Nothing Special   »   [go: up one dir, main page]

WO2016121451A1 - コーストストップ制御装置 - Google Patents

コーストストップ制御装置 Download PDF

Info

Publication number
WO2016121451A1
WO2016121451A1 PCT/JP2016/050420 JP2016050420W WO2016121451A1 WO 2016121451 A1 WO2016121451 A1 WO 2016121451A1 JP 2016050420 W JP2016050420 W JP 2016050420W WO 2016121451 A1 WO2016121451 A1 WO 2016121451A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
vehicle
gear ratio
coast
control device
Prior art date
Application number
PCT/JP2016/050420
Other languages
English (en)
French (fr)
Inventor
龍 稲葉
猿渡 匡行
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to CN201680004342.8A priority Critical patent/CN107110340B/zh
Priority to EP16743055.2A priority patent/EP3252347B1/en
Priority to US15/542,514 priority patent/US10370001B2/en
Publication of WO2016121451A1 publication Critical patent/WO2016121451A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/10Interpretation of driver requests or demands
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/02Pressure lubrication using lubricating pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/06Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving electric generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • B60W2030/1809Without torque flow between driveshaft and engine, e.g. with clutch disengaged or transmission in neutral
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/801Lateral distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/086Power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • B60W2710/1005Transmission ratio engaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/30Auxiliary equipments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/02Pressure lubrication using lubricating pumps
    • F01M2001/0207Pressure lubrication using lubricating pumps characterised by the type of pump
    • F01M2001/0215Electrical pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/02Pressure lubrication using lubricating pumps
    • F01M2001/0253Pressure lubrication using lubricating pumps characterised by the pump driving means
    • F01M2001/0269Pressure lubrication using lubricating pumps characterised by the pump driving means driven by the crankshaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H59/18Inputs being a function of torque or torque demand dependent on the position of the accelerator pedal
    • F16H2059/186Coasting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H2061/0496Smoothing ratio shift for low engine torque, e.g. during coasting, sailing or engine braking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect

Definitions

  • the present invention relates to a coast stop control device for a vehicle such as an automobile, particularly a vehicle equipped with an automatic transmission, and relates to the field of vehicle travel control technology.
  • a vehicle has been proposed that is configured to automatically stop the engine when a predetermined engine stop condition is satisfied while traveling and to save fuel, reduce exhaust emissions, or reduce noise.
  • a coast stop vehicle has been proposed that further reduces fuel consumption by automatically stopping the engine even during traveling (see, for example, Patent Document 1).
  • the engine is started at that time and the transmission is downshifted.
  • a technique for supplying hydraulic pressure to a post-shift friction engagement element that achieves the above. (For example, see Patent Document 2)
  • the gear ratio control is performed regardless of the state of the front vehicle, so that when the front vehicle is approaching or the speed of the host vehicle is low, an appropriate gear ratio is set at the time of reacceleration.
  • control for shifting to an optimal gear ratio is required and time is required for re-acceleration.
  • the coast stop state continues for a long time, the battery power for the electric oil pump that is driven to maintain the hydraulic pressure in the vehicle may be insufficient, and the coast stop may not be continued.
  • an object of the present invention is to provide a coast stop control device that enables shifting to an appropriate shift before the engine is stopped during traveling.
  • the present invention relates to a power transmission mechanism that is connected to an output shaft of an engine and can be switched between a coupled state in which driving force can be transmitted and an open state in which the coupling is released, and is coupled to the output shaft of the power transmission mechanism.
  • a transmission mechanism connected to drive wheels and capable of changing a transmission gear ratio, a hydraulic oil supply pump that can be driven in synchronization with rotation of the output shaft of the engine, and an electric oil pump that operates during automatic stop of the engine,
  • a coast stop control device for performing coast stop control for automatically stopping the engine in a running state of the vehicle, wherein the engine stop condition determining means determines whether the engine can be stopped.
  • a speed change control means for controlling the speed ratio of the speed change mechanism, and the engine stop condition is satisfied by the engine stop condition determination means. And controlling the transmission mechanism to a predetermined speed ratio when it is determined.
  • the delay with respect to the acceleration request can be reduced.
  • FIG. 1 is a diagram showing a configuration of a vehicle including a vehicle control device according to a first embodiment of the present invention.
  • An engine 101 is mounted on the vehicle 100, and driving force generated by the engine 101 is transmitted to a driving wheel 108 connected via a power transmission mechanism 103 and a differential mechanism 107 via a transmission 102.
  • the vehicle 100 is caused to travel.
  • the transmission 102 is not limited to a continuously variable transmission combining a belt or chain and a pulley, and may be a stepped transmission combining a torque converter and a planetary gear mechanism. Moreover, the transmission which combined the continuously variable transmission and the stepped transmission may be sufficient.
  • the transmission 102 includes a power transmission mechanism 103 that can control the power transmission amount between the engine 101 and the differential mechanism 103, and the power transmission mechanism 103 allows the power transmission amount between the engine 101 and the drive wheels 108 to be controlled. By adjusting the engine 101, the engine 101 can be stopped during traveling.
  • a torque converter, a dry or wet clutch, or a planetary gear mechanism may be used as the power transmission mechanism 103.
  • a method using a lock-up clutch in the torque converter is also conceivable.
  • a starter motor 112 is assembled as an engine starter, and the starter motor 112 is driven by supplying electric power from the battery 109 to rotate the engine 101 and then start combustion.
  • the engine starter is not limited to the starter motor 112, and may be a motor having functions of a starter motor and a generator.
  • the battery 109 may be an electricity storage device having a performance capable of cranking the engine 101, and may use any of a lead storage battery, a nickel metal hydride battery, a lithium ion battery, an electric double layer capacitor, a lithium ion capacitor, and the like. Further, the battery 109 is provided with a battery remaining amount detection sensor capable of detecting the remaining amount of the battery. Based on the information, the vehicle control device 110 determines whether to permit a coast stop or the like.
  • a hydraulic oil supply oil pump 105 connected to the crankshaft of the engine 101 via a drive belt is provided for generating hydraulic pressure used in the vehicle 100, and continuously while the engine 101 is driven. Supplying hydraulic pressure.
  • an electric oil pump 106 that can be driven by obtaining electric power from the battery 109 is provided, and when the hydraulic oil supply oil pump 105 determines that the hydraulic pressure is not sufficiently supplied such as when the engine is stopped.
  • the motor can be driven by the motor driver in the electric oil pump to supply the necessary hydraulic pressure.
  • the electric oil pump 106 is composed of an oil pump body, an electric motor that rotates the oil pump, and a motor driver. However, not only a mechanism that can continuously and variably control the drive output by a motor driver or the like, but also a mechanism that can only perform control to switch the output on and off by a relay or the like.
  • the electric oil pump 106 may be operated in order to compensate for the insufficient supply of cooling oil or lubricating oil by the hydraulic oil supply oil pump 105.
  • the operation of 106 is not limited to when the engine 101 is temporarily stopped.
  • a hydraulic control circuit 113 is provided to regulate and supply the hydraulic pressure generated by the hydraulic oil supply oil pump 105 and the electric oil pump 106 to the transmission 102 and the power transmission mechanism 103. Control of hydraulic control valves and step motors in each hydraulic circuit is performed in order to realize the calculated gear ratio and clutch state.
  • the vehicle control device 110 is a controller that integrally controls control of the transmission 102 and the power transmission mechanism 103 using the engine 101 and the hydraulic control circuit 113, and as shown in FIG. Interface for communicating with other controllers and sensors.
  • Information from various sensors 201 for detecting the vehicle state such as the vehicle speed, accelerator opening sensor, brake switch sensor, and the like, the input and output rotational speed of the transmission 102, the oil pressure in the hydraulic control circuit, and the external environment recognition device 111. And the information stored in the storage device 203, the target gear ratio, the state of the power transmission mechanism 103, the electric oil pump drive control signal, the ignition timing for the hydraulic control circuit 113 and the engine 101.
  • the CPU 202 calculates a signal such as the fuel injection amount.
  • FIG. 3 shows an example of a shift map stored in the storage device 203 at the time of coasting without stopping the engine.
  • the target input rotation speed is calculated according to the host vehicle speed degree and the accelerator opening.
  • the target input rotation speed of the transmission 102 at that time is indicated by an arrow in the figure.
  • the target rotational speed is commanded so that the maximum LOW gear ratio is obtained from when the vehicle stops to a predetermined vehicle speed. As the vehicle speed increases, the speed gradually shifts to HIGH. However, depending on the gradient or the like, shifting may be performed with the LOW side maintained.
  • the accelerator is turned off at a predetermined vehicle speed or higher, the gear ratio is changed so as to follow the maximum HIGH line.
  • the vehicle control device 110 instructs the hydraulic control circuit 113 and the electric oil pump 106 on the result of calculating the optimum gear ratio and the state of the power transmission mechanism 103 based on the shift map when coasting without stopping the engine. Sending value.
  • step S ⁇ b> 100 the vehicle control device 110 determines that the vehicle speed is less than or equal to a predetermined value, the accelerator opening is less than or equal to a predetermined value, and the driving force of the engine 101 is transmitted to the drive wheels 108 by the power transmission mechanism 103.
