Nothing Special   »   [go: up one dir, main page]

WO2016136953A1 - Transparent conductive wire and method for manufacturing transparent conductive wire - Google Patents

Transparent conductive wire and method for manufacturing transparent conductive wire Download PDF

Info

Publication number
WO2016136953A1
WO2016136953A1 PCT/JP2016/055855 JP2016055855W WO2016136953A1 WO 2016136953 A1 WO2016136953 A1 WO 2016136953A1 JP 2016055855 W JP2016055855 W JP 2016055855W WO 2016136953 A1 WO2016136953 A1 WO 2016136953A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
transparent conductive
conductive oxide
oxide film
wiring
Prior art date
Application number
PCT/JP2016/055855
Other languages
French (fr)
Japanese (ja)
Inventor
一郎 塩野
悠人 歳森
野中 荘平
齋藤 淳
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016034768A external-priority patent/JP6020750B1/en
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to KR1020177004671A priority Critical patent/KR101777549B1/en
Priority to CN201680002259.7A priority patent/CN106796885B/en
Publication of WO2016136953A1 publication Critical patent/WO2016136953A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process

Definitions

  • the present invention relates to a transparent conductive wiring used for, for example, a display or a touch panel, and a method for manufacturing the transparent conductive wiring.
  • the present application includes Japanese Patent Application No. 2015-37950 filed in Japan on February 27, 2015, Japanese Patent Application No. 2015-217683 filed in Japan on November 5, 2015, and Japan on February 25, 2016. Priority is claimed based on Japanese Patent Application No. 2016-34768 filed in Japan, the contents of which are incorporated herein by reference.
  • a transparent conductive wiring having a laminated structure of a transparent conductive oxide film and a metal film is applied as the wiring as shown in, for example, Patent Document 1-3. Yes.
  • the transparent conductive wiring is required to have a high light transmittance in the visible light region (hereinafter referred to as luminous transmittance) and a low electrical resistance.
  • Patent Document 3-5 when a wiring pattern is formed on a laminated film of a transparent conductive oxide film and a metal film to form a transparent conductive wiring, an etching process is performed on the above-described laminated film as shown in Patent Document 3-5. It is common.
  • Patent Documents 3-5 as a means for etching a laminated film of a transparent conductive oxide film and a metal film, etching is performed in two stages using an etching solution for the transparent conductive oxide film and an etching solution for the metal film.
  • the transparent conductive wiring is required to further improve the luminous transmittance, and therefore, it is necessary to form a metal film thinner than before.
  • the conventional etching method described above causes the metal film to be preferentially etched over the transparent conductive oxide film, which increases the amount of overetching of the metal film. was there.
  • the width of the wiring is recently reduced due to the miniaturization of the wiring, there is a possibility that sufficient conductivity cannot be secured if the amount of over-etching of the metal film increases.
  • the present invention has been made in view of the above-described circumstances, and has a high luminous transmittance, a transparent conductive wiring in which the amount of overetching of a metal film is suppressed, and conductivity is sufficiently secured, and It aims at providing the manufacturing method of this transparent conductive wiring.
  • the transparent conductive wiring of the present invention has an Ag film made of Ag or an Ag alloy and a transparent conductive oxide film laminated on the Ag film, and a wiring pattern is formed by an etching process.
  • the transparent conductive wiring is characterized in that the thickness of the Ag film is 15 nm or less, and the amount of overetching of the Ag film with respect to the transparent conductive oxide film is 1 ⁇ m or less.
  • the transparent conductive wiring of the present invention since the thickness of the Ag film is 15 nm or less, the luminous transmittance is excellent. In the transparent conductive wiring according to the present invention, the over-etching amount of the Ag film is suppressed to 1 ⁇ m or less. Therefore, even when the wiring width is narrow, the width of the metal film is ensured to ensure conductivity. Can be secured.
  • the Ag film has a total of 0.05 atomic% or more, 10.0% or more of Sn, In, Mg, or Ti as an additive element. It is preferable that it is made of an Ag alloy having a composition that includes atomic percent or less and the balance of Ag and inevitable impurities. According to the transparent conductive wiring of this configuration, the Ag film has a total amount of 0.05 atomic% or more and 10.0 atomic% or less of any one element or two or more elements of Sn, In, Mg, and Ti as additive elements. Since the remaining portion is made of an Ag alloy composed of Ag and inevitable impurities, the wettability of the Ag film with respect to the substrate and the oxide film can be improved.
  • the thickness of the Ag film formed on the substrate or the oxide film is relatively thin, such as 15 nm or less, the aggregation of the film can be suppressed, the electrical resistance is low, and the visual feeling The transmittance can be improved.
  • the additive element further contains one or both of Sb: 0.01 atomic% or more and Cu: 0.1 atomic% or more, and the total of all additive elements May be 10.0 atomic% or less, and the balance may be composed of an Ag alloy having a composition including Ag and inevitable impurities.
  • the additive element further includes one or both of Sb: 0.01 atomic% or more and Cu: 0.1 atomic% or more, and the total of all additive elements is Since it is 10.0 atomic% or less, and the balance is composed of an Ag alloy having a composition composed of Ag and inevitable impurities, the addition of Sb and Cu can further suppress the aggregation of the film and reduce the electrical resistance. In addition, the luminous transmittance can be improved.
  • the transparent conductive oxide film is preferably an amorphous film. According to the transparent conductive wiring of this configuration, since the transparent conductive oxide film is an amorphous film, it can be reliably etched with an oxalic acid etchant described later, and the amount of overetching of the Ag film is reduced. be able to.
  • the method for producing a transparent conductive wiring according to the present invention is a method for producing a transparent conductive wiring having an Ag film made of Ag or an Ag alloy and a transparent conductive oxide film laminated on the Ag film, and having a wiring pattern formed thereon. And an etching process step of forming a wiring pattern by performing an etching process on the laminated film including the Ag film and the transparent conductive oxide film, wherein the thickness of the Ag film is 15 nm or less. In the etching process, the transparent conductive oxide film and the Ag film are dissolved together using an oxalic acid etching solution.
  • an oxalic acid etching solution in the etching process step of forming a wiring pattern by performing an etching process on the laminated film having the Ag film and the transparent conductive oxide film, an oxalic acid etching solution , The transparent conductive oxide film and the Ag film are dissolved together. Normally, it is difficult to etch an Ag film with an oxalic acid etchant. However, in the present invention, the Ag film is formed as thin as 15 nm or less. The film can be removed. Further, this oxalic acid etching solution is inferior to the etching property of the Ag film as compared with the transparent conductive oxide film, so that overetching of the Ag film can be suppressed.
  • the oxalic acid etching solution is preferably an oxalic acid aqueous solution having an oxalic acid concentration within a range of 3 mass% to 7 mass%.
  • the oxalic acid aqueous solution having an oxalic acid concentration in the range of 3% by mass to 7% by mass is used as the oxalic acid etching solution,
  • the transparent conductive oxide film can be etched at once, and the amount of overetching of the Ag film can be reliably reduced.
  • a transparent conductive wiring having high luminous transmittance, a reduced amount of over-etching of a metal film, and sufficient conductivity, and a method for manufacturing the transparent conductive wiring. Is possible.
  • the transparent conductive wiring 10 which is embodiment of this invention, and the manufacturing method of a transparent conductive wiring are demonstrated with reference to the attached figure.
  • the transparent conductive wiring 10 in this embodiment is used in various displays and touch panels.
  • the transparent conductive wiring 10 according to the present embodiment includes, for example, an Ag film 11 formed on one surface of a substrate 30, and a transparent conductive oxide film 12 formed on the Ag film 11. And.
  • a glass substrate such as alkali-free glass or borosilicate glass, or a resin film such as a PET film can be used.
  • the transparent conductive wiring 10 a wiring pattern is formed by performing an etching process on the laminated film having the Ag film 11 and the transparent conductive oxide film 12.
  • the transparent conductive wiring 10 has an overetching amount L of the Ag film 11 with respect to the transparent conductive oxide film 12 of 1 ⁇ m or less. Specifically, as shown in FIG. 2, when a cross section of the etched wiring is observed, the distance between the end surface 12e of the transparent conductive oxide film 12 and the end surface 11e of the Ag film 11 is 1 ⁇ m or less. It is.
  • the overetching amount L of the Ag film 11 with respect to the transparent conductive oxide film 12 is more preferably 0.8 ⁇ m or less.
  • the film thickness ta of the Ag film 11 is in the range of 3 nm to 15 nm. Further, the film thickness to of the transparent conductive oxide film 12 is in the range of 5 nm to 80 nm. In the present embodiment, the width of the transparent conductive wiring 10 is set within a range of 10 ⁇ m to 100 ⁇ m.
  • the Ag film 11 is made of pure Ag or an Ag alloy.
  • the Ag alloy includes any one or more elements of Sn, In, Mg, and Ti as additive elements in a total range of 0.05 atomic% or more and 10.0 atomic% or less.
  • the balance is composed of an Ag alloy having a composition comprising Ag and inevitable impurities.
  • Inevitable impurities include, for example, 500 ppm or less of Fe, Pb, Bi, Al, Zn, and the like.
  • Sn, In, Mg, and Ti contained in the Ag alloy constituting the Ag film 11 are elements having an effect of improving the wettability of the Ag film 11.
  • Sn, In, Mg, and Ti have the effect of further improving the adhesion between the Ag film 11 and the transparent conductive oxide film 12.
  • Sn, In, Mg, and Ti are elements that greatly increase the electrical resistance, so that one or more of Sn, In, Mg, and Ti exceeds 10.0 atomic% in total. There is a risk that the electrical resistance becomes high and the conductivity deteriorates.
  • the contents of the additive elements Sn, In, Mg, and Ti are defined within a range of 0.05 atomic% to 10.0 atomic% in total.
  • the content of Sn, In, Mg, and Ti is more preferably in the range of 0.1 atomic% to 5.0 atomic%.
  • the Ag alloy constituting the Ag film 11 may further contain Sb and Cu as additive elements.
  • Sb and Cu are elements having an effect of further improving the environmental resistance by suppressing Ag aggregation of the Ag film 11 without greatly reducing the luminous transmittance and without greatly increasing the resistance.
  • Sb is less than 0.01 atomic% and Cu is less than 0.1 atomic%, the above-described effects may not be sufficiently achieved.
  • Sb when Sb is added, the Sb content is 0.01 atomic% or more, and when Cu is added, the Cu content is 0.1 atomic% or more. It is set.
  • Sb and Cu are elements that greatly increase the resistance as well as Sn, In, Mg, and Ti.
  • the sum total of content of Sn, In, Mg, Ti, Sb, and Cu which are addition elements is set to 10 atomic% or less.
  • the total content of Sn, In, Mg, Ti, Sb, and Cu is more preferably 7.0 atomic percent or less.
  • the transparent conductive oxide constituting the transparent conductive oxide film 12 includes In—Sn oxide (ITO), Al—Zn oxide (AZO), In—Zn oxide (IZO), and Zn—Sn oxide (ZTO). Zn—Sn—Al oxide (AZTO).
  • ITO In—Sn oxide
  • AZO Al—Zn oxide
  • IZO In—Zn oxide
  • ZTO Zn—Sn oxide
  • ZTO Zn—Sn—Al oxide
  • the transparent conductive oxide film 12 is preferably an amorphous film. Specifically, in the X-ray diffraction measurement of the transparent conductive oxide film 12, it is more clear as shown in FIG. 3B than the crystalline film in which a clear crystal peak exists as shown in FIG. It is preferable to use an amorphous film in which no crystal peak exists.
  • the transparent conductive oxide film 12 is an amorphous film of In—Sn oxide (ITO).
  • the transparent conductive wiring 10 according to this embodiment has a luminous transmittance of 70% or more in the visible light region in the state of the laminated film before performing the etching process. Further, the transparent conductive wiring 10 according to the present embodiment has a sheet resistance of 40 ⁇ / sq or less in the state of the laminated film before performing the etching process.
  • the Ag film 11 is formed on the substrate 30 using an Ag alloy sputtering target.
  • the composition of the Ag alloy sputtering target used when forming the Ag film 11 is adjusted according to the composition of the Ag film 11 to be formed.
  • the Ag alloy sputtering target in the present embodiment is manufactured as follows. As raw materials, Ag having a purity of 99.9% by mass or more and Sn, In, Mg, Ti, Sb, Cu having a purity of 99.9% by mass or more are prepared. Next, in a melting furnace, Ag is melted in a high vacuum or an inert gas atmosphere, and the resulting molten metal is one or more of Sn, In, Mg, Ti, or any of Sb and Cu. One or two or more kinds are added in a predetermined amount. Then, it melt
