WO2016125853A1 - Inclusive magnet-type synchronous machine and rotor for same - Google Patents
Inclusive magnet-type synchronous machine and rotor for same Download PDFInfo
- Publication number
- WO2016125853A1 WO2016125853A1 PCT/JP2016/053337 JP2016053337W WO2016125853A1 WO 2016125853 A1 WO2016125853 A1 WO 2016125853A1 JP 2016053337 W JP2016053337 W JP 2016053337W WO 2016125853 A1 WO2016125853 A1 WO 2016125853A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnet
- rotor
- synchronous machine
- outer peripheral
- type synchronous
- Prior art date
Links
- 230000001360 synchronised effect Effects 0.000 title claims abstract description 54
- 230000002093 peripheral effect Effects 0.000 claims abstract description 70
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 45
- 150000002910 rare earth metals Chemical class 0.000 claims abstract description 43
- 239000000696 magnetic material Substances 0.000 claims abstract description 7
- 230000004907 flux Effects 0.000 abstract description 37
- 238000009826 distribution Methods 0.000 abstract description 16
- 230000005347 demagnetization Effects 0.000 abstract description 12
- 239000000843 powder Substances 0.000 description 30
- 229920005989 resin Polymers 0.000 description 12
- 239000011347 resin Substances 0.000 description 12
- 239000000203 mixture Substances 0.000 description 9
- 238000001746 injection moulding Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 6
- 230000002441 reversible effect Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 238000000465 moulding Methods 0.000 description 5
- -1 polyethylene Polymers 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 229910001172 neodymium magnet Inorganic materials 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- 239000004962 Polyamide-imide Substances 0.000 description 2
- 239000004734 Polyphenylene sulfide Substances 0.000 description 2
- 229920001807 Urea-formaldehyde Polymers 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 230000005415 magnetization Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 229920002312 polyamide-imide Polymers 0.000 description 2
- 229920000069 polyphenylene sulfide Polymers 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- JMMZCWZIJXAGKW-UHFFFAOYSA-N 2-methylpent-2-ene Chemical compound CCC=C(C)C JMMZCWZIJXAGKW-UHFFFAOYSA-N 0.000 description 1
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 229910000976 Electrical steel Inorganic materials 0.000 description 1
- 229920000106 Liquid crystal polymer Polymers 0.000 description 1
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004699 Ultra-high molecular weight polyethylene Substances 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 229920003180 amino resin Polymers 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 239000000113 methacrylic resin Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 238000001721 transfer moulding Methods 0.000 description 1
- 229920000785 ultra high molecular weight polyethylene Polymers 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K15/00—Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
- H02K15/02—Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
- H02K15/03—Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K21/00—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
- H02K21/12—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
- H02K21/14—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
- H02K21/16—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
Definitions
- the present invention relates to an internal magnet type synchronous machine including a rare earth bonded magnet and a rotor thereof.
- the synchronous machine is a motor having a permanent magnet for a field in a rotor (rotor) and an armature winding (coil) in a stator (stator), and a multiphase alternating current ( AC) is a motor that rotates by generating a rotating magnetic field in the stator.
- Synchronous machines are roughly classified into a surface magnet type motor (SPM) in which permanent magnets are arranged on the rotor surface and an embedded (internal) magnet type motor (IPM) in which permanent magnets are embedded in the rotor.
- SPM surface magnet type motor
- IPM embedded magnet type motor
- Patent Document 1 discloses a bonded magnet that can increase the ratio ( ⁇ a / Ld) of the flux linkage ( ⁇ a) to the d-axis inductance (Ld) in order to improve the rotor rotation controllability (particularly the flux weakening controllability).
- the shape that is, the slot shape of the rotor core
- the bonded magnet included in the rotor has a shape having a main body portion that bends convexly toward the outer edge side of the rotor core and an end portion that extends from both circumferential ends of the main body portion toward the outer peripheral edge of the rotor core. Propose to do.
- the present invention has been made in view of such circumstances, and provides an internal magnet type synchronous machine capable of maintaining or improving output while effectively utilizing a rare earth magnet as a bonded magnet, and a rotor thereof. For the purpose.
- the present inventor has improved the magnetic flux density distribution generated from the bonded magnet filled in the slot by devising the slot shape of the rotor core. I came up with the idea of suppressing demagnetization of magnets (more precisely, the rare earth magnets that make up them). By specifically developing this idea, the present invention described below has been completed.
- the rotor (simply referred to as “rotor”) of the internal magnet type synchronous machine of the present invention is made of a substantially columnar or substantially cylindrical soft magnetic material, curved in a concave shape toward the outer peripheral side, and has a center of rotation.
- the rotor of the present invention it is possible to suppress the demagnetization of the rare earth magnets constituting the bonded magnet, and without increasing the amount of rare earth magnets used, IPM "," synchronous machine “or” motor "), and the performance of the motor can be maintained while reducing the amount of rare earth magnets used.
- the inner packet portion (also referred to as “slot”) according to the present invention is a closed cylindrical (groove-shaped) gap that is curved concavely toward the outer peripheral side of the rotor body (also referred to as “rotor core”). Consists of. For this reason, even if a strong reverse magnetic field is applied from the outside (stator side) of the rotor, the reverse magnetic field is dispersed by the soft magnetic material existing in the curved interior, and the bonded magnet filled and molded in the inner packet part. Acts on rare earth magnets. For this reason, the rare earth magnet in the bonded magnet according to the present invention is less likely to be demagnetized than when the slot is formed in a convex shape on the outer peripheral side of the rotor core.
- the inner packet part according to the present invention has a rectangular part defined by parallel opposing planar inner wall surfaces that maintain a constant interval (inner width).
- the lines of magnetic force that pass through the slots (voids) in the region of the rectangular part are normal to the inner wall surface (the outer peripheral surface and the inner peripheral surface of the slot (void)), and at least within the rectangular part, the slots (voids)
- the magnetic flux density distribution of the magnetic flux lines passing through) becomes substantially uniform.
- the lines of magnetic force that pass through the bonded magnet in the region of the rectangular portion are normal to the inner wall surface (the outer peripheral surface and the inner peripheral surface of the bonded magnet), and pass through the bonded magnet at least within the rectangular portion.
- the magnetic flux density distribution of the magnetic flux lines is substantially uniform (see FIG. 1A).
- a curved surface with a constant inner width especially a curved surface having a circular cross section
- the magnetic lines of force that pass through the slot (gap) radiate from the inner inner wall surface of the slot (the outer peripheral side of the main body) to the outer inner wall surface (the inner peripheral side of the main body).
- the magnetic flux density was diluted on the wall surface side, the magnetic flux density was decreased on the outer inner wall surface side of the slot, and the magnetic flux density generated in the slot (gap) was generally reduced.
- the magnetic lines of force that pass through the bonded magnet filled in the conventional inner envelope portion spread radially from the inner inner wall surface (the outer peripheral side of the main body) of the bond magnet to the outer inner wall surface (the inner peripheral side of the main body).
- the magnetic flux density was diluted on the side, the magnetic flux density (distribution) was reduced on the outer inner wall surface side of the slot, and the magnetic flux density generated in the bond magnet was relatively small (see FIG. 1B).
- the distribution diagrams of magnetic flux density shown in FIG. 1A and FIG. 1B show the same manufacturing conditions such as the raw materials (magnet powder, resin, etc.) constituting the bonded magnet, the blending ratio, the supplied magnetic field, etc.
- the area (magnet cross-sectional area) is also set to be the same.
- the difference in the orientation magnetization magnetic field described above has a high magnetic flux density, and the bond magnet as a whole exhibits a high residual magnetic flux density distribution.
- the rare earth magnet in the bond magnet is a recoil wire passing through the operating point (P 1 , P 2 ) on the BH demagnetization curve. Will operate on (l 1 , l 2 ) (see FIG. 3).
- P 2 represents the operating point of the rectangular type rotor of the present invention (FIG. 1A)
- P 1 indicates the operation of the conventional arc-type rotor (Fig. 1B).
- the operating points (P 1 , P 2 ) on the BH demagnetization curve slide to a relatively higher position than the operating point of the rotor alone.
- the difference between the residual magnetic flux density (Br 0 ) initially possessed by the rare earth magnet and the residual magnetic flux density (Br 1 , Br 2 ) obtained from the extension of the recoil wire is referred to as a decrease amount of the magnetic flux density (simply referred to as “demagnetization amount”). .) For this reason, as the magnetic flux density generated in the bond magnet (rare earth magnet) with the same amount of bond magnet used increases, the operating point on the BH demagnetization curve shifts to the higher magnetic flux density side (P 1 ⁇ P 2 ). Further, the amount of demagnetization is also reduced ( ⁇ B 1 > ⁇ B 2 ).
- the permeance coefficient of a magnet is determined by the shape of the magnet.
- the substantial permeance coefficient includes not only the outer shape of the entire magnet, but also the overall shape including the manner in which the rare earth anisotropic magnet particles distributed in the bonded magnet are oriented and magnetized. It can be said that it is determined by the magnet performance as a result.
- the present invention even when anisotropic rare earth magnet powder having fine crystals that are relatively difficult to be oriented is used as a magnet raw material to be filled and molded into the slots of the rotor, Although the area is large, the magnetic flux density region higher than the conventional one can be expanded, the effective permeance coefficient can be further increased, the output of the IPM can be improved, and the demagnetization resistance can be improved.
- the magnetic field lines passing through the slot (gap) are radially radiated from the inner inner wall surface (outer side of the main body) of the slot (gap) to the outer inner wall surface (inner side of the main body). It was in a state of spreading over the entire range.
- the slot of the present invention it is an inner packet part that is a ring-shaped cylindrical space that is concavely curved toward the outer peripheral side and extends in the direction of the central axis of rotation, and the inner packet part is an outer peripheral edge of the main body.
- the bonded magnet filled in at least the rectangular portion exhibits a uniform and large magnetic flux density, and the amount of demagnetization of the rare earth magnet in the bonded magnet is suppressed. It is possible to maintain the performance of the synchronous machine or improve the performance while suppressing the amount.
- the magnetic flux density distribution exerted by the bonded magnet in the inner packet part has been described.
- the above description can be applied similarly to the magnetic field acting on the inner packet part from the outside.
- the distribution of the applied magnetic field acting on the bonded magnet and the distribution of the orientation magnetic field applied to the inner portion during filling molding of the bonded magnet made of a rare earth anisotropic magnet can be said to be the same as the distribution of the magnetic flux density described above. .
- the present invention can be grasped not only as the rotor described above but also as an internal magnet type synchronous machine using the rotor. That is, the present invention includes the above-described rotor, and a stator having a coil (equally) disposed on the outer periphery of the rotor and a yoke that forms a magnetic circuit on the outer peripheral side of the coil.
- An internal magnet type synchronous machine characterized by the above may be used.
- the yoke includes a tooth in the coil.
- the synchronous machine basically rotates based on an attractive force and a repulsive force generated by a magnetic pole formed by a permanent magnet provided on the rotor and a rotating magnetic field formed by the stator on the outer periphery of the rotor.
- Force magnet torque
- Ld embedded magnet type
- Lq inductance
- the rotor according to the present invention also adjusts the shape and arrangement of the permanent magnet (inner part) in the rotor, for example, between the adjacent magnetic poles formed by the permanent magnet and the magnet torque generated by this magnetic pole. It is preferable to have salient poles that generate reluctance torque acting in the same direction.
- the present invention can be grasped not only as the above-described inner magnet type synchronous machine and its rotor, but also as a method of manufacturing the rotor. That is, the present invention provides a rare earth anisotropic material which becomes a permanent magnet by injection-filling a molten mixture in which a rare earth anisotropic magnet powder is dispersed in a binder resin melted in an inclusion portion having the above-described rectangular portion in an orientation magnetic field. It can also be grasped as a method for manufacturing a rotor of an encapsulated magnet type synchronous machine, comprising an injection molding process for forming a magnetic bond magnet.
- the internal magnet type synchronous machine of the present invention includes not only an electric motor but also a generator, and the electric motor (motor) in this specification includes a generator (generator) unless otherwise specified.
- the internal magnet type synchronous machine of the present invention includes a Hall element in addition to the original synchronous machine in which the rotation speed changes in synchronization with the frequency of the alternating current supplied to the coil (armature winding) provided in the stator. Also included is a brushless direct current (DC) motor that generates a rotating magnetic field on the stator side based on the position of the rotor detected by a detecting means such as a rotary encoder or resolver.
- a detecting means such as a rotary encoder or resolver.
- the side close to the rotation center of the main body is referred to as “inner side” while the object or target part is viewed relatively, and conversely, the side far from the center of rotation is referred to as “outer side”.
