grain is a region surrounded by a crystal grain boundary that looks dark and has a mesh shape (see FIG. 4).
- Ten line segments are measured in one visual field, and this measurement is performed in 10 different arbitrary visual fields, and the average value of all crystal grain sizes observed for each visual field is used.
- the average grain size obtained by the above method is more preferably 5 ⁇ m or more, and particularly preferably 10 ⁇ m or more.
- the crystal grain size is preferably 300 ⁇ m or less in terms of the average value from the viewpoint of ease of production of the grosite ceramics and fracture strength.
- the glossite ceramics of the present invention are produced by the production method described later, The firing temperature and the like may be adjusted.
- the glowing ceramic of the present invention has a spalling resistance ⁇ T of 600 ° C. or higher.
- the spalling resistance is measured, for example, by the method described in the following examples. Grositic ceramics having a spalling resistance equal to or higher than the above lower limit can be obtained by a production method described later.
- the spalling resistance ⁇ T is more preferably 600 ° C. or higher, and even more preferably 700 ° C. or higher. It is particularly preferable that the temperature is 800 ° C. or higher.
- the grossite ceramic of the present invention is produced by the production method described later, and the particle size of the raw material, the production method and type of the raw material, and the firing temperature are adjusted. Good.
- the glossite ceramic of the present invention may contain a compound other than CaAl 4 O 7 as long as the effects of the present invention are not impaired.
- the glossite ceramic of the present invention may contain a compound for lowering the melting point of CaAl 4 O 7 to lower the thermal expansion.
- ZrO 2 , K 2 O, Li 2 O described in Patent Document 2 , B 2 O 3 , CaF 2 , MgO, TiO 2 , ZnO, SnO, SrO, Y 2 O 3 , Fe 2 O 3 , BaO and the like may be contained.
- the glossite ceramic of the present invention does not contain these compounds as much as possible because it is easy to prevent deterioration of high temperature characteristics such as high temperature creep characteristics when used as a kiln tool for firing electronic parts.
- the content of elements other than Ca, O, and Al in the glossite ceramic of the present invention specifically, Zr, K, Li, B, F, Mg, Ti, Zn, Sn, Sr, Y,
- the total content of elements of Fe, BaSi, Ni, and Na is preferably 10,000 ppm or less, more preferably 7000 ppm or less, and particularly preferably 5000 ppm or less in the grossite ceramic.
- the upper limit of the total is preferably 1000 ppm or more from the viewpoint of ease of production of the grosite ceramics.
- the bulk specific gravity of the glossite ceramic of the present invention is preferably 1.8 or more, and more preferably 2.0 or more. There exists an advantage that intensity
- the glossite ceramic preferably has a bulk specific gravity of 2.88 or less, and more preferably 2.85 or less. There exists an advantage that it can reduce in weight by making bulk specific gravity below the said upper limit.
- the apparent porosity (hereinafter, also simply referred to as “porosity”) of the glossite ceramic of the present invention is preferably 0% or more, and more preferably 1% or more. There exists an advantage that it can reduce in weight by making a porosity more than the said lower limit.
- the porosity is preferably 37% or less, and more preferably 31% or less. There exists an advantage that intensity
- the bulk specific gravity is calculated, for example, by measuring the mass of the grosite ceramic (or kiln tool) and dividing this by the volume obtained from the measurement of the size of the grosite ceramic (or kiln tool).
- the porosity can be calculated from a formula of (1 ⁇ bulk specific gravity / apparent specific gravity) ⁇ 100.
- the apparent specific gravity is a value obtained by dividing the mass of the grosite ceramics (or kiln tool) by the mass of water at 4 ° C.
- the bulk density and porosity are adjusted by adjusting the particle size of the raw material, the manufacturing method and type of the raw material, and the firing temperature in the method for producing the grosite ceramic of the present invention. It can be adjusted by adopting an appropriate method corresponding to the required bulk specific gravity and porosity, such as molding.
- the glossite ceramic of the present invention preferably has a bending strength of 8 MPa or more, and more preferably 10 MPa or more. By making bending strength more than the said lower limit, there exists an advantage that it has intensity
- the glossite ceramic preferably has a bending strength of 200 MPa or less, and more preferably 150 MPa or less. By setting the bending strength to be equal to or less than the above upper limit value, there is an advantage that microcracks are substantially introduced and a reduction in the thermal expansion coefficient can be expected.
- the bending strength here is a room temperature bending strength measured according to JIS R2619.
- the bending strength within this range is an appropriate method for adjusting the particle size of the raw material, the manufacturing method and type of the raw material, and the firing temperature in the method for producing the grosite ceramics of the present invention, as well as the method for forming the molded body subjected to firing. It can be adjusted by adopting.
- This production method comprises alumina particles having a volume cumulative particle size D 50 of 5 ⁇ m or less at a cumulative volume of 50 vol% by a laser diffraction scattering type particle size distribution measurement method, and calcium carbonate particles having a volume cumulative particle size D 50 of 25 ⁇ m or less. And baking the mixed powder at a temperature of 1450 ° C. or higher.
- the particle sizes of the alumina particles and the calcium carbonate particles are important.
- the volume cumulative particle diameter D 50 of the alumina particles is preferably 5 ⁇ m or less, more preferably 4 ⁇ m or less, and even more preferably 3 ⁇ m or less.
- the lower limit of the volume cumulative particle diameter D 50 of the alumina particles is preferably 0.01 ⁇ m or more, for example, from the viewpoint of the availability of alumina particles and the homogeneity of mixing due to aggregation.
- the volume cumulative particle diameter D 50 of the calcium carbonate particles is preferably 25 ⁇ m or less, more preferably 24 ⁇ m or less, and even more preferably 23 ⁇ m or less. Further, the lower limit of the volume cumulative particle diameter D 50 of calcium carbonate is preferably 0.01 ⁇ m or more, for example, from the viewpoint of availability of calcium carbonate particles and homogeneity of mixing due to aggregation.
- a method of pulverizing with a ball mill or a vibration mill or a method of classifying with a sieve or the like can be mentioned.
- a method of pulverizing with a ball mill or a vibration mill or a method of classifying with a sieve or the like can be mentioned.
- D 50 can be measured, for example, by Microtrack HRA and Microtrack 3000 series (for example, MT-3000II series such as MT3200II, MT3300EXII, MT3300II, etc.) manufactured by Nikkiso Co., Ltd. (or manufactured by Microtrack Bell Co., Ltd.). Specifically, when the microtrack HRA is used, the following is performed.
- ⁇ Method of measuring the D 50> An amount containing about 0.4 g of alumina particles or calcium carbonate particles is put into a 100 mL glass beaker, and then pure water is added as a dispersion medium up to the 100 mL line of the beaker to obtain a slurry for measurement. This measurement slurry is dropped into a chamber of a sample circulator of Microtrack HRA manufactured by Nikkiso Co., Ltd. containing pure water until the apparatus determines that the concentration is appropriate, and D 50 is determined.
- the crystal structure of the alumina particles may be any of ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , and the like.
- Examples of the calcium carbonate particles include heavy calcium carbonate particles and light calcium carbonate particles.
- Heavy calcium carbonate particles are obtained by mechanically pulverizing and processing natural chalk (chalk), limestone, marble, and the like.
- light calcium carbonate is a synthetic calcium carbonate chemically produced from limestone as a raw material. In this production method, it is preferable to use heavy calcium carbonate particles in order to make the grosite ceramics more difficult to thermally expand.
- organic compound include fatty acids, fatty acid esters, and fatty acid salts.
- the blending ratio of the alumina particles and the calcium carbonate particles is important in order to make the calcium aluminate constituting the obtained gloucite ceramics consist of a CaAl 4 O 7 single phase.
- the mixed powder of the raw material may contain only alumina particles and calcium carbonate particles, or may contain other minerals in addition to the alumina particles and calcium carbonate particles.
- a binder may also be added. Examples of the binder include glass and silica.
- Various molding methods such as hydraulic molding and cast molding can be used to obtain a molded body that is a precursor of the grosite ceramics using the mixed powder of raw materials.
- hydraulic molding 25 to 100% by mass of water is added to the mixed powder to form a hydrous fluid, and the hydrous fluid is filled in a cavity of a mold to perform pressure molding.
- pressure molding for example, biaxial pressing can be employed.
- the applied pressure is preferably set to 100 to 1000 kg / cm 2 . By adjusting the applied pressure, the bulk specific gravity, porosity, and bending strength of the resulting grosite ceramics can be adjusted.
- the molded body thus obtained is dried to remove moisture and fired.
- a dispersant for example, a polycarboxylic acid-based dispersant can be used.
- the obtained slurry is poured into a plaster mold and solidified. After demolding from the gypsum mold, the molded body from which moisture has been removed by drying is fired.
- the molded article obtained by various molding methods is fired under a firing temperature condition of 1450 ° C. or higher in an oxygen-containing atmosphere such as the air, thereby obtaining the target grosite ceramics.
- a firing temperature condition of 1450 ° C. or higher both the particle size of the raw material and the firing temperature condition of 1450 ° C. or higher must be satisfied. If either requirement is not met, and Gros sites ceramics value of I B / I A exceeds the upper limit of the thermal expansion coefficient of up to 300 ° C. resulting in glow sites ceramics has exceeded the upper limit of the above obtained .
- the lower limit of the firing temperature is preferably 1450 ° C. or higher, and more preferably 1500 ° C. or higher.
- baking temperature it is preferable from a viewpoint of melting
- the maximum temperature holding time is preferably 1 to 10 hours when the firing temperature is within this range.
- the thus obtained glossite ceramic of the present invention has low thermal expansion and spalling resistance during high-temperature heating, so that it can be suitably used for various applications such as molten aluminum members in addition to kiln tools. Can do.
- a kiln tool it can be used suitably for a kiln tool for rapid firing of electronic parts and a kiln tool for powder metallurgy.
- the kiln tool of the present invention uses the glossite ceramic of the present invention.
- kiln tools include trays, pods, mortars, and containers.
- a kiln tool the rectangular or circular plate-like thing mounted on the hearth of a baking furnace is mentioned.
- the kiln tool has a rectangular or circular bottom surface that is placed on the hearth of the firing furnace and a closed wall surface that rises from the periphery of the bottom surface, and has an open top. May be.
- the kiln tool may be used like a container by combining a frame and a plate.
- the kiln tool of the present invention is particularly preferably used as a kiln tool for rapid firing of electronic parts.
- an electronic part obtained by firing the kiln tool includes, for example, a multilayer ceramic capacitor (hereinafter referred to as MLCC). ) And other ceramic electronic components.
- MLCC is, for example, an internal electrode material such as nickel powder, a dielectric material such as BaTiO 3 , kneaded with a binder or the like, processed into a paste, and alternately laminated in a manner such as screen printing to form a sheet After cutting to a predetermined size, an external electrode is attached and sintered.
- Firing for an electronic component such as MLCC is performed by putting it in a furnace in a high temperature range of, for example, 1200 ° C. or higher and 1450 ° C. or lower.
- the firing atmosphere can be a weak reducing atmosphere or an inert atmosphere using nitrogen and hydrogen.
- the temperature increase rate in the rapid firing for example, the average temperature increase rate from the normal temperature in the furnace to the maximum holding temperature is 20 ° C./min or more, particularly 50 ° C./min or more.
- the cooling rate is 20 ° C./min or more, particularly 50 ° C./min or more, as an average cooling rate from the maximum holding temperature in the furnace to room temperature.
- the kiln tool of the present invention uses a grosite ceramic that has an excellent and low degree of thermal expansion and a high spalling resistance. As a result, running costs can be reduced and the yield of electronic components can be improved.
- the surface when using a kiln tool for the rapid baking of an electronic component, in order to prevent reaction with an electronic component still more reliably, the surface may be coated with zirconia etc.
- Example 1 67.1 parts of alumina particles having a D 50 of 0.4 ⁇ m, 32.9 parts of calcium carbonate particles having a D 50 of 2 ⁇ m (heavy, no surface treatment), a 20% PVA aqueous solution, and a polycarboxylic acid dispersant (manufactured by Kao) 1 part of Poise 532A) was mixed to obtain a slurry.
- the PVA aqueous solution was added so that the amount of the PVA in the slurry was 1%.
- This slurry was dried at 90 ° C., and the dried product was granulated with a sieve (aperture 250 ⁇ m) to obtain granules.
- the granules were filled in a mold and molded by uniaxial pressing.
- the applied pressure was 700 kg / cm 2 .
- the obtained molded body was fired by holding it at 1600 ° C. for 3 hours in an air atmosphere furnace to obtain a target grosite ceramic.
- the glossite ceramic was a plate having a width of 110 mm, a height of 110 mm, and a height of 4 mm.
- the obtained grosite ceramics is subjected to thermomechanical analysis under the following conditions, and the thermal expansion coefficient (/ K) from 27 ° C. to 300 ° C. and the thermal expansion coefficient (/ K) from 27 ° C. to 800 ° C. And a dimension-temperature graph was obtained, and the shape of the curve of this graph was confirmed.
- the results are shown in Table 2.
- the obtained graph is shown in FIG. As shown in FIG. 2, hysteresis was observed in the graph. Based on the graph, the ratio (%) of the maximum value of the difference at the same temperature between the dimension at the time of heating and the dimension at the time of cooling to the dimension before the test was measured. The results are shown in Table 2.
- the obtained glossite ceramics was observed under a microscope under the following conditions, and the number of microcracks per field of view, the total length of microcracks per field of view in the longitudinal direction ( ⁇ m), crystals The particle size ( ⁇ m) was determined.
- the results are shown in Table 2.
- the photograph of the cross section obtained at the time of microcrack observation is shown in FIG. 3, and the photograph of the cross section obtained at the time of crystal grain diameter observation is shown in FIG. 4, respectively.
- spalling resistance ⁇ T was determined for the obtained grosite ceramics under the following conditions.
- amount of deflection (mm) was determined under the following conditions for the obtained glocyceramics. The results are shown in Table 2.
- Examples 2-7, Comparative Examples 1-2 In the same manner as in Example 1, except that the particle size of alumina, the type of calcium carbonate, the presence or absence of surface treatment, the particle size, the molar ratio of alumina and calcium carbonate, and the firing temperature were changed as shown in Table 1 below, Obtained site ceramics. The same evaluation as Example 1 was performed about the obtained glocyceramics. The results are shown in Tables 1 and 2. Among these, FIG. 5 shows a graph of dimension-temperature at the time of temperature increase obtained by thermomechanical analysis of the globite ceramic obtained in Example 3. In addition, the surface treatment of calcium carbonate used in Example 7 used a fatty acid as a surface treatment agent. In Table 1, “heavy” of calcium carbonate indicates “heavy”, and “light” indicates “light”.
- thermomechanical analysis> A 5 ⁇ 5 ⁇ 20 mm test piece made of the grosite ceramic of the present invention was set in a differential thermomechanical analysis (TMA) apparatus of Thermoplus TMA8310 manufactured by Rigaku Corporation. The temperature was increased from 27 ° C. to 300 ° C. or from 27 ° C. to 800 ° C. at a rate of temperature increase of 5 ° C./min. The load was 0.5N.
- TMA differential thermomechanical analysis
- alumina having the same size as the test piece was set in a thermomechanical analysis (TMA) apparatus, and the temperature was similarly raised, and the dimensional difference ⁇ La between the alumina and the test piece was measured.
- test piece was heated from 27 ° C. to 800 ° C. at a rate of 5 ° C./min by the above-described thermomechanical analysis (TMA) apparatus, and subsequently cooled at this rate within this temperature range.
- TMA thermomechanical analysis
- the length of the test piece is measured every 5 seconds, and the difference between the length of the test piece at each measurement point minus the test piece before the test, that is, the elongation ⁇ L of the test piece is obtained. I got the graph.
- the temperature holding time at 800 ° C. until the temperature was changed to cooling after the temperature increase was 5 minutes.
- the total length ( ⁇ m) per one visual field of microcracks having a length along the longitudinal direction of 50 ⁇ m or more was counted for 10 visual fields, and the average value was obtained.
- the polished surface was air baked (keep at 1400 ° C. ⁇ 0 min) in a baking furnace and thermally etched.
- the etched surface was observed and photographed at a magnification of 1500 using a scanning electron microscope (SEM) under the condition that the acceleration voltage was 15 kV, and an image was obtained.
- the cord length of the obtained image was measured by the intercept method, and the crystal grain size was calculated.
- 10 line segments parallel to the direction along the long side of the rectangular image were measured. This measurement was performed in 10 different fields of view, and the average value of the crystal grain sizes observed for each field of view was calculated.
- An image used for the measurement of the crystal grain size is shown in FIG. In FIG. 4, examples of crystal grain boundaries are indicated by arrows.
- Test specimens of grosite ceramics in each Example and Comparative Example that were processed into a length of 100 mm, a width of 100 mm, and a height of 2 mm were prepared. Separately from this, an alumina brick column having a length of 15 mm, a width of 8 mm and a height of 7 mm was prepared. Four struts were placed on the base plate at positions facing the four corners of the test specimen, and one specimen was placed thereon. On the test body, an alumina brick plate having a length of 68 mm, a width of 68 mm, and a height of 16 mm, which was assumed to be an electronic component to be fired, was placed. The above arrangement state is shown in FIG. In FIG.