  • the melting of Ag is performed in an atmosphere in which the atmosphere inside the melting furnace is once evacuated and then replaced with Ar, and after melting, Sn, In, Mg, Ti, Sb, It is preferable to add Cu.
  • Sn, In, Mg, Ti, Sb, and Cu may be added in the form of a mother alloy prepared in advance. After the obtained Ag alloy ingot is cold-rolled, it is subjected to heat treatment at 600 ° C. for 2 hours in the atmosphere, and then machined to produce an Ag alloy sputtering target having a predetermined size.
  • the above-described Ag alloy sputtering target is soldered to a backing plate made of oxygen-free copper, and this is mounted on a DC magnetron sputtering apparatus.
  • the substrate 30 is disposed opposite to the Ag alloy sputtering target and at a predetermined interval.
  • Ar gas is introduced to obtain a predetermined sputtering gas pressure, A 50 W direct current sputtering power is applied. Thereby, plasma is generated between the substrate 30 and the Ag alloy sputtering target, and the Ag film 11 is formed on the substrate 30.
  • Transparent conductive oxide film forming step S02 Transparent conductive oxide film forming step S02
  • sputtering is performed on the formed Ag film 11 using a sputtering target made of a transparent conductive oxide, and a transparent conductive oxide film 12 is formed on the Ag film 11.
  • a transparent conductive oxide film 12 is formed on the Ag film 11.
  • an ITO film is formed as the transparent conductive oxide film 12
  • a crystalline film and an amorphous film can be selected and formed depending on the film forming conditions.
  • a laminated film in which the Ag film 11 and the transparent conductive oxide film 12 are laminated is formed.
  • an oxalic acid aqueous solution having an oxalic acid concentration in the range of 3 mass% to 7 mass% is used as the oxalic acid etching solution.
  • the temperature of the oxalic acid etching solution was set to 40 to 60 ° C.
  • the oxalic acid concentration is less than 3% by mass, the etching rate becomes slow, and it may not be possible to perform the etching process efficiently.
  • the oxalic acid concentration exceeds 7% by mass, oxalic acid may be precipitated in the liquid.
  • the oxalic acid concentration in the oxalic acid aqueous solution is set in the range of 3 mass% or more and 7 mass% or less.
  • the oxalic acid concentration in the oxalic acid aqueous solution is more preferably 3% by mass or more and 5% by mass or less.
  • an organic additive may be added in order to suppress the generation of etching residues.
  • the content of additives other than oxalic acid and water (solvent) is preferably limited to 4% by mass or less.
  • resist stripping step S04 After the etching treatment step S03, the resist film is removed by dipping in a resist remover. Thereby, the transparent conductive wiring 10 having a predetermined wiring pattern is manufactured.
  • the overetching amount L of the Ag film 11 with respect to the transparent conductive oxide film 12 is 1 ⁇ m or less, so the wiring in the etching process step S03 Even if the wiring width of the pattern shape is narrow, the width of the Ag film can be ensured and the conductivity can be ensured. Moreover, since the film thickness ta of the Ag film 11 is in the range of 3 nm or more and 15 nm or less, the luminous transmittance is excellent and the conductivity of the transparent conductive wiring 10 can be ensured. Therefore, it is particularly suitable as wiring for various displays and touch panels.
  • the Ag film 11 has a total range of 0.05 atomic% or more and 10.0 atomic% or less of any one or two or more elements of Sn, In, Mg, and Ti as additive elements. And the balance is made of an Ag alloy having a composition comprising Ag and inevitable impurities. Therefore, the wettability of the Ag film is improved, and the aggregation of the film can be suppressed even when the film thickness ta of the Ag film 11 is relatively thin as 15 nm or less. Therefore, the electrical resistance of the transparent conductive wiring 10 can be lowered and the luminous transmittance can be improved.
  • the Ag alloy that constitutes the Ag film 11 contains one or both of Sb: 0.01 atomic% or more and Cu: 0.1 atomic% or more in addition to the above-described additive elements.
  • the total of all additive elements is 10.0 atomic% or less, and the balance is composed of Ag and inevitable impurities.
  • the addition of Sb and Cu can further suppress the aggregation of the film, further lower the electrical resistance of the transparent conductive wiring 10 and further improve the luminous transmittance.
  • the luminous transmittance in the visible light region is set to 70% or more and the sheet resistance is 40 ⁇ / sq in the laminated film before the etching process step S03 is performed. Since it is set as the following, it can apply to various displays and a touch panel as the transparent conductive wiring 10 excellent in visibility and electroconductivity.
  • the transparent conductive oxide film 12 is an amorphous ITO film, it can be reliably etched using an oxalic acid etchant in the etching process step S03. Therefore, the overetching amount L of the Ag film 11 can be reliably suppressed.
  • the film thickness ta of the Ag film 11 is relatively thin in the range of 3 nm or more and 15 nm or less. Therefore, in the etching process step S03, oxalic acid etching is performed. Even when a liquid is used, the Ag film 11 can be removed and a wiring pattern can be formed.
  • the oxalic acid etching solution an oxalic acid aqueous solution having an oxalic acid concentration in the range of 3% by mass to 7% by mass is used. Therefore, the Ag film 11 and the transparent conductive oxide film 12 are used. Can be etched at once, and the over-etching amount L of the Ag film 11 can be reliably reduced.
  • the film thickness to of the transparent conductive oxide film 12 is in the range of 5 nm to 80 nm, the conductivity and luminous transmittance of the transparent conductive oxide film 12 are Can be secured.
  • the film thickness to of the transparent conductive oxide film 12 is optical in a two-layer structure of Ag film 11 / transparent conductive oxide film 12 using optical constants (refractive index and extinction coefficient) of each single-phase film. Simulation is performed to set the film thickness so that the transmittance in the visible light region is improved by the optical interference effect.
  • the Ag film 11 and the transparent conductive oxide film 12 are formed in this order on one surface of the substrate 30, but not limited to this, the transparent conductive oxide film is formed on one surface of the substrate 30.
  • a structure in which the material film 12 and the Ag film 11 are formed in this order may be employed.
  • a transparent conductive wiring 110 may be formed in which transparent conductive oxide films 112A and 112B are formed on one side and the other side of the Ag film 111, respectively.
  • the environmental resistance can be further improved.
  • the transparent conductive oxide film 112A and the transparent conductive oxide film 112B may be formed of transparent conductive oxides having different compositions. Further, an arbitrary number of four or more Ag films and transparent conductive oxide films may be stacked.
  • Example 1 A laminated film having a structure shown in Table 1 (a three-layer structure of transparent conductive oxide film / Ag film / transparent conductive oxide film) was produced as follows. When forming the Ag film, a sputtering target having a composition corresponding to the Ag film shown in Table 1 was prepared. The target size was 4 inches ⁇ ⁇ 6 mmt.
  • ITO In and Sn oxide sintered compact target containing 10 atomic% of Sn with respect to the sum of In and Sn.
  • IZO In and Zn oxide sintered compact target containing 30 atomic% of Zn with respect to the sum of In and Zn.
  • ZTO Zn and Sn oxide sintered compact target containing 50 atomic% of Sn with respect to the total of Zn and Sn.
  • AZO Zn and Al oxide sintered compact target containing 2 atomic% of Al with respect to the total of Zn and Al.
  • AZTO an oxide sintered compact target of Zn, Al, and Sn containing 2 atomic% of Al and 10 atomic% of Sn with respect to the total of Zn, Al, and Sn.
  • crystalline has a clear crystal peak observed by X-ray diffraction measurement as shown in FIG.
  • Amorphous means that no clear crystal peak was observed by X-ray diffraction measurement as shown in FIG.
  • the film forming conditions of the transparent conductive oxide film are as follows.
  • Substrate Washed glass substrate (Corning Eagle XG thickness 0.7mm)
  • Gas used Ar + 2% by volume oxygen
  • Gas pressure 0.67 Pa
  • Sputtering power DC 300W Target / substrate distance: 70 mm
  • the film forming conditions for the Ag film are as follows. Ultimate vacuum: 5 ⁇ 10 ⁇ 5 Pa or less Gas used: Ar Gas pressure: 0.67Pa Sputtering power: DC 200W Target / substrate distance: 70 mm
  • the obtained laminated film was etched as follows. First, a resist solution (OFPR-8600 manufactured by Tokyo Ohka Kogyo Co., Ltd.) was dropped on the laminated film, the resist was spin-coated, and prebaked in the atmosphere at 110 ° C. for 90 seconds to form a resist film.
  • a resist solution OFPR-8600 manufactured by Tokyo Ohka Kogyo Co., Ltd.
  • the resist film was exposed by an exposure machine with a wiring pattern in which the wiring width and the wiring interval were each 30 ⁇ m.
  • the exposed laminate film was immersed in a developer (NMD-W manufactured by Tokyo Ohka Kogyo Co., Ltd.) for 100 seconds at room temperature to remove the resist film in the exposed portion. Then, it post-baked on the conditions of 150 degreeC * 300 second in air
  • etching was performed by immersing in an oxalic acid etching solution (an oxalic acid aqueous solution having an oxalic acid concentration of 4 mass%) at a temperature of 40 ° C. for 100 to 400 seconds.
  • an oxalic acid etching solution an oxalic acid aqueous solution having an oxalic acid concentration of 4 mass
  • etching was performed by immersing in a mixed acid composed of phosphoric acid, nitric acid and acetic acid (ITO-02 manufactured by Kanto Chemical Co., Ltd.) at a temperature of 40 ° C. for 30 to 80 seconds.
  • a mixed acid composed of phosphoric acid, nitric acid and acetic acid (ITO-02 manufactured by Kanto Chemical Co., Ltd.) at a temperature of 40 ° C. for 30 to 80 seconds.
  • the obtained transparent conductive wiring was cleaved in order to observe the wiring cross section, and the cross section was observed using an electron microscope. And the difference of the position in the direction parallel to the film
  • Example 2 Next, in No. A transparent conductive wiring having the structure shown in Table 2 (a three-layer structure of transparent conductive oxide film / Ag film / transparent conductive oxide film) was produced in the same manner as in 1-7. About the obtained transparent conductive wiring, the propriety of the etching with an oxalic acid etching liquid was evaluated. The transparent conductive wiring after etching was observed with an optical microscope and SEM, and a residue was not confirmed and an overetching amount of 1 ⁇ m or less was “A”, and etching was possible.
  • Table 2 a three-layer structure of transparent conductive oxide film / Ag film / transparent conductive oxide film
  • the film thickness of the Ag film is thicker than the range of the present invention.
  • the Ag film could not be etched sufficiently.
  • the film thickness of the Ag film is No. in which the film thickness is set within the range of the present invention.
  • the Ag film can be sufficiently etched even when an oxalic acid etchant is used. there were. From the above experimental results, it was confirmed that etching can be performed with an oxalic acid etching solution by setting the film thickness of the Ag film within a range of 15 nm or less.
  • Example 3 Next, No. 1 of Example 1 was used. A transparent conductive wiring having a structure shown in Table 3 (a three-layer structure of transparent conductive oxide film / Ag film / transparent conductive oxide film) was produced in the same manner as in 1-7. About the obtained transparent conductive wiring, the propriety of the etching with an oxalic acid etching liquid was evaluated. The evaluation contents were the same as in Example 2. The evaluation results are shown in Table 3.
  • a crystalline ITO film was formed as a transparent conductive oxide film.
  • No. 92 having an amorphous ITO film formed thereon.
  • the etching property by the oxalic acid aqueous solution is inferior.
  • No. 1 in which a crystalline ITO film was formed as a transparent conductive oxide film.
  • No. 93 also had good etching properties. From the above experimental results, it was confirmed that the transparent conductive oxide film is preferably an amorphous film when an oxalic acid aqueous solution is used as the etching solution.
  • Example 4 Next, No. 1 of Example 1 was used. A transparent conductive wiring having the structure shown in Table 4 was produced in the same manner as in 1-7.
  • Example 4 a transparent conductive oxide film was formed on a glass substrate, and an Ag film was formed on the transparent conductive oxide film.
  • No. In No. 101-117 no residue was observed after the etching treatment with the oxalic acid etching solution, and the overetching amount was 1 ⁇ m or less.
  • the sheet resistance value was measured about the obtained transparent conductive wiring. The sheet resistance value was measured by a four-probe method using a surface resistance measuring instrument (Loresta AP MCP-T400, manufactured by Mitsubishi Yuka Co., Ltd.). The evaluation results are shown in Table 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