  • Predetermined coast such as being less than a predetermined value, the amount of hydraulic pressure supplied to the hydraulic control circuit 113 being greater than or equal to a predetermined value, that the electric oil pump 106 is not abnormally determined, and the battery calculation is greater than or equal to a predetermined value It is determined whether all stop conditions are satisfied. When it is determined that the coast stop condition is satisfied, the process proceeds to step S101. When it is determined that the coast stop condition is not satisfied, the deceleration process control is terminated.
  • step S101 the vehicle control device 110 performs pre-engine stop control.
  • command values to the power transmission mechanism 103 and the transmission 102 that are hydraulically controlled by the hydraulic control circuit 113 are calculated before the engine 101 is stopped.
  • step S102 the vehicle control device 110 performs engine stop control.
  • the fuel injection valve is controlled so as to stop the supply of fuel to the engine 101.
  • step S103 the vehicle control device 110 determines whether a coast stop end condition is satisfied.
  • the coast stop end condition is that the vehicle speed is equal to or lower than a predetermined value, the accelerator opening is equal to or higher than a predetermined value, the amount of hydraulic pressure supplied to the hydraulic control circuit 113 is equal to or lower than a predetermined value, and the electric oil pump 106 Is determined to be abnormal, whether the battery calculation has become equal to or less than a predetermined value, and whether a predetermined coast stop condition such as a decrease in brake negative pressure is satisfied.
  • the process proceeds to step S104.
  • the engine stop state is continued.
  • step S104 the vehicle control device 110 performs coast stop end control.
  • the engine 101 is started.
  • the fuel supply to the engine 101 is restarted using the fuel injection valve, the starter motor 112 is supplied with electric power to start the rotational motion of the engine 101, and the power transmission mechanism 103.
  • FIG. 5 is a diagram showing the pre-engine stop control in S101 in the first embodiment of the present invention.
  • step S200 the vehicle control device 110 performs power transmission mechanism release control.
  • the power transmission mechanism 103 adjusts the hydraulic pressure of the hydraulic control circuit 113 so that the transmission amount of the driving force of the engine 101 transmitted to the drive wheels 108 becomes substantially zero.
  • the friction torque of the engine 101 acting as a force acting in the deceleration direction with respect to the vehicle 100 is not transmitted to the drive wheels 108, so that the vehicle 100 is difficult to decelerate and the energy efficiency of the entire vehicle is improved. This will reduce fuel consumption.
  • step S201 the vehicle control device 110 determines that the current gear ratio of the transmission 102 is greater than the predetermined gear ratio. If it is larger than the predetermined gear ratio, the control process before engine stop is finished, and if it is not larger than the predetermined gear ratio, the process proceeds to step S202.
  • step S202 the vehicle control device 110 performs shift control.
  • the shift control is commanded to the hydraulic control circuit 113 until the current gear ratio of the transmission 102 reaches a predetermined gear ratio.
  • FIG. 6 shows a time chart when the above control is performed.
  • the power generated in the engine 101 started by the coast stop end control is transmitted to the drive wheels 108 via the power transmission mechanism 103. Since the gear is shifted to the LOW side from the predetermined gear ratio before the engine is stopped, it is not necessary to shift gears for re-acceleration from the coast stop, so that the time required for re-acceleration can be shortened. I can do it.
  • FIG. 7 is a diagram showing the pre-engine stop control S101 installed in the in-vehicle power supply device 106 according to the second embodiment of the present invention.
  • the vehicle 100 includes an external recognition device that is a means for detecting the surrounding state of the host vehicle as various sensors 201 that acquire information input to the vehicle control device 110.
  • the relative speed with the vehicle and the distance between the vehicles can be acquired.
  • a method for recognizing the state of the outside world for example, a camera attached to the vehicle 100, a radar, a GPS signal receiving device and map information, communication with a data center, vehicle state with front and surrounding vehicles, and installation on a road
  • a method of using a means for communicating with a signal or a sign being used can be considered.
  • step S300 the vehicle control device 110 performs a target gear ratio calculation based on the information obtained by the external recognition device.
  • FIG. 8 shows a target gear ratio map for coasting with an engine stop stored in the storage device 203 for use in target gear ratio calculation.
  • the target gear ratio before the engine is stopped is calculated based on the inter-vehicle distance between the preceding vehicle and the host vehicle obtained by the external recognition device.
  • the inter-vehicle distance is an amount representing the distance between the preceding vehicle and the host vehicle.
  • the expected value that the gear ratio is HIGH is increased when the driver re-accelerates by stepping on the accelerator again.
  • the inter-vehicle distance is small and the host vehicle speed is low, the expected value that the gear ratio at the time of reacceleration is LOW side is high. Therefore, by determining the gear ratio before engine stop according to the inter-vehicle distance when the accelerator is off and the host vehicle speed, the amount of shift during re-acceleration can be reduced as much as possible, thereby reducing the acceleration delay during re-acceleration. Can be reduced.
  • step S301 the vehicle control device 110 compares the current gear ratio with the target gear ratio calculated in step S300. If the current speed ratio is larger than the target speed ratio, the control before engine stop is terminated, and if the current speed ratio is smaller than the target speed ratio, step S200 is executed.
  • the output of the electric oil pump 106 can be lowered by avoiding unnecessary gear shifting during the coast stop. While reducing the amount of power used by the battery 109, it is possible to shorten the time required for shifting at the time of reacceleration.
  • FIG. 9 shows a time chart when the above control is performed. At time t11, the coast stop condition is satisfied by the accelerator off of the driver.
  • FIG. 9 is a diagram showing the pre-engine stop control S101 installed in the in-vehicle power supply device 106 according to the third embodiment of the present invention.
  • step S400 the vehicle control device 110 performs a target power generation amount calculation before stopping the engine. Based on the information obtained by the external world recognition device, the target SOC before engine stop is calculated.
  • FIG. 10 shows a target power generation amount map before stopping the engine stored in the storage device 203 used in the target power generation amount calculation before stopping the engine.
  • the target power generation amount before the engine is stopped is calculated based on the inter-vehicle distance between the preceding vehicle and the host vehicle and the host vehicle speed obtained by the external world recognition device.
  • the coast stop time will be longer until the driver steps on the accelerator again and reaccelerates. Therefore, before the engine 101 is stopped, the remaining amount of the battery 109 is increased. Thereby, the remaining amount of the battery 109 is reduced during the coast stop, and the chance that the coast stop cannot be continued can be reduced. Conversely, when the host vehicle speed is low and the inter-vehicle distance is small, the vehicle 100 is expected to stop, and it is not necessary to increase the hydraulic pressure for maintaining the gear ratio. Since there is no need to increase it, the target power generation is reduced.
  • FIG. 11 shows a time chart when the above control is performed.
  • the coast stop condition is satisfied because the driver's accelerator is off. Therefore, the power generation amount obtained by the target power generation amount calculation before engine stop is commanded to the generator 104. Furthermore, gear shifting is started so that the gear ratio becomes LOW according to the target gear ratio calculation result.
  • the gear ratio control is performed regardless of the state of the front vehicle, so that when the front vehicle is approaching or the speed of the host vehicle is low, an appropriate gear ratio is set at the time of reacceleration.
  • control for shifting to an optimal gear ratio is required and time is required for re-acceleration.
  • the coast stop state continues for a long time, there is a case where the battery power for the electric oil pump that is driven to maintain the hydraulic pressure in the vehicle becomes insufficient, and the coast stop cannot be continued.
  • the delay with respect to the acceleration request can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Control Of Transmission Device (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