- the cylindrical side surface or the column side surface of the main body is referred to as an “outer peripheral side surface”, and an outermost circle (arc) thereof is referred to as an “outer peripheral edge”.
- the part closest to the rotation center of the target part including the inner packet part
- the part farthest from the rotation center is referred to as “outer peripheral end”.
- inner peripheral end side refers to a further inner peripheral side of the inner peripheral end
- outer peripheral end side refers to a further outer peripheral side of the outer peripheral end
- shape of the “end” in this specification may be linear or planar, and “end” means the vicinity of the “end”.
- x to y in this specification includes the lower limit value x and the upper limit value y.
- a range such as “ab” can be newly set as a new lower limit value or upper limit value for any numerical value included in various numerical values or numerical ranges described in this specification.
- the inner part of the rotor is provided in the main body and includes a gap for disposing a permanent magnet.
- the specific shape of the inner packet part is appropriately adjusted according to the specifications of the synchronous machine, but at least the inner packet part according to the present invention is concavely curved toward the outer peripheral side of the main body and extends in the direction of the rotation center axis. It has a closed cylindrical shape and further has the rectangular portion described above.
- the curved shape of the enclosing part includes an outline, a U-shape, a V-shape, a W-shape, a J-shape, etc., and these may be a multilayer-type inclusion portion provided in a radial direction per magnetic pole.
- the inner packet part preferably has a uniform groove width (distance between the inner wall surface on the inner peripheral side and the outer peripheral side) in order to avoid local concentration of magnetic flux density and orientation magnetic field.
- the bonded magnet filled and molded there basically has a shape along the inner packet part, but the shape of the inner packet part and the shape of the bond magnet do not completely match. May be.
- the shape of the inner packet part and the shape of the bond magnet can be intentionally different.
- each inner packet portion has a plurality of rectangular portions and that the adjacent rectangular portions are connected by a smoothly curved connecting portion.
- the inner width of the connection portion and the inner packet portion is the same.
- the inner wall surface on the inner circumference side of the connecting portion that connects the inner wall surfaces on the inner circumference side of the adjacent rectangular portions is preferably a curved surface having a circular arc in cross section (perpendicular to the rotation center axis).
- the shape of each inner packet portion is symmetric with respect to the magnetic pole center line (plane) because the output characteristics of the synchronous machine are smooth.
- Main body of the rotor is made of a soft magnetic material, and is usually made of a laminated body of electromagnetic steel sheets with insulating coating on both surfaces, a dust core or the like obtained by press-molding insulating coated metal particles.
- the soft magnetic material is preferably an iron-based material such as pure iron, silicon steel, or alloy steel.
- the outer peripheral edge of the inner packet part may be in the vicinity of the outer peripheral edge of the main body, but the outer peripheral edge part of the bonded magnet (rare earth magnet) filled in the inner packet part is reduced (irreversibly) by the reverse magnetic field from the stator. It is easy to be magnetized. Therefore, it is preferable that the main body has an open groove portion that opens to the outer peripheral side of the inner packet portion and extends in the direction of the rotation center axis. As a result, the rare earth magnet can be effectively arranged only in the region contributing to the output of the synchronous machine, and it is possible to avoid using a useless rare earth magnet in the region to be demagnetized.
- the main body has a protrusion extending to the outer peripheral edge between the open groove parts provided on the outer peripheral edge side of the adjacent inner packet part.
- the groove portion is provided on the outer peripheral edge side of the adjacent inner packet portion
- one groove portion opened on the outer peripheral edge side is also used.
- the protrusion becomes a reluctance as a salient pole. The torque can be improved, and as a result, the performance of the synchronous machine can be improved while suppressing the amount of rare earth magnet used.
- a rare earth bonded magnet basically comprises a rare earth magnet powder and a binder resin.
- the rare earth magnet powder may be a rare earth isotropic magnet powder, but if it is a rare earth anisotropic magnet powder, a high-performance synchronous machine can be obtained while suppressing the amount of rare earth magnet used.
- the rare earth magnet powder is, for example, Nd—Fe—B magnet powder, Sm—Fe—N magnet powder, Sm—Co magnet powder or the like. These rare earth magnet powders may be composed of a plurality of types as well as one type. Incidentally, the plurality of types of magnet powders are not limited to those having different component compositions but may have different particle size distributions. For example, Nd—Fe—B magnet powder coarse powder and fine powder may be combined, or Nd—Fe—B magnet powder coarse powder and Sm—Fe—N magnet powder fine powder may be combined. By using such rare earth magnet powder, the filling rate of the magnet powder in the bonded magnet can be improved, and a bonded magnet exhibiting a high magnetic flux density can be obtained.
- the bonded magnet according to the present invention may be a mixture of rare earth anisotropic magnet powder and / or rare earth isotropic magnet powder and ferrite magnet powder.
- binder resin known materials including rubber can be used.
- thermosetting resins such as epoxy resin, unsaturated polyester resin, amino resin, phenol resin, polyamide resin, polyimide resin, polyamideimide resin, urea resin, melamine resin, urea resin, direal phthalate resin, polyurethane, etc. should be used as appropriate. Can do.
- (2) Filling Molding Methods for filling and molding the bonded magnet in the inner packet part according to the present invention include injection molding, compression molding, transfer molding and the like.
- injection molding in which a molten mixture obtained by heating and melting the pellets made of the above-described raw materials is injected and filled into the inner packaging portion and then cooled and solidified is excellent in mass productivity.
- the rare earth anisotropic magnet powder is used as the magnet raw material, it is preferable to fill the above-mentioned molten mixture into the inclusion portion to which the orientation magnetic field is applied, because the characteristics of the rare earth magnet can be effectively utilized.
- the heating temperature (temperature of a molten mixture) at the time of injection molding is less than the Curie point of rare earth magnet powder. It is preferable to use a permanent magnet as the orientation magnetic field source because the manufacturing apparatus can be downsized.
- the internal magnet type synchronous machine of the present invention may be used for any purpose.
- the stator S is formed by laminating electromagnetic steel plates (soft magnetic materials) punched into a shape as shown in FIG. 2, and an annular yoke Sa and teeth protruding uniformly from the yoke Sa toward the center. Sb and a slot Sc formed between adjacent teeth Sb. Each slot Sc houses electromagnetic coils C distributed around the teeth Sb. Each electromagnetic coil C is supplied with inverter-controlled three-phase alternating current. As a result, a rotating magnetic field having a synchronous speed corresponding to the frequency and the number of poles is generated in the stator S.
- Rotor The rotor R is a rare earth that is filled in a rotor core 1 (main body) formed by laminating electromagnetic steel sheets punched into a shape as shown in FIG. 2 and a slot 13 (inner part) formed in the rotor core 1.
- An anisotropic bonded magnet 2 (simply referred to as “bonded magnet 2”).
- the bonded magnet 2 is filled in the slot 13 without a gap.
- the rotor core 1 has a center hole 11 fitted into a rotating shaft (not shown), an air passage 12 that is uniformly arranged on the outer peripheral side thereof and penetrates in the axial direction, and six that are equally arranged on the outer peripheral side of the air passage 12.
- An elongated closed ring-shaped cylindrical slot 13 having a shape curved convexly toward the inner peripheral side (a shape curved concavely toward the outer peripheral side), and the rotor core 1 having the same inner width as the slot 13 and extending from the slot 13
- a bridge 16 bridges adjacent magnetic poles between the outer peripheral end of the slot 13 and the inner peripheral end of the notch 14.
- Each slot 13 is composed of continuous through-grooves that are line-symmetric with respect to the center of the d-axis magnetic pole.
- the four sections including the rectangular portions 131a, 132a, 131b, and 132b are connected to each other and adjacent to each other. It can be divided into three sections consisting of sections 133a, 133b, and 133c.
- the rectangular portions 131a and 131b are arranged symmetrically with respect to the d axis on the outer peripheral side of the rotor core 1.
- the rectangular portions 132 a and 132 b are disposed symmetrically with respect to the d axis on the inner peripheral side of the rotor core 1. All are comprised by the parallel inner wall face extended in an axial direction, and the space
- as many rectangular portions as possible are formed in the slot 13 by connecting the end portions of the inner wall surface on the outer peripheral side of each rectangular portion.
- the connecting portions 133a, 133b, and 133c are fan-shaped in their entire cross section, and the inner wall surface on the inner peripheral side of the cross section having an arc shape is the inner wall surface on the inner peripheral side of the adjacent rectangular portion. Connected smoothly.
- the connecting portions 133a and 133b are disposed symmetrically with respect to the d axis.
- the cutout portion 14 is provided on the outer peripheral end side of the rectangular portions 131 a and 131 b, the bonded magnet 2 that is filled and molded at the outer peripheral end portion of the rectangular portions 131 a and 131 b is more than the outer peripheral edge of the rotor core 1 by the cutout portion 14. It is arranged on the inner peripheral side, and is not easily demagnetized even by a reverse magnetic field applied from the stator S. Further, the projecting portion 15 not only defines the adjacent cutout portion 14, but the tip thereof constitutes a part of the outer peripheral edge of the rotor core 1. Thereby, the protrusion 15 constitutes a q-axis magnetic pole (a salient pole) and contributes to an increase in the reluctance torque of the synchronous motor SM.
- the bond magnet 2 is obtained by, for example, heating and melting pellets made of Nd—Fe—B based anisotropic magnet powder, Sm—Fe—N based magnet powder and polyphenylene sulfide resin (binder resin).
- the molten mixture is injection-filled into the slot 13. After this injection molding, the molten mixture is solidified in the slot 13 by cooling in the mold of the injection filling apparatus in a magnetic field, and the bond magnet 2 (permanent magnet) is integrally molded in the slot 13. In this way, the rotor R including the bonded magnet 2 having the same shape as the slot 13 is obtained.
- the bonded magnet 2 is not only oriented at the time of injection molding in a magnetic field, but is also magnetized at the same time, and is already in a state of exhibiting a high magnetic flux density. For this reason, in this embodiment, there is no need to separately perform post-magnetization. In the case of this embodiment, the orientation magnetic field distribution during the injection molding in the slot 13 is also substantially uniform as shown in FIG. 1A.
- the synchronous motor SM is obtained by rotatably disposing a rotor R in a stator S with a shaft (not shown) fitted in the shaft hole 11 and attached thereto.
- the synchronous motor SM generates a rotating magnetic field in the stator S by an inverter-controlled power source, so that the rotor R rotates in synchronization with the rotating magnetic field.
- the inductance Lq1 in the q-axis direction shifted by ⁇ / 2 (electrical angle) from the d-axis direction is larger than the inductance Ld1 in the d-axis direction passing through the center of the bond magnet 2.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
- Permanent Magnet Type Synchronous Machine (AREA)
Abstract
Provided is a rotor for an inclusive magnet-type synchronous machine with which it is possible to maintain or increase output while effectively utilizing a rare earth magnet serving as a bond magnet. This rotor (R) for an inclusive magnet-type synchronous machine is provided with: a body (1) comprising a substantially columnar or substantially cylindrical soft magnetic material, the body (1) having a plurality of inclusion parts (13), which are closed-ring cylindrical voids curving in a concave shape towards the outer circumference side and extending in the rotary center axis direction, disposed around a rotary center axis (O); and permanent magnets (2) comprising a rare earth bond magnet, formed upon being packed into the inclusion parts. The inclusion parts according to the present invention are characterized in having rectangular parts (131, 132), comprising flat inner wall surfaces extending in the rotary center axis direction and facing each other in parallel, in a section from an outer circumference end nearest to the outer peripheral edge of the body to an inner peripheral end nearest to the rotary center axis of the body. The magnetic flux distribution of the bond magnets, which are formed packed into the rectangular parts, becomes substantially uniform. The bond magnets exhibit a higher magnetic flux density and a reduced demagnetization amount.
Description
本発明は、希土類ボンド磁石を内包した内包磁石型同期機およびその回転子に関する。
The present invention relates to an internal magnet type synchronous machine including a rare earth bonded magnet and a rotor thereof.
永久磁石電動機(発電機を含めて単に「モータ」という。)には種々のタイプがある。最近ではインバータ制御の発達と高磁気特性の希土類磁石の普及に伴い、省電力で高効率であり高トルクまたは高出力が望める同期機が着目されている。
There are various types of permanent magnet motors (simply called “motors” including generators). Recently, with the development of inverter control and the widespread use of rare earth magnets with high magnetic properties, attention has been focused on synchronous machines that can save power, have high efficiency, and expect high torque or high output.
