WO2016121265A1 - 試料観察方法および試料観察装置 - Google Patents
試料観察方法および試料観察装置 Download PDFInfo
- Publication number
- WO2016121265A1 WO2016121265A1 PCT/JP2015/085624 JP2015085624W WO2016121265A1 WO 2016121265 A1 WO2016121265 A1 WO 2016121265A1 JP 2015085624 W JP2015085624 W JP 2015085624W WO 2016121265 A1 WO2016121265 A1 WO 2016121265A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sample
- image
- detectors
- images
- mixing
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 93
- 230000007547 defect Effects 0.000 claims abstract description 132
- 239000002245 particle Substances 0.000 claims abstract description 24
- 230000001678 irradiating effect Effects 0.000 claims abstract description 9
- 238000002156 mixing Methods 0.000 claims description 122
- 238000004364 calculation method Methods 0.000 claims description 44
- 230000002950 deficient Effects 0.000 claims description 29
- 238000000605 extraction Methods 0.000 claims description 15
- 239000000203 mixture Substances 0.000 abstract description 3
- 239000000523 sample Substances 0.000 description 63
- 235000012431 wafers Nutrition 0.000 description 28
- 238000009826 distribution Methods 0.000 description 27
- 238000003384 imaging method Methods 0.000 description 26
- 238000012545 processing Methods 0.000 description 23
- 238000003860 storage Methods 0.000 description 19
- 238000010894 electron beam technology Methods 0.000 description 15
- 238000007689 inspection Methods 0.000 description 11
- 238000001514 detection method Methods 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 8
- 239000004065 semiconductor Substances 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 7
- 230000003287 optical effect Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 239000002131 composite material Substances 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000000513 principal component analysis Methods 0.000 description 3
- 238000012552 review Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B15/00—Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
- G01B15/04—Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring contours or curvatures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/22—Optical, image processing or photographic arrangements associated with the tube
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/22—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/50—Image enhancement or restoration using two or more images, e.g. averaging or subtraction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
- G06T7/001—Industrial image inspection using an image reference approach
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/244—Detectors; Associated components or circuits therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/26—Electron or ion microscopes; Electron or ion diffraction tubes
- H01J37/28—Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B2210/00—Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
- G01B2210/40—Caliper-like sensors
- G01B2210/48—Caliper-like sensors for measurement of a wafer
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10056—Microscopic image
- G06T2207/10061—Microscopic image from scanning electron microscope
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
- G06T2207/30148—Semiconductor; IC; Wafer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/244—Detection characterized by the detecting means
- H01J2237/2446—Position sensitive detectors
- H01J2237/24465—Sectored detectors, e.g. quadrants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/244—Detection characterized by the detecting means
- H01J2237/24495—Signal processing, e.g. mixing of two or more signals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/245—Detection characterised by the variable being measured
- H01J2237/24571—Measurements of non-electric or non-magnetic variables
- H01J2237/24585—Other variables, e.g. energy, mass, velocity, time, temperature
Definitions
- the present invention relates to a method and apparatus for observing defects and circuit patterns generated during the manufacture of a semiconductor wafer, and more specifically, using images obtained from a plurality of detectors provided in a charged particle microscope.
- the present invention relates to an apparatus including a method and means for outputting an image with high visibility of defects and circuit patterns.
- Patent Document 1 Japanese Patent Laid-Open No. 2000-105203
- Patent Document 2 an optical image of a wafer surface is taken by bright field illumination, and a defect is inspected by comparison with an image of a non-defective part (for example, an image of an adjacent chip).
- Technology is disclosed.
- such an optical inspection apparatus is affected by the illumination wavelength, and the resolution limit of an acquired image is about several hundred nanometers. Therefore, it is only possible to detect the presence or absence of defects on the order of several tens of nanometers on the wafer, and when a detailed defect analysis is performed, a defect observation apparatus with a higher imaging resolution is required separately.
- the defect observation apparatus is an apparatus that images a defect position on a wafer with high resolution using the output of the inspection apparatus and outputs an image
- an observation apparatus SEM: Scanning Electron Microscope observation apparatus
- ADR Automatic Defect Review
- ADR Automatic Defect Review
- Patent Document 2 Japanese Patent Application Laid-Open No. 2007-40910
- Patent Document 7 Japanese Patent Application Laid-Open No. 2013-168595
- Patent Document 4 Japanese Patent Application Laid-Open No. 2012-186177 (Patent Document 4) describes that the unevenness information of an object can be grasped by discriminating and detecting the electron generated from the sample by the elevation angle and azimuth angle emitted. . Japanese Laid-Open Patent Publication No.
