WO2016129330A1 - 回転電機、エレベータ用巻上機、および回転電機の永久磁石の着磁および脱磁方法 - Google Patents
回転電機、エレベータ用巻上機、および回転電機の永久磁石の着磁および脱磁方法 Download PDFInfo
- Publication number
- WO2016129330A1 WO2016129330A1 PCT/JP2016/051288 JP2016051288W WO2016129330A1 WO 2016129330 A1 WO2016129330 A1 WO 2016129330A1 JP 2016051288 W JP2016051288 W JP 2016051288W WO 2016129330 A1 WO2016129330 A1 WO 2016129330A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coil
- armature coil
- armature
- electrical machine
- slot
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K15/00—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
- H02K15/02—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
- H02K15/03—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B11/00—Main component parts of lifts in, or associated with, buildings or other structures
- B66B11/04—Driving gear ; Details thereof, e.g. seals
- B66B11/043—Driving gear ; Details thereof, e.g. seals actuated by rotating motor; Details, e.g. ventilation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/12—Stationary parts of the magnetic circuit
- H02K1/16—Stator cores with slots for windings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K11/00—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
- H02K11/20—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K21/00—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
- H02K21/12—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
- H02K21/14—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K21/00—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
- H02K21/12—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
- H02K21/14—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
- H02K21/145—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having an annular armature coil
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K3/00—Details of windings
- H02K3/04—Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
- H02K3/28—Layout of windings or of connections between windings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K3/00—Details of windings
- H02K3/46—Fastening of windings on the stator or rotor structure
- H02K3/48—Fastening of windings on the stator or rotor structure in slots
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K5/00—Casings; Enclosures; Supports
- H02K5/04—Casings or enclosures characterised by the shape, form or construction thereof
- H02K5/16—Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
- H02K5/173—Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings
- H02K5/1732—Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings radially supporting the rotary shaft at both ends of the rotor
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K11/00—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
- H02K11/20—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
- H02K11/21—Devices for sensing speed or position, or actuated thereby
- H02K11/225—Detecting coils
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K3/00—Details of windings
- H02K3/46—Fastening of windings on the stator or rotor structure
- H02K3/48—Fastening of windings on the stator or rotor structure in slots
- H02K3/487—Slot-closing devices
- H02K3/493—Slot-closing devices magnetic
Definitions
- the present invention relates to a rotating electric machine having an armature as a stator and a rotor having a permanent magnet type field that rotates relative to the armature, an elevator hoist, and magnetization of a permanent magnet of the rotating electric machine. And a demagnetizing method.
- Elevators are used continuously for a long period of 20 years or more. If a failure occurs inside the rotating electrical machine such as defective insulation of the coil or breakage of the magnet during that period, it is necessary to disassemble and repair the rotating electrical machine. Become. Stator maintenance space is reduced, and the stator core is divided into two vertically on the axis center and the stator core is held so that the work of division and reassembly can be performed easily.
- an elevator hoisting machine including a stator housing that also serves as a bearing stand and is constituted by an upper stator housing and a lower stator housing (for example, Patent Document 1).
- a method for manufacturing an electric motor is disclosed in which a permanent magnet embedded in a rotor is magnetized by a current supplied to a stator coil (for example, Patent Document 2).
- JP 2002-300762 paragraphs [0018], [0039] and FIG. 1
- Patent Document 1 it is necessary to provide a guide device on the stator and the rotor so that the stator and the rotor do not come into contact with each other due to the attraction force of the permanent magnet when divided. Therefore, it is difficult to divide and reassemble the elevator hoist.
- Patent Document 2 As a method for solving this problem, there is an invention disclosed in Patent Document 2.
- a current of several to several tens of kA is required for magnetization, and a strong force is applied to the coil during the magnetization process, so that the insulation coating is performed. May contact the core and damage the coil itself. For this reason, there exists a possibility of shortening the lifetime as a product remarkably.
- the present invention has been made to solve the above-described problems, and can be disassembled and assembled with good workability, and can be attached to a rotating electric machine, an elevator hoisting machine, and a permanent magnet of the rotating electric machine having good operating characteristics.
- An object is to provide a magnetizing and demagnetizing method.
- a rotating electrical machine includes an annular back yoke, a plurality of magnetic pole teeth extending from the back yoke in the inner circumferential direction, an armature core having a slot surrounded by the back yoke and the magnetic pole teeth, and a plurality of magnetic poles
- a stator provided with a coil wound around the teeth and disposed in the slot, a rotating shaft, a magnetic yoke provided on the outer peripheral side of the rotating shaft, and an outer peripheral surface of the magnetic yoke spaced apart from each other
- a non-armature element that magnetizes or demagnetizes the permanent magnets of the rotor. It consists of a coil.
- An elevator hoisting machine includes the rotating electric machine used as a hoisting motor, a first power supply for an armature coil, and a second power supply for a non-armature coil.
- a method for magnetizing and demagnetizing a permanent magnet of a rotating electrical machine includes a step of flowing a current for magnetization or demagnetization to a non-armature coil and a step of rotating the rotor by a predetermined angle in the rotating electrical machine. Is repeated.
- the coil group is composed of the armature coil for driving the rotating electric machine and the non-armature coil for magnetizing or demagnetizing the permanent magnet of the rotor.
- the magnetic force of the permanent magnet can be lowered before the attracting force can be significantly reduced, so that disassembly and assembly with good workability can be achieved, and good operating characteristics can be obtained.
- the permanent magnet of the rotating electric machine can be magnetized or demagnetized using a non-armature coil. Work efficiency at the time of inspection can be improved.
- the method of magnetizing and demagnetizing the permanent magnet of the rotating electrical machine includes a step of passing a current for magnetizing or demagnetizing the non-armature coil and a step of rotating the rotor.
- the work efficiency at the time of installation and inspection of the rotating electrical machine can be improved.
- the first embodiment includes an armature core in which slots are formed between magnetic pole teeth, and a plurality of coils in which coils are arranged in the slots and wound across a plurality of magnetic pole teeth.
- the present invention relates to a rotating electrical machine including a divided stator and a rotor including a plurality of permanent magnets arranged at intervals on the outer peripheral surface of a magnetic yoke provided on the outer peripheral side of a rotating shaft.
