Nothing Special   »   [go: up one dir, main page]

WO2016136236A1 - 固体電解コンデンサ - Google Patents

固体電解コンデンサ Download PDF

Info

Publication number
WO2016136236A1
WO2016136236A1 PCT/JP2016/000949 JP2016000949W WO2016136236A1 WO 2016136236 A1 WO2016136236 A1 WO 2016136236A1 JP 2016000949 W JP2016000949 W JP 2016000949W WO 2016136236 A1 WO2016136236 A1 WO 2016136236A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
anode
electrolytic capacitor
anode body
solid electrolytic
Prior art date
Application number
PCT/JP2016/000949
Other languages
English (en)
French (fr)
Inventor
孝哉 杤尾
康彦 岸永
卓哉 山下
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2017501934A priority Critical patent/JP6854400B2/ja
Priority to CN201680010711.4A priority patent/CN107251179B/zh
Publication of WO2016136236A1 publication Critical patent/WO2016136236A1/ja
Priority to US15/667,400 priority patent/US10347431B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • H01G9/012Terminals specially adapted for solid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/052Sintered electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors

Definitions

  • the present disclosure relates to a solid electrolytic capacitor, and more particularly, to a solid electrolytic capacitor including a porous sintered body as an anode.
  • the solid electrolytic capacitor includes an anode body, a dielectric layer formed on the surface of the anode body, and a solid electrolyte layer formed on the surface of the dielectric layer.
  • anode body a porous sintered body obtained by sintering valve action metal particles such as tantalum, niobium, and titanium is used.
  • the porous sintered body is usually produced by pressure-molding valve action metal particles and then sintering. At this time, if the density of the sintered body becomes too high, the impregnation property of the raw material liquid for forming the solid electrolyte layer is lowered. Therefore, it may be difficult to form a sufficient solid electrolyte layer on the surface of the dielectric layer.
  • Patent Document 1 teaches that an anode body including a second sintered body having a higher density than the first sintered body is used around the first sintered body having a low density. Moreover, in patent document 2, the bending strength of an anode body and the intensity
  • the anode lead is connected to the anode body.
  • a porous sintered body is used as the anode body, one end of the anode lead is embedded in the anode body.
  • the anode lead may not be sufficiently fixed.
  • the embedded anode lead is in a state of being easily moved, cracks are likely to occur in the sintered body from the periphery of the anode lead, and the leakage current may increase.
  • a first aspect of the present disclosure includes an anode body that is a hexahedral porous sintered body, an anode lead, a dielectric layer formed on the anode body, and a solid electrolyte formed on the dielectric layer
  • a third region interposed between the first region and the second region, the third region having a lower density than the first region and the second region, and the third region in the direction Y from the surface B toward the surface C.
  • the average thickness T3 of the region and the direction Y of the anode lead And thickness TL is, satisfies the relationship of T3 ⁇ TL, the surface of the anode lead is in contact with at least one of the first region and the second region, a solid electrolytic capacitor.
  • a solid electrolytic capacitor having a large capacity and a small leakage current can be obtained.
  • FIG. 1 is a schematic cross-sectional view of a solid electrolytic capacitor according to an embodiment of the present disclosure.
  • FIG. 2 is a perspective view showing an anode body and an anode lead according to an embodiment of the present disclosure.
  • FIG. 3 is a top view of the anode body and the anode lead according to FIG.
  • FIG. 1 is a schematic cross-sectional view of a solid electrolytic capacitor 20 according to this embodiment.
  • the solid electrolytic capacitor 20 includes a capacitor element 10 having a hexahedral outer shape, a resin sheathing body 11 that seals the capacitor element 10, and an anode terminal 7 and a cathode terminal 9 that are exposed to the outside of the resin sheathing body 11, respectively. ing. As with the capacitor element 10, the solid electrolytic capacitor 20 has a substantially hexahedral shape.
  • the capacitor element 10 includes an anode body 1 which is a hexahedral porous sintered body, an anode lead 2, a dielectric layer 3 formed on the anode body 1, and a solid electrolyte layer formed on the dielectric layer 3. 4 and.
  • the capacitor element 10 further includes a cathode layer 5 (5a, 5b) that covers the surface of the solid electrolyte layer 4.
  • the first portion 2 a including one end of the anode lead 2 is embedded in the anode body 1 from one surface (surface A) of the anode body 1.
  • the second portion 2b including the other end of the anode lead 2 is electrically connected to the first portion 7a of the anode terminal 7 sealed with the resin sheathing body 11 by welding or the like.
  • the cathode layer 5 is electrically connected via the first portion 9a of the cathode terminal 9 sealed with the resin sheathing body 11 and the conductive adhesive 8 (for example, a mixture of thermosetting resin and metal particles). It is connected to the.
  • the second portion 7b of the anode terminal 7 and the second portion 9b of the cathode terminal 9 are drawn from different side surfaces of the resin sheathing body 11, respectively, and are exposed to one main flat surface (the lower surface in FIG. 1). Yes.
  • the exposed portions of the terminals on the flat surface are used for solder connection with a substrate (not shown) on which the solid electrolytic capacitor 20 is to be mounted.
  • FIG. 2 is a perspective view showing an anode member (anode body and anode lead) according to an embodiment of the present disclosure.
  • FIG. 3 is a top view of the anode member according to FIG. ⁇ Anode member>
  • the anode body 1 is a porous sintered body obtained by sintering valve action metal particles.
  • the anode lead 2 is made of, for example, a conductive wire.
  • the anode member is produced, for example, by embedding the first portion 2a of the anode lead 2 in a valve metal or an alloy particle containing the valve metal, press-molding the metal particles into a hexahedron in this state, and sintering the metal particles. . Thereby, it pulls out so that the 2nd part 2b of the anode lead 2 may be planted from one surface (surface A) of the anode body 1.
  • the anode body 1 obtained in this way is provided with four surfaces (surface B to surface E) sharing one side different from the surface A, and a surface F facing the surface A.
  • the surfaces B to E are orthogonal to the surface A, but the present invention is not limited to this.
  • the angle formed by each of the surfaces B to E and the surface A may be about 75 to 110 °.
  • the second portion 2 b of the anode lead 2 is planted perpendicular to the surface A, but is not limited thereto.
  • the angle formed by the perpendicular of the surface A and the second portion 2b may be about 0 to 20 °.
  • the anode body 1 includes a first region R1 including the surface B, a second region R2 including the surface C facing the surface B, and a third region R3 interposed between the first region R1 and the second region R2. Is provided.
  • the third region R3 is a region having a lower density than the first region R1 and the second region R2. Density is the mass per unit volume. It can be paraphrased that having different densities in the anode body 1 has different porosities (voids), for example. Moreover, it can be grasped
  • the Vickers hardness H3 of the third region R3 is smaller than the Vickers hardnesses H1 and H2 of the first region R1 and the second region R2 (H1, H2> H3). In particular, it is preferable that H1 and H2> 1.1 ⁇ H3.
  • the Vickers hardness H3 being within this range means that the porosity of the third region R3 is sufficiently large. Therefore, the impregnation property of the raw material liquid for forming the solid electrolyte layer inside the anode body is improved, and a sufficient amount of the solid electrolyte layer can be formed on the surface of the dielectric layer.
  • the Vickers hardness H3 is preferably 1 to 100.
  • Vickers hardness H can be measured according to JIS Z 2244. When the load is small, it is preferable to use a testing machine corresponding to the micro Vickers hardness test.
  • the Vickers hardness H can be measured, for example, under conditions of a load of 3 to 10 N and a test force holding time of 10 to 20 seconds. Note that the density (or Vickers hardness) of the first region R1 and the second region R2 may be the same or different.
  • the first region R1, the second region R2, and the third region R3 can be confirmed visually or with a microscope. Between the surface B and the surface C, two boundary surfaces substantially parallel to the surface B (or the surface C) are formed. A region sandwiched between the boundary surfaces is a third region R3. When the boundary surface is not clear, each region may be determined by binarizing the microscope image on the surface D (or surface E). In this case, the third region R3 having a lower density is displayed blacker than the other regions.
  • the average thickness T3 of the third region R3 in the direction Y from the surface B to the surface C and the thickness TL in the direction Y of the anode lead 2 satisfy the relationship of T3 ⁇ TL.
