WO2016208446A1 - フィルタ装置 - Google Patents
フィルタ装置 Download PDFInfo
- Publication number
- WO2016208446A1 WO2016208446A1 PCT/JP2016/067572 JP2016067572W WO2016208446A1 WO 2016208446 A1 WO2016208446 A1 WO 2016208446A1 JP 2016067572 W JP2016067572 W JP 2016067572W WO 2016208446 A1 WO2016208446 A1 WO 2016208446A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bus bar
- filter
- electrode
- filter device
- acoustic wave
- Prior art date
Links
- 230000001902 propagating effect Effects 0.000 claims abstract description 17
- 239000000758 substrate Substances 0.000 claims description 28
- 230000005540 biological transmission Effects 0.000 claims description 7
- 239000012528 membrane Substances 0.000 claims description 5
- 238000003780 insertion Methods 0.000 abstract description 14
- 230000037431 insertion Effects 0.000 abstract description 14
- 230000008878 coupling Effects 0.000 abstract description 4
- 238000010168 coupling process Methods 0.000 abstract description 4
- 238000005859 coupling reaction Methods 0.000 abstract description 4
- 230000015556 catabolic process Effects 0.000 abstract description 3
- 238000006731 degradation reaction Methods 0.000 abstract description 3
- 229910012463 LiTaO3 Inorganic materials 0.000 abstract 2
- 239000010408 film Substances 0.000 description 100
- 239000000463 material Substances 0.000 description 27
- 238000010586 diagram Methods 0.000 description 21
- 230000000052 comparative effect Effects 0.000 description 17
- 239000010410 layer Substances 0.000 description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 8
- 239000010703 silicon Substances 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 8
- 230000004048 modification Effects 0.000 description 7
- 238000012986 modification Methods 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 230000006866 deterioration Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 229910052814 silicon oxide Inorganic materials 0.000 description 6
- 238000010897 surface acoustic wave method Methods 0.000 description 5
- 239000000956 alloy Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 229910052878 cordierite Inorganic materials 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052839 forsterite Inorganic materials 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- -1 steatite Chemical compound 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/70—Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
- H03H9/72—Networks using surface acoustic waves
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/46—Filters
- H03H9/54—Filters comprising resonators of piezoelectric or electrostrictive material
- H03H9/56—Monolithic crystal filters
- H03H9/566—Electric coupling means therefor
- H03H9/568—Electric coupling means therefor consisting of a ladder configuration
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/02535—Details of surface acoustic wave devices
- H03H9/02543—Characteristics of substrate, e.g. cutting angles
- H03H9/02574—Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/02007—Details of bulk acoustic wave devices
- H03H9/02015—Characteristics of piezoelectric layers, e.g. cutting angles
- H03H9/02031—Characteristics of piezoelectric layers, e.g. cutting angles consisting of ceramic
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/125—Driving means, e.g. electrodes, coils
- H03H9/13—Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials
- H03H9/132—Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials characterized by a particular shape
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/125—Driving means, e.g. electrodes, coils
- H03H9/145—Driving means, e.g. electrodes, coils for networks using surface acoustic waves
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/125—Driving means, e.g. electrodes, coils
- H03H9/145—Driving means, e.g. electrodes, coils for networks using surface acoustic waves
- H03H9/14517—Means for weighting
- H03H9/14529—Distributed tap
- H03H9/14532—Series weighting; Transverse weighting
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/125—Driving means, e.g. electrodes, coils
- H03H9/145—Driving means, e.g. electrodes, coils for networks using surface acoustic waves
- H03H9/14544—Transducers of particular shape or position
- H03H9/14594—Plan-rotated or plan-tilted transducers
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/15—Constructional features of resonators consisting of piezoelectric or electrostrictive material
- H03H9/17—Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
- H03H9/178—Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator of a laminated structure of multiple piezoelectric layers with inner electrodes
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/15—Constructional features of resonators consisting of piezoelectric or electrostrictive material
- H03H9/205—Constructional features of resonators consisting of piezoelectric or electrostrictive material having multiple resonators
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/46—Filters
- H03H9/64—Filters using surface acoustic waves
- H03H9/6423—Means for obtaining a particular transfer characteristic
- H03H9/6433—Coupled resonator filters
- H03H9/6436—Coupled resonator filters having one acoustic track only
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/46—Filters
- H03H9/64—Filters using surface acoustic waves
- H03H9/6423—Means for obtaining a particular transfer characteristic
- H03H9/6433—Coupled resonator filters
- H03H9/6483—Ladder SAW filters
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/46—Filters
- H03H9/64—Filters using surface acoustic waves
- H03H9/6489—Compensation of undesirable effects
- H03H9/6496—Reducing ripple in transfer characteristic
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/70—Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
- H03H9/703—Networks using bulk acoustic wave devices
- H03H9/706—Duplexers
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/70—Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
- H03H9/72—Networks using surface acoustic waves
- H03H9/725—Duplexers
Definitions
- the present invention relates to a filter device having a piezoelectric film made of LiTaO 3 .
- Patent Document 1 discloses an acoustic wave device in which a high sound velocity film, a low sound velocity film, a LiTaO 3 film, and an IDT electrode are laminated in this order on a support substrate.
- a surface acoustic wave propagating through a LiTaO 3 film is used.
- Patent Document 2 discloses a surface acoustic wave resonator using a 15 ° rotated Y-cut X-propagation LiTaO 3 film.
- this surface acoustic wave resonator the straight line connecting the tips of the first electrode fingers of the IDT electrode and the straight line connecting the tips of the second electrode fingers are inclined by about 18 ° to 72 ° with respect to the surface wave propagation direction.
- the elastic wave device described in Patent Document 1 has a problem in that transverse mode ripple appears on the frequency characteristics.
- An object of the present invention is to provide a filter device that can prevent deterioration of insertion loss, increase the Q value, and effectively suppress transverse mode ripple.
- the filter device includes a plurality of low sound velocity regions outside the central region of the IDT electrode and a high sound velocity region outside the low sound velocity region in a direction orthogonal to the elastic wave propagation direction.
- a longitudinally coupled resonator type acoustic wave filter having a first IDT electrode and functioning as a first bandpass filter; and an acoustic wave resonator electrically connected to the longitudinally coupled resonator type acoustic wave filter;
- the longitudinally coupled resonator type acoustic wave filter and the acoustic wave resonator have a piezoelectric film made of LiTaO 3 and the acoustic velocity of the propagating bulk wave is higher than the acoustic velocity of the acoustic wave propagating through the piezoelectric membrane.
- the pendulum has a second IDT electrode formed on one surface of the piezoelectric film, and the second IDT electrode is inserted between a plurality of first electrode fingers and the first electrode fingers.
- the wavelength determined by the period of the electrode finger of the second IDT electrode is ⁇
- the thickness of the piezoelectric film made of LiTaO 3 is 10 ⁇ .
- the plurality of first electrode fingers With respect to the propagation direction ⁇ of the elastic wave excited by the second IDT electrode defined by the Euler angles ( ⁇ , ⁇ , ⁇ ) of the LiTaO 3 , the plurality of first electrode fingers The direction connecting the tips and the direction connecting the tips of the plurality of second electrode fingers form an inclination angle ⁇ ( ⁇ is a positive value exceeding 0 °).
- the piezoelectric film has a thickness of 1.5 ⁇ or less.
- a plurality of the acoustic wave resonators are provided, and the plurality of the acoustic wave resonators are electrically connected to constitute a second bandpass filter.
- a composite filter device having a first bandpass filter and a second bandpass filter can be provided.
- the second band pass filter is a ladder filter.
- the second bandpass filter it is possible to more effectively suppress the transverse mode ripple while further effectively preventing the deterioration of the insertion loss.
- a filter device that is a duplexer that includes the longitudinally coupled resonator type acoustic wave filter as a reception filter and includes the second band-pass filter as a transmission filter. Provided.
- the first band-pass filter and the second band-pass filter are provided in one chip component.
- the filter device can be easily mounted, and the electronic device in which the filter device is mounted can be downsized.
- the high sound velocity member is a high sound velocity support substrate.
- the acoustic wave resonator further includes a support substrate, and the high sound velocity member is a high sound velocity film, and is provided on the support substrate.
- the acoustic velocity of the propagating bulk wave is lower than the acoustic velocity of the elastic wave propagating through the piezoelectric film between the high acoustic velocity member and the piezoelectric film.
- a certain low sound velocity film is laminated, and the piezoelectric film is indirectly laminated on the high sound velocity member.
- the piezoelectric film is directly laminated on the high sound velocity member.
- the first IDT electrode includes a first bus bar, a second bus bar arranged to be separated from the first bus bar, and the first bus bar.
- a base end is electrically connected to the bus bar, a plurality of first electrode fingers whose front ends are extended toward the second bus bar, and a base end is connected to the second bus bar.
- the first IDT electrode of the longitudinally coupled resonator type acoustic wave filter, wherein the first IDT electrode of the longitudinally coupled resonator type elastic wave filter has a plurality of second electrode fingers whose tips extend toward the first bus bar.
- the lengthwise center of the first and second electrode fingers in at least one of the first and second electrode fingers is provided on at least one of the base end side and the tip end side from the center in the direction, and at least one of the first and second bus bars is in the length direction of the first or second bus bar.
- the first and second bus bars are located closer to the first or second electrode finger than the opening, and the first and second bus bars are separated from each other.
- the inner bus bar portion extending in the length direction of the second bus bar, the central bus bar portion provided with the opening, and the inner bus bar portion are located on opposite sides of the central bus bar portion. And an outer bus bar portion.
- the inner bus bar portion has a strip shape extending in the elastic wave propagation direction.
- both the first electrode finger and the second electrode finger are provided with the thick portion. In this case, the transverse mode ripple can be more effectively suppressed.
- the first IDT electrode includes a first bus bar, a second bus bar disposed apart from the first bus bar, and the first bus bar.
- a base end is electrically connected to the bus bar, a plurality of first electrode fingers whose front ends are extended toward the second bus bar, and a base end is connected to the second bus bar.
- a plurality of second electrode fingers extending toward the first bus bar, the plurality of first electrode fingers and the plurality of second electrode fingers.
- the cross region is the central region in a direction orthogonal to the elastic wave propagation direction and the low sound velocity provided outside the central region. And in the low sound velocity region, As the sound velocity is lower than the central region, the first and second thickness of the electrode fingers is thickened.
- the first IDT electrode includes a first bus bar, a second bus bar disposed apart from the first bus bar, and the first bus bar.
- a base end is electrically connected to the bus bar, a plurality of first electrode fingers whose front ends are extended toward the second bus bar, and a base end is connected to the second bus bar.