This transparent conductive wire (10) includes an Ag film (11), made of Ag or an Ag alloy, and a transparent conductive oxide film (12) stacked on the Ag film (11). A wire pattern of the transparent conductive wire (10) is formed by etching. The Ag film (11) has a thickness ta of 15 nm or less, and an over-etching amount L of the Ag film (11) relative to the transparent conductive oxide film (12) is 1 μm or less.

Description

透明導電配線、及び、透明導電配線の製造方法Transparent conductive wiring and method for manufacturing transparent conductive wiring
 本発明は、例えばディスプレイあるいはタッチパネル等に用いられる透明導電配線、及び、透明導電配線の製造方法に関する。
 本願は、2015年2月27日に日本に出願された特願2015-37950号、2015年11月5日に日本に出願された特願2015-217683号、及び2016年2月25日に日本に出願された特願2016-34768号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a transparent conductive wiring used for, for example, a display or a touch panel, and a method for manufacturing the transparent conductive wiring.
The present application includes Japanese Patent Application No. 2015-37950 filed in Japan on February 27, 2015, Japanese Patent Application No. 2015-217683 filed in Japan on November 5, 2015, and Japan on February 25, 2016. Priority is claimed based on Japanese Patent Application No. 2016-34768 filed in Japan, the contents of which are incorporated herein by reference.
 例えば、液晶ディスプレイや有機ELディスプレイ、タッチパネル等においては、配線として、例えば特許文献1-3に示すように、透明導電酸化物膜と金属膜との積層構造とされた透明導電配線が適用されている。
 この透明導電配線には、可視光域の光の透過率(以下、視感透過率と称する)が高く、かつ、電気抵抗の低いものが要求される。
For example, in a liquid crystal display, an organic EL display, a touch panel, and the like, a transparent conductive wiring having a laminated structure of a transparent conductive oxide film and a metal film is applied as the wiring as shown in, for example, Patent Document 1-3. Yes.
The transparent conductive wiring is required to have a high light transmittance in the visible light region (hereinafter referred to as luminous transmittance) and a low electrical resistance.
 ここで、透明導電酸化物膜と金属膜との積層膜に配線パターンを形成して透明導電配線とする場合、特許文献3-5に示すように、上述の積層膜に対してエッチング処理を行うことが一般的である。
 これら特許文献3-5には、透明導電酸化物膜と金属膜との積層膜をエッチングする手段として、透明導電酸化物膜用のエッチング液と金属膜用のエッチング液を用いて2段階でエッチングする方法、あるいは、特定の組成のエッチング液を用いて透明導電酸化物膜と金属膜とを一括でエッチングする方法が提案されている。
Here, when a wiring pattern is formed on a laminated film of a transparent conductive oxide film and a metal film to form a transparent conductive wiring, an etching process is performed on the above-described laminated film as shown in Patent Document 3-5. It is common.
In these Patent Documents 3-5, as a means for etching a laminated film of a transparent conductive oxide film and a metal film, etching is performed in two stages using an etching solution for the transparent conductive oxide film and an etching solution for the metal film. There has been proposed a method for etching a transparent conductive oxide film and a metal film at once using an etching solution having a specific composition.
特開2006-216266号公報JP 2006-216266 A 特開2012-054006号公報JP 2012-054006 A 特開2008-080743号公報JP 2008-080743 A 特開2007-007982号公報JP 2007-007982 A 特開2009-206462号公報JP 2009-206462 A
 ところで、最近では、透明導電配線には、さらなる視感透過率の向上が求められていることから、金属膜を従来よりもさらに薄く形成する必要がある。
 ここで、金属膜の膜厚を薄くした場合、上述した従来のエッチング方法では、透明導電酸化物膜よりも金属膜が優先的にエッチングされてしまい、金属膜のオーバーエッチング量が大きくなるといった問題があった。
 特に、最近では、配線の微細化により、配線の幅が小さくなっていることから、金属膜のオーバーエッチング量が大きくなると、導電性が十分に確保できなくなるおそれがあった。
By the way, recently, the transparent conductive wiring is required to further improve the luminous transmittance, and therefore, it is necessary to form a metal film thinner than before.
Here, when the thickness of the metal film is reduced, the conventional etching method described above causes the metal film to be preferentially etched over the transparent conductive oxide film, which increases the amount of overetching of the metal film. was there.
Particularly, since the width of the wiring is recently reduced due to the miniaturization of the wiring, there is a possibility that sufficient conductivity cannot be secured if the amount of over-etching of the metal film increases.
 この発明は、前述した事情に鑑みてなされたものであって、高い視感透過率を有するとともに、金属膜のオーバーエッチング量が抑制され、導電性が十分に確保された透明導電配線、及び、この透明導電配線の製造方法を提供することを目的とする。 The present invention has been made in view of the above-described circumstances, and has a high luminous transmittance, a transparent conductive wiring in which the amount of overetching of a metal film is suppressed, and conductivity is sufficiently secured, and It aims at providing the manufacturing method of this transparent conductive wiring.
 上記課題を解決するために、本発明の透明導電配線は、Ag又はAg合金からなるAg膜とこのAg膜に積層された透明導電酸化物膜とを有し、エッチング処理によって配線パターンが形成された透明導電配線であって、前記Ag膜の膜厚が15nm以下とされ、前記透明導電酸化物膜に対する前記Ag膜のオーバーエッチング量が1μm以下とされていることを特徴とする。 In order to solve the above problems, the transparent conductive wiring of the present invention has an Ag film made of Ag or an Ag alloy and a transparent conductive oxide film laminated on the Ag film, and a wiring pattern is formed by an etching process. The transparent conductive wiring is characterized in that the thickness of the Ag film is 15 nm or less, and the amount of overetching of the Ag film with respect to the transparent conductive oxide film is 1 μm or less.
 本発明の透明導電配線によれば、前記Ag膜の膜厚が15nm以下とされているので、視感透過率に優れている。
 そして、本発明の透明導電配線では、前記Ag膜のオーバーエッチング量が1μm以下に抑えられているので、配線幅が狭い場合であっても、金属膜の幅を確保して、導電性を確実に確保することが可能となる。
According to the transparent conductive wiring of the present invention, since the thickness of the Ag film is 15 nm or less, the luminous transmittance is excellent.
In the transparent conductive wiring according to the present invention, the over-etching amount of the Ag film is suppressed to 1 μm or less. Therefore, even when the wiring width is narrow, the width of the metal film is ensured to ensure conductivity. Can be secured.
 ここで、本発明の透明導電配線においては、前記Ag膜は、添加元素としてSn、In、Mg、Tiのいずれか一種又は二種以上の元素を合計で0.05原子%以上、10.0原子%以下の範囲で含み、残部がAgおよび不可避不純物からなる組成のAg合金で構成されていることが好ましい。
 この構成の透明導電配線によれば、Ag膜が、添加元素としてSn、In、Mg、Tiのいずれか一種又は二種以上の元素を合計で0.05原子%以上10.0原子%以下の範囲で含み、残部がAgおよび不可避不純物からなるAg合金で構成されているので、基板及び酸化物膜に対するAg膜の濡れ性を向上させることができる。これにより、基板上あるいは酸化物膜上に成膜されるAg膜の膜厚を15nm以下と比較的薄くした場合であっても、膜の凝集を抑制でき、電気抵抗を低く、かつ、視感透過率を向上させることができる。
Here, in the transparent conductive wiring according to the present invention, the Ag film has a total of 0.05 atomic% or more, 10.0% or more of Sn, In, Mg, or Ti as an additive element. It is preferable that it is made of an Ag alloy having a composition that includes atomic percent or less and the balance of Ag and inevitable impurities.
According to the transparent conductive wiring of this configuration, the Ag film has a total amount of 0.05 atomic% or more and 10.0 atomic% or less of any one element or two or more elements of Sn, In, Mg, and Ti as additive elements. Since the remaining portion is made of an Ag alloy composed of Ag and inevitable impurities, the wettability of the Ag film with respect to the substrate and the oxide film can be improved. As a result, even when the thickness of the Ag film formed on the substrate or the oxide film is relatively thin, such as 15 nm or less, the aggregation of the film can be suppressed, the electrical resistance is low, and the visual feeling The transmittance can be improved.
 また、本発明の透明導電配線においては、添加元素としてさらにSb:0.01原子%以上、及び、Cu:0.1原子%以上のいずれか一方又は両方を含み、かつ、全添加元素の合計が10.0原子%以下とされ、残部がAgおよび不可避不純物からなる組成のAg合金で構成されていてもよい。
 この構成の透明導電配線によれば、添加元素としてさらにSb:0.01原子%以上、及び、Cu:0.1原子%以上のいずれか一方又は両方を含み、かつ、全添加元素の合計が10.0原子%以下とされ、残部がAgおよび不可避不純物からなる組成のAg合金で構成されているので、Sb及びCuの添加によって、膜の凝集をさらに抑制することができ、電気抵抗を低く、かつ、視感透過率を向上させることができる。
In the transparent conductive wiring of the present invention, the additive element further contains one or both of Sb: 0.01 atomic% or more and Cu: 0.1 atomic% or more, and the total of all additive elements May be 10.0 atomic% or less, and the balance may be composed of an Ag alloy having a composition including Ag and inevitable impurities.
According to the transparent conductive wiring of this configuration, the additive element further includes one or both of Sb: 0.01 atomic% or more and Cu: 0.1 atomic% or more, and the total of all additive elements is Since it is 10.0 atomic% or less, and the balance is composed of an Ag alloy having a composition composed of Ag and inevitable impurities, the addition of Sb and Cu can further suppress the aggregation of the film and reduce the electrical resistance. In addition, the luminous transmittance can be improved.
 さらに、本発明の透明導電配線においては、前記透明導電酸化物膜は、非晶質膜とされていることが好ましい。
 この構成の透明導電配線によれば、透明導電酸化物膜が非晶質膜とされているので、後述するシュウ酸エッチング液によって確実にエッチングすることができ、Ag膜のオーバーエッチング量を少なくすることができる。
Furthermore, in the transparent conductive wiring of the present invention, the transparent conductive oxide film is preferably an amorphous film.
According to the transparent conductive wiring of this configuration, since the transparent conductive oxide film is an amorphous film, it can be reliably etched with an oxalic acid etchant described later, and the amount of overetching of the Ag film is reduced. be able to.
 本発明の透明導電配線の製造方法は、Ag又はAg合金からなるAg膜とこのAg膜に積層された透明導電酸化物膜とを有し、配線パターンが形成された透明導電配線の製造方法であって、前記Ag膜の膜厚を15nm以下とし、前記Ag膜と前記透明導電酸化物膜とを有する積層膜に対してエッチング処理を行って配線パターンを形成するエッチング処理工程を有し、このエッチング処理工程では、シュウ酸エッチング液を用いて、前記透明導電酸化物膜及び前記Ag膜を一括で溶解することを特徴としている。 The method for producing a transparent conductive wiring according to the present invention is a method for producing a transparent conductive wiring having an Ag film made of Ag or an Ag alloy and a transparent conductive oxide film laminated on the Ag film, and having a wiring pattern formed thereon. And an etching process step of forming a wiring pattern by performing an etching process on the laminated film including the Ag film and the transparent conductive oxide film, wherein the thickness of the Ag film is 15 nm or less. In the etching process, the transparent conductive oxide film and the Ag film are dissolved together using an oxalic acid etching solution.
 本発明の透明導電配線の製造方法によれば、前記Ag膜と前記透明導電酸化物膜とを有する積層膜に対してエッチング処理を行って配線パターンを形成するエッチング処理工程において、シュウ酸エッチング液を用いて、前記透明導電酸化物膜及び前記Ag膜を一括して溶解している。通常、シュウ酸エッチング液は、Ag膜のエッチングを行うことは困難であるが、本発明では、前記Ag膜の膜厚が15nm以下と比較的薄く形成されているので、シュウ酸エッチング液によってAg膜を除去することが可能となる。また、このシュウ酸エッチング液においては、透明導電酸化物膜と比較してAg膜のエッチング性に劣ることから、Ag膜のオーバーエッチングを抑制することができる。 According to the method for producing a transparent conductive wiring of the present invention, in the etching process step of forming a wiring pattern by performing an etching process on the laminated film having the Ag film and the transparent conductive oxide film, an oxalic acid etching solution , The transparent conductive oxide film and the Ag film are dissolved together. Normally, it is difficult to etch an Ag film with an oxalic acid etchant. However, in the present invention, the Ag film is formed as thin as 15 nm or less. The film can be removed. Further, this oxalic acid etching solution is inferior to the etching property of the Ag film as compared with the transparent conductive oxide film, so that overetching of the Ag film can be suppressed.
 ここで、本発明の透明導電配線の製造方法においては、前記シュウ酸エッチング液は、シュウ酸濃度が3質量%以上7質量%以下の範囲内とされたシュウ酸水溶液とされていることが好ましい。
 この構成の透明導電配線の製造方法によれば、前記シュウ酸エッチング液として、シュウ酸濃度が3質量%以上7質量%以下の範囲内とされたシュウ酸水溶液を用いているので、Ag膜及び透明導電酸化物膜を一括でエッチングすることができ、かつ、Ag膜のオーバーエッチング量を確実に低減することができる。
Here, in the method for producing a transparent conductive wiring according to the present invention, the oxalic acid etching solution is preferably an oxalic acid aqueous solution having an oxalic acid concentration within a range of 3 mass% to 7 mass%. .
According to the manufacturing method of the transparent conductive wiring having this configuration, since the oxalic acid aqueous solution having an oxalic acid concentration in the range of 3% by mass to 7% by mass is used as the oxalic acid etching solution, The transparent conductive oxide film can be etched at once, and the amount of overetching of the Ag film can be reliably reduced.