同期機は、界磁用の永久磁石を回転子(ロータ)に有し、電機子巻線(コイル)を固定子(ステータ)に有するモータであって、その電機子巻線に多相交流(AC)を供給することにより固定子に回転磁界が生じて回転するモータである。同期機は、永久磁石を回転子の表面に配設した表面磁石型モータ(SPM)と、永久磁石を回転子の内部に埋め込んだ埋込(内包)磁石型モータ(IPM)とに大別されるが、リラクタンストルクの活用による高効率化と磁石の飛散防止を図れ信頼性が高いIPMが現在の主流となりつつある。
The synchronous machine is a motor having a permanent magnet for a field in a rotor (rotor) and an armature winding (coil) in a stator (stator), and a multiphase alternating current ( AC) is a motor that rotates by generating a rotating magnetic field in the stator. Synchronous machines are roughly classified into a surface magnet type motor (SPM) in which permanent magnets are arranged on the rotor surface and an embedded (internal) magnet type motor (IPM) in which permanent magnets are embedded in the rotor. However, IPM, which has high reliability by utilizing reluctance torque and can prevent scattering of magnets, is now becoming the mainstream.
従来のIPMでは、回転子の磁極を構成する永久磁石として、所定の形状に切削や研磨等した焼結磁石を用いていた。しかし、このような焼結磁石は、形状自由度が小さく、スロットへの挿入時に欠損等を生じ易く、その固定には接着等工程が必要となっていた。このため最近のIPMでは、回転子の磁極を構成する永久磁石として、直接スロット内で充填成形されたボンド磁石が用いられるようになってきた。このようなボンド磁石を用いた回転子に関する記載が、例えば、下記の特許文献にある。
In the conventional IPM, a sintered magnet that has been cut or polished into a predetermined shape has been used as a permanent magnet constituting the magnetic pole of the rotor. However, such a sintered magnet has a low degree of freedom in shape, and is easily damaged when inserted into a slot, and a bonding process or the like is required for fixing the sintered magnet. For this reason, in recent IPMs, bond magnets directly filled in slots have been used as permanent magnets constituting the magnetic poles of the rotor. The description regarding the rotor using such a bonded magnet exists in the following patent document, for example.
特許文献1は、ロータの回転制御性(特に弱め磁束制御性)の向上を図るため、d軸インダクタンス(Ld)に対する鎖交磁束量(φa)の割合(φa/Ld)を大きくできるボンド磁石の形状(つまりロータコアのスロット形状)を提案している。具体的にいうと、ロータに内包するボンド磁石を、ロータコアの外縁側に凸状に曲がる本体部と、本体部の周方向の両端からロータコアの外周縁に向けて延びる端部とを有する形状にすることを提案している。
Patent Document 1 discloses a bonded magnet that can increase the ratio (φa / Ld) of the flux linkage (φa) to the d-axis inductance (Ld) in order to improve the rotor rotation controllability (particularly the flux weakening controllability). The shape (that is, the slot shape of the rotor core) is proposed. Specifically, the bonded magnet included in the rotor has a shape having a main body portion that bends convexly toward the outer edge side of the rotor core and an end portion that extends from both circumferential ends of the main body portion toward the outer peripheral edge of the rotor core. Propose to do.
しかし、ステータ側から大きな逆磁界が印加される高性能モータの場合、そのような形状のボンド磁石では、ロータ外周縁に近い領域が減磁され易くなる。これでは稀少な希土類元素を含むボンド磁石全体を有効に活用できなくなり、希土類磁石の使用量に応じた出力を十分には確保できない。
However, in the case of a high-performance motor to which a large reverse magnetic field is applied from the stator side, such a bonded magnet tends to demagnetize a region near the outer periphery of the rotor. This makes it impossible to effectively use the entire bonded magnet containing rare earth elements, and it is not possible to sufficiently secure an output corresponding to the amount of rare earth magnet used.
本発明はこのような事情に鑑みて為されたものであり、ボンド磁石となる希土類磁石を有効に活用しつつ、出力の維持または向上を図れる内包磁石型同期機と、その回転子を提供することを目的とする。
The present invention has been made in view of such circumstances, and provides an internal magnet type synchronous machine capable of maintaining or improving output while effectively utilizing a rare earth magnet as a bonded magnet, and a rotor thereof. For the purpose.
本発明者はこの課題を解決すべく鋭意研究し、試行錯誤を重ねた結果、ロータコアのスロット形状を工夫することにより、そのスロットに充填されたボンド磁石から生じる磁束密度分布を改善し、そのボンド磁石(正確には、それを構成する希土類磁石)の減磁を抑制することを思いついた。この着想を具体的に発展させることにより、以降に述べる本発明を完成するに至った。
As a result of extensive research and trial and error, the present inventor has improved the magnetic flux density distribution generated from the bonded magnet filled in the slot by devising the slot shape of the rotor core. I came up with the idea of suppressing demagnetization of magnets (more precisely, the rare earth magnets that make up them). By specifically developing this idea, the present invention described below has been completed.
《内包磁石型同期機の回転子》
(1)本発明の内包磁石型同期機の回転子(単に「回転子」という。)は、略円柱状または略円筒状の軟磁性体からなり、外周側に向けて凹状に湾曲し回転中心軸方向へ延在する閉環筒状の空隙である内包部が該回転中心軸の周りに複数配置されている本体と、該内包部に充填して成形された希土類ボンド磁石からなる永久磁石と、を備える内包磁石型同期機の回転子であって、前記内包部は、前記本体の外周縁に最も近い外周端から前記本体の回転中心軸に最も近い内周端までの区間に、該回転中心軸方向に延在し平行に対向した平面状の内壁面からなる矩形部を有することを特徴とする。 《Rotator of internal magnet type synchronous machine》
(1) The rotor (simply referred to as “rotor”) of the internal magnet type synchronous machine of the present invention is made of a substantially columnar or substantially cylindrical soft magnetic material, curved in a concave shape toward the outer peripheral side, and has a center of rotation. A main body in which a plurality of inclusions, which are closed ring-shaped cylindrical gaps extending in the axial direction, are arranged around the rotation center axis, and a permanent magnet made of a rare-earth bonded magnet formed by filling the inclusions, A rotor of an internal magnet type synchronous machine, wherein the inner packet part is in a section from an outer peripheral end closest to the outer peripheral edge of the main body to an inner peripheral end closest to the rotation central axis of the main body. It has the rectangular part which consists of a planar inner wall surface extended in the axial direction and opposed in parallel.
(1)本発明の内包磁石型同期機の回転子(単に「回転子」という。)は、略円柱状または略円筒状の軟磁性体からなり、外周側に向けて凹状に湾曲し回転中心軸方向へ延在する閉環筒状の空隙である内包部が該回転中心軸の周りに複数配置されている本体と、該内包部に充填して成形された希土類ボンド磁石からなる永久磁石と、を備える内包磁石型同期機の回転子であって、前記内包部は、前記本体の外周縁に最も近い外周端から前記本体の回転中心軸に最も近い内周端までの区間に、該回転中心軸方向に延在し平行に対向した平面状の内壁面からなる矩形部を有することを特徴とする。 《Rotator of internal magnet type synchronous machine》
(1) The rotor (simply referred to as “rotor”) of the internal magnet type synchronous machine of the present invention is made of a substantially columnar or substantially cylindrical soft magnetic material, curved in a concave shape toward the outer peripheral side, and has a center of rotation. A main body in which a plurality of inclusions, which are closed ring-shaped cylindrical gaps extending in the axial direction, are arranged around the rotation center axis, and a permanent magnet made of a rare-earth bonded magnet formed by filling the inclusions, A rotor of an internal magnet type synchronous machine, wherein the inner packet part is in a section from an outer peripheral end closest to the outer peripheral edge of the main body to an inner peripheral end closest to the rotation central axis of the main body. It has the rectangular part which consists of a planar inner wall surface extended in the axial direction and opposed in parallel.
(2)本発明の回転子によれば、ボンド磁石を構成する希土類磁石の減磁を抑制することができ、稀少な希土類磁石の使用量を増加させずに、内包磁石型同期機(単に「IPM」、「同期機」または「モータ」という。)の性能向上を図ったり、希土類磁石の使用量を抑制しつつモータの性能維持を図ったりできる。
(2) According to the rotor of the present invention, it is possible to suppress the demagnetization of the rare earth magnets constituting the bonded magnet, and without increasing the amount of rare earth magnets used, IPM "," synchronous machine "or" motor "), and the performance of the motor can be maintained while reducing the amount of rare earth magnets used.
本発明の回転子により、ボンド磁石中の希土類磁石の減磁を抑制できる理由は次のように考えられる。本発明に係る内包部(「スロット」ともいう。)は、先ず、回転子の本体(「ロータコア」ともいう。)の外周側に向けて凹状に湾曲した閉じた筒状(溝状)の空隙からなる。このため、回転子の外部(固定子側)から強い逆磁界が加わっても、その逆磁界は、湾曲した内部に存在する軟磁性材により分散されつつ、内包部に充填成形されたボンド磁石中の希土類磁石へ作用する。このため、スロットがロータコアの外周側に凸状に形成されている場合よりも、本発明に係るボンド磁石中の希土類磁石は減磁され難い。
The reason why the rotor of the present invention can suppress the demagnetization of the rare earth magnet in the bonded magnet is considered as follows. The inner packet portion (also referred to as “slot”) according to the present invention is a closed cylindrical (groove-shaped) gap that is curved concavely toward the outer peripheral side of the rotor body (also referred to as “rotor core”). Consists of. For this reason, even if a strong reverse magnetic field is applied from the outside (stator side) of the rotor, the reverse magnetic field is dispersed by the soft magnetic material existing in the curved interior, and the bonded magnet filled and molded in the inner packet part. Acts on rare earth magnets. For this reason, the rare earth magnet in the bonded magnet according to the present invention is less likely to be demagnetized than when the slot is formed in a convex shape on the outer peripheral side of the rotor core.
次に、本発明に係る内包部は、一定間隔(内幅)を維持した平行な対向する平面状の内壁面で区画される矩形部を有する。この矩形部の領域内にあるスロット(空隙)を通過する磁力線は、その内壁面(スロット(空隙)の外周面と内周面)に対して法線状となり、少なくとも矩形部内において、スロット(空隙)を通過する磁束線の磁束密度分布はほぼ均一的になる。このようなスロットに磁石粉末と溶融樹脂の混合物を充填(射出等)すると、上述の配向着磁磁場に沿って均一に配向着磁されたボンド磁石が得られる。その結果、この矩形部の領域内にあるボンド磁石を通過する磁力線は、その内壁面(ボンド磁石の外周面と内周面)に対して法線状となり、少なくとも矩形部内において、ボンド磁石を通過する磁束線の磁束密度分布はほぼ均一的になる(図1A参照)。
Next, the inner packet part according to the present invention has a rectangular part defined by parallel opposing planar inner wall surfaces that maintain a constant interval (inner width). The lines of magnetic force that pass through the slots (voids) in the region of the rectangular part are normal to the inner wall surface (the outer peripheral surface and the inner peripheral surface of the slot (void)), and at least within the rectangular part, the slots (voids) The magnetic flux density distribution of the magnetic flux lines passing through) becomes substantially uniform. When such a slot is filled (injected or the like) with a mixture of magnet powder and molten resin, a bonded magnet that is uniformly oriented and magnetized along the orientation magnetizing magnetic field described above can be obtained. As a result, the lines of magnetic force that pass through the bonded magnet in the region of the rectangular portion are normal to the inner wall surface (the outer peripheral surface and the inner peripheral surface of the bonded magnet), and pass through the bonded magnet at least within the rectangular portion. The magnetic flux density distribution of the magnetic flux lines is substantially uniform (see FIG. 1A).
逆に、リラクタンストルクを活用するIPMに、成形時の形状自由度を有するボンド磁石を利用する場合、従来のスロット(内包部)では、内幅が一定な曲面(特に断面が円弧状となる曲面)からなる内壁面で区画されていたため、スロット(空隙)を通過する磁力線は、スロットの内側内壁面(本体の外周側)から外側内壁面(本体の内周側)へ放射状に拡がり、外側内壁面側で磁束密度が希釈化し、スロットの外側内壁面側で磁束密度が低くなり、スロット(空隙)で生じる磁束密度が総体的に小さくなっていた。
Conversely, when using a bonded magnet having a degree of freedom during molding for IPM that utilizes reluctance torque, a curved surface with a constant inner width (especially a curved surface having a circular cross section) in a conventional slot (inner package). ), The magnetic lines of force that pass through the slot (gap) radiate from the inner inner wall surface of the slot (the outer peripheral side of the main body) to the outer inner wall surface (the inner peripheral side of the main body). The magnetic flux density was diluted on the wall surface side, the magnetic flux density was decreased on the outer inner wall surface side of the slot, and the magnetic flux density generated in the slot (gap) was generally reduced.
