WO2016201656A1 - 一种自体cik细胞高效扩增方法 - Google Patents
一种自体cik细胞高效扩增方法 Download PDFInfo
- Publication number
- WO2016201656A1 WO2016201656A1 PCT/CN2015/081711 CN2015081711W WO2016201656A1 WO 2016201656 A1 WO2016201656 A1 WO 2016201656A1 CN 2015081711 W CN2015081711 W CN 2015081711W WO 2016201656 A1 WO2016201656 A1 WO 2016201656A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- culture
- cells
- peripheral blood
- blood mononuclear
- serum
- Prior art date
Links
Definitions
- the present invention relates to the field of animal immune cell culture technology, and more particularly to a method for efficient amplification of autologous CIK cells.
- animal-derived serum such as fetal bovine serum, new bovine serum, calf serum, and the like are required to be essential nutrients in the cell culture process.
- animal-derived serum such as fetal bovine serum, new bovine serum, calf serum, and the like are required to be essential nutrients in the cell culture process.
- the complex components in animal-derived serum may have more uncertain effects on the cultured cells, and may not accurately display the desired biological characteristics.
- the technical problem to be solved by the present invention is to provide a method for efficiently amplifying autologous CIK cells, and to solve the defect that the animal-derived serum in the existing CIK cell expansion method will bring uncertainty to the immune response.
- a method for efficiently amplifying autologous CIK cells is provided, which comprises the following steps:
- S200 preparation of platelet aggregation release: separating and obtaining platelets and resuspending with phosphate buffer to obtain resuspended platelets; adding 80 ⁇ 150 mol/L adenosine diphosphate to the resuspended platelets, incubator Incubate and culture for 2 ⁇ 4 hours, 1800 ⁇ 200 ( ⁇ centrifugation 20 ⁇ 25 1 ⁇ Harvest the supernatant components, use directly as a solution containing platelet aggregation release, or freeze-dry treatment to obtain the platelet aggregation release;
- the step S100 further includes:
- S101 preparing whole blood: extracting venous blood of tumor patients, adding anticoagulant into anticoagulated whole blood for use;
- Peripheral blood mononuclear cells obtained by separating a peripheral blood mononuclear cell from autologous plasma using a blood cell separator or a lymphocyte separation solution
- peripheral blood mononuclear cells Treatment of peripheral blood mononuclear cells: The crude peripheral blood mononuclear cells are washed twice with physiological saline or serum-free medium, 20 . Centrifuge at 500g for 3 ⁇ 7 minutes, then resuspend with appropriate amount of serum-free medium.
- the phosphate buffer used in the step S200 is a phosphate buffer containing Ca 2+ and Mg 2+ .
- the content of platelet-derived growth factor, transforming growth factor, insulin-like growth factor, and epidermal growth factor in the platelet aggregation release is greater than 150 ng/g.
- the method for "separating and obtaining platelets" in the step S200 comprises:
- the platelet separation liquid is prepared from polysucrose, diatrizotic acid and deionized water, and has a density of 1.060 g/L and an osmotic pressure of 280 mosm/ L, 0.22 ⁇ filter is sterilized after filtration.
- the step S300 further includes:
- S301 adjusting the cell concentration: adjusting the cell concentration of the peripheral blood mononuclear cells to the lx using the serum-free medium
- step S303 “replenishing fresh serum-free medium containing 0.5% to 2% of platelet aggregation release substance in mass fraction”, the fresh The serum medium also contains 1% to 2% by mass of human serum albumin, 0.05% to 0.2 ⁇ 3 ⁇ 4 of recombinant human transferrin or ferric citrate. , ( ⁇ ( ⁇ plant hemagglutinin.
- the present invention has the following beneficial effects: using platelet aggregation release instead of commonly used animal-derived serum during CIK cell expansion, and adding nutrients of known components such as human serum albumin to promote rapid growth of CIK cells. Proliferation avoids the uncertainty and danger brought by heterologous additives to CIK cells. In addition, it can significantly increase the proliferation rate, phenotype and in vitro killing performance of CIK cells.
- FIG. 1 is a flow chart of a preferred embodiment of a method for efficiently amplifying autologous CIK cells of the present invention
- Example 2(a) is an inverted microscope observation view of CIK cells cultured in Example 1;
- Example 2(b) is an inverted microscope observation view of CIK cells cultured in Example 2;
- 2(c) is a view showing an inverted microscope observation result of CIK cells cultured in Example 3;
- FIG. 2(d) is an inverted microscope observation view of CIK cells cultured in Comparative Example 1.
- FIG. 2(e) is an inverted microscope observation view of CIK cells cultured in Comparative Example 2.
- animal-derived serum such as fetal bovine serum, new bovine serum, calf serum, etc.
- animal-derived serum such as fetal bovine serum, new bovine serum, calf serum, etc.
- the blood source is reduced, and the complex components are not Deterministic effects are increasingly limiting the use of animal-derived serum.
- complex antigenic active substances in animal-derived serum are susceptible to many uncertainties in CIK cell culture and may not reflect specificity.
- the role of stimulants, causing other unknown immune responses, to investigate such interference or impact in experimental research or practical applications requires a large amount of work, hinder the progress of work or even work can not continue to develop.
- the main innovation of the present invention is that, in the process of CIK cell culture, the platelet aggregation release is used instead of the animal-derived serum, and the platelet aggregation release substance platelet aggregation release contains a trace amount of low molecular weight nutrients for promoting the growth of CIK cells and Various growth factors not only facilitate the large-scale harvesting of CIK cells, but also avoid the uncertainty and risk of heterologous additives.
- Cultured CIK cells are superior to fetal bovine serum culture medium in terms of cell proliferation, phenotype, and in vitro killing. And serum-free medium.
- FIG. 1 shows a flow of a preferred embodiment of the method for efficiently amplifying autologous CIK cells of the present invention. As shown in FIG. 1, the method includes the following steps:
- peripheral blood mononuclear cells separation of peripheral blood mononuclear cells: separating peripheral blood mononuclear cells from the patient's blood, suspending for use; peripheral blood mononuclear cells (PBMCs) after incubation, will be changed into suspension cells and stickers according to growth conditions Parietal cells, suspension cells are induced to obtain CIK cells (cytokine-induced killer, a variety of cytokine-induced killer cells).
- PBMCs peripheral blood mononuclear cells
- S200 preparation of platelet aggregation release: separating and obtaining platelets and resuspending with phosphate buffer to obtain resuspended platelets; adding 80 to 150 mol/L of adenosine diphosphate to the resuspended platelets, incubator Incubate and culture for 2 to 4 hours, 1800 to 200 ( ⁇ centrifugation 20 to 25 1 ⁇ ) The supernatant component is harvested, used directly as a solution containing platelet aggregation release, or lyophilized to obtain the platelet aggregation release.
- step S100 further includes: [0038] S101, preparing whole blood: extracting venous blood of the tumor patient, adding anticoagulant to anticoagulation Blood spare. On-site extraction to prepare anticoagulated whole blood, or directly frozen anticoagulated whole blood, the refrigeration process has no significant effect on the results.
- Peripheral blood mononuclear cells are obtained by separating peripheral blood mononuclear cells from autologous plasma using a blood cell separator or a lymphocyte separation solution.
- the blood cell separator can directly obtain the crude blood mononuclear cells of the peripheral blood.
- the separation of the peripheral blood mononuclear cells by the lymphocyte separation solution may be slightly different due to the different manufacturers of the lymphocyte separation liquid.
- the general process is: adding three in the centrifuge tube One-quarter of human peripheral blood lymphocyte separation solution, carefully spread anti-coagulated whole blood of tumor patients to the upper layer of lymphocyte separation solution, centrifuge (for example, 20 ° C, 800 g for 20 minutes), then use a Pasteur pipette or transfer The pipette carefully draws the PBMCs layer and obtains the crude blood of the peripheral blood mononuclear cells.
- peripheral blood mononuclear cells are washed twice with physiological saline or serum-free medium, centrifuged at 500g for 3 to 7 minutes at 20 ° C, and then with an appropriate amount of serum-free medium Resuspend, obtain peripheral blood mononuclear cells, and reserve.
- the method for preparing a platelet aggregation-releasing substance in the step S200 includes the incubation culture after separating the platelets, and specifically includes:
- the platelets are isolated and resuspended in phosphate buffer to obtain resuspended platelets.
- phosphate buffers There are two kinds of phosphate buffers, one without calcium and magnesium ions, and the other containing calcium and magnesium ions.
- the preferred use of the present invention includes Ca 2+ , Mg 2+ phosphate buffer can better promote platelet incubation and promote the release of cytokines in platelets. Add 80 ⁇ 150 to resuspended platelets
- the adenosine diphosphate of ⁇ /L was incubated in an incubator for 2 to 4 hours, and the culture temperature was 37 °C. Incubation of platelets during culture and release of cytokines in platelets enhances the ability of platelet aggregation to promote growth of lymphocytes. After the incubation is completed, the cells are centrifuged at 1800 to 2000 g for 20 to 25 minutes to remove platelet membranes, fibrin, cell debris, etc., and the supernatant components are harvested. In particular, the supernatant is The fraction may be directly used as a solution containing a platelet aggregation-releasing substance, or may be subjected to lyophilization to obtain a platelet aggregation-releasing substance.
- the method for separating and obtaining platelets in step S200 is density centrifugation, and specifically includes:
- the platelet separation solution is mainly prepared from polysucrose, diatomaceous acid and deionized water, and has a density of 1.060 g/L and an osmotic pressure of 280 m OS m/L.
- the filter is sterilized by 0.22 ⁇ filter. Density centrifugation can remove red blood cells, white blood cells and most plasma components in the plasma, and obtain platelets with high purity.
- the above-described method of isolating and obtaining platelets is merely exemplary and not limiting, and a method of separating and obtaining platelets in the prior art can also be used in the present invention as long as the platelets which can be obtained are of sufficient purity and the platelets remain intact without breaking.
- step S300 further includes:
- S301 adjusting the cell concentration: using a serum-free medium to adjust the cell concentration of peripheral blood mononuclear cells to lx 10 6 ⁇ 2 x 10 6 / ml, mix well and carefully spread into the culture flask;
- S303 continuous culture: add 600U/m! ⁇ 1400 U/ml of IL2 (interleukin-2), 600 U/ml ⁇ 1400 U/ml of ILla (interleukin-la), 60 ng/ml ⁇ 150 ng/ml of anti-CD3 (CD3 monoclonal antibody)
- IL2 interleukin-2
- ILla interleukin-la
- anti-CD3 CD3 monoclonal antibody
- a fresh serum-free medium containing 0.5% to 2% by mass of platelet aggregation release is added to supplement the nutrients required for cell synthesis, but the amount is not frequent, and the fresh serum-free medium also contains the mass fraction 1 % ⁇ 2% human serum albumin, 0.05% ⁇ 0.2 ⁇ 3 ⁇ 4 recombinant human transferrin or ferric citrate, 0.05 ⁇ 3 ⁇ 4 ⁇ 0.1 ⁇ 3 ⁇ 4 phytohemagglutinin.
- Platelet lysates are rich in growth factors that maintain lymphocyte index growth, no or minimal amounts of nutrients in basal medium, and major low molecular nutrients, combined with human serum albumin, recombinant humans, which are easily utilized by lymphocytes.
- Ferritin or Ferric citrate can completely replace animal-derived serum as a nutrient for lymphocyte culture.
- phytohemagglutinin PHA
- PHA phytohemagglutinin
- peripheral blood mononuclear cells are separated from the autologous plasma using a blood cell separator or a lymphocyte separation solution, and the obtained peripheral blood mononuclear cells are crude; the peripheral blood mononuclear cells are washed twice with physiological saline, 20 ° C After centrifugation at 500 g for 3 minutes, and resuspended in an appropriate amount of serum-free medium, peripheral blood mononuclear cells were obtained and used.
- the polysucrose and diatrizoic acid were mixed into deionized water to adjust the density to 1.060 g/L, the osmotic pressure was 280 mosm/L, and the filter was sterilized by 0.22 ⁇ filter, and used. Take citrate anticoagulated whole blood or platelet-rich plasma, and carefully lay it to the upper layer of the platelet fraction; centrifuge at 800g for 25 min to absorb the platelet layer between lymphocyte separation solution and plasma;
- the platelets were isolated and resuspended in phosphate buffer to obtain resuspended platelets, 80 mol/L of adenosine diphosphate was added to the resuspended platelets, cultured in an incubator for 4 hours, centrifuged at 1800 g for 25 min, and harvested.
- the clear component is used directly as a solution containing a platelet aggregation release, or is lyophilized to obtain a platelet aggregation release.
- Embodiment 2 [0061] Separation of peripheral blood mononuclear cells:
- peripheral blood mononuclear cells are separated from the autologous plasma using a blood cell separator or a lymphocyte separation solution, and the obtained peripheral blood mononuclear cells are crude; the peripheral blood mononuclear cells are washed twice with serum-free medium, 20 After centrifugation at 500 g for 7 minutes at ° C, and resuspended in an appropriate amount of serum-free medium, peripheral blood mononuclear cells were obtained and used.
- the polysucrose and diatrizoic acid were mixed into deionized water to adjust the density to 1.060 g/L, the osmotic pressure was 280 mosm/L, and the filter was sterilized by 0.22 ⁇ filter, and used. Take citrate anticoagulated whole blood or platelet-rich plasma, and carefully lay it to the upper layer of the platelet fraction; centrifuge at 1200g for 20 min, and absorb the platelet layer between lymphocyte separation solution and plasma;
- the platelets were isolated and resuspended in phosphate buffer to obtain resuspended platelets.
- 150 mol/L adenosine diphosphate was added to the resuspended platelets, incubated in an incubator for 2 hours, centrifuged at 2000 g for 20 min, and harvested.
- the clear component is used directly as a solution containing a platelet aggregation release, or is lyophilized to obtain a platelet aggregation release.
- peripheral blood mononuclear cells are separated from the autologous plasma by using a blood cell separator or a lymphocyte separation solution, and the obtained peripheral blood mononuclear cells are crude; the peripheral blood mononuclear cells are washed with physiological saline or serum-free medium. Then, centrifuge at 500g for 4 minutes at 20 ° C, and then resuspend with appropriate amount of serum-free medium to obtain Peripheral blood mononuclear cells, spare.
- the polysucrose and diatrizoic acid were mixed into deionized water to adjust the density to 1.060 g/L, the osmotic pressure was 280 mosm/L, and the filter was sterilized by 0.22 ⁇ filter, and used. Take citrate anticoagulated whole blood or platelet-rich plasma, and carefully lay it to the upper layer of the platelet fraction; centrifuge at 1000g for 22 min, and absorb the platelet layer between lymphocyte separation solution and plasma;
- the platelets were isolated and resuspended in phosphate buffer to obtain resuspended platelets, and ⁇ /L adenosine diphosphate was added to the resuspended platelets, cultured in an incubator for 3 hours, centrifuged at 1000 g for 23 min, and harvested.
- the clear component is used directly as a solution containing a platelet aggregation release, or is lyophilized to obtain a platelet aggregation release.
- Comparative Example 1 10% fetal bovine serum 1640 was used, and in Comparative Example 2, AIM-V serum-free medium was used for CIK cell culture, and the culture conditions were exactly the same as those in Examples 1-3.
- FIGS. 2(a) to 2(e) show Example 1, Example 2, Example 3, and Comparative Example 1, respectively. Comparing the CIK cells cultured in Example 2, it can be seen that the CIK cells cultured by the culture method of the present invention are excellent in surface morphology. In the comparative example.
- Experimental count results include total cell number, CD8+, and cell viability.
- Example 1 Example 2, Example 3, Comparative Example 1. The total number of cells in Comparative Example 2 was 1.
- Example 1 Example 2, Example 3, Comparative Example 1, Comparative Example 2 were CD8 + 0.73 ⁇ 10 10, 0.84x10 10, 0.97x10 10, 0.50x10 10, 0.51x10 10;
- Example 1 Example 2, Example 3, Comparative Example 1.
- the cell viability in Comparative Example 2 was 98.4 ⁇ 3 ⁇ 4, 97.5%, 99.5% 95.1% ⁇ 92.7 ⁇ 3 ⁇ 4, respectively.
- test subjects include CD8+, CD3+, CD8+IFN-y+, and CD107a.
- Example 1 Example 2, Example 3, Comparative Example 1, Comparative Example 2, CD8+ were 70.6 %, 75.2%, 80.5%, 56.4%, 64.2%, respectively;
- Example 1 Example 2, Example 3, Comparative Example 1.
- CD3+ was 90.5%, 92.1%, 92.4%, 90.2%, and 88.2%, respectively;
- Example 1 Example 2, Example 3, Comparative Example 1.
- CD8+IFN-Y+ was 45.6%, 55.2%, 43.8%, 21.4%, 19.3%, respectively;
- Example 1 Example 2, Example 3, Comparative Example 1.
- CD107a was 20.
- the CIK cells cultured by the culture method of the present invention were significantly superior to the comparative examples in the expression of cell surface molecules.
- Killing rate target cell control value - (experimental well value - effector cell control value) / target cell control value ⁇ 100%.
- the killing rate of the autologous tumor-specific cells obtained in the complete medium configured in Examples 1 to 3 and the culture groups in Comparative Examples 1 to 2 against the liver cancer cell line HEPG2 and B cell leukemia K562 was examined according to this method. The experiment was repeated 6 times and averaged.
- K562 is the result of cell killing experiments of target cells.
- Example 2 Example 3
- the killing results of leukemia K562 in the comparative examples were 28.2% and 35.1, respectively.
- Example 2 Example 3
- the killing results of leukemia K562 in the comparative examples were 52.4% and 55.8, respectively.
- Example 2 Example 3.
- the killing results of leukemia K562 in the comparative example were 72.5%, 78.6, respectively.
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
提供了一种自体CIK细胞高效扩增方法,该方法包括如下步骤:分离外周血单个核细胞、制备血小板聚集释放物、培养自体CIK细胞。该方法使用血小板聚集释放物替代常用的动物源性血清,还可以添加人血清白蛋白等已知成分的营养物质促进CIK细胞快速增殖。
Description
说明书 发明名称:一种自体 CIK细胞高效扩增方法 技术领域
[0001] 本发明涉及动物免疫细胞培养技术领域, 更具体的说, 涉及到一种自体 CIK细 胞高效扩增方法。
背景技术
[0002] 在常规的自体 CIK细胞培养过程中, 需要使用大量动物源性血清如胎牛血清、 新牛血清、 小牛血清等, 以细胞培养过程中必不可少的营养物质。 如今, 大部 分实验室仍然还在用动物源性血清来培养细胞, 但是随着血源的减少以及血清 价格的不断上涨, 以及来自动物保护组织的压力, 动物源性血清的使用日益受 到限制, 另外, 动物源性血清中的复杂成分会对所培养细胞照成较多的不确定 性影响, 不能准确放映出需要的生物学特性。
技术问题
[0003] 本发明所要解决的技术问题在于: 提供一种自体 CIK细胞高效扩增方法, 解决 现有 CIK细胞扩增方法中动物源性血清会给免疫反应带来不确定性影响的缺陷。 问题的解决方案
技术解决方案
[0004] 本发明解决上述问题的技术方案为: 提供一种自体 CIK细胞高效扩增方法, 包 括如下步骤:
[0005] S100、 外周血单个核细胞的分离: 从患者血液中分离外周血单个核细胞, 悬浮 备用;
[0006] S200、 血小板聚集释放物的制备: 分离获得血小板并用磷酸盐缓冲液重悬, 获 得重悬血小板; 向所述重悬血小板中加入 80〜150 mol/L的二磷酸腺苷, 培养箱 孵育培养 2〜4小吋, 1800〜200(^离心20〜25 1^^ 收获上清成分, 直接作为含 有血小板聚集释放物的溶液使用, 或者冻干处理即得所述血小板聚集释放物;
[0007] S300、 自体 CIK细胞的培养: 将所述外周血单个核细胞小心铺入培养瓶中培养 , 培养吋补加 5%〜20<¾的含有所述血小板聚集释放物的无血清培养基, 并添加
细胞因子进行诱导, 直至收获所述自体 CIK细胞。
[0008] 在本发明提供的自体 CIK细胞高效扩增方法中, 所述步骤 S100中还包括:
[0009] S101、 准备全血: 抽取肿瘤患者静脉血, 加入抗凝剂成抗凝全血备用;
[0010] S102、 外周血单个核细胞与自体血浆的分离: 使用血细胞分离机或者淋巴细胞 分离液将外周血单个核细胞从自体血浆中分离, 获得的外周血单个核细胞粗品
[0011] S103、 外周血单个核细胞的处理: 将所述外周血单个核细胞粗品用生理盐水或 无血清培养基洗涤两次, 20。C下 500g离心 3〜7分钟, 再用适量无血清培养基重悬
, 得到外周血单个核细胞, 备用。
[0012] 在本发明提供的自体 CIK细胞高效扩增方法中, 所述步骤 S200中使用的所述磷 酸盐缓冲液为含 Ca 2+、 Mg 2+的磷酸盐缓冲液。
[0013] 在本发明提供的自体 CIK细胞高效扩增方法中, 所述血小板聚集释放物中血小 板衍生生长因子、 转化生长因子、 类胰岛素生长因子、 表皮生长因子的含量均 大于 150 ng/g。
[0014] 在本发明提供的自体 CIK细胞高效扩增方法中, 所述步骤 S200中所述 "分离获得 血小板"的方法包括:
[0015] 取枸橼酸抗凝全血或者富血小板血浆, 将其小心铺层到血小板分离液的上层;
800〜 1200g离心 20〜25 min, 吸取淋巴细胞分离液和血浆之间的血小板层。
[0016] 在本发明提供的自体 CIK细胞高效扩增方法中, 所述血小板分离液由聚蔗糖、 泛影酸、 去离子水配制而成, 密度为 1.060 g/L, 渗透压为 280 mosm/L, 0.22μηι 滤器过滤除菌后即得。
[0017] 在本发明提供的自体 CIK细胞高效扩增方法中, 所述步骤 S300中还包括:
[0018] S301、 调整细胞浓度: 用无血清培养液调整外周血单个核细胞的细胞浓度至 lx
10 6〜2xl0 6个 /ml, 混合均匀后小心铺入培养瓶中;
[0019] S302、 预培养: 向培养瓶中加入 600U/m!〜 1400U/ml的 IFN-Y、 质量份数 0.5<¾〜
2%血小板聚集释放物, 培养 241!〜 48 h后;
[0020] S303、 连续培养: 补加 600U/m!〜 1400U/ml的 IL2、 600U/ml〜1400U/ml的 ILla
、 60
ng/ml〜150ng/ml的 anti-CD3后继续培养, 隔天取样计数, 补充含质量份数 0.5<¾〜 2%血小板聚集释放物的新鲜无血清培养基, 将细胞的培养密度调整至 1x10 6〜2 xlO 6个 /ml, 直至收获所述自体 CIK细胞。
[0021] 在本发明提供的自体 CIK细胞高效扩增方法中, 所述步骤 S303中"补充含质量份 数 0.5%〜2%血小板聚集释放物的新鲜无血清培养基"吋, 所述新鲜无血清培养基 中还含有质量份数 1%〜2%人血清白蛋白、 0.05%〜0.2<¾重组人转铁蛋白或柠檬 酸铁、 。,(^^〜(^^植物血凝素。
发明的有益效果
有益效果
[0022] 实施本发明, 具有如下有益效果: 在 CIK细胞扩增过程中使用血小板聚集释放 物替代常用的动物源性血清, 还可以添加人血清白蛋白等已知成分的营养物质 促进 CIK细胞快速增殖, 避免了异种添加物给 CIK细胞带来的不确定性和危险性 , 另外, 还可以明显提高 CIK细胞的增殖速度、 表型、 体外杀伤性能等。
对附图的简要说明
附图说明
[0023] 为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例中所需要使用 的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实 施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以 根据这些附图获得其他的附图。
[0024] 图 1为本发明自体 CIK细胞高效扩增方法较佳实施例的流程图;
[0025] 图 2 (a) 为实施例 1中培养的 CIK细胞的倒置显微镜观察图;
[0026] 图 2 (b) 为实施例 2中培养的 CIK细胞的倒置显微镜观察图;
[0027] 图 2 (c) 为实施例 3中培养的 CIK细胞的倒置显微镜观察结果图;
[0028] 图 2 (d) 为对比实施例 1中培养的 CIK细胞的倒置显微镜观察图;
[0029] 图 2 (e) 为对比实施例 2中培养的 CIK细胞的倒置显微镜观察图。
本发明的实施方式
[0030] 下面将结合本发明实施例中的附图, 对现有技术和本发明实施例中的技术方案 进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做 出创造性劳动的前提下所获得的所有其他实施例, 都属于本发明保护的范围。
[0031] 在常规的 CIK细胞培养、 扩增过程中, 仍然大量的使用动物源性血清, 如胎牛 血清、 新牛血清、 小牛血清等, 但是血源的减少、 复杂成分带来的不确定性影 响, 越来越限制动物源性血清的使用, 更特别的是, 动物源性血清中复杂的抗 原活性物质对于 CIK细胞培养容易照成很多不确定性干扰, 有可能无法反应出特 异性刺激物的作用、 引起其他未知的免疫反应, 对实验研究或者实际应用中要 想排査出此种干扰或者影响需要付出较大的工作量, 阻碍工作进度甚至照成工 作无法继续幵展。
[0032] 本发明的主要创新点在于, 在 CIK细胞培养过程中使用血小板聚集释放物替代 动物源性血清, 血小板聚集释放物物血小板聚集释放物中含有促进 CIK细胞生长 的微量低分子营养物质和各种生长因子, 不仅利于大量收获 CIK细胞, 而且避免 了异种添加物的不确定性和危险性, 培养的 CIK细胞从细胞增殖、 表型、 体外杀 伤等方面都明显优于胎牛血清培养基和无血清培养基。
[0033] 图 1示出了本发明自体 CIK细胞高效扩增方法较佳实施例的流程, 如图 1所示, 包括如下步骤:
[0034] S100、 外周血单个核细胞的分离: 从患者血液中分离外周血单个核细胞, 悬浮 备用; 外周血单个核细胞 (PBMCs) 进行孵育培养后, 将根据生长情况变为悬 浮细胞与贴壁细胞, 悬浮细胞经过诱导获得 CIK细胞 (cytokine-induced killer, 多种细胞因子诱导的杀伤细胞) 。
[0035] S200、 血小板聚集释放物的制备: 分离获得血小板并用磷酸盐缓冲液重悬, 获 得重悬血小板; 向所述重悬血小板中加入 80〜150 mol/L的二磷酸腺苷, 培养箱 孵育培养 2〜4小吋, 1800〜200(^离心20〜25 1^^ 收获上清成分, 直接作为含 有血小板聚集释放物的溶液使用, 或者冻干处理即得所述血小板聚集释放物。
[0036] S300、 自体 CIK细胞的培养: 将所述外周血单个核细胞小心铺入培养瓶中培养 , 培养吋补加 5%〜20<¾的含有所述血小板聚集释放物的无血清培养基, 并添加
细胞因子进行诱导, 直至收获所述自体 CIK细胞。 本步骤中主要使用血小板聚集 释放物替代常规方法中的动物源性血清, 充分利用血小板聚集释放物物中含有 的微量低分子营养物质和各种生长因子, 促进淋巴细胞的生长并提高其体外杀 伤性能。
[0037] 在本发明的另一较佳实施例中, 除包括上述步骤外, 步骤 S100中还包括: [0038] S101、 准备全血: 抽取肿瘤患者静脉血, 加入抗凝剂成抗凝全血备用。 现场抽 取以制备抗凝全血, 或者直接冷藏的抗凝全血, 冷藏过程对结果影响不显著。
[0039] S102、 外周血单个核细胞与自体血浆的分离: 使用血细胞分离机或者淋巴细胞 分离液将外周血单个核细胞从自体血浆中分离, 获得的外周血单个核细胞粗品 。 血细胞分离机可以直接获取外周血单个核细胞粗品, 使用淋巴细胞分离液来 分离外周血单个核细胞则会因为淋巴细胞分离液的厂家不同而略有差异, 大体 过程为: 在离心管中加入三分之一左右的人外周血淋巴细胞分离液, 将肿瘤患 者抗凝全血小心铺到淋巴细胞分离液的上层, 离心 (例如, 20°C, 800g离心 20分 钟) 后用巴氏吸管或移液器小心吸取 PBMCs层, 获得的外周血单个核细胞粗品
[0040] S103、 外周血单个核细胞的处理: 将外周血单个核细胞粗品用生理盐水或无血 清培养基洗涤两次, 20°C下 500g离心 3〜7分钟, 再用适量无血清培养基重悬, 得 到外周血单个核细胞, 备用。
[0041] 在本发明的另一较佳实施例中, 步骤 S200中血小板聚集释放物物的制备方法包 括有分离血小板之后的孵育培养, 具体包括:
[0042] 分离获得血小板并用磷酸盐缓冲液重悬, 获得重悬血小板, 磷酸盐缓冲液有 2 种, 一种没有钙、 镁离子, 另一种含有钙、 镁离子, 本发明优选的使用含 Ca 2+ 、 Mg 2+的磷酸盐缓冲液可以更好的促进血小板孵育培养, 促进释放血小板中的 细胞因子。 向重悬血小板中加入 80〜150
μηιοΙ/L的二磷酸腺苷, 培养箱孵育培养 2〜4小吋, 培养温度 37°C。 孵育培养过程 中血小板聚集并释放血小板中的细胞因子, 提高血小板聚集释放物物对于淋巴 细胞的促生长能力。 孵育培养完成后在 1800〜2000g离心 20〜25 min, 去除血小 板膜、 纤维蛋白、 细胞碎片等, 收获上清成分。 特别需要说明的是, 该上清成
分可以直接作为含有血小板聚集释放物物的溶液使用, 也可以经过冻干处理后 得到血小板聚集释放物物。
[0043] 在本发明的另一较佳实施例中, 步骤 S200中分离并获得血小板的方法为密度离 心分离, 具体包括:
[0044] 取枸橼酸抗凝全血或者富血小板血浆, 将其小心铺层到血小板分离液的上层; 800〜1200g离心 20〜25 min, 吸取淋巴细胞分离液和血浆之间的血小板层。 血 小板分离液主要由聚蔗糖、 泛影酸、 去离子水配制而成, 密度为 1.060 g/L, 渗透 压为 280 mOSm/L, 0.22μηι滤器过滤除菌后即得。 通过密度离心分离可去除血浆 中航的红细胞、 白细胞及绝大部分血浆成分, 获得纯度很高的血小板。 当然, 上述分离并获得血小板的方法只是示例性而非限制性, 现有技术中分离并获得 血小板的方法也可用于本发明中, 只要能够获得的血小板纯度足够、 血小板保 持完整不破裂。
[0045] 在本发明的另一较佳实施例中, 步骤 S300中还包括:
[0046] S301、 调整细胞浓度: 用无血清培养液调整外周血单个核细胞的细胞浓度至 lx 10 6〜2xl0 6个 /ml, 混合均匀后小心铺入培养瓶中;
[0047] S302、 预培养: 向培养瓶中加入 600U/m!〜 1400U/ml的 IFN-Y、 质量份数 0.5<¾〜
2%血小板聚集释放物, 培养 241!〜 48 h后; 使用 CO 2培养箱进行上述中预培养, 培养条件可以选择 37°C, C0 2浓度 5%。
[0048] S303、 连续培养: 补加 600U/m!〜 1400U/ml的 IL2 (白细胞介素 -2) 、 600U/ml 〜1400U/ml的 ILla (白细胞介素 -la) 、 60 ng/ml〜150ng/ml的 anti-CD3 (CD3单 克隆抗体) 后继续培养, 隔天取样计数, 补充含质量份数 0.5%〜2%血小板聚集 释放物的新鲜无血清培养基, 将细胞的培养密度调整至 1><10 6〜2><10 6个/1^, 直 至收获所述自体 CIK细胞。 此步骤中补充含质量份数 0.5%〜2%血小板聚集释放 物的新鲜无血清培养基以补充细胞合成所需营养物质, 但是数量不宜频繁, 该 新鲜无血清培养基中还含有质量份数 1%〜2%人血清白蛋白、 0.05%〜0.2<¾重组 人转铁蛋白或柠檬酸铁、 0.05<¾〜0.1<¾植物血凝素。 血小板裂解物富含维持淋巴 细胞指数生长的生长因子、 基础培养基中没有或量很少的营养物、 以及主要的 低分子营养物, 配合易于被淋巴细胞利用的人血清白蛋白、 重组人转铁蛋白或
柠檬酸铁, 可以完全替代动物源性血清作为淋巴细胞培养的营养物质, 另外, 植物血凝素 (PHA) 能促使淋巴细胞转化为淋巴母细胞, 继而分裂增殖, 释放 淋巴因子, 并能大幅提高淋巴细胞的杀伤作用。
[0049] 实施例 1
[0050] 外周血单个核细胞的分离:
[0051] 使用血细胞分离机或者淋巴细胞分离液将外周血单个核细胞从自体血浆中分离 , 获得的外周血单个核细胞粗品; 将外周血单个核细胞粗品用生理盐水洗涤两 次, 20°C下 500g离心 3分钟, 再用适量无血清培养基重悬, 得到外周血单个核细 胞, 备用。
[0052] 血小板聚集释放物的制备:
[0053] 将聚蔗糖和泛影酸融入去离子水中, 调整密度为 1.060g/L, 渗透压为 280mosm/ L, 0.22μηι滤器过滤除菌, 备用。 取枸橼酸抗凝全血或者富血小板血浆, 将其小 心铺层到血小板分离液的上层; 800g离心 25 min, 吸取淋巴细胞分离液和血浆 之间的血小板层;
[0054] 分离获得血小板并用磷酸盐缓冲液重悬, 获得重悬血小板, 向重悬血小板中加 入 80 mol/L的二磷酸腺苷, 培养箱孵育培养 4小吋, 1800g离心 25 min, 收获上 清成分, 直接作为含有血小板聚集释放物的溶液使用, 或者冻干处理即得血小 板聚集释放物。
[0055] 自体 CIK细胞的培养:
[0056] 用无血清培养液调整外周血单个核细胞的细胞浓度至 1x10 6个 /ml, 混合均匀后 小心铺入培养瓶中;
[0057] 向培养瓶中加入 600U/ml的 IFN-Y、 质量份数 0.5%血小板聚集释放物, 培养 24h 后;
[0058] 补加 1400U/ml的 IL2、 600U/ml的 ILla、 60 ng/ml的 anti-CD3后继续培养, 隔天 取样计数, 补充含质量份数 2%血小板聚集释放物的新鲜无血清培养基, 将细胞 的培养密度调整至 1x10 6个 /ml, 直至收获自体 CIK细胞。
[0059]
[0060] 实施例 2
[0061] 外周血单个核细胞的分离:
[0062] 使用血细胞分离机或者淋巴细胞分离液将外周血单个核细胞从自体血浆中分离 , 获得的外周血单个核细胞粗品; 将外周血单个核细胞粗品用无血清培养基洗 涤两次, 20°C下 500g离心 7分钟, 再用适量无血清培养基重悬, 得到外周血单个 核细胞, 备用。
[0063] 血小板聚集释放物的制备:
[0064] 将聚蔗糖和泛影酸融入去离子水中, 调整密度为 1.060g/L, 渗透压为 280mosm/ L, 0.22μηι滤器过滤除菌, 备用。 取枸橼酸抗凝全血或者富血小板血浆, 将其小 心铺层到血小板分离液的上层; 1200g离心 20 min, 吸取淋巴细胞分离液和血浆 之间的血小板层;
[0065] 分离获得血小板并用磷酸盐缓冲液重悬, 获得重悬血小板, 向重悬血小板中加 入 150 mol/L的二磷酸腺苷, 培养箱孵育培养 2小吋, 2000g离心 20 min, 收获上 清成分, 直接作为含有血小板聚集释放物的溶液使用, 或者冻干处理即得血小 板聚集释放物。
[0066] 自体 CIK细胞的培养:
[0067] 用无血清培养液调整外周血单个核细胞的细胞浓度至 2x10 6个 /ml, 混合均匀后 小心铺入培养瓶中;
[0068] 向培养瓶中加入 1400U/ml的 IFN-Y、 质量份数 2%血小板聚集释放物, 培养 48 h 后;
[0069] 补加 600U/ml的 IL2、 1400U/ml的 ILla、 150ng/ml的 anti-CD3后继续培养, 隔天 取样计数, 补充含质量份数 0.5%血小板聚集释放物、 2%人血清白蛋白、 0.2%重 组人转铁蛋白、 0.05%植物血凝素的新鲜无血清培养基, 将细胞的培养密度调整 至 2x10 6个 /ml, 直至收获自体 CIK细胞。
[0070] 实施例 3
[0071] 外周血单个核细胞的分离:
[0072] 使用血细胞分离机或者淋巴细胞分离液将外周血单个核细胞从自体血浆中分离 , 获得的外周血单个核细胞粗品; 将外周血单个核细胞粗品用生理盐水或无血 清培养基洗涤两次, 20°C下 500g离心 4分钟, 再用适量无血清培养基重悬, 得到
外周血单个核细胞, 备用。
[0073] 血小板聚集释放物的制备:
[0074] 将聚蔗糖和泛影酸融入去离子水中, 调整密度为 1.060g/L, 渗透压为 280mosm/ L, 0.22μηι滤器过滤除菌, 备用。 取枸橼酸抗凝全血或者富血小板血浆, 将其小 心铺层到血小板分离液的上层; lOOOg离心 22 min, 吸取淋巴细胞分离液和血浆 之间的血小板层;
[0075] 分离获得血小板并用磷酸盐缓冲液重悬, 获得重悬血小板, 向重悬血小板中加 入 ΙΟΟ μηιοΙ/L的二磷酸腺苷, 培养箱孵育培养 3小吋, lOOOg离心 23 min, 收获上 清成分, 直接作为含有血小板聚集释放物的溶液使用, 或者冻干处理即得血小 板聚集释放物。
[0076] 自体 CIK细胞的培养:
[0077] 用无血清培养液调整外周血单个核细胞的细胞浓度至 1.5x10 6个 /ml, 混合均匀 后小心铺入培养瓶中;
[0078] 向培养瓶中加入 900U/ml的 IFN-Y、 质量份数 1%血小板聚集释放物, 培养 36 h后
[0079] 补加 1000U/ml的 IL2、 900U/ml的 ILla、 100ng/ml的 anti-CD3后继续培养, 隔天 取样计数, 补充含质量份数 0.7%血小板聚集释放物、 1%人血清白蛋白、 0.05% 柠檬酸铁、 0.1%植物血凝素的新鲜无血清培养基, 将细胞的培养密度调整至 2x1 0 6个 /ml, 直至收获自体 CIK细胞。
[0080] 效果验证
[0081] 对比实施例 1中采用含 10%胎牛血清 1640、 对比实施例 2中采用 AIM-V无血清培 养基用于 CIK细胞的培养, 培养条件与实施例 1-3完全相同。
[0082] 1细胞增殖情况
[0083] 在培养条件完全相同的情况下, 经过 14天的培养, 使用台盼蓝染色检测或细胞 计数仪: 标准为活细胞在 80%以上。
[0084] 图 2示出了培养的 CIK细胞的倒置显微镜观察图, 图 2 (a) 〜图 2 (e) 分别示出 了实施例 1、 实施例 2、 实施例 3、 对比实施例 1、 对比实施例 2所培养的 CIK细胞 , 对比可知, 使用本发明培养方法培养出的 CIK细胞从表面形态上观察就明显优
于对比实施例。
[0085] 实验计数结果包括总细胞数、 CD8+、 细胞存活率。
[0086] 实施例 1、 实施例 2、 实施例 3、 对比实施例 1、 对比实施例 2中总细胞数分别为 1.
03x10 10、 1.12x10 10、 1.21x10 10、 0.89x10 10、 0.80x10 10;
[0087] 实施例 1、 实施例 2、 实施例 3、 对比实施例 1、 对比实施例 2中 CD8+分别为 0.73 χ10 10、 0.84x10 10、 0.97x10 10、 0.50x10 10、 0.51x10 10;
[0088] 实施例 1、 实施例 2、 实施例 3、 对比实施例 1、 对比实施例 2中细胞存活率分别 为 98.4<¾、 97.5%、 99.5% 95.1% ^ 92.7<¾。
[0089] 对比实验计数结果可知, 使用本发明培养方法培养出的 CIK细胞, 在总细胞数
、 CD8+、 细胞存活率上都明显优于对比实施例。
[0090] 2流式细胞仪检测细胞表面 CD8+,CD3+, CD8+IFN-Y+等分子的表达。
[0091] 检测对象包括 CD8+、 CD3+、 CD8+IFN-y+、 CD107a。
[0092] 实施例 1、 实施例 2、 实施例 3、 对比实施例 1、 对比实施例 2中 CD8+分别为 70.6 %、 75.2%、 80.5%、 56.4%、 64.2%;
[0093] 实施例 1、 实施例 2、 实施例 3、 对比实施例 1、 对比实施例 2中 CD3+分别为 90.5 %、 92.1%. 92.4%、 90.2% 88.2%;
[0094] 实施例 1、 实施例 2、 实施例 3、 对比实施例 1、 对比实施例 2中 CD8+IFN-Y+分别 为 45.6%、 55.2%、 43.8%、 21.4%、 19.3%;
[0095] 实施例 1、 实施例 2、 实施例 3、 对比实施例 1、 对比实施例 2中 CD107a分别为 20.
1%、 17.2% 15.3<¾、 8.2% 9.3<¾。
[0096] 对比可知, 使用本发明培养方法培养出的 CIK细胞, 在细胞表面分子的表达上 都明显优于对比实施例。
[0097] 3细胞杀伤实验: 以 DC-CIK细胞为效应细胞, 以肿瘤细胞 (可为原代肿瘤细胞 或肿瘤细胞株)为靶细胞, 将效应细胞与靶细胞按 10:1、 20:1、 30:1 (E:T为两者数 目比)的比例加入 96孔 U型板中, 每孔含靶细胞 1x104个, 终体积为 200ml, 设 3 个复孔。 培养 4h后, 离心吸取培养上清, 用乳酸脱氢酶 (LDH)试剂盒检测效应 细胞对靶细胞的杀伤率, 同吋设置空白对照, 靶细胞对照, 效应细胞对照。 每 孔数值减去空白孔对照, 求出复孔的平均值。 按照下面公式计算效应细胞的细
胞毒活性, 以杀伤率 (<¾) 表示:
[0098] 杀伤率 =靶细胞对照值- (实验孔值 -效应细胞对照值) /靶细胞对照值 χ100%。
[0099] 按照此方法分别检测实施例 1〜3配置的完全培养基、 对比实施例 1〜2中的培养 基获得的自体肿瘤特异性细胞对肝癌细胞系 HEPG2以及 B细胞白血病 K562的杀 伤率。 实验重复 6次, 取平均值。
[0100] 实验结果包括 E:T=10:1、 E:T=20:1、 E:T=30:1三种情形下肝癌 HEPG2与白血病
K562为靶细胞的细胞杀伤实验结果。
[0101] 当 E:T=10:1吋, 实施例 1、 实施例 2、 实施例 3、 对比实施例 1、 对比实施例 2中 肝癌 HEPG2的杀伤结果分别为 35.4<¾、 30.5%、 35.7%、 30.7%、 25.6%; 实施例 1
、 实施例 2、 实施例 3、 对比实施例中白血病 K562的杀伤结果分别为 28.2%、 35.1
%、 40.0%、 28.5%、 26.5%;
[0102] 当 E:T=20:1吋, 实施例 1、 实施例 2、 实施例 3、 对比实施例 1、 对比实施例 2中 肝癌 HEPG2的杀伤结果分别为 51.5<¾、 46.4% ^ 52.5% ^ 45.7% ^ 40.5%; 实施例 1
、 实施例 2、 实施例 3、 对比实施例中白血病 K562的杀伤结果分别为 52.4%、 55.8
%、 60.4%、 38.2% 40.5%;
[0103] 当 E:T=30:1吋, 实施例 1、 实施例 2、 实施例 3、 对比实施例 1、 对比实施例 2中 肝癌 HEPG2的杀伤结果分别为 68.2<¾、 72.5% ^ 80.1%^ 60.1%^ 55.8%; 实施例 1
、 实施例 2、 实施例 3、 对比实施例中白血病 K562的杀伤结果分别为 72.5%、 78.6
%、 81.2%. 57.5%、 65.0<¾。
[0104] 4收获细胞前, 取少量培养物进行细菌、 真菌培养, 并检测支原体、 衣原体, 及内毒素 (标准: 病原学检测阴性, 内毒素 <5 Eu)。
[0105] 检测得知本发明实施例 1〜3和对比实施例中各项指标都不超标。
Claims
权利要求书
一种自体 CIK细胞高效扩增方法, 其特征在于, 包括如下步骤:
5100、 外周血单个核细胞的分离: 从患者血液中分离外周血单个核细 胞, 悬浮备用;
S200、 血小板聚集释放物的制备: 分离获得血小板并用磷酸盐缓冲液 重悬, 获得重悬血小板; 向所述重悬血小板中加入 80〜150 mol/L的 二磷酸腺苷, 培养箱孵育培养 2〜4小吋, 1800〜2000g离心 20〜25 min, 收获上清成分, 直接作为含有血小板聚集释放物的溶液使用, 或者冻干处理即得所述血小板聚集释放物;
S300、 自体 CIK细胞的培养: 将所述外周血单个核细胞小心铺入培养 瓶中培养, 培养吋补加 5%〜20<¾的含有所述血小板聚集释放物的无 血清培养基, 并添加细胞因子进行诱导, 直至收获所述自体 CIK细胞 根据权利要求 1所述的自体 CIK细胞高效扩增方法, 其特征在于, 其 特征在于, 所述步骤 S100中还包括:
5101、 准备全血: 抽取肿瘤患者静脉血, 加入抗凝剂成抗凝全血备用
5102、 外周血单个核细胞与自体血浆的分离: 使用血细胞分离机或者 淋巴细胞分离液将外周血单个核细胞从自体血浆中分离, 获得的外周 血单个核细胞粗品;
5103、 外周血单个核细胞的处理: 将所述外周血单个核细胞粗品用生 理盐水或无血清培养基洗涤两次, 20°C下 500g离心 3〜7分钟, 再用适 量无血清培养基重悬, 得到外周血单个核细胞, 备用。
根据权利要求 1所述的自体 CIK细胞高效扩增方法, 其特征在于, 所 述步骤 S200中使用的所述磷酸盐缓冲液为含 Ca 2+、 Mg 2+的磷酸盐缓 冲液。
根据权利要求 1所述的自体 CIK细胞高效扩增方法, 其特征在于, 所 述血小板聚集释放物中血小板衍生生长因子、 转化生长因子、 类胰岛
素生长因子、 表皮生长因子的含量均大于 150 ng/g。
[权利要求 5] 根据权利要求 1所述的自体 CIK细胞高效扩增方法, 其特征在于, 所 述步骤 S200中所述 "分离获得血小板"的方法包括: 取枸橼酸抗凝全血或者富血小板血浆, 将其小心铺层到血小板分离液 的上层; 800〜1200g离心 20〜25 min, 吸取淋巴细胞分离液和血浆之 间的血小板层。
[权利要求 6] 根据权利要求 5所述的自体 CIK细胞高效扩增方法, 其特征在于, 所 述血小板分离液由聚蔗糖、 泛影酸、 去离子水配制而成, 密度为 1.06 O g/L, 渗透压为 280 mosm/L, 0.22μηι滤器过滤除菌后即得。
[权利要求 7] 根据权利要求 1所述的自体 CIK细胞高效扩增方法, 其特征在于, 所 述步骤 S300中还包括:
5301、 调整细胞浓度: 用无血清培养液调整外周血单个核细胞的细胞 浓度至 1x10 6〜2xl0 6个 /ml, 混合均匀后小心铺入培养瓶中;
5302、 预培养: 向培养瓶中加入 600U/ml〜1400U/ml的 IFN-Y、 质量份 数 0.5<¾〜2<¾血小板聚集释放物, 培养 241!〜 48 h后;
5303、 连续培养: 补加 600U/ml〜1400U/ml
的 IL2、 600U/ml〜1400U/ml的 ILla、 60 ng/ml〜150ng/ml的 anti-CD3 后继续培养, 隔天取样计数, 补充含质量份数 0.5%〜2%血小板聚集 释放物的新鲜无血清培养基, 将细胞的培养密度调整至 1x10 6〜2xl0 6个 /ml, 直至收获所述自体 CIK细胞。
[权利要求 8] 根据权利要求 7所述的自体 CIK细胞高效扩增方法, 其特征在于, 所 述步骤 S303中"补充含质量份数 0.5%〜2%血小板聚集释放物的新鲜无 血清培养基"吋, 所述新鲜无血清培养基中还含有质量份数 1%〜2% 人血清白蛋白、 0.05<¾〜0.2<¾重组人转铁蛋白或柠檬酸铁、 0.05%〜0. 1%植物血凝素。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580002104.9A CN106661555B (zh) | 2015-06-17 | 2015-06-17 | 一种自体cik细胞高效扩增方法 |
PCT/CN2015/081711 WO2016201656A1 (zh) | 2015-06-17 | 2015-06-17 | 一种自体cik细胞高效扩增方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2015/081711 WO2016201656A1 (zh) | 2015-06-17 | 2015-06-17 | 一种自体cik细胞高效扩增方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016201656A1 true WO2016201656A1 (zh) | 2016-12-22 |
Family
ID=57544719
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/081711 WO2016201656A1 (zh) | 2015-06-17 | 2015-06-17 | 一种自体cik细胞高效扩增方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106661555B (zh) |
WO (1) | WO2016201656A1 (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011103882A1 (en) * | 2010-02-24 | 2011-09-01 | Ingo Schmidt-Wolf | Method for the generation of a cik cell and nk cell population |
CN102352342A (zh) * | 2011-09-30 | 2012-02-15 | 上海柯莱逊生物技术有限公司 | 一种用于扩增cik的方法及一种cik细胞制剂 |
CN103937741A (zh) * | 2014-04-08 | 2014-07-23 | 安德生细胞生物(湖北)有限公司 | 增强型cik细胞制备方法以及细胞制剂 |
CN104371974A (zh) * | 2014-10-24 | 2015-02-25 | 杭州阿德莱诺泰制药技术有限公司 | 一种自体外周血淋巴细胞cik的培养方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101486996B (zh) * | 2009-02-06 | 2012-10-10 | 浙江大学 | 一种非动物源性细胞培养血清替代物及其应用 |
-
2015
- 2015-06-17 CN CN201580002104.9A patent/CN106661555B/zh active Active
- 2015-06-17 WO PCT/CN2015/081711 patent/WO2016201656A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011103882A1 (en) * | 2010-02-24 | 2011-09-01 | Ingo Schmidt-Wolf | Method for the generation of a cik cell and nk cell population |
CN102352342A (zh) * | 2011-09-30 | 2012-02-15 | 上海柯莱逊生物技术有限公司 | 一种用于扩增cik的方法及一种cik细胞制剂 |
CN103937741A (zh) * | 2014-04-08 | 2014-07-23 | 安德生细胞生物(湖北)有限公司 | 增强型cik细胞制备方法以及细胞制剂 |
CN104371974A (zh) * | 2014-10-24 | 2015-02-25 | 杭州阿德莱诺泰制药技术有限公司 | 一种自体外周血淋巴细胞cik的培养方法 |
Non-Patent Citations (3)
Title |
---|
ALICE, P. ET AL.: "Enhanced killing of human B- cell lymphoma targets by combined use of cytokine-induced killer cell (CIK) cultures and anti- CD 20 antibodies", BLOOD, vol. 117, no. 2, 13 January 2011 (2011-01-13), pages 510 - 610, XP055338824, ISSN: 0006-4971 * |
DAI, HONG ET AL.: "Influence of Different Cultivate Conditions on Cytokine-Induced Killer Cells Expansion and Anti-Tumor Features in Vitro", SUZHOU UNIVERSITY JOURNAL OF MEDICAL SCIENCE, vol. 31, no. 2, 31 December 2011 (2011-12-31), pages 247 - 249, ISSN: 1673-047X * |
KANG, ZIZHEN ET AL.: "Research on CIK Cells Expansion in Vitro by Using Serum-Free Medium", CHINESE JOURNAL OF MICROBIOLOGY AND IMMUNOLOGY, vol. 22, no. 1, 31 December 2002 (2002-12-31), pages 81, ISSN: 0254-5101 * |
Also Published As
Publication number | Publication date |
---|---|
CN106661555B (zh) | 2020-11-13 |
CN106661555A (zh) | 2017-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210154234A1 (en) | Compositions containing platelet contents | |
Copland et al. | The effect of platelet lysate fibrinogen on the functionality of MSCs in immunotherapy | |
CN105754941B (zh) | 一种外周血nk细胞的体外诱导扩增培养方法 | |
Torelli et al. | A good manufacturing practice method to ex vivo expand natural killer cells for clinical use | |
EP3000876B1 (en) | Method for preparing nk cells | |
JP7144872B2 (ja) | ヒトリンパ球細胞培養用無血清培地 | |
JP6142142B2 (ja) | メモリーt細胞を主成分とするリンパ球細胞群の製造方法 | |
Josh et al. | Accelerated and safe proliferation of human adipose-derived stem cells in medium supplemented with human serum | |
CN103865874A (zh) | Cik细胞及其制备方法和应用 | |
CN107418930B (zh) | 一种纯化与扩增人骨髓间充质干细胞的制备方法 | |
JP5763894B2 (ja) | 細胞の分離方法 | |
Bonifacius et al. | Rapid manufacturing of highly cytotoxic clinical-grade SARS-CoV-2-specific T cell products covering SARS-CoV-2 and its variants for adoptive T cell therapy | |
CN114075546A (zh) | 一种nk细胞扩增组合物及体外扩增培养方法 | |
WO2022194118A1 (zh) | 一种car-t细胞灌流培养方法 | |
CN112300992B (zh) | 一种nk细胞培养液及多级激活nk细胞的培养方法 | |
WO2023178845A1 (zh) | 纯化t细胞的方法及其用途 | |
WO2016201656A1 (zh) | 一种自体cik细胞高效扩增方法 | |
CN111690607B (zh) | 一种高效杀伤细胞体外培养试剂盒及培养方法 | |
WO2016201657A1 (zh) | 一种用于淋巴细胞培养的血清替代物及制备方法 | |
CN111849897A (zh) | 一种细胞因子诱导杀伤细胞的体外活化方法 | |
Scerpa et al. | Cell processing for haplo-identical hematopoietic stem cell transplantation: automated washing and immunomagnetic-positive selection | |
Kartolo et al. | PDGF-AB rich-trombocyte lysate supplementation from breast cancer patients increased the proliferation of breast cancer stem cells | |
MX2010014281A (es) | Protocolo de cultivo para la expansión de células madre hematopoyéticas humanas (cd133+ y cd34+) obtenidas por leucoféresis. | |
WO2006011681A1 (ja) | 白血球培養用血液の保存方法、輸送方法、末梢血単核球の保存方法、輸送方法及びそれらを用いた白血球の培養方法 | |
TW202000900A (zh) | 體外擴增自然殺手細胞及自然殺手t細胞之方法及其醫藥組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15895229 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/04/2018) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15895229 Country of ref document: EP Kind code of ref document: A1 |