Nothing Special   »   [go: up one dir, main page]

WO2016200231A1 - 배터리 모듈 - Google Patents

배터리 모듈 Download PDF

Info

Publication number
WO2016200231A1
WO2016200231A1 PCT/KR2016/006232 KR2016006232W WO2016200231A1 WO 2016200231 A1 WO2016200231 A1 WO 2016200231A1 KR 2016006232 W KR2016006232 W KR 2016006232W WO 2016200231 A1 WO2016200231 A1 WO 2016200231A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
battery module
battery
resin
less
Prior art date
Application number
PCT/KR2016/006232
Other languages
English (en)
French (fr)
Inventor
조윤경
박은숙
박상민
양세우
강성균
양재훈
이재민
배경열
김영길
배규종
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/735,446 priority Critical patent/US11038223B2/en
Priority to EP16807871.5A priority patent/EP3300164B1/en
Priority to JP2017564459A priority patent/JP6421256B2/ja
Priority to CN201680034424.7A priority patent/CN107735882B/zh
Publication of WO2016200231A1 publication Critical patent/WO2016200231A1/ko
Priority to US16/864,718 priority patent/US11424495B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/227Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to a battery module.
  • the secondary battery includes a nickel cadmium battery, a nickel hydrogen battery, a nickel zinc battery or a lithium secondary battery, and a lithium secondary battery is typical.
  • Lithium secondary batteries mainly use lithium oxide and carbon materials as positive electrode active materials and negative electrode active materials, respectively.
  • the lithium secondary battery includes a positive electrode plate and a negative electrode plate coated with a positive electrode active material and a negative electrode active material respectively, and an electrode assembly disposed with a separator interposed therebetween, and an exterior member sealingly storing the electrode assembly together with an electrolyte solution.
  • pouch type secondary batteries In the present specification, a single secondary battery may be referred to as a battery cell.
  • a large number of battery cells When used in medium and large devices such as automobiles and power storage devices, a large number of battery cells may be electrically connected to each other to increase capacity and output, thereby forming a battery module or a battery pack.
  • the present application can provide a battery module.
  • the battery module of the present application may include a housing (hereinafter, the housing may be referred to as a module case) and a battery cell housed in the housing.
  • the housing may be referred to as a module case
  • a battery cell housed in the housing.
  • at least two or more battery cells may be stored in the housing.
  • the set of two or more battery cells stored in the housing may be referred to as a battery cell assembly.
  • 1 illustrates an exemplary battery module, and shows a housing 200 and a battery cell assembly 100 by way of example.
  • the housing may include at least a bottom plate. At least two convex portions guiding the battery cells may be formed on the lower plate. The battery cell may be mounted between the convex portions of the lower plate.
  • FIG. 2 is a side view of an exemplary battery module, and shows a form in which the battery cell 400 is mounted between the convex portions of the lower plate 210 mentioned above.
  • the shape, the specific number, the size, and the like of the convex portions formed on the lower plate are not particularly limited and can be appropriately selected in consideration of the number, size, and shape of the battery cells to be mounted.
  • the lower plate may be a thermally conductive lower plate. Since the convex portions formed on the lower plate are also part of the lower plate, they may be thermally conductive.
  • thermally conductive bottom plate means a bottom plate in which the thermal conductivity of the bottom plate is 10 W / mk or more, or at least includes a portion having the same thermal conductivity.
  • the entire lower plate or at least the convex portion may have the above-described thermal conductivity.
  • at least one of the lower plate and / or the convex portion may include a portion having the thermal conductivity.
  • the thermal conductivity is, in another example, 20 W / mk or more, 30 W / mk or more, 40 W / mk or more, 50 W / mk or more, 60 W / mk or more, 70 W / mk or more, 80 W / mk or more , 90 W / mk or more, 100 W / mk or more, 110 W / mk or more, 120 W / mk or more, 130 W / mk or more, 140 W / mk or more, 150 W / mk or more, 160 W / mk or more, 170 W / mk or more, 180 W / mk or more, 190 W / mk or more, or 195 W / mk or more.
  • the thermal conductivity is about 1,000 W / mK or less, 900 W / mk or less, 800 W / mk or less, 700 W / mk or less, 600 W / mk or less, 500 W / mk or less, 400 W / mk or less, It may be 300 W / mk or 250 W / mK or less, but is not limited thereto.
  • the kind of the material which exhibits the above thermal conductivity is not particularly limited, and examples thereof include metal materials such as aluminum, gold, pure silver, tungsten, copper, nickel or platinum.
  • the lower plate may be entirely made of such a thermally conductive material, or at least a portion of the lower plate may be a portion of the thermally conductive material. Accordingly, the bottom plate may have a thermal conductivity in the above-mentioned range, or may include at least a portion having the above-mentioned thermal conductivity.
  • the portion having the thermal conductivity in the above range in the lower plate may be a portion in contact with the resin layer to be described later.
  • the portion having the thermal conductivity may be a portion in contact with a cooling medium such as cooling water. According to this structure, a structure capable of effectively dissipating heat generated from the battery cell to the outside may be implemented.
  • the bottom plate may be in contact with a cooling system, such as a water cooling system.
  • a cooling system such as a water cooling system.
  • the contact at this time is a thermal contact described later.
  • the physical properties may be physical properties measured at room temperature.
  • room temperature may refer to any temperature in the range of about 10 ° C. to 30 ° C., for example, about 25 ° C., about 23 ° C., or about 20 ° C.
  • the housing may further comprise a separate structure as long as it includes at least the bottom plate.
  • the housing may further include sidewalls and the like that together with the lower plate form an inner space in which the assembly of battery cells can be accommodated.
  • the structure of the housing is not particularly limited as long as it includes at least the bottom plate.
  • the battery module may further include cooling fins and / or cooling plates.
  • the cooling fins may be located between the battery cells that are guided by the convex portion, for example. At least the cooling fins may be present on top of the convex portion. At this time, the cooling fin may be located between the battery cells while covering the upper surface of the convex portion.
  • the cooling fins 302 are exemplarily positioned to cover the upper surface of the convex portion of the lower plate 210 between the battery cells 400.
  • the cooling plate may also be located between the battery cell and the surface of the lower plate formed between the convex portion. 2 exemplarily shows such a cooling plate 301.
  • the battery module may include any one of the cooling fins and the cooling plate, or may include both.
  • the cooling fins and / or cooling plates may have thermal conductivity in the range as mentioned in the lower plate, and thus may be a metallic material such as aluminum, gold, sterling silver, tungsten, copper, nickel or platinum, such as the lower plate.
  • the number of battery cells in the housing is not particularly limited to being adjusted by the output required for the purpose of the battery module or the like.
  • the battery cells may be electrically connected to each other.
  • the type of the battery cell is not particularly limited, and various known battery cells may be applied.
  • the battery cell may be a pouch type battery.
  • the pouch-type battery 100 may typically include an electrode assembly, an electrolyte, and a pouch sheath.
  • 3 is an exploded perspective view schematically showing the configuration of an exemplary pouch-type battery
  • FIG. 4 is a combined perspective view of the configuration of FIG. 3.
  • the electrode assembly 110 included in the pouch-type battery 100 may have a form in which one or more positive electrode plates and one or more negative electrode plates are disposed with a separator therebetween.
  • the electrode assembly 110 may be divided into a winding type in which one positive electrode plate and one negative electrode plate are wound together with a separator, or a plurality of positive electrode plates and a plurality of negative electrode plates alternately stacked with a separator interposed therebetween.
  • the pouch packaging material 120 may be configured to include, for example, an outer insulating layer, a metal layer, and an inner adhesive layer.
  • the exterior member 120 may include a metal thin film such as aluminum in order to protect internal elements such as the electrode assembly 110 and the electrolyte, and to compensate for the electrochemical properties of the electrode assembly 110 and the electrolyte and to provide heat dissipation. Can be.
  • the metal thin film may be interposed between an insulating layer formed of an insulating material in order to ensure electrical insulation between the electrode assembly 110 and other elements such as an electrolyte or other elements outside the battery 100.
  • the exterior member 120 may include an upper pouch 121 and a lower pouch 122, and at least one of the upper pouch 121 and the lower pouch 122 may have a concave inner space I. This can be formed.
  • the electrode assembly 110 may be accommodated in the internal space I of the pouch. Sealing portions S may be provided on the outer circumferential surfaces of the upper pouch 121 and the lower pouch 122, and the sealing portions S may be adhered to each other to seal an inner space in which the electrode assembly 110 is accommodated.
  • Each electrode plate of the electrode assembly 110 includes an electrode tab, and one or more electrode tabs may be connected to the electrode lead.
  • the electrode lead is interposed between the sealing portion S of the upper pouch 121 and the lower pouch 122 to be exposed to the outside of the exterior member 120, thereby functioning as an electrode terminal of the secondary battery 100.
  • the form of the pouch-type battery described above is one example, and the battery cell to be applied in the present application is not limited to the above kind.
  • various well-known pouch type batteries or other types of batteries may be applied as battery cells.
  • the battery module may further include a resin layer, for example, a resin layer having a thermal conductivity of 2 W / mK or more.
  • the resin layer is formed between the cooling fin and the convex portion, specifically, between the region of the cooling fin covering the upper surface of the convex portion and the convex portion, between the cooling plate and the lower plate, between the cooling fin and the battery cell. Or at least one of the regions between the cooling plate and the battery cell.
  • the resin layer may be in contact with the cooling fins, the cooling plate, the convex portion, the lower plate, and / or the battery cell. In the above, the contact is a thermal contact.
  • the term thermal contact may refer to a case in which heat can be transferred from one object to another object even though there is some space between the resin layer and the cooling fins, the cooling plate, the convex portion, the lower plate, and / or the battery cell. Can be.
  • Such a resin layer is at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45% of the total area of the lower plate. Or at least about 50% or at least about 55%. At least the resin layer may cover the convex portion of the lower plate described above.
  • the upper limit of the area of the resin layer is not particularly limited and is, for example, about 100%.
  • the term resin layer is a layer containing a resin component, and in one example, the resin layer may be an adhesive layer.
  • the battery module includes the lower plate, the battery cell, the cooling fins and the cooling plate, and the resin layer is in contact with both between the cooling fins and the lower plate and / or between the lower plate and the cooling plate. It includes.
  • the contact means the above-described thermal contact, wherein the resin layer is in direct contact with the lower plate or the like, or other elements, such as insulation, between the resin layer and the lower plate.
  • the other element may mean the state which does not prevent the transfer of heat from the said resin layer to the said lower board etc.
  • the total thermal conductivity of the other element and the resin layer is about 1.5 W / mK or more, about 2 W / mK or more, 2.5 W / mK or more, 3 W / mK or more, 3.5 W / mK or more, or 4 W / mK or more, or the whole of the resin layer and the lower plate in contact with it It means the case where the thermal conductivity is included in the above range even when the other element is present.
  • the thermal conductivity of the thermal contact is 50 W / mK or less, 45 W / mk or less, 40 W / mk or less, 35 W / mk or less, 30 W / mk or less, 25 W / mk or less, 20 W / mk or less, 15 W / mk or less, 10 W / mK or less, 5 W / mK or less, 4.5 W / mK or less, or about 4.0 W / mK or less.
  • Such thermal contact can be achieved by controlling the thermal conductivity and / or thickness of the other element, if such other element is present.
  • the resin layer may be present between the cooling fins and / or the cooling plate and the battery cell.
  • a module may be configured to accommodate more battery cells per unit volume. Accordingly, in the present application, it is possible to provide a battery module having a smaller size, light weight, and high power.
  • the thermally conductive portion or the thermally conductive bottom plate may be a portion contacting a cooling medium such as cooling water.
  • the resin layer may be in the form of a thin layer or may fill a space between the lower plate and the cooling fin and / or the cooling plate.
  • the thickness of the resin layer can be, for example, in the range of about 100 ⁇ m to 5 mm or in the range of about 200 ⁇ m to 5 mm.
  • the thickness may be the thickness of the thinnest portion, the thickness of the thickest portion, or the average thickness of the resin layer.
  • the resin layer or the battery module to which the resin layer is applied may have at least one or more of physical properties described below. Each physical property mentioned later is independent and does not give priority to the physical property of any one, and the resin layer can satisfy
  • the resin layer is a thermally conductive resin layer
  • the thermal conductivity may be about 2 W / mK or more, 2.5 W / mK or more, 3 W / mK or more, 3.5 W / mK or more or 4 W / mK or more.
  • the thermal conductivity is 50 W / mK or less, 45 W / mk or less, 40 W / mk or less, 35 W / mk or less, 30 W / mk or less, 25 W / mk or less, 20 W / mk or less, 15 W / mk Or less, 10 W / mK or less, 5 W / mK or less, 4.5 W / mK or less, or about 4.0 W / mK or less.
  • the resin layer is a thermally conductive resin layer as described above, the lower plate, etc., to which the resin layer is attached, may have the above-described thermal conductivity of 10 W / mK or more.
  • the portion of the module case showing the thermal conductivity may be a portion in contact with a cooling medium, for example, cooling water.
  • the thermal conductivity of a resin layer is a numerical value measured according to ASTMD5470 standard or ISO 22007-2 standard, for example.
  • the manner in which the thermal conductivity of the resin layer is in the above range is not particularly limited.
  • the thermal conductivity of the resin layer can be adjusted through the use of the type and / or filler of the resin used in the resin layer.
  • acrylic resins, urethane resins, and silicone resins have similar thermal conductivity to each other, and epoxy resins have superior thermal conductivity
  • olefin resins are epoxy resins.
  • the thermal resistance of the resin layer or the battery module to which the resin layer is applied in the battery module is 5 K / W or less, 4.5 K / W or less, 4 K / W or less, 3.5 K / W or less, 3 K / W or less, or about 2.8 K / W or less.
  • the method of measuring the thermal resistance is not particularly limited. For example, it can measure according to ASTM D5470 standard or ISO 22007-2 standard.
  • the resin layer may have an appropriate adhesive force in consideration of effective fixing of the battery cell, impact resistance and vibration resistance in the process of using the module.
  • the resin layer has an adhesive force of about 1,000 gf / 10 mm or less, about 950 gf / 10 mm or less, about 900 gf / 10 mm or less, about 850 gf / 10 mm or less, about 800 gf / 10 mm or less, about 750 gf / 10 mm Or about 700 gf / 10 mm or less, about 650 gf / 10 mm or less, or about 600 gf / 10 mm or less.
  • the adhesive force of the resin layer may be about 50 or more, about 70 gf / 10 mm or more, about 80 gf / 10 mm or more, or about 90 gf / 10 mm or more.
  • the adhesive force may be a value measured at a peel rate of about 300 mm / min and a peel angle of 180 degrees.
  • the adhesive force may be adhesive force to the module case that the resin layer is in contact. For example, when an insulating layer is formed between the lower plate and the resin layer in contact with the resin layer in the module case as described below, the adhesive force to the module case is the module case in which the insulating layer is formed. May be adhesion to.
  • the adhesive force as described above can be secured, excellent adhesion to various materials, for example, a case or a battery cell included in the battery module may appear excellent.
  • the battery module may be prevented from being peeled off due to volume change, change in the use temperature of the battery module, or curing shrinkage of the resin layer, etc. at the time of charging and discharging the battery cell, thereby ensuring excellent durability.
  • Such adhesive force can be ensured by, for example, configuring the resin layer with an adhesive layer. That is, the adhesive force which a well-known adhesive material can exhibit is well known, What is necessary is just to select a material in consideration of such adhesive force.
  • the resin layer is also subjected to a thermal shock test, for example, after a thermal shock test in which the cycle is repeated 100 times with one cycle of maintaining the temperature at 80 ° C. for 30 minutes and then maintaining the temperature at 80 ° C. for 30 minutes. It may be required to be formed so as not to be peeled or peeled from the module case or the battery cell of the module. For example, when the battery module is applied to a product that requires a long warranty period (about 15 years or more in the case of an automobile) such as an automobile, the above level of performance may be required to ensure durability.
  • the resin layer may be an electrically insulating resin layer.
  • the electrically insulating resin layer has an insulation breakdown voltage measured according to ASTM D149 of about 3 kV / mm or more, about 5 kV / mm or more, about 7 kV / mm or more, 10 kV / mm or more, 15 kV / mm or more 20 kV / mm or more.
  • the resin layer is not particularly limited to exhibit excellent insulating properties, but considering the composition of the resin layer, it is about 50 kV / mm or less, 45 kV / mm or less, 40 kV / mm or less. , 35 kV / mm or less, 30 kV / mm or less.
  • the dielectric breakdown voltage as described above can also be controlled by controlling the insulation of the resin component of the resin layer.
  • the dielectric breakdown voltage can be adjusted by applying an insulating filler in the resin layer.
  • the ceramic filler as described later is known as a component capable of ensuring insulation.
  • a flame retardant resin layer may be applied in consideration of stability.
  • the term flame retardant resin layer may refer to a resin layer having a V-0 rating in a UL 94 V Test (Vertical Burning Test). This ensures stability against fire and other accidents that may occur in the battery module.
  • the resin layer may have a specific gravity of 5 or less.
  • the specific gravity may be 4.5 or less, 4 or less, 3.5 or less, or 3 or less.
  • the resin layer exhibiting specific gravity in this range is advantageous for the production of a lighter battery module.
  • the specific gravity may be about 1.5 or more or 2 or more.
  • components added to the resin layer may be adjusted. For example, when the thermally conductive filler is added, a filler capable of securing the desired thermal conductivity even at the lowest specific gravity, that is, a filler having a low specific gravity or a surface-treated filler may be used. have.
  • the resin layer does not contain a volatile substance if possible.
  • the resin layer may have a ratio of nonvolatile content of 90 wt% or more, 95 wt% or more, or 98 wt% or more.
  • the nonvolatile component and its ratio may be defined in the following manner. That is, the non-volatile portion may be defined as the non-volatile content of the remaining portion after maintaining the resin layer at 100 ° C for about 1 hour, and thus the ratio is maintained for about 1 hour at the initial weight of the resin layer and the 100 ° C It can measure based on a later ratio.
  • the resin layer may have excellent resistance to deterioration as necessary, but stability may be required in which the surface of the module case or the battery cell does not react as chemically as possible.
  • the resin layer also has a low shrinkage rate after curing or after curing. Through this, it is possible to prevent peeling or the generation of voids that may occur during the manufacture or use of the module.
  • the shrinkage rate may be appropriately adjusted in a range capable of exhibiting the above-described effects, for example, may be less than 5%, less than 3% or less than about 1%. Since the said shrinkage rate is so advantageous that the numerical value is low, the minimum in particular is not restrict
  • the resin layer also has a low coefficient of thermal expansion (CTE).
  • CTE coefficient of thermal expansion
  • the coefficient of thermal expansion can be appropriately adjusted in a range capable of exhibiting the above-described effects, for example, less than 300 ppm / K, less than 250 ppm / K, less than 200 ppm / K, less than 150 ppm / K or about 100 may be less than ppm / K. Since the said coefficient of thermal expansion is so advantageous that the numerical value is low, the minimum in particular is not restrict
  • Tensile strength of the resin layer can be appropriately adjusted, through which excellent impact resistance and the like can be secured to provide a module showing appropriate durability.
  • Tensile strength can be adjusted, for example, in the range of about 1.0 MPa or more.
  • Elongation of the resin layer can be appropriately adjusted, through which excellent impact resistance and the like can be secured, it is possible to provide a module showing appropriate durability. Elongation can be adjusted, for example, in the range of at least about 10% or at least about 15%.
  • the resin layer also exhibits an appropriate hardness. For example, if the hardness of the resin layer is too high, the resin layer may be too brittle and adversely affect the reliability. In addition, by controlling the hardness of the resin layer it is possible to ensure impact resistance, vibration resistance, and ensure the durability of the product.
  • the resin layer may, for example, have a hardness in Shore A type of less than 100, 99 or less, 98 or less, 95 or less, or 93 or less, or hardness in Shore D type of less than about 80, about 70 or less, or about 65 or less or about 60 or less.
  • the lower limit of the hardness is not particularly limited.
  • the hardness may be about 60 or more in Shore A type, or about 5 or about 10 or more in Shore OO type.
  • the hardness of a resin layer is normally influenced by the kind or ratio of the filler contained in the resin layer, and when an excess filler is included, hardness will usually become high.
  • the resin component contained in the resin layer also affects the hardness, as silicone-based resins generally exhibit lower hardness than other resins such as epoxy or urethane.
  • the resin layer may also have a 5% weight loss temperature in the thermogravimetric analysis (TGA) of at least 400 ° C., or a residual amount of 800 ° C. at least 70% by weight. This characteristic can further improve stability at high temperatures of the battery module.
  • the remaining 800 ° C. may be at least about 75 wt%, at least about 80 wt%, at least about 85 wt%, or at least about 90 wt%, in another example.
  • the residual amount of 800 ° C. may be about 99 wt% or less in another example.
  • the thermogravimetric analysis (TGA) can be measured within a range of 25 ° C. to 800 ° C.
  • thermogravimetric analysis (TGA) results can also be achieved through control of the composition of the resin layer.
  • the residual amount of 800 ° C is usually influenced by the type or proportion of the filler contained in the resin layer, and when the excess filler is included, the remaining amount increases.
  • the silicone resin generally has higher heat resistance than other resins such as epoxy or urethane, the remaining amount is higher, and thus the resin component contained in the resin layer also affects its hardness.
  • the type of the resin layer is not particularly limited as long as it can effectively fix the battery cell, and the above-mentioned physical properties can be imparted as necessary, and all known curable resin materials can be used.
  • the material that can be used include acrylic resins, epoxy resins, urethane resins, olefin resins, urethane resins, EVA (Ethylene vinyl acetate) resins, silicone resins, and the like, and thus the resin layer includes the resins. can do.
  • the said resin layer can contain the said resin as a main component in a resin component.
  • the acrylic resin about 70% of the acrylic resin, epoxy resin, urethane resin, olefin resin, urethane resin, EVA (Ethylene vinyl acetate) resin or silicone resin among the total resin components included in the resin layer. At least about 75%, at least about 80%, at least about 85%, or at least about 90%. The ratio may be about 99% or less or about 95% or less.
  • the material for forming the resin layer may be an adhesive material as described above, and may be a solvent type, an aqueous type, or a solventless type, but may be appropriately a solventless resin layer in consideration of convenience of the manufacturing process described later. Can be.
  • the resin layer material may be an active energy ray curing type, a moisture curing type, a thermosetting type or a room temperature curing type, or the like, and may be appropriate to be a room temperature curing type in consideration of the convenience of the manufacturing process described later.
  • the resin layer may include a filler in consideration of the above-described thermal conductivity, insulation, heat resistance (TGA analysis) or specific gravity.
  • the filler may be a thermally conductive filler.
  • thermally conductive filler means a material having a thermal conductivity of about 1 W / mK or more, about 5 W / mK or more, about 10 W / mK or more, or about 15 W / mK or more.
  • the thermal conductivity of the thermally conductive filler may be about 400 W / mK or less, about 350 W / mK or less or about 300 W / mK or less.
  • thermally conductive filler that can be used is not particularly limited, but a ceramic filler may be applied in consideration of insulation properties and the like.
  • ceramic particles such as alumina, aluminum nitride (AlN), boron nitride (BN), silicon nitride, SiC, or BeO may be used.
  • carbon fillers such as graphite can also be considered.
  • the form or ratio of the filler contained in the resin layer is not particularly limited and is selected in consideration of the viscosity of the resin composition, the possibility of sedimentation in the resin layer, the desired thermal resistance or thermal conductivity, insulation, filling effect or dispersibility, and the like. Can be.
  • the smaller the size the higher the heat resistance tends to be. Therefore, in consideration of the above-mentioned, an appropriate kind of filler may be selected, and if necessary, two or more fillers may be used.
  • the resin layer may include a thermally conductive filler having an average particle diameter in the range of 0.001 ⁇ m to 80 ⁇ m.
  • the average particle diameter of the filler may be 0.01 ⁇ m or more, 0.1 or more, 0.5 ⁇ m or more, 1 ⁇ m or more, 2 ⁇ m or more, 3 ⁇ m or more, 4 ⁇ m or more, 5 ⁇ m or more, or about 6 ⁇ m or more.
  • the average particle diameter of the filler is, in another example, about 75 ⁇ m or less, about 70 ⁇ m or less, about 65 ⁇ m or less, about 60 ⁇ m or less, about 55 ⁇ m or less, about 50 ⁇ m or less, about 45 ⁇ m or less, about 40 ⁇ m or less, about 35 ⁇ m or less, about 30 ⁇ m or less, about 25 ⁇ m or less, about 20 ⁇ m or less, about 15 ⁇ m or less, about 10 ⁇ m or less, or about 5 ⁇ m or less.
  • the ratio of the filler contained in the resin layer may be selected in consideration of the properties of the resin layer so that the above-described properties, for example, thermal conductivity, insulation, and the like can be secured.
  • the filler may be included in the range of about 50 to 2,000 parts by weight relative to 100 parts by weight of the resin component of the resin layer.
  • the weight part of the filler in another example is about 100 parts by weight or more, about 150 parts by weight or more, about 200 parts by weight or more, about 250 parts by weight or more, about 300 parts by weight or more, about 350 parts by weight or more, about 400 parts by weight or more, At least about 500 parts by weight, at least about 550 parts by weight, at least about 600 parts by weight or at least about 650 parts by weight.
  • the resin layer may be a viscosity modifier such as a thixotropic agent, a diluent, a dispersant, a surface treatment agent or a coupling agent to adjust the viscosity as necessary, for example to increase or decrease the viscosity or to adjust the viscosity according to shear force. And the like may be further included.
  • a viscosity modifier such as a thixotropic agent, a diluent, a dispersant, a surface treatment agent or a coupling agent to adjust the viscosity as necessary, for example to increase or decrease the viscosity or to adjust the viscosity according to shear force. And the like may be further included.
  • the thixotropic agent may adjust the viscosity according to the shear force of the resin composition so that the manufacturing process of the battery module is effectively performed.
  • examples of the thixotropic agent that can be used include fumed silica and the like.
  • Diluents or dispersants are generally used for lowering the viscosity of the resin composition, and any one of various kinds known in the art can be used without limitation as long as the diluent or dispersant is capable of exhibiting the above functions.
  • the surface treating agent is for surface treatment of the filler introduced into the resin layer, and various kinds known in the art can be used without limitation as long as it can exhibit the above-described action.
  • the coupling agent for example, it can be used to improve the dispersibility of a thermally conductive filler such as alumina, and various kinds known in the art can be used without limitation as long as it can exhibit the above action.
  • the resin layer may further include a flame retardant or a flame retardant aid.
  • a resin layer can form a flame-retardant resin layer.
  • various flame retardants known in the art may be applied without particular limitation.
  • a solid filler type flame retardant or a liquid flame retardant may be applied.
  • Flame retardants include, for example, organic flame retardants such as melamine cyanurate, inorganic flame retardants such as magnesium hydroxide, and the like, but is not limited thereto.
  • a liquid type flame retardant material TEP, Triethyl phosphate or TCPP, tris (1,3-chloro-2-propyl) phosphate, etc.
  • TEP Triethyl phosphate
  • TCPP tris (1,3-chloro-2-propyl) phosphate
  • silane coupling agent may be added that can act as a flame retardant synergist.
  • the resin layer may contain any one or two or more of the above components.
  • the battery module may further include an insulating layer between the lower plate and the battery cell or between the resin layer and the lower plate, the cooling fins, and / or the cooling plate.
  • an insulating layer By adding an insulating layer, it is possible to prevent problems such as an electrical short circuit or fire caused by contact between the cell and the case due to the impact that may occur during use.
  • the insulating layer may be formed using an insulating sheet having high insulation and thermal conductivity, or may be formed by coating or injecting a material exhibiting insulation.
  • a process of forming an insulating layer may be performed before the injection of the resin composition. So-called TIM (Thermal Interface Material) or the like may be applied to the formation of the insulating layer.
  • the insulating layer may be formed of an adhesive material, and for example, the insulating layer may be formed using a resin layer having little or no filler such as a thermally conductive filler.
  • the resin component that can be used to form the insulating layer include acrylic resins, olefin resins such as PVC (poly (vinyl chloride)) and PE (polyethylene), epoxy resin, silicone, and EPDM rubber (ethylene propylene diene monomer rubber). Rubber components, such as, but not limited to, etc.
  • the insulating layer has an insulation breakdown voltage measured in accordance with ASTM D149 of about 5 kV / mm or more, about 10 kV / mm or more, about 15 kV / kmm or more, 20 kV / mm or more, 25 kV / mm or more or 30 kV / mm or more
  • the breakdown voltage is not particularly limited as the value shows higher insulation.
  • the dielectric breakdown voltage of the insulating layer may be about 100 kV / mm or less, 90 kV / mm or less, 80 kV / mm or less, 70 kV / mm or less, or 60 kV / mm or less. It can be set in an appropriate range in consideration of insulation and thermal conductivity.
  • it may be about 5 ⁇ m or more, about 10 ⁇ m or more, 20 ⁇ m or more, 30 ⁇ m or more, 40 ⁇ m or more, 50 ⁇ m or more, 60 ⁇ m or more, 70 ⁇ m or more, 80 ⁇ m or more or 90 ⁇ m or more.
  • the upper limit of the thickness is not particularly limited, and may be, for example, about 1 mm or less, about 200 ⁇ m or less, 190 ⁇ m or less, 180 ⁇ m or less, 170 ⁇ m or less, 160 ⁇ m or less, or 150 ⁇ m or less.
  • the present application also relates to a method for manufacturing a battery module, for example the battery module mentioned above.
  • the method of manufacturing such a module is not particularly limited, and after forming the resin composition layer using the resin composition described above on the surface of the lower plate, at least the convex portion, the cooling fins and / or the cooling plate and the barrel cell are formed. It may include the step of receiving. Curing the resin composition at an appropriate time during the process may be further performed.
  • resin composition in this application means the state of the resin layer before hardening
  • resin layer can mean the state of the resin layer after hardening
  • the manner of forming the layer of the resin composition on the lower plate is not particularly limited and can be carried out in a known manner.
  • the kind of resin composition in the above is not specifically limited, The appropriate resin composition of the kind which can exhibit desired physical property can be selected.
  • the resin composition injected above may be a resin composition capable of satisfying the above-described physical properties such as thermal conductivity or forming a resin layer containing a component therefor.
  • Such a resin composition may be the above-described solvent type, aqueous or solvent-free resin composition, and may be suitably a solvent-free resin composition.
  • the resin composition may be an active energy ray-curable, moisture-curable, thermosetting or room temperature curing type resin composition, or the like, and may be suitably room temperature curing type resin composition.
  • the resin composition may be a resin composition including at least one of various additives such as the above-described thermal conductive filler.
  • Such a resin composition may be composed of one-component, two-component, or three-component.
  • Such a resin composition may be cured when necessary, and the manner of curing the resin composition is not particularly limited.
  • the resin composition is an active energy ray-curable type
  • a method of irradiating active energy rays such as ultraviolet rays to the resin composition a method of keeping it under appropriate moisture when it is a moisture curable type, and applying appropriate heat in the case of a thermosetting type.
  • the above steps may be performed by maintaining the resin composition at room temperature.
  • a short time heat may be applied to a temperature of about 40 ° C. to about 50 ° C. under conditions that do not affect the stability of the battery cell in terms of tack time and fairness before curing or before storage or storage of the battery cell. It may be.
  • the present application also relates to a resin composition that can be used to form the above manufacturing method or the battery module of the aforementioned structure.
  • the resin composition is not particularly limited as long as the resin composition can effectively fix the battery cell and the above-mentioned physical properties can be imparted as necessary, and all known resin compositions can be used.
  • Such resin compositions include, but are not limited to, acrylic resin compositions, epoxy resin compositions, urethane resin compositions, olefin resin compositions, urethane resin compositions, EVA (Ethylene vinyl acetate) resin compositions or silicone resin compositions. .
  • the resin composition may be a solvent-type resin composition, an aqueous resin composition or a solvent-free resin composition, and may be a solvent-free resin composition as appropriate.
  • the resin composition may be an active energy ray curable resin composition, a moisture curable resin composition, a thermosetting resin composition, a room temperature curable resin composition, or the like, and may be an ambient temperature curable resin composition.
  • the additives such as the above-mentioned filler
  • the resin composition which can form a well-known acrylic adhesive, an epoxy adhesive, a urethane adhesive, an olefin adhesive, an EVA (Ethylene vinyl acetate) adhesive, or a silicone adhesive.
  • a suitable amount can be applied to the above-described method.
  • the resin composition as described above may include a radical initiator and a catalyst thereof in consideration of room temperature curability and the like.
  • the resin composition may comprise an acyl peroxide initiator such as benzoyl peroxide and the like and a catalyst for such an initiator such as a toluidine compound, whereby a suitable curing system can be implemented.
  • the resin composition may further include various components as necessary in addition to the above components.
  • the present application also relates to a battery pack, for example, a battery pack including two or more battery modules described above.
  • the battery modules may be electrically connected to each other.
  • the method of configuring the battery pack by electrically connecting two or more battery modules is not particularly limited, and all known methods may be applied.
  • the present application also relates to a device including the battery module or the battery pack.
  • a device including the battery module or the battery pack examples include, but are not limited to, automobiles such as electric vehicles, and may include all applications requiring a secondary battery as an output.
  • a method of configuring the vehicle using the battery module or the battery pack is not particularly limited, and a general method may be applied.
  • the present application may provide a battery module having excellent output to volume, excellent heat dissipation characteristics, etc. while being manufactured at a simple process and low cost, a manufacturing method thereof, and a resin composition applied to the manufacturing method.
  • 1 and 2 show the structure of an exemplary battery module.
  • 3 and 4 show exemplary pouch-type cells.
  • the thermal conductivity of the resin layer was measured according to the ASTM D5470 standard. That is, after placing the resin layer between two copper bars according to the specification of ASTM D 5470, one of the two copper bars is in contact with the heater and the other is in contact with the cooler. The heater was kept at a constant temperature and the capacity of the cooler was adjusted to create a thermal equilibrium (state showing a temperature change of about 0.1 ° C. or less in 5 minutes). The temperature of each copper rod was measured in the thermal equilibrium state, and thermal conductivity (K, unit: W / mK) was evaluated according to the following formula. When the thermal conductivity was evaluated, the pressure applied to the resin layer was adjusted to about 11 Kg / 25 cm 2 , and the thermal conductivity was calculated based on the final thickness when the thickness of the resin layer was changed during the measurement.
  • K thermal conductivity (W / mK)
  • Q heat transferred per unit time (unit: W)
  • dx thickness of resin layer (unit: m)
  • A is cross-sectional area of resin layer (unit: m2)
  • dT is the temperature difference (unit: K) of the copper rod.
  • Specific gravity of the resin layer was measured according to the ASTM D792 standard. For example, after weighing the resin layer in accordance with the standard, and weighed again in water, the density and specific gravity are calculated from the measured weight difference, or a predetermined amount of powder or pellet (ex. About 5 g ) Into the already measured volume in the pyrometer and the specific gravity can be calculated from the difference in weight and volume at 73.4 F °.
  • Thermogravimetric analysis was performed using TA Instrument's TA400 instrument. The analysis was performed using about 10 mg of the resin layer, and the analysis was performed under a nitrogen (N 2 ) atmosphere of a temperature range of 25 ° C. to 800 ° C., a heating rate of 20 ° C./min, and 60 cm 3 / min.
  • N 2 nitrogen
  • the dielectric breakdown voltage of the resin layer was evaluated according to ASTM D149 standard.
  • the dielectric breakdown voltage refers to a voltage applied to the moment when the material loses insulation, and at high voltages above a certain level, the conductivity rapidly increases and loses insulation.
  • the minimum voltage required to cause dielectric breakdown is called the breakdown voltage, and insulation is created through the arc through the specimen.
  • the voltage gradient can be obtained by dividing the voltage at the instant of breakdown by the insulation thickness.
  • the breakdown voltage was measured using the Backman Industrial PA70-1005 / 202 instrument. At this time, the thickness of the specimen (resin layer) was about 2 mm and the diameter was about 100 mm.
  • the attachment is performed by curing the uncured resin composition after loading between the insulating film and the PET film. Thereafter, the adhesive force is measured while peeling the PET film from the insulating side at a speed of about 300 mm / min and a peel angle of 180 degrees.
  • the hardness of the resin layer was measured in accordance with ASTM D 2240 and JIS K 6253 standards. Shore A, durometer hardness was performed using the instrument, the initial hardness was measured by applying a load (approximately 1.5 Kg) of more than 1 Kg to the surface of the sample (resin layer) of the flat state, and after 15 seconds confirmed by the stabilized measured value The hardness was evaluated.
  • the reliability of the battery module was evaluated by measuring the thermal resistance and temperature of the module.
  • the thermal resistance of the battery module is input by placing the module between the upper and lower blocks of the measuring device, running the DynTIM Tester software of the controlling computer, and determining the heating current and the measuring time on the software. After setting the parameters such as measurement pressure and thermal resistance measurement conditions, the T3Ster and DynTIM tester controlled by software were measured for the thermal resistance value for each measurement condition, and the thermal resistance was evaluated.
  • the module temperature was measured by attaching a contact type temperature gauge for each position of the module. The thermal resistance and module temperature were measured while the bottom plate of the battery module was in contact with the water cooling system. Reliability according to each evaluation result was classified by the following criteria.
  • Alumina particle size distribution: 1 ⁇ m to 60 ⁇ m
  • a two-component urethane adhesive composition (subject: HP-3753 (KPX Chemical), a curing agent: TLA-100 (made by Asaika)), and the cured adhesive composition was about 3 after the two-component urethane adhesive composition was cured.
  • a resin composition having a room temperature viscosity of about 250,000 cP is prepared, and the following battery It was applied to the manufacture of the module.
  • a battery module having a shape as shown in FIG. 2 was manufactured using the prepared resin composition.
  • the lower plate 101, the cooling fins 201 and the cooling plate 202 are all made of aluminum.
  • the resin composition prepared on the surface of the lower plate to cover the entire lower plate the cooling fins and the cooling plate is mounted on the upper, respectively, and the battery cell between the cooling fins mounted to cover the surface of the convex portion, The resin composition was cured to prepare a battery module.
  • Alumina particle size distribution: 1 ⁇ m to 60 ⁇ m
  • a two-component silicone adhesive composition subject: SL5100A (manufactured by KCC) and a curing agent: SL5100B (manufactured by KCC)
  • SL5100A manufactured by KCC
  • SL5100B manufactured by KCC
  • thermal conductivity within the range of about 800 to 1200 parts by weight relative to 100 parts by weight of the total amount of two liquids
  • a resin composition having a room temperature viscosity of about 130,000 cP is prepared, which is used to prepare the following battery module. Applied.
  • a battery module was manufactured in the same manner as in Example 1, except that the prepared resin composition was used.
  • Alumina particle size distribution: 1 ⁇ m to 60 ⁇ m
  • a two-component urethane adhesive composition subject: PP-2000 (KPX Chemical), a curing agent: TLA-100 (manufactured by Asaika)
  • PP-2000 KPX Chemical
  • TLA-100 manufactured by Asaika
  • Alumina particle size distribution: 1 ⁇ m to 60 ⁇ m
  • the adhesive composition exhibited a thermal conductivity of about 3 W / mK after curing (2 liquid total solids 100
  • Battery modules were prepared in the same manner as in Example 1, except that a resin composition prepared in a range of about 600 to 900 parts by weight relative to parts by weight was used so that the room temperature viscosity was about 500,000 cP.
  • Alumina particle size distribution: 1 ⁇ m to 60 ⁇ m
  • a two-component urethane adhesive composition subject: PP-2000 (KPX Chemical), a curing agent: TLA-100 (manufactured by Asaika)
  • PP-2000 KPX Chemical
  • TLA-100 curing agent
  • a resin composition prepared by mixing in an amount capable of exhibiting thermal conductivity of W / mK (within a range of about 400 to 900 parts by weight relative to 100 parts by weight of 2 liquid total solids) to have a room temperature viscosity of about 150,000 cP.
  • a battery module in the same manner as in Example 1.
  • a battery module was prepared in the same manner as in Example 5, except that the resin composition covered about 50% of the lower plate area to prepare the module.
  • Graphite was added to the two-component silicone adhesive composition (subject: SL5100A (manufactured by KCC), the curing agent: SL5100B (manufactured by KCC)), and the amount of thermal conductivity of about 1.5 W / mK after the two-component silicone adhesive composition was cured.
  • the battery module was prepared in the same manner as in Example 2 except that the resin composition was prepared by mixing in a range of about 100 to 300 parts by weight with respect to 100 parts by weight of the total of 2 liquid solids, and having a room temperature viscosity of about 2,000,000 cP.) Prepared.
  • Alumina particle size distribution: 1 ⁇ m to 60 ⁇ m
  • a two-component silicone adhesive composition subject: SL5100A (manufactured by KCC), a curing agent: SL5100B (manufactured by KCC)
  • the thermal conductivity about 1.5 W / mK after the adhesive composition was cured.
  • a resin composition prepared by mixing in an amount that can be represented (in the range of about 300 to 500 parts by weight relative to 100 parts by weight of the total amount of two liquids) to have a room temperature viscosity of about 100,000 cP.
  • a battery module was manufactured in the same manner as in Example 1, except that the resin composition was not used, that is, the resin layer was not formed.
  • Example 5 when comparing the results of Examples 1, 3 and 5, it was confirmed that the thermal conductivity, specific gravity, heat resistance (TGA analysis results), hardness and the like changed depending on the type and content of the filler when the same series of resins were used. Can be.
  • TGA analysis results thermo conductivity, specific gravity, heat resistance (TGA analysis), hardness and the like changed depending on the type and content of the filler when the same series of resins were used.
  • Example 5 a smaller amount of filler was applied as compared to Examples 1 and 3, which showed lower thermal conductivity and specific gravity, lower heat resistance (TGA analysis), and similar adhesive strength, The hardness was low, and the dielectric breakdown voltage was low due to the decrease in the proportion of the fillers affecting securing the insulation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