その結果、従来の内包部に充填されたボンド磁石を通過する磁力線は、ボンド磁石の内側内壁面(本体の外周側)から外側内壁面(本体の内周側)へ放射状に拡がり、外側内壁面側で磁束密度が希釈化し、スロットの外側内壁面側で磁束密度(分布)が薄くなり、ボンド磁石で生じる磁束密度は相対的に小さくなっていた(図1B参照)。なお、図1Aと図1Bに示した磁束密度の分布図は、ボンド磁石を構成する原料(磁石粉末、樹脂等)、その配合比、供給磁場等の製造条件を同一とすると共に、スロットの断面積(磁石断面積)も同一に設定して作成したものである。
As a result, the magnetic lines of force that pass through the bonded magnet filled in the conventional inner envelope portion spread radially from the inner inner wall surface (the outer peripheral side of the main body) of the bond magnet to the outer inner wall surface (the inner peripheral side of the main body). The magnetic flux density was diluted on the side, the magnetic flux density (distribution) was reduced on the outer inner wall surface side of the slot, and the magnetic flux density generated in the bond magnet was relatively small (see FIG. 1B). The distribution diagrams of magnetic flux density shown in FIG. 1A and FIG. 1B show the same manufacturing conditions such as the raw materials (magnet powder, resin, etc.) constituting the bonded magnet, the blending ratio, the supplied magnetic field, etc. The area (magnet cross-sectional area) is also set to be the same.
ステータの存在を考慮しないロータ単体の磁束密度分布(図1A)から分かるように、本発明の矩形タイプのロータにおいて、例えば、図示した位置Xaにおける残留磁束密度Bd2aは、従来の円弧タイプのロータ(図1B)における同等な位置Xbにおける残留磁束密度Bd1bにくらべ、上述した配向着磁磁場の相違により、高い磁束密度を有し、ボンド磁石全体としても高い残留磁束密度分布を発揮する。
As can be seen from the magnetic flux density distribution (FIG. 1A) of the rotor alone that does not consider the presence of the stator, in the rectangular type rotor of the present invention, for example, the residual magnetic flux density Bd2a at the position Xa shown in FIG. Compared to the residual magnetic flux density Bd1b at the equivalent position Xb in FIG. 1B), the difference in the orientation magnetization magnetic field described above has a high magnetic flux density, and the bond magnet as a whole exhibits a high residual magnetic flux density distribution.
ここで、そのボンド磁石を内包した回転子を組み込んだ同期機を作動させる場合、ボンド磁石中の希土類磁石は、B-H減磁曲線上の動作点(P1、P2)を通るリコイル線(l1、l2)上で作動することになる(図3参照)。P2は、本発明の矩形タイプのロータ(図1A)の動作点を表し、P1は、従来の円弧タイプのロータ(図1B)の動作点を示す。なお、当然ながら、B-H減磁曲線上の動作点(P1、P2)は、ロータ単体の動作点に比べ、相対的に高い位置にスライドしている。
Here, when the synchronous machine incorporating the rotor including the bond magnet is operated, the rare earth magnet in the bond magnet is a recoil wire passing through the operating point (P 1 , P 2 ) on the BH demagnetization curve. Will operate on (l 1 , l 2 ) (see FIG. 3). P 2 represents the operating point of the rectangular type rotor of the present invention (FIG. 1A), P 1 indicates the operation of the conventional arc-type rotor (Fig. 1B). Naturally, the operating points (P 1 , P 2 ) on the BH demagnetization curve slide to a relatively higher position than the operating point of the rotor alone.
希土類磁石が当初に有する残留磁束密度(Br0)と、リコイル線の延長線から求まる残留磁束密度(Br1、Br2)との差が、磁束密度の減少量(単に「減磁量」という。)となる。このため、同じボンド磁石使用量でのボンド磁石(希土類磁石)に生じる磁束密度が大きいほど、B-H減磁曲線上の動作点は磁束密度の大きい側へシフトし(P1→P2)、減磁量も小さくなる(ΔB1>ΔB2)。
The difference between the residual magnetic flux density (Br 0 ) initially possessed by the rare earth magnet and the residual magnetic flux density (Br 1 , Br 2 ) obtained from the extension of the recoil wire is referred to as a decrease amount of the magnetic flux density (simply referred to as “demagnetization amount”). .) For this reason, as the magnetic flux density generated in the bond magnet (rare earth magnet) with the same amount of bond magnet used increases, the operating point on the BH demagnetization curve shifts to the higher magnetic flux density side (P 1 → P 2 ). Further, the amount of demagnetization is also reduced (ΔB 1 > ΔB 2 ).
通常、磁石のパーミアンス係数は磁石形状で決まるが、スロットに隙間無くボンド磁石が充填成形されたロータをステータに近接配置したIPMの場合、動作点は非常に高く、その鎖交磁束がほぼ磁石体積により定まる。このようなIPMの場合、実質的なパーミアンス係数は、磁石全体としての外形形状のみならず、ボンド磁石内に分布している希土類異方性磁石粒子が配向、着磁される態様を含む総合的な結果としての磁石性能により定まるといえる。
Normally, the permeance coefficient of a magnet is determined by the shape of the magnet. However, in the case of an IPM in which a rotor filled with a bonded magnet without gaps in the slot is placed close to the stator, the operating point is very high, and the interlinkage magnetic flux is almost equal to the magnet volume It depends on. In the case of such an IPM, the substantial permeance coefficient includes not only the outer shape of the entire magnet, but also the overall shape including the manner in which the rare earth anisotropic magnet particles distributed in the bonded magnet are oriented and magnetized. It can be said that it is determined by the magnet performance as a result.
このような状況の下、本発明によれば、ロータのスロットに充填成形する磁石原料として、比較的配向の困難な微細結晶を有する異方性希土類磁石粉末を用いる場合でも、従来と同一磁石断面積でありながら、従来よりも高い磁束密度領域の拡大を図れ、実効的パーミアンス係数をより高くすることができ、IPMの出力向上と、耐減磁特性を向上させることができる。
Under such circumstances, according to the present invention, even when anisotropic rare earth magnet powder having fine crystals that are relatively difficult to be oriented is used as a magnet raw material to be filled and molded into the slots of the rotor, Although the area is large, the magnetic flux density region higher than the conventional one can be expanded, the effective permeance coefficient can be further increased, the output of the IPM can be improved, and the demagnetization resistance can be improved.
また、従来の逆円弧上のスロットでは、スロット(空隙)を通過する磁力線は、スロット(空隙)の内側内壁面(本体の外周側)から外側内壁面(本体の内周側)へ放射状にスロット全範囲において拡がっている状態であった。これに対して本発明のスロットでは、外周側に向けて凹状に湾曲し回転中心軸方向へ延在する閉環筒状の空隙である内包部であって、かつ、内包部は、本体の外周縁に最も近い外周端から本体の回転中心軸に最も近い内周端までの区間に、回転中心軸方向に延在し平行に対向した平面状の内壁面からなる矩形部を有し、磁力線は矩形部の接続部に内側内壁面から外側内壁面へ放射状に拡がっている部分へ集中させることができる。これにより本発明のロータでは、全体としてリラクタンストルクを活用しつつ、磁石の磁気特性の向上と耐減磁特性の向上を図ることができる。なお、本発明の場合も、別途、着磁を行ってもよい。
Further, in the conventional slot on the reverse arc, the magnetic field lines passing through the slot (gap) are radially radiated from the inner inner wall surface (outer side of the main body) of the slot (gap) to the outer inner wall surface (inner side of the main body). It was in a state of spreading over the entire range. On the other hand, in the slot of the present invention, it is an inner packet part that is a ring-shaped cylindrical space that is concavely curved toward the outer peripheral side and extends in the direction of the central axis of rotation, and the inner packet part is an outer peripheral edge of the main body. In the section from the outer peripheral end closest to the inner peripheral end closest to the rotation center axis of the main body, there is a rectangular portion consisting of a planar inner wall surface extending in the direction of the rotation center axis and facing in parallel. It can be made to concentrate on the part which has spread radially from the inner inner wall surface to the outer inner wall surface. Thereby, in the rotor of the present invention, it is possible to improve the magnetic characteristics and the anti-demagnetization characteristics of the magnet while utilizing the reluctance torque as a whole. In the present invention, magnetization may be performed separately.
こうして本発明の回転子では、少なくとも矩形部に充填されたボンド磁石が均一的で大きな磁束密度を発揮すると共に、そのボンド磁石中の希土類磁石の減磁量が抑制されるため、希土類磁石の使用量を抑制しつつも、同期機の性能維持または性能向上等を図ることが可能となる。
Thus, in the rotor of the present invention, the bonded magnet filled in at least the rectangular portion exhibits a uniform and large magnetic flux density, and the amount of demagnetization of the rare earth magnet in the bonded magnet is suppressed. It is possible to maintain the performance of the synchronous machine or improve the performance while suppressing the amount.
なお、便宜上、内包部(特に矩形部)内のボンド磁石が発揮する磁束密度分布について説明したが、上述した内容は、その内包部へ外部から作用する磁界についても同様に該当し得る。例えば、ボンド磁石に作用する着磁場の分布や、希土類異方性磁石からなるボンド磁石の充填成形時に内包部へ印加する配向磁場の分布についても、上述した磁束密度の分布と同様なことがいえる。
For convenience, the magnetic flux density distribution exerted by the bonded magnet in the inner packet part (particularly, the rectangular part) has been described. However, the above description can be applied similarly to the magnetic field acting on the inner packet part from the outside. For example, the distribution of the applied magnetic field acting on the bonded magnet and the distribution of the orientation magnetic field applied to the inner portion during filling molding of the bonded magnet made of a rare earth anisotropic magnet can be said to be the same as the distribution of the magnetic flux density described above. .
《内包磁石型同期機》
(1)本発明は上述した回転子としてのみならず、その回転子を用いた内包磁石型同期機としても把握できる。すなわち本発明は、上述した回転子と、該回転子の外周囲に(均等に)配設されたコイルと該コイルの外周側で磁気回路を構成するヨークとを有する固定子と、を備えることを特徴とする内包磁石型同期機でもよい。なお、適宜、ヨークはコイル内にあるティースを含む。 <Internal magnet type synchronous machine>
(1) The present invention can be grasped not only as the rotor described above but also as an internal magnet type synchronous machine using the rotor. That is, the present invention includes the above-described rotor, and a stator having a coil (equally) disposed on the outer periphery of the rotor and a yoke that forms a magnetic circuit on the outer peripheral side of the coil. An internal magnet type synchronous machine characterized by the above may be used. As appropriate, the yoke includes a tooth in the coil.
(1)本発明は上述した回転子としてのみならず、その回転子を用いた内包磁石型同期機としても把握できる。すなわち本発明は、上述した回転子と、該回転子の外周囲に(均等に)配設されたコイルと該コイルの外周側で磁気回路を構成するヨークとを有する固定子と、を備えることを特徴とする内包磁石型同期機でもよい。なお、適宜、ヨークはコイル内にあるティースを含む。 <Internal magnet type synchronous machine>
(1) The present invention can be grasped not only as the rotor described above but also as an internal magnet type synchronous machine using the rotor. That is, the present invention includes the above-described rotor, and a stator having a coil (equally) disposed on the outer periphery of the rotor and a yoke that forms a magnetic circuit on the outer peripheral side of the coil. An internal magnet type synchronous machine characterized by the above may be used. As appropriate, the yoke includes a tooth in the coil.
(2)同期機は、基本的に、回転子に設けた永久磁石により形成される磁極と固定子により回転子の外周囲に形成される回転磁界とで生じる吸引力および反発力に基づいて回転力(マグネットトルク)を生じる。もっとも、表面磁石型同期機と異なり埋込磁石型(内包磁石型)同期機の場合、磁極に生じる(d軸)インダクタンス(Ld)と磁極間に生じる(q軸)インダクタンス(Lq)との間に差を生じ易いため、吸引力に基づくリラクタンストルクも回転子に生じることが多い。特にLd<Lqとなる場合、リラクタンストルクとマグネットトルクは同方向となり、出力トルクが増大し得る。
(2) The synchronous machine basically rotates based on an attractive force and a repulsive force generated by a magnetic pole formed by a permanent magnet provided on the rotor and a rotating magnetic field formed by the stator on the outer periphery of the rotor. Force (magnet torque) is generated. However, unlike a surface magnet type synchronous machine, in the case of an embedded magnet type (internal magnet type) synchronous machine, between the (d axis) inductance (Ld) generated in the magnetic pole and the (q axis) inductance (Lq) generated between the magnetic poles. Therefore, the reluctance torque based on the attractive force is often generated in the rotor. In particular, when Ld <Lq, the reluctance torque and the magnet torque are in the same direction, and the output torque can be increased.