 本発明は、走行中にエンジンを停止させる状態とする前に適切な変速へ変速することを可能とするコーストストップ制御装置を提供することを目的とする。 車両の走行状態においてエンジンを自動停止させるコーストストップ制御を行うコーストストップ制御装置であって、エンジンを停止させることが可能であるかを判断するエンジン停止条件判断手段と、変速機構の変速比を制御する変速制御手段と、を備え、エンジン停止条件判断手段によってエンジン停止条件が成立したと判断された時に変速機構を所定変速比へと制御することを特徴とするコーストストップ制御装置。

Description

コーストストップ制御装置
 本発明は、自動車等の車両、特に自動変速機を備えた車両のコーストストップ制御装置に関し、車両の走行制御技術の分野に関する。
 従来、走行中において車両が停止し、所定のエンジン停止条件が成立したときにエンジンを自動停止させ、燃料の節約、排気エミッションの低減、あるいは騒音の低減等を図るように構成した車両が提案され、すでに実用化されている。またエンジン停止条件として、走行中においても、エンジンを自動停止させることによって、より燃費低減効果を行なうコーストストップ車両が提案されている(例えば、特許文献1を参照)。また、コーストストップ中運転者から加速要求があった場合は、その時点でエンジンを始動させるとともに変速機をダウンシフトさせるが、それに時間が掛かるためコーストストップ中に変速機のダウンシフト後の変速段を実現する変速後摩擦締結要素に油圧を供給しておく技術が提案されている。(例えば、特許文献2を参照)
特開2010-164143号公報 特開2012-112463号公報
 従来技術では、前方車両の状態に関わらず変速制御を行なっていることにより、前方車両が接近している場合や、自車両の速度が低い状態などの場合に、再加速時において適切な変速比となっておらず、最適な変速比に変速する制御が必要となり、再加速に時間が必要となる場合がある。また、コーストストップの状態が長時間継続すると、車両内の油圧を維持するために駆動する電動式オイルポンプのためのバッテリ電力が足りなくなり、コーストストップを継続できなくなる場合がある。
 そこで、本発明は、走行中にエンジンを停止させる状態とする前に適切な変速へ変速することを可能とするコーストストップ制御装置を提供することを目的とする。
 本発明は、エンジンの出力軸に連結され駆動力を伝達可能にした結合状態と前記結合を解除した開放状態とに切り替え可能である動力伝達機構と、前記動力伝達機構の出力軸に連結されると共に駆動輪が連結され変速比が変更可能な変速機構と、前記エンジンの出力軸の回転に同期して駆動可能な作動油供給ポンプと、前記エンジンの自動停止中に作動する電動式オイルポンプと、を備える車両に対し、前記車両の走行状態においてエンジンを自動停止させるコーストストップ制御を行うコーストストップ制御装置であって、前記エンジンを停止させることが可能であるかを判断するエンジン停止条件判断手段と、前記変速機構の変速比を制御する変速制御手段と、を備え、エンジン停止条件判断手段によってエンジン停止条件が成立したと判断された時に変速機構を所定変速比へと制御することを特徴とする。
 本発明によれば、エンジン停止状態で走行中からドライバのアクセル操作によって再加速する場合において、加速要求に対する遅れを小さくすることができる。
本発明のコーストストップ車両の走行駆動系の構成を示すブロック図である。 車両制御装置の構成を示すブロック図である。 加速からコースト時における変速制御を表す図である。 車両制御装置によって実行させる減速から再加速時の制御内容を示したフローチャートである。 車両制御装置によって実行させるエンジン停止前制御内容を示したフローチャートである。 本実施形態の作用効果を説明するためのタイムチャートである。 車両制御装置によって実行させる減速から再加速時の制御内容を示したフローチャートである。 エンジン停止前の目標変速比とアクセルオフ時の車間距離と自車両速度の関係を示すグラフである 車両制御装置によって実行させる減速から再加速時の制御内容を示したフローチャートである。 エンジン停止前の目標発電量とアクセルオフ時の車間距離と自車両速度との関係を示すグラフである。 本実施形態の作用効果を説明するためのタイムチャートである。
 以下,本発明の実施形態を図面に基づいて詳細に説明する。
 図1は本発明の第1実施形態における車両制御装置を備えた車両の構成を示す図である。車両100には,エンジン101が搭載されており,エンジン101によって発生させた駆動力は変速機102を経て、動力伝達機構103とディファレンシャル機構107を介して連結された駆動輪108に伝達されることで車両100を走行させる。
 変速機102は、ベルトあるいはチェーンとプーリを組み合わせた無段変速機に限定されず、トルクコンバータと遊星歯車機構を組み合わせた有段変速機でもよい。また無段変速機と有段変速機を組み合わせた変速機であってもよい。
 また、変速機102には、エンジン101とディファレンシャル機構103との間の動力伝達量を制御可能な動力伝達機構103が備わっており、動力伝達機構103により、エンジン101と駆動輪108の動力伝達量を調整することで、走行中にエンジン101を停止することが可能となる。ここで、動力伝達機構103としてはトルクコンバータ、乾式あるいは湿式クラッチ、遊星歯車機構を用いてもよい。また、トルクコンバータ内のロックアップクラッチを用いる方法も考えられる。
 また、エンジン始動装置としてスタータモータ112が組みつけられており,バッテリ109から電力を供給することでスタータモータ112を駆動し、エンジン101を回転させた後、燃焼を開始する。ここで、エンジン始動装置としてはスタータモータ112に限定されず、スタータモータと発電機の機能を有したモータでもあればよい。
 また、バッテリ109は、エンジン101をクランキング可能な性能を有する蓄電デバイスとし、鉛蓄電池や、ニッケル水素、リチウムイオン電池、電気二重層キャパシタ、リチウムイオンキャパシタなどのいずれかを用いてもよい。また、バッテリ109にはバッテリ残量を検知することが出来るバッテリ残量検知センサが備わっており、その情報を基にして、車両制御装置110はコーストストップを許可するかなどを判定している。
 また、車両100内で用いる油圧を発生させるためにエンジン101のクランク軸に駆動ベルトを介して接続された作動油供給オイルポンプ105が備わっており、エンジン101が駆動している間は連続的に油圧の供給を行なっている。