본 출원은 배터리 모듈, 그 제조 방법 및 상기 제조 방법에 적용되는 열전도성 물질을 제공할 수 있다. 본 출원에서는 간단한 공정과 저비용으로 제조되면서도 부피 대비 출력이 우수한 배터리 모듈, 그 제조 방법 및 상기 제조 방법에 적용되는 열전도성 물질을 제공할 수 있다.

Description

배터리 모듈
본 출원은 2015년 6월 12일자 제출된 대한민국 특허출원 제10-2015-0083425호에 기초한 우선권의 이익을 주장하며, 해당 대한민국 특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 출원은, 배터리 모듈에 대한 것이다.
이차 전지에는 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지 또는 리튬 이차 전지 등이 있고, 대표적인 것은 리튬 이차 전지이다.
리튬 이차 전지는 주로 리튬 산화물과 탄소 소재를 각각 양극 활물질과 음극 활물질로 사용한다. 리튬 이차 전지는, 양극 활물질과 음극 활물질이 각각 도포된 양극판과 음극판이 세퍼레이터를 사이에 두고 배치된 전극 조립체 및 전극 조립체를 전해액과 함께 밀봉 수납하는 외장재를 포함하는데, 외장재의 형상에 따라 캔형 이차 전지와 파우치형 이차 전지로 분류될 수 있다. 본 명세서에서는 단일의 이차 전지를 배터리셀로 호칭할 수 있다.
자동차나 전력저장장치와 같은 중대형 장치에 이용되는 경우, 용량 및 출력을 높이기 위해 많은 수의 배터리셀이 서로 전기적으로 연결되어 배터리 모듈 또는 배터리팩이 구성될 수 있다.
배터리 모듈 또는 그러한 배터리 모듈이 복수 연결된 배터리팩을 구성하기 위해서는, 다양한 체결 부품이나 냉각 장비 등이 요구되는데, 이러한 체결 부품 또는 냉각 장비 등은 배터리 모듈 또는 배터리팩의 제조 비용의 상승을 유발하고, 부피 및 무게를 증가시키며, 증가된 부피 및 무게 대비 출력도 떨어지게 한다.
본 출원은, 배터리 모듈을 제공할 수 있다.
본 출원의 배터리 모듈은 하우징(이하, 본 명세서에서는 하우징은 모듈 케이스로 호칭될 수 있다.)과 상기 하우징 내에 수납되어 있는 배터리셀을 포함할 수 있다. 본 출원에서 하우징 내에는 적어도 2개 이상의 배터리셀이 수납되어 있을 수 있다. 본 출원에서 하우징 내에 수납되어 있는 상기 2개 이상의 배터리셀의 집합은 배터리셀 집합체로 호칭될 수 있다. 도 1은, 예시적인 배터리 모듈에 대한 것이고, 하우징(200)과 배터리셀 집합체(100)를 예시적으로 보여주고 있다.
하우징은, 적어도 하부판을 포함할 수 있다. 하부판에는 상기 배터리셀을 가이딩하는 볼록부가 적어도 2개 형성되어 있을 수 있다. 상기 배터리셀은 상기 하부판의 볼록부의 사이에 장착되어 있을 수 있다.
도 2는, 예시적인 배터리 모듈의 측면도로서, 상기 언급한 하부판(210)의 볼록부의 사이에 배터리셀(400)이 장착되어 있는 형태를 보여주고 있다. 상기 하부판에 형성되는 볼록부의 형태, 구체적인 수나 사이즈 등은 특별히 제한되지 않고, 장착하려고 하는 배터리셀의 수나 사이즈 및 그 형상을 고려하여 적절하게 선택할 수 있다.
상기 하부판은, 열전도성 하부판일 수 있다. 하부판에 형성되는 볼록부 역시 하부판의 일부이기 때문에, 열전도성일 수 있다. 용어 열전도성 하부판은, 상기 하부판의 열전도도가 10 W/mk 이상이거나, 혹은 적어도 상기와 같은 열전도도를 가지는 부위가 포함되어 있는 하부판을 의미한다. 예를 들면, 상기 하부판 전체, 혹은 적어도 상기 볼록부는 상기 기술한 열전도도를 가질 수 있다. 다른 예시에서 상기 하부판 및/또는 볼록부 중 적어도 하나가 상기 열전도도를 가지는 부위를 포함할 수 있다. 상기에서 열전도도는, 다른 예시에서 20 W/mk 이상, 30 W/mk 이상, 40 W/mk 이상, 50 W/mk 이상, 60 W/mk 이상, 70 W/mk 이상, 80 W/mk 이상, 90 W/mk 이상, 100 W/mk 이상, 110 W/mk 이상, 120 W/mk 이상, 130 W/mk 이상, 140 W/mk 이상, 150 W/mk 이상, 160 W/mk 이상, 170 W/mk 이상, 180 W/mk 이상, 190 W/mk 이상 또는 195 W/mk 이상일 수 있다. 상기 열전도도는 그 수치가 높을수록 모듈의 방열 특성 등의 측면에서 유리하므로, 그 상한은 특별히 제한되지 않는다. 일 예시에서 상기 열전도도는 약 1,000 W/mK 이하, 900 W/mk 이하, 800 W/mk 이하, 700 W/mk 이하, 600 W/mk 이하, 500 W/mk 이하, 400 W/mk 이하, 300 W/mk 또는 250 W/mK 이하일 수 있지만 이에 제한되는 것은 아니다. 상기와 같은 열전도도를 나타내는 재료의 종류는 특별히 제한되지 않으며, 예를 들면, 알루미늄, 금, 순은, 텅스텐, 구리, 니켈 또는 백금 등의 금속 소재 등이 있다. 하부판은 전체가 상기와 같은 열전도성 재료로 이루어지거나, 적어도 일부의 부위가 상기 열전도성 재료로 이루어진 부위일 수 있다. 이에 따라 상기 하부판은 상기 언급된 범위의 열전도도를 가지거나, 혹은 상기 언급된 열전도도를 가지는 부위를 적어도 포함할 수 있다.
하부판에서 상기 범위의 열전도도를 가지는 부위는 후술하는 수지층과 접촉하는 부위일 수 있다. 또한, 상기 열전도도를 가지는 부위는, 냉각수와 같은 냉각 매체와 접하는 부위일 수 있다. 이러한 구조에 의하면 배터리셀로부터 발생한 열을 효과적으로 외부로 방출할 수 있는 구조가 구현될 수 있다.
일 예시에서 상기 하부판은, 수냉 시스템과 같은 냉각 시스템과 접촉하고 있을 수 있다. 이 때 접촉은 후술하는 열적 접촉이다.
한편, 본 명세서에서 언급하는 물성 중에서 측정 온도가 그 물성에 영향을 미치는 경우, 특별히 달리 언급하지 않는 한, 그 물성은 상온에서 측정한 물성일 수 있다. 본 명세서에서 용어 상온은 약 10℃ 내지 30℃의 범위 내의 어느 한 온도, 예를 들면, 약 25℃, 약 23℃ 또는 약 20℃ 정도의 온도를 의미할 수 있다.
하우징은 상기 하부판을 적어도 포함하는 한 별도의 구조물을 추가로 포함할 수도 있다. 예를 들면, 하우징은 상기 하부판과 함께 상기 배터리셀의 집합체가 수납될 수 있는 내부 공간을 형성하는 측벽 등을 추가로 포함할 수도 있다. 하우징의 구조는 상기 하부판을 적어도 포함하는 한 특별히 제한되지 않는다.
배터리 모듈은 냉각핀 및/또는 냉각 플레이트를 추가로 포함할 수 있다. 상기에서 냉각핀은, 예를 들면, 볼록부에 의해 가이딩되어 있는 배터리셀의 사이에 위치할 수 있다. 적어도 상기 냉각핀은 상기 볼록부의 상부에 존재할 수 있다. 이 때 냉각핀은 상기 볼록부의 상부 표면을 덮은 상태로 상기 배터리셀의 사이에 위치할 수 있다.
도 2에서는, 배터리셀(400)의 사이에서 하부판(210)의 볼록부의 상부 표면을 덮은 상태로 위치하는 냉각핀(302)을 예시적으로 보여주고 있다.
한편, 상기에서 냉각 플레이트는 또한 상기 볼록부의 사이에 형성되는 하부판의 표면과 상기 배터리셀이 사이에 위치할 수 있다. 도 2는 이러한 냉각 플레이트(301)를 예시적으로 보여주고 있다.
배터리 모듈은 상기 냉각핀 및 냉각 플레이트 중에서 어느 하나를 포함하거나, 혹은 상기 양자를 모두 포함할 수 있다.
냉각핀 및/또는 냉각 플레이트는, 상기 하부판에서 언급한 것과 같은 범위의 열전도도를 가질 수 있고, 따라서 하부판과 같이 알루미늄, 금, 순은, 텅스텐, 구리, 니켈 또는 백금 등의 금속 소재일 수 있다.
하우징 내의 배터리셀의 수는 배터리 모듈의 용도 등에 따라서 요구되는 출력 등에 의해 조절되는 것으로 특별히 제한되지 않는다. 상기 배터리셀들은 서로 전기적으로 연결되어 있을 수 있다.
상기 배터리셀의 종류도 특별히 제한되지 않으며, 공지의 다양한 배터리셀이 모두 적용될 수 있다. 하나의 예시에서 상기 배터리셀은 파우치형 전지일 수 있다. 도 3을 참조하면, 파우치형 전지(100)는 통상적으로 전극 조립체, 전해질 및 파우치 외장재를 포함할 수 있다. 도 3은, 예시적인 파우치형 전지의 구성을 개략적으로 나타내는 분리 사시도이고, 도 4는 도 3의 구성의 결합 사시도이다.
파우치형 전지(100)에 포함되는 전극 조립체(110)는, 하나 이상의 양극판 및 하나 이상의 음극판이 세퍼레이터를 사이에 두고 배치된 형태일 수 있다. 전극 조립체(110)는, 하나의 양극판과 하나의 음극판이 세퍼레이터와 함께 권취된 권취형이거나, 다수의 양극판과 다수의 음극판이 세퍼레이터를 사이에 두고 교대로 적층된 스택형 등으로 구분될 수 있다.
파우치 외장재(120)는, 예를 들면, 외부 절연층, 금속층 및 내부 접착층을 구비하는 형태로 구성될 수 있다. 이러한 외장재(120)는, 전극 조립체(110)와 전해액 등 내부 요소를 보호하고, 전극 조립체(110)와 전해액에 의한 전기 화학적 성질에 대한 보완 및 방열성 등을 감안하여 알루미늄 등의 금속 박막을 포함할 수 있다. 이러한 금속 박막은, 전극 조립체(110) 및 전해액 등의 요소나 전지(100) 외부의 다른 요소와의 전기적 절연성을 확보하기 위해, 절연 물질로 형성된 절연층 사이에 개재될 수 있다.
하나의 예시에서 외장재(120)는, 상부 파우치(121)와 하부 파우치(122)를 포함할 수 있고, 상부 파우치(121)와 하부 파우치(122) 중 적어도 하나에는 오목한 형태의 내부 공간(I)이 형성될 수 있다. 이러한 파우치의 내부 공간(I)에는 전극 조립체(110)가 수납될 수 있다. 상부 파우치(121)와 하부 파우치(122)의 외주면에는 실링부(S)가 구비되고, 이러한 실링부(S)가 서로 접착되어, 전극 조립체(110)가 수용된 내부 공간이 밀폐될 수 있다.
전극 조립체(110)의 각 전극판에는 전극 탭이 구비되며, 하나 이상의 전극 탭이 전극 리드와 연결될 수 있다. 전극 리드는 상부 파우치(121)와 하부 파우치(122)의 실링부(S) 사이에 개재되어 외장재(120)의 외부로 노출됨으로써, 이차 전지(100)의 전극 단자로서 기능할 수 있다.
그러나, 상기 설명한 파우치형 전지의 형태는 하나의 예시이며, 본 출원에서 적용되는 배터리셀이 상기와 같은 종류에 제한되는 것은 아니다. 본 출원에서는 공지된 다양한 형태의 파우치형 전지 또는 기타 다른 형태의 전지가 모두 배터리셀로서 적용될 수 있다.
배터리 모듈은 수지층, 예를 들면, 열전도도가 2 W/mK 이상인 수지층을 추가로 포함할 수 있다. 상기 수지층은, 상기 냉각핀과 볼록부의 사이, 구체적으로는 볼록부의 상부 표면을 덮고 있는 냉각핀의 영역과 상기 볼록부의 사이, 상기 냉각 플레이트와 상기 하부판의 사이, 상기 냉각핀과 상기 배터리셀의 사이 또는 상기 냉각 플레이트와 상기 배터리셀의 사이 중 적어도 어느 하나의 영역에 존재할 수 있다. 이러한 수지층은, 상기 냉각핀, 냉각 플레이트, 볼록부, 하부판 및/또는 배터리셀과 접촉하고 있을 수 있다. 상기에서 접촉은 열적 접촉이다. 용어 열적 접촉은 수지층과 상기 냉각핀, 냉각 플레이트, 볼록부, 하부판 및/또는 배터리셀의 사이에 어느 정도 공간이 존재하더라도 어느 하나의 대상에서 다른 대상으로 열이 전달될 수 있는 경우를 의미할 수 있다.
이와 같은 수지층은, 상기 하부판의 전체 면적의 약 10% 이상, 약 15% 이상, 약 20% 이상, 약 25% 이상, 약 30% 이상, 약 35% 이상, 약 40% 이상, 약 45% 이상, 약 50% 이상 또는 약 55% 이상의 면적을 덮고 있을 수 있다. 적어도 상기 수지층은 전술한 하부판의 볼록부는 덮고 있을 수 있다. 상기 수지층의 면적의 상한은 특별히 제한되지 않으며, 예를 들면, 약 100% 정도이다.
본 출원에서 용어 수지층은, 수지 성분을 포함하는 층이고, 하나의 예시에서 상기 수지층은, 접착제층일 수도 있다. 하나의 예시에서 상기 배터리 모듈은, 상기 하부판, 배터리셀, 냉각핀 및 냉각 플레이트를 포함하고, 상기 냉각핀과 하부판의 사이 및/또는 상기 하부판과 냉각 플레이트의 사이에서 양자와 접촉하고 있는 상기 수지층을 포함한다. 한편, 상기에서 접촉은, 전술한 열적 접촉을 의미하는 것으로, 상기 접촉에는 상기 수지층이 상기 하부판 등과 직접 접촉하고 있거나, 혹은 상기 수지층과 상기 하부판 등의 사이에 다른 요소, 예를 들면, 절연층 등이 존재하지만, 그 다른 요소가 상기 수지층으로부터 상기 하부판 등으로의 열의 전달을 방해하고 있지 않은 상태를 의미할 수 있다. 상기에서 열의 전달을 방해하지 않는다는 것은, 상기 수지층과 상기 하부판 등의 사이에 다른 요소(ex. 절연층)가 존재하는 경우에도, 그 다른 요소와 상기 수지층의 전체 열전도도가 약 1.5 W/mK 이상, 약 2 W/mK 이상, 2.5 W/mK 이상, 3 W/mK 이상, 3.5 W/mK 이상 또는 4 W/mK 이상이 되거나, 혹은 상기 수지층 및 그와 접촉하고 있는 하부판 등의 전체 열전도도가 상기 다른 요소가 있는 경우에도 상기 범위 내에 포함되는 경우를 의미한다. 상기 열적 접촉의 열전도도는 50 W/mK 이하, 45 W/mk 이하, 40 W/mk 이하, 35 W/mk 이하, 30 W/mk 이하, 25 W/mk 이하, 20 W/mk 이하, 15 W/mk 이하, 10W/mK 이하, 5 W/mK 이하, 4.5 W/mK 이하 또는 약 4.0 W/mK 이하일 수 있다. 이러한 열적 접촉은, 상기 다른 요소가 존재하는 경우에, 그 다른 요소의 열전도도 및/또는 두께를 제어하여 달성할 수 있다.
수지층은, 필요하다면, 상기 냉각핀 및/또는 냉각 플레이트와 배터리셀이 사이에도 존재할 수 있다.
본 출원에서는 상기와 같은 구조의 채용을 통해 일반적인 배터리 모듈 또는 그러한 모듈의 집합체인 배터리팩의 구성 시에 기존에 요구되던 다양한 체결 부품이나 모듈의 냉각 장비 등을 대폭적으로 감소시키면서도, 방열 특성을 확보하면서, 단위 부피 당 보다 많은 배터리셀이 수납되는 모듈을 구현할 수 있다. 이에 따라서, 본 출원에서는 보다 소형이고, 가벼우면서도 고출력의 배터리 모듈을 제공할 수 있다.
전술한 바와 같이, 상기 열전도성 부위 또는 열전도성 하부판 등은 냉각수와 같은 냉각 매체와 접하는 부위일 수 있다.
수지층은, 얇은 층의 형태이거나, 혹은 하부판과 냉각핀 및/또는 냉각 플레이트 등의 사이 공간을 충전하고 있을 수 있다. 수지층의 두께는 예를 들면, 약 100 ㎛ 내지 5 mm의 범위 내 또는 약 200㎛ 내지 5 mm의 범위 내일 수 있다. 본 출원의 구조에서는 상기 수지층이 얇으면, 방열 특성에서 유리하고, 두꺼우면 절연 특성에서 유리하기 때문에, 이러한 점을 고려하여 적정 두께를 설정할 수 있다. 상기 두께는, 수지층의 가장 얇은 부위의 두께, 가장 두꺼운 부위의 두께 또는 평균 두께일 수 있다.
상기 수지층 또는 그 수지층이 적용된 배터리 모듈은, 후술하는 물성 중 적어도 하나 이상의 물성을 가질 수 있다. 후술하는 각 물성은 독립적인 것으로 어느 하나의 물성이 다른 물성을 우선하는 것이 아니며, 수지층은, 하기 기술하는 물성 중 적어도 하나 또는 2개 이상을 만족할 수 있다.
예를 들면, 상기 수지층은 열전도성 수지층으로서, 열전도도가 약 2 W/mK 이상, 2.5 W/mK 이상, 3 W/mK 이상, 3.5 W/mK 이상 또는 4 W/mK 이상일 수 있다. 상기 열전도도는 50 W/mK 이하, 45 W/mk 이하, 40 W/mk 이하, 35 W/mk 이하, 30 W/mk 이하, 25 W/mk 이하, 20 W/mk 이하, 15 W/mk 이하, 10W/mK 이하, 5 W/mK 이하, 4.5 W/mK 이하 또는 약 4.0 W/mK 이하일 수 있다. 상기와 같이 수지층이 열전도성 수지층인 경우에 상기 수지층이 부착되어 있는 하부판 등은 전술한 열전도도가 10 W/mK 이상 부위일 수 있다. 이 때 상기 열전도도를 나타내는 모듈 케이스의 부위는 냉각 매체, 예를 들면, 냉각수 등과 접하는 부위일 수 있다. 수지층의 열전도도는, 예를 들면, ASTM D5470 규격 또는 ISO 22007-2 규격에 따라 측정된 수치이다. 수지층의 열전도도를 상기와 같은 범위로 하는 방식은 특별히 제한되지 않는다. 예를 들면, 수지층의 열전도도는 수지층에 사용되는 수지의 종류 및/또는 필러의 사용을 통해 조절할 수 있다. 예를 들어, 접착제로 일반적으로 사용될 수 있는 것으로 알려진 수지 성분 중에서 아크릴계 수지, 우레탄계 수지 및 실리콘계 수지는 서로 유사한 열전도 특성을 가지고, 에폭시계 수지가 그에 비하여 열전도성이 우수하며, 올레핀계 수지는 에폭시 수지에 비하여 높은 열전도성을 가지는 것으로 알려져 있다. 따라서, 필요에 따라 수지 중 우수한 열전도도를 가지는 것을 선택할 수 있다. 다만, 일반적으로 수지 성분만으로는 목적하는 열전도도가 확보되기 어렵고, 후술하는 바와 같이 열전도성이 우수한 필러 성분을 적정 비율로 수지층에 포함시키는 방식도 적용할 수 있다.
배터리 모듈에서 상기 수지층 또는 그 수지층이 적용된 배터리 모듈의 열저항이 5 K/W 이하, 4.5 K/W 이하, 4 K/W 이하, 3.5 K/W 이하, 3 K/W 이하 또는 약 2.8 K/W 이하일 수 있다. 이러한 범위의 열저항이 나타나도록 수지층 또는 그 수지층이 적용된 배터리 모듈을 조절할 경우에 우수한 냉각 효율 내지는 방열 효율이 확보될 수 있다. 상기 열저항은 측정하는 방식은 특별히 제한되지 않는다. 예를 들면, ASTM D5470 규격 또는 ISO 22007-2 규격에 따라 측정할 수 있다.
수지층은, 배터리셀의 효과적인 고정, 모듈의 사용 과정에서의 내충격성 및 내진동성을 고려하여 적절한 접착력을 가질 수 있다. 하나의 예시에서 상기 수지층은 접착력이 약 1,000 gf/10mm 이하, 약 950 gf/10mm 이하, 약 900 gf/10mm 이하, 약 850 gf/10mm 이하, 약 800 gf/10mm 이하, 약 750 gf/10mm 이하, 약 700 gf/10mm 이하, 약 650 gf/10mm 이하 또는 약 600 gf/10mm 이하일 수 있다. 상기 수지층의 접착력은 다른 예시에서 약 50 이상, 약 70 gf/10mm 이상, 약 80 gf/10mm 이상 또는 약 90 gf/10mm 이상일 수 있다. 상기 접착력은, 약 300 mm/min의 박리 속도 및 180도의 박리 각도로 측정한 수치일 수 있다. 또한, 상기 접착력은 수지층이 접촉하고 있는 모듈 케이스에 대한 접착력일 수 있다. 예를 들어, 후술하는 바와 같이 모듈 케이스에서 수지층과 접촉하고 있는 하부판 등과 상기 수지층과의 사이에 절연층이 형성되는 경우에는, 상기 모듈 케이스에 대한 접착력은 상기 절연층이 형성되어 있는 모듈 케이스에 대한 접착력일 수 있다. 상기와 같은 접착력이 확보될 수 있다면, 다양한 소재, 예를 들면, 배터리 모듈에 포함되는 케이스 내지는 배터리셀 등의 다양한 소재에 대하여 우수한 접착력이 나타날 수 있다. 이러한 범위의 접착력이 확보되면, 배터리 모듈에서 배터리셀의 충방전시에 부피 변화, 배터리 모듈의 사용 온도의 변화 또는 수지층의 경화 수축 등에 의한 박리 등이 방지되어 우수한 내구성이 확보될 수 있다. 이러한 접착력은, 예를 들면, 상기 수지층을 접착제층으로 구성함으로써 확보할 수 있다. 즉, 공지된 접착 소재가 나타낼 수 있는 접착력은 잘 알려져 있고, 그러한 접착력을 고려하여 소재를 선택하면 된다.
수지층은 또한 열충격 시험, 예를 들면, 약 -40℃의 저온에서 30분 유지한 후 다시 온도를 80℃로 올려서 30분 유지하는 것을 하나의 사이클로 하여 상기 사이클을 100회 반복하는 열충격 시험 후에 배터리 모듈의 모듈 케이스 또는 배터리셀로부터 떨어지거나 박리되거나 혹은 크렉이 발생하지 않을 수 있도록 형성되는 것이 요구될 수 있다. 예를 들어, 배터리 모듈이 자동차 등과 같이 오랜 보증 기간(자동차의 경우, 약 15년 이상)이 요구되는 제품에 적용되는 경우에 내구성이 확보되기 위해서는 상기와 같은 수준의 성능이 요구될 수 있다.
수지층은, 전기 절연성 수지층일 수 있다. 전술한 구조에서 수지층이 전기 절연성을 나타내는 것에 의해 배터리 모듈의 성능을 유지하고, 안정성을 확보할 수 있다. 전기절연성 수지층은, ASTM D149에 준거하여 측정한 절연파괴전압이 약 3 kV/mm 이상, 약 5 kV/mm 이상, 약 7 kV/mm 이상, 10 kV/mm 이상, 15 kV/mm 이상 또는 20 kV/mm 이상일 수 있다. 상기 절연파괴전압은 그 수치가 높을수록 수지층이 우수한 절연성을 보이는 것으로 특별히 제한되는 것은 아니나, 수지층의 조성 등을 고려하면 약 50 kV/mm 이하, 45 kV/mm 이하, 40 kV/mm 이하, 35 kV/mm 이하, 30 kV/mm 이하일 수 있다. 상기와 같은 절연 파괴 전압도 수지층의 수지 성분의 절연성을 조절하여 제어할 수 있으며, 예를 들면, 수지층 내에 절연성 필러를 적용함으로써 상기 절연 파괴 전압을 조절할 수 있다. 일반적으로 열전도성 필러 중에서 후술하는 바와 같은 세라믹 필러는 절연성을 확보할 수 있는 성분으로 알려져 있다.
수지층으로는, 안정성을 고려하여 난연성 수지층이 적용될 수 있다. 본 출원에서 용어 난연성 수지층은 UL 94 V Test (Vertical Burning Test)에서 V-0 등급을 보이는 수지층을 의미할 수 있다. 이를 통해 배터리 모듈에서 발생할 수 있는 화재 및 기타 사고에 대한 안정성을 확보할 수 있다.
수지층은 비중이 5 이하일 수 있다. 상기 비중은 다른 예시에서 4.5 이하, 4 이하, 3.5 이하 또는 3 이하일 수 있다. 이러한 범위의 비중을 나타내는 수지층은 보다 경량화된 배터리 모듈의 제조에 유리하다. 상기 비중은 그 수치가 낮을수록 모듈의 경량화에 유리하므로, 그 하한은 특별히 제한되지 않는다. 예를 들면, 상기 비중은 약 1.5 이상 또는 2 이상일 수 있다. 수지층이 상기와 같은 범위의 비중을 나타내기 위하여 수지층에 첨가되는 성분이 조절될 수 있다. 예를 들어, 열전도성 필러의 첨가 시에 가급적 낮은 비중에서도 목적하는 열전도성이 확보될 수 있는 필러, 즉 자체적으로 비중이 낮은 필러를 적용하거나, 표면 처리가 이루어진 필러를 적용하는 방식 등이 사용될 수 있다.
수지층은 가급적 휘발성 물질을 포함하지 않는 것이 적절하다. 예를 들면, 상기 수지층은 비휘발성분의 비율이 90 중량% 이상, 95 중량% 이상 또는 98 중량% 이상일 수 있다. 상기에서 비휘발성분과 그 비율은 다음의 방식으로 규정될 수 있다. 즉, 상기 비휘발부은 수지층을 100℃에서 1 시간 정도 유지한 후에 잔존하는 부분을 비휘발분으로 정의할 수 있고, 따라서 상기 비율은 상기 수지층의 초기 중량과 상기 100℃에서 1 시간 정도 유지한 후의 비율을 기준으로 측정할 수 있다.
또한, 수지층에는 필요에 따라서 열화에 대하여 우수한 저항성을 가질 것이나, 모듈 케이스 또는 배터리셀의 표면가 가능한 화학적으로 반응하지 않는 안정성이 요구될 수 있다.
수지층은 또한 경화 과정 또는 경화된 후에 낮은 수축률을 가지는 것이 유리할 수 있다. 이를 통해 모듈의 제조 내지는 사용 과정에서 발생할 수 있는 박리나 공극의 발생 등을 방지할 수 있다. 상기 수축률은 전술한 효과를 나타낼 수 있는 범위에서 적절하게 조절될 수 있고, 예를 들면, 5% 미만, 3% 미만 또는 약 1% 미만일 수 있다. 상기 수축률은 그 수치가 낮을수록 유리하므로, 그 하한은 특별히 제한되지 않는다.
수지층은 또한 낮은 열팽창 계수(CTE)를 가지는 것이 유리할 수 있다. 이를 통해 모듈의 제조 내지는 사용 과정에서 발생할 수 있는 박리나 공극의 발생 등을 방지할 수 있다. 상기 열팽창 계수는 전술한 효과를 나타낼 수 있는 범위에서 적절하게 조절될 수 있고, 예를 들면, 300 ppm/K 미만, 250 ppm/K 미만, 200 ppm/K 미만, 150 ppm/K 미만 또는 약 100 ppm/K 미만일 수 있다. 상기 열팽창계수는 그 수치가 낮을수록 유리하므로, 그 하한은 특별히 제한되지 않는다.
수지층은 인장 강도가 적절하게 조절될 수 있고, 이를 통해 우수한 내충격성 등이 확보되어 적절한 내구성을 보이는 모듈의 제공이 가능할 수 있다. 인장 강도(tensile strength)는, 예를 들면, 약 1.0 MPa 이상의 범위에서 조절될 수 있다.
수지층은 연신율(elongation)이 적절하게 조절될 수 있고, 이를 통해 우수한 내충격성 등이 확보되어 적절한 내구성을 보이는 모듈의 제공이 가능할 수 있다. 연신율은, 예를 들면, 약 10% 이상 또는 약 15% 이상의 범위에서 조절될 수 있다.
수지층은 또한 적절한 경도를 나타내는 것이 유리할 수 있다. 예를 들어, 수지층의 경도가 지나치게 높으면, 수지층이 지나치게 브리틀(brittle)하게 되어 신뢰성에 나쁜 영향을 줄 수 있다. 또한, 수지층의 경도의 조절을 통해 내충격성, 내진동성을 확보하고, 제품의 내구성을 확보할 수 있다. 수지층은, 예를 들면, 쇼어(shore) A 타입에서의 경도가 100 미만, 99 이하, 98 이하, 95 이하 또는 93 이하이거나, 쇼어 D 타입에서의 경도가 약 80 미만, 약 70 이하 또는 약 65 이하 또는 약 60 이하일 수 있다. 상기 경도의 하한은 특별히 제한되지 않는다. 예를 들면, 경도는 쇼어(shore) A 타입에서 경도가 60 이상이거나, 쇼어(shore) OO 타입에서의 경도가 5 이상 또는 약 10 이상 정도일 수 있다. 수지층의 경도는 통상 그 수지층에 포함되는 필러의 종류 내지 비율에 의해 좌우되고, 과량의 필러를 포함하면, 통상 경도가 높아진다. 다만, 실리콘계 수지가 일반적으로 에폭시 또는 우레탄 등 다른 수지에 비하여 낮은 경도를 나타내는 것처럼 수지층에 포함되는 수지 성분도 그 경도에 영향을 준다.
수지층은, 또한 열중량분석(TGA)에서의 5% 중량 손실(5% weight loss) 온도가 400℃ 이상이거나, 800℃ 잔량이 70 중량% 이상일 수 있다. 이러한 특성에 의해 배터리 모듈의 고온에서의 안정성이 보다 개선될 수 있다. 상기 800℃ 잔량은 다른 예시에서 약 75 중량% 이상, 약 80 중량% 이상, 약 85 중량% 이상 또는 약 90 중량% 이상일 수 있다. 상기 800℃ 잔량은 다른 예시에서 약 99 중량% 이하일 수 있다. 상기 열중량 분석(TGA)은, 60 cm3/분의 질소(N2) 분위기 하에서 20℃/분의 승온 속도로 25℃ 내지 800℃의 범위 내에서 측정할 수 있다. 상기 열중량분석(TGA) 결과도 수지층의 조성의 조절을 통해 달성할 수 있다. 예를 들어, 800℃ 잔량은, 통상 그 수지층에 포함되는 필러의 종류 내지 비율에 의해 좌우되고, 과량의 필러를 포함하면, 상기 잔량은 증가한다. 다만, 실리콘계 수지가 일반적으로 에폭시 또는 우레탄 등 다른 수지에 비하여 내열성이 높기 때문에 상기 잔량은 더욱 높고, 이처럼 수지층에 포함되는 수지 성분도 그 경도에 영향을 준다.
수지층의 종류는 배터리셀의 효과적인 고정이 가능하고, 필요에 따라 상기 언급된 물성이 부여될 수 있는 것이라면 특별히 제한되지 않고, 공지의 경화성 수지 소재가 모두 사용될 수 있다. 사용될 수 있는 소재로는, 아크릴계 수지, 에폭시계 수지, 우레탄계 수지, 올레핀계 수지, 우레탄계 수지, EVA(Ethylene vinyl acetate)계 수지 또는 실리콘계 수지 등을 들 수 있고, 따라서 상기 수지층은 상기 수지를 포함할 수 있다. 상기 수지층은, 상기 수지를 수지 성분 중에서 주성분으로 포함할 수 있다. 즉, 상기 수지층에 포함되는 전체 수지 성분 중에서 상기 아크릴계 수지, 에폭시계 수지, 우레탄계 수지, 올레핀계 수지, 우레탄계 수지, EVA(Ethylene vinyl acetate)계 수지 또는 실리콘계 수지 등은 중량을 기준으로 약 70% 이상, 약 75% 이상, 약 80% 이상, 약 85% 이상 또는 약 90% 이상 포함될 수 있다. 상기 비율은 약 99% 이하 또는 약 95% 이하일 수 있다.
수지층을 형성하는 재료, 즉 수지 조성물은, 전술한 바와 같이 접착 재료일 수 있고, 또한 용제형, 수계 또는 무용제형일 수 있으나, 후술하는 제조 공정의 편의 등을 고려하여 무용제형 수지층인 것이 적절할 수 있다.
수지층 재료는 활성 에너지선 경화형, 습기 경화형, 열 경화형 또는 상온 경화형 등일 수 있고, 역시 후술하는 제조 공정의 편의성 등을 고려하여 상온 경화형인 것이 적절할 수 있다.
수지층은 전술한, 열전도성, 절연성, 내열성(TGA 분석) 또는 비중 등을 고려하여 필러를 포함할 수 있다. 적절한 필러의 사용을 통해 전술한 범위의 열전도도 등을 확보할 수 있다. 하나의 예시에서 상기 필러는 열전도성 필러일 수 있다. 본 출원에서 용어 열전도성 필러는, 열전도도가 약 1 W/mK 이상, 약 5 W/mK 이상, 약 10 W/mK 이상 또는 약 15 W/mK 이상인 소재를 의미한다. 상기 열전도성 필러의 열전도도는 약 400 W/mK 이하, 약 350 W/mK 이하 또는 약 300 W/mK 이하일 수 있다. 사용될 수 있는 열전도성 필러의 종류는 특별히 제한되지 않지만, 절연성 등을 고려하여 세라믹 필러를 적용할 수 있다. 예를 들면, 알루미나, AlN(aluminum nitride), BN(boron nitride), 질화 규소(silicon nitride), SiC 또는 BeO 등과 같은 세라믹 입자가 사용될 수 있다. 또한, 수지층의 절연 특성이 확보될 수 있다면, 그래파이트(graphite) 등의 탄소 필러의 적용도 고려할 수 있다. 수지층 내에 포함되는 상기 필러의 형태나 비율은 특별히 제한되지 않으며, 수지 조성물의 점도, 수지층 내에서의 침강 가능성, 목적하는 열저항 내지는 열전도도, 절연성, 충진 효과 또는 분산성 등을 고려하여 선택될 수 있다. 일반적으로 필러의 사이즈가 커질수록 수지 조성물의 점도가 높아지고, 수지층 내에서 필러가 침강할 가능성이 높아진다. 또한 사이즈가 작아질수록 열저항이 높아지는 경향이 있다. 따라서 상기와 같은 점을 고려하여 적정 종류의 필러가 선택될 수 있고, 필요하다면 2종 이상의 필러를 사용할 수도 있다. 또한, 충진되는 양을 고려하면 구형의 필러를 사용하는 것이 유리하지만, 네트워크의 형성이나 전도성 등을 고려하여 침상이나 판상 등과 같은 형태의 필러도 사용될 수 있다. 하나의 예시에서 상기 수지층은 평균 입경이 0.001 ㎛ 내지 80 ㎛의 범위 내에 있는 열전도성 필러를 포함할 수 있다. 상기 필러의 평균 입경은 다른 예시에서 0.01 ㎛ 이상, 0.1 이상, 0.5㎛ 이상, 1 ㎛ 이상, 2㎛ 이상, 3㎛ 이상, 4㎛ 이상, 5㎛ 이상 또는 약 6㎛ 이상일 수 있다. 상기 필러의 평균 입경은 다른 예시에서 약 75㎛ 이하, 약 70㎛ 이하, 약 65㎛ 이하, 약 60㎛ 이하, 약 55㎛ 이하, 약 50㎛ 이하, 약 45㎛ 이하, 약 40㎛ 이하, 약 35㎛ 이하, 약 30㎛ 이하, 약 25㎛ 이하, 약 20㎛ 이하, 약 15㎛ 이하, 약 10㎛ 이하 또는 약 5㎛ 이하일 수 있다.
수지층에 포함되는 필러의 비율은, 전술한 특성, 예를 들면, 열전도도, 절연성 등이 확보될 수 있도록 수지층의 특성을 고려하여 선택될 수 있다. 예를 들면, 상기 필러는, 수지층의 수지 성분 100 중량부 대비 약 50 내지 2,000 중량부의 범위 내에서 포함될 수 있다. 상기 필러의 중량부는 다른 예시에서 약 100 중량부 이상, 약 150 중량부 이상, 약 200 중량부 이상, 약 250 중량부 이상, 약 300 중량부 이상, 약 350 중량부 이상, 약 400 중량부 이상, 약 500 중량부 이상, 약 550 중량부 이상, 약 600 중량부 이상 또는 약 650 중량부 이상일 수 있다.
수지층은, 필요하다는 점도의 조절, 예를 들면 점도를 높이거나 혹은 낮추기 위해 또는 전단력에 따른 점도의 조절을 위하여 점도 조절제, 예를 들면, 요변성 부여제, 희석제, 분산제, 표면 처리제 또는 커플링제 등을 추가로 포함하고 있을 수 있다.
요변성 부여제는 수지 조성물의 전단력에 따른 점도를 조절하여 배터리 모듈의 제조 공정이 효과적으로 이루어지도록 할 수 있다. 사용할 수 있는 요변성 부여제로는, 퓸드 실리카 등이 예시될 수 있다.
희석제 또는 분산제는 통상 수지 조성물의 점도를 낮추가 위해 사용되는 것으로 상기와 같은 작용을 나타낼 수 있는 것이라면 업계에서 공지된 다양한 종류의 것을 제한 없이 사용할 수 있다.
표면 처리제는 수지층에 도입되어 있는 필러의 표면 처리를 위한 것이고, 상기와 같은 작용을 나타낼 수 있는 것이라면 업계에서 공지된 다양한 종류의 것을 제한 없이 사용할 수 있다.
커플링제의 경우는, 예를 들면, 알루미나와 같은 열전도성 필러의 분산성을 개선하기 위해 사용될 수 있고, 상기와 같은 작용을 나타낼 수 있는 것이라면 업계에서 공지된 다양한 종류의 것을 제한 없이 사용할 수 있다.
수지층은 난연제 또는 난연 보조제 등을 추가로 포함할 수 있다. 이러한 수지층은 난연성 수지층을 형성할 수 있다. 난연제로는 특별한 제한 없이 공지의 다양한 난연제가 적용될 수 있으며, 예를 들면, 고상의 필러 형태의 난연제나 액상 난연제 등이 적용될 수 있다. 난연제로는, 예를 들면, 멜라민 시아누레이트(melamine cyanurate) 등과 같은 유기계 난연제나 수산화 마그네슘 등과 같은 무기계 난연제 등이 있으나, 이에 제한되는 것은 아니다.
수지층에 충전되는 필러의 양이 많은 경우 액상 타입의 난연 재료(TEP, Triethyl phosphate 또는 TCPP, tris(1,3-chloro-2-propyl)phosphate 등)를 사용할 수도 있다. 또한, 난연상승제의 작용을 할 수 있는 실란 커플링제가 추가될 수도 있다.
수지층은 상기 성분 중 어느 하나 또는 2종 이상을 포함할 수 있다.
하나의 예시에서 상기 배터리 모듈은 상기 하부판과 상기 배터리셀의 사이 또는 상기 수지층과 상기 하부판, 냉각핀 및/또는 냉각 플레이트의 사이에 절연층을 추가로 포함할 수 있다. 절연층을 추가함으로써 사용 과정에서 발생할 수 있는 충격에 의한 셀과 케이스의 접촉에 따른 전기적 단락 현상이나 화재 발생 등의 문제를 방지할 수 있다. 상기 절연층은 높은 절연성과 열전도성을 가지는 절연 시트를 사용하여 형성하거나, 혹은 절연성을 나타내는 물질의 도포 내지는 주입에 의해 형성할 수 있다. 예를 들면, 후술하는 배터리 모듈의 제조 방법에서 수지 조성물의 주입 전에 절연층을 형성하는 과정이 수행될 수 있다. 절연층의 형성에는 소위 TIM(Thermal Interface Material) 등이 적용될 수도 있다. 다른 방식에서 절연층은 접착성 물질로 형성할 수 있으며, 예를 들면, 열전도성 필러 등의 필러의 함량이 적거나 없는 수지층을 사용하여 절연층을 형성할 수도 있다. 절연층의 형성에 사용될 수 있는 수지 성분으로는, 아크릴 수지, PVC(poly(vinyl chloride)), PE(polyethylene) 등의 올레핀 수지, 에폭시 수지, 실리콘이나, EPDM 러버((ethylene propylene diene monomer rubber) 등의 러버 성분 등이 예시될 수 있지만, 이에 제한되는 것은 아니다. 상기 절연층은, ASTM D149에 준거하여 측정한 절연파괴전압이 약 5 kV/mm 이상, 약 10 kV/mm 이상, 약 15 kV/mm 이상, 20 kV/mm 이상, 25 kV/mm 이상 또는 30 kV/mm 이상일 수 있다. 상기 절연파괴전압은 그 수치가 높을수록 우수한 절연성을 보이는 것으로 특별히 제한되는 것은 아니다. 예를 들면, 상기 절연층의 절연파괴전압은 약 100 kV/mm 이하, 90 kV/mm 이하, 80 kV/mm 이하, 70 kV/mm 이하 또는 60 kV/mm 이하일 수 있다. 상기 절연층의 두께는 그 절연층의 절연성이나 열전도성 등을 고려하여 적정 범위로 설정할 수 있으며, 예를 들면, 약 5㎛ 이상, 약 10㎛ 이상, 20㎛ 이상, 30㎛ 이상, 40㎛ 이상, 50㎛ 이상, 60㎛ 이상, 70㎛ 이상, 80㎛ 이상 또는 90㎛ 이상 이상 정도일 수 있다. 또한, 두께의 상한도 특별히 제한되지 않으며, 예를 들면, 약 1 mm 이하, 약 200㎛ 이하, 190㎛ 이하, 180㎛ 이하, 170㎛ 이하, 160㎛ 이하 또는 150㎛ 이하일 수 있다.
본 출원은 또한 배터리 모듈, 예를 들면, 상기 언급된 배터리 모듈의 제조 방법에 대한 것이다.
상기와 같은 모듈을 제조하는 방법은 특별히 제한되지 않고, 상기 하부판의 표면, 적어도 상기 볼록부상에 전술한 수지 조성물을 사용하여 수지 조성물층을 형성한 후에 냉각핀 및/또는 냉각 플레이트와 배러리셀을 수납하는 단계를 포함할 수 있다. 상기 과정 중에 적절한 시기에 상기 수지 조성물을 경화시키는 단계가 추가로 수행될 수 있다.
본 출원에서 용어 수지 조성물은, 경화 전의 수지층의 상태를 의미하고, 용어 수지층은 경화 후의 수지층의 상태를 의미할 수 있다.
하부판에 수지 조성물의 층을 형성하는 방식은 특별히 제한되지 않고, 공지의 방식으로 수행할 수 있다.
상기에서 수지 조성물의 종류는 특별히 제한되지 않고, 목적하는 물성을 나타낼 수 있는 종류의 적절한 수지 조성물을 선택할 수 있다.
예를 들면, 상기에서 주입되는 수지 조성물은, 전술한 열전도성 등의 물성을 만족하거나, 그를 위한 성분을 포함하는 수지층을 형성할 수 있는 수지 조성물일 수 있다.
이러한 수지 조성물은, 전술한 용제형, 수계 또는 무용제형 수지 조성물일 수 있으며, 적절하게는 무용제형 수지 조성물일 수 있다.
또한, 수지 조성물은 활성 에너지선 경화형, 습기 경화형, 열 경화형 또는 상온 경화형 수지 조성물 등일 수 있고, 적절하게는 상온 경화형 수지 조성물일 수 있다.
상기 수지 조성물은, 전술한 열전도성 필러 등의 다양한 첨가제를 하나 이상 포함하는 수지 조성물일 수 있다.
이러한 수지 조성물은 일액형, 이액형 또는 삼액형 등으로 조성될 수 있다.
이러한 수지 조성물은 필요한 경우에 경화될 수 있는데, 이 때 수지 조성물을 경화시키는 방식은 특별히 제한되지 않는다.
예를 들어, 수지 조성물이 활성 에너지선 경화형인 경우에는 수지 조성물에 자외선 등의 활성 에너지선을 조사하는 방식, 습기 경화형인 경우에는 적절한 습기 하에 유지하는 방식, 열 경화형인 경우에는 적절한 열을 인가하는 방식 또는 상온 경화형인 경우에는 상온에서 수지 조성물을 유지하는 방식 등에 의해 상기 단계를 수행할 수 있다.
또한, 경화 전 또는 경화 과정이나 배터리셀의 수납 전 또는 수납 과정 등에서 택 타임 및 공정성 측면에서 배터리셀의 안정성에 영향을 미치지 않은 조건에서 예를 들면 약 40℃ 내지 50℃ 정도가 되도록 단시간 열을 가할 수도 있다.
본 출원은 또한 상기 제조 방법 또는 상기 언급한 구조의 배터리 모듈을 형성하는 것에 사용될 수 있는 수지 조성물에 대한 것이다.
전술한 바와 같이 상기 수지 조성물로는, 배터리셀의 효과적인 고정이 가능하고, 필요에 따라 상기 언급된 물성이 부여될 수 있는 것이라면 특별히 제한되지 않고, 공지의 수지 조성물이 모두 사용될 수 있다.
이러한 수지 조성물은, 아크릴계 수지 조성물, 에폭시계 수지 조성물, 우레탄계 수지 조성물, 올레핀계 수지 조성물, 우레탄계 수지 조성물, EVA(Ethylene vinyl acetate)계 수지 조성물 또는 실리콘계 수지 조성물 등을 들 수 있으나, 이에 제한되지 않는다.
상기 수지 조성물은, 용제형 수지 조성물, 수계 수지 조성물 또는 무용제형 수지 조성물일 수 있고, 적절하게는 무용제형 수지 조성물일 수 있다.
상기 수지 조성물은, 활성 에너지선 경화형 수지 조성물, 습기 경화형 수지 조성물, 열 경화형 수지 조성물 또는 상온 경화형 수지 조성물 등일 수 있고, 적절하게는 상온 경화형 수지 조성물일 수 있다.
예를 들면, 공지의 아크릴계 접착제, 에폭시계 접착제, 우레탄계 접착제, 올레핀계 접착제, EVA(Ethylene vinyl acetate)계 접착제 또는 실리콘계 접착제를 형성할 수 있는 수지 조성물에 전술한 필러 등의 첨가제를 목적 물성을 고려하여 적정량 첨가하여 제조된 수지 조성물을 전술한 방법에 적용할 수 있다.
상기와 같은 수지 조성물은, 상온 경화성 등을 고려하여, 라디칼 개시제 및 그에 대한 촉매를 포함할 수 있다. 예를 들면, 수지 조성물은, 벤조일 퍼옥시드 등과 같은 아실 퍼옥시드 개시제 및 톨루이딘(toluidine) 화합물과 같은 상기 개시제에 대한 촉매를 포함할 수 있고, 이에 의해 적절한 경화 시스템이 구현될 수 있다.
수지 조성물은 상기 성분에 추가로 필요에 따라 다양한 성분을 포함할 수 있다.
본 출원은 또한, 배터리팩, 예를 들면, 전술한 배터리 모듈을 2개 이상 포함하는 배터리팩에 대한 것이다. 배터리팩에서 상기 배터리 모듈들은 서로 전기적으로 연결되어 있을 수 있다. 2개 이상의 배터리 모듈을 전기적으로 연결하여 배터리팩을 구성하는 방식은 특별히 제한되지 않고, 공지의 방식이 모두 적용될 수 있다.
본 출원은 또한 상기 배터리 모듈 또는 상기 배터리팩을 포함하는 장치에 대한 것이다. 상기 장치의 예로는 전기 자동차와 같은 자동차를 들 수 있으나, 이에 제한되지 않고, 2차 전지를 출력으로 요구하는 모든 용도가 포함될 수 있다. 예를 들어, 상기 배터리 모듈 또는 배터리팩을 사용하여 상기 자동차를 구성하는 방식은 특별히 제한되지 않고, 일반적인 방식이 적용될 수 있다.
본 출원에서는 간단한 공정과 저비용으로 제조되면서도 부피 대비 출력이 우수하고, 방열 특성 등이 우수한 배터리 모듈, 그 제조 방법 및 상기 제조 방법에 적용되는 수지 조성물을 제공할 수 있다.
도 1 및 2는 예시적인 배터리 모듈의 구조를 보여주는 도면이다.
도 3 및 4는 예시적인 파우치형 전지를 보여주는 도면이다.
<부호의 설명>
100: 배터리셀 집합체
200: 하우징
210: 하부판
301: 냉각 플레이트
302: 냉각핀
400: 배터리셀
100: 파우치형 전지
110: 전극 조립체
120: 외장재
121: 상부 파부치
122: 하부 파우치
S: 실링부
이하, 실시예 및 비교예를 통해 본 출원의 배터리 모듈을 설명하지만, 본 출원의 범위가 하기 제시된 범위에 의해 제한되는 것은 아니다.
1. 수지층의 열전도도 평가 방법
수지층의 열전도도는 ASTM D5470 규격에 따라 측정하였다. 즉, ASTM D 5470의 규격에 따라 2개의 구리 막대(copper bar) 사이에 수지층을 위치시킨 후에 상기 2개의 구리 막대 중 하나는 히터와 접촉시키고, 다른 하나는 쿨러(cooler)와 접촉시킨 후에 상기 히터가 일정 온도를 유지하도록 하고, 쿨러의 용량을 조절하여 열평형 상태(5분에 약 0.1℃ 이하의 온도 변화를 보이는 상태)를 만들었다. 열평형 상태에서 각 구리 막대의 온도를 측정하고, 하기 수식에 따라서 열전도도(K, 단위: W/mK)를 평가하였다. 열전도도 평가 시에 수지층에 걸리는 압력은 약 11 Kg/25 cm2 정도가 되도록 조절하였으며, 측정 과정에서 수지층의 두께가 변화된 경우에 최종 두께를 기준으로 열전도도를 계산하였다.
<열전도도 수식>
K = (Q×dx)/(A×dT)
상기 수식에서 K는 열전도도(W/mK)이고, Q는 단위 시간당 이동한 열(단위: W)이며, dx는 수지층의 두께(단위: m)이고, A는 수지층의 단면적(단위: m2)이며, dT는 구리 막대의 온도차(단위: K)이다.
2. 비중 평가 방법
수지층의 비중은 ASTM D792 규격에 따라 측정하였다. 예를 들면, 상기 규격에 따라 수지층의 무게를 잰 후에 물속에서 다시 무게를 잰 후 상기 측정된 무게 차이를 통해 밀도와 비중을 계산하거나, 분말이나 펠릿(pellet) 소정량(ex. 약 5 g)을 고온계 속의 이미 측정된 용적에 넣고, 73.4F°에서 무게와 용적의 차이를 통해 비중을 계산할 수 있다.
3. 열중량 분석(TGA, Thermogravimetric Analysis) 방법
TA Instrument사의 TA400 기기를 사용하여 열중량 분석을 수행하였다. 수지층 약 10 mg을 사용하여 분석을 수행하였고, 분석은 25℃ 내지 800℃의 온도 범위, 가열 속도 20℃/분 및 60 cm3/분의 질소(N2) 분위기 하에서 분석을 수행하였다.
4. 절연파괴전압 측정
수지층의 절연 파괴 전압은 ASTM D149 규격에 따라 평가하였다. 절연 파괴 전압은 물질이 절연성을 잃는 순간까지 가해지는 전압을 의미하고, 일정 수준 이상의 고전압에서 도전성이 급속히 증가하여 절연성을 잃게 된다. 절연 파괴를 일으키는데 필요한 최소의 전압을 파괴 전압이라 하고, 절연성은 시편을 통해 아크가 완전히 통하여 생기게 된다. 전압이 변화율(voltage gradient)은 파괴되는 순간의 전압을 절연두께로 나누어 얻을 수 있다. Backman Industrial PA70-1005/202 기기를 이용하여 절연파괴 전압을 측정하였고, 이 때 시편(수지층)의 두께는 약 2mm 정도로 하고, 지름이 약 100mm 정도가 되도록 하였다.
5. 접착력 측정
절연막(에폭시 및/또는 폴리에스터계 절연층)이 형성되어 있는 알루미늄제 모듈 케이스의 하부판과 PET(poly(ethylene terephthalate)) 필름을 수지층을 사용하여 부착하였으며, 이 때 부착되는 폭은 약 10 mm 정도가 되도록 하였다. 이 때 수지층의 두께는 약 1 mm 정도로 하였다. 상기 부착은 미경화된 수지 조성물을 상기 절연막과 PET 필름의 사이에 로딩(loading) 후에 이를 경화시켜서 수행한다. 그 후, 약 300 mm/min의 속도 및 180도의 박리 각도로 상기 PET 필름을 절연측으로부터 박리하면서 접착력을 측정한다.
6. 경도의 측정
수지층의 경도는, ASTM D 2240, JIS K 6253 규격에 따라 측정하였다. Shore A, durometer hardness 기기를 사용하여 수행하였으며, 평평한 상태의 샘플(수지층)의 표면에 1 Kg 이상의 하중(약 1.5 Kg)을 가하여 초기 경도를 측정하고, 15초 후에 안정화된 측정값으로 확인하여 경도를 평가하였다.
7. 배터리 모듈의 신뢰성 평가
배터리 모듈의 신뢰성은 모듈의 열저항 및 온도를 측정하여 평가하였다. 배터리 모듈의 열저항은, 측정 기기의 상부 및 하부 블록의 사이에 모듈을 위치시키고, 컴퓨터(controlling computer)의 DynTIM Tester software를 실행하고, Software상에서 히팅(heating) 전류 및 측정 시간 등을 결정하여 입력하고, 측정 압력, 열 저항 측정 조건 등의 파라미터의 setting을 완료하고, software로 제어되는 T3Ster와 DynTIM tester가 측정 조건별로 열 저항값을 측정하게 하여 열저항을 평가하였다. 모듈 온도는 모듈의 위치별 접촉식 온도 측정기를 부착하여 실측하였다. 상기 열저항과 모듈 온도는 배터리 모듈의 하부판이 수냉 시스템과 접촉하고 있는 상태에서 측정하였다. 각 평가 결과에 따른 신뢰성은 하기 기준으로 분류하였다.
<열저항 평가에 따른 신뢰성 평가 기준>
상: 열저항이 2.5 K/W 이하
중: 열저항이 2.5 K/W 초과 내지 3 K/W 이하
하: 열저항이 3 K/W 초과
<모듈 온도에 따른 신뢰성 평가 기준>
상: 온도가 50℃ 이하
하: 온도가 50℃ 초과
실시예 1.
수지 조성물의 제조
2액형 우레탄계 접착제 조성물(주제: HP-3753(KPX케미칼), 경화제: TLA-100(아사이카제))에 알루미나(입도 분포: 1㎛ 내지 60㎛)를 상기 2액형 우레탄계 접착제 조성물이 경화 후에 약 3 W/mK의 열전도도를 나타낼 수 있는 양(2액 합계 고형분 100 중량부 대비 약 600 내지 900 중량부의 범위 내)로 혼합하여, 상온 점도가 약 250,000 cP 정도인 수지 조성물을 제조하고, 이를 하기 배터리 모듈의 제조에 적용하였다.
배터리 모듈의 제조
제조된 수지 조성물을 사용하여 도 2와 같은 형상의 배터리 모듈을 제조하였다. 도 2의 형태에서 하부판(101), 냉각핀(201) 및 냉각 플레이트(202)는 모두 알루미늄으로 제조되었다. 상기 하부판의 표면에 상기 제조된 수지 조성물을 하부판 전체를 덮도록 도포한 후에 그 상부에 냉각핀과 냉각 플레이트를 각각 장착하고, 볼록부의 표면을 덮도록 장착된 냉각핀의 사이에 배터리셀을 장착하고, 수지 조성물을 경화시켜서 배터리 모듈을 제조하였다.
실시예 2.
수지 조성물의 제조
2액형 실리콘계 접착제 조성물(주제: SL5100A(KCC제), 경화제: SL5100B(KCC제))에 알루미나(입도 분포: 1㎛ 내지 60㎛)를 상기 2액형 실리콘계 접착제 조성물이 경화 후에 약 3 W/mK의 열전도도를 나타낼 수 있는 양(2액 합계 고형분 100 중량부 대비 약 800 내지 1200 중량부의 범위 내)로 혼합하여, 상온 점도가 약 130,000 cP 정도인 수지 조성물을 제조하고, 이를 하기 배터리 모듈의 제조에 적용하였다.
배터리 모듈의 제조
상기 제조된 수지 조성물을 사용한 것을 제외하고는, 실시예 1과 동일하게 배터리 모듈을 제조하였다.
실시예 3.
2액형 우레탄계 접착제 조성물(주제: PP-2000(KPX케미칼), 경화제: TLA-100(아사이카제))에 알루미나(입도 분포: 1㎛ 내지 60㎛)를 상기 2액형 우레탄계 접착제 조성물이 경화 후에 약 3.5 W/mK의 열전도도를 나타낼 수 있는 양(2액 합계 고형분 100 중량부 대비 약 600 내지 900 중량부의 범위 내)으로 혼합하여, 상온 점도가 약 350,000 cP 정도가 되도록 제조한 수지 조성물을 사용한 것을 제외하고는 실시예 1과 동일하게 배터리 모듈을 제조하였다.
실시예 4.
국도 화학에서 입수한 상온 경화형의 에폭시계 접착제 조성물에 알루미나(입도 분포: 1㎛ 내지 60㎛)를 상기 접착제 조성물이 경화 후에 약 3 W/mK의 열전도도를 나타낼 수 있는 양(2액 합계 고형분 100 중량부 대비 약 600 내지 900 중량부의 범위 내)으로 혼합하여, 상온 점도가 약 500,000 cP 정도가 되도록 제조한 수지 조성물을 사용한 것을 제외하고는 실시예 1과 동일하게 배터리 모듈을 제조하였다.
실시예 5.
2액형 우레탄계 접착제 조성물(주제: PP-2000(KPX케미칼), 경화제: TLA-100(아사이카제))에 알루미나(입도 분포: 1㎛ 내지 60㎛)를 상기 2액형 우레탄계 접착제 조성물이 경화 후에 약 2 W/mK의 열전도도를 나타낼 수 있는 양(2액 합계 고형분 100 중량부 대비 약 400 내지 900 중량부의 범위 내)으로 혼합하여, 상온 점도가 약 150,000 cP 정도가 되도록 제조한 수지 조성물을 사용한 것을 제외하고는 실시예 1과 동일하게 배터리 모듈을 제조하였다.
실시예 6.
실시예 5와 동일하게 배터리 모듈을 제조하되, 수지 조성물이 하부판 면적의 약 50%를 덮도록 하여 모듈을 제조하였다.
비교예 1.
2액형 실리콘계 접착제 조성물(주제: SL5100A(KCC제), 경화제: SL5100B(KCC제))에 그래파이트(graphite)를 상기 2액형 실리콘계 접착제 조성물이 경화 후에 약 1.5 W/mK의 열전도도를 나타낼 수 있는 양(2액 합계 고형분 100 중량부 대비 약 100 내지 300 중량부의 범위 내)로 혼합하여, 상온 점도가 약 2,000,000 cP 정도가 되도록 제조한 수지 조성물을 사용한 것을 제외하고는 실시예 2와 동일하게 배터리 모듈을 제조하였다.
비교예 2.
2액형 실리콘계 접착제 조성물(주제: SL5100A(KCC제), 경화제: SL5100B(KCC제))에 알루미나(입도 분포: 1㎛ 내지 60㎛)를 상기 접착제 조성물이 경화 후에 약 1.5 W/mK의 열전도도를 나타낼 수 있는 양(2액 합계 고형분 100 중량부 대비 약 300 내지 500 중량부의 범위 내)으로 혼합하여, 상온 점도가 약 100,000 cP 정도가 되도록 제조한 수지 조성물을 사용한 것을 제외하고는 실시예 2와 동일하게 배터리 모듈을 제조하였다.
비교예 3.
수지 조성물을 사용하지 않고, 즉 수지층을 형성하지 않은 것을 제외하면, 실시예 1과 동일하게 배터리 모듈을 제조하였다.
상기 실시예 및 비교예에 대하여 측정한 수지층의 물성과 배터리 모듈의 신뢰성을 정리하여 하기 표 1 및 2에 기재하였다.
실시예
1 2 3 4 5 6
수지층 열전도도(W/mK) 3 3 3.5 3 2 2
비중 3.1 3.1 3.2 3.2 2.6 2.6
Residue at 800℃(중량%) >80 >80 >80 >80 약 50 약 50
접착력(gf/10mm) 500 100 450 600 500 500
경도(Shore A) 90 60 90 100 70 70
절연파괴전압(kV/mm) 15 11 10 <8 4 4
신뢰성(열저항)
신뢰성(모듈 온도)
비교예
1 2 3
수지층 열전도도(W/mK) 1.5 1.5 -
비중 2 2 -
Residue at 800℃(중량%) 약 60 약 60 -
접착력(gf/10mm) 80 90 -
경도(Shore A) 40 40 -
절연파괴전압(kV/mm) 2 5 -
신뢰성(열저항)
신뢰성(모듈 온도)
표 1 및 2의 결과로부터, 수지층에 사용되는 수지의 종류와 필러의 종류, 비율에 의해 수지층의 물성이 변화되고, 그에 따라 모듈의 신뢰성도 영향을 받는 것을 확인할 수 있다.
예를 들어, 실시예 1, 2 및 4의 결과를 비교하여 보면, 동일 수준의 열전도도의 확보를 위하여 알루미나를 첨가하였을 때에 접착력은 에폭시계, 우레탄계 및 실리콘계의 순으로 높고, 경도는 에폭시, 우레탄 및 실리콘계 순으로 높은 것을 알 수 있으며, 비중 및 내열성(TGA 분석 결과)는 유사한 수준으로 조정되는 것을 확인할 수 있다.
또한, 실시예 1, 3 및 5의 결과를 비교하면, 동일한 계열의 수지가 사용되었을 때에, 필러의 종류, 함량에 의해 열전도도, 비중, 내열성(TGA 분석 결과), 경도 등이 변화되는 것을 확인할 수 있다. 예를 들어, 실시예 5는, 실시예 1 및 3에 비하여 적은 양의 필러가 적용됨으로써, 열전도도 및 비중이 다소 낮은 수치를 보였고, 내열성(TGA 분석)이 낮았으며, 접착력은 유사 수준이나, 경도가 낮았고, 절연성을 확보하는 것에 영향을 주는 필러의 비율의 저하에 따라 절연 파괴 전압이 낮았다.

Claims (15)

  1. 배터리셀을 가이딩하는 2개 이상의 볼록부가 형성되어 있는 하부판을 가지는 모듈 케이스; 상기 볼록부의 사이에 장착되어 있는 복수의 배터리셀; 상기 볼록부 사이의 하부판의 표면과 상기 배터리셀의 사이에 존재하는 냉각 플레이트; 및 상기 볼록부의 상부 표면을 덮은 상태로 상기 복수의 배터리셀의 사이에 위치하는 냉각핀을 포함하고,
    상기 냉각핀과 하부판의 볼록부의 사이에서 상기 냉각핀 및 볼록부와 접촉하고 있으며, 열전도도가 2 W/mK 이상인 수지층을 또한 포함하는 배터리 모듈.
  2. 제 1 항에 있어서, 하부판은 열전도도가 10 W/mK 이상인 배터리 모듈.
  3. 제 1 항에 있어서, 하부판은 수냉 시스템과 열적으로 접촉하고 있는 배터리 모듈.
  4. 제 1 항에 있어서, 냉각핀 및 냉각 플레이트는 열전도도가 10 W/mK 이상인 배터리 모듈.
  5. 제 1 항에 있어서, 수지층은, 하부판의 전체 면적의 10% 이상의 면적을 덮고 있는 배터리 모듈.
  6. 제 1 항에 있어서, 수지층은 열전도도가 3 W/mK 이상인 배터리 모듈.
  7. 제 1 항에 있어서, 수지층은 절연 파괴 전압이 10 kV/mm 이상인 배터리 모듈.
  8. 제 1 항에 있어서, 수지층은, 비중이 5 이하인 배터리 모듈.
  9. 제 1 항에 있어서, 수지층은, 열중량분석(TGA)에서 800℃ 잔량이 70 중량% 이상인 배터리 모듈.
  10. 제 1 항에 있어서, 수지층은, 아크릴 수지, 에폭시 수지, 우레탄 수지, 올레핀 수지, EVA 수지 또는 실리콘 수지를 포함하는 배터리 모듈.
  11. 제 1 항에 있어서, 수지층은 필러를 포함하는 배터리 모듈.
  12. 제 11 항에 있어서, 필러는, 세라믹 입자 또는 탄소계 필러인 배터리 모듈.
  13. 제 1 항에 있어서, 수지층은, 요변성 부여제, 희석제, 분산제, 표면 처리제, 난연제 또는 커플링제를 포함하는 배터리 모듈.
  14. 제 1 항의 배터리 모듈을 2개 이상 포함하고, 상기 2개 이상의 배터리 모듈은 서로 전기적으로 연결되어 있는 배터리팩.
  15. 제 1 항에 배터리 모듈 또는 제 14 항의 배터리팩을 포함하는 자동차.
PCT/KR2016/006232 2015-06-12 2016-06-13 배터리 모듈 WO2016200231A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/735,446 US11038223B2 (en) 2015-06-12 2016-06-13 Battery module
EP16807871.5A EP3300164B1 (en) 2015-06-12 2016-06-13 Battery module
JP2017564459A JP6421256B2 (ja) 2015-06-12 2016-06-13 バッテリーモジュール
CN201680034424.7A CN107735882B (zh) 2015-06-12 2016-06-13 电池模块
US16/864,718 US11424495B2 (en) 2015-06-12 2020-05-01 Battery module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20150083425 2015-06-12
KR10-2015-0083425 2015-06-12

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/735,446 A-371-Of-International US11038223B2 (en) 2015-06-12 2016-06-13 Battery module
US16/864,718 Continuation US11424495B2 (en) 2015-06-12 2020-05-01 Battery module

Publications (1)

Publication Number Publication Date
WO2016200231A1 true WO2016200231A1 (ko) 2016-12-15

Family

ID=57503960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/006232 WO2016200231A1 (ko) 2015-06-12 2016-06-13 배터리 모듈

Country Status (6)

Country Link
US (2) US11038223B2 (ko)
EP (1) EP3300164B1 (ko)
JP (2) JP6421256B2 (ko)
KR (1) KR102006412B1 (ko)
CN (1) CN107735882B (ko)
WO (1) WO2016200231A1 (ko)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190081291A1 (en) * 2017-09-11 2019-03-14 Apple Inc. Battery mounting using a heat treated adhesive
US10734615B2 (en) 2017-09-26 2020-08-04 Apple Inc. Battery pack assembly using an ultraviolet responsive adhesive
WO2020176437A1 (en) 2019-02-25 2020-09-03 Henkel IP & Holding GmbH Thermal interface materials based on two-part polyurethanes
JP2020531279A (ja) * 2017-08-22 2020-11-05 エルジー・ケム・リミテッド 放熱素材の混合方法
JP2020533770A (ja) * 2017-09-15 2020-11-19 エルジー・ケム・リミテッド バッテリモジュール
US20210328284A1 (en) * 2019-01-10 2021-10-21 Lg Chem, Ltd. Battery Pack Manufacturing Method

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102120118B1 (ko) 2016-08-18 2020-06-08 주식회사 엘지화학 배터리 모듈
DE102017215538A1 (de) * 2017-09-05 2019-03-07 Robert Bosch Gmbh Batteriezelle, Batteriemodul und Verwendung eines solchen Batteriemoduls
KR102308017B1 (ko) * 2017-12-01 2021-09-30 주식회사 엘지에너지솔루션 열전도성 수지로 채워진 중공을 가지는 이차전지
CN115411404A (zh) 2018-03-07 2022-11-29 Sk新能源株式会社 电池模块及其制造方法
KR102162495B1 (ko) 2018-03-28 2020-10-07 주식회사 엘지화학 수지 조성물
DE102018210151A1 (de) 2018-06-21 2019-12-24 Bayerische Motoren Werke Aktiengesellschaft Fahrzeug mit einem Hochvoltspeicher
DE102018210152A1 (de) * 2018-06-21 2019-12-24 Bayerische Motoren Werke Aktiengesellschaft Fahrzeug mit einem Hochvoltspeicher
KR20200003600A (ko) 2018-07-02 2020-01-10 에스케이이노베이션 주식회사 배터리 모듈
KR102703855B1 (ko) * 2018-08-21 2024-09-05 에스케이온 주식회사 배터리 모듈 및 이의 제조방법
KR102409856B1 (ko) * 2019-01-07 2022-06-15 주식회사 엘지에너지솔루션 전지 모듈, 및 이를 포함하는 전지팩
KR102479967B1 (ko) * 2019-05-10 2022-12-20 주식회사 엘지에너지솔루션 전지 모듈
CN112310525A (zh) * 2019-08-14 2021-02-02 宁德时代新能源科技股份有限公司 电池箱
KR102480735B1 (ko) * 2019-10-10 2022-12-22 주식회사 엘지에너지솔루션 전지 모듈 및 이를 포함하는 전지 팩
CN113795966B (zh) * 2019-11-25 2024-07-05 株式会社Lg新能源 电池模块、用于制造该电池模块的方法以及电池组
CN111129650A (zh) * 2019-12-31 2020-05-08 上海派能能源科技股份有限公司 一种电池模组及电池模组系统
KR20210092566A (ko) * 2020-01-16 2021-07-26 주식회사 엘지에너지솔루션 전지 모듈 및 이를 포함하는 전지 팩
KR20220060715A (ko) * 2020-11-05 2022-05-12 주식회사 엘지에너지솔루션 전지 모듈 및 이를 포함하는 전지팩
CN112397826A (zh) * 2020-11-12 2021-02-23 上海兰钧新能源科技有限公司 模组框架、二次电池和汽车
KR20220101313A (ko) * 2021-01-11 2022-07-19 주식회사 엘지에너지솔루션 전지 모듈 및 이를 포함하는 전지팩
KR102647832B1 (ko) * 2021-01-11 2024-03-13 주식회사 엘지에너지솔루션 전지 모듈 및 이를 포함하는 전지팩
KR20220101306A (ko) * 2021-01-11 2022-07-19 주식회사 엘지에너지솔루션 전지 모듈 및 이를 포함하는 전지팩
KR20220101305A (ko) * 2021-01-11 2022-07-19 주식회사 엘지에너지솔루션 전지 모듈 및 이를 포함하는 전지팩
US20240101740A1 (en) * 2021-10-08 2024-03-28 Lg Chem, Ltd. Curable Composition
KR20230052033A (ko) * 2021-10-12 2023-04-19 엘지전자 주식회사 에너지저장장치
JP7556900B2 (ja) 2022-02-09 2024-09-26 プライムプラネットエナジー&ソリューションズ株式会社 電池モジュール
EP4456257A1 (en) * 2023-04-27 2024-10-30 SK On Co., Ltd. Battery assembly

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101145719B1 (ko) * 2009-04-01 2012-05-14 주식회사 엘지화학 우수한 방열 특성의 전지모듈 및 중대형 전지팩
KR20120051237A (ko) * 2010-11-12 2012-05-22 에스케이이노베이션 주식회사 배터리 모듈 케이스
KR20120086657A (ko) * 2011-01-26 2012-08-03 주식회사 엘지화학 조립 생산성이 향상된 냉각부재와 이를 포함하는 전지모듈
KR20140043031A (ko) * 2012-09-28 2014-04-08 한화케미칼 주식회사 방열 도료 조성물 및 방열 구조체
KR20140074151A (ko) * 2012-12-07 2014-06-17 타이코에이엠피(유) 전지모듈

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4503758B2 (ja) 1999-07-23 2010-07-14 大阪瓦斯株式会社 導電性樹脂シートおよびその製造方法
JP3881597B2 (ja) 2001-05-24 2007-02-14 東レ株式会社 フィラー高充填樹脂組成物の製造方法
JP4952170B2 (ja) 2006-09-27 2012-06-13 トヨタ自動車株式会社 電池ユニット及び車両
JP5196876B2 (ja) * 2007-06-01 2013-05-15 三洋電機株式会社 組電池
JP5456371B2 (ja) * 2009-05-28 2014-03-26 三洋電機株式会社 車両用のバッテリシステム及びこのバッテリシステムを搭載する車両
JP5509684B2 (ja) 2009-06-03 2014-06-04 ソニー株式会社 電池パック
JP5451211B2 (ja) 2009-06-26 2014-03-26 パナソニック株式会社 蓄電ユニット
JP5740103B2 (ja) 2009-10-19 2015-06-24 日東電工株式会社 熱伝導部材、及びそれを用いた組電池装置
DE102009052254A1 (de) 2009-11-06 2011-05-12 Behr Gmbh & Co. Kg Energiespeichervorrichtung
JP2012039062A (ja) 2010-01-29 2012-02-23 Nitto Denko Corp 熱伝導性シート
KR20120135217A (ko) * 2010-03-15 2012-12-12 니폰 가야꾸 가부시끼가이샤 내열용 접착제
US8574740B2 (en) * 2010-08-10 2013-11-05 GM Global Technology Operations LLC Molded frame with corrugated cooling fin for air-cooled battery
JP2012119156A (ja) * 2010-11-30 2012-06-21 Sanyo Electric Co Ltd 組電池及びこれを装備する電動車両
JP2012248339A (ja) * 2011-05-25 2012-12-13 Sanyo Electric Co Ltd 電力用の電源装置及び電源装置を備える車両
US9368778B2 (en) * 2011-11-15 2016-06-14 Teijin Limited Separator for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery
KR101447057B1 (ko) 2012-01-26 2014-10-07 주식회사 엘지화학 전지셀의 장착 및 방열을 위한 방열 지지부재를 포함하는 전지모듈
KR101528007B1 (ko) * 2012-09-17 2015-06-10 한라비스테온공조 주식회사 차량용 배터리 냉각 장치
JP6043578B2 (ja) * 2012-10-15 2016-12-14 昭和電工株式会社 組電池の冷却構造
JP5942765B2 (ja) * 2012-10-15 2016-06-29 トヨタ自動車株式会社 蓄電モジュール及び熱伝達部材
JP2014109024A (ja) 2012-12-04 2014-06-12 Sumitomo Bakelite Co Ltd 複合樹脂組成物及び絶縁性と熱放散性に優れた成形体
US9647302B2 (en) * 2012-12-05 2017-05-09 GM Global Technology Operations LLC Battery thermal system with a stacking frame
KR20140110233A (ko) 2013-03-06 2014-09-17 엘지전자 주식회사 전기 자동차의 배터리 냉각 시스템
JP6073737B2 (ja) * 2013-04-24 2017-02-01 日立オートモティブシステムズ株式会社 蓄電モジュール
JP6213122B2 (ja) * 2013-10-07 2017-10-18 株式会社デンソー 電池パック
JP5811168B2 (ja) * 2013-12-25 2015-11-11 トヨタ自動車株式会社 車両用電池搭載構造
US9296310B2 (en) * 2014-03-18 2016-03-29 Ford Global Technologies, Llc Traction battery thermal management system
JP6172016B2 (ja) * 2014-03-26 2017-08-02 株式会社デンソー 電池モジュールおよび電池パック
KR102139491B1 (ko) * 2015-02-27 2020-07-30 주식회사 엘지화학 배터리 모듈

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101145719B1 (ko) * 2009-04-01 2012-05-14 주식회사 엘지화학 우수한 방열 특성의 전지모듈 및 중대형 전지팩
KR20120051237A (ko) * 2010-11-12 2012-05-22 에스케이이노베이션 주식회사 배터리 모듈 케이스
KR20120086657A (ko) * 2011-01-26 2012-08-03 주식회사 엘지화학 조립 생산성이 향상된 냉각부재와 이를 포함하는 전지모듈
KR20140043031A (ko) * 2012-09-28 2014-04-08 한화케미칼 주식회사 방열 도료 조성물 및 방열 구조체
KR20140074151A (ko) * 2012-12-07 2014-06-17 타이코에이엠피(유) 전지모듈

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3300164A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020531279A (ja) * 2017-08-22 2020-11-05 エルジー・ケム・リミテッド 放熱素材の混合方法
US11185832B2 (en) 2017-08-22 2021-11-30 Lg Chem, Ltd. Method for mixing heat-dissipating material
US20190081291A1 (en) * 2017-09-11 2019-03-14 Apple Inc. Battery mounting using a heat treated adhesive
US11942649B2 (en) * 2017-09-11 2024-03-26 Apple Inc. Battery mounting using a heat treated adhesive
JP2020533770A (ja) * 2017-09-15 2020-11-19 エルジー・ケム・リミテッド バッテリモジュール
JP7062169B2 (ja) 2017-09-15 2022-05-06 エルジー エナジー ソリューション リミテッド バッテリモジュール
US11749849B2 (en) 2017-09-15 2023-09-05 Lg Energy Solution, Ltd. Battery module with filler-containing cured resin layers
US10734615B2 (en) 2017-09-26 2020-08-04 Apple Inc. Battery pack assembly using an ultraviolet responsive adhesive
US11489220B2 (en) 2017-09-26 2022-11-01 Apple Inc. Battery pack assembly using an ultraviolet responsive adhesive
US20210328284A1 (en) * 2019-01-10 2021-10-21 Lg Chem, Ltd. Battery Pack Manufacturing Method
US12119466B2 (en) * 2019-01-10 2024-10-15 Lg Energy Solution, Ltd. Battery pack manufacturing method
WO2020176437A1 (en) 2019-02-25 2020-09-03 Henkel IP & Holding GmbH Thermal interface materials based on two-part polyurethanes

Also Published As

Publication number Publication date
JP7063441B2 (ja) 2022-05-09
KR20160146587A (ko) 2016-12-21
US20200274213A1 (en) 2020-08-27
US11424495B2 (en) 2022-08-23
JP6421256B2 (ja) 2018-11-07
JP2019021640A (ja) 2019-02-07
EP3300164A1 (en) 2018-03-28
CN107735882B (zh) 2020-10-09
JP2018522373A (ja) 2018-08-09
EP3300164A4 (en) 2019-04-10
CN107735882A (zh) 2018-02-23
KR102006412B1 (ko) 2019-08-02
EP3300164B1 (en) 2024-08-21
US20180183117A1 (en) 2018-06-28
US11038223B2 (en) 2021-06-15

Similar Documents

Publication Publication Date Title
WO2016200231A1 (ko) 배터리 모듈
WO2016137303A1 (ko) 배터리 모듈
WO2017171509A1 (ko) 배터리 모듈
WO2019054817A1 (ko) 배터리 모듈
WO2019117462A1 (ko) 배터리 모듈의 제조 방법
WO2019203431A1 (ko) 수지 조성물 및 이를 포함하는 배터리 모듈
WO2024155023A1 (ko) 갭 필러 조성물 및 배터리 팩
WO2024049205A1 (ko) 조성물
WO2019190106A1 (ko) 수지 조성물
WO2019190108A1 (ko) 수지 조성물
WO2019190107A1 (ko) 수지 조성물
WO2019190105A1 (ko) 수지 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16807871

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017564459

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15735446

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016807871

Country of ref document: EP