- a plurality of second electrode fingers whose tips extend toward the first bus bar, and in the low sound velocity region, a sound velocity is provided on the first and second electrode fingers.
- Dielectric films are stacked in order to lower the relative thickness.
- the dielectric film laminated on the first and second electrode fingers is extended in a strip shape along the elastic wave propagation direction.
- a duty of the first IDT electrode of the longitudinally coupled resonator type acoustic wave filter is 0.46 or less. In this case, the transverse mode ripple can be more effectively suppressed.
- the inclination angle ⁇ is in the range of 0.4 ° to 15 °. In this case, the insertion loss can be further reduced.
- the insertion loss can be reduced, the Q value can be increased, and the transverse mode ripple can be suppressed.
- FIG. 1A is a schematic plan view of a filter device according to the first embodiment of the present invention
- FIG. 1B is a plan view showing an electrode structure of an acoustic wave resonator
- FIG. 2 is a schematic front sectional view of an acoustic wave resonator used in a second bandpass filter in the first embodiment of the present invention
- FIG. 3 is a schematic diagram for explaining the propagation direction ⁇ and the inclination angle ⁇ .
- FIG. 4 is a diagram illustrating impedance characteristics of the elastic wave resonator of Comparative Example 1 in which the inclination angle is 0 °.
- FIG. 1A is a schematic plan view of a filter device according to the first embodiment of the present invention
- FIG. 1B is a plan view showing an electrode structure of an acoustic wave resonator.
- FIG. 2 is a schematic front sectional view of an acoustic wave resonator used in a second bandpass filter in the first embodiment of the present
- FIG. 5 is a diagram showing a change in impedance characteristics of the acoustic wave resonator when the inclination angle ⁇ is changed.
- FIG. 6 is a diagram illustrating the return loss characteristics of the acoustic wave resonator of Comparative Example 1 in which the inclination angle ⁇ is 0 °.
- FIG. 7 is a diagram illustrating changes in the return loss characteristics when the inclination angle ⁇ is changed.
- FIG. 8 is a diagram showing changes in the Q value when the inclination angle ⁇ is changed.
- FIG. 9 is a diagram showing a change in the return loss characteristic when the inclination angle ⁇ is changed.
- FIG. 10 is an enlarged view of FIG. 9 and shows changes in the return loss characteristics when the inclination angle ⁇ is changed.
- FIGS. 11A and 11B are schematic front sectional views showing first and second modifications of the acoustic wave resonator used in the second band-pass filter.
- FIG. 12 is a schematic plan view of a longitudinally coupled resonator type acoustic wave filter as a first bandpass filter used in the filter device according to the first embodiment of the present invention.
- FIG. 13 is a schematic front sectional view for explaining a laminated structure in the longitudinally coupled resonator type acoustic wave filter used in the first embodiment.
- FIG. 14 is a partially cutaway plan view showing an example of an electrode structure for using the piston mode in the first embodiment.
- FIG. 15 is a partially cutaway plan view for explaining a modification of the main part of the IDT electrode of the longitudinally coupled resonator type acoustic wave filter.
- FIG. 16 is a diagram showing impedance-frequency characteristics of the 1-port elastic wave resonator having the IDT electrode shown in FIG.
- FIG. 17 is a diagram showing impedance-frequency characteristics of the 1-port elastic wave resonator having the IDT electrode shown in FIG.
- FIG. 18 is a circuit diagram of the filter device according to the first embodiment.
- FIG. 19 is a diagram illustrating attenuation frequency characteristics of the longitudinally coupled resonator type acoustic wave filter and the longitudinally coupled resonator type acoustic wave filter as Comparative Example 3 in the filter device of Example 1.
- FIG. 19 is a diagram illustrating attenuation frequency characteristics of the longitudinally coupled resonator type acoustic wave filter and the longitudinally coupled resonator type acoustic wave filter as Comparative Example 3 in the
- FIG. 20 is a diagram illustrating attenuation frequency characteristics of the ladder filter in the filter device as the first embodiment and the ladder filter as the comparative example 4.
- FIG. 21 is a diagram showing the relationship between the duty of the first IDT electrode and the strength of the transverse mode ripple in the longitudinally coupled resonator type acoustic wave filter.
- FIG. 22 is a schematic plan view of a filter device according to the second embodiment of the present invention.
- FIG. 23 is a schematic plan view showing a first example of the structure of an IDT electrode for using the piston mode.
- FIG. 24 is a schematic plan view showing a second example of the structure of the IDT electrode for using the piston mode.
- FIG. 25 is a schematic plan view showing a third example of the structure of the IDT electrode for using the piston mode.
- FIG. 26 is a schematic plan view showing a fourth example of the structure of the IDT electrode for using the piston mode.
- FIG. 27 is a diagram showing the relationship between the film thickness of LiTaO 3 and the ratio band.
- FIG. 28A and FIG. 28B are plan views showing modified examples of the inclined IDT.
- FIG. 1A is a schematic plan view of a filter device according to the first embodiment of the present invention.
- the filter device 1 is used as a duplexer of a mobile phone.
- the filter device 1 includes an antenna terminal 2, a reception terminal 3, and a transmission terminal 4.
- the antenna terminal 2 is connected to the antenna ANT.
- a first band-pass filter 5 is connected between the antenna terminal 2 and the reception terminal 3 as a reception filter.
- a second band-pass filter 6 as a transmission filter is connected between the antenna terminal 2 and the transmission terminal 4.
- the first band-pass filter 5 has a longitudinally coupled resonator type elastic wave filter 11 using a piston mode.
- the piston mode is a technique for suppressing the transverse mode. About the configuration using the piston mode. This will be described more specifically with reference to FIGS.
- FIGS. 23 to 26 are schematic plan views for explaining a structure using a piston mode.
- the IDT electrode 201 includes a first bus bar 202 and a second bus bar 203.
- One end of a plurality of first electrode fingers 204 is connected to the first bus bar 202.
- a plurality of second electrode fingers 205 are connected to the second bus bar 203.
- the plurality of first electrode fingers 204 and the plurality of second electrode fingers 205 are interleaved.
- the sound speed of each region is shown on the right side, and a plurality of first electrode fingers 204 and a plurality of second electrode fingers 205 overlap in the elastic wave propagation direction.
- a low sound velocity region is provided in a region outside the central region.
- a high sound velocity region is provided in a region further outside the low sound velocity region.
- the piston mode is utilized by providing a low sound velocity region outside the central region of the intersection region and further providing a high sound velocity region outside the low sound velocity region.
- the transverse mode can be suppressed.
- the thickness of the metal film is increased in the low sound velocity region in order to reduce the sound velocity in the low sound velocity region.
- region is not limited to FIG.
- the low sound velocity region may be provided by providing the wide portions 211 and 212 on the first electrode finger 204 and the second electrode finger 205.
- a low sound velocity region may be provided by laminating dielectric films 221 and 222 on part of the electrode fingers 204 and 205.
- the method for forming the high sound velocity region is not particularly limited. As shown in FIG. 23, a method in which no dummy electrode is provided between the tip of the electrode finger and the bus bar on the other side may be used. Or you may arrange
- the dielectric films 223 and 224 may be provided so as to extend in the elastic wave propagation direction to form a low sound velocity region.
- the structure in the piston mode may be any means for forming the low sound velocity portion and the high sound velocity portion as long as the sound velocity relationship of FIG. 23 is realized.
- the electrode finger end may have a wide width portion and may have a thin bus bar structure.
- the second band pass filter 6 is a ladder filter.
- This ladder type filter has a plurality of elastic wave resonators 21 and 21 as series arm resonators and a plurality of elastic wave resonators 22 and 22 as parallel arm resonators.
- FIG. 1A schematically shows the circuit configuration of the longitudinally coupled resonator type acoustic wave filter 11 and the ladder type filter. In these circuit configurations, an electrode is formed on the LiTaO 3 film 7. Is provided.
- the filter device 1 since the first band-pass filter 5 uses the piston mode, the transverse mode ripple can be effectively suppressed.
- the specific structure of the filter device using the piston mode is not particularly limited. The details of the longitudinally coupled resonator type acoustic wave filter 11 will be described later.
- the plurality of acoustic wave resonators 21 and 22 constituting the second bandpass filter 6 will be described as a representative of the acoustic wave resonator 21.
- FIG. 2 is a schematic front sectional view of the acoustic wave resonator 21.
- the acoustic wave resonator 21 has a support substrate 23. Bonding material layers 24 a and 24 b are laminated on the support substrate 23. A high sound velocity film 25 as a high sound velocity member is laminated on the bonding material layers 24a and 24b. A low sound velocity film 26 is laminated on the high sound velocity film 25. A piezoelectric film 27 made of LiTaO 3 is laminated on the low acoustic velocity film 26.
- the material of the piezoelectric film is not particularly limited, LiTaO 3, LiNbO 3, ZnO , AlN , or can be suitably used either PZT.
- An IDT electrode 28 is formed on the piezoelectric film 27.
- the support substrate 23 is made of silicon in this embodiment. But the material which comprises the support substrate 23 is not specifically limited. A semiconductor material other than silicon may be used. Further, an insulating material such as glass or insulating ceramics may be used.
- the resistivity is desirably 100 ⁇ cm or more, more preferably 1000 ⁇ cm or more, and further preferably 4000 ⁇ cm or more.
- the resistivity is increased, capacitive coupling between an electrode described later and the support substrate 23 can be effectively suppressed. Therefore, the insertion loss can be further reduced.
- the thermal expansion coefficient of silicon is small. Therefore, expansion and contraction due to a temperature change of the functional film or the like provided on the support substrate 23 can be suppressed. Thereby, the frequency variation of the heat load can be reduced, and the temperature characteristics can be further enhanced.
- the thickness of the Si support substrate was 62.5 ⁇ . Furthermore, since the thermal conductivity of silicon is high, the heat generated in the filter device can be efficiently dissipated. As a result, the power durability can be improved.
- the support substrate 23 made of silicon is excellent in workability. Therefore, it is easy to manufacture. Dicing can also be performed easily. Since the bending strength is high, the filter device can be made thinner.
- the bonding material layers 24a and 24b are made of silicon oxide. However, a bonding material other than silicon oxide may be used. As long as the high acoustic velocity film 25 can be bonded to the support substrate 23, the material of the bonding material layers 24a and 24b is not particularly limited.
- the high sound velocity film As a material of the high sound velocity film, various types of ceramics such as aluminum nitride, aluminum oxide, silicon carbide, silicon nitride, DLC film, silicon, sapphire, alumina, cordierite, mullite, steatite, forsterite, magnesia, diamond, Alternatively, any one of a material mainly composed of the above materials and a material mainly composed of a mixture of the above materials can be preferably used.