そこで本発明に係る回転子も、回転子中における永久磁石(内包部)の形状や配置等を調整して、例えば、永久磁石により形成される隣接する磁極間に、この磁極により生じるマグネットトルクと同一方向に作用するリラクタンストルクを生じさせる突極を有するものであると好適である。
Therefore, the rotor according to the present invention also adjusts the shape and arrangement of the permanent magnet (inner part) in the rotor, for example, between the adjacent magnetic poles formed by the permanent magnet and the magnet torque generated by this magnetic pole. It is preferable to have salient poles that generate reluctance torque acting in the same direction.
《内包磁石型同期機の回転子の製造方法》
さらに本発明は、上述した内包磁石型同期機やその回転子としてのみならず、その回転子の製造方法としても把握できる。すなわち本発明は、上述した矩形部を有する内包部へ溶融したバインダ樹脂中に希土類異方性磁石粉末を分散させた溶融混合物を配向磁場中で射出充填して、前記永久磁石となる希土類異方性ボンド磁石を成形する射出成形工程を備えることを特徴とする内包磁石型同期機の回転子の製造方法としても把握できる。 << Method for manufacturing rotor of internal magnet type synchronous machine >>
Further, the present invention can be grasped not only as the above-described inner magnet type synchronous machine and its rotor, but also as a method of manufacturing the rotor. That is, the present invention provides a rare earth anisotropic material which becomes a permanent magnet by injection-filling a molten mixture in which a rare earth anisotropic magnet powder is dispersed in a binder resin melted in an inclusion portion having the above-described rectangular portion in an orientation magnetic field. It can also be grasped as a method for manufacturing a rotor of an encapsulated magnet type synchronous machine, comprising an injection molding process for forming a magnetic bond magnet.
さらに本発明は、上述した内包磁石型同期機やその回転子としてのみならず、その回転子の製造方法としても把握できる。すなわち本発明は、上述した矩形部を有する内包部へ溶融したバインダ樹脂中に希土類異方性磁石粉末を分散させた溶融混合物を配向磁場中で射出充填して、前記永久磁石となる希土類異方性ボンド磁石を成形する射出成形工程を備えることを特徴とする内包磁石型同期機の回転子の製造方法としても把握できる。 << Method for manufacturing rotor of internal magnet type synchronous machine >>
Further, the present invention can be grasped not only as the above-described inner magnet type synchronous machine and its rotor, but also as a method of manufacturing the rotor. That is, the present invention provides a rare earth anisotropic material which becomes a permanent magnet by injection-filling a molten mixture in which a rare earth anisotropic magnet powder is dispersed in a binder resin melted in an inclusion portion having the above-described rectangular portion in an orientation magnetic field. It can also be grasped as a method for manufacturing a rotor of an encapsulated magnet type synchronous machine, comprising an injection molding process for forming a magnetic bond magnet.
《その他》
(1)本発明の内包磁石型同期機には電動機のみならず発電機も含まれ、本明細書でいう電動機(モータ)も特に断らない限り、発電機(ジェネレータ)を含む。また本発明の内包磁石型同期機には、固定子に設けたコイル(電機子巻線)へ供給する交流電流の周波数に同期して回転数が変化する本来的な同期機の他、ホール素子、ロータリエンコーダ、レゾルバ等の検出手段により検出された回転子の位置に基づいて固定子側に回転磁界を生じさせるブラシレス直流(DC)モータも含まれる。ちなみに、ブラシレスDCモータは、インバータに供給する直流電圧を変化させて回転数を変化させ得るため、通常の直流モータと同様に制御性に優れる。 <Others>
(1) The internal magnet type synchronous machine of the present invention includes not only an electric motor but also a generator, and the electric motor (motor) in this specification includes a generator (generator) unless otherwise specified. The internal magnet type synchronous machine of the present invention includes a Hall element in addition to the original synchronous machine in which the rotation speed changes in synchronization with the frequency of the alternating current supplied to the coil (armature winding) provided in the stator. Also included is a brushless direct current (DC) motor that generates a rotating magnetic field on the stator side based on the position of the rotor detected by a detecting means such as a rotary encoder or resolver. Incidentally, since the brushless DC motor can change the rotation speed by changing the DC voltage supplied to the inverter, it has excellent controllability like a normal DC motor.
(1)本発明の内包磁石型同期機には電動機のみならず発電機も含まれ、本明細書でいう電動機(モータ)も特に断らない限り、発電機(ジェネレータ)を含む。また本発明の内包磁石型同期機には、固定子に設けたコイル(電機子巻線)へ供給する交流電流の周波数に同期して回転数が変化する本来的な同期機の他、ホール素子、ロータリエンコーダ、レゾルバ等の検出手段により検出された回転子の位置に基づいて固定子側に回転磁界を生じさせるブラシレス直流(DC)モータも含まれる。ちなみに、ブラシレスDCモータは、インバータに供給する直流電圧を変化させて回転数を変化させ得るため、通常の直流モータと同様に制御性に優れる。 <Others>
(1) The internal magnet type synchronous machine of the present invention includes not only an electric motor but also a generator, and the electric motor (motor) in this specification includes a generator (generator) unless otherwise specified. The internal magnet type synchronous machine of the present invention includes a Hall element in addition to the original synchronous machine in which the rotation speed changes in synchronization with the frequency of the alternating current supplied to the coil (armature winding) provided in the stator. Also included is a brushless direct current (DC) motor that generates a rotating magnetic field on the stator side based on the position of the rotor detected by a detecting means such as a rotary encoder or resolver. Incidentally, since the brushless DC motor can change the rotation speed by changing the DC voltage supplied to the inverter, it has excellent controllability like a normal DC motor.
(2)本明細書では、対象物または対象部を相対的に観て、本体の回転中心に近い側を「内周側」といい、逆にその回転中心から遠い側を「外周側」という。また、本体の円筒側面または円柱側面を「外周側面」といい、その最外円(円弧)を「外周縁」という。さらに、対象部(内包部等)の回転中心に最も近い部位を「内周端」といい、逆に回転中心に最も遠い部位(外周縁に最も近い部位)を「外周端」という。そして「内周端側」とは、その内周端のさらなる内周側をいい、「外周端側」とは、その外周端のさらなる外周側をいう。なお、本明細書でいう「端」の形状は線状でも面状でもよく、「端部」はその「端」の近傍という意味である。
(2) In this specification, the side close to the rotation center of the main body is referred to as “inner side” while the object or target part is viewed relatively, and conversely, the side far from the center of rotation is referred to as “outer side”. . Further, the cylindrical side surface or the column side surface of the main body is referred to as an “outer peripheral side surface”, and an outermost circle (arc) thereof is referred to as an “outer peripheral edge”. Furthermore, the part closest to the rotation center of the target part (including the inner packet part) is referred to as “inner peripheral end”, and the part farthest from the rotation center (part closest to the outer peripheral edge) is referred to as “outer peripheral end”. The “inner peripheral end side” refers to a further inner peripheral side of the inner peripheral end, and the “outer peripheral end side” refers to a further outer peripheral side of the outer peripheral end. In addition, the shape of the “end” in this specification may be linear or planar, and “end” means the vicinity of the “end”.
(3)特に断らない限り本明細書でいう「x~y」は下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を、新たな下限値または上限値として「a~b」のような範囲を新設し得る。
(3) Unless otherwise specified, “x to y” in this specification includes the lower limit value x and the upper limit value y. A range such as “ab” can be newly set as a new lower limit value or upper limit value for any numerical value included in various numerical values or numerical ranges described in this specification.
本明細書で説明する内容は、本発明の回転子のみならず、それを用いた同期機等にも適宜該当し得る。製造方法に関する事項も、プロダクトバイプロセスとして理解すれば物に関する構成要素となり得る。そして本明細書中に記載した事項から任意に選択した一つまたは二つ以上を上述した本発明の構成要素に付加し得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。
The contents described in this specification can be appropriately applied not only to the rotor of the present invention but also to a synchronous machine using the rotor. Matters related to the manufacturing method can also be components related to products if understood as product-by-process. And one or two or more arbitrarily selected from the matters described in the present specification can be added to the above-described components of the present invention. Which embodiment is the best depends on the target, required performance, and the like.
《内包磁石型同期機の回転子》
(1)内包部
回転子の内包部は、上記本体中に設けられ、永久磁石を配設するための空隙からなる。内包部は、磁極となる永久磁石を内包するため、少なくとも2以上あり、通常、これらは本体の回転中心軸周りに均等に配置される。 《Rotator of internal magnet type synchronous machine》
(1) Inner part The inner part of the rotor is provided in the main body and includes a gap for disposing a permanent magnet. There are at least two inner inclusions for containing the permanent magnets serving as magnetic poles, and these are usually arranged evenly around the rotation center axis of the main body.
(1)内包部
回転子の内包部は、上記本体中に設けられ、永久磁石を配設するための空隙からなる。内包部は、磁極となる永久磁石を内包するため、少なくとも2以上あり、通常、これらは本体の回転中心軸周りに均等に配置される。 《Rotator of internal magnet type synchronous machine》
(1) Inner part The inner part of the rotor is provided in the main body and includes a gap for disposing a permanent magnet. There are at least two inner inclusions for containing the permanent magnets serving as magnetic poles, and these are usually arranged evenly around the rotation center axis of the main body.
内包部の具体的な形状は同期機の仕様等に応じて適宜調整されるが、少なくとも本発明に係る内包部は、本体の外周側に向けて凹状に湾曲し回転中心軸方向へ延在する閉環筒状をしており、さらに上述した矩形部を有する。
The specific shape of the inner packet part is appropriately adjusted according to the specifications of the synchronous machine, but at least the inner packet part according to the present invention is concavely curved toward the outer peripheral side of the main body and extends in the direction of the rotation center axis. It has a closed cylindrical shape and further has the rectangular portion described above.
内包部の湾曲形状は、概略、U字型、V字型、W字型、J字型等があり、それらは1磁極あたり半径方向に複数設けた多層型内包部でもよい。内包部は、磁束密度や配向磁場の局所的な集中を回避するため、均一的な溝幅(内周側と外周側の内壁面間の距離)からなると好ましい。
The curved shape of the enclosing part includes an outline, a U-shape, a V-shape, a W-shape, a J-shape, etc., and these may be a multilayer-type inclusion portion provided in a radial direction per magnetic pole. The inner packet part preferably has a uniform groove width (distance between the inner wall surface on the inner peripheral side and the outer peripheral side) in order to avoid local concentration of magnetic flux density and orientation magnetic field.
内包部がどのような形状であっても、そこで充填成形されるボンド磁石は、基本的に内包部に沿った形状となるが、内包部の形状とボンド磁石の形状は完全に一致していなくてもよい。例えば、内包部にスペーサー(ピン)を介在させて射出成形等すれば、意図的に内包部の形状とボンド磁石の形状とが異なるようにすることもできる。
Whatever the shape of the inner packet part is, the bonded magnet filled and molded there basically has a shape along the inner packet part, but the shape of the inner packet part and the shape of the bond magnet do not completely match. May be. For example, if injection molding or the like is performed with a spacer (pin) interposed in the inner packet part, the shape of the inner packet part and the shape of the bond magnet can be intentionally different.
内包部は、できるだけ多くの領域(区間)が矩形部で構成されていると好ましいが、全体が凹状に湾曲しているため、矩形部のみで構成することはできない。そこで各内包部は、矩形部を複数有すると共に、それら隣接する矩形部の間が滑らかに湾曲した接続部で接続されていると好ましい。その際、磁束密度の局所的な集中を回避するため、接続部と内包部の内幅は同じであると好ましい。例えば、隣接する矩形部の内周側の内壁面を接続する接続部の内周側の内壁面は、(回転中心軸に垂直な)断面が円弧状となる曲面状であると好ましい。なお、各内包部の形状は、磁極中心線(面)に関して対称であると、同期機の出力特性が滑らかとなり好ましい。
Although it is preferable that as many regions (sections) as possible are composed of rectangular parts, the inner part is curved in a concave shape and cannot be composed of only rectangular parts. Therefore, it is preferable that each inner packet portion has a plurality of rectangular portions and that the adjacent rectangular portions are connected by a smoothly curved connecting portion. At this time, in order to avoid local concentration of the magnetic flux density, it is preferable that the inner width of the connection portion and the inner packet portion is the same. For example, the inner wall surface on the inner circumference side of the connecting portion that connects the inner wall surfaces on the inner circumference side of the adjacent rectangular portions is preferably a curved surface having a circular arc in cross section (perpendicular to the rotation center axis). In addition, it is preferable that the shape of each inner packet portion is symmetric with respect to the magnetic pole center line (plane) because the output characteristics of the synchronous machine are smooth.