 本発明によれば、高い視感透過率を有するとともに、金属膜のオーバーエッチング量が抑制され、導電性が十分に確保された透明導電配線、及び、この透明導電配線の製造方法を提供することが可能となる。 According to the present invention, there are provided a transparent conductive wiring having high luminous transmittance, a reduced amount of over-etching of a metal film, and sufficient conductivity, and a method for manufacturing the transparent conductive wiring. Is possible.
本発明の実施形態に係る透明導電配線の一部拡大断面図である。It is a partial expanded sectional view of the transparent conductive wiring which concerns on embodiment of this invention. 本発明の実施形態に係る透明導電配線のエッチング端面の拡大断面図である。It is an expanded sectional view of the etching end surface of the transparent conductive wiring which concerns on embodiment of this invention. 透明導電酸化物膜のX線回折測定を行った例を示す図である。It is a figure which shows the example which performed the X-ray-diffraction measurement of the transparent conductive oxide film. 本発明の実施形態に係る透明導電配線の製造方法を示すフロー図である。It is a flowchart which shows the manufacturing method of the transparent conductive wiring which concerns on embodiment of this invention. 本発明の他の実施形態に係る透明導電配線の一部拡大断面図である。It is a partially expanded sectional view of the transparent conductive wiring which concerns on other embodiment of this invention.
 以下に、本発明の実施形態である透明導電配線、及び、透明導電配線の製造方法について、添付した図を参照して説明する。
 本実施形態における透明導電配線10は、各種ディスプレイ及びタッチパネルにおいて使用されるものである。
 本実施形態である透明導電配線10は、図1に示すように、例えば基板30の一面に成膜されたAg膜11と、このAg膜11に重ねて成膜された透明導電酸化物膜12と、を備えている。なお、基板30としては、無アルカリガラス、硼珪酸ガラス等のガラス基板、あるいは、PETフィルム等の樹脂フィルムを用いることができる。
Below, the transparent conductive wiring which is embodiment of this invention, and the manufacturing method of a transparent conductive wiring are demonstrated with reference to the attached figure.
The transparent conductive wiring 10 in this embodiment is used in various displays and touch panels.
As shown in FIG. 1, the transparent conductive wiring 10 according to the present embodiment includes, for example, an Ag film 11 formed on one surface of a substrate 30, and a transparent conductive oxide film 12 formed on the Ag film 11. And. As the substrate 30, a glass substrate such as alkali-free glass or borosilicate glass, or a resin film such as a PET film can be used.
 この透明導電配線10は、Ag膜11と透明導電酸化物膜12とを有する積層膜に対してエッチング処理を行うことで配線パターンが形成されている。
 そして、この透明導電配線10は、透明導電酸化物膜12に対するAg膜11のオーバーエッチング量Lが1μm以下とされている。具体的には、図2に示すように、エッチング処理された配線を断面観察した場合に、透明導電酸化物膜12の端面12eとAg膜11の端面11eとの距離が1μm以下とされているのである。透明導電酸化物膜12に対するAg膜11のオーバーエッチング量Lはより好ましくは0.8μm以下である。
In the transparent conductive wiring 10, a wiring pattern is formed by performing an etching process on the laminated film having the Ag film 11 and the transparent conductive oxide film 12.
The transparent conductive wiring 10 has an overetching amount L of the Ag film 11 with respect to the transparent conductive oxide film 12 of 1 μm or less. Specifically, as shown in FIG. 2, when a cross section of the etched wiring is observed, the distance between the end surface 12e of the transparent conductive oxide film 12 and the end surface 11e of the Ag film 11 is 1 μm or less. It is. The overetching amount L of the Ag film 11 with respect to the transparent conductive oxide film 12 is more preferably 0.8 μm or less.
 また、この透明導電配線10においては、Ag膜11の膜厚taが3nm以上15nm以下の範囲とされている。
 さらに、透明導電酸化物膜12の膜厚toが5nm以上80nm以下の範囲とされている。
 なお、本実施形態では、透明導電配線10の幅は10μm以上100μm以下の範囲内に設定されている。
In this transparent conductive wiring 10, the film thickness ta of the Ag film 11 is in the range of 3 nm to 15 nm.
Further, the film thickness to of the transparent conductive oxide film 12 is in the range of 5 nm to 80 nm.
In the present embodiment, the width of the transparent conductive wiring 10 is set within a range of 10 μm to 100 μm.
 ここで、Ag膜11は、純Ag又はAg合金で構成されている。Ag合金は、本実施形態では、添加元素としてSn、In、Mg、Tiのいずれか一種又は二種以上の元素を合計で0.05原子%以上、10.0原子%以下の範囲で含み、残部がAgおよび不可避不純物からなる組成のAg合金で構成されている。なお、不可避不純物としては、例えば500ppm以下のFe、Pb、Bi、Al、Znなどが挙げられる。
 ここで、Ag合金の添加元素の含有量を上述のように規定した理由について、以下に説明する。
Here, the Ag film 11 is made of pure Ag or an Ag alloy. In this embodiment, the Ag alloy includes any one or more elements of Sn, In, Mg, and Ti as additive elements in a total range of 0.05 atomic% or more and 10.0 atomic% or less. The balance is composed of an Ag alloy having a composition comprising Ag and inevitable impurities. Inevitable impurities include, for example, 500 ppm or less of Fe, Pb, Bi, Al, Zn, and the like.
Here, the reason why the content of the additive element of the Ag alloy is defined as described above will be described below.
 Ag膜11を構成するAg合金に含有させるSn、In、Mg、Tiは、Ag膜11の濡れ性を向上させる作用効果を有する元素である。また、Sn、In、Mg、Tiは、Ag膜11と透明導電酸化物膜12との密着性をさらに向上させる作用効果を有する。
 ここで、Sn、In、Mg、Tiのいずれか一種又は二種以上の元素が合計で0.05原子%未満の場合には、上述の作用効果を十分に奏功せしめることができないおそれがある。一方、Sn、In、Mg、Tiは、電気抵抗を大きく上昇させる元素であることから、Sn、In、Mg、Tiのいずれか一種又は二種以上の元素が合計で10.0原子%を超えると電気抵抗が高くなって導電性が悪化するおそれがある。
 このような理由から、本実施形態では、添加元素であるSn、In、Mg、Tiの含有量を、合計で0.05原子%以上10.0原子%以下の範囲内に規定している。Sn、In、Mg、Tiの含有量はより好ましくは、0.1原子%以上5.0原子%以下の範囲である。
Sn, In, Mg, and Ti contained in the Ag alloy constituting the Ag film 11 are elements having an effect of improving the wettability of the Ag film 11. Sn, In, Mg, and Ti have the effect of further improving the adhesion between the Ag film 11 and the transparent conductive oxide film 12.
Here, when any one or two or more elements of Sn, In, Mg, and Ti are less than 0.05 atomic% in total, the above-described effects may not be sufficiently achieved. On the other hand, Sn, In, Mg, and Ti are elements that greatly increase the electrical resistance, so that one or more of Sn, In, Mg, and Ti exceeds 10.0 atomic% in total. There is a risk that the electrical resistance becomes high and the conductivity deteriorates.
For this reason, in the present embodiment, the contents of the additive elements Sn, In, Mg, and Ti are defined within a range of 0.05 atomic% to 10.0 atomic% in total. The content of Sn, In, Mg, and Ti is more preferably in the range of 0.1 atomic% to 5.0 atomic%.
 なお、Ag膜11を構成するAg合金においては、添加元素として、さらにSb及びCuを含有していてもよい。
 Sb、Cuは、視感透過率を大きく低下させることなく、かつ、抵抗を大きく上昇させることなく、Ag膜11のAg凝集を抑制して耐環境性を更に向上させる作用効果を有する元素である。ここで、Sbが0.01原子%未満、Cuが0.1原子%未満の場合には、上述の作用効果を十分に奏功せしめることができないおそれがある。このような理由から、本実施形態では、Sbを添加する場合にはSbの含有量を0.01原子%以上に、Cuを添加する場合にはCuの含有量を0.1原子%以上に設定している。
 一方、Sb及びCuは、Sn、In、Mg、Tiと同様に抵抗を大きく上昇させる元素でもある。このため、本実施形態では、Sb及びCuを添加する場合には、添加元素であるSn、In、Mg、Ti、Sb、Cuの含有量の合計を10原子%以下に設定している。Sn、In、Mg、Ti、Sb、Cuの含有量の合計はより好ましくは7.0原子%以下である。
Note that the Ag alloy constituting the Ag film 11 may further contain Sb and Cu as additive elements.
Sb and Cu are elements having an effect of further improving the environmental resistance by suppressing Ag aggregation of the Ag film 11 without greatly reducing the luminous transmittance and without greatly increasing the resistance. . Here, when Sb is less than 0.01 atomic% and Cu is less than 0.1 atomic%, the above-described effects may not be sufficiently achieved. For this reason, in this embodiment, when Sb is added, the Sb content is 0.01 atomic% or more, and when Cu is added, the Cu content is 0.1 atomic% or more. It is set.
On the other hand, Sb and Cu are elements that greatly increase the resistance as well as Sn, In, Mg, and Ti. For this reason, in this embodiment, when adding Sb and Cu, the sum total of content of Sn, In, Mg, Ti, Sb, and Cu which are addition elements is set to 10 atomic% or less. The total content of Sn, In, Mg, Ti, Sb, and Cu is more preferably 7.0 atomic percent or less.
 透明導電酸化物膜12を構成する透明導電酸化物は、In-Sn酸化物(ITO)、Al-Zn酸化物(AZO)、In-Zn酸化物(IZO)、Zn-Sn酸化物(ZTO)、Zn-Sn-Al酸化物(AZTO)とされている。
 これらの透明導電酸化物を用いることによって、透明導電酸化物膜12の可視光域における光透過率(視感透過率)を高く維持することができるとともに、電気抵抗を低くすることができる。
The transparent conductive oxide constituting the transparent conductive oxide film 12 includes In—Sn oxide (ITO), Al—Zn oxide (AZO), In—Zn oxide (IZO), and Zn—Sn oxide (ZTO). Zn—Sn—Al oxide (AZTO).
By using these transparent conductive oxides, the light transmittance (luminous transmittance) in the visible light region of the transparent conductive oxide film 12 can be kept high, and the electrical resistance can be lowered.
 ここで、透明導電酸化物膜12は、非晶質膜とされていることが好ましい。
 具体的には、透明導電酸化物膜12のX線回折測定において、図3(a)に示すように明確な結晶ピークが存在する結晶質膜よりも、図3(b)に示すように明確な結晶ピークが存在しない非晶質膜とすることが好ましい。
 本実施形態では、透明導電酸化物膜12は、In-Sn酸化物(ITO)の非晶質膜とされている。
Here, the transparent conductive oxide film 12 is preferably an amorphous film.
Specifically, in the X-ray diffraction measurement of the transparent conductive oxide film 12, it is more clear as shown in FIG. 3B than the crystalline film in which a clear crystal peak exists as shown in FIG. It is preferable to use an amorphous film in which no crystal peak exists.
In the present embodiment, the transparent conductive oxide film 12 is an amorphous film of In—Sn oxide (ITO).
 そして、本実施形態である透明導電配線10は、エッチング処理を行う前の積層膜の状態において、可視光域の視感透過率が70%以上とされている。
 また、本実施形態である透明導電配線10は、エッチング処理を行う前の積層膜の状態において、シート抵抗が40Ω/sq以下とされている。
The transparent conductive wiring 10 according to this embodiment has a luminous transmittance of 70% or more in the visible light region in the state of the laminated film before performing the etching process.
Further, the transparent conductive wiring 10 according to the present embodiment has a sheet resistance of 40 Ω / sq or less in the state of the laminated film before performing the etching process.
 次に、本実施形態である透明導電配線10の製造方法について図4を参照して説明する。 Next, the manufacturing method of the transparent conductive wiring 10 which is this embodiment is demonstrated with reference to FIG.
(Ag膜成膜工程S01)
 まず、基板30の上に、Ag合金スパッタリングターゲットを用いて、Ag膜11を成膜する。
 ここで、Ag膜11を成膜する際に用いられるAg合金スパッタリングターゲットは、成膜されるAg膜11の組成に応じて、その組成が調整されている。
(Ag film forming step S01)
First, the Ag film 11 is formed on the substrate 30 using an Ag alloy sputtering target.
Here, the composition of the Ag alloy sputtering target used when forming the Ag film 11 is adjusted according to the composition of the Ag film 11 to be formed.
 本実施形態におけるAg合金スパッタリングターゲットは次のようにして製造される。
原料として、純度99.9質量%以上のAgと、純度99.9質量%以上のSn、In、Mg、Ti、Sb、Cuを用意する。
 次に、溶解炉中において、Agを高真空または不活性ガス雰囲気中で溶解し、得られた溶湯にSn、In、Mg、Tiの何れか1種又は2種以上、Sb、Cuの何れか1種又は2種以上を所定量添加する。その後、真空または不活性ガス雰囲気中で溶解して、上述の組成のAg合金インゴットを作製する。
The Ag alloy sputtering target in the present embodiment is manufactured as follows.
As raw materials, Ag having a purity of 99.9% by mass or more and Sn, In, Mg, Ti, Sb, Cu having a purity of 99.9% by mass or more are prepared.
Next, in a melting furnace, Ag is melted in a high vacuum or an inert gas atmosphere, and the resulting molten metal is one or more of Sn, In, Mg, Ti, or any of Sb and Cu. One or two or more kinds are added in a predetermined amount. Then, it melt | dissolves in a vacuum or inert gas atmosphere, and produces the Ag alloy ingot of the above-mentioned composition.
 ここで、Agの溶解は、溶解炉内部の雰囲気を一度真空にした後、Arで置換した雰囲気で行い、溶解後、Ar雰囲気の中でAgの溶湯にSn、In、Mg、Ti、Sb、Cuを添加することが好ましい。なお、Sn、In、Mg、Ti、Sb、Cuは、予め作製した母合金の形で添加してもよい。
 得られたAg合金インゴットを冷間圧延した後、大気中で例えば600℃、2時間保持の熱処理を施し、次いで機械加工することにより、所定寸法のAg合金スパッタリングターゲットを作製する。
Here, the melting of Ag is performed in an atmosphere in which the atmosphere inside the melting furnace is once evacuated and then replaced with Ar, and after melting, Sn, In, Mg, Ti, Sb, It is preferable to add Cu. Sn, In, Mg, Ti, Sb, and Cu may be added in the form of a mother alloy prepared in advance.
After the obtained Ag alloy ingot is cold-rolled, it is subjected to heat treatment at 600 ° C. for 2 hours in the atmosphere, and then machined to produce an Ag alloy sputtering target having a predetermined size.
 Ag膜成膜工程S01では、上述のAg合金スパッタリングターゲットを無酸素銅製のバッキングプレートに半田付けし、これを直流マグネトロンスパッタ装置に装着する。このとき、Ag合金スパッタリングターゲットに対向するとともに所定の間隔をあけて基板30を配設する。
 次に、真空排気装置にて直流マグネトロンスパッタ装置内を、例えば5×10-5Pa以下まで排気した後、Arガスを導入して所定のスパッタガス圧とし、続いて直流電源にてターゲットに例えば50Wの直流スパッタ電力を印加する。
 これにより、基板30とAg合金スパッタリングターゲットとの間にプラズマを発生させ、基板30上にAg膜11を成膜する。
In the Ag film forming step S01, the above-described Ag alloy sputtering target is soldered to a backing plate made of oxygen-free copper, and this is mounted on a DC magnetron sputtering apparatus. At this time, the substrate 30 is disposed opposite to the Ag alloy sputtering target and at a predetermined interval.