- the test body is denoted by reference symbol S
- the support column is denoted by reference symbol P
- the plate assuming an electronic component is denoted by reference symbol M.
- a sample of grosite ceramics processed to 100 mm x 30 mm x 3 mm is separated into two square members 90 mm apart as a span (the length in the longitudinal direction parallel to the longitudinal direction of the grosite ceramic is 20 mm, the length in the transverse direction is 200 mm, Place the refractory of 10 mm x 10 mm x 30 mm in the center of the sample, and adjust the weight on the refractory so that 4 kg / cm 2 load is applied. And loaded. Heating was performed at 1200 ° C. (temperature increase rate: 200 ° C./hr, keeping 3 hours) in an air firing furnace, and the amount of warpage before and after firing was measured.
- a hole is made in the center of an aluminum bar (200 mm ⁇ 50 mm ⁇ 50 mm) without warping as a reference, and the portion of the aluminum bar warped with grosite ceramics is projected in an upward direction, A measuring portion of a digimatic indicator was inserted into this hole from below, and the distance between the aluminum bar and the grosite ceramics was measured.
- the value of I B / I A is 0.05 or less, as measured in an air atmosphere, the thermal expansion coefficient of up to 300 ° C. from 27 ° C. is, 2.0 ⁇ 10 -6 / K or less
- the grosite ceramic of Comparative Example 1 having a thermal expansion coefficient from 27 ° C. to 300 ° C. exceeding 2.0 ⁇ 10 ⁇ 6 / K has a high thermal expansion coefficient from 27 ° C. to 800 ° C.
- the glossite ceramic of the present invention has high spalling resistance and can be used in a high-temperature firing process of electronic parts for a long period of time. It turns out that it is suitable.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Glass Compositions (AREA)
Abstract
In this grossite ceramics, the value of IB/IA is 0.05 or less, IB/IA being the ratio of the integrated intensity IB of the peak at 2θ=30.07º which is the main peak originating from CaAl2O4 in X-ray diffraction with respect to the integrated intensity IA of the peak at 2θ=25.47º which is the main peak originating from CaAl4O7 in X-ray diffraction, and measured under an air atmosphere, the coefficient of thermal expansion from 27ºC to 300ºC is 2.0×10-6/K or less. In a thermomechanical analysis when this grossite ceramic is heated under an air atmosphere, it is preferred that, in a size versus temperature graph obtained, either a temperature region in which size decreases are observed or a plateau temperature region in which size does not substantially change is observed.
Description
本発明は、グロサイトセラミックス、及びそれを用いた窯用具並びにグロサイトセラミックスの製造方法に関する。
The present invention relates to a grosite ceramic, a kiln tool using the same, and a method for producing the grosite ceramic.
近年特に、コンデンサ等の電子部品の極小型化が進んでいる。そのため電子部品の焼成工程においては、焼成する電子部品を焼成用窯用具とともに、常温から非常に高温の炉に短時間投入し、炉から取り出して焼成を完了させるプロセスが主流になりつつある。それに伴って、焼成用窯用具は従来よりさらに急激な熱衝撃に曝された場合であっても、熱衝撃に起因する被焼成物の載置部のたわみや割れ、さらには載置部表面での剥離が発生しないものが求められている。
In recent years, electronic components such as capacitors have become extremely miniaturized. For this reason, in the firing process of electronic components, the process of putting the electronic components to be fired together with the firing kiln tools into a furnace from room temperature to a very high temperature for a short time and taking out from the furnace to complete firing is becoming mainstream. Along with this, even when the firing kiln tool is exposed to a more rapid thermal shock than before, the mounting portion deflection or cracking of the object to be fired due to the thermal shock, and further on the surface of the mounting portion There is a demand for a material that does not peel off.
ところで、グロサイトとは、CaとAlの酸化物からなる化合物であり、化学式が通常CaAl4O7で表されるものであり、CaO・2Al2O3又はCA2と表記されることもある。例えば非特許文献1には、グロサイトを含有するセラミックスとして、20℃から800℃まで加熱した時に熱膨張係数αが3.9×10-6/Kであるもの(Table3)が開示されている。また特許文献1には、CaAl4O7の主相及びCaAl2O4の副相を含むアルミン酸カルシウムから構成され、約27℃から約800℃の温度範囲に亘り約25×10-7/℃未満の熱膨張を示すセラミック製品が記載されている。特許文献2には、ZrO2、K2O、Li2O、B2O3、CaF2、MgO、TiO2、ZnO、SnO、SrO、Y2O3、Fe2O3、BaOといった低融点化のための添加剤を添加してグロサイトを含有するセラミックスの熱膨張を低下させることが記載されている。
By the way, the grosite is a compound composed of an oxide of Ca and Al, and its chemical formula is usually represented by CaAl 4 O 7 and may be expressed as CaO · 2Al 2 O 3 or CA 2. . For example, Non-Patent Document 1 discloses a ceramic containing glocyte having a thermal expansion coefficient α of 3.9 × 10 −6 / K when heated from 20 ° C. to 800 ° C. (Table 3). . Patent Document 1 includes calcium aluminate containing a main phase of CaAl 4 O 7 and a subphase of CaAl 2 O 4 , and has a temperature range of about 25 × 10 −7 / 8 over a temperature range of about 27 ° C. to about 800 ° C. A ceramic product is described which exhibits a thermal expansion of less than 0C. Patent Document 2 discloses low melting points such as ZrO 2 , K 2 O, Li 2 O, B 2 O 3 , CaF 2 , MgO, TiO 2 , ZnO, SnO, SrO, Y 2 O 3 , Fe 2 O 3 , and BaO. It is described that the thermal expansion of ceramics containing grosite is reduced by adding an additive for crystallization.
非特許文献1に記載される、グロサイトを含有するセラミックス(以下「グロサイトセラミックス」ともいう)は、従来、熱膨張係数が高く耐スポーリング性が十分ではなかった。また特許文献1に記載されるCaAl4O7の主相及びCaAl2O4の副相を含むアルミン酸カルシウムから構成されるグロサイトセラミックスは、CaAl2O4が、CaAl4O7よりも不安定であり、高温によるたわみに弱いため、高温での繰り返し使用が難しかった。また特許文献2に記載されているような、低融点組成物を形成する添加剤により熱膨張係数を低くしたグロサイトセラミックスは、高温下でのクリープ特性が低下し、たわみやすくなる点や軟化による高温強度低下が懸念され、電子部品焼成用の窯用具として実用に適するものではなかった。
Non-patent document 1 describes a ceramic containing grosite (hereinafter also referred to as “glossite ceramic”), which has a high thermal expansion coefficient and insufficient spalling resistance. In addition, the gloccite ceramics composed of calcium aluminate containing a CaAl 4 O 7 main phase and a CaAl 2 O 4 subphase described in Patent Document 1 has CaAl 2 O 4 less CaAl 4 O 7 than CaAl 4 O 7. Since it is stable and weak against deflection due to high temperature, it was difficult to repeatedly use it at high temperature. In addition, as described in Patent Document 2, the grosite ceramics having a low thermal expansion coefficient with an additive for forming a low-melting-point composition has a low creep property at high temperatures and is easily bent or softened. There was concern about a decrease in high-temperature strength, and it was not suitable for practical use as a kiln tool for firing electronic components.
従って、本発明の課題は、前述した従来技術が有する種々の欠点を解消し得るグロサイトセラミックス及びそれを用いた窯用具、並びにグロサイトセラミックスの製造方法を提供することにある。
Therefore, an object of the present invention is to provide a grosite ceramic that can eliminate the various disadvantages of the above-described prior art, a kiln tool using the same, and a method for producing the grosite ceramic.
本発明は、X線回折においてCaAl4O7に由来するメインピークである2θ=25.47度のピークの積分強度IAに対する、X線回折においてCaAl2O4に由来するメインピークである2θ=30.07度のピークの積分強度IBの比であるIB/IAの値が0.05以下であり、
大気雰囲気下で測定した、27℃から300℃までの熱膨張係数が、2.0×10-6/K以下であるグロサイトセラミックスを提供するものである。 The present invention relates to 2θ which is the main peak derived from CaAl 2 O 4 in the X-ray diffraction with respect to the integrated intensity I A of 2θ = 25.47 degrees which is the main peak derived from CaAl 4 O 7 in the X-ray diffraction. = the value of 30.07 which is the ratio of the integrated intensity I B of a peak of the degree I B / I a is 0.05 or less,
The present invention provides a grosite ceramic having a coefficient of thermal expansion of not more than 2.0 × 10 −6 / K measured from 27 ° C. to 300 ° C. in an air atmosphere.
大気雰囲気下で測定した、27℃から300℃までの熱膨張係数が、2.0×10-6/K以下であるグロサイトセラミックスを提供するものである。 The present invention relates to 2θ which is the main peak derived from CaAl 2 O 4 in the X-ray diffraction with respect to the integrated intensity I A of 2θ = 25.47 degrees which is the main peak derived from CaAl 4 O 7 in the X-ray diffraction. = the value of 30.07 which is the ratio of the integrated intensity I B of a peak of the degree I B / I a is 0.05 or less,
The present invention provides a grosite ceramic having a coefficient of thermal expansion of not more than 2.0 × 10 −6 / K measured from 27 ° C. to 300 ° C. in an air atmosphere.
また本発明は、上記グロサイトセラミックスを用いた窯用具を提供するものである。
Also, the present invention provides a kiln tool using the above-mentioned grosite ceramics.
また本発明は、上記グロサイトセラミックスの好適な製造方法であって、
レーザー回折散乱式粒度分布測定法による累積体積50容量%における体積累積粒径D50が5μm以下であるアルミナ粒子と、該体積累積粒径D50が25μm以下である炭酸カルシウム粒子との混合粉を成形し、得られた成形体を1450℃以上の温度で焼成する工程を有する、グロサイトセラミックスの製造方法を提供するものである。 Further, the present invention is a preferred method for producing the above-mentioned grosite ceramics,
A mixed powder of alumina particles having a volume cumulative particle size D 50 of 5 μm or less and a calcium carbonate particle having a volume cumulative particle size D 50 of 25 μm or less measured by a laser diffraction / scattering particle size distribution measurement method. The present invention provides a method for producing a glossite ceramic, comprising a step of molding and firing the obtained molded body at a temperature of 1450 ° C. or higher.
レーザー回折散乱式粒度分布測定法による累積体積50容量%における体積累積粒径D50が5μm以下であるアルミナ粒子と、該体積累積粒径D50が25μm以下である炭酸カルシウム粒子との混合粉を成形し、得られた成形体を1450℃以上の温度で焼成する工程を有する、グロサイトセラミックスの製造方法を提供するものである。 Further, the present invention is a preferred method for producing the above-mentioned grosite ceramics,
A mixed powder of alumina particles having a volume cumulative particle size D 50 of 5 μm or less and a calcium carbonate particle having a volume cumulative particle size D 50 of 25 μm or less measured by a laser diffraction / scattering particle size distribution measurement method. The present invention provides a method for producing a glossite ceramic, comprising a step of molding and firing the obtained molded body at a temperature of 1450 ° C. or higher.
本発明のグロサイトセラミックスは、高温における熱膨張の程度が低く、且つ高い耐スポーリング性を有する。このような本発明のグロサイトセラミックスは、昇温及び冷却条件の厳しい熱的サイクルに対して繰り返し耐えることができ、かつ長期間に亘って電子部品の焼成工程において使用が可能である。従って本発明のグロサイトセラミックスを用いた本発明の窯用具によれば、ランニングコストを低廉化でき、且つ電子部品の歩留を向上できる。また、本発明のグロサイトセラミックスの製造方法は、上記のグロサイトセラミックスを効率よく製造することができる。
The glossite ceramic of the present invention has a low degree of thermal expansion at a high temperature and has a high spalling resistance. Such a glossite ceramic of the present invention can withstand repeated thermal cycles with severe temperature rise and cooling conditions and can be used in the firing process of electronic components for a long period of time. Therefore, according to the kiln tool of the present invention using the glossite ceramic of the present invention, the running cost can be reduced and the yield of electronic parts can be improved. Moreover, the manufacturing method of the glocytic ceramics of this invention can manufacture said glocytic ceramics efficiently.
以下本発明を、その好ましい実施形態に基づき説明する。本発明のグロサイトセラミックスにおけるアルミン酸カルシウムの構成は実質的にCaAl4O7単相である。CaAl4O7は、CaAl2O4よりも安定であり、高温たわみに強く、高温での繰り返し使用が可能である。このように実質的にCaAl4O7単相からなるアルミン酸カルシウムを用いることにより、本発明のグロサイトセラミックスはCaAl2O4を副相として含有する場合に比べて、高温で繰り返し使用される窯用具等の用途に好適に用いることができる。また、水への溶解性の高いCaAl2O4を用いないことは、その他の各種の用途においても、本発明のグロサイトセラミックスを扱いやすいものとしうる。
Hereinafter, the present invention will be described based on preferred embodiments thereof. The composition of calcium aluminate in the glossite ceramic of the present invention is substantially a CaAl 4 O 7 single phase. CaAl 4 O 7 is more stable than CaAl 2 O 4 , is resistant to high temperature deflection, and can be used repeatedly at high temperatures. As described above, by using calcium aluminate substantially composed of a CaAl 4 O 7 single phase, the grosite ceramic of the present invention is repeatedly used at a higher temperature than when CaAl 2 O 4 is contained as a subphase. It can use suitably for uses, such as a kiln tool. Moreover, not using CaAl 2 O 4 having high solubility in water can make the grosite ceramic of the present invention easy to handle in various other applications.
本発明のグロサイトセラミックスは、X線回折において、CaAl4O7に由来するメインピークである2θ=25.47度のピークの積分強度IAに対する、CaAl2O4に由来するメインピークである2θ=30.07度のピークの積分強度IBの比であるIB/IAの値が0.05以下である。これにより、本発明のグロサイトセラミックスがCaAl2O4を実質的に含有しないことが判る。X線回折としては、通常、粉末X線回析測定を行う。本発明のグロサイトセラミックスにおけるIB/IAの値は、小さければ小さいほどよく、0.01以下であることが好ましく、0.005以下であることがより好ましく、0.001以下であることが最も好ましい。このIB/IAの下限としては0.0004以上とすることが品質管理の容易さの観点から好ましい。
The globite ceramic of the present invention is a main peak derived from CaAl 2 O 4 with respect to an integrated intensity I A of 2θ = 25.47 degrees which is a main peak derived from CaAl 4 O 7 in X-ray diffraction. the value of the ratio of the integrated intensity I B of 2 [Theta] = 30.07 ° of the peak I B / I a is 0.05 or less. Thus, it is understood that the glow site ceramics of the present invention is substantially free of CaAl 2 O 4. As X-ray diffraction, powder X-ray diffraction measurement is usually performed. The value of I B / I A in Gros site ceramic of the present invention, the smaller well, preferably 0.01 or less, more preferably 0.005 or less, 0.001 or less Is most preferred. It is preferable from the standpoint of ease of quality control As the lower limit of I B / I A to 0.0004 or more.
IB/IAの値が上記の上限値以下であるグロサイトセラミックスは、後述するグロサイトセラミックスの製造方法において、アルミナ粒子及び炭酸カルシウム粒子の比率を調整することや、混合粉の焼成条件を調整すること等により、得ることができる。
Gro site ceramics value of I B / I A is equal to or less than the upper limit described above, in the manufacturing method of Gros sites ceramic to be described later, by adjusting the ratio of the alumina particles and calcium carbonate particles and the firing conditions of the mixed powder It can be obtained by adjusting or the like.
なお、本発明のグロサイトセラミックスを、線源をCu線とした粉末X線回折測定をしたときに、2θ=10度~70度の範囲で最大強度を有するピークは、通常、CaAl4O7に由来するメインピークである2θ=25.47度のピークであることが好ましい。
Note that, when the X-ray powder diffraction measurement was performed on the grosite ceramic of the present invention using a Cu source as a radiation source, the peak having the maximum intensity in the range of 2θ = 10 degrees to 70 degrees is usually CaAl 4 O 7. It is preferable that it is a peak at 2θ = 25.47 degrees which is a main peak derived from.
本発明のグロサイトセラミックスは常温から比較的低い特定の温度まで加熱したときの熱膨張の程度が低いこともその特徴の一つである。本発明者らは、アルミン酸カルシウムがCaAl4O7単相からなるグロサイトセラミックスと、高温(例えば800℃以上)での熱膨張との関係を検討した。その結果、比較的低い温度までの熱膨張の程度が低いことが、高温での熱膨張の程度を低下させるために重要であることが判った。
One characteristic of the glossite ceramics of the present invention is that the degree of thermal expansion when heated from room temperature to a relatively low specific temperature is low. The present inventors examined the relationship between the grosite ceramics in which calcium aluminate is composed of a CaAl 4 O 7 single phase and thermal expansion at a high temperature (eg, 800 ° C. or higher). As a result, it has been found that a low degree of thermal expansion to a relatively low temperature is important for reducing the degree of thermal expansion at a high temperature.