(2)本体
回転子の本体は、軟磁性体からなり、通常、両面を絶縁被覆した電磁鋼板の積層体や絶縁被覆された金属粒子を加圧成形した圧粉磁心等からなる。軟磁性材は、例えば、純鉄、ケイ素鋼、合金鋼等の鉄系材であると好ましい。 (2) Main body The main body of the rotor is made of a soft magnetic material, and is usually made of a laminated body of electromagnetic steel sheets with insulating coating on both surfaces, a dust core or the like obtained by press-molding insulating coated metal particles. The soft magnetic material is preferably an iron-based material such as pure iron, silicon steel, or alloy steel.
回転子の本体は、軟磁性体からなり、通常、両面を絶縁被覆した電磁鋼板の積層体や絶縁被覆された金属粒子を加圧成形した圧粉磁心等からなる。軟磁性材は、例えば、純鉄、ケイ素鋼、合金鋼等の鉄系材であると好ましい。 (2) Main body The main body of the rotor is made of a soft magnetic material, and is usually made of a laminated body of electromagnetic steel sheets with insulating coating on both surfaces, a dust core or the like obtained by press-molding insulating coated metal particles. The soft magnetic material is preferably an iron-based material such as pure iron, silicon steel, or alloy steel.
内包部の外周端は、本体の外周縁近傍にあってもよいが、その内包部に充填成形されたボンド磁石(希土類磁石)の外周端部は、固定子からの逆磁界により(不可逆)減磁され易い。そこで本体は、内包部の外周縁側に開口し回転中心軸方向へ延在する開溝部を有すると好ましい。これにより、同期機の出力に寄与する領域にのみ、希土類磁石を有効に配置でき、減磁される領域に無駄な希土類磁石を使用することを回避できる。
The outer peripheral edge of the inner packet part may be in the vicinity of the outer peripheral edge of the main body, but the outer peripheral edge part of the bonded magnet (rare earth magnet) filled in the inner packet part is reduced (irreversibly) by the reverse magnetic field from the stator. It is easy to be magnetized. Therefore, it is preferable that the main body has an open groove portion that opens to the outer peripheral side of the inner packet portion and extends in the direction of the rotation center axis. As a result, the rare earth magnet can be effectively arranged only in the region contributing to the output of the synchronous machine, and it is possible to avoid using a useless rare earth magnet in the region to be demagnetized.
また、本体は、隣接する内包部の外周縁側にそれぞれ設けた開溝部の間に、外周縁まで延びる突部を有すると好ましい。隣接する内包部の外周縁側に開溝部を設ける場合、外周縁側に開口した一つの開溝部で兼用することも考えられる。しかし、隣接する内包部の外周縁側に、内包部の内幅に対応した開溝部をそれぞれ設け、それらの間に外周縁まで延びる突部を設けると、その突部が突極となってリラクタンストルクの向上が図られ、ひいては希土類磁石の使用量を抑制しつつ同期機の性能向上を図れる。
Further, it is preferable that the main body has a protrusion extending to the outer peripheral edge between the open groove parts provided on the outer peripheral edge side of the adjacent inner packet part. In the case where the groove portion is provided on the outer peripheral edge side of the adjacent inner packet portion, it is also conceivable that one groove portion opened on the outer peripheral edge side is also used. However, if an open groove part corresponding to the inner width of the inner packet part is provided on the outer peripheral edge side of the adjacent inner packet part, and a protrusion extending to the outer peripheral edge is provided between them, the protrusion becomes a reluctance as a salient pole. The torque can be improved, and as a result, the performance of the synchronous machine can be improved while suppressing the amount of rare earth magnet used.
《希土類ボンド磁石》
(1)原料
希土類ボンド磁石は、基本的に希土類磁石粉末とバインダ樹脂からなる。希土類磁石粉末は、希土類等方性磁石粉末でもよいが、希土類異方性磁石粉末であると、希土類磁石の使用量を抑制しつつ高性能な同期機を得ることができる。 《Rare earth bonded magnet》
(1) Raw material A rare earth bonded magnet basically comprises a rare earth magnet powder and a binder resin. The rare earth magnet powder may be a rare earth isotropic magnet powder, but if it is a rare earth anisotropic magnet powder, a high-performance synchronous machine can be obtained while suppressing the amount of rare earth magnet used.
(1)原料
希土類ボンド磁石は、基本的に希土類磁石粉末とバインダ樹脂からなる。希土類磁石粉末は、希土類等方性磁石粉末でもよいが、希土類異方性磁石粉末であると、希土類磁石の使用量を抑制しつつ高性能な同期機を得ることができる。 《Rare earth bonded magnet》
(1) Raw material A rare earth bonded magnet basically comprises a rare earth magnet powder and a binder resin. The rare earth magnet powder may be a rare earth isotropic magnet powder, but if it is a rare earth anisotropic magnet powder, a high-performance synchronous machine can be obtained while suppressing the amount of rare earth magnet used.
希土類磁石粉末は、例えば、Nd-Fe-B系磁石粉末、Sm-Fe-N系磁石粉末、Sm-Co系磁石粉末等である。これら希土類磁石粉末は、一種のみならず複数種からなってもよい。ちなみに複数種の磁石粉末は、成分組成が異なるものに限らず、粒径分布が異なるものでもよい。例えば、Nd-Fe-B系磁石粉末の粗粉と微粉を組み合わせたものでも、Nd-Fe-B系磁石粉末の粗粉とSm-Fe-N系磁石粉末の微粉を組み合わせたものでもよい。このような希土類磁石粉末を用いることにより、ボンド磁石内の磁石粉末の充填率を向上させることができ、高磁束密度を発揮するボンド磁石が得られる。なお、本発明に係るボンド磁石は、希土類異方性磁石粉末および/または希土類等方性磁石粉末と、フェライト磁石粉末等とが混在したものでもよい。
The rare earth magnet powder is, for example, Nd—Fe—B magnet powder, Sm—Fe—N magnet powder, Sm—Co magnet powder or the like. These rare earth magnet powders may be composed of a plurality of types as well as one type. Incidentally, the plurality of types of magnet powders are not limited to those having different component compositions but may have different particle size distributions. For example, Nd—Fe—B magnet powder coarse powder and fine powder may be combined, or Nd—Fe—B magnet powder coarse powder and Sm—Fe—N magnet powder fine powder may be combined. By using such rare earth magnet powder, the filling rate of the magnet powder in the bonded magnet can be improved, and a bonded magnet exhibiting a high magnetic flux density can be obtained. The bonded magnet according to the present invention may be a mixture of rare earth anisotropic magnet powder and / or rare earth isotropic magnet powder and ferrite magnet powder.
バインダ樹脂には、ゴムを含む公知の材料を用いることができる。例えば、ポリエチレン、ポリプロピレン、ポリスチレン、アクリロニトリル/スチレン樹脂、アクリロニトリル/ブタジエン/スチレン樹脂、メタクリル樹脂、塩化ビニル、ポリアミド、ポリアセタール、ポリエチレンテレフタレート、超高分子量ポリエチレン、ポリブチレンテレフタレート、メチルペンテン、ポリカーボネイト、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、液晶ポリマー、ポリテトラフロロエチレン、ポリエーテルイミド、ポリアリレート、ポリサルフォン、ポリエーテルサルフォン、ポリアミドイミド等の熱可塑性樹脂を用いると好ましい。またエポキシ樹脂、不飽和ポリエステル樹脂、アミノ樹脂、フェノール樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、尿素樹脂、メラミン樹脂、ユリア樹脂、ジリアルフタレート樹脂、ポリウレタン等の熱硬化性樹脂も適宜用いることができる。
As the binder resin, known materials including rubber can be used. For example, polyethylene, polypropylene, polystyrene, acrylonitrile / styrene resin, acrylonitrile / butadiene / styrene resin, methacrylic resin, vinyl chloride, polyamide, polyacetal, polyethylene terephthalate, ultrahigh molecular weight polyethylene, polybutylene terephthalate, methylpentene, polycarbonate, polyphenylene sulfide, It is preferable to use a thermoplastic resin such as polyetheretherketone, liquid crystal polymer, polytetrafluoroethylene, polyetherimide, polyarylate, polysulfone, polyethersulfone, and polyamideimide. Also, thermosetting resins such as epoxy resin, unsaturated polyester resin, amino resin, phenol resin, polyamide resin, polyimide resin, polyamideimide resin, urea resin, melamine resin, urea resin, direal phthalate resin, polyurethane, etc. should be used as appropriate. Can do.
(2)充填成形
本発明に係る内包部にボンド磁石を充填成形する方法として、射出成形、圧縮成形、トランスファー成形等がある。もっとも、上記の原料からなるペレット等を加熱溶融させた溶融混合物を、内包部へ射出充填した後、冷却固化して成形される射出成形が量産性に優れて好ましい。磁石原料に希土類異方性磁石粉末を用いる場合は、配向磁場を印加した内包部へ、上記の溶融混合物を充填すると、希土類磁石の特性を有効に活用できて好ましい。なお、射出成形時の加熱温度(溶融混合物の温度)は希土類磁石粉末のキュリー点未満とするとよい。配向磁場源には永久磁石を用いると、製造装置の小型化を図れて好ましい。 (2) Filling Molding Methods for filling and molding the bonded magnet in the inner packet part according to the present invention include injection molding, compression molding, transfer molding and the like. However, injection molding in which a molten mixture obtained by heating and melting the pellets made of the above-described raw materials is injected and filled into the inner packaging portion and then cooled and solidified is excellent in mass productivity. When the rare earth anisotropic magnet powder is used as the magnet raw material, it is preferable to fill the above-mentioned molten mixture into the inclusion portion to which the orientation magnetic field is applied, because the characteristics of the rare earth magnet can be effectively utilized. In addition, it is good for the heating temperature (temperature of a molten mixture) at the time of injection molding to be less than the Curie point of rare earth magnet powder. It is preferable to use a permanent magnet as the orientation magnetic field source because the manufacturing apparatus can be downsized.
本発明に係る内包部にボンド磁石を充填成形する方法として、射出成形、圧縮成形、トランスファー成形等がある。もっとも、上記の原料からなるペレット等を加熱溶融させた溶融混合物を、内包部へ射出充填した後、冷却固化して成形される射出成形が量産性に優れて好ましい。磁石原料に希土類異方性磁石粉末を用いる場合は、配向磁場を印加した内包部へ、上記の溶融混合物を充填すると、希土類磁石の特性を有効に活用できて好ましい。なお、射出成形時の加熱温度(溶融混合物の温度)は希土類磁石粉末のキュリー点未満とするとよい。配向磁場源には永久磁石を用いると、製造装置の小型化を図れて好ましい。 (2) Filling Molding Methods for filling and molding the bonded magnet in the inner packet part according to the present invention include injection molding, compression molding, transfer molding and the like. However, injection molding in which a molten mixture obtained by heating and melting the pellets made of the above-described raw materials is injected and filled into the inner packaging portion and then cooled and solidified is excellent in mass productivity. When the rare earth anisotropic magnet powder is used as the magnet raw material, it is preferable to fill the above-mentioned molten mixture into the inclusion portion to which the orientation magnetic field is applied, because the characteristics of the rare earth magnet can be effectively utilized. In addition, it is good for the heating temperature (temperature of a molten mixture) at the time of injection molding to be less than the Curie point of rare earth magnet powder. It is preferable to use a permanent magnet as the orientation magnetic field source because the manufacturing apparatus can be downsized.
《内包磁石型同期機の用途》
本発明の内包磁石型同期機は、その用途を問わないが、例えば、電気自動車、ハイブリッド車若しくは鉄道車両等に用いられる車両駆動用モータ、エアコン、冷蔵庫若しくは洗濯機等に用いられる家電製品用モータなどに好適である。 《Use of internal magnet type synchronous machine》
The internal magnet type synchronous machine of the present invention may be used for any purpose. For example, a motor for a vehicle driving motor used in an electric vehicle, a hybrid vehicle, a railway vehicle or the like, a motor for home appliances used in an air conditioner, a refrigerator, a washing machine, or the like. It is suitable for such as.