- Patent Document 5 describes a method of detecting using a plurality of detectors in which reflected electrons emitted in each direction are divided and arranged.
- Patent Document 6 discloses a method for improving the contrast of a lower layer pattern in a multilayer layer by synthesizing detector images obtained from a plurality of detectors.
- Patent Document 5 discloses a method of automatically adjusting a weighting factor at the time of mixing according to the beam scanning direction, but does not describe a method of automatically adjusting in consideration of the visibility of a defective part or a circuit pattern.
- Patent Document 6 describes a method of automatically adjusting the weighting factor at the time of mixing according to the edge direction of the circuit pattern obtained from the design information, but the automatic adjustment method considering the visibility of the defective part Is not listed.
- the present invention solves the above-described problems of the prior art, and mixes (synthesizes) a plurality of images for a plurality of images detected by a plurality of detectors in consideration of the visibility of a defective part or a circuit pattern.
- the present invention provides a sample observation method and a sample observation apparatus that can automatically adjust the weighting coefficient at the time and mix them to generate a mixed image.
- secondary electrons or reflected electrons generated from the sample by irradiating the sample with a charged particle beam and scanning the sample are detected by a plurality of detectors arranged at different positions with respect to the sample, and secondary electrons or reflected electrons are detected for each of the plurality of detectors arranged at different positions. These images were mixed to generate a mixed image, and the generated mixed image was displayed on the screen.
- the first region on the sample is irradiated with a charged particle beam and scanned. Obtained by detecting secondary electrons or backscattered electrons for each of a plurality of detectors arranged at different positions.
- a plurality of images of a first region for each of a plurality of detectors is created from the signal, a mixing parameter that is a weight for each of the plurality of images of the first region for each of the created detectors is calculated, and charged particles
- a plurality of detections in which secondary electrons or reflected electrons generated from the second region are arranged at different positions with respect to the sample by irradiating and scanning the second region inside the first region on the sample.
- an apparatus for observing a sample using a charged particle microscope is configured to detect secondary electrons or reflections generated from the sample by scanning the sample by irradiating the sample with a charged particle beam. Secondary electrons or reflections for each charged particle microscope with multiple detectors that detect electrons with multiple detectors located at different positions relative to the sample, and multiple detectors placed at different positions on the charged particle microscope
- An image creation unit that creates a sample image for each of a plurality of detectors from a signal obtained by detecting electrons and a sample image for each of the plurality of detectors created by the image creation unit are mixed to create a mixed image.
- a mixed image creating unit and a display unit for displaying the mixed image created by the mixed image creating unit are provided.
- the visibility of a defective part and a circuit pattern is taken into consideration for a plurality of images detected by a plurality of detectors, and a weighting coefficient when mixing (combining) a plurality of images is automatically adjusted. It is possible to generate a mixed image by mixing, and it is possible to reduce the load of image viewing work by the user. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
- FIG. 2 is a plan view showing a positional relationship between a surface of a sample on which a convex pattern is formed and a detector in the sample observation apparatus according to Embodiment 1 of the present invention, and from each detector when the sample surface is scanned with an electron beam. It is the figure which displayed the detection signal pattern output in the graph.
- the present invention enables a defect observation apparatus including a plurality of detectors to output an image with high visibility of defects and circuit patterns, and reduces the burden of image viewing work by the user.
- the present invention considers the visibility of a defective part and a circuit pattern for a plurality of images detected by a plurality of detectors, automatically adjusts a weighting coefficient when mixing (combining) a plurality of images, and mixes ( It is possible to generate a mixed image (composite image) by combining, and to reduce the load of the image viewing operation by the user.
- the defect observation apparatus will be described below.
- an observation apparatus provided with a scanning electron microscope (SEM) will be described.
- the imaging apparatus according to the present invention may be other than the SEM, and may be an imaging apparatus using charged particles such as ions.
- FIG. 1 shows an overall configuration of an apparatus according to the present invention.
- An SEM 101 that captures an image
- a control unit 102 that performs overall control
- a storage unit 103 that stores information in a magnetic disk, a semiconductor memory, and the like
- a program A calculation unit 104 that performs calculation
- an external storage medium input / output unit 105 that inputs / outputs information to / from an external storage medium connected to the apparatus
- a user interface unit 106 that controls input / output of information to / from a user
- the network interface unit 107 communicates with other devices.
- the user interface unit 106 is connected to an input / output terminal 113 including a keyboard, a mouse, a display, and the like.
- the SEM 101 includes a movable stage 109 on which the sample wafer 108 is mounted, an electron source 110 for irradiating the sample wafer 108 with an electron beam (primary electron beam) 1101, and a detector that detects secondary electrons and reflected electrons generated from the sample wafer.
- 111 an electron lens (not shown) for focusing the electron beam on the sample, a deflector (not shown) for scanning the electron beam on the sample wafer, and a signal from the detector 111 are converted into a digital signal.
- an imaging unit 112 for generating a digital image. These are connected via the bus 114 and can exchange information with each other.
- FIG. 2 shows configurations of the control unit 102, the storage unit 103, and the calculation unit 104.
- the control unit 102 includes a wafer transfer control unit 201 that controls the transfer of the sample wafer 108, a stage control unit 202 that controls the stage, a beam shift control unit 203 that controls the irradiation position of the electron beam, and a beam that controls the scanning of the electron beam.
- a scan control unit 204 is provided.
- the storage unit 103 stores the acquired image data, the image storage unit 205, imaging conditions (for example, the acceleration voltage of the primary electron beam 1101, the probe current of the detector 111, the number of frames added to the image obtained by imaging, the imaging A recipe storage unit 206 that stores the size of the field of view, processing parameters, and the like, and a coordinate storage unit 207 that stores the coordinates of the imaging location.
- imaging conditions for example, the acceleration voltage of the primary electron beam 1101, the probe current of the detector 111, the number of frames added to the image obtained by imaging
- the imaging A recipe storage unit 206 that stores the size of the field of view, processing parameters, and the like, and a coordinate storage unit 207 that stores the coordinates of the imaging location.
- a memory area (not shown) for temporarily storing calculation results and the like is provided.
- the calculation unit 104 includes a defect information extraction unit 208 that extracts defect information from a detector image, a difference image calculation unit 209 that calculates a difference between two images, a difference value distribution information calculation unit 210 that calculates difference value distribution information, A mixing parameter calculation unit 211 that determines a mixing ratio, a mixing method, and the like of the image, an image mixing processing unit 212 that mixes the detector images detected by each detector using information on the determined mixing ratio of the image, and a mixing process A defect region recognition unit 213 for recognizing a defect region in the processed image and a circuit pattern region recognition unit 214 for recognizing a circuit pattern region in the mixed image.
- the defect information extraction unit 208, the difference image calculation unit 209, the difference value distribution information calculation unit 210, and the mixed parameter calculation unit 211 may be configured as hardware designed to perform each calculation, or implemented as software. It may be configured to be executed using a general-purpose arithmetic device (for example, a CPU or a GPU).
- a method for acquiring an image of a designated coordinate will be described.
- the wafer 108 to be measured is placed on the stage 109 by a robot arm (not shown) controlled by the wafer transfer control unit 201.
- the stage 109 is moved by the stage controller 202 so that the imaging field of view is included in the irradiation range of the electron beam 1101.
- the stage position is measured by means not shown, and the beam irradiation position is adjusted by the beam shift control unit 203 so as to cancel the movement error.
- the electron beam 1101 is emitted from the electron source 110 and scanned on the sample wafer 108 by the beam scan control unit 204 within the imaging field.
- Secondary electrons and reflected electrons generated from the sample wafer 108 by the irradiation of the electron beam 1101 are detected by a plurality of detectors 111, and are digitalized for each detector through the imaging unit 112.
- the captured image is stored in the image storage unit 205 together with incidental information such as imaging conditions, imaging date and time, and imaging coordinates.
- FIG. 3A is a perspective view.
- FIGS. 3B and 3C are a plan view and a front view, respectively, seen from the z-axis and y-axis directions (the detector 305 is not shown).
- reference numerals 301 to 304 denote a plurality of detectors configured to selectively detect electrons having a specific emission angle (mainly reflected electrons).
- the detector 301 is arranged in the y direction from the sample wafer 108.
- a detector 2 represents a detector that detects the electrons emitted by.
- a split type detector described in Patent Document 5 may be used.
- a detector 305 represents a detector that detects secondary electrons emitted from the sample.
- an apparatus having five detectors as illustrated will be described as an example. However, the present invention can be applied to other detector arrangements and can be applied even when the number of detectors is increased. It is.
- the number of electrons emitted to the left side around the irradiation position of the primary electron beam 1101 is larger than that in the case where the sample 108 is flat, so that the detection signal of the detector 303 arranged on the left side becomes stronger.
- the detection signal of the detector 304 arranged on the right side becomes lower.
- the specimen 108 is flat, but the emitted electrons are shielded by the adjacent unevenness 410, so that the number of electrons reaching the detector 303 arranged on the left side is reduced and the detection signal is reduced.
- FIG. 4 shows signal profiles 404 to 406 that schematically represent the outputs of the detectors 303 to 305.
- the vertical axis indicates the intensity of the signal output from each detector
- the horizontal axis indicates the position on the sample.
- FIG. 5 is a diagram schematically showing detection signals of the detectors 301 to 305 when the SEM 101 images the concave defect portion 551 and the convex circuit pattern 552 (a cross-sectional graph 501 is an image).
- the cross-sectional profile between (a) and (b) in 550 and the cross-sectional shape graph 502 are cross-sectional profiles between (c) and (d) in the image 550.
- the detectors 301 and 302 arranged in the image y direction have a wide defect portion 551 as shown in the signal profiles 511 and 512.
- the contrast 510 occurs in the range, but in the detectors 303 and 304 arranged in the x direction of the image 550, the contrast 510 is generated only at both ends of the defective portion 551 as shown by the signal profiles 513 and 514. For this reason, with regard to the defective portion 551, a shadow becomes obvious in the detector image formed from the signal profiles 511 and 512 of the detectors 301 and 302 arranged in the image y direction, and the visibility becomes high.
- the circuit pattern 552 formed along the y direction has a reverse tendency, and the visibility of the detector image formed from the signal profiles 513 and 514 of the detectors 303 and 304 arranged in the x direction of the image 550 is high. Become.
- defect information information on the visibility of the defective portion 551 (hereinafter referred to as defect information) is formed by the signal profiles 511 to 515 for the respective detectors 301 to 305. Extracted from the detected detector image, and a detector image with high visibility is selected based on the information, or a plurality of detector images obtained for each of the signal profiles 511 to 515 of the detectors 301 to 305 are mixed. It is necessary to generate (composite) an image.
- defect information information on the visibility of the defective portion 551
- FIG. 6 is a main flowchart of the observation processing according to the present invention.
- a sample wafer 108 to be observed is loaded on the stage 109 (S601), and a recipe storing image capturing conditions (acceleration voltage, probe current, number of added frames, etc.) and image processing conditions is read from the recipe storage unit 206.
- the electron optical system is set according to the read conditions (S602).
- the coordinates of the observation target stored in the coordinate storage unit 207 are read (S603).
- Subsequent processes S604 to S607 are performed for each of the read observation target coordinates.
- the movable stage 109 is moved using the stage controller 202 so that the coordinates of the observation target are included in the imaging field (S604), and the primary electron beam 1101 is scanned in the imaging field using the beam scan controller 204.
- secondary electrons and reflected electrons emitted from the sample wafer 108 are detected by a plurality of detectors 111, and signals detected by the plurality of detectors 111 are respectively imaged by an imaging unit 112, and a plurality of detectors are detected.
- An image is obtained (S605).
- a mixed image (composite image) is generated from the obtained plurality of detector images by the image mixing processor 212 (S606), and the generated mixed image (composite image) is output (S607).
- FIG. 8 is a calculation flow chart of difference value distribution information which is one of defect information.
- the difference value distribution information represents the relationship between the gray value of each detector using the difference image between the defect image and the reference image.
- a reference image and a defect image are acquired for each detector image (S801, S802), and the difference image calculation unit 209 calculates the difference image (S803).
- the reference image is an image in which a circuit pattern similar to the defect image is observed and does not include a defect.
- a reference image is used in the vicinity of a chip or a defective portion adjacent to a chip including a defect by utilizing a plurality of chips or partial regions manufactured so that the same circuit pattern is formed in the wafer. Can be imaged.
- a reference image may be created by calculating, for example, a weighted average using a plurality of defect images obtained by imaging a portion manufactured so that the same circuit pattern is formed.
- a reference image synthesized from a defect image using the periodicity of a circuit pattern may be used.
- a reference image created by SEM simulation based on the design information may be used.
- the difference image calculation unit 209 calculates the difference between the defect image and the reference image, thereby removing the shadow related to the circuit pattern appearing at the same place in the circuit pattern of both the defect image and the reference image. Remains.
- n difference values are obtained per pixel.
- FIG. 9 There are as many axes as there are detectors, and as many points as there are pixels are plotted. However, in FIG. 9, only two dimensions relating to the detectors A and B are shown for simplification.
- the difference value distribution in the detector A is wider than that in the detector B. This indicates that the detector A includes more shadows of defects than the detector B, and can be regarded as having high visibility.
- the feature axis 903 having the maximum variance when each plot point is projected on the axis can be easily calculated by using a method such as principal component analysis. That is, the feature axis 903 is the first principal component axis, and the feature axis 904 is the second principal component axis. By obtaining the projection parameters on the principal component axis, a mixed image with higher visibility can be generated.
- the mixing parameter is a general term for parameters in the image mixing process (S703).
- a weighting coefficient when mixing an image with a weighted average with respect to a detector image is one of the mixing parameters.
- each detector image may be linearly mixed as shown in (Equation 1) or nonlinearly mixed as shown in (Equation 2). good.
- the nonlinear function f (x i ) may be a polynomial or a sigmoid function.
- the weight w 1 of the detector A is da and the weight of the detector B is a projection parameter onto the principal component axis based on the inclination of the first principal component axis and db / da.
- the w 2 may be set to db.
- FIG. 9 shows the case where the number of detectors n is 2, it can be easily calculated when the number of detectors n is 3 or more. It is also possible to calculate the mixing parameter of the second mixed image using the second principal component axis. In addition, it may be determined by referring to the external parameters stored in the recipe whether the mixing method is linear mixing or non-linear mixing. Or you may make it switch automatically according to an input image.
- the image mixing processing unit 212 mixes and outputs the detector image.
- FIG. 17 is a diagram showing the input and output of the image mixing processing (S703) performed by the image mixing processing unit 212.
- the image mixing processing unit 212 uses the mixing parameter 1701 calculated in the mixing parameter calculation process (S702) in the mixing parameter calculation unit 211, the image mixing processing unit 212 mixes five input images (1711 to 1715) in the image mixing process (S703).
- two images (1721 and 1722) are output.
- Input images 1711 to 1715 are images obtained by processing signals detected by the detectors 301 to 305, respectively.
- the number of images to be output may be an external parameter, or may be automatically calculated based on the contribution rate obtained in the principal component analysis.
- the defect information is not limited to the difference value distribution information.
- the defect area is recognized from the detector image using the defect area recognition unit 213 (S1001).
- the same method as the defect redetection in ADR can be used.
- the density difference between the defect image and the reference image is calculated, and the density difference is calculated.
- a method of extracting a large area as a defective portion may be used.
- the circuit pattern area recognition unit 213 is used to recognize the circuit pattern area from the detector image (S1002).
- the circuit pattern region and the base region may be recognized using pixel grayscale distribution information, or the region may be recognized using design information. .
- the defect feature appearance feature value 215 is calculated by the defect feature appearance feature value calculation 215 (S1003).
- the appearance features of the defective part include the unevenness information obtained from the detector image, the direction of the defect, and the positional relationship with the circuit pattern, but are not limited thereto.
- the mixing parameter calculation process S702
- the mixing parameter is calculated using the appearance feature of the defective part and the correspondence table (FIG. 11) of the appearance feature condition and the weighting coefficient created in advance.
- the correspondence table of FIG. 11 determines the weight count of the detectors A to E for each defect feature of the defect site feature 1111, selects a feature according to the type of defect, and assigns a weight to each detector. The average value of the count is obtained and used as the weight. That is, in the correspondence table shown in FIG. 11, an item that has a flag of 1 in the condition match determination column 1113 as an item that matches the condition (in the case of FIG. 3 is extracted, and a weighted average 1114 (in the case of FIG. 11, a value obtained by adding the weight count for each detector in the weight count column 1112 in the vertical axis direction) is obtained. , Divided by the number of added weight counts) may be set as the weight coefficient wi of the detector image obtained for each detector.
- the method for extracting the difference value distribution information and the defect site appearance feature amount as the defect information in the defect information extraction process (S701) and setting the mixing parameter has been described.
- the two pieces of information described are not exclusive.
- a correspondence table of the weighting factor calculated using the difference value distribution information described with reference to FIG. 9 and the appearance feature condition and weighting coefficient described with reference to FIG. It is also possible to use both pieces of information complementary to each other by, for example, averaging the weighting counts calculated using them.
- the defect information may be information useful for determining the visibility of the defective portion in the mixed image, and is not limited thereto. For example, information used when the defect inspection apparatus detects a defect can also be used.
- the above describes the method of calculating the mixing parameter using all the detector images and mixing the images. However, even if the calculation of the mixing parameter and the image mixing are performed using only the detector image selected in advance. good. Further, a plurality of detectors may be grouped, a mixing parameter may be calculated for each group, and images may be mixed. For example, a detector that mainly detects reflected electrons and a detector that mainly detects secondary electrons are in separate groups, and a mixed image created by the above-described method from a detector image that mainly detects reflected electrons, Alternatively, a mixed image created from a detector image in which secondary electrons are detected may be output.
- the mixed image output (S607) will be described.
- the mixed image is output to the input / output terminal 113 and the image storage unit 205. Alternatively, it may be output to an external device via the network interface unit 107.
- the mixing parameters are also output.
- the mixing parameter may be described in an accompanying information file of the output image, or may be output as an overlay display on the image.
- FIGS. 12A to 12C show an example in which the weighting coefficient for each detector among the mixing parameters is overlaid on the images 1201 to 1203 in the mixed image output (S607).
- Images 1201 to 1203 in FIGS. 12A to 12C are obtained by using the mixing parameters 1701 to detect the detector images 1711 to 1715 obtained by the respective detectors as described in FIG. This corresponds to the image 1721 or 1722 obtained by performing the image mixing process in S703.
- Character information 1204 may be output as shown in FIG. 12A as an overlay display of the weighting factor for each detector in the image mixing process on the images 1201 to 1203 obtained by performing the image mixing process.
- the radar chart 1205 may be output as shown in FIG. 12B, or may be output as a bar graph 1206 as shown in FIG. 12C, as long as the output shows the magnitude relationship between the weighting factors between the detectors.
- FIG. 12B by making the axis 1207 of the radar chart 1205 coincide with the actual detector direction, the magnitude relationship of the weighting factor with respect to the detection direction becomes intuitive, and it is easy to understand unevenness information and the like.
- a mixing method or the like may be output.
- the apparatus configuration according to the present embodiment is the same as that illustrated in FIGS. 1 and 2 described in the first embodiment.
- the main flow of the observation process is the same as the flow of the observation process described with reference to FIG.
- the difference is the processing method of the mixed image generation processing (S606).
- the image mixing method discriminates a detector image into a defective area and a non-defect area (background area), calculates a mixing parameter for each area, and mixes the images with different mixing parameters for each area.
- the defect area recognition unit 213 extracts a defect area from the detector image and discriminates the defect area from an area other than the defect.
- the method for extracting the defect region may be the same as the method described in the first embodiment.
- each defect may be distinguished as a separate defect area.
- the circuit pattern area recognition unit 214 may be used to divide the background area for each circuit pattern area.
- FIG. 14A shows a detector image 1410
- FIG. 14B shows an example of a region discrimination result 1420
- an upper layer circuit pattern 1411 formed along the image y direction and a lower circuit pattern 1412 formed along the image x direction and two defects 1413 and 1414 are captured.
- FIG. 14B shows an example of the area discrimination result 1420.
- the background area is discriminated into an upper circuit pattern area 1421 and a lower circuit pattern area 1422, and two areas of an area 1423 and an area 1424 are extracted and discriminated as defective areas.
- the difference value information calculation unit 210 analyzes the gray value distribution of each detector in the background gray value distribution analysis process (S1302). This is a process of analyzing the difference value distribution in the difference value information calculation unit 210 described in the first embodiment using the gray value for each background region discriminated in the region discrimination process (S1301). Similar to the analysis of the value distribution, the feature axis that maximizes the variance of the gray value is calculated by principal component analysis or the like.
- the mixing parameter calculation unit 211 calculates a mixing parameter (S1303).
- This process may also use the same method as the mixing parameter calculation method based on the difference value distribution information executed by the mixing parameter calculation unit 211 described with reference to FIG. 8 in the first embodiment. That is, in S1302, the mixing parameter is set based on the inclination of the principal component axis obtained by analyzing the background area gray value distribution.
- the mixing parameter may be calculated based on the edge direction of the circuit pattern, and further based on the analysis result of the background gray value distribution and the edge direction of the circuit pattern. The mixing parameter may be calculated.
- the mixing parameter may be calculated by the method described in the first embodiment. That is, defect information is extracted by the defect information extraction unit 208 (S1304), and a mixing parameter is calculated by the mixing parameter calculation unit 211 based on the extracted defect information (S1305). As shown in a table 1500 of FIG. 15, the mixing parameter (weight count 1502) calculated for each region is stored in the storage unit 103 in association with the region 1501. In the example shown in FIG. 15, the numbers 1421 to 1424 in the column of the area 1501 correspond to the areas 1421 to 1424 in FIG. 14B.
- the image mixing processing unit 212 mixes the images for each region by the image mixing processing (1306).
- the discriminated regions may be expanded, and the weighted average of shading may be calculated for the overlapping regions.
- mixing may be performed after calculating a weighted average of the mixing parameters.
- the method of calculating the mixing parameter using the detector image and mixing an image with high visibility of the defective part or the circuit pattern has been described.
- a method for obtaining an observation image with high visibility for ADR will be described.
- ADR is a function that automatically collects images for observation based on defect position coordinates output by other defect inspection devices. Since the defect position coordinates output by the inspection apparatus include errors, the ADR redetects defects from an image obtained by imaging the defect position coordinates at a low magnification, and generates a high-magnification image for observation around the re-detected defect position. It has a function to capture images. In this embodiment, a method of calculating a mixing parameter from a low-magnification image and using it for image mixing of a high-magnification image will be described.
- FIG. 16 shows a flow of defect observation according to the present example.
- the wafer 108 to be observed is loaded on the stage 109 (S1601), and a recipe storing image capturing conditions (acceleration voltage, probe current, number of added frames, etc.) and image processing conditions is read from the recipe storage unit 206, According to the read condition, the setting of the electron optical system of the SEM 101 is performed (S1602). Next, the defect position coordinates output by the defect inspection apparatus stored in the coordinate storage unit 207 are read (S1603).
- image capturing conditions acceleration voltage, probe current, number of added frames, etc.
- Subsequent processes S1604 to S1611 are performed for each of the read defect position coordinates.
- the stage 109 is moved using the stage control unit 202 so that the defect position coordinates are included in the imaging field of the electron optical system of the SEM 101 (S1604), and then the field size (in the imaging field of the electron optical system of the SEM 101).
- the sample wafer 108 is imaged at a low magnification such that the length of one side of the sample surface is about 10 to 3 ⁇ m (S1605).
- step S1610 the mixed low and high magnification images are output (S1611).
- the mixing parameter calculation process (S1607), the method described in the first or second embodiment may be used.
- the mixing parameter is calculated using the high-magnification image, and the mixing parameter of the high-magnification image may be calculated by using it together with the mixing parameter calculated from the low-magnification image.