 また、バッテリ109から電力を得ることによって駆動することができる電動式オイルポンプ106が備わっており、エンジン停止中などの作動油供給オイルポンプ105によって油圧の供給が十分でないと判断された場合には、電動式オイルポンプ内のモータドライバによってモータを駆動させて、必要な油圧を供給することを可能とする。電動式オイルポンプ106は、オイルポンプ本体と、これを回転駆動する電気モータおよびモータドライバとで構成されている。ただし、モータドライバなどによって駆動出力を連続的に可変制御できる機構を持つものだけでなく、リレーなどにより出力のオンとオフを切り替える制御のみをできるものであっても良い。
 なお、エンジン101の運転中であっても、作動油供給オイルポンプ105による冷却用オイル又は潤滑用オイルの供給不足を補うために、電動式オイルポンプ106を作動させる場合もあり、電動式オイルポンプ106の作動を、エンジン101の一時停止中に限定するものではない。
 また、作動油供給オイルポンプ105および電動式オイルポンプ106によって発生した油圧を変速機102および動力伝達機構103に調圧されて供給するために油圧制御回路113が備わっており、車両制御装置110によって演算された変速比やクラッチ状態を実現するために各油圧回路内の油圧制御弁やステップモータなどの制御を行なっている。
 車両制御装置110は、エンジン101および油圧制御回路113を用いた変速機102や動力伝達機構103の制御を統合的に制御するコントローラであり、図2に示すように、CPU202および記憶装置203や他のコントローラやセンサと通信を行なうためのインターフェースなどから構成されている。車両速度やアクセル開度センサ、ブレーキスイッチセンサなどの車両状態および変速機102の入力および出力回転数、油圧制御回路内の油圧などの状態を検知するための各種センサ201による情報や外界認識デバイス111の情報および記憶装置203内に格納されている情報を基にして、油圧制御回路113やエンジン101に対して、目標変速比、動力伝達機構103の状態、電動式オイルポンプ駆動制御信号、点火タイミング、燃料噴射量などの信号をCPU202により演算する。
 図3は記憶装置203に格納されているエンジン停止を伴わないコースト時の変速マップの一例を示している。自車両速度度とアクセル開度に応じて、目標入力回転速度が演算される。停止状態から加速して、コースト減速を行なう場合の加速について、そのときの変速機102の目標入力回転速度を図内の矢印で示す。停車から所定の車速になるまでは、最LOW変速比となるように目標回転速度を指令する。車速が上がるに従い、徐々にHIGH側へと変速していく。ただし、勾配などによってはLOW側のままで変速を行なう場合もある。所定の車速以上においてアクセルオフすると、変速比が最HIGH線に従うように変速を行い、コースト時目標アイドル入力回転速度より小さくなったら、その回転速度を維持するようにLOW側へ変速していく。
 車両制御装置110は、エンジン停止を伴わないコースト時において、変速マップに基づき、最適な変速比および動力伝達機構103の状態を演算した結果を油圧制御回路113および電動式オイルポンプ106に対して指令値を送信している。
 次に本発明の車両制御装置110に実装されている走行中のエンジン停止を含んだ減速処理制御について、図4に示したフローチャートを用いて説明する。
 ステップS100では、車両制御装置110は、車両速度が所定値以下であること、アクセル開度が所定値以下であること、動力伝達機構103によってエンジン101の駆動力が駆動輪108への伝達量が所定値以下であること、油圧制御回路113への油圧の供給量が所定値以上であること、電動式オイルポンプ106が異常判定されていないこと、バッテリ算量が所定値以上などの所定のコーストストップ条件が全て成立しているかを判定する。上記のコーストストップ条件が成立していると判定されたときは、ステップS101の処理に進み、成立していないと判定されたときには減速処理制御を終了する。
 ステップS101では、車両制御装置110は、エンジン停止前制御を実施する。エンジン停止前制御では、エンジン101を停止させる前に油圧制御回路113によって油圧制御される動力伝達機構103および変速機102への指令値を演算する。
 ステップS102では、車両制御装置110は、エンジン停止制御を実施する。エンジン停止制御ではエンジン101に対しての燃料の供給を停止するように燃料噴射弁を制御する。
 ステップS103では、車両制御装置110は、コーストストップ終了条件が成立しているかを判定する。コーストストップ終了条件は、車両速度が所定値以下であること、アクセル開度が所定値以上であること、油圧制御回路113への油圧の供給量が所定値以下であること、電動式オイルポンプ106が異常判定されていること、バッテリ算量が所定値以下となったこと、ブレーキ負圧が低下したときなどの所定のコーストストップ条件が何れかが成立しているかを判定する。上記のコーストストップ終了条件が成立していると判定されたときは、ステップS104の処理に進み、成立していないと判定されたときには、エンジン停止状態を継続する。
 ステップS104では、車両制御装置110は、コーストストップ終了制御を実施する。コーストストップ終了制御は、エンジン101の始動処理を実施する。エンジン101の始動方法としては、燃料噴射弁を用いてエンジン101への燃料供給を再開するとともに、スタータモータ112に電力を供給してエンジン101の回転運動を開始するスタータ始動と、動力伝達機構103を制御して、駆動輪108の回転エネルギーを用いてエンジン101を始動する押し掛け始動があり、いずれかの始動方法を実施することで、エンジン燃焼を再開する。
 図5は、本発明の第1実施形態におけるS101のエンジン停止前制御を示す図である。
 ステップS200では、車両制御装置110は、動力伝達機構解放制御を実施する。動力伝達機構103によって、エンジン101の駆動力が駆動輪108に伝わる伝達量がほぼゼロとなるように油圧制御回路113の油圧を調整する。これにより、車両100に対して減速方向に働く力となるエンジン101のフリクショントルクが、駆動輪108に伝達されなくなることで、車両100が減速しにくくなり、車両全体としてのエネルギー効率が向上して、燃費削減効果となる。
 ステップS201では、車両制御装置110は、変速機102の現在の変速比が所定変速比よりも大きいことを判定する。所定変速比よりも大きい場合にはエンジン停止前制御の処理を終え、所定変速比よりも大きくない場合にはステップS202に進む。
 ステップS202では、車両制御装置110は、変速制御を実施する。変速制御は変速機102の現在の変速比が所定の変速比となるまで油圧制御回路113に対して指令する。
 続いて、上記制御を行なうことによる作用効果を説明する。
 図6は上記制御を行なった際のタイムチャートを表す。