本発明の内包磁石型同期機は、その用途を問わないが、例えば、電気自動車、ハイブリッド車若しくは鉄道車両等に用いられる車両駆動用モータ、エアコン、冷蔵庫若しくは洗濯機等に用いられる家電製品用モータなどに好適である。 《Use of internal magnet type synchronous machine》
The internal magnet type synchronous machine of the present invention may be used for any purpose. For example, a motor for a vehicle driving motor used in an electric vehicle, a hybrid vehicle, a railway vehicle or the like, a motor for home appliances used in an air conditioner, a refrigerator, a washing machine, or the like. It is suitable for such as.
実施例を挙げて本発明をより具体的に説明する。
《内包磁石型同期機:第一実施例》
本発明の内包磁石型同期機に係る一実施例である同期モータSMを構成する主要部であるステータSとロータRの部分断面図(回転中心軸Oに直交する断面の1/3)を図2に示した。図2に示した同期モータSMは、6極9スロットタイプである。この同期モータSMは自動車駆動用モータや家電製品用モータ等として用いられる。以下、ステータSおよびロータRについて詳しく説明する。なお、図2では、紙面に垂直な方向を回転中心軸Oの延在方向(単に「軸方向」という。)とした。 The present invention will be described more specifically with reference to examples.
<< Internal magnet type synchronous machine: First embodiment >>
The fragmentary sectional view (1/3 of the section perpendicular to rotation center axis O) of stator S and rotor R which are the principal parts which constitute synchronous motor SM which is one example concerning an internal magnet type synchronous machine of the present invention is shown. It was shown in 2. The synchronous motor SM shown in FIG. 2 is a 6 pole 9 slot type. This synchronous motor SM is used as a motor for driving a car, a motor for home appliances, or the like. Hereinafter, the stator S and the rotor R will be described in detail. In FIG. 2, the direction perpendicular to the paper surface is defined as the extending direction of the rotation center axis O (simply referred to as “axial direction”).
《内包磁石型同期機:第一実施例》
本発明の内包磁石型同期機に係る一実施例である同期モータSMを構成する主要部であるステータSとロータRの部分断面図(回転中心軸Oに直交する断面の1/3)を図2に示した。図2に示した同期モータSMは、6極9スロットタイプである。この同期モータSMは自動車駆動用モータや家電製品用モータ等として用いられる。以下、ステータSおよびロータRについて詳しく説明する。なお、図2では、紙面に垂直な方向を回転中心軸Oの延在方向(単に「軸方向」という。)とした。 The present invention will be described more specifically with reference to examples.
<< Internal magnet type synchronous machine: First embodiment >>
The fragmentary sectional view (1/3 of the section perpendicular to rotation center axis O) of stator S and rotor R which are the principal parts which constitute synchronous motor SM which is one example concerning an internal magnet type synchronous machine of the present invention is shown. It was shown in 2. The synchronous motor SM shown in FIG. 2 is a 6 pole 9 slot type. This synchronous motor SM is used as a motor for driving a car, a motor for home appliances, or the like. Hereinafter, the stator S and the rotor R will be described in detail. In FIG. 2, the direction perpendicular to the paper surface is defined as the extending direction of the rotation center axis O (simply referred to as “axial direction”).
(1)ステータ
ステータSは、図2に示すような形状に打ち抜いた電磁鋼板(軟磁性材)を積層してなり、環状のヨークSaと、ヨークSaから中心方向に向けて均等に突出したティースSbと、隣接するティースSb間に形成されたスロットScを有する。各スロットScには、ティースSbの周囲に分布巻きされた電磁コイルCが収納されている。各電磁コイルCには、インバータ制御された三相交流が供給される。これにより、その周波数と極数に応じた同期速度の回転磁界がステータSに発生する。 (1) Stator The stator S is formed by laminating electromagnetic steel plates (soft magnetic materials) punched into a shape as shown in FIG. 2, and an annular yoke Sa and teeth protruding uniformly from the yoke Sa toward the center. Sb and a slot Sc formed between adjacent teeth Sb. Each slot Sc houses electromagnetic coils C distributed around the teeth Sb. Each electromagnetic coil C is supplied with inverter-controlled three-phase alternating current. As a result, a rotating magnetic field having a synchronous speed corresponding to the frequency and the number of poles is generated in the stator S.
ステータSは、図2に示すような形状に打ち抜いた電磁鋼板(軟磁性材)を積層してなり、環状のヨークSaと、ヨークSaから中心方向に向けて均等に突出したティースSbと、隣接するティースSb間に形成されたスロットScを有する。各スロットScには、ティースSbの周囲に分布巻きされた電磁コイルCが収納されている。各電磁コイルCには、インバータ制御された三相交流が供給される。これにより、その周波数と極数に応じた同期速度の回転磁界がステータSに発生する。 (1) Stator The stator S is formed by laminating electromagnetic steel plates (soft magnetic materials) punched into a shape as shown in FIG. 2, and an annular yoke Sa and teeth protruding uniformly from the yoke Sa toward the center. Sb and a slot Sc formed between adjacent teeth Sb. Each slot Sc houses electromagnetic coils C distributed around the teeth Sb. Each electromagnetic coil C is supplied with inverter-controlled three-phase alternating current. As a result, a rotating magnetic field having a synchronous speed corresponding to the frequency and the number of poles is generated in the stator S.
(2)ロータ
ロータRは、図2に示すような形状に打ち抜いた電磁鋼板を積層してなるロータコア1(本体)と、ロータコア1に形成されたスロット13(内包部)に充填成形された希土類異方性ボンド磁石2(単に「ボンド磁石2」という。)とからなる。なお、本実施例では、ボンド磁石2はスロット13内に隙間無く充填されている。 (2) Rotor The rotor R is a rare earth that is filled in a rotor core 1 (main body) formed by laminating electromagnetic steel sheets punched into a shape as shown in FIG. 2 and a slot 13 (inner part) formed in therotor core 1. An anisotropic bonded magnet 2 (simply referred to as “bonded magnet 2”). In the present embodiment, the bonded magnet 2 is filled in the slot 13 without a gap.
ロータRは、図2に示すような形状に打ち抜いた電磁鋼板を積層してなるロータコア1(本体)と、ロータコア1に形成されたスロット13(内包部)に充填成形された希土類異方性ボンド磁石2(単に「ボンド磁石2」という。)とからなる。なお、本実施例では、ボンド磁石2はスロット13内に隙間無く充填されている。 (2) Rotor The rotor R is a rare earth that is filled in a rotor core 1 (main body) formed by laminating electromagnetic steel sheets punched into a shape as shown in FIG. 2 and a slot 13 (inner part) formed in the
ロータコア1は、回転軸(図略)に嵌挿される中心穴11と、その外周側に均等に配置され軸方向に貫通した通気路12と、通気路12の外周側に6つ均等に配置され内周側に凸状に湾曲した形状(外周側に向けて凹状に湾曲した形状)の貫通した細長い閉環筒状のスロット13と、スロット13の延長状にありスロット13と同じ内幅でロータコア1の外周縁側に向けて矩形状(コの字状)に開口して軸方向へ延在する切欠部14(開溝部)と、隣接する切欠部14の間にありロータコア1の外周縁まで延在する突部15とを有する。なお、スロット13の外周端と切欠部14の内周端の間は、隣接する磁極を架橋するブリッジ16となっている。
The rotor core 1 has a center hole 11 fitted into a rotating shaft (not shown), an air passage 12 that is uniformly arranged on the outer peripheral side thereof and penetrates in the axial direction, and six that are equally arranged on the outer peripheral side of the air passage 12. An elongated closed ring-shaped cylindrical slot 13 having a shape curved convexly toward the inner peripheral side (a shape curved concavely toward the outer peripheral side), and the rotor core 1 having the same inner width as the slot 13 and extending from the slot 13 Between the notch 14 (open groove portion) that opens in a rectangular shape (a U-shape) toward the outer peripheral edge of the rotor and extends in the axial direction, and extends to the outer peripheral edge of the rotor core 1. And the existing protrusion 15. A bridge 16 bridges adjacent magnetic poles between the outer peripheral end of the slot 13 and the inner peripheral end of the notch 14.
各スロット13は、d軸の磁極中心に関して線対称な連続した貫通溝からなるが、便宜的に、矩形部131a、132a、131b、132bからなる4つの区間と、それらの隣接間を接続する接続部133a、133b、133cからなる3つの区間に分けて考えることができる。
Each slot 13 is composed of continuous through-grooves that are line-symmetric with respect to the center of the d-axis magnetic pole. For convenience, the four sections including the rectangular portions 131a, 132a, 131b, and 132b are connected to each other and adjacent to each other. It can be divided into three sections consisting of sections 133a, 133b, and 133c.
矩形部131a、131bは、ロータコア1の外周側に、d軸に関して対称的に配置されている。矩形部132a、132bは、ロータコア1の内周側に、d軸に関して対称的に配置されている。いずれも、軸方向に延在する平行な内壁面で構成されており、それら内壁面の間隔(内幅)は同一である。なお、本実施例では、各矩形部の外周側にある内壁面の端部を接続することにより、スロット13内にできるだけ多くの矩形部が形成されるようにした。
The rectangular portions 131a and 131b are arranged symmetrically with respect to the d axis on the outer peripheral side of the rotor core 1. The rectangular portions 132 a and 132 b are disposed symmetrically with respect to the d axis on the inner peripheral side of the rotor core 1. All are comprised by the parallel inner wall face extended in an axial direction, and the space | interval (inner width) of these inner wall faces is the same. In the present embodiment, as many rectangular portions as possible are formed in the slot 13 by connecting the end portions of the inner wall surface on the outer peripheral side of each rectangular portion.
接続部133a、133b、133cは、全体の断面が扇型をしており、断面が円弧状をしている内周側にある内壁面が、隣接する矩形部の内周側にある内壁面と滑らかに接続されている。なお、接続部133a、133bは、d軸に関して対称的に配置されている。
The connecting portions 133a, 133b, and 133c are fan-shaped in their entire cross section, and the inner wall surface on the inner peripheral side of the cross section having an arc shape is the inner wall surface on the inner peripheral side of the adjacent rectangular portion. Connected smoothly. The connecting portions 133a and 133b are disposed symmetrically with respect to the d axis.
切欠部14が矩形部131a、131bの外周端側に設けられているため、矩形部131a、131bの外周端部に充填成形されたボンド磁石2は、切欠部14によりロータコア1の外周縁よりも内周側に配置されることとなり、ステータSから印加される逆磁界によっても減磁され難くなっている。また、突部15は、隣接する切欠部14を区画するのみならず、その先端はロータコア1の外周縁の一部を構成している。これにより突部15はq軸の磁極(突極)を構成し、同期モータSMのリラクタンストルクの増大に寄与している。
Since the cutout portion 14 is provided on the outer peripheral end side of the rectangular portions 131 a and 131 b, the bonded magnet 2 that is filled and molded at the outer peripheral end portion of the rectangular portions 131 a and 131 b is more than the outer peripheral edge of the rotor core 1 by the cutout portion 14. It is arranged on the inner peripheral side, and is not easily demagnetized even by a reverse magnetic field applied from the stator S. Further, the projecting portion 15 not only defines the adjacent cutout portion 14, but the tip thereof constitutes a part of the outer peripheral edge of the rotor core 1. Thereby, the protrusion 15 constitutes a q-axis magnetic pole (a salient pole) and contributes to an increase in the reluctance torque of the synchronous motor SM.
(3)ボンド磁石
ボンド磁石2は、例えば、Nd-Fe-B系異方性磁石粉末、Sm-Fe-N系磁石粉末およびポリフェニレンサルファイド樹脂(バインダ樹脂)からなるペレットを、加熱溶融してなる溶融混合物がスロット13へ射出充填されてなる。この射出成形後、磁場中射出充填装置の金型内で冷却されることによりスロット13内で溶融混合物が固化し、スロット13内にボンド磁石2(永久磁石)が一体成形される。こうして、スロット13と同形なボンド磁石2を内包したロータRが得られる。なお、ボンド磁石2は、磁場中射出成形時に配向されるのみならず、同時に着磁もされ、既に高磁束密度を発揮する状態となる。このため本実施例では別途、後着磁を行う必要がない。なお、本実施例の場合、スロット13内における射出成形時の配向磁場分布も、ほぼ図1Aに示すように均一的となる。 (3) Bond magnet Thebond magnet 2 is obtained by, for example, heating and melting pellets made of Nd—Fe—B based anisotropic magnet powder, Sm—Fe—N based magnet powder and polyphenylene sulfide resin (binder resin). The molten mixture is injection-filled into the slot 13. After this injection molding, the molten mixture is solidified in the slot 13 by cooling in the mold of the injection filling apparatus in a magnetic field, and the bond magnet 2 (permanent magnet) is integrally molded in the slot 13. In this way, the rotor R including the bonded magnet 2 having the same shape as the slot 13 is obtained. The bonded magnet 2 is not only oriented at the time of injection molding in a magnetic field, but is also magnetized at the same time, and is already in a state of exhibiting a high magnetic flux density. For this reason, in this embodiment, there is no need to separately perform post-magnetization. In the case of this embodiment, the orientation magnetic field distribution during the injection molding in the slot 13 is also substantially uniform as shown in FIG. 1A.