  • the low-density third region R3 is usually formed in the direction substantially parallel to the surface B (or the surface C) with the first portion 2a as the center. Therefore, when T3 and TL satisfy the relationship of T3 ⁇ TL, the first portion 2a is disposed across the third region R3 and at least one of the first region R1 and the second region R2.
  • the surface of the first portion 2a is in contact with at least one of the first region R1 and the second region R2 having higher density.
  • the anode lead 2 is firmly fixed to the anode body 1.
  • T3 and TL satisfy
  • fill the relationship of T3> TL, since all the 1st parts 2a are arrange
  • the surface of the first portion 2a is preferably in contact with both the first region R1 and the second region R2. This is because the fixing of the anode lead 2 is further strengthened.
  • the ratio of the average thickness T3 to the thickness TL: TL / T3 is preferably 1.1 to 4.0.
  • TL / T3 is within this range, the surface of the first portion 2a has a larger area in contact with at least one of the first region R1 and the second region R2, and the anode lead 2 is firmly fixed by the anode body 1. .
  • the direction Y is a direction of a straight line connecting the surface B and the surface C with the shortest distance.
  • the average thickness T3 of the third region R3 takes three arbitrary points on one surface parallel to the surface B of the third region R3 in the surface A of the anode body 1, and from these points, the other thickness of the third region R3 Is obtained by averaging the length of each straight line when a straight line parallel to the direction Y is drawn.
  • the average thickness in the direction Y of the anode body 1, the first region R1, and the second region R2 can be similarly determined.
  • the average thickness T3 and the average thickness T of the anode body 1 in the direction Y satisfy the relationship of 0.15 ⁇ T3 / T ⁇ 0.4.
  • T3 / T is within this range, the impregnation property of the raw material liquid for forming the solid electrolyte layer 4 into the anode body 1 is further improved, and the strength of the anode body 1 can be secured.
  • the thickness TL and the average thickness T satisfy the relationship of TL / T ⁇ 0.8.
  • TL / T is within this range, it becomes easy to pressure-mold the valve action metal particles.
  • the areas Sb and Sc of the surface B and the surface C are preferably larger than the areas Sd and Se of the surface D and the surface E (Sb, Sc> Sd, Se). Thereby, since the area of the surface which opposes 3rd area
  • the areas Sb and Sc are preferably about 2 to 4 times the area Sd or Se.
  • the areas Sb and Sc may be the same or different, but are preferably the same in that a solid electrolytic capacitor can be easily manufactured.
  • the areas Sd and Se may be the same or different, but are preferably the same as well.
  • the ratio of the first part 2a to the anode lead 2, that is, the ratio of the buried part of the anode lead 2 is not particularly limited.
  • valve action metals such as titanium (Ti), tantalum (Ta) niobium (Nb) and the like can be used alone or in combination of two or more.
  • the conductive material constituting the anode lead 2 include the valve metal.
  • the materials constituting the anode body 1 and the anode lead 2 may be the same or different. Since the valve action metal oxide has a high dielectric constant, it is suitable as a constituent material of the anode member.
  • the material may be an alloy composed of two or more metals. For example, an alloy containing a valve action metal and silicon, vanadium, boron, or the like can be used. A compound containing a valve metal and a typical element such as nitrogen may be used.
  • the alloy of the valve action metal preferably contains the valve action metal as a main component and contains 50 atom% or more of the valve action metal.
  • the average particle diameter D50 of the primary particles of the valve action metal particles is preferably 0.05 ⁇ m to 0.5 ⁇ m, for example.
  • the average particle diameter D50 is a median diameter in a volume particle size distribution obtained by a laser diffraction particle size distribution measuring device (hereinafter the same).
  • the CV value of the anode body is preferably 100 kCV / g or more.
  • the CV value is the above-mentioned formation voltage when the anode body is formed in a 0.02 mass% phosphoric acid aqueous solution for 2 hours under conditions of a formation voltage of 10 V and a temperature of 60 ° C., and then the capacitance is measured at a frequency of 120 Hz. Expressed as the product of the measured capacitance.
  • the CV value is more preferably 105 kCV / g or more.
  • the dielectric layer 3 can be formed as an oxide film by oxidizing the surface of the conductive material constituting the anode body 1. Therefore, the dielectric layer 3 is uniformly formed along the surface (including the inner wall surface of the hole) of the porous sintered body constituting the anode body 1.
  • the thickness of the dielectric layer 3 is, for example, 10 nm to 200 nm.
  • the solid electrolyte layer 4 is formed so as to cover at least a part of the dielectric layer 3.
  • the solid electrolyte include manganese dioxide and a conductive polymer. Especially, a conductive polymer is preferable at the point which has high electroconductivity and can reduce ESR more.
  • the thickness of the solid electrolyte layer 4 is, for example, 1 ⁇ m to 50 ⁇ m.
  • the solid electrolyte layer 4 containing a conductive polymer can be formed, for example, by subjecting a raw material monomer to chemical polymerization and / or electrolytic polymerization on the dielectric layer 3.
  • the dielectric layer 3 can be formed by applying a solution in which the conductive polymer is dissolved or a dispersion in which the conductive polymer is dispersed. Water or the like can be used as the solvent or dispersion medium.
  • Examples of the conductive polymer include polypyrrole, polythiophene, polyfuran, polyaniline, polyacetylene, polyphenylene, polyparaphenylene vinylene, polyacene, polythiophene vinylene, polyfluorene, polyvinyl carbazole, polyvinyl phenol, polypyridine, and derivatives of these polymers. . These may be used alone or in combination of two or more.
  • the conductive polymer may be a copolymer of two or more monomers. Among these, polythiophene, polyaniline, polypyrrole, and the like are preferable in terms of excellent conductivity.
  • polypyrrole, polythiophene, polyfuran, polyaniline and the like mean polymers having a basic skeleton of polypyrrole, polythiophene, polyfuran, polyaniline and the like, respectively. Accordingly, polypyrrole, polythiophene, polyfuran, polyaniline and the like can also include respective derivatives.
  • polythiophene includes poly (3,4-ethylenedioxythiophene) and the like.
  • various dopants may be added to the polymerization liquid for forming the conductive polymer, the solution or dispersion of the conductive polymer.
  • the dopant is not particularly limited, but 1,5-naphthalenedisulfonic acid, 1,6-naphthalenedisulfonic acid, 1-octanesulfonic acid, 1-naphthalenesulfonic acid, 2-naphthalenesulfonic acid, 2,6-naphthalenedisulfonic acid, 2,7-naphthalenedisulfonic acid, 2-methyl-5-isopropylbenzenesulfonic acid, 4-octylbenzenesulfonic acid, 4-nitrotoluene-2-sulfonic acid, m-nitrobenzenesulfonic acid, n-octylsulfonic acid, n-butane Sulfonic acid, n-hexanesulfonic acid, o-nitrobenzenesulfonic
  • the derivatives include metal salts such as lithium salt, potassium salt and sodium salt, ammonium salts such as methylammonium salt, dimethylammonium salt and trimethylammonium salt, piperidinium salt, pyrrolidinium salt and pyrrolinium salt.
  • the average particle diameter D50 of the particles is preferably 0.01 ⁇ m to 0.5 ⁇ m, for example. If the average particle diameter D50 of the particles is within this range, the particles can easily penetrate into the third region R3 of the anode body 1, and the solid electrolyte layer 4 is also formed on the surface of the holes formed in the third region R3. Is easily formed.
  • the cathode layer 5 has a carbon layer 5a and a metal (for example, silver) paste layer 5b formed on the surface of the carbon layer 5a.
  • the carbon layer 5 a is formed so as to cover at least part of the solid electrolyte layer 4.
  • the carbon layer 5a is composed of a composition containing a conductive carbon material such as graphite.
  • the metal paste layer 5b is composed of, for example, a composition containing silver particles and a resin.
  • the structure of the cathode layer 5 is not restricted to this, What is necessary is just a structure which has a current collection function.
  • the anode body 1 and the anode lead 2 constitute an anode member of the capacitor element 10
  • the solid electrolyte layer 4 and the cathode layer 5 constitute a cathode member of the capacitor element 10
  • the dielectric layer 3 A dielectric member of the capacitor element 10 is configured.
  • Step of producing an anode member The valve action metal particles and the anode lead 2 are placed in a mold so that the first portion 2a is embedded in the valve action metal particles, press-molded, and then sintered in a vacuum. Thus, an anode member in which the first portion 2a is embedded from the surface A of the porous sintered body is produced.
  • the first portion 2a is inserted, and a load is applied to the surface into which the first portion 2a is inserted and the surface facing this.
  • the surface A and the surface F opposite to the surface A are formed.
  • a load is applied to the two surfaces facing each other to form the surface D and the surface E.
  • the other two surfaces sharing one side with the surface A are pressurized to form the surfaces B and C.
  • the pressure during the pressure molding is not particularly limited, and is, for example, about 10 to 100N.
  • the valve action metal particles may be mixed with a binder such as polyacrylic carbonate or camphor (C 10 H 16 O) as necessary.
  • Dielectric layer 3 is formed on anode body 1. Specifically, the anode body 1 is immersed in a chemical conversion tank filled with an aqueous electrolytic solution (for example, phosphoric acid aqueous solution), and the second portion 2b of the anode lead 2 is connected to the anode body of the chemical conversion tank, and anodized.
  • an aqueous electrolytic solution for example, phosphoric acid aqueous solution
  • the dielectric layer 3 made of an oxide film of the valve metal can be formed on the surface of the anode body 1.
  • the electrolytic aqueous solution is not limited to a phosphoric acid aqueous solution, and nitric acid, acetic acid, sulfuric acid and the like can be used.
  • the solid electrolyte layer 4 containing a conductive polymer is, for example, a method of impregnating a monomer or oligomer into the anode body 1 on which the dielectric layer 3 is formed, and then polymerizing the monomer or oligomer by chemical polymerization or electrolytic polymerization.
  • the anode body 1 on which the dielectric layer 3 is formed is impregnated with a conductive polymer solution or dispersion and dried to form at least part of the dielectric layer 3.
  • a solid electrolyte layer (second solid electrolyte layer) including a second conductive polymer layer may be formed in an overlapping manner.
  • the second solid electrolyte layer can be formed electrochemically by, for example, electrolytic polymerization. Electropolymerization is suitable for synthesizing thin film polymers.
  • a second solid electrolyte layer is formed on at least a part of the first solid electrolyte layer by applying a solution or dispersion of a conductive polymer to the first solid electrolyte layer and drying the solution. Can do.
  • the cathode layer 5 composed of the carbon layer 5a and the silver paste layer 5b can be formed by sequentially applying a carbon paste and a silver paste on the surface of the solid electrolyte layer 4. it can.
  • the configuration of the cathode layer 5 is not limited to this, and any configuration having a current collecting function may be used.
  • Example 1 An electrolytic capacitor was produced in the following manner. ⁇ Step 1: Formation of anode body 1> As the valve metal, tantalum metal particles having an average primary particle diameter D50 of about 0.1 ⁇ m and an average secondary particle diameter of about 0.2 ⁇ m were used. The tantalum metal particles were formed into a rectangular parallelepiped by the above method so that the first portion 2a of the anode lead 2 made of tantalum was embedded in the tantalum metal particles, and then the formed body was sintered in vacuum.
  • the anode body 1 made of a porous sintered body of tantalum, the first portion 2a is embedded in the anode body 1, and the remaining portion (second portion 2b) is planted from one surface (surface A) of the anode body 1.
  • An anode member including the anode lead 2 was obtained.
  • the anode body 1 has an average length of 2.0 mm between the surface A and the surface F facing the surface A, and an average length of 1. mm between the surface B orthogonal to the surface A and the surface C facing it.
  • the average length between the surface D and the surface E other than the surface B and the surface C perpendicular to the surface A was 0 mm, and was a rectangular parallelepiped having a length of 2.5 mm. That is, the average thickness T is 1.0 mm.
  • the second portion 2b of the anode lead 2 was planted from the surface A of the anode body 1 at an angle of approximately 0 ° with the perpendicular of the surface A.
  • the obtained anode body 1 had two boundary surfaces substantially parallel to the surface B.
  • the average thickness T3 (0.28 mm) was calculated with the region sandwiched between the boundary surfaces as the third region R3.
  • a region including the surface B is defined as a first region R1
  • a region including the surface C is defined as a second region R2.
  • the thickness TL of the anode lead 2 on the surface A was measured, it was 0.4 mm. Further, the center of the third region and the center of the cross section of the anode lead 2 almost overlapped.
  • the cross section of the anode lead 2 extends over the first region R1, the second region R2, and the third region R3, and the surface of the first portion 2a includes the first region R1, the second region R2, and the second region R3. It could be determined that both the region R2 and the third region R3 were in contact.
  • the average thicknesses of the first region R1 and the second region R2 were both 0.36 mm.
  • the Vickers hardness H1 and H2 of the first region and the second region were both 1.1 times or more of the Vickers hardness H3 of the third region.
  • Step 2 Formation of dielectric layer 3> A part of anode body 1 and anode lead 2 was immersed in a chemical conversion tank filled with an aqueous phosphoric acid solution, which is an electrolytic aqueous solution, and second part 2b of anode lead 2 was connected to the anode body of the chemical conversion tank. Then, by performing anodic oxidation, tantalum oxide (Ta 2 O 5 ) is uniformly formed on the surface of the anode body 1 (the surface of the porous sintered body including the inner wall surface of the hole) and a part of the surface of the anode lead 2. A dielectric layer 3 was formed.
  • Ta 2 O 5 tantalum oxide
  • the anodic oxidation was performed for 2 hours in a 0.02 mass% phosphoric acid aqueous solution of the anode body 1 under conditions of a conversion voltage of 10 V and a temperature of 60 ° C.
  • the CV value of the anode body after anodization was 100 kCV / g or more.
  • Step 3 Formation of solid electrolyte layer 4>
  • a mixed solution was prepared by dissolving 3,4-ethylenedioxythiophene and polystyrenesulfonic acid as a dopant in ion-exchanged water. While stirring the obtained mixed solution, ferric sulfate and sodium persulfate dissolved in ion-exchanged water were added to perform a polymerization reaction. After the reaction, the resulting reaction solution was dialyzed to remove unreacted monomers and excess oxidizing agent, and a dispersion containing polyethylene dioxythiophene doped with about 3.0% by mass of polystyrene sulfonic acid was obtained. . The obtained dispersion was impregnated in the anode body on which the dielectric layer 3 was formed for 5 minutes and then dried at 150 ° C. for 30 minutes to form the solid electrolyte layer 4 on the dielectric layer 3.
  • Step 6 Formation of cathode layer 5> A carbon layer 5 a was formed by applying a carbon paste on the surface of the solid electrolyte layer 4. Next, the silver paste layer 5b was formed by apply
  • Step 7 Production of solid electrolytic capacitor> After sealing the obtained capacitor
  • Example 2 A solid electrolytic capacitor was obtained and evaluated in the same manner as in Example 1 except that the pressure was molded so that the average thickness T3 of the third region R3 was 0.35 mm. The results are shown in Table 1.
  • the surface of the first portion 2a was in contact with any of the first region R1, the second region R2, and the third region R3.
  • the Vickers hardness H1 and H2 of the first region and the second region were both 1.1 times or more of the Vickers hardness H3 of the third region.
  • the CV value of the anode body after anodization was 100 kCV / g or more.
  • Example 3 A solid electrolytic capacitor was obtained and evaluated in the same manner as in Example 1 except that the pressure was molded so that the average thickness T3 of the third region R3 was 0.19 mm. The results are shown in Table 1.
  • the surface of the first portion 2a was in contact with any of the first region R1, the second region R2, and the third region R3.
  • the Vickers hardness H1 and H2 of the first region and the second region were both 1.1 times or more of the Vickers hardness H3 of the third region.
  • the CV value of the anode body after anodization was 100 kCV / g or more.
  • Comparative Example 1 A solid electrolytic capacitor was obtained and evaluated in the same manner as in Example 1 except that the pressure was molded so that the average thickness T3 of the third region R3 was 0.43 mm. The results are shown in Table 1. The surface of the first part 2a was in contact only with the third region R3. Further, the CV value of the anode body after anodization was 100 kCV / g or more.
  • Comparative Example 2 A solid electrolytic capacitor was obtained and evaluated in the same manner as in Example 1 except that the pressure was molded so that the average thickness T3 of the third region R3 was approximately 0 mm. The results are shown in Table 1. Further, the CV value of the anode body after anodization was smaller than 100 kCV / g.
  • the solid electrolytic capacitors of Examples 1 to 3 had a large capacitance and a small leakage current. Since the solid electrolytic capacitor of Comparative Example 1 had a large third region, the leakage current was also increased although the capacitance was large. Since the solid electrolytic capacitor of Comparative Example 2 had no third region, the leakage current was small, but the capacitance was small.
  • the present disclosure can be used for a solid electrolytic capacitor having a porous sintered body as an anode body.
  • anode body 2 anode lead 3: dielectric layer 4: solid electrolyte layer 5: cathode layer 5a: carbon layer 5b: silver paste layer 7: anode terminal 8: conductive adhesive 9: cathode terminal 10: capacitor element 11 : Resin sheath 20: Solid electrolytic capacitor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

 固体電解コンデンサは、六面体の多孔質焼結体である陽極体と、陽極リードと、陽極体上に形成された誘電体層と、誘電体層上に形成された固体電解質層と、を有するコンデンサ素子を具備する。陽極リードの一端が、陽極体の面Aから陽極体の内部に埋設されている。陽極体は、面Aと一辺を共有するとともに、互いに対向する面Bおよび面Cを有する。陽極体は、面Bを含む第1領域と、面Cを含む第2領域と、第1領域と前記第2領域との間に介在する第3領域とを有する。第3領域が、第1領域および第2領域よりも密度が低い。面Bから面Cに向かう方向Yにおける第3領域の平均厚さT3と、陽極リードの方向Yにおける太さTLとが、T3<TLの関係を満たす。陽極リードの表面が、第1領域および第2領域の少なくとも一方に接触している。

Description

固体電解コンデンサ
 本開示は、固体電解コンデンサに関し、詳細には、多孔質焼結体を陽極として備える固体電解コンデンサに関する。
 近年、電子機器の小型化および軽量化に伴って、小型かつ大容量の高周波用コンデンサが求められている。このようなコンデンサとして、等価直列抵抗(ESR)が小さく、周波数特性に優れている固体電解コンデンサの開発が進められている。固体電解コンデンサは、陽極体と、陽極体の表面に形成された誘電体層と、誘電体層の表面に形成された固体電解質層とを具備する。陽極体としては、タンタル、ニオブ、チタンなどの弁作用金属粒子を焼結した多孔質焼結体が用いられる。
 多孔質焼結体は、通常、弁作用金属粒子を加圧成形した後、焼結することにより製造される。このとき、焼結体の密度が高くなりすぎると、固体電解質層を形成するための原料液の含浸性が低下する。そのため、誘電体層の表面に十分な固体電解質層を形成させることが困難となる場合がある。
 そこで、特許文献1では、低密度の第1焼結体の周囲に、第1焼結体よりも高密度の第2焼結体を備えた陽極体を用いることを教示している。また、特許文献2では、焼結体をより高密度の焼結体で挟み込むことにより、陽極体の撓み強度および角部における強度を向上させている。
特開2010-165701号公報 特開2010-153625号公報
 陽極体には、陽極リードが接続されている。陽極体として多孔質焼結体を用いる場合、陽極リードの一端が陽極体に埋め込まれている。特許文献1および2のように、陽極体の密度の小さい部分に陽極リードの一端が埋め込まれると、陽極リードは十分に固定されない場合がある。埋め込まれた陽極リードが動きやすい状態であると、陽極リードの周囲から焼結体にクラックが発生し易くなり、漏れ電流が増大する場合がある。
 本開示の第一の局面は、六面体の多孔質焼結体である陽極体と、陽極リードと、前記陽極体上に形成された誘電体層と、前記誘電体層上に形成された固体電解質層と、を有するコンデンサ素子を具備する固体電解コンデンサであって、前記陽極リードの一端が、前記陽極体の面Aから前記陽極体の内部に埋設されており、前記陽極体が、前記面Aと一辺を共有するとともに、互いに対向する面Bおよび面Cを有し、かつ、前記面Bを含む第1領域と、前記面Cを含む第2領域と、前記第1領域と前記第2領域との間に介在する第3領域と、を備え、前記第3領域が、前記第1領域および前記第2領域よりも密度が低く、前記面Bから前記面Cに向かう方向Yにおける前記第3領域の前記平均厚さT3と、前記陽極リードの前記方向Yにおける太さTLとが、T3<TLの関係を満たし、前記陽極リードの表面が、前記第1領域および前記第2領域の少なくとも一方に接触している、固体電解コンデンサに関する。
 本開示によれば、容量が大きく、漏れ電流の少ない固体電解コンデンサが得られる。
図1は、本開示の一実施形態に係る固体電解コンデンサの断面模式図である。 図2は、本開示の一実施形態に係る陽極体および陽極リードを示す斜視図である。 図3は、図2に係る陽極体および陽極リードを面Aの方向から見た上面図である。
 本開示の一実施形態に係る固体電解コンデンサについて、図1を参照しながら説明する。図1は、本実施形態に係る固体電解コンデンサ20の断面模式図である。
<固体電解コンデンサ>
 固体電解コンデンサ20は、六面体の外形を有するコンデンサ素子10と、コンデンサ素子10を封止する樹脂外装体11と、樹脂外装体11の外部にそれぞれ露出する陽極端子7および陰極端子9と、を備えている。固体電解コンデンサ20は、コンデンサ素子10と同じく、ほぼ六面体の外形を有する。
 コンデンサ素子10は、六面体の多孔質焼結体である陽極体1と、陽極リード2と、陽極体1上に形成された誘電体層3と、誘電体層3上に形成された固体電解質層4と、を有する。コンデンサ素子10は、さらに、固体電解質層4の表面を覆う陰極層5(5a、5b)を有している。
 陽極リード2の一端を含む第一部分2aは、陽極体1の一面(面A)から陽極体1の内部に埋設されている。陽極リード2の他端を含む第二部分2bは、樹脂外装体11で封止されている陽極端子7の第一部分7aと、溶接等により電気的に接続されている。一方、陰極層5は、樹脂外装体11で封止されている陰極端子9の第一部分9aと、導電性接着材8(例えば熱硬化性樹脂と金属粒子との混合物)を介して、電気的に接続されている。陽極端子7の第二部分7bおよび陰極端子9の第二部分9bは、それぞれ樹脂外装体11の異なる側面から引き出され、一方の主要平坦面(図1では下面)まで露出状態で延在している。この平坦面における各端子の露出箇所は、固体電解コンデンサ20を搭載すべき基板(図示せず)との半田接続等に用いられる。
 本実施形態に係るコンデンサ素子について、図2および図3を参照しながら詳細に説明する。図2は、本開示の一実施形態に係る陽極部材(陽極体および陽極リード)を示す斜視図である。図3は、図2に係る陽極部材を面Aの方向から見た上面図である。
<陽極部材>
 陽極体1は、弁作用金属粒子を焼結して得られる多孔質焼結体である。陽極リード2は、例えば、導電性を有するワイヤーから構成されている。陽極部材は、例えば、陽極リード2の第一部分2aを弁作用金属又は弁作用金属を含む合金の粒子に埋め込み、その状態で金属粒子を六面体に加圧成形し、焼結することにより作製される。これにより、陽極体1の一面(面A)から、陽極リード2の第二部分2bが植立するように引き出される。
 このようにして得られる陽極体1は、面Aとそれぞれ異なる一辺を共有する4面(面B~面E)と、面Aに対向する面Fとを備える。図2では、各面B~面Eは面Aと直交しているが、これに限定されるものではない。例えば、各面B~面Eと面Aとの成す角度は、75~110°程度であっても良い。また、図2では、陽極リード2の第二部分2bは面Aに対して垂直に植立しているが、これに限定されるものではない。例えば、面Aの垂線と第二部分2bとの成す角度は、0~20°程度であっても良い。
 陽極体1は、面Bを含む第1領域R1と、面Bと対向する面Cを含む第2領域R2と、第1領域R1と第2領域R2との間に介在する第3領域R3とを備える。第3領域R3は、第1領域R1および第2領域R2よりも密度の低い領域である。密度とは、単位体積当たりの質量である。陽極体1において密度が異なるとは、例えば、多孔度(空隙度)が異なると言い換えることができる。また、多孔度が異なることは、例えば、ビッカース硬度の違いにより把握することができる。
 すなわち、第3領域R3のビッカース硬度H3は、第1領域R1および第2領域R2のビッカース硬度H1およびH2よりも小さい(H1、H2>H3)。特に、H1、H2>1.1×H3であることが好ましい。ビッカース硬度H3がこの範囲であるということは、第3領域R3の多孔度が十分に大きいということである。そのため、陽極体の内部への固体電解質層を形成するための原料液の含浸性が向上し、十分な量の固体電解質層を誘電体層の表面に形成することができる。ビッカース硬度H3は、1~100であることが好ましい。
 ビッカース硬度Hは、JIS Z 2244に準拠して測定することができる。荷重が小さい場合には、マイクロビッカース硬さ試験に対応する試験機を用いることが好ましい。ビッカース硬度Hは、例えば、荷重3~10N、試験力の保持時間10~20秒の条件で測定することができる。なお、第1領域R1および第2領域R2の密度(あるいはビッカース硬度)は、同じであっても良いし、異なっていても良い。
 第1領域R1、第2領域R2および第3領域R3は、目視またはマイクロスコープにより確認することができる。面Bと面Cとの間には、面B(あるいは面C)とほぼ平行な2つの境界面が形成されている。この境界面で挟まれた領域が、第3領域R3である。境界面が明瞭でない場合、面D(あるいは面E)のマイクロスコープの画像を二値化処理することにより、各領域を定めても良い。この場合、密度のより低い第3領域R3は、他の領域よりも黒く表示される。
 面Bから面Cに向かう方向Yにおける第3領域R3の平均厚さT3と、陽極リード2の方向Yにおける太さTLとは、T3<TLの関係を満たしている。陽極体1が、上記方法により作製される場合、通常、第一部分2aを中心として、面B(あるいは面C)とほぼ平行な方向に、密度の低い第3領域R3が形成される。そのため、T3とTLとがT3<TLの関係を満たす場合、第一部分2aは、第3領域R3と、第1領域R1および第2領域R2の少なくとも一方とに跨って配置される。
 言い換えれば、第一部分2aの表面は、より密度の高い第1領域R1および第2領域R2の少なくとも一方に接触する。これにより、陽極リード2が陽極体1に強固に固定される。なお、T3とTLとがT3≧TLの関係を満たす場合、第一部分2aは、密度の低い第3領域R3内にそのすべてが配置されるため、十分に固定されない。第一部分2aの表面は、第1領域R1および第2領域R2の両方に接触していることが好ましい。陽極リード2の固定がさらに強固になるためである。
 平均厚さT3と太さTLとの比:TL/T3は、1.1~4.0であることが好ましい。TL/T3がこの範囲であれば、第一部分2aの表面が、第1領域R1および第2領域R2の少なくとも一方に接触する面積が大きくなり、陽極リード2が陽極体1により強固に固定される。加えて、弁作用金属粒子を加圧成形し易くなる。
 方向Yは、面Bと面Cとを最短距離で結ぶ直線の方向である。第3領域R3の平均厚さT3は、陽極体1の面Aにおいて、第3領域R3の面Bと平行な一方の面の任意の3点を取り、これらの点から第3領域R3の他方の面に、方向Yと平行な直線を引いた場合の各直線の長さを平均化することにより求められる。陽極体1、第1領域R1、第2領域R2の方向Yにおける平均厚さについても、同様に求められる。
 平均厚さT3と、方向Yにおける陽極体1の平均厚さTとは、0.15<T3/T<0.4の関係を満たすことが好ましい。T3/Tがこの範囲であれば、固体電解質層4を形成するための原料液の陽極体1への含浸性がさらに向上するとともに、陽極体1の強度も確保できる。
 太さTLと平均厚さTとは、TL/T≦0.8の関係を満たすことが好ましい。TL/Tがこの範囲であれば、弁作用金属粒子を加圧成形し易くなる。
 面Bおよび面Cの各面積SbおよびScは、面Dおよび面Eの各面積SdおよびSeよりも大きいことが好ましい(Sb,Sc>Sd,Se)。これにより、第1領域R1および第2領域R2の、第3領域R3と対向する面の面積が大きくなるため、陽極リード2をより強固に固定することができる。面積SbおよびScはそれぞれ、面積SdまたはSeの2~4倍程度であることが好ましい。面積SbとScとは、同じであっても良いし異なっていても良いが、固体電解コンデンサを製造し易い点で、同じであることが好ましい。面積SdとSeとは、同じであっても良いし異なっていても良いが、同様に、同じであることが好ましい。
 第一部分2aの陽極リード2に対する割合、すなわち、陽極リード2のうち、埋設される部分の割合は特に限定されない。
 陽極体1を構成する材料としては、チタン(Ti)、タンタル(Ta)ニオブ(Nb)等の弁作用金属を、1種または2種以上組み合わせて用いることができる。陽極リード2を構成する導電性材料としても、上記弁作用金属が挙げられる。陽極体1および陽極リード2を構成する材料は、同種であっても良いし、異種であっても良い。弁作用金属の酸化物は、誘電率が高いため、陽極部材の構成材料として適している。なお、上記材料は、2種以上の金属からなる合金であってもよい。例えば、弁作用金属と、ケイ素、バナジウム、ホウ素等とを含む合金を用いることができる。また、弁作用金属と窒素等の典型元素とを含む化合物を用いてもよい。弁作用金属の合金は、弁作用金属を主成分とし、弁作用金属を50原子%以上含むことが好ましい。
 弁作用金属粒子の一次粒子の平均粒径D50は、例えば0.05μm~0.5μmであることが好ましい。ここで、平均粒径D50は、レーザー回折式の粒度分布測定装置により求められる体積粒度分布におけるメディアン径である(以下、同じ)。
 陽極体のCV値は、100kCV/g以上であることが好ましい。CV値は、陽極体を0.02質量%リン酸水溶液中で、化成電圧10V、温度60℃の条件で2時間化成した後、周波数120Hzで静電容量を測定した場合における、上記化成電圧と測定される静電容量との積で表わされる。特に容量の観点から、CV値は105kCV/g以上であることがより好ましい。
<誘電体層>
 誘電体層3は、陽極体1を構成する導電性材料の表面を酸化することにより、酸化被膜として形成することができる。従って、誘電体層3は、陽極体1を構成する多孔質焼結体の表面(孔の内壁面を含む)に沿って均一に形成されている。誘電体層3の厚さは、例えば、10nm~200nmである。
<固体電解質層>
 固体電解質層4は、誘電体層3上の少なくとも一部を覆うように形成されている。固体電解質としては、例えば、二酸化マンガン、導電性高分子などが挙げられる。なかでも、導電性高分子は、導電性が高く、ESRをより低減できる点で、好ましい。固体電解質層4の厚さは、例えば1μm~50μmである。
 導電性高分子を含む固体電解質層4は、例えば、原料モノマーを誘電体層3上で化学重合および/または電解重合することにより、形成することができる。あるいは、導電性高分子が溶解した溶液、または、導電性高分子が分散した分散液を誘電体層3に塗布することにより、形成することができる。溶媒または分散媒としては、水などを使用することができる。
 導電性高分子としては、ポリピロール、ポリチオフェン、ポリフラン、ポリアニリン、ポリアセチレン、ポリフェニレン、ポリパラフェニレンビニレン、ポリアセン、ポリチオフェンビニレン、ポリフルオレン、ポリビニルカルバゾール、ポリビニルフェノール、ポリピリジン、これらの高分子の誘導体などが挙げられる。これらは、単独で用いてもよく、複数種を組み合わせて用いてもよい。また、導電性高分子は、2種以上のモノマーの共重合体でもよい。これらのうちでは、導電性に優れる点で、ポリチオフェン、ポリアニリン、ポリピロールなどが好ましい。
 なお、本明細書では、ポリピロール、ポリチオフェン、ポリフラン、ポリアニリンなどは、それぞれ、ポリピロール、ポリチオフェン、ポリフラン、ポリアニリンなどを基本骨格とする高分子を意味する。したがって、ポリピロール、ポリチオフェン、ポリフラン、ポリアニリンなどには、それぞれの誘導体も含まれ得る。例えば、ポリチオフェンには、ポリ(3,4-エチレンジオキシチオフェン)などが含まれる。
 導電性高分子を形成するための重合液、導電性高分子の溶液または分散液には、導電性高分子の導電性を向上させるために、様々なドーパントを添加してもよい。ドーパントは、特に限定されないが、1,5-ナフタレンジスルホン酸、1,6-ナフタレンジスルホン酸、1-オクタンスルホン酸、1-ナフタレンスルホン酸、2-ナフタレンスルホン酸、2,6-ナフタレンジスルホン酸、2,7-ナフタレンジスルホン酸、2-メチル-5-イソプロピルベンゼンスルホン酸、4-オクチルベンゼンスルホン酸、4-ニトロトルエン-2-スルホン酸、m-ニトロベンゼンスルホン酸、n-オクチルスルホン酸、n-ブタンスルホン酸、n-ヘキサンスルホン酸、o-ニトロベンゼンスルホン酸、p-エチルベンゼンスルホン酸、トリフルオロメタンスルホン酸、ハイドロオキシベンゼンスルホン酸、ブチルナフタレンスルホン酸、ベンゼンスルホン酸、ポリスチレンスルホン酸、ポリビニルスルホン酸、メタンスルホン酸、および、これらの誘導体などが挙げられる。誘導体としては、リチウム塩、カリウム塩、ナトリウム塩などの金属塩、メチルアンモニウム塩、ジメチルアンモニウム塩、トリメチルアンモニウム塩などのアンモニウム塩、ピペリジウム塩、ピロリジウム塩、ピロリニウム塩などが挙げられる。
 導電性高分子が、粒子の状態で分散媒に分散している場合、その粒子の平均粒径D50は、例えば0.01μm~0.5μmであることが好ましい。粒子の平均粒径D50がこの範囲であれば、陽極体1の第3領域R3の内部にまで粒子が侵入し易くなり、第3領域R3に形成されている孔の表面にも固体電解質層4が形成され易くなる。
<陰極層>
 陰極層5は、カーボン層5aと、カーボン層5aの表面に形成された金属(例えば、銀)ペースト層5bと、を有している。カーボン層5aは、固体電解質層4上の少なくとも一部を覆うように形成されている。カーボン層5aは、黒鉛などの導電性炭素材料を含む組成物により構成される。金属ペースト層5bは、例えば、銀粒子と樹脂とを含む組成物により構成される。なお、陰極層5の構成は、これに限られず、集電機能を有する構成であればよい。
 このようにして、陽極体1および陽極リード2により、コンデンサ素子10の陽極部材が構成され、固体電解質層4および陰極層5により、コンデンサ素子10の陰極部材が構成され、誘電体層3により、コンデンサ素子10の誘電体部材が構成される。
 本実施形態に係る固体電解コンデンサの製造方法の一例を、説明する。
≪固体電解コンデンサの製造方法≫
(1)陽極部材を作製する工程
 弁作用金属粒子と陽極リード2とを、第一部分2aが弁作用金属粒子に埋め込まれるように型に入れ、加圧成形した後、真空中で焼結することにより、第一部分2aが多孔質焼結体の面Aからその内部に埋設される陽極部材が作製される。
 具体的には、6面で囲まれたプレス機の型に弁作用金属粒子を充填した後、第一部分2aを差し込み、第一部分2aが差し込まれた面およびこれに対向する面に荷重をかけて、面Aおよびこれに対向する面Fを成形する。次いで、面Aと一辺を共有するとともに、互いに対向する二面に荷重をかけて、面Dおよび面Eを形成する。最後に、面Aと一辺を共有する他の二面を加圧して、面Bおよび面Cを成形する。面Bおよび面Cを成形する際の圧力を他の面を成形する場合よりも大きくすることで、第一部分2aを中心として、面Bおよび面Cとほぼ平行な方向に、密度の低い第3領域R3が形成される。
 加圧成形の際の圧力は特に限定されず、例えば、10~100N程度である。弁作用金属粒子には、必要に応じて、ポリアクリルカーボネート、樟脳(C1016O)などのバインダを混合しても良い。
(2)陽極体上に誘電体層を形成する工程
 陽極体1上に誘電体層3を形成する。具体的には、電解水溶液(例えば、リン酸水溶液)が満たされた化成槽に、陽極体1を浸漬し、陽極リード2の第二部分2bを化成槽の陽極体に接続して、陽極酸化を行うことにより、陽極体1の表面に弁作用金属の酸化被膜からなる誘電体層3を形成することができる。電解水溶液としては、リン酸水溶液に限らず、硝酸、酢酸、硫酸などを用いることができる。
(3)固体電解質層の形成工程
 本実施形態では、導電性高分子を含む固体電解質層4の形成工程を説明する。
 導電性高分子を含む固体電解質層4は、例えば、誘電体層3が形成された陽極体1に、モノマーやオリゴマーを含浸させ、その後、化学重合や電解重合によりモノマーやオリゴマーを重合させる方法、あるいは、誘電体層3が形成された陽極体1に、導電性高分子の溶液または分散液を含浸し、乾燥させることにより、誘電体層3上の少なくとも一部に形成される。
 さらに、重ねて第2の導電性高分子層を含む固体電解質層(第2固体電解質層)を形成してもよい。第2固体電解質層は、例えば、電解重合により電気化学的に形成することができる。電解重合は薄膜状の高分子を合成するのに適している。あるいは、第1の固体電解質層に、導電性高分子の溶液または分散液を塗布し、乾燥させることにより、第1の固体電解質層上の少なくとも一部に、第2固体電解質層を形成することができる。
(4)陰極層の形成工程
 固体電解質層4の表面に、カーボンペーストおよび銀ペーストを順次、塗布することにより、カーボン層5aと銀ペースト層5bとで構成される陰極層5を形成することができる。陰極層5の構成は、これに限られず、集電機能を有する構成であればよい。
[実施例]
 以下、実施例に基づいて、本開示をより詳細に説明するが、本開示は実施例に限定されるものではない。
《実施例1》
 下記の要領で電解コンデンサを作製した。
<工程1:陽極体1の形成>
 弁作用金属として、一次粒子の平均粒子径D50が約0.1μm、二次粒子の平均粒子径が約0.2μmであるタンタル金属粒子を用いた。タンタルからなる陽極リード2の第一部分2aがタンタル金属粒子に埋め込まれるように、タンタル金属粒子を上記方法により直方体に成形し、その後、成形体を真空中で焼結した。
 これにより、タンタルの多孔質焼結体からなる陽極体1と、陽極体1に第一部分2aが埋設され、残りの部分(第二部分2b)が陽極体1の一面(面A)から植立した陽極リード2と、を含む陽極部材を得た。陽極体1は、面Aとこれに対向する面Fとの間の平均長さが2.0mm、面Aと直交する面Bとこれに対向する面Cとの間の平均長さが1.0mm、面Aと直交する面Bおよび面C以外の面Dと面Eとの間の平均長さが2.5mmの直方体であった。すなわち、平均厚さTは1.0mmである。陽極リード2の第二部分2bは、陽極体1の面Aから、面Aの垂線とほぼ0°の角度を成して植立していた。
 マイクロスコープにより、得られた陽極体1に、面Bとほぼ平行な2つの境界面があることを確認した。境界面で挟まれた領域を第3領域R3として、平均厚さT3(0.28mm)を算出した。面Bを含む領域を第1領域R1、面Cを含む領域を第2領域R2とした。面Aにおける陽極リード2の太さTLを測定したところ、0.4mmであった。また、第3領域の中心と陽極リード2の断面の中心とは、ほぼ重なっていた。
 面Aから陽極部材を見たとき、陽極リード2の断面は、第1領域R1、第2領域R2および第3領域R3に跨っており、第一部分2aの表面は、第1領域R1、第2領域R2および第3領域R3のいずれにも接触していると判断できた。第1領域R1および第2領域R2の平均厚さは、いずれも0.36mmであった。第1領域および第2領域のビッカース硬度H1およびH2はいずれも、第3領域のビッカース硬度H3の1.1倍以上であった。
<工程2:誘電体層3の形成>
 電解水溶液であるリン酸水溶液が満たされた化成槽に、陽極体1と陽極リード2の一部を浸漬し、陽極リード2の第二部分2bを化成槽の陽極体に接続した。そして、陽極酸化を行うことにより、陽極体1の表面(孔の内壁面を含む多孔質焼結体の表面)および陽極リード2の一部の表面に、酸化タンタル(Ta25)の均一な誘電体層3を形成した。陽極酸化は、陽極体1を0.02質量%リン酸水溶液中で、化成電圧10V、温度60℃の条件で2時間行った。陽極酸化後の陽極体のCV値は、100kCV/g以上であった。
<工程3:固体電解質層4の形成>
 3,4-エチレンジオキシチオフェンと、ドーパントとしてのポリスチレンスルホン酸とを、イオン交換水に溶かした混合溶液を調製した。得られた混合溶液を撹拌しながら、イオン交換水に溶かした硫酸第二鉄と過硫酸ナトリウムとを添加し、重合反応を行った。反応後、得られた反応液を透析して、未反応モノマーおよび過剰な酸化剤を除去し、約3.0質量%のポリスチレンスルホン酸がドープされたポリエチレンジオキシチオフェンを含む分散液を得た。得られた分散液を誘電体層3が形成された陽極体に5分間含浸させた後、150℃で30分間乾燥し、誘電体層3上に固体電解質層4を形成した。
<工程6:陰極層5の形成>
 固体電解質層4の表面に、カーボンペーストを塗布することにより、カーボン層5aを形成した。次に、カーボン層5aの表面に、銀ペーストを塗布することにより、銀ペースト層5bを形成した。こうして、カーボン層5aと銀ペースト層5bとで構成される陰極層5を形成した。
<工程7:固体電解コンデンサの作製>
 得られたコンデンサ素子を封止して、図1に示す実施例1の固体電解コンデンサを完成させた後、以下に示す評価を行った。結果を表1に示す。
[評価]
《静電容量》
 LCRメータを用いて、120Hzで測定した。
《漏れ電流》
 陽極体と陰極との間に6.3Vの電圧を印加し、40秒後の漏れ電流(LC40)を測定した。
《実施例2》
 第3領域R3の平均厚さT3が0.35mmとなるように加圧成形したこと以外、実施例1と同様にして固体電解コンデンサを得て、評価を行った。結果を表1に示す。第一部分2aの表面は、第1領域R1、第2領域R2および第3領域R3のいずれにも接触していた。第1領域および第2領域のビッカース硬度H1およびH2はいずれも、第3領域のビッカース硬度H3の1.1倍以上であった。また、陽極酸化後の陽極体のCV値は、100kCV/g以上であった。
《実施例3》
 第3領域R3の平均厚さT3が0.19mmとなるように加圧成形したこと以外、実施例1と同様にして固体電解コンデンサを得て、評価を行った。結果を表1に示す。第一部分2aの表面は、第1領域R1、第2領域R2および第3領域R3のいずれにも接触していた。第1領域および第2領域のビッカース硬度H1およびH2はいずれも、第3領域のビッカース硬度H3の1.1倍以上であった。また、陽極酸化後の陽極体のCV値は、100kCV/g以上であった。
《比較例1》
 第3領域R3の平均厚さT3が0.43mmとなるように加圧成形したこと以外、実施例1と同様にして固体電解コンデンサを得て、評価を行った。結果を表1に示す。第一部分2aの表面は、第3領域R3にのみ接触していた。また、陽極酸化後の陽極体のCV値は、100kCV/g以上であった。
《比較例2》
 第3領域R3の平均厚さT3が、ほぼ0mmとなるように加圧成形したこと以外、実施例1と同様にして固体電解コンデンサを得て、評価を行った。結果を表1に示す。また、陽極酸化後の陽極体のCV値は、100kCV/gより小さかった。
Figure JPOXMLDOC01-appb-T000001
 実施例1~3の固体電解コンデンサは、静電容量が大きく、漏れ電流が少なかった。比較例1の固体電解コンデンサは、第3領域が大きいため、静電容量は大きいものの漏れ電流も増大していた。比較例2の固体電解コンデンサは、第3領域がないため、漏れ電流は少ないものの、静電容量は小さい値を示した。
 本開示は、陽極体として多孔質焼結体を具備する固体電解コンデンサに利用することができる。
1:陽極体
2:陽極リード
3:誘電体層
4:固体電解質層
5:陰極層
5a:カーボン層
5b:銀ペースト層
7:陽極端子
8:導電性接着材
9:陰極端子
10:コンデンサ素子
11:樹脂外装体
20:固体電解コンデンサ

Claims (7)

  1.  六面体の多孔質焼結体である陽極体と、
     陽極リードと、
     前記陽極体上に形成された誘電体層と、
     前記誘電体層上に形成された固体電解質層と、を有するコンデンサ素子を具備する固体電解コンデンサであって、
     前記陽極リードの一端が、前記陽極体の面Aから前記陽極体の内部に埋設されており、
     前記陽極体が、それぞれ前記面Aと一辺を共有するとともに、互いに対向する面Bおよび面Cを有し、かつ、前記面Bを含む第1領域と、前記面Cを含む第2領域と、前記第1領域と前記第2領域との間に介在する第3領域と、を備え、
     前記第3領域が、前記第1領域および前記第2領域よりも密度が低く、
     前記面Bから前記面Cに向かう方向Yにおける前記第3領域の前記平均厚さT3と、前記陽極リードの前記方向Yにおける太さTLとが、T3<TLの関係を満たし、
     前記陽極リードの表面が、前記第1領域および前記第2領域の少なくとも一方に接触している、
     固体電解コンデンサ。
  2.  前記平均厚さT3と、前記方向Yにおける前記陽極体の平均厚さTとが、0.15<T3/T<0.4の関係を満たす、
     請求項1に記載の固体電解コンデンサ。
  3.  前記太さTLと前記平均厚さTとが、TL/T≦0.8の関係を満たす、
     請求項1または2に記載の固体電解コンデンサ。
  4.  前記陽極リードの表面が、前記第1領域および前記第2領域の両方に接触している、
     請求項1~3のいずれか一項に記載の固体電解コンデンサ。
  5.  前記陽極体のCV値が、100kCV/g以上である、
     請求項1~4のいずれか一項に記載の固体電解コンデンサ。
  6.  前記第1領域および前記第2領域のビッカース硬度が、前記第3領域のビッカース硬度の1.1倍以上である、
     請求項1~5のいずれか一項に記載の固体電解コンデンサ。
  7.  前記面Bおよび前記面Cの面積が、それぞれ前記面Aと一辺を共有するとともに、互いに対向する他の面Dおよび面Eのいずれの面積よりも大きい、
     請求項1~6のいずれか一項に記載の固体電解コンデンサ。
PCT/JP2016/000949 2015-02-27 2016-02-23 固体電解コンデンサ WO2016136236A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017501934A JP6854400B2 (ja) 2015-02-27 2016-02-23 固体電解コンデンサ
CN201680010711.4A CN107251179B (zh) 2015-02-27 2016-02-23 固体电解电容器
US15/667,400 US10347431B2 (en) 2015-02-27 2017-08-02 Solid electrolytic capacitor with porous sintered body as an anode body and manufacturing thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-039176 2015-02-27
JP2015039176 2015-02-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/667,400 Continuation US10347431B2 (en) 2015-02-27 2017-08-02 Solid electrolytic capacitor with porous sintered body as an anode body and manufacturing thereof

Publications (1)

Publication Number Publication Date
WO2016136236A1 true WO2016136236A1 (ja) 2016-09-01

Family

ID=56788234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000949 WO2016136236A1 (ja) 2015-02-27 2016-02-23 固体電解コンデンサ

Country Status (4)

Country Link
US (1) US10347431B2 (ja)
JP (1) JP6854400B2 (ja)
CN (2) CN110246695B (ja)
WO (1) WO2016136236A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190148081A1 (en) * 2017-01-17 2019-05-16 Kemet Electronics Corporation Wire to Anode Connection
JP2019529709A (ja) * 2016-09-15 2019-10-17 ハー.ツェー.スタルク タンタルム アンド ニオビウム ゲゼルシャフト ミット ベシュレンクテル ハフツングH.C. Starck Tantalum and Niobium GmbH 3d印刷による電子部品の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11929215B2 (en) * 2017-01-17 2024-03-12 Kemet Electronics Corporation Wire to anode connection
WO2020138018A1 (ja) * 2018-12-28 2020-07-02 パナソニックIpマネジメント株式会社 成型体を製造するための金型、製造装置ならびに製造方法
EP3796351B1 (en) * 2019-09-17 2021-11-03 Murata Manufacturing Co., Ltd. Low defect high capacitance thin solid electrolyte capacitor and method of fabrication thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01113328U (ja) * 1988-01-26 1989-07-31
JPH07130582A (ja) * 1993-11-01 1995-05-19 Haimeka Kk タンタル陽極体の製造方法
JP2004146623A (ja) * 2002-10-25 2004-05-20 Rohm Co Ltd 固体電解コンデンサにおけるコンデンサ素子用チップ体及びその製造方法
JP2010165701A (ja) * 2009-01-13 2010-07-29 Rohm Co Ltd 固体電界コンデンサ素子およびその製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3818286A (en) * 1972-03-28 1974-06-18 Nat Components Ind Inc Anode for solid electrolyte capacitor
JP3516167B2 (ja) * 1992-12-08 2004-04-05 ローム株式会社 タンタルコンデンサチップの製造方法
JP3196679B2 (ja) * 1997-02-19 2001-08-06 日本電気株式会社 固体電解コンデンサ素子の製造方法
DE60033076T2 (de) * 1999-04-16 2007-08-30 Matsushita Electric Industrial Co., Ltd., Kadoma Anodische Elektrode für Elektrolytkondensator und Verfahren zu ihrer Herstellung
US6995972B2 (en) * 2004-01-28 2006-02-07 Sanyo Electric Co., Ltd. Solid electrolytic capacitor and method for manufacturing the same
JP2006080266A (ja) * 2004-09-09 2006-03-23 Nichicon Corp 固体電解コンデンサ素子およびその製造方法
US20080106853A1 (en) * 2004-09-30 2008-05-08 Wataru Suenaga Process for Producing Porous Sintered Metal
US7177141B1 (en) * 2005-07-28 2007-02-13 Sanyo Electric Co., Ltd. Solid electrolytic capacitor element, manufacturing method therefor, and solid electrolytic capacitor
JP5020120B2 (ja) * 2008-02-21 2012-09-05 三洋電機株式会社 固体電解コンデンサ及びその製造方法
US20090279233A1 (en) * 2008-05-12 2009-11-12 Yuri Freeman High volumetric efficiency anodes for electrolytic capacitors
JP2010153625A (ja) * 2008-12-25 2010-07-08 Hitachi Chemical Electronics Co Ltd チップ形固体電解コンデンサおよびその製造方法
US8279583B2 (en) * 2009-05-29 2012-10-02 Avx Corporation Anode for an electrolytic capacitor that contains individual components connected by a refractory metal paste
JP5906406B2 (ja) * 2011-03-18 2016-04-20 パナソニックIpマネジメント株式会社 固体電解コンデンサの製造方法
US8681477B2 (en) * 2011-08-30 2014-03-25 Sanyo Electric Co., Ltd. Solid electrolytic capacitor and method for manufacturing the same
JP6186584B2 (ja) * 2011-11-25 2017-08-30 パナソニックIpマネジメント株式会社 固体電解コンデンサ及びその製造方法
GB2502703B (en) * 2012-05-30 2016-09-21 Avx Corp Notched lead for a solid electrolytic capacitor
US9776281B2 (en) * 2012-05-30 2017-10-03 Avx Corporation Notched lead wire for a solid electrolytic capacitor
JP6141318B2 (ja) * 2013-06-13 2017-06-07 石原ケミカル株式会社 Ta粉末の製造方法およびTa造粒粉の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01113328U (ja) * 1988-01-26 1989-07-31
JPH07130582A (ja) * 1993-11-01 1995-05-19 Haimeka Kk タンタル陽極体の製造方法
JP2004146623A (ja) * 2002-10-25 2004-05-20 Rohm Co Ltd 固体電解コンデンサにおけるコンデンサ素子用チップ体及びその製造方法
JP2010165701A (ja) * 2009-01-13 2010-07-29 Rohm Co Ltd 固体電界コンデンサ素子およびその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019529709A (ja) * 2016-09-15 2019-10-17 ハー.ツェー.スタルク タンタルム アンド ニオビウム ゲゼルシャフト ミット ベシュレンクテル ハフツングH.C. Starck Tantalum and Niobium GmbH 3d印刷による電子部品の製造方法
JP7094271B2 (ja) 2016-09-15 2022-07-01 タニオビス ゲー・エム・ベー・ハー 3d印刷による電子部品の製造方法
US20190148081A1 (en) * 2017-01-17 2019-05-16 Kemet Electronics Corporation Wire to Anode Connection
US11120949B2 (en) * 2017-01-17 2021-09-14 Kemet Electronics Corporation Wire to anode connection

Also Published As

Publication number Publication date
CN110246695B (zh) 2021-10-12
JP6854400B2 (ja) 2021-04-07
US10347431B2 (en) 2019-07-09
US20170330692A1 (en) 2017-11-16
JPWO2016136236A1 (ja) 2017-12-07
CN107251179B (zh) 2019-07-26
CN107251179A (zh) 2017-10-13
CN110246695A (zh) 2019-09-17

Similar Documents

Publication Publication Date Title
JP7182588B2 (ja) コンデンサアノードに使用するための鎖に結合した対イオンを有する導電性ポリマーと、鎖に結合していない対イオンを有する導電性ポリマーの混合物を含む分散液
US9502183B2 (en) Method for improving the electrical parameters in capacitors containing PEDOT/PSS as a solid electrolyte by polyglycerol
JP5388811B2 (ja) 固体電解コンデンサおよびその製造方法
US10347431B2 (en) Solid electrolytic capacitor with porous sintered body as an anode body and manufacturing thereof
US8724294B2 (en) Solid electrolytic capacitor and method of manufacturing solid electrolytic capacitor
TW201303939A (zh) 電解電容器之製造方法
WO2020153242A1 (ja) 電解コンデンサおよびその製造方法
JP5623214B2 (ja) 固体電解コンデンサ
WO2015198587A1 (ja) 電解コンデンサ
CN110444396B (zh) 用于提升结构强度的卷绕式电容器组件及其制造方法
CN108780705B (zh) 固体电解电容器
KR102688784B1 (ko) 고 신뢰성 응용을 위한 중합체 커패시터의 제조 방법
JP2018147992A (ja) 固体電解コンデンサおよびその製造方法
JP2018142668A (ja) 固体電解コンデンサ
WO2024111506A1 (ja) 固体電解コンデンサ
WO2023153177A1 (ja) 電解コンデンサ
WO2016174817A1 (ja) 電解コンデンサ
US12094662B2 (en) Electrolytic capacitor and method for producing the same
US20240055191A1 (en) Solid electrolytic capacitor element and solid electrolytic capacitor
JP2020072186A (ja) 電解コンデンサ
WO2018159426A1 (ja) 電解コンデンサ
JP2013074026A (ja) 固体電解コンデンサおよびその製造方法
JP2022149517A (ja) 電解コンデンサ
KR20240037379A (ko) 고 신뢰성 응용을 위한 중합체 커패시터의 제조 방법
CN117063256A (zh) 电解电容器及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16754987

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017501934

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16754987

Country of ref document: EP

Kind code of ref document: A1