 時刻t1において、ドライバのアクセルオフによって、コーストストップ条件が成立している。そこで、変速比をLOW側となるように変速を開始する。
 時刻t2において、現在の変速比が所定の変速比よりも大きくなると、エンジン停止処理を行う。その後は、その変速比を維持できるように電動式オイルポンプ106の出力を維持するように制御する。
 時刻t3において、ドライバのアクセル操作によって再加速の要求があった場合、コーストストップ終了制御により始動したエンジン101に発生した動力は動力伝達機構103を介して駆動輪108に伝達される。エンジン停止前に所定の変速比よりもLOW側に変速されていることで、コーストストップからの再加速のために、変速することを行なわずに済むため、再加速にかかる時間を短くすることが出来る。
 図7は本発明の第2実施形態における車載電源装置106に実装されているエンジン停止前制御S101を示す図である。
 本形態の車両100には、車両制御装置110へ入力される情報を取得する各種センサ201として、自車両の周囲状態を検知するための手段である外界認識デバイスを備わっており、前方車両と自車両との相対速度や車両間の距離を取得することができる。外界の状態の認識を行なう方法として、例えば、車両100に取付けられたカメラ、レーダ、GPS信号の受信デバイスと地図情報、データセンターとの通信、前方および周囲の車両との車両状態や道路に設置されている信号や標識などと通信する手段などを用いる方法が考えられる。
 ステップS300では、車両制御装置110は、外界認識デバイスによって得られた情報に基づいて、目標変速比演算を実施する。
 図8には、目標変速比演算で用いるための記憶装置203に格納されるエンジン停止を伴うコースト時の目標変速比マップを示す。ドライバのアクセルオフのタイミングにおいて、外界認識デバイスによって得られた前方車両と自車両との車間距離に基づいて、エンジン停止前の目標変速比を演算する。
 ここで車間距離とは、先行車両と自車両の距離を表した量である。車間距離が大きく、自車両速度も大きい場合においては、ドライバが再びアクセルを踏んで再加速する場合に変速比がHIGH側であることの期待値が高くなる。逆に、車間距離が小さく、自車両速度が低い場合には、再加速の際の変速比がLOW側である期待値が高くなること。そのため、アクセルオフ時の車間距離と自車両速度に応じてエンジン停止前変速比を決めることにより、再加速の際の変速する量をなるべく少なくすることができ、それによって再加速時の加速遅延を低減することができる。
 ステップS301では、車両制御装置110は、現在の変速比とステップS300で演算した目標変速比を比較する。現在変速比が目標変速比よりも大きい場合にはエンジン停止前制御を終了し、現在変速比が目標変速比よりも小さい場合には、ステップS200を実行する。
 上記のように、エンジン101を停止させる前に現在変速比をLOW側に変速しておくことで、コーストストップ中に不要な変速を避けることで電動式オイルポンプ106の出力を低くすることができバッテリ109の電力使用量を減らしつつ、再加速時に変速するための時間を短くすることができる。
 続いて、上記制御を行なうことによる作用効果を説明する。
 図9は上記制御を行なった際のタイムチャートを表す。時刻t11において、ドライバのアクセルオフによって、コーストストップ条件が成立している。
 図9は本発明の第3実施形態における車載電源装置106に実装されているエンジン停止前制御S101を示す図である。
 ステップS400では、車両制御装置110は、エンジン停止前目標発電量演算を実施する。外界認識デバイスによって得られた情報に基づいて、エンジン停止前目標SOCの演算を実施する。
 図10には、エンジン停止前目標発電量演算で用いる記憶装置203に格納される目標エンジン停止前目標発電量マップを示す。ドライバのアクセルオフのタイミングにおいて、外界認識デバイスによって得られた前方車両と自車両の車間距離と自車両速度に基づいて、エンジン停止前の目標発電量を演算する。
 車間距離が大きく、自車両速度も大きい場合においては、ドライバが再びアクセルを踏んで再加速するまでにコーストストップ時間が長くなることが期待され、また高車速の方が変速を維持するための油圧が高くなっていることが必要となるため、エンジン101を停止させる前にバッテリ109の残量を高めておく。これによって、コーストストップ中にバッテリ109の残量が低下し、コーストストップが継続できなくなる機会を低減させることができる。逆に、自車両速度が低く、車間距離も小さくなっている場合には、車両100が停止することが期待され、変速比を維持するための油圧も高くする必要がないことから、発電量を上げる必要がないことから、目標発電量を小さくする。
 続いて、上記制御を行なうことによる作用効果を説明する。
 図11は上記制御を行なった際のタイムチャートを表す。
 時刻t11において、ドライバのアクセルオフによって、コーストストップ条件が成立している。そこで、エンジン停止前目標発電量演算によって求めた発電量を発電機104に対して指令する。さらに目標変速比演算結果に応じて変速比をLOW側となるように変速を開始する。
 時刻t12において、現在の変速比が所定の変速比よりも大きくなると、エンジン停止処理を行う。その後は、その変速比を維持できるように電動式オイルポンプの出力を維持するように制御する。エンジン101を停止させる前に発電力を増やして、SOCを高めにしておくことで、長時間エンジン101を停止させることが可能となる。
 従来技術では、前方車両の状態に関わらず変速制御を行なっていることにより、前方車両が接近している場合や、自車両の速度が低い状態などの場合に、再加速時において適切な変速比となっておらず、最適な変速比に変速する制御が必要となり、再加速に時間が必要となる場合がある。また、コーストストップの状態が長時間継続すると、車両内の油圧を維持するために駆動する電動式オイルポンプのためのバッテリ電力が足りなくなり、コーストストップを継続できなくなる場合があった。一方、上記実施形態によれば、エンジン停止状態で走行中からドライバのアクセル操作によって再加速する場合において、加速要求に対する遅れを小さくすることができる。
100      車両
101      エンジン 
102      変速機
103      動力伝達機構 
104      発電機
105      作動油供給オイルポンプ
106      電動式オイルポンプ
107      ディファレンシャル機構
108      駆動輪
109      バッテリ
110      車両制御装置
112      スタータモータ
113      油圧制御回路
201      各種センサ
202      CPU
203      記憶装置