ボンド磁石2は、例えば、Nd-Fe-B系異方性磁石粉末、Sm-Fe-N系磁石粉末およびポリフェニレンサルファイド樹脂(バインダ樹脂)からなるペレットを、加熱溶融してなる溶融混合物がスロット13へ射出充填されてなる。この射出成形後、磁場中射出充填装置の金型内で冷却されることによりスロット13内で溶融混合物が固化し、スロット13内にボンド磁石2(永久磁石)が一体成形される。こうして、スロット13と同形なボンド磁石2を内包したロータRが得られる。なお、ボンド磁石2は、磁場中射出成形時に配向されるのみならず、同時に着磁もされ、既に高磁束密度を発揮する状態となる。このため本実施例では別途、後着磁を行う必要がない。なお、本実施例の場合、スロット13内における射出成形時の配向磁場分布も、ほぼ図1Aに示すように均一的となる。 (3) Bond magnet The
(4)モータ
同期モータSMは、シャフト(図略)をシャフト穴11に嵌入して取り付けたロータRをステータS内に回動自在に配設して得られる。同期モータSMは、インバータ制御された電源によりステータSへ回転磁界を発生させることにより、その回転磁界に同期してロータRが回転する。なお、本実施例に係る同期モータSMでは、ボンド磁石2の中央を通るd軸方向のインダクタンスLd1よりも、そのd軸方向からπ/2(電気角)ずれたq軸方向のインダクタンスLq1が大きくなる。このため同期モータSMには、永久磁石M1によるマグネットトルクTm1のみならず、インダクタンス差(Lq1-Ld1)に基づくリラクタンストルクTr1もマグネットトルクTm1と同方向へ発生する。従って同期モータSMは、より大きな出力トルクを発揮する。 (4) Motor The synchronous motor SM is obtained by rotatably disposing a rotor R in a stator S with a shaft (not shown) fitted in theshaft hole 11 and attached thereto. The synchronous motor SM generates a rotating magnetic field in the stator S by an inverter-controlled power source, so that the rotor R rotates in synchronization with the rotating magnetic field. In the synchronous motor SM according to the present embodiment, the inductance Lq1 in the q-axis direction shifted by π / 2 (electrical angle) from the d-axis direction is larger than the inductance Ld1 in the d-axis direction passing through the center of the bond magnet 2. Become. Therefore, not only the magnet torque Tm1 by the permanent magnet M1 but also the reluctance torque Tr1 based on the inductance difference (Lq1−Ld1) is generated in the synchronous motor SM in the same direction as the magnet torque Tm1. Therefore, the synchronous motor SM exhibits a larger output torque.
同期モータSMは、シャフト(図略)をシャフト穴11に嵌入して取り付けたロータRをステータS内に回動自在に配設して得られる。同期モータSMは、インバータ制御された電源によりステータSへ回転磁界を発生させることにより、その回転磁界に同期してロータRが回転する。なお、本実施例に係る同期モータSMでは、ボンド磁石2の中央を通るd軸方向のインダクタンスLd1よりも、そのd軸方向からπ/2(電気角)ずれたq軸方向のインダクタンスLq1が大きくなる。このため同期モータSMには、永久磁石M1によるマグネットトルクTm1のみならず、インダクタンス差(Lq1-Ld1)に基づくリラクタンストルクTr1もマグネットトルクTm1と同方向へ発生する。従って同期モータSMは、より大きな出力トルクを発揮する。 (4) Motor The synchronous motor SM is obtained by rotatably disposing a rotor R in a stator S with a shaft (not shown) fitted in the
SM 同期モータ(内包磁石型同期機)
S ステータ
R ロータ
1 ロータコア(本体)
13 スロット(内包部)
2 ボンド磁石 SM synchronous motor (internal magnet type synchronous machine)
SStator R Rotor 1 Rotor core (main body)
13 slots (inner part)
2 Bond magnet
S ステータ
R ロータ
1 ロータコア(本体)
13 スロット(内包部)
2 ボンド磁石 SM synchronous motor (internal magnet type synchronous machine)
S
13 slots (inner part)
2 Bond magnet
Claims (4)
- 略円柱状または略円筒状の軟磁性体からなり、外周側に向けて凹状に湾曲し回転中心軸方向へ延在する閉環筒状の空隙である内包部が該回転中心軸の周りに複数配置されている本体と、
該内包部に充填して成形された希土類ボンド磁石からなる永久磁石と、
を備える内包磁石型同期機の回転子であって、
前記内包部は、前記本体の外周縁に最も近い外周端から前記本体の回転中心軸に最も近い内周端までの区間に、該回転中心軸方向に延在し平行に対向した平面状の内壁面からなる矩形部を有することを特徴とする内包磁石型同期機の回転子。 A plurality of enclosing portions, which are made of a substantially cylindrical or substantially cylindrical soft magnetic material, are concavely curved toward the outer peripheral side and extend in the direction of the rotation center axis, around the rotation center axis The main body being
A permanent magnet made of a rare earth bonded magnet filled and molded in the inner packet part,
A rotor of an internal magnet type synchronous machine comprising:
The inner packet part extends in the direction of the rotation center axis in a section from the outer peripheral end closest to the outer peripheral edge of the main body to the inner peripheral end closest to the rotation central axis of the main body, and is a flat inner A rotor of an internal magnet type synchronous machine having a rectangular portion made of a wall surface. - 前記内包部はそれぞれ、前記矩形部を複数有すると共に、隣接する該矩形部の間を接続する接続部を有する請求項1に記載の内包磁石型同期機の回転子。 2. The rotor of an internal magnet type synchronous machine according to claim 1, wherein each of the internal packet portions includes a plurality of the rectangular portions and a connection portion that connects between the adjacent rectangular portions.
- 前記本体は、前記内包部の外周縁側に開口し前記回転中心軸方向へ延在する開溝部を有する請求項1または2に記載の内包磁石型同期機の回転子。 The rotor of an internal magnet type synchronous machine according to claim 1 or 2, wherein the main body has an open groove portion that opens to an outer peripheral edge side of the inner packet portion and extends in the direction of the rotation center axis.
- 請求項1~3のいずれかに記載の回転子と、
該回転子の外周囲に配設されたコイルと該コイルの外周側で磁気回路を構成するヨークとを有する固定子と、
を備えることを特徴とする内包磁石型同期機。 The rotor according to any one of claims 1 to 3,
A stator having a coil disposed on the outer periphery of the rotor and a yoke constituting a magnetic circuit on the outer peripheral side of the coil;
An internal magnet type synchronous machine comprising:
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-020424 | 2015-02-04 | ||
JP2015020424A JP5975123B2 (en) | 2015-02-04 | 2015-02-04 | Internal magnet type synchronous machine and its rotor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016125853A1 true WO2016125853A1 (en) | 2016-08-11 |
Family
ID=56564192
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/053337 WO2016125853A1 (en) | 2015-02-04 | 2016-02-04 | Inclusive magnet-type synchronous machine and rotor for same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5975123B2 (en) |
WO (1) | WO2016125853A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI838252B (en) * | 2023-05-16 | 2024-04-01 | 鑫日正工業股份有限公司 | High flux rotor |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4725750A (en) * | 1980-11-20 | 1988-02-16 | Hughes Aircraft Company | Permanent magnet rotary machine |
JP2013143791A (en) * | 2012-01-06 | 2013-07-22 | Aichi Steel Works Ltd | Magnet-inclusion type synchronous machine and rotor thereof |
WO2014117564A1 (en) * | 2013-01-31 | 2014-08-07 | 艾默生环境优化技术(苏州)有限公司 | Rotor assembly for permanent magnet motor, and corresponding permanent magnet motor |
JP2014204561A (en) * | 2013-04-05 | 2014-10-27 | 株式会社日立産機システム | Permanent magnet synchronous machine |
JP2014204646A (en) * | 2013-04-10 | 2014-10-27 | 株式会社日立産機システム | Permanent magnet synchronous machine and compressor employing the same |
JP2014241705A (en) * | 2013-06-12 | 2014-12-25 | 株式会社ジェイテクト | Magnet embedded rotor |
-
2015
- 2015-02-04 JP JP2015020424A patent/JP5975123B2/en active Active
-
2016
- 2016-02-04 WO PCT/JP2016/053337 patent/WO2016125853A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4725750A (en) * | 1980-11-20 | 1988-02-16 | Hughes Aircraft Company | Permanent magnet rotary machine |
JP2013143791A (en) * | 2012-01-06 | 2013-07-22 | Aichi Steel Works Ltd | Magnet-inclusion type synchronous machine and rotor thereof |
WO2014117564A1 (en) * | 2013-01-31 | 2014-08-07 | 艾默生环境优化技术(苏州)有限公司 | Rotor assembly for permanent magnet motor, and corresponding permanent magnet motor |
JP2014204561A (en) * | 2013-04-05 | 2014-10-27 | 株式会社日立産機システム | Permanent magnet synchronous machine |
JP2014204646A (en) * | 2013-04-10 | 2014-10-27 | 株式会社日立産機システム | Permanent magnet synchronous machine and compressor employing the same |
JP2014241705A (en) * | 2013-06-12 | 2014-12-25 | 株式会社ジェイテクト | Magnet embedded rotor |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI838252B (en) * | 2023-05-16 | 2024-04-01 | 鑫日正工業股份有限公司 | High flux rotor |
Also Published As
Publication number | Publication date |
---|---|
JP2016144369A (en) | 2016-08-08 |
JP5975123B2 (en) | 2016-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6919631B2 (en) | Magnetic generator of electric motor and manufacturing method of magnet | |
US11349420B2 (en) | Rotary electric machine, rotary electric machine drive system, magnet, method of manufacturing magnet, magnetizing apparatus, and magnet unit | |
WO2013103118A1 (en) | Internal magnet-type synchronous machine and rotor therefor | |
JP5961344B2 (en) | Magnetic flux concentrating type synchronous rotating electrical machine with permanent magnet | |
CN108075585B (en) | Rotating electrical machine | |
EP2299558B1 (en) | Permanent magnet type rotating electric machine | |
US8030817B2 (en) | Rotor of permanent-magnet-type rotating electrical machine | |
JP6852693B2 (en) | Magnetic generator of electric motor | |
JP2011217601A (en) | Flux concentration type synchronous rotating electric machine with permanent magnet | |
US10348174B2 (en) | Electric motor | |
JP4337989B1 (en) | Magnetic excitation variable magnetic rotating machine system with magnet excitation | |
JP2012175738A (en) | Permanent magnet type rotary electric machine | |
US20230253843A1 (en) | Adhesive mixture including hard magnetic material for e-machine rotor | |
Wu et al. | A new application and experimental validation of moulding technology for ferrite magnet assisted synchronous reluctance machine | |
WO2019026932A1 (en) | Magnetism generation device for electric motor, soft magnetic core, and production method for magnet | |
JP5975123B2 (en) | Internal magnet type synchronous machine and its rotor | |
JP6107299B2 (en) | Method for manufacturing outer rotor of internal magnet type synchronous machine | |
JP2013121262A (en) | Rotor of rotary electric machine and method for manufacturing the same | |
WO2018199271A1 (en) | Permanent-magnet-field dc motor as well as stator therefor and rare earth anisotropic bond magnet therefor | |
JP5929147B2 (en) | Rotor structure of rotating electrical machine | |
JP7394427B1 (en) | Internal magnet type synchronous machine and its rotor | |
JP2007209197A (en) | Ipm motor | |
US12131853B2 (en) | Apparatus for manufacturing rotor, method of manufacturing rotor, and rotor | |
WO2017090490A1 (en) | Field permanent magnet | |
WO2022219896A1 (en) | Rotary electrical machine rotor, rotary electrical machine, and electrical driving system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16746684 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16746684 Country of ref document: EP Kind code of ref document: A1 |