- the coil includes an armature coil for driving the rotating electric machine and a non-armature coil for magnetizing or demagnetizing the permanent magnet of the rotor.
- FIG. 1 is a configuration diagram of the rotating electrical machine
- FIG. 2 is a configuration diagram of the coil
- FIG. 4 will be described based on FIG. 4, which is a comparative view of the developed drawings
- FIG. 5, which is a divided explanatory view of a stator
- FIG. 6, which is an explanatory view of a magnetic path formed by a non-armature coil.
- FIG. 1 shows a cross section orthogonal to the axial direction of the rotating electrical machine 10.
- the rotating electrical machine 10 includes a cylindrical stator 20 and a rotor 30 that is disposed inside the stator 20 and rotates.
- the stator 20 has a function as an armature
- the rotor 30 has a function as a field.
- both the armature and the magnetic field generate a magnetic field for obtaining torque, but the magnetic field generated by itself depends on the field, the magnitude and frequency of the input current, etc. What is variable is called an armature.
- the rotor 30 is made of a magnetic material such as an electromagnetic steel plate or cast iron, and includes a rotating shaft 40, a magnetic yoke 31 that forms a magnetic path, and a rotor support member 32 that is interposed between the rotating shaft 40 and the magnetic yoke 31. And a plurality of permanent magnets 33 provided on the outer peripheral surface of the magnetic yoke 31.
- the permanent magnets 33 are spaced apart from each other in the circumferential direction of the magnetic yoke 31, and a plurality of magnetic poles are formed.
- the permanent magnets 33 are desirably arranged at equal intervals in the circumferential direction of the magnetic yoke 31.
- the stator 20 is composed of an electromagnetic steel plate or the like, and is composed of an armature core 21 that forms a magnetic path, an insulating member (not shown), and a coil group 23.
- the armature core 21 includes an annular back yoke 211, a plurality of magnetic pole teeth 212 extending in the inner circumferential direction from the back yoke 211, and a slot 213 in a region surrounded by the back yoke 211 and the magnetic pole teeth 212.
- the insulating member shown above is provided so as to surround the inner periphery of the slot in order to prevent an electrical short circuit between the armature core 21 and the coil group 23.
- the coil group 23 has a plurality of phases, interphase insulating paper that insulates between the phases, a wedge that prevents the coil from jumping out of the slot, and a varnish that is impregnated in the coil group, etc. Included in this insulating member (both not shown).
- the coil group 23 is functionally divided into two types of coils.
- An armature coil 231 that generates a magnetic field for obtaining torque of the rotating electrical machine 10 and a non-armature coil 232 other than that.
- the armature coil 231 is divided into a plurality of phases in order to drive the rotating electrical machine 10 smoothly. In this example, it is divided into three phases of U phase, V phase, and W phase.
- each coil 230 is joined to two coil sides 241, two coil ends 242 connecting the coil sides 241 with the upper and lower ends of the armature core 21, and another coil 230.
- the coil end 243 is configured.
- the two coil sides 241 are formed so as to straddle the plurality of magnetic pole teeth 212 and are respectively disposed in different slots 213.
- the coil 230 is made of a wire having an insulating layer provided on the surface of copper, aluminum, or the like having a wire diameter of about ⁇ 0.2 to ⁇ 1.0 (sized to enter the slot 213), and is wound from several to several tens of turns. Turned. Further, in order to facilitate insertion into the slot 213, one turn may be constituted by a plurality of wires having a thin wire diameter per turn.
- each coil 230 is connected in series or in parallel, one end of the coil is separate from the control circuit or control circuit and the other phase coil end, and the other end is separated from the other phase coil end or control circuit. It is connected to both coil ends of the other phase.
- a star circuit When one end is connected to the control circuit and the other phase coil end, and the other end is connected to both the control circuit and another phase coil end, it is called a delta circuit.
- the coil 230 constituting the non-armature coil 232 has the same configuration.
- the non-armature coil 232 is composed of one or more coils and does not provide a phase. When composed of a plurality of coils 230, it is desirable that the winding direction is opposite to that of adjacent coils and that the coils are connected in series.
- FIG. 3 is a development view showing a part of the rotary electric machine 10 according to Embodiment 1 of the present invention.
- FIG. 4 shows an example in which the armature coil 231 is optimally arranged in all slots without providing the non-armature coil 232 for the armature core 21 having the same configuration.
- FIG. 4 is used as a comparative diagram for explaining the arrangement of the coil groups.
- This corresponds to the angle (X 72 °) for one block in FIG.
- the numerical values described on the outside of the slot indicate the slot number when the leftmost slot in the figure is numbered 1.
- U, V, and W are letters indicating the phase of the coil, and the symbols attached to the phases are those when the direction in which current flows upward is + and the direction in which current flows downward is-. It is a symbol indicating the direction of current flow through the coil.
- the line connecting the slots across the magnetic pole teeth in the figure represents how the coil ends are connected and the direction in which the current flows.
- the arrangement pattern of the three-phase coils is periodic in the circumferential direction.
- the arrangement pattern of the coils is P and Q. It has periodicity at an angle divided by the greatest common divisor (72 ° in this case). Further, it is desirable that the combined vector of magnetomotive force or induced voltage generated by the armature coils of each phase has the same magnitude, and the phase difference is equally divided into 120 ° in electrical angle.
- FIG. 3 there are two types of coils 230 constituting the armature coil 231, and there are a first armature coil and a second armature coil.
- the coil side of the first armature coil 231A is disposed at the upper opening (opening side) and the lower opening (core back side) of the slot.
- the second armature coil 231 ⁇ / b> B has coil sides arranged at the upper openings or the lower openings of the slot.
- the number of magnetic pole teeth 212 straddling is the maximum natural number (2 in the case of FIG. 3) not exceeding (number of slots / number of magnetic poles).
- the armature coil 231 forming one phase has a homologous number for each of the first armature coil and the second armature coil.
- 4 are the first armature coils and 2 are the second armature coils determined in the above steps 1 to 4. In this way, since the coil resistances can be aligned, it is possible to suppress variations in the current flowing through the coils during driving.
- one block (one stator is divided by the greatest common divisor of the number of slots Q and the number of magnetic poles P), other than the second armature coil from FIG. Also pay attention to coils that cannot be connected inside. That is, on the left side of FIG. 4, the lower opening W ⁇ of the slot number 2 sandwiched between the V ⁇ of the slot number 1 and the V + of the slot number 3 corresponding to the coil constituting the second armature coil corresponds. On the right side of FIG. 4, the upper opening U + of slot number 20 sandwiched between V + of slot number 19 and V ⁇ of slot number 21 corresponds.
- the lower port V + of slot number 9 and the lower port W + of slot number 16 and the upper port W ⁇ of slot number 13 and the upper port V ⁇ of slot number 6 correspond to each other.
- the three-phase balance is not lost, and the coil group is accommodated in one block. That is, the coil arrangement is completed within the block, and there is no coil connection between the blocks.
- FIG. 5 is an explanatory diagram of division in which the stator 20 of the rotating electrical machine 10 of FIG. In FIG. 5, components accompanying the stator 20 such as a housing are omitted.
- the number of slots of each block 201 of the rotating electrical machine 10 of FIG. 5 is equal to the number of slots of one block of the rotating electrical machine 10 shown in FIG.
- the dividing surface 202 corresponds to a substantially central position of the tooth adjacent to the slot in which the second armature coil described above is disposed. That is, it is desirable to divide the first armature coil 231A and the second armature coil 231B at a position that does not straddle the teeth.
- the number of divisions is set to 5 which is the greatest common divisor of both. This is because the rotating electrical machine 10 of Embodiment 1 has the same slot, coil arrangement, and magnet position for each of the number of slots and the number of magnetic poles divided by the greatest common divisor, that is, the number of slots 21 and the number of magnetic poles 8 respectively. It comes from repeating the relationship. However, the number of divisions may be smaller than the greatest common divisor.
- the number of slots configured in each divided block is desirably an integer multiple of the number obtained by dividing the total number of slots by the greatest common divisor described above (21 in this example).
- the other combinations of the number of slots and the number of magnetic poles described above may be similarly divided by the greatest common divisor of the number of slots and the number of magnetic poles, or may be divided by a number smaller than the greatest common divisor. Good.
- the winding coefficient is a distributed winding coefficient (a numerical value indicating that a plurality of coils belonging to a certain phase are not fixed at a fixed position with respect to the magnetic pole center of the field, but are distributed in several. 1 is the maximum value. ) And the short-pitch coefficient (the ratio of one coil pitch to the magnetic pole pitch).
- the winding coefficient generally has orders other than the number of phases out of the first, fifth, seventh,... And odd numbers, and the primary corresponds to the fundamental wave for driving the rotating machine. Other than that, it corresponds to harmonics that generate torque ripple.
- the winding coefficients of the rotating electrical machine according to Embodiment 1 of the present invention are the first order (0.943), the fifth order (0.155), and the seventh order (0) in FIG.
- the winding coefficient in the rotating electrical machine in which all of the coil groups shown in FIG. 4 are composed of armature coils is the primary (0.932), the fifth (0.085), and the seventh. (0). That is, even in the rotating electrical machine according to the first embodiment of FIG. 3 (when a part of the coil group is replaced with a non-armature coil), a winding coefficient substantially equal to that in FIG. 4 is obtained, and the rotating electrical machine 10 is good. It can be said that it has operating characteristics.
- the non-armature coil 232 is disposed at a slot position sandwiched between the slots constituting the second armature coil described above. In FIG. 3, this corresponds to the position of the upper slot of slot number 6 and the lower slot of slot number 9, and the upper slot of slot number 13 and the lower slot of slot number 16. That is, in FIG. 3, a non-armature coil corresponds to a hatched portion and a thick arrow portion. Although the slot which hits between the slots which comprise a 2nd armature coil exists also in the other position in FIG. 3, a coil does not need to be arrange
- the coil pitch of the non-armature coil is desirably the same as that of the first armature coil.
- the coil pitches of slot numbers 6 and 9 and the coil pitches of slot numbers 13 and 16 in FIG. 3 are 3 as in the first armature coil.
- the non-armature coil 232 is composed of one or two coils 230 per block.
- the non-armature coil 232 may be provided in each block, or the non-armature coil 232 may be provided in any one block or a plurality of blocks.
- the non-armature coil 232 is not a coil for driving the rotating electrical machine, but is used for the purpose of improving maintainability such as disassembly, assembly and inspection of the rotating electrical machine.
- the coil 230 that constitutes the non-armature coil 232 preferably has a thicker insulating layer and fewer turns than the coil that constitutes the armature coil 231.
- As the insulating layer for example, an insulating tape having a thickness of about 25 to 125 ⁇ m may be wound. The number of turns is preferably 1 to several turns per coil.
- the coils 230 constituting the non-armature coil 232 are preferably connected in series. Further, as described in the fourth embodiment, the non-armature coil 232 is preferably connected to a power source different from that for driving the rotating electric machine (see FIG. 7 of the fourth embodiment).
- FIG. 6 is an explanatory diagram showing the magnitude and direction of magnetic flux lines and magnetic flux density when a current (several tens of kA) necessary for magnetization is applied to the non-armature coil 232.
- a current severe tens of kA
- FIG. 6 the armature coil is not shown.
- AT current ⁇ number of turns, referred to as magnetomotive force or ampere turn
- the magnet In the case of a rare earth magnet, the magnet is normally 100% magnetized at a magnetic flux density of 2 Tesla or higher.
- the arrow in FIG. 6 shows only a portion of 2 Tesla or more, and the permanent magnet is magnetized in the direction of the arrow.
- the number of turns of the non-armature coil 232 is about 1 to several turns, and the magnetizing current is generally about several to several tens kA although it depends on the magnetic circuit.
- the third and sixth permanent magnets 33 from the right in the drawing are magnetized to the S and N poles by the non-armature coil 232, respectively. Since the magnetic poles in the rotor are arranged in order from the first to the south pole and the north pole, the direction of the magnetic flux density in FIG. 6 is correctly magnetized.
- an AC current that gradually attenuates is applied to the non-armature coil 232.
- the capacitor may be charged in advance with several thousand ⁇ F, and the capacitor and the non-armature coil 232 may be connected by a switch so that a current flows through the coil. At this time, the applied current is gradually attenuated by the resistance and inductance of the non-armature coil 232, and the permanent magnet 33 can be demagnetized.
- a large electromagnetic force acts on the non-armature coil 232 when magnetized, it is desirable to thicken the insulating layer of the coil and fix it to the slot as described above.
- a fixing method for example, there is a method using a varnish, an adhesive, a spacer or the like.
- This magnetization or demagnetization operation is performed a plurality of times while rotating the position of the rotor 30 to complete the magnetization or demagnetization of all the permanent magnets 33.
- the non-armature coil 232 is configured by 2 coils ⁇ 5 blocks per block and a total of 10 coils, all permanent magnets 33 can be magnetized or demagnetized by repeating the operation four times.
- the position of the rotor 30 when the magnetizing or demagnetizing operation is repeated may be determined using information of a rotation sensor (not shown) that is normally attached to the rotating electrical machine such as a resolver or an encoder. It may be determined mechanically with tools.
- the magnetizing and demagnetizing work of the permanent magnet 33 of the rotor 30 includes the step of flowing a current for magnetizing or demagnetizing the non-armature coil 232 and the rotor 30 at a predetermined angle. It is completed by repeating the rotating process as many times as necessary.
- the predetermined angle and the required number of times are determined by the arrangement of the permanent magnets 33 and the arrangement of the non-armature coils 232. In the example of the first embodiment, the predetermined angle is 90 °, and the required number of times is four.
- the rotating electric machine 10 may have any size, but for example, in the case of an elevator hoist, it may have a diameter of several hundred mm to several m. When such a large rotating electrical machine is installed, when it is necessary to perform repair, inspection, replacement, assembly, etc., it is assumed that sufficient space for the installation location cannot be secured and work cannot be easily performed.
- the stator 20 can be divided by the greatest common divisor of the number of slots and the number of magnetic poles, and the rotating electrical machine 10 is assembled. Since the permanent magnet 33 of the rotor 30 can be magnetized or demagnetized, repair, inspection, replacement, assembly, etc. can be easily performed even in a narrow space. Further, if the housing (not shown) for holding the stator is also divided in accordance with the divided structure of the stator, the maintainability is further improved.
- the rotating electrical machine has the armature core in which slots are formed between the magnetic pole teeth, the coil sides are arranged in the slots, and is wound across a plurality of magnetic pole teeth.
- a rotor including a plurality of permanent magnets arranged at intervals on the outer peripheral surface of a magnetic yoke provided on the outer peripheral side of the rotating shaft.
- the coil includes an armature coil for driving the rotating electric machine and a non-armature coil for magnetizing or demagnetizing the permanent magnet of the rotor. Therefore, the stator can be easily divided, and it is possible to provide a rotating electrical machine that can be disassembled and assembled with good workability and has good operating characteristics.
- Embodiment 2 The rotating electrical machine of the second embodiment has a combination of the number of slots and the number of magnetic poles different from the rotating electrical machine of the first embodiment (105 slots and 40 magnetic poles).
- the rotating electrical machine according to the second embodiment is a rotating electrical machine having a combination of the number of slots and the number of magnetic poles satisfying the conditions 1 and 2, so that the stator can be easily operated as in the first embodiment.
- the rotating electrical machine can be divided, can be disassembled and assembled with good workability, and has good operating characteristics.
- Embodiment 3 In the rotating electrical machine of the third embodiment, the non-armature coil of the first embodiment is used for applications other than permanent magnet magnetization or demagnetization.
- the non-armature coil 232 can be used not only for magnetization or demagnetization, but also for means for improving the maintainability of the rotating electrical machine 10.
- a non-armature coil 232 wound by several to several tens of turns is arranged at the same position in each block.
- the phase and magnitude of the induced voltage generated in the non-armature coil 232 are measured. That is, by using a non-armature coil as a search coil, it is possible to detect an attachment error of the permanent magnet 33, an eccentricity amount, and the like.
- the search coil has a different specification from the magnetizing and demagnetizing coils shown in the first embodiment, and may be wound with many thin wires. Detection sensitivity can be improved by winding many. In order to improve the accuracy of the search coil, it is desirable to use an adhesive or a spacer for fixing to the slot as in the case of the magnetizing coil.
- non-armature coils are arranged as magnetizing or demagnetizing coils in the first and second blocks, and non-armature coils are arranged in the third to fifth blocks. You may arrange
- the rotating electrical machine of the third embodiment uses the non-armature coil of the first embodiment for purposes other than permanent magnet magnetization or demagnetization. Therefore, similarly to the first embodiment, the stator can be easily divided, and it is possible to provide a rotating electrical machine that can be disassembled and assembled with good workability and has good operating characteristics. Furthermore, the rotating electrical machine of the third embodiment can detect a permanent magnet mounting error, an eccentricity amount, and the like by using a non-armature coil as a search coil, and can improve maintenance performance.
- Embodiment 4 The elevator hoist according to the fourth embodiment is obtained by applying the rotating electrical machine described in the first to third embodiments to the hoist motor.
- FIG. 7 is a configuration diagram of the elevator hoist.
- an elevator hoisting machine 400 includes a rotating electrical machine 10, a driving power source (first power source) 51 that supplies power to the armature coil 231, and a non-armature coil power source that supplies power to the non-armature coil 232. (Second power source) 52 is provided.
- the rotating electrical machine 10 that is the hoisting motor is the rotating electrical machine described in the first to third embodiments.
- a PWM-controlled three-phase AC power supply is supplied from the drive power supply (first power supply) 51 to the rotary electric machine 10, for example.
- a current necessary for magnetizing and demagnetizing the permanent magnet 33 is supplied from the non-armature coil power source (second power source) 52 to the non-armature coil 232 of the rotating electrical machine 10. Supply.
- the mounting error of the permanent magnet 33 and The amount of eccentricity can be detected.
- the measurement of the induced voltage generated in the non-armature coil 232 and the detection of the mounting error and the eccentricity of the permanent magnet 33 can be performed by a device in the non-armature coil power source (second power source) 52. Further, a device for measuring the phase and magnitude of the induced voltage generated in the non-armature coil 232 may be connected when necessary to detect a permanent magnet mounting error, an eccentricity amount, and the like.
- the elevator hoisting machine according to the fourth embodiment is an application of the rotating electric machine according to the first to third embodiments. Therefore, the non-armature coil is used to attach the permanent magnet of the rotating electric machine. Magnetization or demagnetization can be performed, and work efficiency during installation and inspection can be improved. Moreover, the maintenance property of a rotary electric machine can be improved by using a non-armature coil as a search coil.
- the present invention comprises an armature coil for driving a rotating electrical machine and a non-armature coil for magnetizing or demagnetizing a permanent magnet of the rotor, which improves work efficiency during installation and inspection. Can be widely applied to required rotating electrical machines.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Civil Engineering (AREA)
- Mechanical Engineering (AREA)
- Structural Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Permanent Magnet Type Synchronous Machine (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
- Cage And Drive Apparatuses For Elevators (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
- Windings For Motors And Generators (AREA)
Abstract
Description
固定子保守空間を小さくし、分割、再組立の作業を容易に行えるよう、軸中心上で上下に2分割された固定子コアと、固定子コアを保持し、軸中心上で上下に2分割された上部固定子ハウジングと下部固定子ハウジングとから構成されている軸受台兼用の固定子ハウジングを備えたエレベータ用巻上機が開示されている(例えば、特許文献1)。また回転子に埋め込まれた永久磁石を、固定子コイルに通電される電流により着磁する電動機の製造方法が開示されている(例えば、特許文献2)。
実施の形態1は、各磁極ティース間にスロットが形成されている電機子コアと、スロット内にコイルが配置され、複数の磁極ティースを跨いで巻き回された複数のコイルを備え、複数ブロックに分割された固定子と、回転軸の外周側に設けられた磁性ヨークの外周面に間隔をおいて配置された複数の永久磁石とを備える回転子とから構成される回転電機に関するものである。そして、コイルは回転電機を駆動させるための電機子コイルと、回転子の永久磁石の着磁あるいは脱磁を行う非電機子コイルとから成る。
回転電機10は、円筒状の固定子20と、固定子20の内側に配置されて回転する回転子30とから構成される。固定子20は電機子、回転子30は界磁としての機能を備える。
ここで、電機子、界磁ともにトルクを得るための磁界を発生させるものであるが、自身が発生させる磁界が一定であるものを界磁、入力する電流の大きさや周波数などにより、発生させる磁界が可変であるものを電機子と呼ぶ。
永久磁石33は、磁性ヨーク31の周方向に互いに間隔を置いて配置されており、複数の磁極が形成されている。この例では、40個の永久磁石33が設けられており、磁極数P=40になっている。なお、永久磁石33は、磁性ヨーク31の周方向に等間隔で配置されることが望ましい。
電機子コア21は、円環状のバックヨーク211と、バックヨーク211から内周方向に延在する複数の磁極ティース212と、バックヨーク211と磁極ティース212とで囲まれた領域のスロット213とを有する。ここで、磁極ティース212とスロット213は同数である。この例では、磁極ティース数およびスロット数Q=105である。
電機子コイル231は、回転電機10を滑らかに駆動するために、複数の相に分けられる。この例では、U相、V相、W相の三相に分けられる。
また、コイル230は、例えば線径φ0.2~φ1.0程度(スロット213に入る大きさ)の銅やアルミなどの表面に絶縁層が設けられたワイヤで構成され、数から数十ターン巻回される。また、スロット213への挿入をしやすくするため、1ターン当り線径の細い複数本のワイヤで1ターンを構成してもよい。
片端が制御回路で他端が他相のコイル端に接続される場合はスター回路と呼ぶ。また片端が制御回路と他相のコイル端の両方、他端が制御回路と別の他相のコイル端の両方に接続される場合はデルタ回路と呼ぶ。
非電機子コイル232は、1個以上のコイルから構成され、相は設けない。複数のコイル230から構成される場合は、近接するコイルとは巻方向が逆であるとともに、直列に接続されることが望ましい。
図3はこの発明の実施の形態1による回転電機10の一部を示す展開図である。また、図4は、同じ構成の電機子コア21に対し、非電機子コイル232を設けずに、全スロットに電機子コイル231を最適に配置した例である。図4はコイル群の配置を説明するための比較図として用いる。
図3、図4の模式図において、スロットの外側に記載した数値は図上の左端のスロットを1番としたときのスロット番号を示す。図中のU、V、Wはコイルの相を示す文字であり、相に添えられた記号は紙面上向きに電流が流れる向きを+とし、紙面下向きに電流が流れる向きを-とした時の各コイルの電流の流れる向きを示す記号である。図中の磁極ティースを跨いでスロット同士を繋ぐ線は、コイルエンドの繋がり方と電流の流れる向きを表している。
また、各相の電機子コイルが作る起磁力あるいは誘起電圧の合成ベクトルが同じ大きさとなり、位相差が電気角で120°に等分されていることが望ましい。
第1電機子コイル231Aは、そのコイル辺がスロットの上口(開口側)と下口(コアバック側)に配置される。そして、第1電機子コイル231Aが跨ぐ磁極ティース212の数は、(スロット数/磁極数)を超える最小の自然数(図3の場合は105/40=2.625であるため3)である。
第2電機子コイル231Bは、そのコイル辺がスロットの上口同士、あるいは下口同士に配置される。そして、跨ぐ磁極ティース212の数は、(スロット数/磁極数)を超えない最大の自然数(図3の場合は2)である。
[手順1]図4における1ブロック中の左端と右端のコイルに注目する。ここでは、スロット番号1と21が相当する。
[手順2]スロット番号1、21それぞれに対して、(スロット数/磁極数)を下回る自然数(2)の範囲内のスロットに配置され、かつスロット内における位置(上口または下口)が同じで、かつ同相で逆向きの電流が流れているスロットのコイルに注目する。ここでは、スロット番号1のV-に対しスロット番号3のV+、およびスロット番号21のV-に対しスロット番号19のV+が相当する。
[手順3]手順2で見つけたコイル辺同士を繋ぎ合わせても、電磁気的な作用は同じであるため、繋ぎ直す。そして、スロット番号1と3、スロット番号19と21でそれぞれ第2電機子コイルを作る。
[手順4]手順3で作った第2電機子コイルと同じ関係になるコイルを、他の相でも見つけ、同じように構成にする。本実施の形態1の例では、21スロットで3相あるため、この関係は7ティースに一度の関係で現れる。これに着目すると、スロット番号8と10、15と17、およびスロット番号5と7、スロット番号12と14がさらに第2電機子コイルとなる。
また、図4右側においては、スロット番号19のV+とスロット番号21のV-に挟まれたスロット番号20の上口U+が相当する。
ただし、上記のコイルをコイル群から外して分割構造の回転電機を成すためには、三相のコイルのバランスを取るため、1ブロック内でも同様の位置にあるコイルをコイル群から外す必要がある。外すコイルの位置は、先の第2電機子コイルの配置手順4と同様に21スロット中を等分した位置、即ち、7ティース置きにコイルを外していけばよい。
具体的には、図4において、スロット番号9の下口V+とスロット番号16の下口W+、およびスロット番号13の上口W-とスロット番号6の上口V-が相当する。
このようにすることで、三相バランスが崩れることなく、かつコイル群が1ブロック内で収まる。すなわち、コイル配置はブロック内で完結し、ブロック間のコイル接続はない。
図5は、図1の回転電機10の固定子20を5分割した場合の、1ブロックだけ組立中心からずらして拡大した分割説明図である。図5では、ハウジング等の固定子20に付随する部品は省略している。
図5の回転電機10の各ブロック201が有するスロット数は、図3に示した回転電機10の1ブロックのスロット数と等しく、21個である。また、分割面202は、先に説明した第2電機子コイルが配置されるスロットの隣のティースの略中央の位置に相当する。つまり、第1電機子コイル231Aおよび第2電機子コイル231Bが、ティースを跨がない位置で分割するのが望ましい。
また、先に説明した他のスロット数と磁極数の組み合わせであっても、同様にスロット数と磁極数の最大公約数で分割してもよいし、最大公約数より小さい数で分割してもよい。
巻線係数とは、分布巻係数(ある相に属する複数のコイルが、界磁の磁極中心に対して一定の位置に定まらず、いくつかに分布していることを示す数値。1が最大値)と、短節巻係数(1コイルピッチと磁極ピッチの比)との積で表される。巻線係数は、一般的には1次、5次、7次、・・・と奇数のうち、相数を除く次数を持ち、1次は回転機を駆動するための基本波に相当し、それ以外はトルクリップルを生み出す高調波に相当する。
即ち、分布巻係数の内、1次の成分が1に近く、それ以外の高調波の成分が0に近い程、トルクが出やすくトルクリップルが小さい回転電機と言える。
この発明の実施の形態1による回転電機の巻線係数は、図3では1次(0.943)、5次(0.155)、7次(0)である。
非電機子コイル232は、前述した第2電機子コイルを構成するスロットに挟まれたスロット位置に配置される。
図3では、スロット番号6の上口とスロット番号9の下口、スロット番号13の上口とスロット番号16下口の位置に相当する。すなわち、図3において、非電機子コイルはハッチング部および太線矢印部が相当する。
第2電機子コイルを構成するスロットの間に当るスロットは、図3中の他の位置にも存在するが、ここにはコイルは配置しなくてもよい。スロット番号2の下口、20の上口が相当する。
非電機子コイルのコイルピッチは、第1電機子コイルと同じであることが望ましい。図3中のスロット番号6と9のコイルピッチ、ならびにスロット番号13と16のコイルピッチは、第1電機子コイルと同じ3である。
非電機子コイル232は、回転電機を駆動するためのコイルではなく、回転電機の分解、組立および検査など、メンテナンス性を向上させる目的のために使用する。
非電機子コイル232を構成するコイル230は、電機子コイル231を構成するコイルよりも、絶縁層が厚く、ターン数も少ないことが望ましい。
絶縁層として、例えば25~125μm程度の厚さの絶縁テープを巻き付けてもよい。また、ターン数は1コイルあたり1~数ターンであることが望ましい。非電機子コイル232を構成するコイル230は、直列に接続されることが望ましい。
また、非電機子コイル232は、実施の形態4で説明するように回転電機の駆動用とは別の電源に接続することが望ましい(実施の形態4の図7を参照)。
図6は、非電機子コイル232に、着磁するのに必要な電流(数十kA)を印加したときの磁束線および磁束密度の大きさと方向を示した説明図である。なお、図6では、電機子コイルは図示していない。
図6では、永久磁石33が希土類磁石とした場合に、非電機子コイル232に、数十kAT(AT:電流×ターン数を示し、起磁力あるいはアンペアターンと呼ぶ)の印加磁界をかけている。希土類磁石の場合、通常は、磁束密度が2テスラ以上で100%着磁される。図6中の矢印は、2テスラ以上の部分のみ表示しており、矢印の向きに永久磁石は着磁される。非電機子コイル232のターン数は1~数ターン程度、着磁電流は、磁気回路にもよるが一般的に数~数十kA程度である。
ここで、所定の角度および必要回数は、永久磁石33の配置と非電機子コイル232の配置とから決まる。実施の形態1の例では、所定の角度は90°であり、必要回数は4回である。
また、固定子の分割構造に合わせて、固定子を保持するハウジング(図示せず)も、分割構造とすれば、さらにメンテナンス性が向上する。
実施の形態2の回転電機は、実施の形態1の回転電機(スロット数105、磁極数40)とは別のスロット数と磁極数の組合せを有するものである。
本発明を適用できる実施の形態1の回転電機、即ち、分布巻きコイルを備えた回転電機で周方向に分割可能で、かつ非電機子コイルを設置可能な構造にできるスロット数と磁極数の組合せには、次の条件がある。
[条件2]1極あたりかつ1相あたりのスロット数が割り切れない数であること(重ね巻の分布巻きにおいても、2種類のコイルピッチを有すること)。
また、108スロット42極(3分割)、81スロット30極(3分割)などの組合せも条件1、2を満たす。
実施の形態3の回転電機は、実施の形態1の非電機子コイルを永久磁石の着磁あるいは脱磁以外の用途にも使用するものである。
すなわち、非電機子コイルをサーチコイルとして使用することで、永久磁石33の取付誤差や、偏芯量などを検出できる。
さらに、着磁あるいは脱磁用のコイルとして配置した非電機子コイルを、通常運転中は、サーチコイルとして使用してもよい。
さらに、実施の形態3の回転電機は、非電機子コイルをサーチコイルとして使用することで、永久磁石の取付誤差や、偏芯量などを検出でき、メンテナンス性の向上を図ることができる。
実施の形態4のエレベータ用巻上機は、実施の形態1~3で説明した回転電機を巻上機用電動機に適用したものである。
以下、実施の形態4のエレベータ用巻上機の構成、動作について、エレベータ用巻上機の構成図である図7に基づいて説明する。
回転電機10の設置時や点検、分解時は、非電機子コイル用電源(第二電源)52から回転電機10の非電機子コイル232に永久磁石33の着磁および脱磁に必要な電流を供給する。
また、エレベータ用巻上機400の回転電機10を通常運転時に、サーチコイルとして配置した非電機子コイル232に発生する誘起電圧の位相や大きさを測定することで、永久磁石33の取付誤差や、偏芯量などを検出できる。
この非電機子コイル232に発生する誘起電圧の測定、永久磁石33の取付誤差や偏芯量などの検出は、非電機子コイル用電源(第二電源)52内の装置で行うこともできる。また、非電機子コイル232に発生する誘起電圧の位相や大きさを測定する装置を必要時に接続して、永久磁石の取付誤差や、偏芯量などを検出してもよい。
また、非電機子コイルをサーチコイルとして使用することで、回転電機のメンテナンス性を向上させることができる。
Claims (8)
- 円環状のバックヨーク、前記バックヨークから内周方向に延在する複数の磁極ティース、および前記バックヨークと前記磁極ティースとによって囲まれるスロットを有する電機子コアと、
複数の前記磁極ティースを跨いで巻き回され、前記スロット内に配置されたコイルを複数有する固定子と、
回転軸、前記回転軸の外周側に設けられた磁性ヨーク、および前記磁性ヨークの外周面に間隔をおいて配置された複数の永久磁石を備える回転子と、から構成される回転電機において、
前記コイルは、前記回転電機を駆動させるための電機子コイルと、前記回転子の前記永久磁石の着磁あるいは脱磁を行う非電機子コイルとから成る回転電機。 - 前記電機子コイルは、跨ぐ磁極ティース数が、(スロット数/磁極数)より大きい最小の自然数であり、前記スロット内の開口側および前記スロット内のコアバック側に配置される第1電機子コイルと、
跨ぐ磁極ティース数が、(スロット数/磁極数)より小さい最大の自然数であり、前記スロット内の開口側同士あるいは前記スロット内のコアバック側同士に配置される第2電機子コイルとから成り、
前記固定子は複数のブロックに分割され、前記ブロック内で前記第1電機子コイルおよび前記第2電機子コイルの配置が完了する請求項1に記載の回転電機。 - 前記非電機子コイルは、前記第2電機子コイルに挟まれた前記スロット内に配置されて成る請求項2に記載の回転電機。
- 前記非電機子コイルは、跨ぐ磁極ティース数が、(スロット数/磁極数)より大きい最小の自然数で形成される請求項1から請求項3のいずれか1項に記載の回転電機。
- スロット数と磁極数の組合せは、スロット数と磁極数の最大公約数が1より大きく、および1極あたりかつ1相あたりのスロット数が割り切れない数で形成される請求項1から請求項4のいずれか1項に記載の回転電機。
- 前記非電機子コイルは、前記永久磁石の取付誤差および偏芯量を検出する請求項1から請求項5のいずれか1項に記載の回転電機。
- 巻上機用電動機として用いる請求項1から請求項6のいずれか1項に記載の回転電機と、前記電機子コイル用の第一電源と、前記非電機子コイル用の第二電源とを備えたエレベータ用巻上機。
- 請求項1から請求項6のいずれか1項に記載の回転電機において、
前記非電機子コイルに着磁あるいは脱磁用の電流を流す工程と、前記回転子を所定の角度回転させる工程とを繰り返して行う回転電機の永久磁石の着磁および脱磁方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112016000682.9T DE112016000682T5 (de) | 2015-02-10 | 2016-01-18 | Elektrische rotationsmaschine, fahrstuhl-hebevorrichtung und verfahren zum magnetisieren und entmagnetisieren eines permanentmagneten für eine elektrische rotationsmaschine |
KR1020177017908A KR102027099B1 (ko) | 2015-02-10 | 2016-01-18 | 회전 전기 기기, 엘리베이터용 권상기, 및 회전 전기 기기의 영구 자석의 착자 및 탈자 방법 |
CN201680009415.2A CN107251382B (zh) | 2015-02-10 | 2016-01-18 | 旋转电机、电梯用曳引机、以及旋转电机的永磁铁的磁化及消磁方法 |
JP2016574700A JP6305577B2 (ja) | 2015-02-10 | 2016-01-18 | 回転電機、エレベータ用巻上機、および回転電機の永久磁石の着磁および脱磁方法 |
US15/547,966 US10432070B2 (en) | 2015-02-10 | 2016-01-18 | Rotating electric machine, elevator hoist, and method for magnetizing and demagnetizing permanent magnet of rotating electric machine |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-023803 | 2015-02-10 | ||
JP2015023803 | 2015-02-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016129330A1 true WO2016129330A1 (ja) | 2016-08-18 |
Family
ID=56615598
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/051288 WO2016129330A1 (ja) | 2015-02-10 | 2016-01-18 | 回転電機、エレベータ用巻上機、および回転電機の永久磁石の着磁および脱磁方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10432070B2 (ja) |
JP (1) | JP6305577B2 (ja) |
KR (1) | KR102027099B1 (ja) |
CN (1) | CN107251382B (ja) |
DE (1) | DE112016000682T5 (ja) |
WO (1) | WO2016129330A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020240617A1 (ja) * | 2019-05-24 | 2020-12-03 | 三菱電機株式会社 | 電動機の製造方法、電動機、圧縮機、及び空気調和機 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10637308B2 (en) * | 2015-05-19 | 2020-04-28 | Mitsubishi Electric Corporation | Rotary electrical machine including an armature core |
EP3761487A4 (en) * | 2018-05-30 | 2021-07-07 | Aisin Aw Co., Ltd. | REINFORCEMENT |
GB2578794B (en) * | 2018-11-09 | 2023-03-22 | Safran Electrical & Power | A permanent magnet generator |
JP7302399B2 (ja) * | 2019-09-10 | 2023-07-04 | 株式会社デンソー | 回転電機の製造装置と回転電機の製造方法 |
CN114128092B (zh) * | 2019-12-09 | 2024-02-23 | 株式会社东芝 | 旋转电机的电枢绕组以及旋转电机 |
GB2593888A (en) * | 2020-04-06 | 2021-10-13 | Safran Electrical & Power | An electrical machine |
CN114244030B (zh) * | 2021-12-15 | 2023-03-31 | 珠海格力电器股份有限公司 | 伺服电机及其退磁方法、发动机 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009183127A (ja) * | 2008-02-01 | 2009-08-13 | Fuji Electric Systems Co Ltd | 永久磁石を有する電気機器のメンテナンス方法 |
JP2011188637A (ja) * | 2010-03-09 | 2011-09-22 | Toshiba Corp | 洗濯機の製造方法、洗濯機、及び洗濯機のロータの取外方法並びに取付方法 |
JP2012143088A (ja) * | 2011-01-04 | 2012-07-26 | Asmo Co Ltd | モータ |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT353399B (de) | 1971-11-17 | 1979-11-12 | Kaltenbach & Voigt | Zahnaerztliches handstueck mit eingebauter kuehlmittelleitung |
US6441521B1 (en) * | 2000-05-12 | 2002-08-27 | Reliance Electric Technologies, Llc | Hybrid superconducting motor/generator |
EP1750348A3 (en) | 2001-03-30 | 2007-05-02 | Sanyo Electric Co., Ltd. | Hermetic electric compressor |
JP2002300762A (ja) | 2001-03-30 | 2002-10-11 | Sanyo Electric Co Ltd | 誘導同期電動機及びその製造方法 |
JP4862292B2 (ja) | 2005-06-23 | 2012-01-25 | 三菱電機株式会社 | エレベータ用巻上機 |
JP5159171B2 (ja) * | 2007-05-18 | 2013-03-06 | 株式会社東芝 | 永久磁石式回転電機 |
US8916999B2 (en) | 2011-01-01 | 2014-12-23 | Asmo Co., Ltd. | Motors containing segment conductor coils |
JP5921244B2 (ja) * | 2011-02-24 | 2016-05-24 | 株式会社東芝 | 永久磁石型回転電機 |
JP6007609B2 (ja) | 2012-06-20 | 2016-10-12 | 株式会社ジェイテクト | 回転電機及びこれを備えた車両用操舵装置 |
-
2016
- 2016-01-18 WO PCT/JP2016/051288 patent/WO2016129330A1/ja active Application Filing
- 2016-01-18 CN CN201680009415.2A patent/CN107251382B/zh active Active
- 2016-01-18 DE DE112016000682.9T patent/DE112016000682T5/de active Pending
- 2016-01-18 KR KR1020177017908A patent/KR102027099B1/ko active IP Right Grant
- 2016-01-18 US US15/547,966 patent/US10432070B2/en active Active
- 2016-01-18 JP JP2016574700A patent/JP6305577B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009183127A (ja) * | 2008-02-01 | 2009-08-13 | Fuji Electric Systems Co Ltd | 永久磁石を有する電気機器のメンテナンス方法 |
JP2011188637A (ja) * | 2010-03-09 | 2011-09-22 | Toshiba Corp | 洗濯機の製造方法、洗濯機、及び洗濯機のロータの取外方法並びに取付方法 |
JP2012143088A (ja) * | 2011-01-04 | 2012-07-26 | Asmo Co Ltd | モータ |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020240617A1 (ja) * | 2019-05-24 | 2020-12-03 | 三菱電機株式会社 | 電動機の製造方法、電動機、圧縮機、及び空気調和機 |
JPWO2020240617A1 (ja) * | 2019-05-24 | 2021-10-21 | 三菱電機株式会社 | 電動機の製造方法、電動機、圧縮機、及び空気調和機 |
JP7058802B2 (ja) | 2019-05-24 | 2022-04-22 | 三菱電機株式会社 | 電動機の製造方法、電動機、圧縮機、及び空気調和機 |
Also Published As
Publication number | Publication date |
---|---|
US10432070B2 (en) | 2019-10-01 |
JPWO2016129330A1 (ja) | 2017-09-14 |
KR102027099B1 (ko) | 2019-10-01 |
US20180026502A1 (en) | 2018-01-25 |
CN107251382A (zh) | 2017-10-13 |
JP6305577B2 (ja) | 2018-04-04 |
CN107251382B (zh) | 2019-05-14 |
DE112016000682T5 (de) | 2017-11-02 |
KR20170092617A (ko) | 2017-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6305577B2 (ja) | 回転電機、エレベータ用巻上機、および回転電機の永久磁石の着磁および脱磁方法 | |
US7605514B2 (en) | Electric machine | |
US7915777B2 (en) | Ring coil motor | |
DK2190103T3 (en) | COREL FREE SHUTTER WITH SHIFT | |
EP2845295B1 (en) | Rotor for rotating electrical device | |
JP5270640B2 (ja) | ステータコア | |
JP2011010375A (ja) | アキシャル型モータ | |
JP2011072182A (ja) | 電気機械 | |
CN110832747B (zh) | 旋转电机及直线电动机 | |
JP6048191B2 (ja) | マルチギャップ型回転電機 | |
KR101263350B1 (ko) | 축 방향 자속 영구자석형 발전기 | |
CN103795210A (zh) | 永磁激励同步电机 | |
JP5696694B2 (ja) | 回転電機のステータ | |
RU2375807C1 (ru) | Вентильный электродвигатель с постоянными магнитами | |
JP2018082600A (ja) | ダブルロータ型の回転電機 | |
JP2015512241A (ja) | 電気機械 | |
WO2021131575A1 (ja) | コイル及びそれを備えたステータ、モータ | |
JP5738609B2 (ja) | 可変界磁型回転電機 | |
JP2015510751A (ja) | 電動機 | |
JP6733568B2 (ja) | 回転電機 | |
MX2012000427A (es) | Instalacion de estator para maquina electrica. | |
WO2018123128A1 (ja) | 磁力抵抗を減少させた発電機 | |
CA2878899A1 (en) | Systems and methods for electric motor construction | |
JP2006025486A (ja) | 回転電機 | |
JP6525206B2 (ja) | ロータおよび回転電機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16748975 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016574700 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20177017908 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15547966 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112016000682 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16748975 Country of ref document: EP Kind code of ref document: A1 |