Claims (3)

  1.  エンジンの出力軸に連結され駆動力を伝達可能にした結合状態と前記結合を解除した開放状態とに切り替え可能である動力伝達機構と、前記動力伝達機構の出力軸に連結されると共に駆動輪が連結され変速比が変更可能な変速機構と、前記エンジンの出力軸の回転に同期して駆動可能な作動油供給ポンプと、前記エンジンの自動停止中に作動する電動式オイルポンプと、を備える車両に対し、前記車両の走行状態においてエンジンを自動停止させるコーストストップ制御を行うコーストストップ制御装置であって、
     前記エンジンを停止させることが可能であるかを判断するエンジン停止条件判断手段と、
     前記変速機構の変速比を制御する変速制御手段と、を備え、
     エンジン停止条件判断手段によってエンジン停止条件が成立したと判断された時に変速機構を所定変速比へと制御することを特徴とするコーストストップ制御装置。
  2.  前記車両は、搭載された自車両の前方に存在する車両を検知する前方車両検知手段を備え、
     前記前方車両検知手段により前方に存在する車両と自車両との車間距離が大きく、自車両速度も高いときには、前記所定変速比をハイ側とすることを特徴とする請求項1記載のコーストストップ制御装置。
  3.  前記車両は、前記エンジンにより駆動して発電を行なう発電機を備え、
     前記前方車両検知手段により前方に存在する車両と自車両との車間距離が大きく、自車両速度も高いときには、前記発電機による発電量を増やすことを特徴とする請求項1記載のコーストストップ制御装置。
PCT/JP2016/050420 2015-01-26 2016-01-08 コーストストップ制御装置 WO2016121451A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680004342.8A CN107110340B (zh) 2015-01-26 2016-01-08 滑行停止控制装置
EP16743055.2A EP3252347B1 (en) 2015-01-26 2016-01-08 Coast-stop control device
US15/542,514 US10370001B2 (en) 2015-01-26 2016-01-08 Coast-stop control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015011926A JP6446278B2 (ja) 2015-01-26 2015-01-26 コーストストップ制御装置
JP2015-011926 2015-01-26