具体的には、本発明のグロサイトセラミックスは、大気雰囲気下で測定した、27℃から300℃までの熱膨張係数が、2.0×10-6/K以下である。これにより、本発明のグロサイトセラミックスは、高温での熱膨張係数を低下でき、耐スポーリング性の高いものとなる。この観点から、グロサイトセラミックスの大気雰囲気下で測定した27℃から300℃までの熱膨張係数は、好ましくは、1.5×10-6/K以下であり、より好ましくは、1.0×10-6/K以下であり、特に好ましくは0.5×10-6/K以下である。
また、当該熱膨張係数の下限としては、-10.0×10-6/K以上とするとが破壊強度の観点から好ましい。この熱膨張係数は線膨張係数であり、後述する実施例に記載の方法で測定できる。 Specifically, the glossite ceramic of the present invention has a coefficient of thermal expansion from 27 ° C. to 300 ° C. of 2.0 × 10 −6 / K or less as measured in an air atmosphere. Thereby, the glow site ceramics of the present invention can reduce the thermal expansion coefficient at high temperature, and become high in spalling resistance. From this viewpoint, the coefficient of thermal expansion from 27 ° C. to 300 ° C. measured in the atmospheric atmosphere of the grosite ceramic is preferably 1.5 × 10 −6 / K or less, and more preferably 1.0 × 10 −6 / K or less, particularly preferably 0.5 × 10 −6 / K or less.
Further, the lower limit of the thermal expansion coefficient is preferably −10.0 × 10 −6 / K or more from the viewpoint of fracture strength. This thermal expansion coefficient is a linear expansion coefficient, and can be measured by the method described in Examples described later.
また、当該熱膨張係数の下限としては、-10.0×10-6/K以上とするとが破壊強度の観点から好ましい。この熱膨張係数は線膨張係数であり、後述する実施例に記載の方法で測定できる。 Specifically, the glossite ceramic of the present invention has a coefficient of thermal expansion from 27 ° C. to 300 ° C. of 2.0 × 10 −6 / K or less as measured in an air atmosphere. Thereby, the glow site ceramics of the present invention can reduce the thermal expansion coefficient at high temperature, and become high in spalling resistance. From this viewpoint, the coefficient of thermal expansion from 27 ° C. to 300 ° C. measured in the atmospheric atmosphere of the grosite ceramic is preferably 1.5 × 10 −6 / K or less, and more preferably 1.0 × 10 −6 / K or less, particularly preferably 0.5 × 10 −6 / K or less.
Further, the lower limit of the thermal expansion coefficient is preferably −10.0 × 10 −6 / K or more from the viewpoint of fracture strength. This thermal expansion coefficient is a linear expansion coefficient, and can be measured by the method described in Examples described later.
上述したように、本発明のグロサイトセラミックスの300℃までの熱膨張係数が低いことと関連して、本発明のグロサイトセラミックスは熱機械分析(TMA)で得られる寸法-温度のグラフが特定の形状を有する。具体的には、本発明のグロサイトセラミックスは、大気雰囲気下で加熱したときの熱機械分析において、得られる寸法-温度のグラフの形状中に、寸法が減少する温度領域が観察されるか、又は寸法が実質的に変化しないプラトーな温度領域が観察される。これにより、グロサイトセラミックスの高温での熱膨張係数をより確実に低下させ、耐スポーリング性を高めることができる。このような温度領域は、グロサイトセラミックスを大気雰囲気下で27℃から、600℃まで加熱したときの熱機械分析において観察されることがより好ましく、27℃から300℃まで加熱したときの熱機械分析において観察されることが特に好ましい。
As described above, in connection with the low coefficient of thermal expansion up to 300 ° C of the grosite ceramic of the present invention, the grosite ceramic of the present invention has a specific dimension-temperature graph obtained by thermomechanical analysis (TMA). It has the shape of Specifically, in the grosite ceramic of the present invention, in a thermomechanical analysis when heated in an air atmosphere, a temperature region in which the size decreases is observed in the shape of the obtained size-temperature graph, Alternatively, a plateau temperature region where the dimensions do not change substantially is observed. Thereby, the thermal expansion coefficient at a high temperature of the glossite ceramic can be more reliably lowered, and the spalling resistance can be improved. Such a temperature range is more preferably observed in a thermomechanical analysis when the grosite ceramic is heated from 27 ° C. to 600 ° C. in an air atmosphere, and a thermomechanical machine when heated from 27 ° C. to 300 ° C. It is particularly preferred to be observed in the analysis.
詳述すると、寸法-温度のグラフ中、寸法減少する温度領域とは、グラフの傾きが、試験前の寸法に対して寸法が減少した領域をいい、寸法が実質的に変化しないプラトーな温度領域とは、試験前の寸法に対して温度変動による寸法の変動が小さい領域をいう。具体的には、寸法-温度のグラフは、例えば、温度Tを横軸に、試験前の寸法Lと、ある温度での寸法L’との寸法差△L(=L-L’)の試験前の寸法Lに対する比(△L/L、単位:%)を縦軸としたものである。例えば、寸法が減少する温度領域とは、試験前の寸法Lに対して0.05%超の寸法減少が観察される領域をいう。また寸法が実質的に変化しないプラトーな温度領域とは、試験前の寸法Lに対して、熱膨張量(伸び又は縮みの絶対量|△L|)が0.05%以下(好ましくは、0.01%以下)である領域をいう。
More specifically, in the dimension-temperature graph, the temperature range where the dimension decreases is the area where the slope of the graph has decreased with respect to the dimension before the test, and a plateau temperature range where the dimension does not change substantially. The term “region” refers to a region in which the dimensional variation due to temperature variation is smaller than the pre-test size. Specifically, the dimension-temperature graph shows, for example, a test of a dimensional difference ΔL (= L−L ′) between the dimension L before the test and the dimension L ′ at a certain temperature with the temperature T as the horizontal axis. The ratio to the previous dimension L (ΔL / L, unit:%) is the vertical axis. For example, the temperature region in which the dimension decreases refers to a region where a dimensional decrease of more than 0.05% is observed with respect to the dimension L before the test. The plateau temperature range in which the dimensions do not substantially change is that the thermal expansion amount (absolute amount of elongation or shrinkage | ΔL |) is 0.05% or less (preferably 0) with respect to the dimension L before the test. .01% or less).
例えば、△L/Lを縦軸、温度Tを横軸とするグラフにおいて、一つの「寸法減少する温度領域」中における、最も低い温度TLと、最も高い温度THとの差(TH-TL)は、100℃以上であることが好ましく、150℃以上であることがより好ましい。この温度差(TH-TL)の上限としてはグロサイトセラミックスの入手容易性等の点から500℃以下を挙げることができる。
For example, in a graph with ΔL / L on the vertical axis and temperature T on the horizontal axis, the difference between the lowest temperature T L and the highest temperature T H (T H -T L ) is preferably 100 ° C. or higher, and more preferably 150 ° C. or higher. The upper limit of the temperature difference (T H −T L ) may be 500 ° C. or less from the viewpoint of the availability of the grosite ceramics.
また、一つの「寸法が実質的に変化しないプラトーな温度領域」中における、最も低い温度T’Lと、最も高い温度T’Hとの差(T’H-T’L)は熱膨張係数を一層低下させる観点から、100℃以上であることが好ましく、150℃以上であることがより好ましい。この温度差(T’H-T’L)の上限としてはグロサイトセラミックスの入手容易性等の点から500℃以下を挙げることができる。
Further, the difference (T ′ H −T ′ L ) between the lowest temperature T ′ L and the highest temperature T ′ H in one “plateau temperature region in which the dimensions do not substantially change” is the coefficient of thermal expansion. From the viewpoint of further reducing the temperature, it is preferably 100 ° C. or higher, more preferably 150 ° C. or higher. As the upper limit of this temperature difference (T ′ H −T ′ L ), 500 ° C. or less can be mentioned from the viewpoint of availability of grosite ceramics.
特に、本発明のグロサイトセラミックスは、大気雰囲気下、27℃から600℃まで加熱したときの熱機械分析において、得られる寸法-温度のグラフが、寸法が減少する方向に向けた凸の曲線となるか、又は寸法が実質的に変化しないプラトーな温度領域とそれに引き続く寸法が増加する温度領域とを有するものとなることが好ましい。これにより、グロサイトセラミックスの高温での熱膨張係数を更に確実に低下でき、耐スポーリング性を高めることができる。
In particular, in the grosite ceramic of the present invention, in a thermomechanical analysis when heated from 27 ° C. to 600 ° C. in an air atmosphere, the obtained dimension-temperature graph shows a convex curve toward the direction in which the dimension decreases. Preferably, it has a plateau temperature range in which the dimension does not substantially change and a temperature range in which the subsequent dimension increases. Thereby, the thermal expansion coefficient at a high temperature of the glossite ceramics can be further reliably reduced, and the spalling resistance can be improved.
上述したように、本発明のグロサイトセラミックスにおける寸法-温度のグラフは、27℃から600℃まで加熱したときの熱機械分析において、寸法が減少する方向に向けた凸の曲線となるか、又は寸法が実質的に変化しないプラトーな温度領域とそれに引き続く寸法が増加する温度領域とを有する。前者の場合、寸法-温度のグラフは、試験前寸法Lに対して0.05%超の寸法減少が観察された後、試験前寸法Lに対する寸法減少を0.05%未満とする寸法増加が観察される。前者の場合における、27~600℃の範囲中の最も寸法が減少する温度を変曲点ともいう。変曲点における寸法減少は本発明の効果を高める観点から試験前寸法Lに対して0.06%以上が好ましく、グロサイトセラミックスの製造容易性の観点から1%以下が好ましい。またこの場合の変曲点は、100℃以上600℃以下の範囲内に観察されることが好ましく、150℃以上500℃以下の範囲内に観察されることがより好ましい。
後者の場合、試験前の寸法Lに対して、熱膨張量(伸び又は縮みの絶対量|△L|)が0.05%以下(好ましくは、0.01%以下)である領域と、それよりも高温域における、寸法増加が試験前の寸法Lに対して0.05%超となる領域とを有する。この場合の、熱膨張量が0.05%以下である領域から0.05%超となる領域への移行が起る温度は250℃以上600℃以下であることが好ましく、300℃以上450℃以下であることがより好ましい。 As described above, the dimension-temperature graph of the grosite ceramic of the present invention is a convex curve toward the direction in which the dimension decreases in the thermomechanical analysis when heated from 27 ° C. to 600 ° C., or It has a plateau temperature region in which the dimension does not substantially change and a temperature region in which the subsequent dimension increases. In the former case, in the dimension-temperature graph, after a dimensional decrease of more than 0.05% with respect to the pre-test dimension L is observed, the dimensional increase with respect to the pre-test dimension L is less than 0.05%. Observed. In the former case, the temperature at which the dimension decreases most in the range of 27 to 600 ° C. is also called the inflection point. The dimension reduction at the inflection point is preferably 0.06% or more with respect to the dimension L before the test from the viewpoint of enhancing the effect of the present invention, and is preferably 1% or less from the viewpoint of the ease of manufacturing of the grosite ceramics. Further, the inflection point in this case is preferably observed within a range of 100 ° C. or higher and 600 ° C. or lower, and more preferably observed within a range of 150 ° C. or higher and 500 ° C. or lower.
In the latter case, a region where the thermal expansion amount (absolute amount of elongation or shrinkage | ΔL |) is 0.05% or less (preferably 0.01% or less) with respect to the dimension L before the test, And a region where the increase in dimension is higher than 0.05% with respect to the dimension L before the test. In this case, the temperature at which the transition from the region where the thermal expansion amount is 0.05% or less to the region where it exceeds 0.05% occurs is preferably 250 ° C. or more and 600 ° C. or less, and 300 ° C. or more and 450 ° C. The following is more preferable.
後者の場合、試験前の寸法Lに対して、熱膨張量(伸び又は縮みの絶対量|△L|)が0.05%以下(好ましくは、0.01%以下)である領域と、それよりも高温域における、寸法増加が試験前の寸法Lに対して0.05%超となる領域とを有する。この場合の、熱膨張量が0.05%以下である領域から0.05%超となる領域への移行が起る温度は250℃以上600℃以下であることが好ましく、300℃以上450℃以下であることがより好ましい。 As described above, the dimension-temperature graph of the grosite ceramic of the present invention is a convex curve toward the direction in which the dimension decreases in the thermomechanical analysis when heated from 27 ° C. to 600 ° C., or It has a plateau temperature region in which the dimension does not substantially change and a temperature region in which the subsequent dimension increases. In the former case, in the dimension-temperature graph, after a dimensional decrease of more than 0.05% with respect to the pre-test dimension L is observed, the dimensional increase with respect to the pre-test dimension L is less than 0.05%. Observed. In the former case, the temperature at which the dimension decreases most in the range of 27 to 600 ° C. is also called the inflection point. The dimension reduction at the inflection point is preferably 0.06% or more with respect to the dimension L before the test from the viewpoint of enhancing the effect of the present invention, and is preferably 1% or less from the viewpoint of the ease of manufacturing of the grosite ceramics. Further, the inflection point in this case is preferably observed within a range of 100 ° C. or higher and 600 ° C. or lower, and more preferably observed within a range of 150 ° C. or higher and 500 ° C. or lower.
In the latter case, a region where the thermal expansion amount (absolute amount of elongation or shrinkage | ΔL |) is 0.05% or less (preferably 0.01% or less) with respect to the dimension L before the test, And a region where the increase in dimension is higher than 0.05% with respect to the dimension L before the test. In this case, the temperature at which the transition from the region where the thermal expansion amount is 0.05% or less to the region where it exceeds 0.05% occurs is preferably 250 ° C. or more and 600 ° C. or less, and 300 ° C. or more and 450 ° C. The following is more preferable.
熱機械分析で寸法-温度のグラフが特定の形状を有する理由は明確ではないが、本発明者らは、その理由の一つとして、本発明のグロサイトセラミックスが後述するようにマイクロクラックを有することにあると推測している。すなわち、本発明のグロサイトセラミックスは、マイクロクラックを有することでグロサイトセラミックスを加熱する際に、マイクロクラックが加熱による膨張を吸収して埋まり、見掛け上熱膨張を吸収すると考えられる。特許文献1には「微小亀裂の網状構造」が記載されているものの、実質的にCaAl4O7単相からなるグロサイトセラミックスがマイクロクラックを有することは何ら記載も示唆もされていない。
The reason why the dimension-temperature graph has a specific shape in thermomechanical analysis is not clear, but the inventors of the present invention have one of the reasons that the grosite ceramic of the present invention has microcracks as described later. I guess it is. That is, it is considered that when the grosite ceramic of the present invention has microcracks, the microcracks absorb and absorb the expansion due to heating when the grosite ceramic is heated, and apparently absorb the thermal expansion. Although Patent Document 1 describes “a network structure of microcracks”, there is no description or suggestion that a glaucite ceramic substantially composed of a CaAl 4 O 7 single phase has microcracks.
上記のように熱機械分析で寸法-温度のグラフが特定の形状を有するグロサイトセラミックス、及び、27℃から300℃までの熱膨張係数が所望の範囲であるグロサイトセラミックスを得るためには、本発明のグロサイトセラミックスを後述する製造方法で製造すればよい。
In order to obtain a grosite ceramic having a specific shape in the dimension-temperature graph by thermomechanical analysis as described above, and a grosite ceramic having a thermal expansion coefficient from 27 ° C. to 300 ° C. in a desired range, What is necessary is just to manufacture the glossite ceramics of this invention with the manufacturing method mentioned later.
更に、本発明のグロサイトセラミックスは、大気雰囲気下、27℃から800℃まで加熱し、引き続きこの温度範囲で冷却したときの熱機械分析において、得られる寸法-温度のグラフにヒステリシスが観察されることが好ましい。このヒステリシスとは、昇温中のTMA曲線と冷却中のTMA曲線が一致しないことをいう。このように、寸法-温度のグラフにヒステリシスが観察される本発明のグロサイトセラミックスは、高温に加熱したときの熱膨張を更に低減しやすく、耐スポーリング性が高くなることを本発明者らは知見した。つまり、本発明のグロサイトセラミックスは、前記の熱機械分析において、加熱時と、その後の冷却時において、同温における寸法に違いが観察されることが好ましい。
Furthermore, in the grosite ceramics of the present invention, hysteresis is observed in the obtained dimension-temperature graph in the thermomechanical analysis when heated from 27 ° C. to 800 ° C. in the atmosphere and then cooled in this temperature range. It is preferable. This hysteresis means that the TMA curve during temperature rise does not match the TMA curve during cooling. As described above, the inventors of the present invention show that the glossite ceramic of the present invention in which hysteresis is observed in the dimension-temperature graph can further reduce the thermal expansion when heated to a high temperature and has high spalling resistance. Found out. In other words, in the above-described thermomechanical analysis, it is preferable that the difference in dimensions at the same temperature is observed during the heating and the subsequent cooling.
このようにヒステリシスが観察される理由は不明であるが、本発明のグロサイトセラミックスにおける、マイクロクラックの特性が関係している可能性があると本発明者らは考えている。すなわち加熱により閉じたマイクロクラックが、冷却時に開かなかったり、加熱時にマイクロクラックが閉じる温度と、冷却時に開く温度が異なったりする可能性があるものと推測している。本発明のグロサイトセラミックスを、前記のヒステリシスが観察されるものとするためには、本発明のグロサイトセラミックスを後述する製造方法で製造し原料種類及び焼成温度等を調整すればよい。
The reason why the hysteresis is observed in this way is unclear, but the present inventors believe that there is a possibility that the characteristics of the microcrack in the glossite ceramic of the present invention are related. That is, it is presumed that microcracks closed by heating may not open during cooling, or the temperature at which microcracks close during heating may differ from the temperature that opens during cooling. In order to make the above-mentioned hysteresis observed in the grosite ceramics of the present invention, the grosite ceramics of the present invention may be produced by the production method described later and the raw material type, firing temperature, etc. may be adjusted.
本発明のグロサイトセラミックスの高温まで加熱した時の熱膨張係数をより一層効果的に低下させる観点から、前記のヒステリシスによって生じる昇温時の寸法と冷却時の寸法との同温での差の最大値は、試験前の寸法に対して0.02%以上であることが好ましく、0.025%以上であることがより好ましく、0.03%以上であることが特に好ましい。ここでの寸法差は、寸法差の絶対値である。また本発明のグロサイトセラミックスを繰り返し加熱した場合の寸法変動を防止する観点から、この最大値は、試験前の寸法に対して、0.1%以下であることが好ましく、0.08%以下であることがより好ましく、0.06%以下であることが特に好ましい。
From the viewpoint of more effectively lowering the thermal expansion coefficient when heated to a high temperature of the glossite ceramics of the present invention, the difference between the dimension at the time of temperature rise and the dimension at the time of cooling caused by the hysteresis is the same. The maximum value is preferably 0.02% or more, more preferably 0.025% or more, and particularly preferably 0.03% or more with respect to the dimension before the test. The dimensional difference here is an absolute value of the dimensional difference. Further, from the viewpoint of preventing dimensional fluctuations when the grosite ceramic of the present invention is repeatedly heated, this maximum value is preferably 0.1% or less, and 0.08% or less with respect to the dimensions before the test. It is more preferable that it is 0.06% or less.
更にグロサイトセラミックスの高温まで加熱した時の熱膨張係数をより一層効果的に低下させる観点から、本発明のグロサイトセラミックスは、前記の熱機械分析において、加熱時と冷却時との寸法差(絶対値)が試験前の寸法に対して0.01%以上である温度範囲が、27℃から800℃までの範囲のうち60%以上であることが好ましく、80%以上であることがより好ましい。加熱時と冷却時との寸法差が試験前の寸法に対して0.01%以上である温度領域が27℃から800℃までの範囲のうちに複数存在している場合、ここでいう温度範囲の割合は、複数の当該温度領域それぞれの割合の合計とする。
Furthermore, from the viewpoint of further effectively reducing the coefficient of thermal expansion when the grosite ceramic is heated to a high temperature, the grosite ceramic of the present invention has a dimensional difference between heating and cooling in the thermomechanical analysis ( The temperature range in which the absolute value) is 0.01% or more with respect to the dimension before the test is preferably 60% or more, more preferably 80% or more of the range from 27 ° C to 800 ° C. . When there are multiple temperature regions in the range from 27 ° C to 800 ° C where the dimensional difference between heating and cooling is 0.01% or more with respect to the size before the test, the temperature range here Is the sum of the ratios of the plurality of temperature regions.
本発明のグロサイトセラミックスは、高温での熱膨張の程度が優れて低い。具体的には、グロサイトセラミックスは、大気雰囲気下で測定した、27℃から800℃までの熱膨張係数が、3.4×10-6/K以下であることが好ましい。このような本発明のグロサイトセラミックスは、電子部品の迅速焼成用窯用具に好適な、耐スポーリング性の高いものとなる。この観点から、グロサイトセラミックスの大気雰囲気下で測定した27℃から800℃までの熱膨張係数は、好ましくは、3.0×10-6/K以下であり、より好ましくは、2.5×10-6/K以下であり、特に好ましくは2.0×10-6/K以下である。当該熱膨張係数の下限としては、-2.0×10-6/K以上とすると破壊強度の観点から好ましい。上記のように熱機械分析で800℃までの熱膨張係数が所望の範囲であるグロサイトセラミックスを得るためには、本発明のグロサイトセラミックスを後述する製造方法で製造すればよい。
The degree of thermal expansion at a high temperature is excellent in the glossite ceramic of the present invention. Specifically, it is preferable that the coefficient of thermal expansion from 27 ° C. to 800 ° C. is 3.4 × 10 −6 / K or less for the glossite ceramics measured in an air atmosphere. Such a glossite ceramic of the present invention has high spalling resistance suitable for a kiln tool for rapid firing of electronic parts. From this viewpoint, the coefficient of thermal expansion from 27 ° C. to 800 ° C. measured in the atmospheric atmosphere of the grosite ceramics is preferably 3.0 × 10 −6 / K or less, more preferably 2.5 ×. 10 −6 / K or less, particularly preferably 2.0 × 10 −6 / K or less. The lower limit of the thermal expansion coefficient is preferably −2.0 × 10 −6 / K or more from the viewpoint of fracture strength. As described above, in order to obtain a grosite ceramic having a desired coefficient of thermal expansion up to 800 ° C. by thermomechanical analysis, the grosite ceramic of the present invention may be produced by the production method described later.
本発明のグロサイトセラミックスは、上述したように熱膨張の程度をより確実に低下させる観点から、断面を150倍に拡大した顕微鏡像においてマイクロクラックが観察されることが好ましい。マイクロクラックは、通常、幅方向及び該幅方向よりも長さの長い長手方向を有する形状をしている。本発明のグロサイトセラミックスは、熱膨張の程度を低下させる観点から、断面を150倍に拡大した顕微鏡像において、長手方向に沿う長さが50μm以上である前記マイクロクラックが、前記倍率での、0.84mm×0.59mmの一視野当たり1つ以上観察されることが好ましく、3つ以上観察されることがより好ましく、10つ以上観察されることが特に好ましい。顕微鏡観察は、顕微鏡として走査型電子顕微鏡(SEM)を用い、例えば後述する実施例の方法により行うことができる。グロサイトセラミックス断面においてマイクロクラックは、走査型電子顕微鏡(SEM)を用い、加速電圧を15kVとした条件において、白色の細長い像として観察される。本発明のグロサイトセラミックスにおける前記マイクロクラックの数は、例えば、顕微鏡像における異なる10視野分の平均値で表すことができる。グロサイトセラミックスにおいて長さが特定以上のマイクロクラックが一視野当たり1つ以上観察されるとは、前記観察条件で異なる10視野観察した場合に各視野において1つ以上、当該マイクロクラックが観察されればよい。
In the glossite ceramic of the present invention, as described above, it is preferable that microcracks are observed in a microscopic image with the cross section enlarged 150 times from the viewpoint of more reliably reducing the degree of thermal expansion. The microcrack usually has a shape having a width direction and a longitudinal direction longer than the width direction. From the viewpoint of reducing the degree of thermal expansion, the microcrack of the present invention has a microscopic image in which the cross section is magnified 150 times. One or more observations per one field of view of 0.84 mm × 0.59 mm are preferable, three or more observations are more preferable, and ten or more observations are particularly preferable. Microscopic observation can be performed using a scanning electron microscope (SEM) as a microscope, for example, by a method of an example described later. A microcrack is observed as a white elongated image on the cross-section of the grosite ceramic under the condition that the acceleration voltage is 15 kV using a scanning electron microscope (SEM). The number of the microcracks in the glossite ceramic of the present invention can be represented by, for example, an average value for 10 different visual fields in a microscopic image. One or more micro cracks having a specific length or more are observed per field of view in the gloucite ceramics. When ten different fields are observed under the above observation conditions, one or more micro cracks are observed in each field of view. That's fine.
マイクロクラックの形状は、例えば曲線状や直線状、断続線状等の線状であってもよく、帯状であってもよく、折り曲げ部分を有していても有していなくてもよく、網目のように連続していても、不連続なものであってもよい。なお、長手方向に沿う長さとは、マイクロクラックが折り曲げ部を有している場合等、直線でない場合、この折り曲げに沿う、マイクロクラックの端部から端部までの道のりの長さである。
The shape of the microcracks may be, for example, a linear shape such as a curved line, a straight line, or an intermittent line, may be a band, may or may not have a bent portion, Or may be discontinuous. The length along the longitudinal direction is the length of the path from the end to the end of the microcrack along the bend when the microcrack has a bent portion or the like and is not a straight line.
本発明のグロサイトセラミックスの熱膨張の程度を更に低下する観点から、前記の顕微鏡像において、長手方向に沿う長さが50μm以上であるマイクロクラックの前記の一視野あたりにおける合計の長さは、500μm以上であることが好ましく、1000μm以上であることがより好ましく、1500μm以上であることが更に一層好ましい。ここでいう合計の長さとは、前記の一視野あたりに観察されるマイクロクラックの長手方向に沿う長さの合計である。前記の一視野あたりにおける合計の長さは、破壊強度の観点から、7000μm以下であることが好ましく、5000μm以下であることがより好ましく、4500μm以下であることが特に好ましい。本発明のグロサイトセラミックスにおける前記マイクロクラックの合計の長さは、例えば、顕微鏡像における異なる10視野分の平均値で表すことができる。上述したように、本発明のグロサイトセラミックスでは異なる10視野分観察したときに、各視野において1つ以上、長手方向に沿う長さが50μm以上であるマイクロクラックが観察されることが好ましい。
From the viewpoint of further reducing the degree of thermal expansion of the glossite ceramics of the present invention, in the microscopic image, the total length per one visual field of the microcracks having a length along the longitudinal direction of 50 μm or more is: It is preferably 500 μm or more, more preferably 1000 μm or more, and even more preferably 1500 μm or more. The total length here is the total length along the longitudinal direction of the microcracks observed per one visual field. From the viewpoint of breaking strength, the total length per field of view is preferably 7000 μm or less, more preferably 5000 μm or less, and particularly preferably 4500 μm or less. The total length of the microcracks in the glossite ceramic of the present invention can be represented by, for example, an average value for 10 different visual fields in a microscopic image. As described above, it is preferable that one or more microcracks having a length along the longitudinal direction of 50 μm or more in each visual field are observed in each of the visual fields when observed for 10 different visual fields.
更に、本発明のグロサイトセラミックスは、マイクロクラックの構造を求める熱膨張及び耐スポーリング性に適したものとする観点から、結晶粒径に応じて、粒界が適切に認識できるように、断面を150から1500倍に拡大した顕微鏡像において観察される結晶粒径が、平均で5μm以上であることが好ましい。結晶粒径は、次のようにして得られる、グロサイトセラミックスの断面を研磨した後、1400℃(キープ時間0分)で大気焼成し、サーマルエッチングする。次いでエッチングした面を走査型電子顕微鏡(SEM)を用い、加速電圧を15kVとした条件において撮影して画像を得る。得られた画像をインターセプト法により、コード長さを測長し、結晶粒径を算出する。通常、画像において結晶粒は、暗色で網目状にみえる結晶粒界に囲まれた領域である(図4参照)。1視野において10線分測定し、この測定を異なる任意の10視野において行い、各視野ごとに観察された全ての結晶粒径の平均値を用いる。上記の観点から結晶粒径は、前記の方法で得られた平均値で5μm以上であることがより好ましく、10μm以上であることが特に好ましい。また結晶粒径は、当該平均値で300μm以下であることが、グロサイトセラミックスの製造のしやすさや破壊強度の観点から好ましい。
本発明のグロサイトセラミックスの、マイクロクラックの数や長さ、結晶粒径を上記範囲のものとするためには、本発明のグロサイトセラミックスを後述する製造方法で製造し、原料の粒径や焼成温度等を調整すればよい。 Furthermore, the glossite ceramic of the present invention has a cross-section so that the grain boundary can be properly recognized according to the crystal grain size from the viewpoint of being suitable for thermal expansion and spalling resistance for obtaining a microcrack structure. Is preferably 5 μm or more on average in a microscopic image obtained by magnifying the film from 150 to 1500 times. The crystal grain size is obtained by polishing the cross-section of the globite ceramics obtained as follows, then firing in the air at 1400 ° C. (keeptime 0 minutes), and thermal etching. Next, the etched surface is photographed using a scanning electron microscope (SEM) under the condition of an acceleration voltage of 15 kV to obtain an image. The cord length of the obtained image is measured by the intercept method, and the crystal grain size is calculated. Usually, in an image, a crystal grain is a region surrounded by a crystal grain boundary that looks dark and has a mesh shape (see FIG. 4). Ten line segments are measured in one visual field, and this measurement is performed in 10 different arbitrary visual fields, and the average value of all crystal grain sizes observed for each visual field is used. From the above viewpoint, the average grain size obtained by the above method is more preferably 5 μm or more, and particularly preferably 10 μm or more. In addition, the crystal grain size is preferably 300 μm or less in terms of the average value from the viewpoint of ease of production of the grosite ceramics and fracture strength.
In order to make the number and length of the microcracks and the crystal grain size of the glossite ceramics of the present invention within the above ranges, the glossite ceramics of the present invention are produced by the production method described later, The firing temperature and the like may be adjusted.
本発明のグロサイトセラミックスの、マイクロクラックの数や長さ、結晶粒径を上記範囲のものとするためには、本発明のグロサイトセラミックスを後述する製造方法で製造し、原料の粒径や焼成温度等を調整すればよい。 Furthermore, the glossite ceramic of the present invention has a cross-section so that the grain boundary can be properly recognized according to the crystal grain size from the viewpoint of being suitable for thermal expansion and spalling resistance for obtaining a microcrack structure. Is preferably 5 μm or more on average in a microscopic image obtained by magnifying the film from 150 to 1500 times. The crystal grain size is obtained by polishing the cross-section of the globite ceramics obtained as follows, then firing in the air at 1400 ° C. (keep
In order to make the number and length of the microcracks and the crystal grain size of the glossite ceramics of the present invention within the above ranges, the glossite ceramics of the present invention are produced by the production method described later, The firing temperature and the like may be adjusted.
更に、本発明のグロサイトセラミックスは、耐スポーリング性△Tが、600℃以上であることが好ましい。耐スポーリング性は例えば下記の実施例に記載の方法にて測定される。耐スポーリング性が上記の下限値以上のグロサイトセラミックスは、後述する製造方法により得ることができる。本発明のグロサイトセラミックスの高温での繰り返し使用をより一層容易とする観点から、耐スポーリング性△Tは、600℃以上であることがより好ましく、700℃以上であることがより一層好ましく、800℃以上であることが特に好ましい。耐スポーリング性△Tを上記範囲のものとするためには、本発明のグロサイトセラミックスを後述する製造方法で製造し、原料の粒径、原料の製造方法や種類及び焼成温度を調整すればよい。
Furthermore, it is preferable that the glowing ceramic of the present invention has a spalling resistance ΔT of 600 ° C. or higher. The spalling resistance is measured, for example, by the method described in the following examples. Grositic ceramics having a spalling resistance equal to or higher than the above lower limit can be obtained by a production method described later. From the viewpoint of further facilitating repeated use of the glossite ceramic of the present invention at a high temperature, the spalling resistance ΔT is more preferably 600 ° C. or higher, and even more preferably 700 ° C. or higher. It is particularly preferable that the temperature is 800 ° C. or higher. In order to make the spalling resistance ΔT within the above range, the grossite ceramic of the present invention is produced by the production method described later, and the particle size of the raw material, the production method and type of the raw material, and the firing temperature are adjusted. Good.
本発明のグロサイトセラミックスは本発明の効果を損なわない範囲でCaAl4O7以外の化合物を含有していてもよい。例えば本発明のグロサイトセラミックスは、CaAl4O7の融点を下げて熱膨張を下げるための化合物を含有していてもよく、特許文献2に記載されたZrO2、K2O、Li2O、B2O3、CaF2、MgO、TiO2、ZnO、SnO、SrO、Y2O3、Fe2O3、BaO等の化合物を含有していてもよい。しかしながら、本発明のグロサイトセラミックスはこれらの化合物を極力含有しないことが、電子部品の焼成用窯用具として用いた場合における高温クリープ特性を初めとした高温特性の低下を防止しやすいため好ましい。
この観点から、本発明のグロサイトセラミックス中のCa、O、Al以外の元素含有量、具体的には、Zr、K、Li、B、F、Mg、Ti、Zn、Sn、Sr、Y、Fe、BaSi,Ni,Naの元素の含有量は、合計で、該グロサイトセラミックス中、10000ppm以下であることが好ましく、7000ppm以下であることがより好ましく、5000ppm以下であることが特に好ましい。上記の合計の上限は、1000ppm以上であると、グロサイトセラミックスの製造の容易性等の観点から好ましい。 The glossite ceramic of the present invention may contain a compound other than CaAl 4 O 7 as long as the effects of the present invention are not impaired. For example, the glossite ceramic of the present invention may contain a compound for lowering the melting point of CaAl 4 O 7 to lower the thermal expansion. ZrO 2 , K 2 O, Li 2 O described in Patent Document 2 , B 2 O 3 , CaF 2 , MgO, TiO 2 , ZnO, SnO, SrO, Y 2 O 3 , Fe 2 O 3 , BaO and the like may be contained. However, it is preferable that the glossite ceramic of the present invention does not contain these compounds as much as possible because it is easy to prevent deterioration of high temperature characteristics such as high temperature creep characteristics when used as a kiln tool for firing electronic parts.
From this viewpoint, the content of elements other than Ca, O, and Al in the glossite ceramic of the present invention, specifically, Zr, K, Li, B, F, Mg, Ti, Zn, Sn, Sr, Y, The total content of elements of Fe, BaSi, Ni, and Na is preferably 10,000 ppm or less, more preferably 7000 ppm or less, and particularly preferably 5000 ppm or less in the grossite ceramic. The upper limit of the total is preferably 1000 ppm or more from the viewpoint of ease of production of the grosite ceramics.
この観点から、本発明のグロサイトセラミックス中のCa、O、Al以外の元素含有量、具体的には、Zr、K、Li、B、F、Mg、Ti、Zn、Sn、Sr、Y、Fe、BaSi,Ni,Naの元素の含有量は、合計で、該グロサイトセラミックス中、10000ppm以下であることが好ましく、7000ppm以下であることがより好ましく、5000ppm以下であることが特に好ましい。上記の合計の上限は、1000ppm以上であると、グロサイトセラミックスの製造の容易性等の観点から好ましい。 The glossite ceramic of the present invention may contain a compound other than CaAl 4 O 7 as long as the effects of the present invention are not impaired. For example, the glossite ceramic of the present invention may contain a compound for lowering the melting point of CaAl 4 O 7 to lower the thermal expansion. ZrO 2 , K 2 O, Li 2 O described in Patent Document 2 , B 2 O 3 , CaF 2 , MgO, TiO 2 , ZnO, SnO, SrO, Y 2 O 3 , Fe 2 O 3 , BaO and the like may be contained. However, it is preferable that the glossite ceramic of the present invention does not contain these compounds as much as possible because it is easy to prevent deterioration of high temperature characteristics such as high temperature creep characteristics when used as a kiln tool for firing electronic parts.
From this viewpoint, the content of elements other than Ca, O, and Al in the glossite ceramic of the present invention, specifically, Zr, K, Li, B, F, Mg, Ti, Zn, Sn, Sr, Y, The total content of elements of Fe, BaSi, Ni, and Na is preferably 10,000 ppm or less, more preferably 7000 ppm or less, and particularly preferably 5000 ppm or less in the grossite ceramic. The upper limit of the total is preferably 1000 ppm or more from the viewpoint of ease of production of the grosite ceramics.
本発明のグロサイトセラミックスは、嵩比重が1.8以上であることが好ましく、2.0以上であることが更に好ましい。嵩比重を前記の下限値以上とすることで、強度を確保できるという利点がある。またグロサイトセラミックスは、嵩比重が2.88以下であることが好ましく、2.85以下であることが更に好ましい。嵩比重を前記の上限値以下とすることで、軽量化できるという利点がある。また、本発明のグロサイトセラミックスは、その見掛気孔率(以下、単に「気孔率」ともいう)が0%以上であることが好ましく、1%以上であることが更に好ましい。気孔率を前記の下限値以上とすることで、軽量化できるという利点がある。気孔率は37%以下であることが好ましく、31%以下であることが更に好ましい。気孔率を前記の上限値以下とすることで、強度を確保できるという利点がある。嵩比重は、例えばグロサイトセラミックス(又は窯用具)の質量を測定し、これをグロサイトセラミックス(又は窯用具)の寸法の測定から得られた体積で除すことで算出される。また気孔率は、(1-嵩比重/見掛比重)×100の計算式から算出することができる。ここで見掛比重は、グロサイトセラミックス(又は窯用具)の質量を、その見掛容積と同じ容積を持つ4℃の水の質量で割った値であり(JIS R2001)、アルキメデス法によって測定される。嵩比重や気孔率は、本発明のグロサイトセラミックスの製造方法において原料の粒径、原料の製造方法や種類、焼成温度を調整するほか、焼成に付す成形体の成形方法として、油圧成形や鋳込み成形等、求める嵩比重や気孔率に対応した適切な方法を採用することで調整できる。
The bulk specific gravity of the glossite ceramic of the present invention is preferably 1.8 or more, and more preferably 2.0 or more. There exists an advantage that intensity | strength can be ensured by making a bulk specific gravity more than the said lower limit. The glossite ceramic preferably has a bulk specific gravity of 2.88 or less, and more preferably 2.85 or less. There exists an advantage that it can reduce in weight by making bulk specific gravity below the said upper limit. Further, the apparent porosity (hereinafter, also simply referred to as “porosity”) of the glossite ceramic of the present invention is preferably 0% or more, and more preferably 1% or more. There exists an advantage that it can reduce in weight by making a porosity more than the said lower limit. The porosity is preferably 37% or less, and more preferably 31% or less. There exists an advantage that intensity | strength can be ensured by making a porosity into below the said upper limit. The bulk specific gravity is calculated, for example, by measuring the mass of the grosite ceramic (or kiln tool) and dividing this by the volume obtained from the measurement of the size of the grosite ceramic (or kiln tool). The porosity can be calculated from a formula of (1−bulk specific gravity / apparent specific gravity) × 100. Here, the apparent specific gravity is a value obtained by dividing the mass of the grosite ceramics (or kiln tool) by the mass of water at 4 ° C. having the same volume as the apparent volume (JIS R2001), and is measured by the Archimedes method. The The bulk density and porosity are adjusted by adjusting the particle size of the raw material, the manufacturing method and type of the raw material, and the firing temperature in the method for producing the grosite ceramic of the present invention. It can be adjusted by adopting an appropriate method corresponding to the required bulk specific gravity and porosity, such as molding.
本発明のグロサイトセラミックスは、曲げ強度が8MPa以上であることが好ましく、10MPa以上であることがより好ましい。曲げ強度を前記の下限値以上とすることで、焼成用道具として、扱いに十分な強度を有するという利点がある。グロサイトセラミックスは、曲げ強度が200MPa以下であることが好ましく、150MPa以下であることがより好ましい。曲げ強度を前記の上限値以下とすることで、実質上マイクロクラックが導入され、熱膨張率の低下が期待できるという利点がある。ここでいう曲げ強度はJISR2619に準じて測定された常温曲げ強度である。この範囲の曲げ強度は、本発明のグロサイトセラミックスの製造方法において、原料の粒径、原料の製造方法や種類、焼成温度を調整するほか、焼成に付す成形体の成形方法として、適切な方法を採用することで調整できる。
The glossite ceramic of the present invention preferably has a bending strength of 8 MPa or more, and more preferably 10 MPa or more. By making bending strength more than the said lower limit, there exists an advantage that it has intensity | strength sufficient for handling as a baking tool. The glossite ceramic preferably has a bending strength of 200 MPa or less, and more preferably 150 MPa or less. By setting the bending strength to be equal to or less than the above upper limit value, there is an advantage that microcracks are substantially introduced and a reduction in the thermal expansion coefficient can be expected. The bending strength here is a room temperature bending strength measured according to JIS R2619. The bending strength within this range is an appropriate method for adjusting the particle size of the raw material, the manufacturing method and type of the raw material, and the firing temperature in the method for producing the grosite ceramics of the present invention, as well as the method for forming the molded body subjected to firing. It can be adjusted by adopting.
以下、本発明のグロサイトセラミックスの好適な製造方法について説明する。本製造方法は、レーザー回折散乱式粒度分布測定法による累積体積50容量%における体積累積粒径D50が5μm以下であるアルミナ粒子と、該体積累積粒径D50が25μm以下である炭酸カルシウム粒子との混合粉を、1450℃以上の温度で焼成する工程を有するものである。
Hereinafter, the suitable manufacturing method of the glossite ceramics of this invention is demonstrated. This production method comprises alumina particles having a volume cumulative particle size D 50 of 5 μm or less at a cumulative volume of 50 vol% by a laser diffraction scattering type particle size distribution measurement method, and calcium carbonate particles having a volume cumulative particle size D 50 of 25 μm or less. And baking the mixed powder at a temperature of 1450 ° C. or higher.
本製造方法において、アルミナ粒子及び炭酸カルシウム粒子の粒径は重要である。本製造方法において、アルミナ粒子又は炭酸カルシウム粒子が上記粒径を満たさない場合、熱膨張の程度を十分低下するために求められる数のマイクロクラックを生成し難い。熱膨張の程度を十分低下する観点から、アルミナ粒子の体積累積粒径D50は、5μm以下であることが好ましく、4μm以下であることがより好ましく、3μm以下であることが更に好ましい。またアルミナ粒子の体積累積粒径D50の下限としては、例えば0.01μm以上とすることがアルミナ粒子の入手容易性や凝集による混合の均質性の観点から好ましい。
In this production method, the particle sizes of the alumina particles and the calcium carbonate particles are important. In this production method, when the alumina particles or the calcium carbonate particles do not satisfy the above particle diameter, it is difficult to generate the number of microcracks required for sufficiently reducing the degree of thermal expansion. From the viewpoint of sufficiently reducing the degree of thermal expansion, the volume cumulative particle diameter D 50 of the alumina particles is preferably 5 μm or less, more preferably 4 μm or less, and even more preferably 3 μm or less. Further, the lower limit of the volume cumulative particle diameter D 50 of the alumina particles is preferably 0.01 μm or more, for example, from the viewpoint of the availability of alumina particles and the homogeneity of mixing due to aggregation.
炭酸カルシウム粒子の体積累積粒径D50は、25μm以下であることが好ましく、24μm以下であることがより好ましく、23μm以下であることが更に好ましい。また炭酸カルシウムの体積累積粒径D50の下限としては、例えば0.01μm以上とすることが炭酸カルシウム粒子の入手容易性や凝集による混合の均質性の観点から好ましい。
The volume cumulative particle diameter D 50 of the calcium carbonate particles is preferably 25 μm or less, more preferably 24 μm or less, and even more preferably 23 μm or less. Further, the lower limit of the volume cumulative particle diameter D 50 of calcium carbonate is preferably 0.01 μm or more, for example, from the viewpoint of availability of calcium carbonate particles and homogeneity of mixing due to aggregation.
アルミナ粒子のD50を上記の範囲とするためには、ボールミルや振動ミルなどにより粉砕する方法や篩などにより分級する方法が挙げられる。炭酸カルシウム粒子のD50を上記の範囲とするためには、ボールミルや振動ミルなどにより粉砕する方法や篩などにより分級する方法が挙げられる。
In order to make the D 50 of the alumina particles within the above range, a method of pulverizing with a ball mill or a vibration mill or a method of classifying with a sieve or the like can be mentioned. In order to make the D 50 of the calcium carbonate particles within the above range, a method of pulverizing with a ball mill or a vibration mill or a method of classifying with a sieve or the like can be mentioned.
D50は例えば、日機装株式会社製(又はマイクロトラック・ベル株式会社製)のマイクロトラックHRA及びマイクロトラック3000シリーズ(例えば、MT3200II、MT3300EXII、MT3300II等のMT-3000IIシリーズ)で測定することができる。マイクロトラックHRAを用いる場合は、具体的には、以下のようにする。
D 50 can be measured, for example, by Microtrack HRA and Microtrack 3000 series (for example, MT-3000II series such as MT3200II, MT3300EXII, MT3300II, etc.) manufactured by Nikkiso Co., Ltd. (or manufactured by Microtrack Bell Co., Ltd.). Specifically, when the microtrack HRA is used, the following is performed.
<D50の測定方法>
100mLガラスビーカーに、アルミナ粒子又は炭酸カルシウム粒子を約0.4g含む量入れ、次いで分散媒として純水を、ビーカーの100mLの線まで入れて、測定用スラリーとする。この測定用スラリーを、純水が入った日機装株式会社製マイクロトラックHRAの試料循環器のチャンバーに、適正濃度であると装置が判定するまで滴下して、D50を求める。 <Method of measuring the D 50>
An amount containing about 0.4 g of alumina particles or calcium carbonate particles is put into a 100 mL glass beaker, and then pure water is added as a dispersion medium up to the 100 mL line of the beaker to obtain a slurry for measurement. This measurement slurry is dropped into a chamber of a sample circulator of Microtrack HRA manufactured by Nikkiso Co., Ltd. containing pure water until the apparatus determines that the concentration is appropriate, and D 50 is determined.
100mLガラスビーカーに、アルミナ粒子又は炭酸カルシウム粒子を約0.4g含む量入れ、次いで分散媒として純水を、ビーカーの100mLの線まで入れて、測定用スラリーとする。この測定用スラリーを、純水が入った日機装株式会社製マイクロトラックHRAの試料循環器のチャンバーに、適正濃度であると装置が判定するまで滴下して、D50を求める。 <Method of measuring the D 50>
An amount containing about 0.4 g of alumina particles or calcium carbonate particles is put into a 100 mL glass beaker, and then pure water is added as a dispersion medium up to the 100 mL line of the beaker to obtain a slurry for measurement. This measurement slurry is dropped into a chamber of a sample circulator of Microtrack HRA manufactured by Nikkiso Co., Ltd. containing pure water until the apparatus determines that the concentration is appropriate, and D 50 is determined.
アルミナ粒子の結晶構造としては、α、γ、θ、η、δ等のいずれであってもよい。
The crystal structure of the alumina particles may be any of α, γ, θ, η, δ, and the like.
炭酸カルシウム粒子としては、重質炭酸カルシウム粒子、軽質炭酸カルシウム粒子が挙げられる。重質炭酸カルシウム粒子は、天然のチョーク(白亜)、石灰石、大理石などを機械的に粉砕・加工したものである。一方、軽質炭酸カルシウムは、石灰石を原料として化学的に製造した合成品の炭酸カルシウムである。本製造方法においては、グロサイトセラミックスをより一層熱膨張しにくいものとするため、重質炭酸カルシウム粒子を用いることが好ましい。
Examples of the calcium carbonate particles include heavy calcium carbonate particles and light calcium carbonate particles. Heavy calcium carbonate particles are obtained by mechanically pulverizing and processing natural chalk (chalk), limestone, marble, and the like. On the other hand, light calcium carbonate is a synthetic calcium carbonate chemically produced from limestone as a raw material. In this production method, it is preferable to use heavy calcium carbonate particles in order to make the grosite ceramics more difficult to thermally expand.
また炭酸カルシウム粒子として、有機化合物による表面処理が施されていないものを用いることも、より一層熱膨張しにくいグロサイトセラミックスを得るために好ましい。この有機化合物としては、脂肪酸や脂肪酸エステル、脂肪酸塩等が挙げられる。
It is also preferable to use a calcium carbonate particle that has not been subjected to a surface treatment with an organic compound in order to obtain a grosite ceramic that is more difficult to thermally expand. Examples of the organic compound include fatty acids, fatty acid esters, and fatty acid salts.
アルミナ粒子と炭酸カルシウム粒子との配合比率は、得られるグロサイトセラミックスを構成するアルミン酸カルシウムをCaAl4O7単相からなるものとするために重要である。アルミナ粒子と炭酸カルシウム粒子との配合比率はモル比で(炭酸カルシウム/アルミナ)=1.99:1以上2.01:1以下とすることが好ましく、1.995:1以上2.005:1以下とすることが更に好ましい。
The blending ratio of the alumina particles and the calcium carbonate particles is important in order to make the calcium aluminate constituting the obtained gloucite ceramics consist of a CaAl 4 O 7 single phase. The mixing ratio of the alumina particles to the calcium carbonate particles is preferably (calcium carbonate / alumina) = 1.99: 1 or more and 2.01: 1 or less in terms of molar ratio, and is 1.995: 1 or more and 2.005: 1. More preferably, it is as follows.
原料の混合粉は、アルミナ粒子及び炭酸カルシウム粒子のみを含むものであってもよく、或いはアルミナ粒子及び炭酸カルシウム粒子に加えて他の鉱物等を含んでいてもよい。また、結合剤を添加してもよい。結合剤としては、ガラス、シリカ等を挙げることができる。
The mixed powder of the raw material may contain only alumina particles and calcium carbonate particles, or may contain other minerals in addition to the alumina particles and calcium carbonate particles. A binder may also be added. Examples of the binder include glass and silica.
原料の混合粉を用いてグロサイトセラミックスの前駆体である成形体を得るには各種の成形方法、例えば油圧成形や鋳込み成形を用いることができる。油圧成形を用いる場合には、混合粉に対して25~100質量%の水を添加して含水流動体となし、該含水流動体を金型のキャビティに充填して加圧成形を行う。加圧成形には、例えば二軸加圧を採用することができる。加圧力は100~1000kg/cm2に設定することが好ましい。加圧力の調整によって、得られるグロサイトセラミックスの嵩比重や気孔率、曲げ強度を調整することができる。このようにして得られた成形体を乾燥させて水分を除去し、焼成する。
Various molding methods such as hydraulic molding and cast molding can be used to obtain a molded body that is a precursor of the grosite ceramics using the mixed powder of raw materials. In the case of using hydraulic molding, 25 to 100% by mass of water is added to the mixed powder to form a hydrous fluid, and the hydrous fluid is filled in a cavity of a mold to perform pressure molding. For the pressure molding, for example, biaxial pressing can be employed. The applied pressure is preferably set to 100 to 1000 kg / cm 2 . By adjusting the applied pressure, the bulk specific gravity, porosity, and bending strength of the resulting grosite ceramics can be adjusted. The molded body thus obtained is dried to remove moisture and fired.
一方、鋳込み成形を行う場合には、混合粉に対して好ましくは25~100質量%の水及び好ましくは0.5~3.0質量%の分散剤を添加してスラリーとなす。分散剤としては、例えばポリカルボン酸系分散剤などを用いることができる。次に、得られたスラリーを石膏型に流し込み固化させる。石膏型からの脱型後、乾燥させて水分を除去した成形体を焼成する。
On the other hand, when cast molding is performed, preferably 25 to 100% by mass of water and preferably 0.5 to 3.0% by mass of a dispersant are added to the mixed powder to form a slurry. As the dispersant, for example, a polycarboxylic acid-based dispersant can be used. Next, the obtained slurry is poured into a plaster mold and solidified. After demolding from the gypsum mold, the molded body from which moisture has been removed by drying is fired.
各種の成形方法で得られた成形体を、大気などの含酸素雰囲気下に1450℃以上という焼成温度条件下で焼成することで、目的とするグロサイトセラミックスが得られる。本製造方法においては、上記の原料の粒径と、1450℃以上という焼成温度条件とが共に満たされている必要がある。どちらかの要件が満たされないと、IB/IAの値が上記の上限を超えたグロサイトセラミックスや、300℃までの熱膨張率が上記の上限を超えたグロサイトセラミックスが得られてしまう。熱膨張し難いグロサイトセラミックスを得やすくするために、焼成温度の下限は1450℃以上であることが好ましく、1500℃以上であることがより好ましい。また焼成温度の上限としては、例えば1750℃以下であることが材料の融点(1760℃)の観点から好ましく、1730℃以下であることがより好ましい。最高温度保持時間は、焼成温度がこの範囲内の場合には、1~10時間とすることが好ましい。
The molded article obtained by various molding methods is fired under a firing temperature condition of 1450 ° C. or higher in an oxygen-containing atmosphere such as the air, thereby obtaining the target grosite ceramics. In this production method, both the particle size of the raw material and the firing temperature condition of 1450 ° C. or higher must be satisfied. If either requirement is not met, and Gros sites ceramics value of I B / I A exceeds the upper limit of the thermal expansion coefficient of up to 300 ° C. resulting in glow sites ceramics has exceeded the upper limit of the above obtained . In order to make it easy to obtain a grosite ceramic that is difficult to thermally expand, the lower limit of the firing temperature is preferably 1450 ° C. or higher, and more preferably 1500 ° C. or higher. Moreover, as an upper limit of baking temperature, it is preferable from a viewpoint of melting | fusing point (1760 degreeC) of material, for example that it is 1750 degrees C or less, and it is more preferable that it is 1730 degrees C or less. The maximum temperature holding time is preferably 1 to 10 hours when the firing temperature is within this range.
このようにして得られた本発明のグロサイトセラミックスは高温加熱時における低熱膨張性、耐スポーリング性を兼ね備えることにより、窯用具のほか、アルミ溶湯部材等の各種の用途に好適に使用することができる。窯用具としては、電子部品の迅速焼成用窯用具及び粉末冶金用窯用具に好適に用いることができる。
The thus obtained glossite ceramic of the present invention has low thermal expansion and spalling resistance during high-temperature heating, so that it can be suitably used for various applications such as molten aluminum members in addition to kiln tools. Can do. As a kiln tool, it can be used suitably for a kiln tool for rapid firing of electronic parts and a kiln tool for powder metallurgy.
本発明の窯用具は、本発明のグロサイトセラミックスを用いたものである。窯用具としては、トレー、さや、匣鉢、容器が挙げられる。窯用具としては、焼成炉の炉床に載置される矩形や円形をした板状のものが挙げられる。或いは窯用具は、焼成炉の炉床に載置される矩形や円形をした底面部と、該底面部の周縁から起立する閉じた壁面部とを有し、上方が開口した形状のものであってもよい。また、窯用具は、枠と板とを組み合わせることによって容器的な使い方をすることもある。
The kiln tool of the present invention uses the glossite ceramic of the present invention. Examples of kiln tools include trays, pods, mortars, and containers. As a kiln tool, the rectangular or circular plate-like thing mounted on the hearth of a baking furnace is mentioned. Alternatively, the kiln tool has a rectangular or circular bottom surface that is placed on the hearth of the firing furnace and a closed wall surface that rises from the periphery of the bottom surface, and has an open top. May be. Moreover, the kiln tool may be used like a container by combining a frame and a plate.
本発明の窯用具は、特に電子部品の迅速焼成用窯用具として好適に使用される。本発明の窯用具を電子部品の迅速焼成用窯用具を使用する場合、この窯用具を焼成することにより得られる電子部品としては、例えば、積層セラミックスコンデンサ(multiple-layer ceramic capacitor;以下、MLCCという)等のセラミック電子部品が挙げられる。MLCCは、例えば、ニッケル粉等の内部電極材料、BaTiO3等の誘電体材料を、それぞれ結着剤等と混練してペースト状に加工し、スクリーン印刷等の要領で交互に積層してシート状にして所定の大きさにカッティングされた後、外部電極を取り付け、焼結することにより製造される。MLCC等の電子部品用の焼成は、例えば1200℃以上1450℃以下という高い温度範囲の炉に投入されることにより行われる。焼成雰囲気は、窒素及び水素を用いた弱還元雰囲気又は不活性雰囲気とすることができる。また迅速焼成における昇温速度としては、例えば、炉内の常温から最高保持温度までの平均の昇温速度として20℃/分以上、特に50℃/分以上である。冷却速度としては、炉内の最高保持温度から常温までの平均の冷却速度として20℃/分以上、特に50℃/分以上である。本発明の窯用具は熱膨張の程度が優れて低く、耐スポーリング性の高いグロサイトセラミックスを用いている。それにより、ランニングコストを低廉化でき、且つ電子部品の歩留を向上できる。なお窯用具を電子部品の迅速焼成用に用いる場合、電子部品との反応をより一層確実に防止するために、表面をジルコニア等でコートしていてもよい。
The kiln tool of the present invention is particularly preferably used as a kiln tool for rapid firing of electronic parts. When a kiln tool for rapid firing of electronic parts is used as the kiln tool of the present invention, an electronic part obtained by firing the kiln tool includes, for example, a multilayer ceramic capacitor (hereinafter referred to as MLCC). ) And other ceramic electronic components. MLCC is, for example, an internal electrode material such as nickel powder, a dielectric material such as BaTiO 3 , kneaded with a binder or the like, processed into a paste, and alternately laminated in a manner such as screen printing to form a sheet After cutting to a predetermined size, an external electrode is attached and sintered. Firing for an electronic component such as MLCC is performed by putting it in a furnace in a high temperature range of, for example, 1200 ° C. or higher and 1450 ° C. or lower. The firing atmosphere can be a weak reducing atmosphere or an inert atmosphere using nitrogen and hydrogen. Moreover, as the temperature increase rate in the rapid firing, for example, the average temperature increase rate from the normal temperature in the furnace to the maximum holding temperature is 20 ° C./min or more, particularly 50 ° C./min or more. The cooling rate is 20 ° C./min or more, particularly 50 ° C./min or more, as an average cooling rate from the maximum holding temperature in the furnace to room temperature. The kiln tool of the present invention uses a grosite ceramic that has an excellent and low degree of thermal expansion and a high spalling resistance. As a result, running costs can be reduced and the yield of electronic components can be improved. In addition, when using a kiln tool for the rapid baking of an electronic component, in order to prevent reaction with an electronic component still more reliably, the surface may be coated with zirconia etc.
以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。特に断らない限り、「%」は「質量%」を意味する。また「部」は「質量部」を意味する。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited to such examples. Unless otherwise specified, “%” means “mass%”. “Part” means “part by mass”.
〔実施例1〕
D50が0.4μmのアルミナ粒子67.1部と、D50が2μmの炭酸カルシウム粒子(重質、表面処理無し)32.9部と、PVA20%水溶液と、ポリカルボン酸分散剤(花王製ポイズ532A)1部を混合して、スラリーを得た。PVA水溶液は、PVAのスラリー中の量が1%になるように添加した。このスラリーを90℃で乾燥させ、乾燥体を篩(目開き250μm)により、造粒し、顆粒を得た。顆粒を金型に充填し、一軸加圧による成形を行った。加圧力は、700kg/cm2とした。得られた成形体を、大気雰囲気炉内で1600℃、3時間保持して焼成を行い、目的とするグロサイトセラミックスを得た。グロサイトセラミックスは、横110mm、縦110mm、高さは4mmの板状のものであった。 [Example 1]
67.1 parts of alumina particles having a D 50 of 0.4 μm, 32.9 parts of calcium carbonate particles having a D 50 of 2 μm (heavy, no surface treatment), a 20% PVA aqueous solution, and a polycarboxylic acid dispersant (manufactured by Kao) 1 part of Poise 532A) was mixed to obtain a slurry. The PVA aqueous solution was added so that the amount of the PVA in the slurry was 1%. This slurry was dried at 90 ° C., and the dried product was granulated with a sieve (aperture 250 μm) to obtain granules. The granules were filled in a mold and molded by uniaxial pressing. The applied pressure was 700 kg / cm 2 . The obtained molded body was fired by holding it at 1600 ° C. for 3 hours in an air atmosphere furnace to obtain a target grosite ceramic. The glossite ceramic was a plate having a width of 110 mm, a height of 110 mm, and a height of 4 mm.
D50が0.4μmのアルミナ粒子67.1部と、D50が2μmの炭酸カルシウム粒子(重質、表面処理無し)32.9部と、PVA20%水溶液と、ポリカルボン酸分散剤(花王製ポイズ532A)1部を混合して、スラリーを得た。PVA水溶液は、PVAのスラリー中の量が1%になるように添加した。このスラリーを90℃で乾燥させ、乾燥体を篩(目開き250μm)により、造粒し、顆粒を得た。顆粒を金型に充填し、一軸加圧による成形を行った。加圧力は、700kg/cm2とした。得られた成形体を、大気雰囲気炉内で1600℃、3時間保持して焼成を行い、目的とするグロサイトセラミックスを得た。グロサイトセラミックスは、横110mm、縦110mm、高さは4mmの板状のものであった。 [Example 1]
67.1 parts of alumina particles having a D 50 of 0.4 μm, 32.9 parts of calcium carbonate particles having a D 50 of 2 μm (heavy, no surface treatment), a 20% PVA aqueous solution, and a polycarboxylic acid dispersant (manufactured by Kao) 1 part of Poise 532A) was mixed to obtain a slurry. The PVA aqueous solution was added so that the amount of the PVA in the slurry was 1%. This slurry was dried at 90 ° C., and the dried product was granulated with a sieve (aperture 250 μm) to obtain granules. The granules were filled in a mold and molded by uniaxial pressing. The applied pressure was 700 kg / cm 2 . The obtained molded body was fired by holding it at 1600 ° C. for 3 hours in an air atmosphere furnace to obtain a target grosite ceramic. The glossite ceramic was a plate having a width of 110 mm, a height of 110 mm, and a height of 4 mm.
得られたグロサイトセラミックスについて上記の方法により嵩比重、気孔率(%)、曲げ強度(MPa)を測定した。その結果を表1に示す。
The bulk specific gravity, the porosity (%), and the bending strength (MPa) of the obtained grosite ceramics were measured by the above methods. The results are shown in Table 1.
更に、得られたグロサイトセラミックスについて、下記の条件で粉末X線回折測定を行い、目的とする各ピークの積分強度IB及びIAを求め、IB/IAを算出した。その結果を表2に示す。また、粉末X線回折測定により得られたチャートを図1に示す。
Further, the glow sites ceramics obtained, subjected to powder X-ray diffraction measurement under the following conditions to obtain the integrated intensity I B and I A of the peak of interest was calculated I B / I A. The results are shown in Table 2. A chart obtained by powder X-ray diffraction measurement is shown in FIG.
更に、得られたグロサイトセラミックスについて、下記の条件にて熱機械分析を行い、27℃から300℃までの熱膨張係数(/K)、27℃から800℃までの熱膨張係数(/K)を求めるとともに、寸法-温度のグラフを得、このグラフの曲線の形状を確認した。それらの結果を表2に示す。また得られたグラフを図2に示す。図2に示すようにグラフにはヒステリシスが観察された。グラフに基づいて、昇温時の寸法と冷却時の寸法との同温における差の最大値の、試験前の寸法に対する割合(%)を測定した。その結果を表2に示す。
Further, the obtained grosite ceramics is subjected to thermomechanical analysis under the following conditions, and the thermal expansion coefficient (/ K) from 27 ° C. to 300 ° C. and the thermal expansion coefficient (/ K) from 27 ° C. to 800 ° C. And a dimension-temperature graph was obtained, and the shape of the curve of this graph was confirmed. The results are shown in Table 2. The obtained graph is shown in FIG. As shown in FIG. 2, hysteresis was observed in the graph. Based on the graph, the ratio (%) of the maximum value of the difference at the same temperature between the dimension at the time of heating and the dimension at the time of cooling to the dimension before the test was measured. The results are shown in Table 2.
更に、得られたグロサイトセラミックスについて、下記の条件にて断面の顕微鏡観察を行い、1視野当たりのマイクロクラックの数、1視野当たりのマイクロクラックの長手方向の合計の長さ(μm)、結晶粒径(μm)を求めた。それらの結果を表2に示す。また、マイクロクラック観察時に得られた断面の写真を図3に、結晶粒径観察時に得られた断面の写真を図4にそれぞれ示す。
Further, the obtained glossite ceramics was observed under a microscope under the following conditions, and the number of microcracks per field of view, the total length of microcracks per field of view in the longitudinal direction (μm), crystals The particle size (μm) was determined. The results are shown in Table 2. Moreover, the photograph of the cross section obtained at the time of microcrack observation is shown in FIG. 3, and the photograph of the cross section obtained at the time of crystal grain diameter observation is shown in FIG. 4, respectively.
更に、得られたグロサイトセラミックスについて、下記の条件にて耐スポーリング性△Tを求めた。また、得られたグロサイトセラミックスについて、下記の条件にてたわみ量(mm)を求めた。それらの結果を表2に示す。
Furthermore, the spalling resistance ΔT was determined for the obtained grosite ceramics under the following conditions. Moreover, the amount of deflection (mm) was determined under the following conditions for the obtained glocyceramics. The results are shown in Table 2.
〔実施例2~7、比較例1~2〕
アルミナの粒径、炭酸カルシウムの種類、表面処理の有無及び粒径、アルミナと炭酸カルシウムのモル比、焼成温度を下記表1に記載の通り変更した以外は、実施例1と同様にして、グロサイトセラミックスを得た。得られたグロサイトセラミックスについて実施例1と同様の評価を行った。その結果を表1及び表2に示す。そのうち、実施例3で得られたグロサイトセラミックスを熱機械分析して得た昇温時の寸法-温度のグラフを図5として示す。
なお、実施例7で用いた炭酸カルシウムの表面処理は、表面処理剤として脂肪酸を用いた。また表1の炭酸カルシウムの「重」は「重質」を、「軽」は「軽質」を示す。 [Examples 2-7, Comparative Examples 1-2]
In the same manner as in Example 1, except that the particle size of alumina, the type of calcium carbonate, the presence or absence of surface treatment, the particle size, the molar ratio of alumina and calcium carbonate, and the firing temperature were changed as shown in Table 1 below, Obtained site ceramics. The same evaluation as Example 1 was performed about the obtained glocyceramics. The results are shown in Tables 1 and 2. Among these, FIG. 5 shows a graph of dimension-temperature at the time of temperature increase obtained by thermomechanical analysis of the globite ceramic obtained in Example 3.
In addition, the surface treatment of calcium carbonate used in Example 7 used a fatty acid as a surface treatment agent. In Table 1, “heavy” of calcium carbonate indicates “heavy”, and “light” indicates “light”.
アルミナの粒径、炭酸カルシウムの種類、表面処理の有無及び粒径、アルミナと炭酸カルシウムのモル比、焼成温度を下記表1に記載の通り変更した以外は、実施例1と同様にして、グロサイトセラミックスを得た。得られたグロサイトセラミックスについて実施例1と同様の評価を行った。その結果を表1及び表2に示す。そのうち、実施例3で得られたグロサイトセラミックスを熱機械分析して得た昇温時の寸法-温度のグラフを図5として示す。
なお、実施例7で用いた炭酸カルシウムの表面処理は、表面処理剤として脂肪酸を用いた。また表1の炭酸カルシウムの「重」は「重質」を、「軽」は「軽質」を示す。 [Examples 2-7, Comparative Examples 1-2]
In the same manner as in Example 1, except that the particle size of alumina, the type of calcium carbonate, the presence or absence of surface treatment, the particle size, the molar ratio of alumina and calcium carbonate, and the firing temperature were changed as shown in Table 1 below, Obtained site ceramics. The same evaluation as Example 1 was performed about the obtained glocyceramics. The results are shown in Tables 1 and 2. Among these, FIG. 5 shows a graph of dimension-temperature at the time of temperature increase obtained by thermomechanical analysis of the globite ceramic obtained in Example 3.
In addition, the surface treatment of calcium carbonate used in Example 7 used a fatty acid as a surface treatment agent. In Table 1, “heavy” of calcium carbonate indicates “heavy”, and “light” indicates “light”.
〔評価方法〕
<粉末X線回折測定>
・装置:Mini Flex600(リガク社製)
・線源:Cu線
・管電圧:40kV
・管電流:15mA
・スキャン速度:20度/min
・ステップ:0.01度
・スキャン範囲:2θ=10度~70度 〔Evaluation methods〕
<Powder X-ray diffraction measurement>
・ Device: Mini Flex600 (manufactured by Rigaku Corporation)
-Radiation source: Cu wire-Tube voltage: 40 kV
・ Tube current: 15 mA
・ Scanning speed: 20 degrees / min
・ Step: 0.01 degrees ・ Scanning range: 2θ = 10 degrees to 70 degrees
<粉末X線回折測定>
・装置:Mini Flex600(リガク社製)
・線源:Cu線
・管電圧:40kV
・管電流:15mA
・スキャン速度:20度/min
・ステップ:0.01度
・スキャン範囲:2θ=10度~70度 〔Evaluation methods〕
<Powder X-ray diffraction measurement>
・ Device: Mini Flex600 (manufactured by Rigaku Corporation)
-Radiation source: Cu wire-Tube voltage: 40 kV
・ Tube current: 15 mA
・ Scanning speed: 20 degrees / min
・ Step: 0.01 degrees ・ Scanning range: 2θ = 10 degrees to 70 degrees
<熱機械分析>
リガク社製Thermoplus TMA8310の示差式熱機械分析(TMA)装置に、本発明のグロサイトセラミックスからなる5×5×20mmテストピースをセットした。大気雰囲気下、27℃から300℃まで又は27℃から800℃まで昇温速度5℃/分の速度で昇温した。荷重は0.5Nとした。リファレンスとして、テストピースと同サイズのアルミナを熱機械分析(TMA)装置にセットし、同様に昇温し、アルミナとテストピースの寸法差△Laを測定した。この間のアルミナの伸び△Lbとして、次式により熱膨張係数を計算した。
熱膨張係数(/K)=(△La+△Lb)/(L×△t)(上記式中、L=試験前のテストピースの長さ、△t=伸びを測定した温度差である) <Thermomechanical analysis>
A 5 × 5 × 20 mm test piece made of the grosite ceramic of the present invention was set in a differential thermomechanical analysis (TMA) apparatus of Thermoplus TMA8310 manufactured by Rigaku Corporation. The temperature was increased from 27 ° C. to 300 ° C. or from 27 ° C. to 800 ° C. at a rate of temperature increase of 5 ° C./min. The load was 0.5N. As a reference, alumina having the same size as the test piece was set in a thermomechanical analysis (TMA) apparatus, and the temperature was similarly raised, and the dimensional difference ΔLa between the alumina and the test piece was measured. As the alumina elongation ΔLb during this period, the thermal expansion coefficient was calculated by the following equation.
Thermal expansion coefficient (/ K) = (ΔLa + ΔLb) / (L × Δt) (In the above formula, L = length of test piece before test, Δt = temperature difference measured for elongation)
リガク社製Thermoplus TMA8310の示差式熱機械分析(TMA)装置に、本発明のグロサイトセラミックスからなる5×5×20mmテストピースをセットした。大気雰囲気下、27℃から300℃まで又は27℃から800℃まで昇温速度5℃/分の速度で昇温した。荷重は0.5Nとした。リファレンスとして、テストピースと同サイズのアルミナを熱機械分析(TMA)装置にセットし、同様に昇温し、アルミナとテストピースの寸法差△Laを測定した。この間のアルミナの伸び△Lbとして、次式により熱膨張係数を計算した。
熱膨張係数(/K)=(△La+△Lb)/(L×△t)(上記式中、L=試験前のテストピースの長さ、△t=伸びを測定した温度差である) <Thermomechanical analysis>
A 5 × 5 × 20 mm test piece made of the grosite ceramic of the present invention was set in a differential thermomechanical analysis (TMA) apparatus of Thermoplus TMA8310 manufactured by Rigaku Corporation. The temperature was increased from 27 ° C. to 300 ° C. or from 27 ° C. to 800 ° C. at a rate of temperature increase of 5 ° C./min. The load was 0.5N. As a reference, alumina having the same size as the test piece was set in a thermomechanical analysis (TMA) apparatus, and the temperature was similarly raised, and the dimensional difference ΔLa between the alumina and the test piece was measured. As the alumina elongation ΔLb during this period, the thermal expansion coefficient was calculated by the following equation.
Thermal expansion coefficient (/ K) = (ΔLa + ΔLb) / (L × Δt) (In the above formula, L = length of test piece before test, Δt = temperature difference measured for elongation)
またテストピースについて、上記の熱機械分析(TMA)装置により、27℃から800℃まで5℃/分の速度で昇温し、引き続きこの温度範囲で前記の速度で冷却した。この間、5秒ごとにテストピースの長さを測定し、各測定時点におけるテストピースの長さから試験前のテストピースを引いた差、すなわちテストピースの伸び△Lを求めることにより、寸法-温度のグラフを得た。なお昇温後、冷却へ転換するまでの800℃での温度保持時間は5分間とした。
Further, the test piece was heated from 27 ° C. to 800 ° C. at a rate of 5 ° C./min by the above-described thermomechanical analysis (TMA) apparatus, and subsequently cooled at this rate within this temperature range. During this time, the length of the test piece is measured every 5 seconds, and the difference between the length of the test piece at each measurement point minus the test piece before the test, that is, the elongation ΔL of the test piece is obtained. I got the graph. The temperature holding time at 800 ° C. until the temperature was changed to cooling after the temperature increase was 5 minutes.
<断面の顕微鏡観察>
グロサイトセラミックスをダイヤモンドカッターで切断して得られた断面をSiC研磨紙及びダイヤモンドスラリーで研磨した。走査型電子顕微鏡(SEM、日本電子社製JSM-6380A)で加速電圧を15kVとした条件で観察し、150倍の写真を撮影した。得られた写真において、グロサイトセラミックスにおける実寸0.84mm×0.59mmの一視野当たりにおける、長手方向に沿う長さが50μm以上であるマイクロクラックの数を10視野分計数し、その平均値を求めた。なお、図3に示すSEM写真において、マイクロクラックは長細い白い像として示されている。また、各実施例のグロサイトセラミックスにおいては、上記10視野全てにおいて、長手方向に沿う長さが50μm以上であるマイクロクラックが1つ以上観察された。 <Microscopic observation of cross section>
A cross-section obtained by cutting the grosite ceramics with a diamond cutter was polished with SiC polishing paper and diamond slurry. The sample was observed with a scanning electron microscope (SEM, JSM-6380A manufactured by JEOL Ltd.) under an acceleration voltage of 15 kV, and a 150-fold photograph was taken. In the obtained photograph, the number of microcracks having a length along the longitudinal direction of 50 μm or more per one visual field of the actual size 0.84 mm × 0.59 mm in the grosite ceramics was counted for 10 visual fields, and the average value was calculated. Asked. In the SEM photograph shown in FIG. 3, the microcracks are shown as a long and thin white image. Further, in the grosite ceramics of each example, one or more micro cracks having a length along the longitudinal direction of 50 μm or more were observed in all the 10 visual fields.
グロサイトセラミックスをダイヤモンドカッターで切断して得られた断面をSiC研磨紙及びダイヤモンドスラリーで研磨した。走査型電子顕微鏡(SEM、日本電子社製JSM-6380A)で加速電圧を15kVとした条件で観察し、150倍の写真を撮影した。得られた写真において、グロサイトセラミックスにおける実寸0.84mm×0.59mmの一視野当たりにおける、長手方向に沿う長さが50μm以上であるマイクロクラックの数を10視野分計数し、その平均値を求めた。なお、図3に示すSEM写真において、マイクロクラックは長細い白い像として示されている。また、各実施例のグロサイトセラミックスにおいては、上記10視野全てにおいて、長手方向に沿う長さが50μm以上であるマイクロクラックが1つ以上観察された。 <Microscopic observation of cross section>
A cross-section obtained by cutting the grosite ceramics with a diamond cutter was polished with SiC polishing paper and diamond slurry. The sample was observed with a scanning electron microscope (SEM, JSM-6380A manufactured by JEOL Ltd.) under an acceleration voltage of 15 kV, and a 150-fold photograph was taken. In the obtained photograph, the number of microcracks having a length along the longitudinal direction of 50 μm or more per one visual field of the actual size 0.84 mm × 0.59 mm in the grosite ceramics was counted for 10 visual fields, and the average value was calculated. Asked. In the SEM photograph shown in FIG. 3, the microcracks are shown as a long and thin white image. Further, in the grosite ceramics of each example, one or more micro cracks having a length along the longitudinal direction of 50 μm or more were observed in all the 10 visual fields.
更に、上記の顕微鏡観察において、長手方向に沿う長さが50μm以上であるマイクロクラックの前記一視野当たりの合計の長さ(μm)を10視野分計数し、その平均値を求めた。
Furthermore, in the above-mentioned microscopic observation, the total length (μm) per one visual field of microcracks having a length along the longitudinal direction of 50 μm or more was counted for 10 visual fields, and the average value was obtained.
更に、グロサイトセラミックスの断面を研磨した後、研磨面を焼成炉にて大気焼成(1400℃×0分キープ)し、サーマルエッチングした。次いでエッチングした面を走査型電子顕微鏡(SEM)を用い、加速電圧を15kVとした条件において1500倍で観察及び撮影し、画像を得た。得られた画像をインターセプト法により、コード長さを測長し、結晶粒径を算出した。1視野において、長方形の画像の長辺に沿う方向に平行な10線分測定し、この測定を異なる任意の10視野において行い、各視野ごとに観察された結晶粒径の平均値を算出した。結晶粒径の測定に用いた画像を図4として示す。なお図4において矢印により結晶粒界の例を示した。
Further, after polishing the cross section of the grosite ceramics, the polished surface was air baked (keep at 1400 ° C. × 0 min) in a baking furnace and thermally etched. Next, the etched surface was observed and photographed at a magnification of 1500 using a scanning electron microscope (SEM) under the condition that the acceleration voltage was 15 kV, and an image was obtained. The cord length of the obtained image was measured by the intercept method, and the crystal grain size was calculated. In one field of view, 10 line segments parallel to the direction along the long side of the rectangular image were measured. This measurement was performed in 10 different fields of view, and the average value of the crystal grain sizes observed for each field of view was calculated. An image used for the measurement of the crystal grain size is shown in FIG. In FIG. 4, examples of crystal grain boundaries are indicated by arrows.
<耐スポーリング性△T>
長さ100mm×幅100mm×高さ2mmに加工した各実施例、比較例におけるグロサイトセラミックスの試験体を作製した。これとは別に、長さ15mm×幅8mm×高さ7mmのアルミナ質煉瓦の支柱を用意した。4本の支柱を台板上における、試験体の四隅に対向する位置に配置し、その上に、試験体を一枚戴置させた。試験体の上に、被焼成用の電子部品を想定した長さ68mm×幅68mm×高さ16mmのアルミナ質煉瓦の板を配置した。以上の配置状態を図6に示す。図6において、試験体を符号Sで、支柱を符号Pで、電子部品を想定した板を符号Mで示す。電気炉を所定の温度まで昇温(昇温速度:200℃/hr)して30分保持した後、図6の状態の試験体を台板ごと炉内に入れた。その温度で60分保持後、試験体を台板ごと炉から取り出し大気中(温度T1)で放冷した。試験体の割れや切裂が生じていないかどうかを目視で確認した。以上の操作を400℃から50℃ずつ温度を昇温させて行い、割れの生じない温度の上限T2を測定し、T2からT1を引いた値を耐スポーリング性△Tとした。 <Spalling resistance △ T>
Test specimens of grosite ceramics in each Example and Comparative Example that were processed into a length of 100 mm, a width of 100 mm, and a height of 2 mm were prepared. Separately from this, an alumina brick column having a length of 15 mm, a width of 8 mm and a height of 7 mm was prepared. Four struts were placed on the base plate at positions facing the four corners of the test specimen, and one specimen was placed thereon. On the test body, an alumina brick plate having a length of 68 mm, a width of 68 mm, and a height of 16 mm, which was assumed to be an electronic component to be fired, was placed. The above arrangement state is shown in FIG. In FIG. 6, the test body is denoted by reference symbol S, the support column is denoted by reference symbol P, and the plate assuming an electronic component is denoted by reference symbol M. After raising the temperature of the electric furnace to a predetermined temperature (temperature raising rate: 200 ° C./hr) and holding it for 30 minutes, the test specimen in the state of FIG. 6 was placed in the furnace together with the base plate. After holding at that temperature for 60 minutes, the specimen was removed from the furnace together with the base plate and allowed to cool in the atmosphere (temperature T 1 ). It was visually confirmed whether or not the specimen was cracked or broken. The above operation was carried out by increasing the temperature from 400 ° C. to 50 ° C., the upper limit T 2 of the temperature at which cracking did not occur was measured, and the value obtained by subtracting T 1 from T 2 was defined as the spalling resistance ΔT.
長さ100mm×幅100mm×高さ2mmに加工した各実施例、比較例におけるグロサイトセラミックスの試験体を作製した。これとは別に、長さ15mm×幅8mm×高さ7mmのアルミナ質煉瓦の支柱を用意した。4本の支柱を台板上における、試験体の四隅に対向する位置に配置し、その上に、試験体を一枚戴置させた。試験体の上に、被焼成用の電子部品を想定した長さ68mm×幅68mm×高さ16mmのアルミナ質煉瓦の板を配置した。以上の配置状態を図6に示す。図6において、試験体を符号Sで、支柱を符号Pで、電子部品を想定した板を符号Mで示す。電気炉を所定の温度まで昇温(昇温速度:200℃/hr)して30分保持した後、図6の状態の試験体を台板ごと炉内に入れた。その温度で60分保持後、試験体を台板ごと炉から取り出し大気中(温度T1)で放冷した。試験体の割れや切裂が生じていないかどうかを目視で確認した。以上の操作を400℃から50℃ずつ温度を昇温させて行い、割れの生じない温度の上限T2を測定し、T2からT1を引いた値を耐スポーリング性△Tとした。 <Spalling resistance △ T>
Test specimens of grosite ceramics in each Example and Comparative Example that were processed into a length of 100 mm, a width of 100 mm, and a height of 2 mm were prepared. Separately from this, an alumina brick column having a length of 15 mm, a width of 8 mm and a height of 7 mm was prepared. Four struts were placed on the base plate at positions facing the four corners of the test specimen, and one specimen was placed thereon. On the test body, an alumina brick plate having a length of 68 mm, a width of 68 mm, and a height of 16 mm, which was assumed to be an electronic component to be fired, was placed. The above arrangement state is shown in FIG. In FIG. 6, the test body is denoted by reference symbol S, the support column is denoted by reference symbol P, and the plate assuming an electronic component is denoted by reference symbol M. After raising the temperature of the electric furnace to a predetermined temperature (temperature raising rate: 200 ° C./hr) and holding it for 30 minutes, the test specimen in the state of FIG. 6 was placed in the furnace together with the base plate. After holding at that temperature for 60 minutes, the specimen was removed from the furnace together with the base plate and allowed to cool in the atmosphere (temperature T 1 ). It was visually confirmed whether or not the specimen was cracked or broken. The above operation was carried out by increasing the temperature from 400 ° C. to 50 ° C., the upper limit T 2 of the temperature at which cracking did not occur was measured, and the value obtained by subtracting T 1 from T 2 was defined as the spalling resistance ΔT.
<たわみ試験>
100mm×30mm×3mmに加工したグロサイトセラミックスのサンプルを、スパンとして90mm離した2本の角材(グロサイトセラミックスの長手方向と平行な縦方向の長さが20mm、横方向の長さが200mm、高さ10mm)の上に、長手方向の両端がくるように置き、サンプル中央に10mm×10mm×30mmの耐火物を置き、4kg/cm2荷重がかかるように、耐火物上に重しを調整して積載した。大気焼成炉にて、1200℃(昇温速度:200℃/hr、キープ3時間)で加熱し、焼成前後での反り量を測定した。
反り量としては、基準として反りのないアルミバー(200mm×50mm×50mm)の中央に穴を開け、アルミバーの上にグロサイトセラミックスを反った部分が上方向に凸になった状態で重ね、この孔に下方からデジマチックインジケータの測長部を挿入し、アルミバーとグロサイトセラミックスとの距離を測定した。 <Deflection test>
A sample of grosite ceramics processed to 100 mm x 30 mm x 3 mm is separated into two square members 90 mm apart as a span (the length in the longitudinal direction parallel to the longitudinal direction of the grosite ceramic is 20 mm, the length in the transverse direction is 200 mm, Place the refractory of 10 mm x 10 mm x 30 mm in the center of the sample, and adjust the weight on the refractory so that 4 kg / cm 2 load is applied. And loaded. Heating was performed at 1200 ° C. (temperature increase rate: 200 ° C./hr, keeping 3 hours) in an air firing furnace, and the amount of warpage before and after firing was measured.
As the amount of warping, a hole is made in the center of an aluminum bar (200 mm × 50 mm × 50 mm) without warping as a reference, and the portion of the aluminum bar warped with grosite ceramics is projected in an upward direction, A measuring portion of a digimatic indicator was inserted into this hole from below, and the distance between the aluminum bar and the grosite ceramics was measured.
100mm×30mm×3mmに加工したグロサイトセラミックスのサンプルを、スパンとして90mm離した2本の角材(グロサイトセラミックスの長手方向と平行な縦方向の長さが20mm、横方向の長さが200mm、高さ10mm)の上に、長手方向の両端がくるように置き、サンプル中央に10mm×10mm×30mmの耐火物を置き、4kg/cm2荷重がかかるように、耐火物上に重しを調整して積載した。大気焼成炉にて、1200℃(昇温速度:200℃/hr、キープ3時間)で加熱し、焼成前後での反り量を測定した。
反り量としては、基準として反りのないアルミバー(200mm×50mm×50mm)の中央に穴を開け、アルミバーの上にグロサイトセラミックスを反った部分が上方向に凸になった状態で重ね、この孔に下方からデジマチックインジケータの測長部を挿入し、アルミバーとグロサイトセラミックスとの距離を測定した。 <Deflection test>
A sample of grosite ceramics processed to 100 mm x 30 mm x 3 mm is separated into two square members 90 mm apart as a span (the length in the longitudinal direction parallel to the longitudinal direction of the grosite ceramic is 20 mm, the length in the transverse direction is 200 mm, Place the refractory of 10 mm x 10 mm x 30 mm in the center of the sample, and adjust the weight on the refractory so that 4 kg / cm 2 load is applied. And loaded. Heating was performed at 1200 ° C. (temperature increase rate: 200 ° C./hr, keeping 3 hours) in an air firing furnace, and the amount of warpage before and after firing was measured.
As the amount of warping, a hole is made in the center of an aluminum bar (200 mm × 50 mm × 50 mm) without warping as a reference, and the portion of the aluminum bar warped with grosite ceramics is projected in an upward direction, A measuring portion of a digimatic indicator was inserted into this hole from below, and the distance between the aluminum bar and the grosite ceramics was measured.
表2に示す通り、IB/IAの値が0.05以下であり、大気雰囲気下で測定した、27℃から300℃までの熱膨張係数が、2.0×10-6/K以下である実施例のグロサイトセラミックスは、27℃から800℃までの熱膨張係数が低く、また、耐スポークリング性は高くなり、高温たわみ量も少なく、高温軟化しにくかった。一方、27℃から300℃までの熱膨張係数が、2.0×10-6/K超である比較例1のグロサイトセラミックスは、27℃から800℃までの熱膨張係数が高く、また、耐スポークリング性は低くなり、IB/IAの値が0.05超である比較例2のグロサイトセラミックスは、たわみ量が大きく、高温で軟化しやすくなった。
以上のことから、本発明のグロサイトセラミックスは、耐スポーリング性が高く、かつ長期間に亘って電子部品の高温焼成工程において使用が可能であるため、窯用具、特に迅速焼成用窯用具として好適であることが判る。 As shown in Table 2, the value of I B / I A is 0.05 or less, as measured in an air atmosphere, the thermal expansion coefficient of up to 300 ° C. from 27 ° C. is, 2.0 × 10 -6 / K or less The glossite ceramics of the examples having a low thermal expansion coefficient from 27 ° C. to 800 ° C., high spoke resistance, little deflection at high temperature, and difficult to soften at high temperature. On the other hand, the grosite ceramic of Comparative Example 1 having a thermal expansion coefficient from 27 ° C. to 300 ° C. exceeding 2.0 × 10 −6 / K has a high thermal expansion coefficient from 27 ° C. to 800 ° C. resistance spokes ring resistance is low, Gros site ceramics of Comparative example 2 the value of I B / I a is 0.05 greater, the amount of deflection is large, it becomes easily softened at a high temperature.
From the above, the glossite ceramic of the present invention has high spalling resistance and can be used in a high-temperature firing process of electronic parts for a long period of time. It turns out that it is suitable.
以上のことから、本発明のグロサイトセラミックスは、耐スポーリング性が高く、かつ長期間に亘って電子部品の高温焼成工程において使用が可能であるため、窯用具、特に迅速焼成用窯用具として好適であることが判る。 As shown in Table 2, the value of I B / I A is 0.05 or less, as measured in an air atmosphere, the thermal expansion coefficient of up to 300 ° C. from 27 ° C. is, 2.0 × 10 -6 / K or less The glossite ceramics of the examples having a low thermal expansion coefficient from 27 ° C. to 800 ° C., high spoke resistance, little deflection at high temperature, and difficult to soften at high temperature. On the other hand, the grosite ceramic of Comparative Example 1 having a thermal expansion coefficient from 27 ° C. to 300 ° C. exceeding 2.0 × 10 −6 / K has a high thermal expansion coefficient from 27 ° C. to 800 ° C. resistance spokes ring resistance is low, Gros site ceramics of Comparative example 2 the value of I B / I a is 0.05 greater, the amount of deflection is large, it becomes easily softened at a high temperature.
From the above, the glossite ceramic of the present invention has high spalling resistance and can be used in a high-temperature firing process of electronic parts for a long period of time. It turns out that it is suitable.
S 試験体
P 支柱
M 電子部品を想定した板
S Specimen P Prop M Plate assuming electronic parts
P 支柱
M 電子部品を想定した板
S Specimen P Prop M Plate assuming electronic parts
Claims (12)
- X線回折においてCaAl4O7に由来するメインピークである2θ=25.47度のピークの積分強度IAに対する、X線回折においてCaAl2O4に由来するメインピークである2θ=30.07度のピークの積分強度IBの比であるIB/IAの値が0.05以下であり、
大気雰囲気下で測定した、27℃から300℃までの熱膨張係数が、2.0×10-6/K以下であるグロサイトセラミックス。 To the integral intensity I A of the peak of 2 [Theta] = 25.47 degrees, which is the main peak derived from CaAl 4 O 7 in the X-ray diffraction, the main peak derived from CaAl 2 O 4 in an X-ray diffraction 2 [Theta] = 30.07 the value of the ratio of the integrated intensity I B of a peak of the time I B / I a is 0.05 or less,
Grositic ceramics having a thermal expansion coefficient of 2.0 × 10 −6 / K or less measured in an air atmosphere from 27 ° C. to 300 ° C. - 大気雰囲気下で加熱したときの熱機械分析において、得られる寸法-温度のグラフ中に、寸法が減少する温度領域が観察されるか、又は寸法が実質的に変化しないプラトーな温度領域が観察される、請求項1に記載のグロサイトセラミックス。 In thermo-mechanical analysis when heated in an air atmosphere, a temperature range where the size decreases or a plateau temperature range where the size does not change substantially is observed in the obtained dimension-temperature graph. The glossite ceramic according to claim 1.
- 大気雰囲気下、27℃から600℃まで加熱したときの熱機械分析において、得られる寸法-温度のグラフが、寸法が減少する方向に向けた凸の曲線となるか、又は寸法が実質的に変化しないプラトーな温度領域とそれに引き続く寸法が増加する温度領域とを有するものとなる、請求項1又は2に記載のグロサイトセラミックス。 In thermomechanical analysis when heated from 27 ° C to 600 ° C in an air atmosphere, the resulting dimension-temperature graph becomes a convex curve in the direction of decreasing dimension, or the dimension changes substantially The glossite ceramic according to claim 1 or 2, which has a plateau temperature range that does not occur and a temperature range in which a subsequent dimension increases.
- 大気雰囲気下、27℃から800℃まで加熱し、引き続きこの温度範囲で冷却したときの熱機械分析において、得られる寸法-温度のグラフにヒステリシスが観察される、請求項1ないし3のいずれか一項に記載のグロサイトセラミックス。 The hysteresis is observed in the obtained dimension-temperature graph in the thermomechanical analysis when heated from 27 ° C. to 800 ° C. in the atmosphere and subsequently cooled in this temperature range. The glossite ceramics according to Item.
- 前記ヒステリシスによって生じる昇温時の寸法と冷却時の寸法との同温度での差の最大値が、熱機械分析前のグロサイトセラミックスの寸法に対して0.02%以上である請求項4に記載のグロサイトセラミックス。 The maximum value of the difference at the same temperature between the dimension at the time of temperature rise and the dimension at the time of cooling caused by the hysteresis is 0.02% or more with respect to the dimension of the grosite ceramic before thermomechanical analysis. The glossite ceramic described.
- 大気雰囲気下で測定した、27℃から800℃までの熱膨張係数が3.4×10-6/K以下である請求項1ないし5のいずれか一項に記載のグロサイトセラミックス。 6. The grosite ceramic according to any one of claims 1 to 5, which has a coefficient of thermal expansion of not more than 3.4 × 10 −6 / K measured from 27 ° C. to 800 ° C. in an air atmosphere.
- 断面を150倍に拡大した顕微鏡像においてマイクロクラックが観察され、
前記マイクロクラックは、幅方向及び該幅方向よりも長さの長い長手方向を有する形状をしており、
長手方向に沿う長さが50μm以上である前記マイクロクラックが、前記倍率での0.84mm×0.59mmの一視野当たり一つ以上観察される、請求項1ないし6のいずれか一項に記載のグロサイトセラミックス。 Microcracks are observed in the microscopic image of the cross section magnified 150 times,
The micro crack has a shape having a width direction and a longitudinal direction longer than the width direction,
7. The microcrack having a length along the longitudinal direction of 50 μm or more is observed one or more per field of view of 0.84 mm × 0.59 mm at the magnification. 8. Grosite ceramics. - 長手方向に沿う長さが50μm以上である前記マイクロクラックの前記一視野あたりにおける合計の長さが1000μm以上である、請求項7に記載のグロサイトセラミックス。 The grossite ceramics according to claim 7, wherein the total length per one visual field of the microcracks having a length along the longitudinal direction of 50 µm or more is 1000 µm or more.
- 断面を顕微鏡像において観察される結晶粒径が平均で5μm以上である、請求項1ないし8のいずれか一項に記載のグロサイトセラミックス。 9. The glossite ceramic according to claim 1, wherein an average crystal grain size of the cross-section observed in a microscopic image is 5 μm or more.
- 耐スポーリング性ΔTが、600℃以上である、請求項1ないし9のいずれか一項に記載のグロサイトセラミックス。 The globite ceramic according to any one of claims 1 to 9, wherein the spalling resistance ΔT is 600 ° C or higher.
- 請求項1ないし10のいずれか一項に記載のグロサイトセラミックスを用いた窯用具。 A kiln tool using the globite ceramic according to any one of claims 1 to 10.
- 請求項1ないし10のいずれか一項に記載のグロサイトセラミックスの製造方法であって、
レーザー回折散乱式粒度分布測定法による累積体積50容量%における体積累積粒径D50が5μm以下であるアルミナ粒子と、該体積累積粒径D50が25μm以下である炭酸カルシウム粒子との混合粉を成形し、得られた成形体を1450℃以上の温度で焼成する工程を有する、グロサイトセラミックスの製造方法。 A method for producing a grosite ceramic according to any one of claims 1 to 10,
A mixed powder of alumina particles having a volume cumulative particle size D 50 of 5 μm or less and a calcium carbonate particle having a volume cumulative particle size D 50 of 25 μm or less measured by a laser diffraction / scattering particle size distribution measurement method. A method for producing a grosite ceramic, comprising a step of molding and firing the obtained molded body at a temperature of 1450 ° C. or higher.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680033216.5A CN107635944B (en) | 2015-09-09 | 2016-03-28 | Merle ceramic, kiln furniture using the same, and method for producing the same |
JP2016535071A JP6314231B2 (en) | 2015-09-09 | 2016-03-28 | Glossite ceramics, kiln tool using the same, and method for producing globite ceramics |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-177380 | 2015-09-09 | ||
JP2015177380 | 2015-09-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017043115A1 true WO2017043115A1 (en) | 2017-03-16 |
Family
ID=58240307
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/059826 WO2017043115A1 (en) | 2015-09-09 | 2016-03-28 | Grossite ceramics, kiln equipment using same, and method for manufacturing grossite ceramics |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6314231B2 (en) |
CN (1) | CN107635944B (en) |
TW (1) | TWI687390B (en) |
WO (1) | WO2017043115A1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005523871A (en) * | 2002-05-01 | 2005-08-11 | コーニング インコーポレイテッド | Manufacture of low thermal expansion calcium aluminate products |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6689707B1 (en) * | 2003-04-01 | 2004-02-10 | Corning Incorporated | Low thermal expansion calcium aluminate articles |
CN101077785B (en) * | 2006-05-26 | 2011-05-11 | 中国科学院金属研究所 | Nano CaAl4O7 material and preparing method thereof |
US20080141938A1 (en) * | 2006-12-13 | 2008-06-19 | General Electric Company | Processing apparatus, coated article and method |
KR101622802B1 (en) * | 2008-10-06 | 2016-05-19 | 아사히 가라스 가부시키가이샤 | Process for producing an oxide |
CN102365119B (en) * | 2009-03-31 | 2014-11-05 | 日立金属株式会社 | Ceramic honeycomb structure and process for producing same |
CN102093878A (en) * | 2011-01-11 | 2011-06-15 | 桂林理工大学 | Calcium aluminate acidproof ceramic fracturing propping agent and preparation method thereof |
-
2016
- 2016-03-28 WO PCT/JP2016/059826 patent/WO2017043115A1/en active Application Filing
- 2016-03-28 JP JP2016535071A patent/JP6314231B2/en active Active
- 2016-03-28 CN CN201680033216.5A patent/CN107635944B/en active Active
- 2016-03-29 TW TW105109910A patent/TWI687390B/en active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005523871A (en) * | 2002-05-01 | 2005-08-11 | コーニング インコーポレイテッド | Manufacture of low thermal expansion calcium aluminate products |
Non-Patent Citations (3)
Title |
---|
S.JONAS ET AL.: "Low thermal expansion refractory composites based on CaAl4O7", CERAMICS INTERNATIONAL, vol. 25, no. 1, 1999, pages 77 - 84, XP000879782 * |
S.KUMAR ET AL.: "Influence of mechanical activation on the synthesis and hydraulic activity of calcium dialuminate", CERAMICS INTERNATIONAL, vol. 32, no. Issue 5, 2006, pages 555 - 560, XP024914404 * |
Y.SUZUKI ET AL.: "Anisotropic thermal expansion of calcium dialuminate (CaAl4O7) simulated by molecular dynamics", CERAMICS INTERNATIONAL, vol. 30, no. 1, 2004, pages 57 - 61, XP004480690 * |
Also Published As
Publication number | Publication date |
---|---|
CN107635944B (en) | 2021-07-30 |
TWI687390B (en) | 2020-03-11 |
JP6314231B2 (en) | 2018-04-18 |
TW201710211A (en) | 2017-03-16 |
JPWO2017043115A1 (en) | 2017-11-02 |
CN107635944A (en) | 2018-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102037046B1 (en) | Refractory object and process of forming a glass sheet using the refractory object | |
KR101506083B1 (en) | Heat-insulating material | |
KR102376825B1 (en) | Alumina sintered body and ground substrate for optical element | |
JP6636307B2 (en) | Alumina sintered body with excellent high temperature properties and corrosion resistance | |
JP6661873B2 (en) | Sintered zircon material for block formation | |
CN107074659B (en) | Method for producing transparent alumina sintered body | |
TWI537232B (en) | Large xenotime ceramic block and process for making same | |
US20180105470A1 (en) | Bonded zirconia refractories and methods for making the same | |
JP4357584B1 (en) | Alumina sintered body with excellent corrosion resistance, thermal shock resistance and durability | |
JP2011088759A (en) | Alumina refractory and method of producing the same | |
JP4721947B2 (en) | Corrosion-resistant magnesia sintered body, heat treatment member comprising the same, and method for producing the sintered body | |
JP6314231B2 (en) | Glossite ceramics, kiln tool using the same, and method for producing globite ceramics | |
JP4560199B2 (en) | Ceramic heat treatment material with excellent thermal shock resistance | |
JP4043425B2 (en) | Zirconia heat treatment material | |
JP4546609B2 (en) | Ceramic heat treatment material with excellent thermal shock resistance | |
JP2007112670A (en) | Firing vessel | |
KR20200046084A (en) | Yoshiokaite glass-ceramic obtained from glass frit | |
JP4906240B2 (en) | Alumina sintered body excellent in thermal shock resistance and corrosion resistance, heat treatment member comprising the same, and method for producing the same | |
JP5426224B2 (en) | Ceramic sintered body with excellent dimensional accuracy and manufacturing method thereof | |
JP4906228B2 (en) | Alumina sintered body excellent in thermal shock resistance and corrosion resistance and heat treatment member using the same | |
JP2010254523A (en) | Method for producing spinel-based ceramic | |
JP2022156925A (en) | Mullite sintered body with excellent thermal resistance and durability and production method thereof | |
JP2015189625A (en) | Porous ceramic-made member for heat treatment | |
JP2011132055A (en) | Thermal shock resistant ceramic |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2016535071 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16843981 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16843981 Country of ref document: EP Kind code of ref document: A1 |