Next, after the inside of the DC magnetron sputtering apparatus is evacuated to, for example, 5 × 10 −5 Pa or less with a vacuum evacuation apparatus, Ar gas is introduced to obtain a predetermined sputtering gas pressure, A 50 W direct current sputtering power is applied.
Thereby, plasma is generated between the substrate 30 and the Ag alloy sputtering target, and the Ag film 11 is formed on the substrate 30.
(透明導電酸化物膜成膜工程S02)
 そして、成膜されたAg膜11の上に、透明導電酸化物からなるスパッタリングターゲットを用いて、スパッタリングを行い、Ag膜11の上に透明導電酸化物膜12を成膜する。なお、透明導電酸化物膜12としてITO膜を成膜する場合には、成膜条件によって、結晶質膜及び非晶質膜を選択して成膜することができる。
 これにより、Ag膜11及び透明導電酸化物膜12が積層された積層膜が形成される。
(Transparent conductive oxide film forming step S02)
Then, sputtering is performed on the formed Ag film 11 using a sputtering target made of a transparent conductive oxide, and a transparent conductive oxide film 12 is formed on the Ag film 11. When an ITO film is formed as the transparent conductive oxide film 12, a crystalline film and an amorphous film can be selected and formed depending on the film forming conditions.
Thereby, a laminated film in which the Ag film 11 and the transparent conductive oxide film 12 are laminated is formed.
(エッチング処理工程S03)
 次に、上述の積層膜をエッチング処理し、配線パターンを形成する。
 まず、積層膜の上にレジスト液をコートしてプリベークした後、配線パターン形状を露光機によって露光し、ポストベークを行い、レジスト膜を形成する。その後、現像液に浸漬して、露光部のレジスト膜を除去する。
 そして、シュウ酸エッチング液に浸漬し、レジストが除去された部分の積層膜を一括でエッチングする。なお、エッチング方式は、浸漬に限らず、シャワーエッチングなどを用いてもよい。
(Etching process S03)
Next, the above laminated film is etched to form a wiring pattern.
First, after a resist solution is coated on the laminated film and prebaked, the wiring pattern shape is exposed by an exposure machine and post-baked to form a resist film. Thereafter, the resist film in the exposed portion is removed by dipping in a developing solution.
Then, it is immersed in an oxalic acid etching solution, and the laminated film where the resist has been removed is etched at once. Note that the etching method is not limited to immersion, and shower etching or the like may be used.
 ここで、本実施形態では、シュウ酸エッチング液として、シュウ酸濃度が3質量%以上7質量%以下の範囲内とされたシュウ酸水溶液を用いている。また、シュウ酸エッチング液の温度は40~60℃に設定した。ここで、シュウ酸濃度が3質量%未満では、エッチングレートが遅くなり効率的にエッチング処理をすることができなくなるおそれがある。
 一方、シュウ酸濃度が7質量%を超えると、液中にシュウ酸が析出してしまうおそれがある。以上のことから、本実施形態では、シュウ酸水溶液におけるシュウ酸濃度を3質量%以上7質量%以下の範囲内に設定している。
 シュウ酸水溶液におけるシュウ酸濃度はより好ましくは3質量%以上5質量%以下である。
 なお、このシュウ酸エッチング液においては、エッチング残渣の発生を抑制するために、有機系添加剤が添加されていてもよい。シュウ酸及び水(溶媒)以外の添加物の含有量は、4質量%以下に制限することが好ましい。
Here, in this embodiment, an oxalic acid aqueous solution having an oxalic acid concentration in the range of 3 mass% to 7 mass% is used as the oxalic acid etching solution. The temperature of the oxalic acid etching solution was set to 40 to 60 ° C. Here, when the oxalic acid concentration is less than 3% by mass, the etching rate becomes slow, and it may not be possible to perform the etching process efficiently.
On the other hand, when the oxalic acid concentration exceeds 7% by mass, oxalic acid may be precipitated in the liquid. From the above, in this embodiment, the oxalic acid concentration in the oxalic acid aqueous solution is set in the range of 3 mass% or more and 7 mass% or less.
The oxalic acid concentration in the oxalic acid aqueous solution is more preferably 3% by mass or more and 5% by mass or less.
In this oxalic acid etching solution, an organic additive may be added in order to suppress the generation of etching residues. The content of additives other than oxalic acid and water (solvent) is preferably limited to 4% by mass or less.
(レジスト剥離工程S04)
 エッチング処理工程S03の後、レジスト剥離剤に浸漬して、レジスト膜を剥離する。
これにより、所定の配線パターンを有する透明導電配線10が製造される。
(Resist stripping step S04)
After the etching treatment step S03, the resist film is removed by dipping in a resist remover.
Thereby, the transparent conductive wiring 10 having a predetermined wiring pattern is manufactured.
 以上のような構成とされた本実施形態である透明導電配線10においては、透明導電酸化物膜12に対するAg膜11のオーバーエッチング量Lが1μm以下とされているので、エッチング処理工程S03における配線パターン形状の配線幅が狭い場合であっても、Ag膜の幅を確保でき、導電性を確保することが可能となる。
 また、Ag膜11の膜厚taが3nm以上15nm以下の範囲内とされているので、視感透過率に優れるとともに、透明導電配線10の導電性を確保することができる。よって、各種ディスプレイ及びタッチパネルの配線として特に適している。
In the transparent conductive wiring 10 according to the present embodiment configured as described above, the overetching amount L of the Ag film 11 with respect to the transparent conductive oxide film 12 is 1 μm or less, so the wiring in the etching process step S03 Even if the wiring width of the pattern shape is narrow, the width of the Ag film can be ensured and the conductivity can be ensured.
Moreover, since the film thickness ta of the Ag film 11 is in the range of 3 nm or more and 15 nm or less, the luminous transmittance is excellent and the conductivity of the transparent conductive wiring 10 can be ensured. Therefore, it is particularly suitable as wiring for various displays and touch panels.
 また、本実施形態では、Ag膜11が、添加元素としてSn、In、Mg、Tiのいずれか一種又は二種以上の元素を合計で0.05原子%以上、10.0原子%以下の範囲で含み、残部がAgおよび不可避不純物からなる組成のAg合金で構成されている。従って、Ag膜の濡れ性が向上することになり、Ag膜11の膜厚taを15nm以下と比較的薄くした場合であっても、膜の凝集を抑制することができる。よって、透明導電配線10の電気抵抗を低く、かつ、視感透過率を向上させることができる。 In the present embodiment, the Ag film 11 has a total range of 0.05 atomic% or more and 10.0 atomic% or less of any one or two or more elements of Sn, In, Mg, and Ti as additive elements. And the balance is made of an Ag alloy having a composition comprising Ag and inevitable impurities. Therefore, the wettability of the Ag film is improved, and the aggregation of the film can be suppressed even when the film thickness ta of the Ag film 11 is relatively thin as 15 nm or less. Therefore, the electrical resistance of the transparent conductive wiring 10 can be lowered and the luminous transmittance can be improved.
 さらに、本実施形態では、Ag膜11を構成するAg合金が、上述の添加元素以外に、Sb:0.01原子%以上、及び、Cu:0.1原子%以上のいずれか一方又は両方を含み、かつ、全添加元素の合計が10.0原子%以下とされ、残部がAgおよび不可避不純物からなる組成とされている。本実施形態では、Sb及びCuの添加によって、膜の凝集をさらに抑制することができ、透明導電配線10の電気抵抗をさらに低く、かつ、視感透過率をさらに向上させることができる。 Furthermore, in the present embodiment, the Ag alloy that constitutes the Ag film 11 contains one or both of Sb: 0.01 atomic% or more and Cu: 0.1 atomic% or more in addition to the above-described additive elements. In addition, the total of all additive elements is 10.0 atomic% or less, and the balance is composed of Ag and inevitable impurities. In the present embodiment, the addition of Sb and Cu can further suppress the aggregation of the film, further lower the electrical resistance of the transparent conductive wiring 10 and further improve the luminous transmittance.
 また、本実施形態である透明導電配線10においては、エッチング処理工程S03を実施する前の積層膜において、可視光域の視感透過率が70%以上とされるとともに、シート抵抗が40Ω/sq以下とされているので、視認性及び導電性に優れた透明導電配線10として、各種ディスプレイやタッチパネルに適用することができる。 Further, in the transparent conductive wiring 10 according to the present embodiment, the luminous transmittance in the visible light region is set to 70% or more and the sheet resistance is 40 Ω / sq in the laminated film before the etching process step S03 is performed. Since it is set as the following, it can apply to various displays and a touch panel as the transparent conductive wiring 10 excellent in visibility and electroconductivity.
 さらに、本実施形態では、透明導電酸化物膜12が、非晶質のITO膜とされているので、エッチング処理工程S03において、シュウ酸エッチング液を用いて確実にエッチング処理することができる。よって、Ag膜11のオーバーエッチング量Lを確実に抑制することができる。 Furthermore, in this embodiment, since the transparent conductive oxide film 12 is an amorphous ITO film, it can be reliably etched using an oxalic acid etchant in the etching process step S03. Therefore, the overetching amount L of the Ag film 11 can be reliably suppressed.
 本実施形態である透明導電配線10の製造方法によれば、Ag膜11の膜厚taが3nm以上15nm以下の範囲内と比較的薄く形成されているので、エッチング処理工程S03において、シュウ酸エッチング液を用いた場合であっても、Ag膜11を除去することができ、配線パターンを形成することができる。 According to the method of manufacturing the transparent conductive wiring 10 according to this embodiment, the film thickness ta of the Ag film 11 is relatively thin in the range of 3 nm or more and 15 nm or less. Therefore, in the etching process step S03, oxalic acid etching is performed. Even when a liquid is used, the Ag film 11 can be removed and a wiring pattern can be formed.
 また、本実施形態では、シュウ酸エッチング液として、シュウ酸濃度が3質量%以上7質量%以下の範囲内とされたシュウ酸水溶液を用いているので、Ag膜11及び透明導電酸化物膜12を一括でエッチングすることができ、かつ、Ag膜11のオーバーエッチング量Lを確実に低減することができる。 In the present embodiment, as the oxalic acid etching solution, an oxalic acid aqueous solution having an oxalic acid concentration in the range of 3% by mass to 7% by mass is used. Therefore, the Ag film 11 and the transparent conductive oxide film 12 are used. Can be etched at once, and the over-etching amount L of the Ag film 11 can be reliably reduced.
 さらに、本実施形態では、透明導電酸化物膜12の膜厚toが、5nm以上80nm以下の範囲内とされていることから、透明導電酸化物膜12の導電性、及び、視感透過率を確保することができる。
 なお、透明導電酸化物膜12の膜厚toは、各単相膜での光学定数(屈折率及び消衰係数)を用いて、Ag膜11/透明導電酸化物膜12の2層構造で光学シミュレーションを行い、可視光域の透過率が光学的干渉効果によって向上する膜厚としている。
Furthermore, in this embodiment, since the film thickness to of the transparent conductive oxide film 12 is in the range of 5 nm to 80 nm, the conductivity and luminous transmittance of the transparent conductive oxide film 12 are Can be secured.
The film thickness to of the transparent conductive oxide film 12 is optical in a two-layer structure of Ag film 11 / transparent conductive oxide film 12 using optical constants (refractive index and extinction coefficient) of each single-phase film. Simulation is performed to set the film thickness so that the transmittance in the visible light region is improved by the optical interference effect.
 以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 例えば、本実施形態では、基板30の一面に対して、Ag膜11および透明導電酸化物膜12の順に成膜しているが、これに限らず、基板30の一面に対して、透明導電酸化物膜12およびAg膜11の順に成膜した構成としてもよい。
As mentioned above, although embodiment of this invention was described, this invention is not limited to this, It can change suitably in the range which does not deviate from the technical idea of the invention.
For example, in this embodiment, the Ag film 11 and the transparent conductive oxide film 12 are formed in this order on one surface of the substrate 30, but not limited to this, the transparent conductive oxide film is formed on one surface of the substrate 30. A structure in which the material film 12 and the Ag film 11 are formed in this order may be employed.
 また、例えば図5に示すように、Ag膜111の一面側および他面側に、それぞれ透明導電酸化物膜112A,112Bを形成した透明導電配線110であってもよい。この場合、耐環境性をさらに向上させることができる。なお、透明導電酸化物膜112Aと透明導電酸化物膜112Bとは、互いに異なる組成の透明導電酸化物で構成してもよい。さらに、Ag膜と透明導電酸化物膜を4層以上、任意の数だけ積層してもよい。 Further, for example, as shown in FIG. 5, a transparent conductive wiring 110 may be formed in which transparent conductive oxide films 112A and 112B are formed on one side and the other side of the Ag film 111, respectively. In this case, the environmental resistance can be further improved. Note that the transparent conductive oxide film 112A and the transparent conductive oxide film 112B may be formed of transparent conductive oxides having different compositions. Further, an arbitrary number of four or more Ag films and transparent conductive oxide films may be stacked.
 本発明に係る積層膜の効果について確認した確認実験の結果について説明する。 The result of the confirmation experiment for confirming the effect of the laminated film according to the present invention will be described.
(実施例1)
 表1に示す構成(透明導電酸化物膜/Ag膜/透明導電酸化物膜の3層構造)の積層膜を以下のように作製した。
 Ag膜を成膜する際には、表1に示すAg膜に対応する組成のスパッタリングターゲットを準備した。なお、ターゲットサイズを4インチφ×6mmtとした。
(Example 1)
A laminated film having a structure shown in Table 1 (a three-layer structure of transparent conductive oxide film / Ag film / transparent conductive oxide film) was produced as follows.
When forming the Ag film, a sputtering target having a composition corresponding to the Ag film shown in Table 1 was prepared. The target size was 4 inches φ × 6 mmt.
 また、透明導電酸化物膜は、以下の透明導電酸化物スパッタリングターゲットを使用した。
 ITO:InとSnの総和に対しSnを10原子%含むInとSnの酸化物焼結体ターゲット。
 IZO:InとZnの総和に対しZnを30原子%含むInとZnの酸化物焼結体ターゲット。
 ZTO:ZnとSnの総和に対しSnを50原子%含むZnとSnの酸化物焼結体ターゲット。
 AZO:ZnとAlの総和に対しAlを2原子%含むZnとAlの酸化物焼結体ターゲット。
 AZTO:ZnとAlとSnの総和に対しAlを2原子%、Snを10原子%含むZnとAlとSnの酸化物焼結体ターゲット。