Publications (1)

Publication Number Publication Date
WO2016121451A1 true WO2016121451A1 (ja) 2016-08-04

Family

ID=56543071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050420 WO2016121451A1 (ja) 2015-01-26 2016-01-08 コーストストップ制御装置

Country Status (5)

Country Link
US (1) US10370001B2 (ja)
EP (1) EP3252347B1 (ja)
JP (1) JP6446278B2 (ja)
CN (1) CN107110340B (ja)
WO (1) WO2016121451A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6773599B2 (ja) * 2017-04-14 2020-10-21 日立建機株式会社 蓄電装置コントローラ及び電動システム並びに建設機械
CN111148677B (zh) * 2017-10-12 2023-03-24 日产自动车株式会社 自动驾驶车辆的控制方法及控制装置
EP3702228B1 (en) * 2017-10-26 2022-04-20 Nissan Motor Co., Ltd. Control method and control device for autonomous vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012077840A (ja) * 2010-10-01 2012-04-19 Jatco Ltd コーストストップ車両
WO2012090924A1 (ja) * 2010-12-28 2012-07-05 日産自動車株式会社 車両の回生制御装置
JP2014126030A (ja) * 2012-12-27 2014-07-07 Jatco Ltd コーストストップ車両

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000085407A (ja) 1998-07-17 2000-03-28 Denso Corp 車間制御装置及び記録媒体
DE10320009A1 (de) 2003-05-06 2004-12-02 Robert Bosch Gmbh Verfahren zum Betreiben eines Fahrzeugs
JP4831172B2 (ja) 2009-01-16 2011-12-07 株式会社デンソー 内燃機関の自動停止始動制御装置
DE112009005278B4 (de) * 2009-12-10 2019-12-05 Hewlett-Packard Development Company, L.P. Tragbarer Computer mit einer neigbaren Kameraanordnung
JP5039819B2 (ja) * 2010-09-01 2012-10-03 ジヤトコ株式会社 コーストストップ車両及びコーストストップ方法
JP5526006B2 (ja) * 2010-11-25 2014-06-18 ジヤトコ株式会社 コーストストップ車両及びコーストストップ車両の制御方法
WO2012172891A1 (ja) * 2011-06-14 2012-12-20 ジヤトコ株式会社 コーストストップ車両
JP5767958B2 (ja) * 2011-12-12 2015-08-26 ジヤトコ株式会社 コーストストップ車両およびコーストストップ車両の制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012077840A (ja) * 2010-10-01 2012-04-19 Jatco Ltd コーストストップ車両
WO2012090924A1 (ja) * 2010-12-28 2012-07-05 日産自動車株式会社 車両の回生制御装置
JP2014126030A (ja) * 2012-12-27 2014-07-07 Jatco Ltd コーストストップ車両

Also Published As

Publication number Publication date
EP3252347B1 (en) 2021-03-10
CN107110340A (zh) 2017-08-29
JP2016138561A (ja) 2016-08-04
EP3252347A1 (en) 2017-12-06
JP6446278B2 (ja) 2018-12-26
EP3252347A4 (en) 2018-10-17
CN107110340B (zh) 2019-02-15
US20180265089A1 (en) 2018-09-20
US10370001B2 (en) 2019-08-06

Similar Documents

Publication Publication Date Title
US10836372B2 (en) System and method for controlling a hybrid vehicle in park or neutral
US9067585B2 (en) Control device for hybrid vehicle
US9365211B2 (en) Delay changing on/off state of engine during cruise control in a hybrid vehicle
JP6369549B2 (ja) 車両の制御装置および車両の制御方法
JP2007331533A (ja) 車両用制御装置
US11110790B2 (en) Control apparatus and control method for vehicle
US11207968B2 (en) Hybrid vehicle cruise control device
CN109072998B (zh) 车辆控制装置
US11623627B2 (en) Engine start control system for a hybrid vehicle
US8892319B2 (en) Power transmitting apparatus
WO2018168389A1 (ja) 車両制御装置
JP6446278B2 (ja) コーストストップ制御装置
WO2017203874A1 (ja) 無段変速機を備えた車両の制御装置及び制御方法
US8628450B2 (en) Vehicular power transmission control apparatus
JP2004270512A (ja) ハイブリッド車両の制御装置
JP2015116944A (ja) ハイブリッド車両の制御装置
JP2006335196A (ja) 動力出力装置およびこれを搭載する車両並びにこれらの制御方法
JP6838777B2 (ja) 車両用制御装置
WO2017119189A1 (ja) 車両用制御装置
JP5765579B2 (ja) 制御装置
US11007996B2 (en) Vehicle control method and vehicle control device
JP6481536B2 (ja) エンジン制御方法及びエンジン制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16743055

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15542514

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2016743055

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE