WO2016133108A1 - 組成物および成形品 - Google Patents
組成物および成形品 Download PDFInfo
- Publication number
- WO2016133108A1 WO2016133108A1 PCT/JP2016/054535 JP2016054535W WO2016133108A1 WO 2016133108 A1 WO2016133108 A1 WO 2016133108A1 JP 2016054535 W JP2016054535 W JP 2016054535W WO 2016133108 A1 WO2016133108 A1 WO 2016133108A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- fluorine
- general formula
- composition
- represented
- Prior art date
Links
- 0 *c1ccccc1 Chemical compound *c1ccccc1 0.000 description 2
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/54—Silicon-containing compounds
- C08K5/541—Silicon-containing compounds containing oxygen
- C08K5/5415—Silicon-containing compounds containing oxygen containing at least one Si—O bond
- C08K5/5419—Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G69/00—Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G69/00—Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
- C08G69/02—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
- C08G69/08—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
- C08G69/12—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids with both amino and carboxylic groups aromatically bound
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/0008—Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
- C08K5/0025—Crosslinking or vulcanising agents; including accelerators
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/54—Silicon-containing compounds
- C08K5/541—Silicon-containing compounds containing oxygen
- C08K5/5415—Silicon-containing compounds containing oxygen containing at least one Si—O bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L27/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
- C08L27/02—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L27/12—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L77/00—Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/10—Block- or graft-copolymers containing polysiloxane sequences
Definitions
- the present invention relates to a composition containing a fluorine-containing polymer and a molded product obtained therefrom.
- Fluorine-containing elastomers especially perfluoroelastomers containing tetrafluoroethylene (TFE) units, exhibit excellent chemical resistance, solvent resistance, and heat resistance, and are therefore used in aerospace, semiconductor manufacturing equipment, chemical plant fields, etc. Widely used as a sealing material in harsh environments.
- TFE tetrafluoroethylene
- Patent Document 1 in order to provide a seal for a semiconductor manufacturing apparatus that has heat resistance, low gas permeability, and stability even when irradiated with plasma in an atmosphere of oxygen or CF 4 and does not generate dust, It has been proposed to add 1 to 50 parts by weight of silica and 1 to 10 parts by weight of organic peroxide with respect to 100 parts by weight of elastomer.
- Patent Document 2 in order to improve plasma resistance and reduce generation of particles after plasma irradiation, aluminum oxide fine particles having an average particle diameter of 0.5 ⁇ m or less may be added to the crosslinkable fluorine-based elastomer component. Proposed.
- Patent Document 3 for the purpose of providing a white blended composition of a fluorine-containing elastomer that can be peroxide vulcanized and does not deteriorate compression set, a 4 to 5 wt% aqueous solution is added to the fluorine-containing elastomer. It has been proposed to add ultrafine white carbon having a pH of 9-12.
- Patent Document 4 heat resistance and workability are maintained in an environment where direct exposure to plasma is performed, as in a dry etching apparatus, and both fluorine-based plasma and oxygen plasma that are exposed in a semiconductor manufacturing process.
- an isoindolinone pigment, a quinacridone pigment, a diketopyrrolopyrrole pigment is used as the fluorine-containing elastomer. It has been proposed to add at least one selected from the group consisting of pigments, anthraquinone pigments, amine antioxidants, phenolic antioxidants, sulfur antioxidants, and phosphorus antioxidants.
- Patent Document 5 discloses a filler composed of a synthetic polymer compound having an amide bond or a synthetic polymer compound having an imide bond in the main chain as a filler having a small weight change in both oxygen plasma irradiation and CF 4 plasma irradiation. Are listed. It is also described that this filler is blended with a crosslinkable elastomer.
- An object of the present invention is to provide a composition that gives a molded article that is excellent in heat resistance and has a small weight change with respect to fluorine-based plasma and oxygen plasma that are exposed in a semiconductor manufacturing process, and heat resistance. It is another object of the present invention to provide a molded article that is excellent in resistance and has a small weight change with respect to fluorine plasma and oxygen plasma exposed in the semiconductor manufacturing process.
- the resulting molded article has excellent heat resistance and is further exposed to fluorine plasma and oxygen exposed in the semiconductor manufacturing process. It was found that the weight change was small with respect to the plasma.
- the present invention is a composition comprising a fluorine-containing polymer and a cage silsesquioxane represented by the general formula (1).
- R 1 to R 8 are each independently a hydrogen atom, a halogen atom or an organic group.
- the fluorine-containing polymer is preferably a fluorine-containing elastomer.
- the cage silsesquioxane preferably has a particle size of 0.5 to 15 nm.
- the cage silsesquioxane is preferably a dendrimer of cage silsesquioxane.
- R 1 to R 8 each independently include a terminal group T represented by the general formula (2).
- X 1 and X 2 are each independently —NH 2 , —OH, —SH, —H or the following formula
- R 1 to R 8 preferably contain a trivalent group B represented by formula (3).
- the dendrimer preferably has a generation number of 1-8.
- the composition preferably contains 0.5 to 100 parts by mass of a cage silsesquioxane with respect to 100 parts by mass of the fluoropolymer.
- composition preferably further contains a crosslinking agent.
- the composition can be suitably used as a molding material.
- a molded product obtained from the above composition is also one aspect of the present invention.
- the molded product obtained from the composition of the present invention has excellent heat resistance, and is further resistant to fluorine plasma and oxygen plasma exposed in the semiconductor manufacturing process. Small change in weight. Since the molded product of the present invention has the above-described configuration, it has excellent heat resistance, and further has a small change in weight with respect to fluorine-based plasma and oxygen plasma exposed in the semiconductor manufacturing process.
- FIG. 6 is a measurement result of particle diameter of a cage silsesquioxane dendrimer obtained in Synthesis Examples 1 to 6 by dynamic light scattering measurement.
- FIG. FIG. 6 is an evaluation result of weight reduction of the cage silsesquioxane obtained in Synthesis Examples 1 to 5 by CF 4 plasma treatment.
- FIG. 6 is an evaluation result of weight reduction due to O 2 plasma treatment of the cage silsesquioxane obtained in Synthesis Examples 1 to 5.
- composition of the present invention is characterized by comprising a fluorine-containing polymer and a cage silsesquioxane having a specific structure.
- the fluorine-containing polymer is preferably a fluorine-containing elastomer because of its excellent sealing properties, chemical resistance and heat resistance.
- the fluorine-containing elastomer may be a partially fluorinated elastomer or a perfluoroelastomer, but it is preferable to use a perfluoroelastomer from the viewpoint of further excellent chemical resistance and heat resistance.
- VdF vinylidene fluoride
- TFE tetrafluoroethylene
- Pr tetrafluoroethylene
- TFE propylene
- VdF vinylidene fluoride
- the vinylidene fluoride-based fluororubber is preferably a copolymer composed of 45 to 85 mol% of vinylidene fluoride and 55 to 15 mol% of at least one other monomer copolymerizable with vinylidene fluoride.
- the copolymer is composed of 50 to 80 mol% of vinylidene fluoride and 50 to 20 mol% of at least one other monomer copolymerizable with vinylidene fluoride.
- the content of each monomer constituting the fluoropolymer can be calculated by appropriately combining NMR, FT-IR, elemental analysis, and fluorescent X-ray analysis depending on the type of monomer.
- TFE tetrafluoroethylene
- HFP he
- Monomers monomers ethylene, propylene, and a non-fluorinated monomer such as an alkyl vinyl ether. These can be used alone or in any combination. Among these, it is preferable to use at least one selected from the group consisting of TFE, HFP, fluoroalkyl vinyl ether and CTFE.
- CF 2 CFO (CF 2 CF (Y 11) O) m (CF 2) n F (Wherein Y 11 represents a fluorine atom or a trifluoromethyl group, m is an integer of 1 to 4, and n is an integer of 1 to 4).
- Y 11 represents a fluorine atom or a trifluoromethyl group
- m is an integer of 1 to 4
- n is an integer of 1 to 4
- at least one of The fluoromonomer represented by the general formula (8) is more preferable.
- vinylidene fluoride-based fluorororubber examples include VdF / HFP rubber, VdF / HFP / TFE rubber, VdF / CTFE rubber, VdF / CTFE / TFE rubber, VDF / general formula (6).
- the tetrafluoroethylene / propylene-based fluororubber is preferably a copolymer composed of 45 to 70 mol% of tetrafluoroethylene, 55 to 30 mol% of propylene, and 0 to 5 mol% of a fluoromonomer providing a crosslinking site. .
- the fluorine-containing elastomer may be a perfluoroelastomer.
- the perfluoroelastomer include perfluoroelastomers containing TFE, for example, a fluoromonomer copolymer represented by TFE / general formula (8), (10) or (11), and TFE / general formula (8), (10 ) Or (11) is preferably at least one selected from the group consisting of a fluoromonomer / monomer copolymer that provides a crosslinking site.
- TFE / PMVE copolymer the composition is preferably 45 to 90/10 to 55 (mol%), more preferably 55 to 80/20 to 45, and still more preferably 55 to 70/30 to 45.
- a monomer copolymer that provides a TFE / PMVE / cross-linking site it is preferably 45 to 89.9 / 10 to 54.9 / 0.01 to 4 (mol%), and more preferably 55 to 77. It is 9/20 to 49.9 / 0.1 to 3.5, and more preferably 55 to 69.8 / 30 to 44.8 / 0.2 to 3.
- a fluoromonomer copolymer represented by the general formula (8), (10) or (11) having 4 to 12 carbon atoms preferably 50 to 90/10 to 50 (mol%). More preferably, it is 60 to 88/12 to 40, and still more preferably 65 to 85/15 to 35.
- the composition is out of the range, the properties as a rubber elastic body are lost, and the properties tend to be similar to those of a resin.
- perfluoroelastomer examples include TFE / fluoromonomer represented by the general formula (11) / fluoromonomer copolymer that gives a crosslinking site, TFE / perfluorovinyl ether copolymer represented by the general formula (11), and TFE. / At least one selected from the group consisting of a fluoromonomer copolymer represented by the general formula (8) and a fluoromonomer represented by TFE / the general formula (8) / a monomer copolymer giving a crosslinking site It is preferable that
- perfluoroelastomer examples include perfluoroelastomers described in International Publication No. 97/24381, Japanese Examined Patent Publication No. 61-57324, Japanese Examined Patent Publication No. 4-81608, Japanese Patent Publication No. 5-13961, and the like. Can do.
- the monomer that gives a crosslinking site is a monomer (curing site monomer) having a crosslinkable group that gives the fluoropolymer a crosslinking site for forming a crosslink with a crosslinking agent.
- CX 3 2 CX 3 -R f 121 CHR 121 X 4
- X 3 is a hydrogen atom, a fluorine atom or CH 3
- R f 121 is a fluoroalkylene group, a perfluoroalkylene group, a fluoro (poly) oxyalkylene group or a perfluoro (poly) oxyalkylene group
- R 121 Is a hydrogen atom or CH 3
- X 4 is an iodine atom or a bromine atom
- CX 3 2 CX 3 -R f 131 X 4 (Wherein X 3 is a hydrogen atom, fluorine atom or CH 3 , R f 131 is a fluoroalkylene group, perfluoroalkylene group, fluoropolyoxyalkylene group or perfluoropolyoxyalkylene
- Formula (14) CF 2 ⁇ CFO (CF 2 CF (CF 3 ) O) m (CF 2 ) n —X 5 (Wherein m is an integer of 0 to 5, n is an integer of 1 to 3, and X 5 is a cyano group, a carboxyl group, an alkoxycarbonyl group, an iodine atom, a bromine atom, or —CH 2 I).
- m is an integer of 0 to 5
- n is an integer of 1 to 3
- X 6 is a cyano group, a carboxyl group, an alkoxycarbonyl group, an iodine atom, a bromine atom, or —CH 2 OH.
- X 3 is preferably a fluorine atom.
- Rf 121 and Rf 131 are preferably perfluoroalkylene groups having 1 to 5 carbon atoms.
- R 121 is preferably a hydrogen atom.
- X 5 is preferably a cyano group, an alkoxycarbonyl group, an iodine atom, a bromine atom, or —CH 2 I.
- X 6 is preferably a cyano group, an alkoxycarbonyl group, an iodine atom, a bromine atom, or —CH 2 OH.
- CF 2 CFOCF 2 CF ( CF 3) OCF 2 CF 2 CN
- CF 2 CFOCF 2 CF (CF 3) OCF 2 CF 2 COOH
- CF 2 CFOCF 2 CF (CF 3) OCF 2 CF 2 CH 2 I
- CF 2 CFOCF 2 CF 2 CH 2 I
- CH 2 CFCF 2 OCF (CF 3) CF 2 OCF (CF 3) CN
- CH 2 CFCF 2 OCF (CF 3) CF 2 OCF (CF 3 ) COOH
- CH 2 CFCF 2 OCF (CF 3 ) CF 2 OCF (CF 3 ) CH 2 OH
- CH 2 CHCF 2 CF 2 I
- the fluorine-containing elastomer preferably has a glass transition temperature of ⁇ 70 ° C. or higher, more preferably ⁇ 60 ° C. or higher, and preferably ⁇ 50 ° C. or higher from the viewpoint of excellent compression set at high temperatures. Further preferred. Further, from the viewpoint of good cold resistance, it is preferably 5 ° C. or lower, more preferably 0 ° C. or lower, and further preferably ⁇ 3 ° C. or lower.
- the glass transition temperature is obtained by using a differential scanning calorimeter (Mettler Toledo, DSC822e) to obtain a DSC curve by raising the temperature of 10 mg of the sample at 10 ° C./min. It can be determined as the temperature indicating the midpoint of the two intersections of the extension of the line and the tangent at the inflection point of the DSC curve.
- the fluorine-containing elastomer preferably has a Mooney viscosity ML (1 + 20) at 170 ° C. of 30 or more, more preferably 40 or more, and still more preferably 50 or more from the viewpoint of good heat resistance. Further, in terms of good workability, it is preferably 150 or less, more preferably 120 or less, and even more preferably 110 or less.
- the fluorine-containing elastomer preferably has a Mooney viscosity ML (1 + 20) at 140 ° C. of 30 or more, more preferably 40 or more, and still more preferably 50 or more from the viewpoint of good heat resistance. Moreover, it is preferable that it is 180 or less at a point with favorable workability, It is more preferable that it is 150 or less, It is still more preferable that it is 110 or less.
- the fluorine-containing elastomer preferably has a Mooney viscosity ML (1 + 10) at 100 ° C. of 10 or more, more preferably 20 or more, and still more preferably 30 or more from the viewpoint of good heat resistance. Further, in terms of good workability, it is preferably 120 or less, more preferably 100 or less, and still more preferably 80 or less.
- the Mooney viscosity can be measured according to JIS K6300 at 170 ° C. or 140 ° C. and 100 ° C. using a Mooney viscometer MV2000E type manufactured by ALPHA TECHNOLOGIES.
- the partially fluorinated elastomers and perfluoroelastomers described above can be produced by conventional methods, but the resulting polymer has a narrow molecular weight distribution and is easy to control the molecular weight, and an iodine atom or bromine atom is introduced at the terminal. From the point that can be made, an iodine compound or a bromine compound can also be used as a chain transfer agent.
- Examples of the polymerization method performed using an iodine compound or a bromine compound include a method of performing emulsion polymerization in an aqueous medium while applying pressure in the presence of an iodine compound or a bromine compound in a substantially oxygen-free state. (Iodine transfer polymerization method).
- iodine compound or bromine compound to be used include, for example, the general formula: R 13 I x Br y (Wherein x and y are each an integer of 0 to 2 and satisfy 1 ⁇ x + y ⁇ 2, and R 13 represents a saturated or unsaturated fluorohydrocarbon group having 1 to 16 carbon atoms or chlorofluoro A hydrocarbon group, or a hydrocarbon group having 1 to 3 carbon atoms, which may contain an oxygen atom).
- an iodine compound or a bromine compound an iodine atom or a bromine atom is introduced into the polymer and functions as a crosslinking point.
- Examples of the iodine compound and bromine compound include 1,3-diiodoperfluoropropane, 2-iodoperfluoropropane, 1,3-diiodo-2-chloroperfluoropropane, 1,4-diiodoperfluorobutane, , 5-Diiodo-2,4-dichloroperfluoropentane, 1,6-diiodoperfluorohexane, 1,8-diiodoperfluorooctane, 1,12-diiodoperfluorododecane, 1,16-diiodo perfluoro hexadecane, diiodomethane, 1,2-diiodoethane, 1,3-diiodo -n- propane, CF 2 Br 2, BrCF 2 CF 2 Br, CF 3 CFBrCF 2 Br, CFClBr 2, BrCF 2 CFCl
- 1,4-diiodoperfluorobutane, 1,6-diiodoperfluorohexane, and 2-iodoperfluoropropane are used from the viewpoint of polymerization reactivity, crosslinking reactivity, availability, and the like. Is preferred.
- composition of the present invention contains a cage silsesquioxane represented by the general formula (1).
- R 1 to R 8 are each independently a hydrogen atom, a halogen atom or an organic group.
- the organic group is preferably an alkyl group, an alkoxy group, or a phenyl group.
- the alkyl group and alkoxy group preferably have 1 to 1000 carbon atoms, preferably 1 to 600, and more preferably 1 to 400. When the number of carbon atoms is 2 or more, two carbon atoms may be bonded by an amide bond, an imide bond, an ester bond, a urethane bond, a carbonate bond, or the like.
- the alkyl group and alkoxy group may include a cyclic structure such as an aromatic ring.
- the alkyl group and the alkoxy group may have an amino group, a nitro group, a carboxyl group, a sulfo group, a hydroxyl group, a vinyl group, an epoxy group, a silyl group, an isocyanate group, or the like.
- the phenyl group may be substituted with one or more substituents.
- R 1 to R 8 preferably contain a cyclic structure such as an aromatic ring. Since R 1 to R 8 include a cyclic structure such as an aromatic ring, a rigid structure is radially arranged at the apex of the cage-type silsesquioxane lattice, and the terminal functional groups are all directed outward, so that the heat resistance Excellent plasma resistance.
- R 1 to R 8 are preferably the same atom or group since they are excellent in heat resistance and plasma resistance.
- the cage silsesquioxane preferably has a particle size of 0.5 to 15 nm, more preferably 1 nm or more, still more preferably 5 nm or more, and even more preferably 10 nm or less.
- the particle diameter can be adjusted according to the type of R 1 to R 8 .
- the cage silsesquioxane is preferably a dendrimer of cage silsesquioxane.
- the dendrimer has a cage-type silsesquioxane skeleton as a core and R 1 to R 8 as a dendron.
- R 1 to R 8 each independently include a terminal group T represented by the general formula (2).
- X 1 and X 2 are each independently —NH 2 , —OH, —SH, —H or the following formula:
- Examples of the dendrimer of the cage silsesquioxane include those in which R 1 to R 8 include a trivalent group B represented by the following formula in the general formula (1).
- L 1 and L 2 are each independently a divalent group represented by —NH—CO—, —O—CO—, —O—, —CO— or —OCH 2 —.
- L 1 and L 2 are preferably a divalent group represented by —NH—CO—.
- the trivalent group B is preferably represented by the formula (3).
- each of R 1 to R 8 includes a terminal group T and a trivalent group B.
- B is bonded to the silicon atom of a cage silsesquioxane through a divalent group A represented by — (CH 2 ) 1 —NH—CO— (wherein 1 is an integer of 1 to 5).
- the trivalent group B is bonded to the silicon atom of the cage silsesquioxane through the above divalent group A, and the terminal group T is divalent through the trivalent group B.
- Those bonded to group A are preferred.
- a plurality of trivalent groups B may be bonded to form a regular repeating structure.
- the dendrimer of the cage silsesquioxane preferably has a generation number of 1 to 8, more preferably 1 to 6.
- R 1 to R 8 examples include those having the following structures.
- A is a divalent group represented by — (CH 2 ) 1 —NH—CO— (l is an integer of 1 to 5).
- the above structures correspond to first to fifth generation dendrimers, respectively.
- R 1 to R 8 possessed by the second generation dendrimer is specifically shown in the following formula.
- the composition preferably contains 0.5 to 100 parts by mass of the cage silsesquioxane with respect to 100 parts by mass of the fluoropolymer.
- the amount is preferably 5 to 50 parts by mass, and more preferably 5 to 25 parts by mass. If the amount of cage silsesquioxane is too small, the reinforcing property is poor, and if the amount of cage silsesquioxane is too large, it is hard and the sealing performance is lowered.
- the composition preferably further contains a crosslinking agent.
- crosslinking agent examples include crosslinking agents used in peroxide crosslinking, polyol crosslinking, polyamine crosslinking, triazine crosslinking, oxazole crosslinking, imidazole crosslinking, and thiazole crosslinking.
- the crosslinking agent used in peroxide crosslinking may be an organic peroxide that can easily generate a peroxy radical in the presence of heat or a redox system.
- organic peroxide that can easily generate a peroxy radical in the presence of heat or a redox system.
- the crosslinking aid that can be used in this case may be a compound having a reaction activity with respect to a peroxy radical and a polymer radical.
- a peroxy radical and a polymer radical For example, CH 2 ⁇ CH—, CH 2 ⁇ CHCH 2 —, CF 2 And polyfunctional compounds having a functional group such as ⁇ CF—.
- triallyl cyanurate triallyl isocyanurate (TAIC)
- triacryl formal triallyl trimellitate, N, N′-n-phenylenebismaleimide, dipropargyl terephthalate, diallyl phthalate, tetraallyl Terephthalate amide, triallyl phosphate, bismaleimide, fluorinated triallyl isocyanurate (1,3,5-tris (2,3,3-trifluoro-2-propenyl) -1,3,5-triazine 2,4 6-trione), tris (diallylamine) -S-triazine, triallyl phosphite, N, N-diallylacrylamide, 1,6-divinyldodecafluorohexane and the like.
- crosslinking agent used for polyol crosslinking examples include polyhydric alcohol compounds such as bisphenol A and bisphenol AF.
- crosslinking agent used for polyamine crosslinking examples include polyvalent amine compounds such as hexamethylenediamine carbamate, N, N′-dicinnamylidene-1,6-hexanediamine, and 4,4′-bis (aminocyclohexyl) methanecarbamate.
- crosslinking agent used for triazine crosslinking examples include organotin compounds such as tetraphenyltin and triphenyltin.
- crosslinking agent used in the oxazole crosslinking system examples include, for example, the general formula (20):
- R 4 is —SO 2 —, —O—, —CO—, an alkylene group having 1 to 6 carbon atoms, a perfluoroalkylene group having 1 to 10 carbon atoms, a single bond, or
- R 5 and R 6 are one of —NH 2 and the other is —NHR 7 , —NH 2 , —OH or —SH, and R 7 is a hydrogen atom, a fluorine atom or a monovalent group
- An organic group preferably R 5 is —NH 2 and R 6 is —NHR 7 .
- Preferable specific examples of the alkylene group having 1 to 6 carbon atoms include methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group and the like.
- the perfluoroalkylene group having 1 to 10 carbon atoms Is
- R f 3 is a perfluoroalkylene group having 1 to 10 carbon atoms
- n is an integer of 1 to 10
- bisaminophenol-based crosslinking agents bisaminothiophenol-based crosslinking agents, bisdiaminophenyl-based crosslinking agents, etc. are those conventionally used for crosslinking systems having a cyano group as a crosslinking point. It reacts with the group to form an oxazole ring, a thiazole ring and an imidazole ring to give a crosslinked product.
- crosslinking agents include compounds having a plurality of 3-amino-4-hydroxyphenyl groups or 3-amino-4-mercaptophenyl groups, or a compound represented by the general formula (24):
- R 4 , R 5 and R 6 are as defined above
- specific examples include 2,2-bis (3-amino-4-hydroxyphenyl) hexa Fluoropropane (generic name: bis (aminophenol) AF), 2,2-bis (3-amino-4-mercaptophenyl) hexafluoropropane, tetraaminobenzene, bis-3,4-diaminophenylmethane, bis-3 , 4-diaminophenyl ether, 2,2-bis (3,4-diaminophenyl) hexafluoropropane, 2,2-bis [3-amino-4- (N-phenylamino) phenyl] hexafluoropropane, 2, 2-bis [3-amino-4- (N-methylamino) phenyl] hexafluoropropane, 2,2-bis [3-amino-4- (N-ethylamino) )
- 2,2-bis [3-amino-4- (N-phenylamino) phenyl] hexafluoropropane is used as a crosslinking agent from the viewpoint of heat resistance, steam resistance, amine resistance, and good crosslinkability. Is preferred.
- the crosslinking agent is preferably 0.05 to 10 parts by mass, more preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the fluoropolymer.
- the amount of the crosslinking agent is less than 0.05 parts by mass, the fluorine-containing polymer tends not to be sufficiently crosslinked, and when it exceeds 10 parts by mass, the physical properties of the crosslinked product tend to be deteriorated.
- the composition may contain a general filler.
- Examples of the general filler include imide fillers having an imide structure such as polyimide, polyamideimide, and polyetherimide; polyarylate, polysulfone, polyethersulfone, polyphenylene sulfide, polyetheretherketone, polyetherketone, polyoxy Organic fillers made of engineering plastics such as benzoate (excluding compound (a)), metal oxide fillers such as aluminum oxide, silicon oxide and yttrium oxide, metal carbides such as silicon carbide and aluminum carbide, silicon nitride and aluminum nitride Examples thereof include inorganic fillers such as metal nitride filler, aluminum fluoride, and carbon fluoride.
- imide fillers having an imide structure such as polyimide, polyamideimide, and polyetherimide
- polyarylate polysulfone, polyethersulfone, polyphenylene sulfide, polyetheretherketone, polyetherketone, polyoxy Organic fillers made of engineering plastics such as benzoate (excluding compound (a
- aluminum oxide, yttrium oxide, silicon oxide, polyimide, and carbon fluoride are preferable from the viewpoint of the shielding effect of various plasmas.
- the blending amount of the general filler is preferably 0.5 to 100 parts by mass, more preferably 5 to 50 parts by mass with respect to 100 parts by mass of the fluoropolymer.
- the said composition can be prepared by mixing said each component using a normal polymer processing machine, for example, an open roll, a Banbury mixer, a kneader, etc. In addition, it can be prepared by a method using a closed mixer.
- the composition can be suitably used as a molding material for obtaining a molded product by molding, and can also be suitably used as a molding material for obtaining a molded product by cross-linking molding.
- a method for obtaining a preform using the composition as a molding material may be a conventional method, and may be a known method such as a method of heat-compressing with a mold, a method of press-fitting into a heated mold, or a method of extruding with an extruder. Can be done.
- a molded product can be obtained by performing heat crosslinking with steam after extrusion.
- Kneading method Roll kneading press cross-linking: Oven cross-linking at 180 ° C. for 20 minutes: 290 ° C. for 18 hours. Unless otherwise stated, cross-linking is performed under these conditions.
- the present invention is also a molded article obtained from the above composition.
- the molded article of the present invention can be suitably used as a sealing material for a semiconductor manufacturing apparatus that requires a particularly high level of cleanliness, particularly a semiconductor manufacturing apparatus that performs high-density plasma irradiation.
- the sealing material include O-ring, square ring, gasket, packing, oil seal, bearing seal, lip seal and the like.
- it can also be used as various polymer products used in semiconductor manufacturing equipment, such as diaphragms, tubes, hoses, various rubber rolls, and belts. It can also be used as a coating material and a lining material.
- the semiconductor manufacturing apparatus referred to in the present invention is not particularly limited to an apparatus for manufacturing a semiconductor, and is widely used as a semiconductor that requires a high degree of cleanness, such as an apparatus for manufacturing a liquid crystal panel or a plasma panel. This includes all manufacturing equipment used in the field, and examples include the following.
- etching apparatus dry etching apparatus plasma etching apparatus reactive ion etching apparatus reactive ion beam etching apparatus sputter etching apparatus ion beam etching apparatus wet etching apparatus ashing apparatus
- cleaning apparatus dry etching cleaning apparatus UV / O 3 cleaning apparatus ion Beam cleaning device
- Laser beam cleaning device Plasma cleaning device Gas etching cleaning device
- Extraction cleaning device Soxhlet extraction cleaning device
- High temperature high pressure extraction cleaning device Microwave extraction cleaning device Supercritical extraction cleaning device
- Exposure device Stepper coater / developer (4) Polishing device CMP apparatus (5) film forming apparatus CVD apparatus sputtering apparatus (6) diffusion / ion implantation apparatus oxidation diffusion apparatus ion implantation apparatus
- the molded article of the present invention exhibits excellent performance as a sealing material for, for example, a CVD apparatus, a plasma etching apparatus, a reactive ion etching apparatus, an ashing apparatus, or an excimer laser exposure machine.
- the particle size was determined using a nanoPartica SZ-100 (manufactured by Horiba, Ltd.) by dynamic light scattering measurement.
- Elemental analysis was performed using an organic elemental analyzer CE-440M (Exeter Analytical).
- the particle size of the obtained dendrimers (G1 to G6) was measured. Moreover, the structure of the obtained dendrimer was confirmed by elemental analysis. The results of elemental analysis are shown in Table 1. The measurement results of the particle diameter are shown in FIG. The particle diameter of the dendrimer was observed to increase by about 1 nm with every generation.
- Plasma irradiation equipment used High density plasma ICP etching system MODEL RIE-101iPH manufactured by Samco Corporation
- Irradiation conditions Oxygen plasma irradiation treatment ( Figure 3) Gas flow rate: 16sccm RF output: 400W Pressure: 2.6Pa Etching time: 15 minutes CF 4 plasma irradiation treatment ( Figure 2) Gas flow rate: 16sccm RF output: 400W Pressure: 2.6Pa Etching time: 15 minutes
- Irradiation operation An aluminum cup containing the obtained dendrimer G1 is placed in the center of the RF electrode and irradiated under the above conditions.
- Weight measurement Using an electronic analytical balance BP211D manufactured by Sartorius GMBH, measure to 0.01 mg and round off to the nearest 0.01 mg.
- Example 1 10 parts by weight of dendrimer G1 is premixed in 1500 parts by weight of a fluorine-containing solvent with respect to 100 parts by weight of the fluorine-containing elastomer, and then the fluorine-containing solvent is volatilized at 60 ° C. and kneaded with an open roll to contain fluorine.
- An elastomer composition was obtained.
- the fluorine-containing elastomer is a perfluoroelastomer made of Daikin Perfume GA-105 manufactured by Daikin Industries, Ltd. and tetrafluoroethylene / perfluoroalkyl vinyl ether containing iodine as a crosslinking group.
- the fluorine-containing solvent used was R-318 (manufactured by Daikin Industries, Ltd., main component: C 4 F 8 Cl 2 ).
- the obtained fluorine-containing elastomer composition was press-molded at 85 ° C. for 10 minutes.
- the obtained molded product was subjected to plasma resistance evaluation described later and measurement of 50% mass reduction temperature.
- the results of the plasma resistance evaluation and the measurement results of the 50% mass reduction temperature are shown in Table 2.
- Example 2 and 3 Comparative Examples 3 and 4
- a fluorine-containing elastomer composition was obtained in the same manner as in Example 1 except that the components of the fluorine-containing elastomer composition were changed as shown in Table 2.
- a molded product was obtained from the obtained fluorine-containing elastomer composition in the same manner as in Example 1. The obtained molded product was subjected to plasma resistance evaluation described later and measurement of 50% mass reduction temperature. The results of the plasma resistance evaluation and the measurement results of the 50% mass reduction temperature are shown in Table 2.
- Irradiation conditions Oxygen plasma irradiation treatment Gas flow rate: 10sccm Bias: -50V Pressure: 4mTorr Etching time: 5 hours
- Etching amount measurement Using a stylus type surface shape measuring device DEKTAK 6M manufactured by Veeco, the level difference between the coated surface and the exposed surface was measured to examine the etching amount.
- Example 4 Binary polymer AFLAS 150P (manufactured by Asahi Glass Co., Ltd.), Percadox 14 (manufactured by Kayaku Akzo Co., Ltd.), triallyl isocyanurate (TAIC) (manufactured by Nippon Kasei Co., Ltd.) and dendrimer G1 in a weight ratio of 100 / The mixture was mixed at 1/5/10 and kneaded with an open roll to obtain a crosslinkable fluoroelastomer composition.
- TAIC triallyl isocyanurate
- the obtained fluoroelastomer composition was crosslinked at 170 ° C. for 20 minutes and then oven-crosslinked in an air oven at 200 ° C. for 4 hours to obtain a molded product.
- Oxygen plasma irradiation conditions Gas flow rate: 16sccm RF output: 400W Pressure: 2.6Pa Etching time: 60 minutes
- Etching amount measurement Using a laser microscope VK-9700 manufactured by Keyence Corporation, the amount of etching was examined by measuring the level difference between the coated surface and the exposed surface.
- Example 5 The same operation as in Example 4 was performed except that dendrimer G1 was changed to dendrimer G2.
- This molded article was subjected to an oxygen plasma irradiation treatment under the above conditions, and the etching amount was examined. The results are shown in Table 3.
- Example 6 The same operation as in Example 4 was performed except that dendrimer G1 was changed to dendrimer G3.
- This molded article was subjected to an oxygen plasma irradiation treatment under the above conditions, and the etching amount was examined. The results are shown in Table 3.
- Comparative Example 5 It carried out like Example 4 except not having blended dendrimer G1.
- This molded article was subjected to an oxygen plasma irradiation treatment under the above conditions, and the etching amount was examined. The results are shown in Table 3.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Polyamides (AREA)
Abstract
Description
本発明の成形品は、上記構成を有することから、耐熱性に優れ、さらに半導体の製造工程で曝されるフッ素系プラズマおよび酸素プラズマに対してともに重量変化が小さい。
上記含フッ素エラストマーとしては、部分フッ素化エラストマーであってもよいし、パーフルオロエラストマーであってもよいが、耐薬品性、耐熱性がさらに優れている点よりパーフルオロエラストマーを用いることが好ましい。
フルオロアルキルビニルエーテルとしては、
一般式(8):CF2=CF-ORf81
(式中、Rf81は、炭素数1~8のパーフルオロアルキル基を表す。)で表されるフルオロモノマー、
一般式(10):CF2=CFOCF2ORf101
(式中、Rf101は炭素数1~6の直鎖又は分岐状パーフルオロアルキル基、炭素数5~6の環式パーフルオロアルキル基、1~3個の酸素原子を含む炭素数2~6の直鎖又は分岐状パーフルオロオキシアルキル基である)で表されるフルオロモノマー、及び、
一般式(11):CF2=CFO(CF2CF(Y11)O)m(CF2)nF
(式中、Y11はフッ素原子又はトリフルオロメチル基を表す。mは1~4の整数である。nは1~4の整数である。)で表されるフルオロモノマー
からなる群より選択される少なくとも1種であることが好ましく、
一般式(8)で表されるフルオロモノマーがより好ましい。
その組成は、TFE/PMVE共重合体の場合、好ましくは、45~90/10~55(モル%)であり、より好ましくは、55~80/20~45であり、更に好ましくは、55~70/30~45である。
TFE/PMVE/架橋部位を与えるモノマー共重合体の場合、好ましくは、45~89.9/10~54.9/0.01~4(モル%)であり、より好ましくは、55~77.9/20~49.9/0.1~3.5であり、更に好ましくは、55~69.8/30~44.8/0.2~3である。
TFE/炭素数が4~12の一般式(8)、(10)又は(11)で表されるフルオロモノマー共重合体の場合、好ましくは、50~90/10~50(モル%)であり、より好ましくは、60~88/12~40であり、更に好ましくは、65~85/15~35である。
TFE/炭素数が4~12の一般式(8)、(10)又は(11)で表されるフルオロモノマー/架橋部位を与えるモノマー共重合体の場合、好ましくは、50~89.9/10~49.9/0.01~4(モル%)であり、より好ましくは、60~87.9/12~39.9/0.1~3.5であり、更に好ましくは、65~84.8/15~34.8/0.2~3である。
これらの組成の範囲を外れると、ゴム弾性体としての性質が失われ、樹脂に近い性質となる傾向がある。
一般式(12):CX3 2=CX3-Rf 121CHR121X4
(式中、X3は、水素原子、フッ素原子又はCH3、Rf 121は、フルオロアルキレン基、パーフルオロアルキレン基、フルオロ(ポリ)オキシアルキレン基又はパーフルオロ(ポリ)オキシアルキレン基、R121は、水素原子又はCH3、X4は、ヨウ素原子又は臭素原子である)で表されるフルオロモノマー、
一般式(13):CX3 2=CX3-Rf 131X4
(式中、X3は、水素原子、フッ素原子又はCH3、Rf 131は、フルオロアルキレン基、パーフルオロアルキレン基、フルオロポリオキシアルキレン基又はパーフルオロポリオキシアルキレン基、X4は、ヨウ素原子又は臭素原子である)で表されるフルオロモノマー、
一般式(14):CF2=CFO(CF2CF(CF3)O)m(CF2)n-X5
(式中、mは0~5の整数、nは1~3の整数、X5は、シアノ基、カルボキシル基、アルコキシカルボニル基、ヨウ素原子、臭素原子、又は、-CH2Iである)で表されるフルオロモノマー、及び、
一般式(15):CH2=CFCF2O(CF(CF3)CF2O)m(CF(CF3))n-X6
(式中、mは0~5の整数、nは1~3の整数、X6は、シアノ基、カルボキシル基、アルコキシカルボニル基、ヨウ素原子、臭素原子、又は-CH2OHである)で表されるフルオロモノマー、及び、
一般式(16):CR162R163=CR164-Z-CR165=CR166R167
(式中、R162、R163、R164、R165、R166及びR167、は、同一又は異なって、水素原子又は炭素数1~5のアルキル基である。Zは、直鎖又は分岐状で酸素原子を有していてもよい、炭素数1~18のアルキレン基、炭素数3~18のシクロアルキレン基、少なくとも部分的にフッ素化している炭素数1~10のアルキレン基若しくはオキシアルキレン基、又は、
-(Q)p-CF2O-(CF2CF2O)m(CF2O)n-CF2-(Q)p-
(式中、Qはアルキレン基またはオキシアルキレン基である。pは0または1である。m/nが0.2~5である。)で表され、分子量が500~10000である(パー)フルオロポリオキシアルキレン基である。)で表されるモノマーからなる群より選択される少なくとも1種であることが好ましい。
R13IxBry
(式中、xおよびyはそれぞれ0~2の整数であり、かつ1≦x+y≦2を満たすものであり、R13は炭素数1~16の飽和もしくは不飽和のフルオロ炭化水素基またはクロロフルオロ炭化水素基、または炭素数1~3の炭化水素基であり、酸素原子を含んでいてもよい)で表される化合物が挙げられる。ヨウ素化合物又は臭素化合物を使用することによって、ヨウ素原子または臭素原子が重合体に導入され、架橋点として機能する。
上記有機基としては、アルキル基、アルコキシ基又はフェニル基であることが好ましい。
上記アルキル基及びアルコキシ基は、炭素数が1~1000であることが好ましく、1~600であることが好ましく、1~400であることがより好ましい。また、炭素数が2以上である場合、2つの炭素原子がアミド結合、イミド結合、エステル結合、ウレタン結合、カーボネート結合等により結合していてもよい。
上記アルキル基及びアルコキシ基は、芳香族環等の環状構造を含むものであってもよい。また、アルキル基及びアルコキシ基は、アミノ基、ニトロ基、カルボキシル基、スルホ基、水酸基、ビニル基、エポキシ基、シリル基、イソシアネート基等を有するものであってもよい。
上記フェニル基は、1以上の置換基により置換されたものであってもよい。
R1~R8は、芳香族環等の環状構造を含むものであることが好ましい。R1~R8が芳香族環等の環状構造を含むことにより、かご型シルセスキオキサン格子の頂点に剛直な構造が放射状に配置され、末端官能基が全て外側を向くことから、耐熱性、耐プラズマ性に優れる。
R1~R8は、耐熱性及び耐プラズマ性に優れることから、いずれも同一の原子又は基であることが好ましい。
第2世代のデンドリマーが有するR1~R8の構造を以下に例示する。
または一般式(23):
含フッ素ポリマー 100質量部
架橋剤 2,2-ビス[3-アミノ-4-(N-フェニルアミノ)フェニル]ヘキサフルオロプロパン 1質量部
ケイ素化合物 15質量部
混練方法 :ロール練り
プレス架橋 :180℃で20分間
オーブン架橋:290℃で18時間
であり、特にことわらない限りは、この条件で架橋する。
本発明の成形品は、特に高度なクリーンさが要求される半導体製造装置、特に高密度プラズマ照射が行なわれる半導体製造装置のシール材として好適に使用できる。上記シール材としては、O-リング、角-リング、ガスケット、パッキン、オイルシール、ベアリングシール、リップシール等が挙げられる。
そのほか、半導体製造装置に使用される各種のポリマー製品、例えばダイヤフラム、チューブ、ホース、各種ゴムロール、ベルト等としても使用できる。また、コーティング用材料、ライニング用材料としても使用できる。
ドライエッチング装置
プラズマエッチング装置
反応性イオンエッチング装置
反応性イオンビームエッチング装置
スパッタエッチング装置
イオンビームエッチング装置
ウェットエッチング装置
アッシング装置
(2)洗浄装置
乾式エッチング洗浄装置
UV/O3洗浄装置
イオンビーム洗浄装置
レーザービーム洗浄装置
プラズマ洗浄装置
ガスエッチング洗浄装置
抽出洗浄装置
ソックスレー抽出洗浄装置
高温高圧抽出洗浄装置
マイクロウェーブ抽出洗浄装置
超臨界抽出洗浄装置
(3)露光装置
ステッパー
コータ・デベロッパー
(4)研磨装置
CMP装置
(5)成膜装置
CVD装置
スパッタリング装置
(6)拡散・イオン注入装置
酸化拡散装置
イオン注入装置
粒子径は、動的光散乱測定により、nanoPartica SZ-100(株式会社堀場製作所製)を用いて求めた。
元素分析は、有機元素分析装置CE-440M(エグゼター・アナリティカル社製)を用いて、測定した。
かご型シルセスキオキサンをRapid Commun. Mass Spectrom., 2012, 26, 765-774.記載の方法で製造した。得られたかご型シルセスキオキサンを用いて、Org. Lett., 2007, 9, 1363-1366記載の方法により、かご型シルセスキオキサンのデンドリマーを製造した。上記デンドリマーの製造過程を化学反応式で示すと、下記式のように表される。
上記デンドリマーの粒子径は、1世代上がるごとに約1nmずつ大きくなる傾向が観察された。
得られたデンドリマーG1について、つぎの条件下でプラズマ照射処理を施し、照射前後の重量を測定して重量変化を調べた。結果を図2及び3に示す。
サムコ株式会社製高密度プラズマICPエッチング装置MODEL RIE-101iPH
酸素プラズマ照射処理(図3)
ガス流量:16sccm
RF出力:400W
圧力:2.6Pa
エッチング時間:15分間
CF4 プラズマ照射処理(図2)
ガス流量:16sccm
RF出力:400W
圧力:2.6Pa
エッチング時間:15分間
得られたデンドリマーG1を入れたアルミカップをRF電極の中心部に配置し、上記の条件で照射する。
ザルトリウス(Sartorius)・GMBH(株)製の電子分析天秤BP211Dを使用し、0.01mgまで測定し0.01mgの桁を四捨五入する。
得られたデンドリマー(G2~G5及びG3(CF3))、SiO2、キナクリドンを用いた以外は、参考例1と同様にして、プラズマ照射し、照射前後の重量変化を調べた。結果を図2及び3に示す。
含フッ素エラストマー100質量部に対して、デンドリマーG1 10質量部を1500質量部の含フッ素溶剤中で予備混合してから、60℃で含フッ素溶剤を揮発させ、オープンロールにて混練して含フッ素エラストマー組成物を得た。なお、表2中、含フッ素エラストマーは、ダイキン工業(株)製 ダイエルパーフロGA-105、ヨウ素を架橋基として含有するテトラフルオロエチレン/パーフルオロアルキルビニルエーテルからなるパーフルオロエラストマーである。また、含フッ素溶剤は、R-318(ダイキン工業(株)製、主成分:C4F8Cl2)を用いた。
含フッ素エラストマー組成物の成分を表2のように変更したこと以外は、実施例1と同様にして、含フッ素エラストマー組成物を得た。得られた含フッ素エラストマー組成物から、実施例1と同様にして、成形品を得た。得られた成形品について、後述の耐プラズマ性評価及び50%質量減少温度の測定を行った。耐プラズマ性評価の結果及び50%質量減少温度の測定結果を表2に示す。
実施例1~3、比較例3及び4で得られた成形品について、一部をカプトン電気絶縁用テープにて被覆し、つぎの条件下でプラズマ照射処理を行い、被覆面と暴露面との段差を測定してエッチング量を調べた。結果を表2に示す。
酸素プラズマ照射処理
ガス流量:10sccm
バイアス:-50V
圧力:4mTorr
エッチング時間:5時間
Veeco社製 触針式表面形状測定器 DEKTAK 6Mを使用し、被覆面と暴露面との段差を測定してエッチング量を調べた。
熱質量計(セイコーインスツルメンツ社製 TG-DTA6200)を用い、空気200ml/min、昇温速度10℃/min、温度範囲20~600℃の条件で質量変化を測定し、50%質量減少時の温度を測定した。結果を表2に示す。
2元系ポリマー AFLAS 150P(旭硝子(株)製)とペルカドックス14(化薬アクゾ(株)製)とトリアリルイソシアヌレート(TAIC)(日本化成(株)製)とデンドリマーG1とを重量比100/1/5/10で混合し、オープンロールにて混練して架橋可能なフッ素系エラストマー組成物を得た。
ガス流量:16sccm
RF出力:400W
圧力:2.6Pa
エッチング時間:60分間
株式会社キーエンス製 レーザマイクロスコープVK-9700を使用し、被覆面と暴露面との段差を測定してエッチング量を調べた。
デンドリマーG1をデンドリマーG2に変更した以外は、実施例4と同様に実施した。
デンドリマーG1をデンドリマーG3に変更した以外は、実施例4と同様に実施した。
デンドリマーG1を配合しなかった以外は、実施例4と同様に実施した。
Claims (11)
- 含フッ素ポリマーは、含フッ素エラストマーである請求項1記載の組成物。
- かご型シルセスキオキサンは、粒子径が0.5~15nmである請求項1又は2記載の組成物。
- かご型シルセスキオキサンは、かご型シルセスキオキサンのデンドリマーである請求項1、2又は3記載の組成物。
- デンドリマーは、世代数が1~8である請求項4、5又は6記載の組成物。
- 含フッ素ポリマー100質量部に対して0.5~100質量部のかご型シルセスキオキサンを含む請求項1、2、3、4、5、6又は7記載の組成物。
- 更に、架橋剤を含む請求項1、2、3、4、5、6、7又は8記載の組成物。
- 成形材料である請求項1、2、3、4、5、6、7、8又は9記載の組成物。
- 請求項1、2、3、4、5、6、7、8、9又は10記載の組成物から得られる成形品。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020177024033A KR101979135B1 (ko) | 2015-02-20 | 2016-02-17 | 조성물 및 성형품 |
JP2017500702A JP6547233B2 (ja) | 2015-02-20 | 2016-02-17 | 組成物および成形品 |
EP16752494.1A EP3260490B1 (en) | 2015-02-20 | 2016-02-17 | Composition and molded article |
US15/551,778 US10377881B2 (en) | 2015-02-20 | 2016-02-17 | Composition and molded article |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015032014 | 2015-02-20 | ||
JP2015-032014 | 2015-02-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016133108A1 true WO2016133108A1 (ja) | 2016-08-25 |
Family
ID=56689395
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/054535 WO2016133108A1 (ja) | 2015-02-20 | 2016-02-17 | 組成物および成形品 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10377881B2 (ja) |
EP (1) | EP3260490B1 (ja) |
JP (1) | JP6547233B2 (ja) |
KR (1) | KR101979135B1 (ja) |
TW (1) | TWI679223B (ja) |
WO (1) | WO2016133108A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018024612A (ja) * | 2016-08-10 | 2018-02-15 | 国立大学法人秋田大学 | デンドリマー、組成物及び成型品 |
WO2018030427A1 (ja) * | 2016-08-10 | 2018-02-15 | 国立大学法人秋田大学 | 組成物および成形品 |
WO2018105716A1 (ja) * | 2016-12-09 | 2018-06-14 | ダイキン工業株式会社 | ポリマー、組成物及び成形品 |
WO2019216290A1 (ja) | 2018-05-07 | 2019-11-14 | 国立大学法人お茶の水女子大学 | シルセスキオキサン |
WO2020138493A1 (ja) | 2018-12-28 | 2020-07-02 | 国立大学法人秋田大学 | 組成物および成形品 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62275713A (ja) * | 1986-05-26 | 1987-11-30 | Daikin Ind Ltd | 離型剤 |
US7193015B1 (en) * | 2000-03-24 | 2007-03-20 | Mabry Joseph M | Nanostructured chemicals as alloying agents in fluorinated polymers |
JP2007112977A (ja) * | 2005-09-26 | 2007-05-10 | Fujifilm Corp | 絶縁膜形成用組成物、絶縁膜およびその製造方法 |
JP2010024400A (ja) * | 2008-07-23 | 2010-02-04 | Sumitomo Rubber Ind Ltd | ゴム組成物 |
JP2010262290A (ja) * | 2009-05-05 | 2010-11-18 | Xerox Corp | 複合外層を有する定着器部材 |
WO2012133557A1 (ja) * | 2011-03-30 | 2012-10-04 | ダイキン工業株式会社 | 光学素子封止用含フッ素樹脂組成物、及び、硬化物 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5187222A (en) | 1989-02-22 | 1993-02-16 | Nippon Moktron Limited | Peroxide-vulcanizable, fluorine-containing elastomer composition |
JP2783576B2 (ja) | 1989-02-22 | 1998-08-06 | 日本メクトロン株式会社 | パーオキサイド加硫可能な含フッ素エラストマー組成物 |
JP2858198B2 (ja) | 1993-04-19 | 1999-02-17 | 三菱電線工業株式会社 | 半導体製造装置用シール |
JP2000309704A (ja) | 1999-04-23 | 2000-11-07 | Daikin Ind Ltd | 架橋性エラストマー用フィラーおよびそれを含有する架橋性エラストマー組成物 |
JP3303915B2 (ja) | 1999-11-04 | 2002-07-22 | ダイキン工業株式会社 | 半導体製造装置用エラストマー成形品および架橋性フッ素系エラストマー組成物 |
US20060083925A1 (en) * | 2000-10-27 | 2006-04-20 | Laine Richard M | Well-defined nanosized building blocks for organic/inorganic nanocomposites |
WO2004094527A1 (ja) | 2003-04-22 | 2004-11-04 | Daikin Industries Ltd. | プラズマ老化防止効果に優れた含フッ素エラストマー組成物およびその成形品 |
US8044140B2 (en) | 2009-06-12 | 2011-10-25 | Toyota Motor Engineering & Manufacturing North America, Inc | Methods and compositions for pigmented self-stratifying coatings |
-
2016
- 2016-02-17 KR KR1020177024033A patent/KR101979135B1/ko active IP Right Grant
- 2016-02-17 EP EP16752494.1A patent/EP3260490B1/en active Active
- 2016-02-17 JP JP2017500702A patent/JP6547233B2/ja active Active
- 2016-02-17 WO PCT/JP2016/054535 patent/WO2016133108A1/ja active Application Filing
- 2016-02-17 US US15/551,778 patent/US10377881B2/en active Active
- 2016-02-19 TW TW105104940A patent/TWI679223B/zh active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62275713A (ja) * | 1986-05-26 | 1987-11-30 | Daikin Ind Ltd | 離型剤 |
US7193015B1 (en) * | 2000-03-24 | 2007-03-20 | Mabry Joseph M | Nanostructured chemicals as alloying agents in fluorinated polymers |
JP2007112977A (ja) * | 2005-09-26 | 2007-05-10 | Fujifilm Corp | 絶縁膜形成用組成物、絶縁膜およびその製造方法 |
JP2010024400A (ja) * | 2008-07-23 | 2010-02-04 | Sumitomo Rubber Ind Ltd | ゴム組成物 |
JP2010262290A (ja) * | 2009-05-05 | 2010-11-18 | Xerox Corp | 複合外層を有する定着器部材 |
WO2012133557A1 (ja) * | 2011-03-30 | 2012-10-04 | ダイキン工業株式会社 | 光学素子封止用含フッ素樹脂組成物、及び、硬化物 |
Non-Patent Citations (1)
Title |
---|
KUNIO NISHI ET AL.: "Kago-gata Silsesquioxane o Core to suru Kosedai Hokozoku Polyamide Dendrimer no Gosei to Tokusei Kaiseki", POLYMER PREPRINTS, vol. 63, no. 1, 9 May 2014 (2014-05-09), Japan, pages 287 - 288, XP009505379 * |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3486283A4 (en) * | 2016-08-10 | 2020-03-11 | Akita University | COMPOSITION AND MOLDED ARTICLES |
WO2018030427A1 (ja) * | 2016-08-10 | 2018-02-15 | 国立大学法人秋田大学 | 組成物および成形品 |
US10815369B2 (en) | 2016-08-10 | 2020-10-27 | Akita University | Composition and molded article |
JPWO2018030427A1 (ja) * | 2016-08-10 | 2019-02-21 | 国立大学法人秋田大学 | 組成物および成形品 |
JP2018024612A (ja) * | 2016-08-10 | 2018-02-15 | 国立大学法人秋田大学 | デンドリマー、組成物及び成型品 |
JPWO2018105716A1 (ja) * | 2016-12-09 | 2019-08-08 | ダイキン工業株式会社 | ポリマー、組成物及び成形品 |
WO2018105716A1 (ja) * | 2016-12-09 | 2018-06-14 | ダイキン工業株式会社 | ポリマー、組成物及び成形品 |
WO2019216290A1 (ja) | 2018-05-07 | 2019-11-14 | 国立大学法人お茶の水女子大学 | シルセスキオキサン |
US12091527B2 (en) | 2018-05-07 | 2024-09-17 | Ochanomizu University | Silsesquioxane |
JPWO2019216290A1 (ja) * | 2018-05-07 | 2021-05-13 | 国立大学法人お茶の水女子大学 | シルセスキオキサン |
JP7315173B2 (ja) | 2018-05-07 | 2023-07-26 | 国立大学法人お茶の水女子大学 | シルセスキオキサン |
JPWO2020138493A1 (ja) * | 2018-12-28 | 2021-12-09 | 国立大学法人秋田大学 | 組成物および成形品 |
KR20210107802A (ko) | 2018-12-28 | 2021-09-01 | 고쿠리츠다이가쿠 호오진 아키타 다이가쿠 | 조성물 및 성형품 |
EP3904450A4 (en) * | 2018-12-28 | 2022-09-21 | Akita University | COMPOSITION, AND MOLDED ARTICLE |
JP7165338B2 (ja) | 2018-12-28 | 2022-11-04 | 国立大学法人秋田大学 | 組成物および成形品 |
CN113195625B (zh) * | 2018-12-28 | 2023-05-02 | 国立大学法人秋田大学 | 组合物和成型品 |
CN113195625A (zh) * | 2018-12-28 | 2021-07-30 | 国立大学法人秋田大学 | 组合物和成型品 |
US11873389B2 (en) | 2018-12-28 | 2024-01-16 | Akita University | Composition and molded article |
WO2020138493A1 (ja) | 2018-12-28 | 2020-07-02 | 国立大学法人秋田大学 | 組成物および成形品 |
Also Published As
Publication number | Publication date |
---|---|
TWI679223B (zh) | 2019-12-11 |
EP3260490A1 (en) | 2017-12-27 |
TW201700545A (zh) | 2017-01-01 |
US20180030246A1 (en) | 2018-02-01 |
JP6547233B2 (ja) | 2019-07-24 |
JPWO2016133108A1 (ja) | 2018-01-11 |
KR20170109011A (ko) | 2017-09-27 |
KR101979135B1 (ko) | 2019-05-15 |
US10377881B2 (en) | 2019-08-13 |
EP3260490B1 (en) | 2021-01-20 |
EP3260490A4 (en) | 2018-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5487584B2 (ja) | 架橋性エラストマー組成物および該組成物からなる成形品 | |
JP6341290B2 (ja) | 含フッ素エラストマー組成物および成形品 | |
JP6713600B2 (ja) | 組成物および成形品 | |
JP4600393B2 (ja) | 含フッ素エラストマー組成物 | |
JP5553320B2 (ja) | 架橋性含フッ素エラストマー組成物および該組成物から作製された成形品 | |
WO2016133108A1 (ja) | 組成物および成形品 | |
WO2016204272A1 (ja) | 含フッ素ポリマーからなる組成物及び成形品 | |
US20220227909A1 (en) | Composition containing fluorine-containing polymer and crosslinked article | |
JP4086070B2 (ja) | 架橋性エラストマー組成物および該架橋性エラストマー組成物からなる成形品 | |
JP6789521B2 (ja) | デンドリマー、組成物及び成型品 | |
US12091537B2 (en) | Composition and molded article containing fluorine-containing polymer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16752494 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017500702 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20177024033 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2016752494 Country of ref document: EP |