- the high acoustic velocity film 25 is made of aluminum nitride.
- the high acoustic velocity film 25 can be formed of an appropriate material as long as the acoustic velocity of the bulk wave propagating through the acoustic wave propagating through the piezoelectric film 27 is faster.
- the sound speed of the bulk wave is a sound speed inherent to the material, and there are a P wave that vibrates in the wave traveling direction, that is, the longitudinal direction, and an S wave that vibrates in the lateral direction that is perpendicular to the traveling direction.
- the bulk wave propagates in any of the piezoelectric film 27, the high sound velocity film 25, and the low sound velocity film 26.
- isotropic materials there are P waves and S waves.
- anisotropic materials there are P waves, slow S waves, and fast S waves.
- an SH wave and an SV wave are generated as two S waves.
- the acoustic velocity of the elastic wave of the main mode propagating through the piezoelectric film 27 means the pass band as a filter and the resonance characteristics as a resonator among the three modes of P wave, SH wave and SV wave. Say the mode you are using to get.
- the low acoustic velocity film suitably uses silicon oxide, glass, silicon oxynitride, tantalum oxide, a compound obtained by adding fluorine, carbon, or boron to silicon oxide, or a material mainly composed of the above materials. be able to.
- the low acoustic velocity film 26 is made of silicon oxide in the present embodiment.
- the low acoustic velocity film 26 can be formed of an appropriate material as long as the acoustic velocity of the propagating bulk wave is slower than the acoustic velocity of the elastic wave propagating through the piezoelectric film 27.
- An adhesive layer may be formed between the high sound velocity film 25 and the piezoelectric film 27.
- the adhesion layer may be a resin or metal, and for example, an epoxy resin or a polyimide resin is used.
- the energy of the elastic wave can be confined in the portion up to the high acoustic velocity film 25.
- the IDT electrode 28 is made of an Al film in this embodiment.
- the IDT electrode 28 may use an alloy film mainly composed of an Al film instead of the Al film.
- the IDT electrode 28 can be formed of various metal materials other than Al or an alloy mainly composed of Al. Examples of such a metal material include Cu, Mo, W, Ag, Pd, and alloys containing these.
- the characteristic of the acoustic wave resonator 21 is that the IDT electrode 28 has a positive value greater than 0 ° as described below. Therefore, it is possible to suppress the ripple caused by the transverse mode.
- ⁇ is in the range of 0.4 ° to 15 °. Thereby, the transverse mode ripple can be more effectively suppressed.
- the film thickness of LiTaO 3 is preferably 3.5 ⁇ or less. In this case, the Q characteristic can be improved. Moreover, it is preferable that the LiTaO 3 film thickness be 2.5 ⁇ or less. In that case, the frequency temperature coefficient can be reduced. Further, it is preferably 2.0 ⁇ or less, and the absolute value of TCF can be made ⁇ 10 ppm / ° C. or less. Note that the thickness of the LiTaO 3 film is more preferably 1.5 ⁇ or less. FIG.
- the ratio band is proportional to the electromechanical coupling coefficient.
- the IDT electrode 28 has a first bus bar 28a extending in a direction inclined with respect to the elastic wave propagation direction.
- a second bus bar 28b is provided separately from the first bus bar 28a.
- the second bus bar 28b is also inclined at the same angle as the first bus bar 28a with respect to the elastic wave propagation direction.
- the first bus bar 28a and the second bus bar 28b extend in parallel.
- One end of a plurality of first electrode fingers 28c is connected to the first bus bar 28a.
- the plurality of first electrode fingers 28c are extended toward the second bus bar 28b.
- the direction orthogonal to the first electrode finger 28c is the elastic wave propagation direction ⁇ .
- a plurality of second electrode fingers 28d are provided so as to be inserted into the plurality of first electrode fingers 28c.
- One ends of the plurality of second electrode fingers 28d are connected to the second bus bar 28b.
- a first dummy electrode finger 28e is provided with a gap from the tip of the first electrode finger 28c.
- the first dummy electrode finger 28e is connected to the second bus bar 28b.
- the second dummy electrode finger 28f is arranged with a gap from the tip of the second electrode finger 28d.
- the second dummy electrode finger 28f is connected to the first bus bar 28a.
- an imaginary line A1 connecting the tips of the plurality of second electrode fingers 28d forms an angle ⁇ with respect to the elastic wave propagation direction ⁇ .
- the direction of the imaginary line A2 connecting the tips of the first electrode fingers 28c is the same as the direction A1 connecting the tips of the second electrode fingers 28d.
- FIG. 3 is a schematic diagram for explaining the relationship between the propagation direction ⁇ and the inclination angle ⁇ .
- Euler angles of LiTaO 3 be ( ⁇ , ⁇ , ⁇ ).
- Broken lines B1 to B4 in the IDT electrodes 10A to 10D are parallel to the direction connecting the tips of the plurality of first electrode fingers in the IDT electrodes 10A to 10D.
- the direction B1 and the propagation direction ⁇ in which the elastic wave propagates are the same direction.
- the direction B1 is represented by ( ⁇ , 0 °) where (the propagation direction of each elastic wave, the inclination angle ⁇ with respect to the propagation direction).
- the IDT electrode 10B it is (0 °, ⁇ ).
- the IDT electrode 10C ( ⁇ , ⁇ ).
- the IDT electrode 10D ( ⁇ , ⁇ ).
- an angle formed by the propagation direction ⁇ and the direction connecting the tip of the first electrode finger 28c of the IDT electrode 28 with respect to the propagation direction is defined as an inclination angle ⁇ .
- an IDT electrode having an inclination angle ⁇ larger than 0 ° and a positive value may be abbreviated as an inclined IDT.
- the design parameters of the elastic wave resonator were as follows.
- an elastic wave resonator of Comparative Example 1 was manufactured with an inclination angle ⁇ of 0 °.
- FIG. 4 is a diagram showing impedance characteristics of the acoustic wave resonator of Comparative Example 1.
- FIG. 6 shows the return loss characteristic of the elastic wave resonator of Comparative Example 1 described above.
- the inclination angle ⁇ 0 °. That is, the propagation direction ⁇ was made to coincide with the elastic wave propagation direction.
- each elastic wave resonator having an inclination angle ⁇ in the IDT electrode of 2.5 °, 5.0 °, 7.5 °, 10 °, or 15 ° was manufactured.
- FIG. 5 shows the impedance characteristics of these elastic wave resonators.
- FIG. 7 shows the return loss characteristics of the acoustic wave resonator when the inclination angle ⁇ is 0.0 °, 2.5 °, 5.0 °, 7.5 °, 10 °, or 15 ° as described above. Indicates.
- FIG. 8 shows the relationship between the Q value and the frequency of each acoustic wave resonator in which the inclination angle ⁇ is 0.0 °, 2.5 °, 5.0 °, 7.5 °, 10 °, or 15 °. Indicates.
- each elastic wave resonator having the inclination angle ⁇ of 0 °, 0.4 °, 0.9 °, 1 °, or 1.5 ° was manufactured.
- the return loss characteristics of these acoustic wave resonators are shown in FIGS.
- FIG. 10 is an enlarged view of FIG.
- the transverse mode ripple can be suppressed.
- ⁇ is 0.4 ° or more.
- the transverse mode can be further suppressed.
- the absolute value of the return loss can be made smaller than 1 dB. Therefore, if ⁇ is more preferably 1 ° or more, and most preferably 2.5 ° or more, the transverse mode ripple can be further suppressed.
- FIG. 8 also shows that it is preferable to set ⁇ to 10 ° or less in order to make the maximum Q value 2500 or more in order to reduce the loss. Therefore, the inclination angle ⁇ is preferably in the range of 1 ° to 10 °. Thereby, the transverse mode ripple can be effectively suppressed and the loss can be reduced. More preferably, the inclination angle ⁇ is in the range of not less than 2.5 ° and not more than 10 °.
- the inclination angle ⁇ is set to 5 ° or more. Therefore, more preferably, the inclination angle ⁇ is in the range of 5 ° or more and 10 ° or less.
- the elastic wave resonator 21 can suppress the transverse mode ripple as described above.
- the plurality of acoustic wave resonators 21 are all configured as described above, and the plurality of acoustic wave resonators 22 have the same structure. Therefore, the second band pass filter 6 can suppress the transverse mode ripple.
- 11A and 11B are schematic front cross-sectional views showing acoustic wave resonators 21A and 21B according to first and second modifications of the acoustic wave resonator 21, respectively.
- a structure in which a low sound velocity film 26 and a piezoelectric film 27 are laminated on a high sound velocity support substrate 25A as a high sound velocity member may be used.
- the piezoelectric film 27 is laminated on the high sound speed member via the low sound speed film 26. That is, the piezoelectric film 27 is indirectly laminated on the high sound velocity member.
- the high sound velocity film 25 and the piezoelectric film 27 may be laminated. That is, the low sound velocity film 26 may be omitted. In that case, the piezoelectric film 27 is directly laminated on the high sound speed film 25 as a high sound speed member.
- FIG. 12 is a schematic plan view of the longitudinally coupled resonator type elastic wave filter 11 constituting the first band-pass filter 5 in the filter device 1.
- the longitudinally coupled resonator type acoustic wave filter 11 a plurality of first IDT electrodes 31 to 39 are arranged on the piezoelectric film 27 along the acoustic wave propagation direction. Reflectors 40 and 41 are provided on both sides in the elastic wave propagation direction of the region where the first IDT electrodes 31 to 39 are provided.
- the longitudinally coupled resonator type acoustic wave filter 11 is a 9IDT type longitudinally coupled resonator type acoustic wave filter.
- the number of the first IDT electrodes in the longitudinally coupled resonator type acoustic wave filter 11 may be an odd number of 3 or more, and is not limited to 9.
- FIG. 13 is a schematic front sectional view for explaining a laminated structure in the longitudinally coupled resonator type acoustic wave filter 11.
- a piezoelectric film 27 made of a bonding material layer 24 a, 24 b, a high acoustic velocity film 25, a low acoustic velocity film 26 and LiTaO 3 is formed on a support substrate 23.
- a first IDT electrode 31 is provided on the piezoelectric film 27.
- FIG. 13 only the portion where the first IDT electrode 31 is provided is shown, but the portions where the other first IDT electrodes 32 to 39 are formed also have the same laminated structure.
- the longitudinally coupled resonator type acoustic wave filter 11 a laminated structure having a high sound velocity member, a high sound velocity film, and a low sound velocity film is used as described above. Therefore, similarly to the second bandpass filter 6 side, the energy of the elastic wave can be confined in the portion up to the high sound velocity film 25.
- first IDT electrodes 31 to 39 will be described on behalf of the first IDT electrode 31.
- the configuration for using the piston mode is particularly limited. It is not a thing.
- FIG. 14 is a partially cutaway plan view showing an example of an electrode structure for using the piston mode in the present embodiment. That is, in the IDT electrode, a region where an electrode finger connected to one potential and an electrode finger connected to the other potential overlap in the elastic wave propagation direction is defined as an intersecting region. In this intersecting region, the piston mode can be formed by forming edge regions having a sound speed slower than that of the central region on both sides of the central region in the extending direction of the electrode fingers. A mode of forming such a piston mode is not particularly limited.
- the first IDT electrode 31 is provided with a structure that suppresses transverse mode ripple by forming a piston mode.
- the first IDT electrode 31 includes a first bus bar 111 and a second bus bar 112 disposed so as to be separated from the first bus bar 111.
- the first bus bar 111 and the second bus bar 112 extend in parallel to the elastic wave propagation direction.
- the base ends of a plurality of first electrode fingers 113 are connected to the first bus bar 111.
- the tips of the plurality of first electrode fingers 113 are extended from the first bus bar 111 toward the second bus bar 112 side. That is, a plurality of first electrode fingers 113 are extended in a direction orthogonal to the elastic wave propagation direction.
- the base ends of the plurality of second electrode fingers 114 are connected to the second bus bar 112.
- the tips of the plurality of second electrode fingers 114 are extended from the second bus bar 112 toward the first bus bar 111 side. That is, the plurality of second electrode fingers 114 also extend in a direction orthogonal to the elastic wave propagation direction.
- the plurality of first electrode fingers 113 and the plurality of second electrode fingers 114 are interleaved.
- the first electrode finger 113 is provided with thick portions 113a, 113b, 113c, and 113d.
- the second electrode finger 114 is also provided with wide portions 114a, 114b, 114c, 114d.
- the shapes of the wide portions 113a to 113d and 114a to 114d will be described on behalf of the thick portion 113a.
- the wide width portion 113a is longer in the width direction dimension than the remaining portion of the first electrode finger 113, that is, the dimension along the elastic wave propagation direction.
- the wide width portion 113 a has an isosceles trapezoidal shape that protrudes from the side edge of the first electrode finger 113 in the elastic wave propagation direction.
- the shape of the wide width portion is not limited to this, and a protruding portion having various shapes such as a semicircular protruding portion may protrude from the side edge of the first electrode finger 113 in the elastic wave propagation direction.
- the wide width portions 113a and 113b are provided close to the proximal end side of the first electrode finger 113 in the first electrode finger 113.
- the wide portions 113a and 113b are formed close to the first bus bar 111 side.
- the thick portions 113c and 113d are provided close to the distal end side of the first electrode finger 113, that is, the second bus bar 112 side.
- the second electrode finger 114 is provided with wide portions 114a and 114b on the tip side.
- the thick width portions 114a and 114b and the thick width portions 113a and 113b are alternately arranged in a region near the first bus bar 111 in a direction orthogonal to the elastic wave propagation direction, that is, in a direction in which the electrode fingers extend.
- the wide width portions 113c and 113d and the wide width portions 114c and 114d are alternately arranged on the side close to the second bus bar 112 in the extending direction of the electrode fingers.
- a region V2 shown in FIG. 14 is formed.
- V1 to V6 on the right side of FIG. 14 indicate regions arranged outward from the center of the first IDT electrode 31 in a direction orthogonal to the elastic wave propagation direction.
- FIG. 14 schematically shows elastic wave velocities (hereinafter referred to as sound speeds) V 1 to V 6 propagating in the regions V1 to V6.
- the speed of sound region Vn n is a natural number
- V n is an IDT central region located between the thick portion 113b and the thick portion 113c.
- the region V2 in which the thick portions 113a, 113b, 114a, and 114b are provided has a lower sound speed than the region V1 in the center of the IDT.
- a protruding portion 113e protruding in the electrode finger width direction is provided at the base end of the first electrode finger 113. Accordingly, in the region V3 where the protruding portion 113e is provided, the sound velocity is lower than the region V5 of the high sound velocity portion described later. However, in the region V3, since the second electrode fingers 114 are not present, the acoustic velocity V 3 are high acoustic velocity than the acoustic velocity V 2 of the area V2.
- the second electrode finger 114 is also provided with a protrusion 114e.
- the first bus bar 111 includes an inner bus bar portion 111A, a central bus bar portion 111B, and an outer bus bar portion 111C.
- the inner side and the outer side refer to the side where the first and second electrode fingers 113 and 114 are present in the first IDT electrode 31 in the direction in which the electrode fingers of the IDT electrode extend, and the opposite side is the outer side. It is said.
- the inner bus bar portion 111A is a portion to which the base ends of the plurality of first electrode fingers 113 are connected.
- the inner bus bar portion 111A has an elongated strip shape extending in the elastic wave propagation direction. Since this is a metallized portion, the inner bus bar portion 111A constitutes a region V4 having a low sound velocity.
- a plurality of openings 115 are distributed in the central bus bar portion 111B along the elastic wave propagation direction.
- the opening 115 is located between the connecting portions 116 extending in the direction in which the electrode fingers extend.
- the connecting portion 116 has the same width as the first electrode finger 113 and is located on the extension of the first electrode finger 113. But the dimension of the connection part 116 and the position to provide are not limited to this.
- the opening part 115 has a rectangular shape in this embodiment, it is not limited to a rectangular shape.
- the connecting portions 116 and the opening portions 115 are alternately arranged along the elastic wave propagation direction. Accordingly, since there are many portions that are not metallized, the central bus bar portion 111B constitutes a high sound velocity region V5.
- the outer bus bar portion 111C does not have an opening. Accordingly, the outer bus bar portion 111C is a metallized region, and this region V6 is a low sound velocity region.
- an inner bus bar part 112A On the second bus bar 112 side, an inner bus bar part 112A, a central bus bar part 112B, and an outer bus bar part 112C are formed.
- the same parts are denoted by the same reference numerals, and the description thereof is omitted.
- the longitudinally coupled resonator type acoustic wave filter 11 since the first IDT electrode 31 is configured as described above, a low sound velocity region is provided outside the central region V1, and regions V2 to V4 that are low sound velocity regions are provided. A high sound velocity region V5 exists outside of. Therefore, it is possible to form the piston mode, and the lateral mode ripple can be effectively suppressed.
- the first IDT electrodes 32 to 39 are configured similarly to the first IDT electrode 31. Therefore, the longitudinally coupled resonator type acoustic wave filter 11 can effectively suppress the transverse mode ripple by forming the piston mode.
- the transverse mode ripple can be more effectively suppressed and an ideal piston mode can be formed. This will be described with reference to FIGS.
- FIG. 16 is a diagram showing impedance-frequency characteristics of an acoustic wave resonator having the first IDT electrode 31.
- the IDT electrode 51 of the modification shown in FIG. 15 was prepared.
- a one-port type acoustic wave resonator having a modified IDT electrode 51 was produced.
- the first bus bar 152 is configured to have only a thick band-shaped metallized region. Therefore, the portion where the first bus bar 152 is provided is a low sound velocity region indicated by V14.
- the sound velocities V 11 to V 14 of the regions V11 to V14 in the extending direction of the electrode fingers of the IDT electrode 51 in the elastic wave resonator of the modification are schematically shown on the right side of FIG.
- FIG. 17 is a diagram showing impedance-frequency characteristics of a modified one-port elastic wave resonator.
- ripples appear between the resonance frequency and the anti-resonance frequency and on the higher frequency side than the anti-resonance frequency.
- This ripple is a transverse mode ripple.
- the transverse mode ripple is temporarily suppressed by providing the thick portion.
- FIG. 16 in the structure of the above embodiment, it can be seen that such transverse mode ripple can be effectively suppressed, and almost no transverse mode ripple appears.
- the sound velocities V 1 to V 6 of the regions V 1 to V 6 are as shown in FIG. That is, by providing the inner bus bar portion 111A in addition to the wide width portions 113a, 113b, 114a, and 114b, the average value of the sound speeds of the regions V2, V3, and V4 that are the low sound velocity regions can be effectively lowered. ing.
- the sound speed difference ⁇ V between the low sound speed region and the central region is very large. Therefore, it is considered that the transverse mode ripple can be more effectively suppressed. That is, the larger the sound speed difference ⁇ V, the more reliably the piston mode is generated and the transverse mode ripple can be effectively suppressed.
- the electrode structure for using the piston mode in the longitudinally coupled resonator type acoustic wave filter in the present invention is not limited to the above structure. That is, in addition to the method of adjusting the sound speed by providing a thick portion, a method of adjusting the sound speed by stacking a dielectric film on the electrode finger may be employed.
- the second band-pass filter 6 has the above-described inclined structure in the IDT electrode and an elastic wave confinement structure using a high sound velocity film and a low sound velocity film. Therefore, in the second bandpass filter 6 as well, the insertion loss is hardly deteriorated, and the Q value can be effectively increased.
- the filter device 1 can effectively increase the Q value in the filter characteristics.
- FIG. 18 is a circuit diagram of the filter device of Example 1 as an example of the first embodiment.
- the same parts as those in FIG. 1 are denoted by the same reference numerals.
- the ladder type filter as the second band-pass filter 6 is provided with series arm resonators S1 to S5 and parallel arm resonators P1 to P4.
- the series arm resonators S 1 to S 5 correspond to the elastic wave resonator 21 described above
- the parallel arm resonators P 1 to P 4 correspond to the elastic wave resonator 22.
- the longitudinally coupled resonator type acoustic wave filter 11 as the first bandpass filter 5 is a 9IDT type as described in the above embodiment.
- the electrode finger crossing width was 23 ⁇ m.
- the wavelength ⁇ ( ⁇ m) determined by the electrode finger pitch of the first IDT electrodes 31 to 39 and the number of pairs of electrode fingers are as shown in Table 1 below.
- the wavelength determined by the electrode finger pitch of the reflector is also as shown in Table 1 below.
- narrow pitch means a narrow pitch electrode finger.
- Main means the remaining electrode finger portions other than the narrow pitch electrode finger portions.
- the duty ratios of the IDT electrode and the reflector in the longitudinally coupled resonator type acoustic wave filter 11 are both 0.5.
- Distance between reflector 40 and the first IDT electrode 31, the distance between the reflector 41 and the first IDT electrode 39 was set to 0.53 ⁇ R.
- ⁇ R is a wavelength determined by the electrode finger pitch of the reflector, that is, 1.9759 ⁇ m.
- the number of electrode fingers of the reflector was 30.
- acoustic wave resonators 61 a and 61 c are connected between the longitudinally coupled resonator type acoustic wave filter 11 and the antenna terminal 2.
- the elastic wave resonator 61b is connected between the connection point between the elastic wave resonators 61a and 61c and the ground potential.
- An elastic wave resonator 61d is connected between the output terminal of the longitudinally coupled resonator type elastic wave filter 11 and the ground potential.
- the laminated structure of the longitudinally coupled resonator type acoustic wave filter 11 is obtained by laminating a SiO 2 film with a thickness of 673 nm and a LiTaO 3 substrate with a thickness of 600 nm on a high acoustic velocity support substrate made of Si.
- the cut angle of LiTaO 3 was 50 ° Y.
- the inclination angle ⁇ in each acoustic wave resonator of the ladder type filter was 7.5 °.
- Al having a thickness of 157 nm was used as the first and second IDT electrodes.
- the broken line in FIG. 19 shows the attenuation frequency characteristic of the longitudinally coupled resonator type acoustic wave filter 11 using the piston mode of the first embodiment.
- Comparative Example 3 in the longitudinally coupled resonator type acoustic wave filter, except that the IDT electrode having the same inclined structure as the ladder type filter in Example 1 was used and the piston mode was not used.
- a longitudinally coupled resonator type acoustic wave filter having the same configuration was prepared.
- the solid line in FIG. 19 shows the result of Comparative Example 3.
- the longitudinally coupled resonator type acoustic wave filter 11 used in Example 1 can effectively suppress the deterioration of insertion loss, as compared with Comparative Example 3 indicated by the solid line. . Therefore, the Q value of the filter device can be increased.
- each elastic wave resonator of the ladder type filter employs a configuration using a piston mode like the longitudinally coupled resonator type elastic wave filter 11 of the first embodiment. That is, a ladder filter similar to that of the first embodiment was configured except that the piston type was used without using the inclined IDT having a positive inclination angle ⁇ .
- the ladder type filter used in Example 1 is less susceptible to deterioration of insertion loss according to Example 1 than with Comparative Example 4. Therefore, the Q value can be increased in the filter device 1.
- the longitudinally coupled resonator type elastic wave filter 11 uses the piston mode
- the second bandpass filter 6 that is a ladder type filter uses the inclined IDT.
- the present invention is characterized in that the longitudinally coupled resonator type elastic wave filter uses the piston mode without employing the inclined IDT as described above, and on the other hand, is a ladder as a second band-pass filter.
- the type filter is characterized by adopting the inclined type IDT without adopting the piston mode.
- the duty of the first IDT electrode in the longitudinally coupled resonator type acoustic wave filter 11 using the piston mode is 0.46 or less.
- FIG. 21 is a diagram illustrating the relationship between the duty in the first IDT electrode and the ripple strength.
- the ripple strength means the magnitude of the maximum ripple appearing in the passband.
- the structure connected to the longitudinally coupled resonator type acoustic wave filter 11 is not limited to the second bandpass filter 6 formed of the ladder type filter. That is, another second bandpass filter having a plurality of acoustic wave resonators may be used.
- a structure in which an acoustic wave resonator is connected to the longitudinally coupled resonator type acoustic wave filter 11 instead of the second bandpass filter is also included in the present invention.
- At least one of the acoustic wave resonators 61a to 61d constituting the trap may be configured to have the above-described tilted IDT structure.
- the longitudinally coupled resonator type acoustic wave filter 11 has an insertion loss as described above. Degradation can be effectively suppressed, and on the elastic wave resonator side, degradation of insertion loss can be effectively suppressed by the inclined IDT structure.
- the filter device does not require the second band-pass filter, and has a structure in which the longitudinally coupled resonator type elastic wave filter 11 and at least one elastic wave resonator are connected. Good.
- the first band-pass filter 5 and the second band-pass filter 6 are arranged on the LiTaO 3 film 7 which is the same piezoelectric film. And integrated. That is, the filter device 1 is configured as one chip component. Therefore, the size can be reduced, and the electronic device on which the filter device 1 is mounted can be reduced.
- the first band-pass filter 5 and the second band-pass filter 6 are configured as separate chip components as a first chip component 71 and a second chip component 72, respectively. May be.
- the first chip component 71 and the second chip component 72 are mounted on the mounting substrate 73.
- the elastic wave resonators 21 and 22 having an inclination angle ⁇ as shown in FIG. 1B are at least one of the elastic wave resonators of the series arm resonators S1 to S5 and the parallel arm resonators P1 to P4. That's all you need.
- the acoustic wave resonators 21 and 22 having the inclination angle ⁇ as shown in FIG. 1B may be used in the acoustic wave resonators 61a, 61b, 61c, and 61d shown in FIG.
- the elastic wave resonators 61a, 61b, 61c, 61d may be used in all, or at least one of the elastic wave resonators 61a, 61b, 61c, 61d may be used.
- the first band-pass filter 5 in FIG. 18 may be a reception filter
- the second band-pass filter 6 may be a transmission filter
- 28 (a) and 28 (b) are plan views showing modifications of the inclined IDT.
- an electrode finger 302 connected to the same potential may be provided between the electrode fingers 303 and 304 connected to the same potential. That is, one electrode finger of the plurality of first electrode fingers and the plurality of second electrode fingers to be inserted may be partially thinned out.
- a thick electrode finger 312 may be provided like an inclined IDT 311 shown in FIG.
- the outer shape of the electrode finger 312 is the same as the outer shape of the portion where the electrode fingers 303 and 304 and the electrode finger 302 are provided. That is, the wide electrode finger 312 is provided so as to fill a region where the electrode fingers 303 and 304 and the electrode finger connected to the other potential are thinned out.
- first bus bar 201 ... IDT electrodes 202, 203 ... first and second bus bars 204,205 ... first electrode fingers, Second electrode fingers 211, 212... Wide portions 221 to 224... Dielectric films 301, 311. 302 to 304, 312 ... electrode fingers P1 to P4 ... parallel arm resonators S1 to S5 ... series arm resonators
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
Abstract
Description
IDT電極の電極指交差幅=15λ
電極指の対数=83対
なお、λ=2μm
IDT電極におけるデューティ=0.5
IDT電極の膜厚=0.08λ
LiTaO3膜の膜厚=0.3λ
接合材層を構成している酸化ケイ素膜の膜厚=0.35λ
ギャップ寸法G=0.5μm
電極指交差幅は23μmとした。第1のIDT電極31~39の電極指ピッチで定まる波長λ(μm)と、電極指の対数は下記の表1に示す通りとした。また、反射器の電極指ピッチで定まる波長も下記の表1の通りとした。
直列腕共振子S1~S5及び並列腕共振子P1~P4の設計パラメータは下記の表3に示す通りとした。
2…アンテナ端子
3…受信端子
4…送信端子
5,6…第1,第2の帯域通過型フィルタ
7…LiTaO3膜
10A~10D…IDT電極
11…縦結合共振子型弾性波フィルタ
21,21A,21B,22…弾性波共振子
23…支持基板
24a,24b…接合材層
25…高音速膜
25A…高音速支持基板
26…低音速膜
27…圧電膜
28…IDT電極
28a,28b…第1,第2のバスバー
28c,28d…第1,第2の電極指
28e,28f…第1,第2のダミー電極指
31~39…第1のIDT電極
40,41…反射器
51…IDT電極
61a~61d…弾性波共振子
71,72…第1,第2のチップ部品
73…実装基板
111…第1のバスバー
111A…内側バスバー部
111B…中央バスバー部
111C…外側バスバー部
112…第2のバスバー
112A…内側バスバー部
112B…中央バスバー部
112C…外側バスバー部
113,114…第1,第2の電極指
113a~113d,114a~114d…太幅部
113e,114e…突出部
115…開口部
116…連結部
151…1ポート型弾性波共振子
152…第1のバスバー
201…IDT電極
202,203…第1,第2のバスバー
204,205…第1の電極指,第2の電極指
211,212…太幅部
221~224…誘電体膜
301,311…傾斜型IDT
302~304,312…電極指
P1~P4…並列腕共振子
S1~S5…直列腕共振子
Claims (18)
- 弾性波伝搬方向と直交する方向において、IDT電極の中央領域の外側に低音速領域を有し、かつ、前記低音速領域の外側に高音速領域を有する、複数の第1のIDT電極を有し、第1の帯域通過型フィルタとして機能する縦結合共振子型弾性波フィルタと、
前記縦結合共振子型弾性波フィルタに電気的に接続された弾性波共振子と、
を備え、
前記縦結合共振子型弾性波フィルタ及び前記弾性波共振子が、
LiTaO3からなる圧電膜と、
伝搬するバルク波の音速が前記圧電膜を伝搬する弾性波の音速よりも高速である高音速部材と、を有し、
前記圧電膜は、前記高音速部材上に直接または間接に積層されており、
前記複数の第1のIDT電極は、前記圧電膜の一方面上で、縦結合接続しており、
前記弾性波共振子が、前記圧電膜の一方面に形成されている第2のIDT電極を有し、
前記第2のIDT電極が、複数本の第1の電極指と、前記第1の電極指と間挿し合っている複数本の第2の電極指とを有し、
前記LiTaO3からなる圧電膜の膜厚が、前記第2のIDT電極の電極指の周期で定まる波長をλとしたときに、10λ以下であり、
前記LiTaO3のオイラー角(φ,θ,ψ)により規定される前記第2のIDT電極により励振された弾性波の伝搬方向ψに対し、前記複数本の第1の電極指の先端を結ぶ方向及び前記複数本の第2の電極指の先端を結ぶ方向がν(νは0°を超える正の値)の傾斜角度をなしている、フィルタ装置。 - 前記圧電膜の厚みは、1.5λ以下である、請求項1に記載のフィルタ装置。
- 前記弾性波共振子が複数備えられており、複数の前記弾性波共振子が電気的に接続されて、第2の帯域通過型フィルタが構成されている、請求項1または2に記載のフィルタ装置。
- 前記第2の帯域通過型フィルタが、ラダー型フィルタである、請求項3に記載のフィルタ装置。
- 前記縦結合共振子型弾性波フィルタを受信フィルタとして有し、前記第2の帯域通過型フィルタを送信フィルタとして備えるデュプレクサである、請求項3または4に記載のフィルタ装置。
- 前記第1の帯域通過型フィルタと、前記第2の帯域通過型フィルタとが1つのチップ部品に設けられている、請求項3~5のいずれか1項に記載のフィルタ装置。
- 前記高音速部材が高音速支持基板である、請求項1~6のいずれか1項に記載のフィルタ装置。
- 前記弾性波共振子が支持基板をさらに有し、前記高音速部材が高音速膜であり、前記支持基板上に設けられている、請求項1~6のいずれか1項に記載のフィルタ装置。
- 前記高音速部材と、前記圧電膜との間に、前記圧電膜を伝搬する弾性波の音速よりも、伝搬するバルク波の音速が低速である低音速膜が積層されており、前記圧電膜が前記高音速部材上に間接に積層されている、請求項1~8のいずれか1項に記載のフィルタ装置。
- 前記高音速部材上に前記圧電膜が直接積層されている、請求項1~8のいずれか1項に記載のフィルタ装置。
- 前記第1のIDT電極が、第1のバスバーと、前記第1のバスバーと隔てられて配置された第2のバスバーと、前記第1のバスバーに基端が電気的に接続されており、先端が前記第2のバスバーに向かって延ばされている複数本の第1の電極指と、前記第2のバスバーに基端が接続されており、先端が前記第1のバスバーに向かって延ばされている複数本の第2の電極指とを有し、
前記縦結合共振子型弾性波フィルタの前記第1のIDT電極において、
前記第1及び第2の電極指の延びる方向と直交する方向を幅方向としたときに、前記第1及び第2の電極指の少なくとも一方において、前記第1及び第2の電極指の長さ方向中央に比べて幅方向寸法が大きくされている太幅部が、前記長さ方向中央よりも前記基端側及び前記先端側のうちの少なくとも一方の側に設けられており、
前記第1及び第2のバスバーの少なくとも一方が前記第1または第2のバスバーの長さ方向に沿って分離配置された複数の開口部を有し、
前記第1及び第2のバスバーが、前記開口部よりも前記第1または第2の電極指側に位置しており、かつ前記第1及び第2のバスバーの長さ方向に延びる内側バスバー部と、前記開口部が設けられている中央バスバー部と、前記内側バスバー部に対して、前記中央バスバー部を挟んで反対側に位置している外側バスバー部とを有する、請求項1~10のいずれか1項に記載のフィルタ装置。 - 前記内側バスバー部が、弾性波伝搬方向に延びる帯状の形状を有する、請求項11に記載のフィルタ装置。
- 前記第1の電極指及び前記第2の電極指の双方に前記太幅部が設けられている、請求項11または12に記載のフィルタ装置。
- 前記第1のIDT電極が、第1のバスバーと、前記第1のバスバーと隔てられて配置された第2のバスバーと、前記第1のバスバーに基端が電気的に接続されており、先端が前記第2のバスバーに向かって延ばされている複数本の第1の電極指と、前記第2のバスバーに基端が接続されており、先端が前記第1のバスバーに向かって延ばされている複数本の第2の電極指とを有し、
前記複数本の第1の電極指と前記複数本の第2の電極指とが弾性波伝搬方向において重なり合っている領域を交差領域とした場合、該交差領域が、前記弾性波伝搬方向と直交する方向における前記中央領域と、前記中央領域の外側に設けられた前記低音速領域とを有し、前記低音速領域において、前記中央領域に比べて音速が低くなるように、前記第1及び第2の電極指の厚みが厚くされている、請求項1~10のいずれか1項に記載のフィルタ装置。 - 前記第1のIDT電極が、第1のバスバーと、前記第1のバスバーと隔てられて配置された第2のバスバーと、前記第1のバスバーに基端が電気的に接続されており、先端が前記第2のバスバーに向かって延ばされている複数本の第1の電極指と、前記第2のバスバーに基端が接続されており、先端が前記第1のバスバーに向かって延ばされている複数本の第2の電極指とを有し、
前記低音速領域において、前記第1及び第2の電極指上に音速を相対的に低下させるために誘電体膜が積層されている、請求項1~10のいずれか1項に記載のフィルタ装置。 - 前記第1及び第2の電極指上に積層された前記誘電体膜が、弾性波伝搬方向に沿って帯状に延ばされている、請求項15に記載のフィルタ装置。
- 前記縦結合共振子型弾性波フィルタの前記第1のIDT電極におけるデューティが0.46以下である、請求項1~16のいずれか1項に記載のフィルタ装置。
- 前記傾斜角度νが0.4°以上、15°以下の範囲にある、請求項1~17のいずれか1項に記載のフィルタ装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112016002880.6T DE112016002880B4 (de) | 2015-06-24 | 2016-06-13 | Filtervorrichtung |
KR1020177031873A KR101989462B1 (ko) | 2015-06-24 | 2016-06-13 | 필터 장치 |
CN201680030389.1A CN107615654B (zh) | 2015-06-24 | 2016-06-13 | 滤波器装置 |
JP2017525224A JP6424962B2 (ja) | 2015-06-24 | 2016-06-13 | フィルタ装置 |
US15/830,015 US10469055B2 (en) | 2015-06-24 | 2017-12-04 | Filter device including longitudinally coupled resonator elastic wave filter and elastic wave resonator |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-126675 | 2015-06-24 | ||
JP2015126675 | 2015-06-24 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/830,015 Continuation US10469055B2 (en) | 2015-06-24 | 2017-12-04 | Filter device including longitudinally coupled resonator elastic wave filter and elastic wave resonator |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016208446A1 true WO2016208446A1 (ja) | 2016-12-29 |
Family
ID=57586111
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/067572 WO2016208446A1 (ja) | 2015-06-24 | 2016-06-13 | フィルタ装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10469055B2 (ja) |
JP (1) | JP6424962B2 (ja) |
KR (1) | KR101989462B1 (ja) |
CN (1) | CN107615654B (ja) |
DE (1) | DE112016002880B4 (ja) |
WO (1) | WO2016208446A1 (ja) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2016208428A1 (ja) * | 2015-06-25 | 2018-02-22 | 株式会社村田製作所 | 弾性波装置 |
WO2018142794A1 (ja) * | 2017-02-06 | 2018-08-09 | 株式会社村田製作所 | 弾性波装置、デュプレクサ及びフィルタ装置 |
WO2018216417A1 (ja) * | 2017-05-26 | 2018-11-29 | 株式会社村田製作所 | 弾性波装置、フィルタ、高周波フロントエンド回路及び通信装置 |
WO2019003909A1 (ja) * | 2017-06-26 | 2019-01-03 | 株式会社村田製作所 | 弾性波装置及び複合フィルタ装置 |
WO2019059208A1 (ja) * | 2017-09-19 | 2019-03-28 | 株式会社村田製作所 | 弾性波フィルタ装置及びマルチプレクサ |
WO2019065671A1 (ja) * | 2017-09-29 | 2019-04-04 | 株式会社村田製作所 | マルチプレクサ、高周波フロントエンド回路及び通信装置 |
WO2019065670A1 (ja) * | 2017-09-29 | 2019-04-04 | 株式会社村田製作所 | マルチプレクサ、高周波フロントエンド回路及び通信装置 |
KR20190056293A (ko) | 2017-11-16 | 2019-05-24 | 가부시키가이샤 무라타 세이사쿠쇼 | 탄성파 장치, 고주파 프론트 엔드 회로 및 통신 장치 |
WO2019138813A1 (ja) * | 2018-01-12 | 2019-07-18 | 株式会社村田製作所 | 弾性波装置、マルチプレクサ、高周波フロントエンド回路、及び通信装置 |
WO2019138812A1 (ja) * | 2018-01-12 | 2019-07-18 | 株式会社村田製作所 | 弾性波装置、マルチプレクサ、高周波フロントエンド回路、及び通信装置 |
JP2019121879A (ja) * | 2017-12-28 | 2019-07-22 | 太陽誘電株式会社 | マルチプレクサ |
WO2019172374A1 (ja) * | 2018-03-09 | 2019-09-12 | 株式会社村田製作所 | 弾性波装置 |
WO2019177028A1 (ja) * | 2018-03-14 | 2019-09-19 | 株式会社村田製作所 | 弾性波装置 |
KR20190133052A (ko) * | 2017-06-06 | 2019-11-29 | 가부시키가이샤 무라타 세이사쿠쇼 | 탄성파 필터 장치, 멀티플렉서 및 복합 필터 장치 |
WO2020050402A1 (ja) * | 2018-09-07 | 2020-03-12 | 株式会社村田製作所 | 弾性波装置、弾性波フィルタ及び複合フィルタ装置 |
WO2020100744A1 (ja) * | 2018-11-16 | 2020-05-22 | 株式会社村田製作所 | 弾性波装置 |
WO2020262388A1 (ja) * | 2019-06-24 | 2020-12-30 | 株式会社村田製作所 | フィルタ装置 |
WO2021039639A1 (ja) * | 2019-08-30 | 2021-03-04 | 株式会社村田製作所 | 弾性波装置 |
WO2021060150A1 (ja) * | 2019-09-27 | 2021-04-01 | 株式会社村田製作所 | 弾性波フィルタ |
US20210376813A1 (en) * | 2016-10-07 | 2021-12-02 | Qorvo Us, Inc. | Slanted apodization for acoustic wave devices |
WO2023286704A1 (ja) * | 2021-07-16 | 2023-01-19 | 京セラ株式会社 | 弾性波装置、フィルタ、分波器及び通信装置 |
US11588469B2 (en) | 2017-10-20 | 2023-02-21 | Murata Manufacturing Co., Ltd. | Acoustic wave device |
WO2023167034A1 (ja) * | 2022-03-03 | 2023-09-07 | 京セラ株式会社 | 弾性波素子、弾性波フィルタ、分波器、および通信装置 |
WO2024009660A1 (ja) * | 2022-07-07 | 2024-01-11 | 株式会社村田製作所 | 弾性波装置及びフィルタ装置 |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015106191A1 (de) * | 2015-04-22 | 2016-10-27 | Epcos Ag | Elektroakustisches Bauelement mit verbesserter Akustik |
CN111919384B (zh) * | 2018-04-03 | 2024-01-30 | 株式会社村田制作所 | 弹性波装置 |
US20210152153A1 (en) * | 2018-04-11 | 2021-05-20 | Kyocera Corporation | Acoustic wave element, acoustic wave filter, multiplexer, and communication apparatus |
DE102018108961A1 (de) * | 2018-04-16 | 2019-10-17 | RF360 Europe GmbH | TF-SAW-Resonator mit verbessertem Gütefaktor, HF-Filter und Verfahren zur Herstellung eines TF-SAW-Resonators |
DE102018118384B4 (de) * | 2018-07-30 | 2023-10-12 | Rf360 Singapore Pte. Ltd. | Hochfrequenzfilter |
CN112655150B (zh) * | 2018-09-07 | 2024-02-09 | 株式会社村田制作所 | 弹性波装置、高频前端电路以及通信装置 |
WO2020059765A1 (ja) | 2018-09-20 | 2020-03-26 | 株式会社村田製作所 | 弾性波装置 |
CN112805919B (zh) * | 2018-10-18 | 2024-01-19 | 株式会社村田制作所 | 弹性波装置、带通型滤波器、双工器以及多工器 |
WO2020080465A1 (ja) * | 2018-10-19 | 2020-04-23 | 株式会社村田製作所 | 弾性波装置 |
JP6856820B2 (ja) * | 2018-11-14 | 2021-04-14 | 京セラ株式会社 | 弾性波装置、分波器および通信装置 |
US11469735B2 (en) * | 2018-11-28 | 2022-10-11 | Taiyo Yuden Co., Ltd. | Acoustic wave device, filter, and multiplexer |
SG10201911416RA (en) | 2018-12-03 | 2020-07-29 | Skyworks Solutions Inc | Acoustic Wave Device With Transverse Spurious Mode Suppression |
KR102670034B1 (ko) * | 2018-12-06 | 2024-05-29 | 가부시키가이샤 무라타 세이사쿠쇼 | 탄성파 장치 |
DE102018131952A1 (de) * | 2018-12-12 | 2020-06-18 | RF360 Europe GmbH | Elektroakustischer Resonator mit unterdrückter Anregungtransversaler Spaltmoden und verringerten transversalen Moden |
US11368137B2 (en) | 2018-12-28 | 2022-06-21 | Skyworks Solutions, Inc. | Acoustic wave device with transverse mode suppression |
JP7250533B2 (ja) * | 2019-01-21 | 2023-04-03 | 京セラ株式会社 | 弾性波装置 |
KR102673653B1 (ko) * | 2019-02-18 | 2024-06-12 | 가부시키가이샤 무라타 세이사쿠쇼 | 탄성파 장치 |
CN113508496B (zh) * | 2019-03-06 | 2023-01-06 | 株式会社村田制作所 | 滤波器、多工器、高频前端电路以及通信装置 |
WO2020184622A1 (ja) * | 2019-03-11 | 2020-09-17 | 株式会社村田製作所 | 弾性波装置 |
JP7078000B2 (ja) * | 2019-03-22 | 2022-05-31 | 株式会社村田製作所 | 弾性波装置 |
US11606078B2 (en) | 2019-07-18 | 2023-03-14 | Skyworks Solutions, Inc. | Acoustic wave resonator with rotated and tilted interdigital transducer electrode |
US11323093B2 (en) * | 2019-09-06 | 2022-05-03 | Samsung Electro-Mechanics Co., Ltd. | Bulk-acoustic wave resonator |
JP7458055B2 (ja) * | 2019-12-13 | 2024-03-29 | 三安ジャパンテクノロジー株式会社 | 弾性表面波素子の製造方法 |
FR3105894B1 (fr) | 2019-12-30 | 2023-11-03 | Frecnsys | Structure de transducteur pour résonateur à accès unique |
JP7188402B2 (ja) * | 2020-01-31 | 2022-12-13 | 株式会社村田製作所 | 弾性波フィルタ |
WO2021246447A1 (ja) * | 2020-06-04 | 2021-12-09 | 株式会社村田製作所 | 弾性波装置 |
CN112653421A (zh) * | 2020-12-18 | 2021-04-13 | 广东广纳芯科技有限公司 | 一种高声速高频高性能的窄带滤波器 |
WO2022242869A1 (en) * | 2021-05-21 | 2022-11-24 | Huawei Technologies Co., Ltd. | Surface acoustic wave device with improved topologies for reduction of transverse spurious modes |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011182220A (ja) * | 2010-03-02 | 2011-09-15 | Panasonic Corp | 弾性波共振器及びこれを用いた縦結合二重モードフィルタ、ラダー型フィルタ |
WO2012086639A1 (ja) * | 2010-12-24 | 2012-06-28 | 株式会社村田製作所 | 弾性波装置及びその製造方法 |
JP2013544041A (ja) * | 2011-03-25 | 2013-12-09 | パナソニック株式会社 | 高次横モード波を抑制した弾性波デバイス |
WO2014196245A1 (ja) * | 2013-06-04 | 2014-12-11 | 京セラ株式会社 | 分波器および通信モジュール |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3226472B2 (ja) * | 1996-05-14 | 2001-11-05 | 富士通株式会社 | 弾性表面波多重モードフィルタ |
JP3950611B2 (ja) | 1999-01-27 | 2007-08-01 | 株式会社日立製作所 | 弾性表面波共振器 |
DE10331323B4 (de) * | 2003-07-10 | 2013-09-05 | Epcos Ag | Mit akustischen Wellen arbeitender Wandler mit Unterdrückung transversaler Moden |
DE102005061800A1 (de) * | 2005-12-23 | 2007-06-28 | Epcos Ag | Mit akustischen Wellen arbeitender Wandler und Filter mit dem Wandler |
US7576471B1 (en) * | 2007-09-28 | 2009-08-18 | Triquint Semiconductor, Inc. | SAW filter operable in a piston mode |
US7939989B2 (en) * | 2009-09-22 | 2011-05-10 | Triquint Semiconductor, Inc. | Piston mode acoustic wave device and method providing a high coupling factor |
DE102010005596B4 (de) | 2010-01-25 | 2015-11-05 | Epcos Ag | Elektroakustischer Wandler mit verringerten Verlusten durch transversale Emission und verbesserter Performance durch Unterdrückung transversaler Moden |
EP2613439B1 (en) * | 2010-08-31 | 2019-03-13 | Taiyo Yuden Co., Ltd. | Acoustic wave device |
WO2012140831A1 (ja) * | 2011-04-12 | 2012-10-18 | パナソニック株式会社 | 弾性波素子と、これを用いたアンテナ共用器 |
KR20170034939A (ko) * | 2013-05-29 | 2017-03-29 | 가부시키가이샤 무라타 세이사쿠쇼 | 탄성파 필터장치 |
WO2015064238A1 (ja) | 2013-10-31 | 2015-05-07 | 京セラ株式会社 | 弾性波素子、フィルタ素子および通信装置 |
-
2016
- 2016-06-13 WO PCT/JP2016/067572 patent/WO2016208446A1/ja active Application Filing
- 2016-06-13 CN CN201680030389.1A patent/CN107615654B/zh active Active
- 2016-06-13 DE DE112016002880.6T patent/DE112016002880B4/de active Active
- 2016-06-13 JP JP2017525224A patent/JP6424962B2/ja active Active
- 2016-06-13 KR KR1020177031873A patent/KR101989462B1/ko active IP Right Grant
-
2017
- 2017-12-04 US US15/830,015 patent/US10469055B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011182220A (ja) * | 2010-03-02 | 2011-09-15 | Panasonic Corp | 弾性波共振器及びこれを用いた縦結合二重モードフィルタ、ラダー型フィルタ |
WO2012086639A1 (ja) * | 2010-12-24 | 2012-06-28 | 株式会社村田製作所 | 弾性波装置及びその製造方法 |
JP2013544041A (ja) * | 2011-03-25 | 2013-12-09 | パナソニック株式会社 | 高次横モード波を抑制した弾性波デバイス |
WO2014196245A1 (ja) * | 2013-06-04 | 2014-12-11 | 京セラ株式会社 | 分波器および通信モジュール |
Cited By (66)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2016208428A1 (ja) * | 2015-06-25 | 2018-02-22 | 株式会社村田製作所 | 弾性波装置 |
US20210376813A1 (en) * | 2016-10-07 | 2021-12-02 | Qorvo Us, Inc. | Slanted apodization for acoustic wave devices |
US11716069B2 (en) * | 2016-10-07 | 2023-08-01 | Qorvo Us, Inc. | Slanted apodization for acoustic wave devices |
WO2018142794A1 (ja) * | 2017-02-06 | 2018-08-09 | 株式会社村田製作所 | 弾性波装置、デュプレクサ及びフィルタ装置 |
CN110235364A (zh) * | 2017-02-06 | 2019-09-13 | 株式会社村田制作所 | 弹性波装置、双工器以及滤波器装置 |
US10924084B2 (en) | 2017-02-06 | 2021-02-16 | Murata Manufacturing Co., Ltd. | Acoustic wave device, duplexer, and filter device |
CN110235364B (zh) * | 2017-02-06 | 2023-04-04 | 株式会社村田制作所 | 弹性波装置、双工器以及滤波器装置 |
CN110663175B (zh) * | 2017-05-26 | 2023-11-07 | 株式会社村田制作所 | 弹性波装置、滤波器、高频前端电路以及通信装置 |
US11469736B2 (en) | 2017-05-26 | 2022-10-11 | Murata Manufacturing Co., Ltd. | Acoustic wave device, filter, multiplexer, radio-frequency front-end circuit, and communication device |
KR102316353B1 (ko) * | 2017-05-26 | 2021-10-22 | 가부시키가이샤 무라타 세이사쿠쇼 | 탄성파 장치, 필터, 고주파 프론트 엔드 회로 및 통신 장치 |
KR20190135542A (ko) * | 2017-05-26 | 2019-12-06 | 가부시키가이샤 무라타 세이사쿠쇼 | 탄성파 장치, 필터, 고주파 프론트 엔드 회로 및 통신 장치 |
CN110663175A (zh) * | 2017-05-26 | 2020-01-07 | 株式会社村田制作所 | 弹性波装置、滤波器、高频前端电路以及通信装置 |
WO2018216417A1 (ja) * | 2017-05-26 | 2018-11-29 | 株式会社村田製作所 | 弾性波装置、フィルタ、高周波フロントエンド回路及び通信装置 |
US11496116B2 (en) | 2017-06-06 | 2022-11-08 | Murata Manufacturing Co., Ltd. | Acoustic wave filter device, multiplexer and composite filter device |
CN110663174B (zh) * | 2017-06-06 | 2023-12-29 | 株式会社村田制作所 | 弹性波滤波器装置、多工器以及复合滤波器装置 |
CN110663174A (zh) * | 2017-06-06 | 2020-01-07 | 株式会社村田制作所 | 弹性波滤波器装置、多工器以及复合滤波器装置 |
KR102332100B1 (ko) * | 2017-06-06 | 2021-11-29 | 가부시키가이샤 무라타 세이사쿠쇼 | 탄성파 필터 장치, 멀티플렉서 및 복합 필터 장치 |
KR20190133052A (ko) * | 2017-06-06 | 2019-11-29 | 가부시키가이샤 무라타 세이사쿠쇼 | 탄성파 필터 장치, 멀티플렉서 및 복합 필터 장치 |
US11611326B2 (en) | 2017-06-26 | 2023-03-21 | Murata Manufacturing Co., Ltd. | Acoustic wave device and composite filter device |
WO2019003909A1 (ja) * | 2017-06-26 | 2019-01-03 | 株式会社村田製作所 | 弾性波装置及び複合フィルタ装置 |
CN110800212A (zh) * | 2017-06-26 | 2020-02-14 | 株式会社村田制作所 | 弹性波装置以及复合滤波器装置 |
CN110800212B (zh) * | 2017-06-26 | 2023-09-26 | 株式会社村田制作所 | 弹性波装置以及复合滤波器装置 |
JPWO2019003909A1 (ja) * | 2017-06-26 | 2020-03-26 | 株式会社村田製作所 | 弾性波装置及び複合フィルタ装置 |
JPWO2019059208A1 (ja) * | 2017-09-19 | 2020-10-01 | 株式会社村田製作所 | 弾性波フィルタ装置及びマルチプレクサ |
WO2019059208A1 (ja) * | 2017-09-19 | 2019-03-28 | 株式会社村田製作所 | 弾性波フィルタ装置及びマルチプレクサ |
KR20200033319A (ko) * | 2017-09-19 | 2020-03-27 | 가부시키가이샤 무라타 세이사쿠쇼 | 탄성파 필터 장치 및 멀티플렉서 |
KR102345526B1 (ko) | 2017-09-19 | 2021-12-30 | 가부시키가이샤 무라타 세이사쿠쇼 | 탄성파 필터 장치 및 멀티플렉서 |
US11251777B2 (en) | 2017-09-19 | 2022-02-15 | Murata Manufacturing Co., Ltd. | Acoustic wave filter device and multiplexer |
US11296676B2 (en) | 2017-09-29 | 2022-04-05 | Murata Manufacturing Co., Ltd. | Multiplexer, high-frequency front-end circuit, and communication device |
WO2019065671A1 (ja) * | 2017-09-29 | 2019-04-04 | 株式会社村田製作所 | マルチプレクサ、高周波フロントエンド回路及び通信装置 |
US11146300B2 (en) | 2017-09-29 | 2021-10-12 | Murata Manufacturing Co., Ltd. | Multiplexer, high-frequency front-end circuit, and communication device |
WO2019065670A1 (ja) * | 2017-09-29 | 2019-04-04 | 株式会社村田製作所 | マルチプレクサ、高周波フロントエンド回路及び通信装置 |
US11588469B2 (en) | 2017-10-20 | 2023-02-21 | Murata Manufacturing Co., Ltd. | Acoustic wave device |
US10951192B2 (en) | 2017-11-16 | 2021-03-16 | Murata Manufacturing Co., Ltd. | Elastic wave device, high-frequency front-end circuit, and communication apparatus |
KR20190056293A (ko) | 2017-11-16 | 2019-05-24 | 가부시키가이샤 무라타 세이사쿠쇼 | 탄성파 장치, 고주파 프론트 엔드 회로 및 통신 장치 |
JP7055016B2 (ja) | 2017-12-28 | 2022-04-15 | 太陽誘電株式会社 | マルチプレクサ |
JP2019121879A (ja) * | 2017-12-28 | 2019-07-22 | 太陽誘電株式会社 | マルチプレクサ |
JPWO2019138812A1 (ja) * | 2018-01-12 | 2020-12-17 | 株式会社村田製作所 | 弾性波装置、マルチプレクサ、高周波フロントエンド回路、及び通信装置 |
US11496226B2 (en) | 2018-01-12 | 2022-11-08 | Murata Manufacturing Co., Ltd. | Acoustic wave device, multiplexer, high-frequency front end circuit, and communication device |
WO2019138812A1 (ja) * | 2018-01-12 | 2019-07-18 | 株式会社村田製作所 | 弾性波装置、マルチプレクサ、高周波フロントエンド回路、及び通信装置 |
US11115003B2 (en) | 2018-01-12 | 2021-09-07 | Murata Manufacturing Co., Ltd. | Acoustic wave device, multiplexer, high-frequency front end circuit, and communication apparatus |
WO2019138813A1 (ja) * | 2018-01-12 | 2019-07-18 | 株式会社村田製作所 | 弾性波装置、マルチプレクサ、高周波フロントエンド回路、及び通信装置 |
JPWO2019138813A1 (ja) * | 2018-01-12 | 2020-10-22 | 株式会社村田製作所 | 弾性波装置、マルチプレクサ、高周波フロントエンド回路、及び通信装置 |
WO2019172374A1 (ja) * | 2018-03-09 | 2019-09-12 | 株式会社村田製作所 | 弾性波装置 |
WO2019177028A1 (ja) * | 2018-03-14 | 2019-09-19 | 株式会社村田製作所 | 弾性波装置 |
KR20200110412A (ko) | 2018-03-14 | 2020-09-23 | 가부시키가이샤 무라타 세이사쿠쇼 | 탄성파 장치 |
US11444601B2 (en) | 2018-03-14 | 2022-09-13 | Murata Manufacturing Co., Ltd. | Acoustic wave device |
CN112673570B (zh) * | 2018-09-07 | 2023-10-10 | 株式会社村田制作所 | 弹性波装置、弹性波滤波器以及复合滤波器装置 |
CN112673570A (zh) * | 2018-09-07 | 2021-04-16 | 株式会社村田制作所 | 弹性波装置、弹性波滤波器以及复合滤波器装置 |
US11888461B2 (en) | 2018-09-07 | 2024-01-30 | Murata Manufacturing Co., Ltd. | Acoustic wave device, acoustic wave filter, and composite filter device |
JPWO2020050402A1 (ja) * | 2018-09-07 | 2021-08-30 | 株式会社村田製作所 | 弾性波装置、弾性波フィルタ及び複合フィルタ装置 |
WO2020050402A1 (ja) * | 2018-09-07 | 2020-03-12 | 株式会社村田製作所 | 弾性波装置、弾性波フィルタ及び複合フィルタ装置 |
US12021500B2 (en) | 2018-11-16 | 2024-06-25 | Murata Manufacturing Co., Ltd. | Acoustic wave device |
WO2020100744A1 (ja) * | 2018-11-16 | 2020-05-22 | 株式会社村田製作所 | 弾性波装置 |
JPWO2020100744A1 (ja) * | 2018-11-16 | 2021-09-27 | 株式会社村田製作所 | 弾性波装置 |
WO2020262388A1 (ja) * | 2019-06-24 | 2020-12-30 | 株式会社村田製作所 | フィルタ装置 |
US11996828B2 (en) | 2019-06-24 | 2024-05-28 | Murata Manufacturing Co., Ltd. | Filter device |
WO2021039639A1 (ja) * | 2019-08-30 | 2021-03-04 | 株式会社村田製作所 | 弾性波装置 |
JPWO2021039639A1 (ja) * | 2019-08-30 | 2021-03-04 | ||
JP7268747B2 (ja) | 2019-08-30 | 2023-05-08 | 株式会社村田製作所 | 弾性波装置 |
WO2021060150A1 (ja) * | 2019-09-27 | 2021-04-01 | 株式会社村田製作所 | 弾性波フィルタ |
JP7334786B2 (ja) | 2019-09-27 | 2023-08-29 | 株式会社村田製作所 | 弾性波フィルタ |
JPWO2021060150A1 (ja) * | 2019-09-27 | 2021-04-01 | ||
WO2023286704A1 (ja) * | 2021-07-16 | 2023-01-19 | 京セラ株式会社 | 弾性波装置、フィルタ、分波器及び通信装置 |
WO2023167034A1 (ja) * | 2022-03-03 | 2023-09-07 | 京セラ株式会社 | 弾性波素子、弾性波フィルタ、分波器、および通信装置 |
WO2024009660A1 (ja) * | 2022-07-07 | 2024-01-11 | 株式会社村田製作所 | 弾性波装置及びフィルタ装置 |
Also Published As
Publication number | Publication date |
---|---|
CN107615654B (zh) | 2020-08-21 |
CN107615654A (zh) | 2018-01-19 |
JP6424962B2 (ja) | 2018-11-21 |
DE112016002880B4 (de) | 2021-11-04 |
JPWO2016208446A1 (ja) | 2018-02-22 |
US10469055B2 (en) | 2019-11-05 |
DE112016002880T5 (de) | 2018-03-08 |
US20180097508A1 (en) | 2018-04-05 |
KR101989462B1 (ko) | 2019-06-14 |
KR20170134623A (ko) | 2017-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016208446A1 (ja) | フィルタ装置 | |
JP6555346B2 (ja) | 弾性波フィルタ装置 | |
US10171061B2 (en) | Elastic wave device | |
JP6408592B2 (ja) | フィルタ,分波器および通信装置 | |
JP5720797B2 (ja) | 弾性表面波装置 | |
KR102472455B1 (ko) | 탄성파 장치 | |
US8710940B2 (en) | Elastic wave device having a capacitive electrode on the piezoelectric substrate | |
US8421560B2 (en) | Boundary acoustic wave resonator and ladder filter | |
WO2019138811A1 (ja) | 弾性波装置、マルチプレクサ、高周波フロントエンド回路、及び通信装置 | |
JP7278305B2 (ja) | 弾性波装置、分波器および通信装置 | |
JP7268747B2 (ja) | 弾性波装置 | |
JP2011087282A (ja) | 弾性境界波フィルタ及びそれを備える分波器 | |
JP5273247B2 (ja) | ラダー型フィルタ | |
CN116346081A (zh) | 一种声表面波滤波器及滤波元件 | |
JPWO2010125934A1 (ja) | 弾性波装置 | |
JP2010252254A (ja) | 弾性波フィルタ及び分波器 | |
US8222973B2 (en) | Elastic wave resonator, ladder filter and duplexer | |
WO2021024762A1 (ja) | 弾性波フィルタ装置 | |
JP2006129057A (ja) | 弾性表面波装置 | |
JP7421557B2 (ja) | 弾性波装置及び通信装置 | |
KR102722444B1 (ko) | 탄성파 필터 | |
WO2022019169A1 (ja) | ラダー型フィルタ | |
WO2023002909A1 (ja) | 複合フィルタ装置 | |
KR20220044321A (ko) | 탄성파 필터 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16814217 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017525224 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20177031873 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112016002880 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16814217 Country of ref document: EP Kind code of ref document: A1 |