Moreover, the following transparent conductive oxide sputtering targets were used for the transparent conductive oxide film.
ITO: In and Sn oxide sintered compact target containing 10 atomic% of Sn with respect to the sum of In and Sn.
IZO: In and Zn oxide sintered compact target containing 30 atomic% of Zn with respect to the sum of In and Zn.
ZTO: Zn and Sn oxide sintered compact target containing 50 atomic% of Sn with respect to the total of Zn and Sn.
AZO: Zn and Al oxide sintered compact target containing 2 atomic% of Al with respect to the total of Zn and Al.
AZTO: an oxide sintered compact target of Zn, Al, and Sn containing 2 atomic% of Al and 10 atomic% of Sn with respect to the total of Zn, Al, and Sn.
 なお、表1における透明導電酸化物膜において「結晶質」は、図3(a)に示すようにX線回折測定により、明確な結晶ピークが観察されたものである。また、「非晶質」は、図3(b)に示すようにX線回折測定により、明確な結晶ピークが観察されなかったものである。 In addition, in the transparent conductive oxide film in Table 1, “crystalline” has a clear crystal peak observed by X-ray diffraction measurement as shown in FIG. “Amorphous” means that no clear crystal peak was observed by X-ray diffraction measurement as shown in FIG.
 ここで、透明導電酸化物膜の成膜条件は以下のとおりである。
  基板:洗浄済みガラス基板(コーニング社製イーグルXG 厚み0.7mm)
  使用ガス:Ar+2体積%酸素
  ガス圧:0.67Pa
  スパッタリング電力:直流300W
  ターゲット/基板間距離:70mm
Here, the film forming conditions of the transparent conductive oxide film are as follows.
Substrate: Washed glass substrate (Corning Eagle XG thickness 0.7mm)
Gas used: Ar + 2% by volume oxygen Gas pressure: 0.67 Pa
Sputtering power: DC 300W
Target / substrate distance: 70 mm
 また、Ag膜の成膜条件は以下のとおりである。
  到達真空度:5×10-5Pa以下
  使用ガス:Ar
  ガス圧:0.67Pa
  スパッタリング電力:直流200W
  ターゲット/基板間距離:70mm
The film forming conditions for the Ag film are as follows.
Ultimate vacuum: 5 × 10 −5 Pa or less Gas used: Ar
Gas pressure: 0.67Pa
Sputtering power: DC 200W
Target / substrate distance: 70 mm
 得られた積層膜について、以下のようにエッチング処理を行った。
 まず、積層膜の上にレジスト液(東京応化株式会社製OFPR-8600)を滴下し、レジストをスピンコートし、大気中で110℃×90秒の条件でプリベークし、レジスト膜を形成した。
The obtained laminated film was etched as follows.
First, a resist solution (OFPR-8600 manufactured by Tokyo Ohka Kogyo Co., Ltd.) was dropped on the laminated film, the resist was spin-coated, and prebaked in the atmosphere at 110 ° C. for 90 seconds to form a resist film.
 次に、配線幅と配線間隔が各々30μmとされた配線パターンを露光機によってレジスト膜を露光した。露光した積層膜を、現像液(東京応化株式会社製NMD-W)に室温で100秒浸漬し、露光部のレジスト膜を除去した。その後、大気中で150℃×300秒の条件でポストベークした。 Next, the resist film was exposed by an exposure machine with a wiring pattern in which the wiring width and the wiring interval were each 30 μm. The exposed laminate film was immersed in a developer (NMD-W manufactured by Tokyo Ohka Kogyo Co., Ltd.) for 100 seconds at room temperature to remove the resist film in the exposed portion. Then, it post-baked on the conditions of 150 degreeC * 300 second in air | atmosphere.
 次に、No.1-7では、温度40℃のシュウ酸エッチング液(シュウ酸濃度4質量%のシュウ酸水溶液)に100~400秒浸漬して、エッチングを行った。 Next, No. In No. 1-7, etching was performed by immersing in an oxalic acid etching solution (an oxalic acid aqueous solution having an oxalic acid concentration of 4 mass%) at a temperature of 40 ° C. for 100 to 400 seconds.
 No.8-14では、温度40℃のリン酸と硝酸と酢酸からなる混酸(関東化学株式会社製ITO―02)に30~80秒浸漬して、エッチングを行った。 No. In 8-14, etching was performed by immersing in a mixed acid composed of phosphoric acid, nitric acid and acetic acid (ITO-02 manufactured by Kanto Chemical Co., Ltd.) at a temperature of 40 ° C. for 30 to 80 seconds.
 No.15―21では、2段階エッチングを行った。まず、温度40℃の関東化学株式会社製ITO-07Nに30秒浸漬して、透明導電酸化物膜のエッチングを行った。その後、温度40℃の関東化学株式会社製SEA-5Nに10秒浸漬して、Ag膜のエッチングを行った。 No. In 15-21, two-stage etching was performed. First, the transparent conductive oxide film was etched by immersing in ITO-07N manufactured by Kanto Chemical Co., Ltd. at a temperature of 40 ° C. for 30 seconds. Thereafter, the Ag film was etched by dipping in SEA-5N manufactured by Kanto Chemical Co., Ltd. at a temperature of 40 ° C. for 10 seconds.
 上述のようにエッチング処理を行った後、純水に浸漬して超音波洗浄を1分間実施し、No.1-21の透明導電配線を得た。 After performing the etching process as described above, it was immersed in pure water and subjected to ultrasonic cleaning for 1 minute. A transparent conductive wiring of 1-21 was obtained.
 得られた透明導電配線について、配線断面を観察するために基板を劈開し、その断面を、電子顕微鏡を用いて観察した。
 そして、電子顕微鏡観察にて確認された透明導電酸化物膜とAg膜の各々のエッチング端部の膜に対して平行な方向での位置の差分を「オーバーエッチング量」として評価した。評価結果を表1に示す。
The obtained transparent conductive wiring was cleaved in order to observe the wiring cross section, and the cross section was observed using an electron microscope.
And the difference of the position in the direction parallel to the film | membrane of each etching edge part of the transparent conductive oxide film and Ag film | membrane confirmed by electron microscope observation was evaluated as "over-etching amount". The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 リン酸と硝酸と酢酸からなる混酸を用いて一括エッチングを行ったNo.8-14においては、オーバーエッチング量が大きくなっていることが確認される。
 また、2段階エッチングを実施したNo.15-21においては、混酸を用いて一括エッチングを行ったNo.8-14よりも抑えられているものの、オーバーエッチング量は1μmを超えていた。
No. 1 in which batch etching was performed using a mixed acid composed of phosphoric acid, nitric acid and acetic acid. In 8-14, it is confirmed that the amount of overetching is large.
In addition, No. 2 in which two-stage etching was performed. In No. 15-21, No. 15 in which batch etching using a mixed acid was performed. Although suppressed to 8-14, the amount of overetching exceeded 1 μm.
 これに対して、シュウ酸エッチング液を用いて一括エッチングを行ったNo.1-7においては、オーバーエッチング量がすべて1μm以下に抑制されていた。
 以上のことから、本発明によれば、透明導電酸化物膜に対するAg膜のオーバーエッチング量が1μm以下とされた透明導電配線が得られることが確認された。
On the other hand, No. 1 which performed batch etching using the oxalic acid etching solution. In 1-7, the amount of overetching was all suppressed to 1 μm or less.
From the above, according to the present invention, it was confirmed that the transparent conductive wiring in which the overetching amount of the Ag film with respect to the transparent conductive oxide film was 1 μm or less was obtained.
(実施例2)
 次に、実施例1のNo.1-7と同様の方法により、表2に示す構造(透明導電酸化物膜/Ag膜/透明導電酸化物膜の3層構造)の透明導電配線を製造した。
 得られた透明導電配線について、シュウ酸エッチング液によるエッチングの可否を評価した。なお、エッチング後の透明導電配線を光学顕微鏡観察及びSEM観察を行い、残渣が確認されず、オーバーエッチング量が1μm以下のものを「A」、エッチングは可能であったが、光学顕微鏡観察及びSEM観察の結果、エッチング残渣が確認されたものを「B」、3層(透明導電酸化物膜/Ag膜/透明導電酸化物膜)を一括でエッチングできなかったもの、あるいは、オーバーエッチング量が1μmを超えたものを「C」と評価した。評価結果を表2に示す。
(Example 2)
Next, in No. A transparent conductive wiring having the structure shown in Table 2 (a three-layer structure of transparent conductive oxide film / Ag film / transparent conductive oxide film) was produced in the same manner as in 1-7.
About the obtained transparent conductive wiring, the propriety of the etching with an oxalic acid etching liquid was evaluated. The transparent conductive wiring after etching was observed with an optical microscope and SEM, and a residue was not confirmed and an overetching amount of 1 μm or less was “A”, and etching was possible. As a result of observation, the etching residue was confirmed as “B”, the three layers (transparent conductive oxide film / Ag film / transparent conductive oxide film) could not be etched at once, or the overetch amount was 1 μm. Those exceeding the value were evaluated as “C”. The evaluation results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 Ag膜の膜厚が本発明の範囲よりも厚く形成されたNo.31,32,41,42,51,52,61,62,71,72,81,82においては、Ag膜を十分にエッチングすることができなかった。
 一方、Ag膜の膜厚が本発明の範囲に設定されたNo.33-35,43―45,53―55,63-65,73-75,83-85においては、シュウ酸エッチング液を用いた場合であっても、Ag膜を十分にエッチングすることが可能であった。
 以上の実験結果から、Ag膜の膜厚を15nm以下の範囲内とすることにより、シュウ酸エッチング液によってエッチング可能であることが確認された。
No. 1 in which the film thickness of the Ag film is thicker than the range of the present invention. In 31, 32, 41, 42, 51, 52, 61, 62, 71, 72, 81, and 82, the Ag film could not be etched sufficiently.
On the other hand, the film thickness of the Ag film is No. in which the film thickness is set within the range of the present invention. In 33-35, 43-45, 53-55, 63-65, 73-75, and 83-85, the Ag film can be sufficiently etched even when an oxalic acid etchant is used. there were.
From the above experimental results, it was confirmed that etching can be performed with an oxalic acid etching solution by setting the film thickness of the Ag film within a range of 15 nm or less.
(実施例3)
 次に、実施例1のNo.1-7と同様の方法により、表3に示す構造(透明導電酸化物膜/Ag膜/透明導電酸化物膜の3層構造)の透明導電配線を製造した。
 得られた透明導電配線について、シュウ酸エッチング液によるエッチングの可否を評価した。評価内容は、実施例2と同様とした。評価結果を表3に示す。
(Example 3)
Next, No. 1 of Example 1 was used. A transparent conductive wiring having a structure shown in Table 3 (a three-layer structure of transparent conductive oxide film / Ag film / transparent conductive oxide film) was produced in the same manner as in 1-7.
About the obtained transparent conductive wiring, the propriety of the etching with an oxalic acid etching liquid was evaluated. The evaluation contents were the same as in Example 2. The evaluation results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 エッチング液としてシュウ酸水溶液を用いた場合には、透明導電酸化物膜として結晶質のITO膜を形成したNo.92においては、非晶質のITO膜を形成したNo.91に比べて、シュウ酸水溶液によるエッチング性に劣ることが確認される。なお、エッチング液としてシュウ酸水溶液と硝酸の混合液を用いた場合には、透明導電酸化物膜として結晶質のITO膜を形成したNo.93においても、エッチング性が良好であった。
 以上の実験結果から、エッチング液としてシュウ酸水溶液を用いる場合には、透明導電酸化物膜を非晶質膜とすることが好ましいことが確認された。
When an oxalic acid aqueous solution was used as the etching solution, a crystalline ITO film was formed as a transparent conductive oxide film. 92, No. 92 having an amorphous ITO film formed thereon. Compared to 91, it is confirmed that the etching property by the oxalic acid aqueous solution is inferior. In the case where a mixed solution of an oxalic acid aqueous solution and nitric acid was used as an etching solution, No. 1 in which a crystalline ITO film was formed as a transparent conductive oxide film. No. 93 also had good etching properties.
From the above experimental results, it was confirmed that the transparent conductive oxide film is preferably an amorphous film when an oxalic acid aqueous solution is used as the etching solution.
(実施例4)
 次に、実施例1のNo.1-7と同様の方法により、表4に示す構造の透明導電配線を製造した。なお、この実施例4では、ガラス基板上に透明導電酸化物膜を成膜し、その上にAg膜を成膜した2層構造とした。
 No.101-117では、シュウ酸エッチング液によるエッチング処理後、残渣が確認されず、オーバーエッチング量は全て1μm以下であった。
 得られた透明導電配線について、シート抵抗値を測定した。シート抵抗値の測定は、表面抵抗測定器(三菱油化社製、Loresta AP MCP-T400)を用いて四探針法により測定した。評価結果を表4に示す。
Example 4
Next, No. 1 of Example 1 was used. A transparent conductive wiring having the structure shown in Table 4 was produced in the same manner as in 1-7. In Example 4, a transparent conductive oxide film was formed on a glass substrate, and an Ag film was formed on the transparent conductive oxide film.
No. In No. 101-117, no residue was observed after the etching treatment with the oxalic acid etching solution, and the overetching amount was 1 μm or less.
The sheet resistance value was measured about the obtained transparent conductive wiring. The sheet resistance value was measured by a four-probe method using a surface resistance measuring instrument (Loresta AP MCP-T400, manufactured by Mitsubishi Yuka Co., Ltd.). The evaluation results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 Ag膜を構成するAg合金の添加元素の合計量が10原子%を超えるNo.111-117においては、シート抵抗値が40Ω/sqを大きく上回っていた。一方、Ag膜を構成するAg合金の添加元素の合計量が10原子%以下とされたNo.101~108においては、シート抵抗値が40Ω/sq以下であった。
 以上の実験結果から、特に、低抵抗の透明導電配線を得るためには、Ag膜を構成するAg合金の添加元素の合計量を10原子%以下に規定することが好ましいことが確認された。
No. in which the total amount of additive elements of the Ag alloy constituting the Ag film exceeds 10 atomic%. In 111-117, the sheet resistance value greatly exceeded 40 Ω / sq. On the other hand, No. 1 in which the total amount of additive elements of the Ag alloy constituting the Ag film was 10 atomic% or less. In 101 to 108, the sheet resistance value was 40Ω / sq or less.
From the above experimental results, it was confirmed that, in particular, in order to obtain a transparent conductive wiring with low resistance, it is preferable to define the total amount of additive elements of the Ag alloy constituting the Ag film to 10 atomic% or less.
 10、110 透明導電配線
 11、111 Ag膜
 12、112A、112B 透明導電酸化物膜
10, 110 Transparent conductive wiring 11, 111 Ag film 12, 112A, 112B Transparent conductive oxide film

Claims (6)

  1.  Ag又はAg合金からなるAg膜とこのAg膜に積層された透明導電酸化物膜とを有し、エッチング処理によって配線パターンが形成された透明導電配線であって、
     前記Ag膜の膜厚が15nm以下の範囲内とされ、
     前記透明導電酸化物膜に対する前記Ag膜のオーバーエッチング量が1μm以下とされていることを特徴とする透明導電配線。
    A transparent conductive wiring having an Ag film made of Ag or an Ag alloy and a transparent conductive oxide film laminated on the Ag film, and having a wiring pattern formed by an etching process,
    The thickness of the Ag film is within a range of 15 nm or less,
    The transparent conductive wiring, wherein an overetching amount of the Ag film with respect to the transparent conductive oxide film is 1 μm or less.
  2.  前記Ag膜は、添加元素としてSn、In、Mg、Tiのいずれか一種又は二種以上の元素を合計で0.05原子%以上、10.0原子%以下の範囲で含み、残部がAgおよび不可避不純物からなる組成のAg合金で構成されていることを特徴とする請求項1に記載の透明導電配線。 The Ag film includes one or more elements of Sn, In, Mg, Ti as additive elements in a total amount of 0.05 atomic% or more and 10.0 atomic% or less, with the balance being Ag and 2. The transparent conductive wiring according to claim 1, wherein the transparent conductive wiring is composed of an Ag alloy having a composition composed of inevitable impurities.
  3.  前記Ag膜は、添加元素としてさらにSb:0.01原子%以上、及び、Cu:0.1原子%以上のいずれか一方又は両方を含み、かつ、全添加元素の合計が10.0原子%以下とされ、残部がAgおよび不可避不純物からなる組成のAg合金で構成されていることを特徴とする請求項2に記載の透明導電配線。 The Ag film further contains one or both of Sb: 0.01 atomic% or more and Cu: 0.1 atomic% or more as additive elements, and the total of all additive elements is 10.0 atomic%. The transparent conductive wiring according to claim 2, wherein the transparent conductive wiring is composed of an Ag alloy having a composition composed of Ag and inevitable impurities.
  4.  前記透明導電酸化物膜は、非晶質膜とされていることを特徴とする請求項1から請求項3のいずれか一項に記載の透明導電配線。 The transparent conductive wiring according to any one of claims 1 to 3, wherein the transparent conductive oxide film is an amorphous film.
  5.  Ag又はAg合金からなるAg膜とこのAg膜に積層された透明導電酸化物膜とを有し、配線パターンが形成された透明導電配線の製造方法であって、
     前記Ag膜の膜厚を15nm以下の範囲内とし、
     前記Ag膜と前記透明導電酸化物膜とを有する積層膜に対してエッチング処理を行って配線パターンを形成するエッチング処理工程を有し、
     このエッチング処理工程では、シュウ酸エッチング液を用いて、前記透明導電酸化物膜及び前記Ag膜を一括で溶解することを特徴とする透明導電配線の製造方法。
    A method for producing a transparent conductive wiring having an Ag film made of Ag or an Ag alloy and a transparent conductive oxide film laminated on the Ag film, wherein a wiring pattern is formed,
    The film thickness of the Ag film is within a range of 15 nm or less,
    An etching process for forming a wiring pattern by performing an etching process on the laminated film including the Ag film and the transparent conductive oxide film;
    In this etching treatment step, the transparent conductive oxide film and the Ag film are dissolved together using an oxalic acid etching solution.
  6.  前記シュウ酸エッチング液は、シュウ酸濃度が3質量%以上7質量%以下の範囲内とされたシュウ酸水溶液とされていることを特徴とする請求項5に記載の透明導電配線の製造方法。 6. The method for producing a transparent conductive wiring according to claim 5, wherein the oxalic acid etching solution is an oxalic acid aqueous solution having an oxalic acid concentration within a range of 3 mass% to 7 mass%.
PCT/JP2016/055855 2015-02-27 2016-02-26 Transparent conductive wire and method for manufacturing transparent conductive wire WO2016136953A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020177004671A KR101777549B1 (en) 2015-02-27 2016-02-26 Transparent conductive wire and method for manufacturing transparent conductive wire
CN201680002259.7A CN106796885B (en) 2015-02-27 2016-02-26 The manufacture method of electrically conducting transparent distribution and electrically conducting transparent distribution

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015-037950 2015-02-27
JP2015037950 2015-02-27
JP2015-217683 2015-11-05
JP2015217683 2015-11-05
JP2016-034768 2016-02-25
JP2016034768A JP6020750B1 (en) 2015-02-27 2016-02-25 Transparent conductive wiring and method for manufacturing transparent conductive wiring

Publications (1)

Publication Number Publication Date
WO2016136953A1 true WO2016136953A1 (en) 2016-09-01

Family

ID=56788764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055855 WO2016136953A1 (en) 2015-02-27 2016-02-26 Transparent conductive wire and method for manufacturing transparent conductive wire

Country Status (1)

Country Link
WO (1) WO2016136953A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018139402A1 (en) * 2017-01-25 2018-08-02 Tdk株式会社 Transparent conductive film for antennas

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07114841A (en) * 1993-10-18 1995-05-02 Toshiba Corp Transparent conductive film and its forming and working method
JPH09123337A (en) * 1995-03-22 1997-05-13 Toppan Printing Co Ltd Multilayer conductive film, transparent electrode plate using said film, and liquid crystal display device
JPH11302876A (en) * 1998-04-16 1999-11-02 Nippon Sheet Glass Co Ltd Electrode pattern processing method for transparent conductive film
JP2005250191A (en) * 2004-03-05 2005-09-15 Idemitsu Kosan Co Ltd Translucent / half-reflection electrode substrate, and method for manufacturing same, and liquid crystal display device using translucent / half-reflection electrode substrate
JP2015030896A (en) * 2013-08-05 2015-02-16 出光興産株式会社 Sputtering target and oxide transparent conductive film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07114841A (en) * 1993-10-18 1995-05-02 Toshiba Corp Transparent conductive film and its forming and working method
JPH09123337A (en) * 1995-03-22 1997-05-13 Toppan Printing Co Ltd Multilayer conductive film, transparent electrode plate using said film, and liquid crystal display device
JPH11302876A (en) * 1998-04-16 1999-11-02 Nippon Sheet Glass Co Ltd Electrode pattern processing method for transparent conductive film
JP2005250191A (en) * 2004-03-05 2005-09-15 Idemitsu Kosan Co Ltd Translucent / half-reflection electrode substrate, and method for manufacturing same, and liquid crystal display device using translucent / half-reflection electrode substrate
JP2015030896A (en) * 2013-08-05 2015-02-16 出光興産株式会社 Sputtering target and oxide transparent conductive film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018139402A1 (en) * 2017-01-25 2018-08-02 Tdk株式会社 Transparent conductive film for antennas
JPWO2018139402A1 (en) * 2017-01-25 2019-11-21 Tdk株式会社 Transparent conductive film for antenna

Similar Documents

Publication Publication Date Title
WO2016024615A1 (en) Laminated film, laminated wiring film, and method for manufacturing laminated wiring film
JP6888318B2 (en) Method for manufacturing laminated transparent conductive film, laminated wiring film and laminated wiring film
JP6020750B1 (en) Transparent conductive wiring and method for manufacturing transparent conductive wiring
KR101951045B1 (en) Manufacturing method of an array substrate for liquid crystal display
JP6135275B2 (en) Sputtering target for protective film formation
JP4655281B2 (en) Thin film wiring layer
KR102189087B1 (en) Sputtering target for forming protective film and laminated wiring film
JP2019203194A (en) MULTILAYER FILM AND Ag ALLOY SPUTTERING TARGET
JP5724998B2 (en) Protective film forming sputtering target and laminated wiring film
JP6250614B2 (en) Cu laminated film and Cu alloy sputtering target
JP5757318B2 (en) Protective film forming sputtering target and laminated wiring film
JP6870332B2 (en) Method for manufacturing laminated transparent conductive film, laminated wiring film and laminated wiring film
WO2016136953A1 (en) Transparent conductive wire and method for manufacturing transparent conductive wire
WO2016111202A1 (en) Multilayer film
JP6398594B2 (en) Sputtering target
JP6037208B2 (en) Laminated wiring film for electronic parts and sputtering target material for coating layer formation
JP2019131850A (en) Laminated film and Ag alloy sputtering target
JP6565666B2 (en) Laminated transparent conductive film, laminated wiring film, and laminated wiring film manufacturing method
JP6597284B2 (en) Laminated transparent conductive film, laminated wiring film, and laminated wiring film manufacturing method
JP2016130010A (en) Laminated film
WO2017131183A1 (en) Multilayer transparent conductive film, multilayer wiring film and method for producing multilayer wiring film
JP2018087360A (en) Oxide sputtering target
WO2017164209A1 (en) Laminated transparent conductive film, laminated wiring film, and method for producing laminated wiring film
KR102245555B1 (en) Etchant composition and method of forming a transparant electrode
JP5686081B2 (en) Conductor film and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755697

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177004671

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16755697

Country of ref document: EP

Kind code of ref document: A1