- the appearance of the mixed image of the low-magnification image and the mixed image of the high-magnification image becomes the same, and a high-magnification image with high visibility can be obtained.
- the present invention provides visual recognition of defects and circuit patterns using images obtained from a plurality of detectors provided in a charged particle microscope for observing defects and circuit patterns generated during the production of semiconductor wafers in a semiconductor wafer production line.
- the present invention is applied to a sample observation apparatus provided with means for outputting an image with high characteristics.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Theoretical Computer Science (AREA)
- Electromagnetism (AREA)
- Quality & Reliability (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Image Analysis (AREA)
- Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
- Image Processing (AREA)
Abstract
荷電粒子顕微鏡を用いて試料を観察する方法において、複数の検出器で検出された複数の画像について、欠陥部位や回路パターンの視認性を考慮して、複数の画像を混合(合成)するときの重み係数を自動調整し混合して混合画像を生成することを可能とするために、荷電粒子ビームを試料上に照射して走査することにより試料から発生する二次電子又は反射電子を試料に対して異なる位置に配置した複数の検出器で検出し、異なる位置に配置した複数の検出器ごとに二次電子又は反射電子を検出して得た複数の検出器ごとの試料の複数の画像を混合して混合画像を生成し、生成した混合画像を画面上に表示するようにした。
Description
本発明は半導体ウェハの製造中において生じる欠陥や回路パターンを観察する方法およびその装置に関するものであって、より詳細には荷電粒子顕微鏡に備えられた複数の検出器から得られた画像を用いて欠陥や回路パターンの視認性が高い画像を出力する方法および手段を備えた装置に関するものである。
半導体ウェハの製造では、製造プロセスを迅速に立ち上げ、高歩留まりの量産体制に早期に移行させることが、収益確保のため重要である。この目的のため、製造ラインには各種の検査・計測装置が導入されている。
代表的な検査装置としては、光学式のウェハ検査装置がある。例えば、特開2000-105203号公報(特許文献1)には、明視野照明により、ウェハ表面の光学画像を撮像し、良品部位の画像(例えば隣接チップの画像)との比較により欠陥を検査する技術が開示されている。ただし、このような光学検査装置は、その照明波長の影響を受け、取得画像の分解能限界は数百ナノメートル程度となる。よって、ウェハ上における数十ナノメートルオーダの欠陥に関しては、その有無を検出できるのみであり、詳細な欠陥解析を行う場合は、別途より撮像分解能の高い欠陥観察装置などが必要になる。
欠陥観察装置とは、検査装置の出力を用いてウェハ上の欠陥位置を高解像度に撮像し、画像を出力する装置であり、走査型電子顕微鏡(SEM:Scanning Eelectron Microscope)を用いた観察装置(以下、レビューSEMと記載)が広く使われている。半導体の量産ラインでは観察作業の自動化が望まれており、レビューSEMは試料内の欠陥位置における画像を自動収集する欠陥画像自動収集処理(ADR:Automatic Defect Review)を搭載している。なお、検査装置が出力した欠陥位置座標(試料上の欠陥の位置を示した座標情報)には誤差が含まれているため、ADRでは検査装置が出力した欠陥位置座標を中心に視野広く撮像した画像から、欠陥を再検出し、再検出した欠陥位置を高倍率で撮像し観察用画像を得る機能を備えている。
SEM画像からの欠陥検出方法として、欠陥部位と同一の回路パターンが形成されている領域を撮像した画像を参照画像とし、欠陥部位を撮像した画像と参照画像を比較することで欠陥を検出する方法が特開2001-189358号公報(特許文献2)に記載されている。また、欠陥部位を撮像した画像1枚から欠陥を検出する方法が特開2007-40910号公報(特許文献3)に記載されている。また、撮像画像から回路パターン領域を認識する方法が特開2013-168595号公報(特許文献7)に記載されている。
半導体ウェハ上に形成される回路パターンの構造の種類は多数あり、発生する欠陥も種類や発生位置など様々なものがある。様々な構造の回路パターンや各種欠陥の視認性を高めるためには、試料から放出された放出角度や放出エネルギーが異なる電子を複数の検出器で検出することが有効である。例えば、特開2012-186177号公報(特許文献4)には試料から生じた電子について放出された仰角および方位角で弁別して検出することで対象の凹凸情報を把握可能なことが記載されている。また、特開平1-304647号公報(特許文献5)には各方位に放出された反射電子を分割して配置した複数の検出器を用いて検出する方法が記載されている。また、特開2013-232435号公報(特許文献6)には複数の検出器から得られた検出器画像を合成することにより多層レイヤにおける下層パターンのコントラストを向上する方法が開示されている。
前述の様に様々な構造の回路パターンや各種欠陥の視認性を高めるためには、試料で生じた放出角度や放出エネルギーが異なる様々な電子を多数の検出器で検出することが有効である。しかし、検出器の数が増加すると欠陥観察のために目視する画像枚数が増えユーザの負荷が増大する。そこで、得られた複数枚の検出器画像を混合して欠陥および回路パターンの視認性が高い画像を出力することが必要である。特にADRにおいては対象の欠陥ごと撮像される欠陥種や周辺の回路パターン構造が異なるため、欠陥点ごとに合成方法を自動で最適化する必要がある。
特許文献5にはビームスキャン方向に応じて混合時の重み係数を自動調整する方法が開示されているが、欠陥部位や回路パターンの視認性を考慮して自動調整する方法については記載されていない。また、特許文献6には設計情報から得られた回路パターンのエッジ方向に応じて混合時の重み係数を自動調整する方法が記載されているが、欠陥部位の視認性を考慮した自動調整方法については記載されていない。
本発明は、上記した従来技術の課題を解決して、複数の検出器で検出された複数の画像について、欠陥部位や回路パターンの視認性を考慮して、複数の画像を混合(合成)するときの重み係数を自動調整し混合して混合画像を生成することを可能とする試料観察方法及び試料観察装置を提供するものである。
上記した課題を解決するために、本発明では、荷電粒子顕微鏡を用いて試料を観察する方法において、荷電粒子ビームを試料上に照射して走査することにより試料から発生する二次電子又は反射電子を試料に対して異なる位置に配置した複数の検出器で検出し、異なる位置に配置した複数の検出器ごとに二次電子又は反射電子を検出して得た複数の検出器ごとの試料の複数の画像を混合して混合画像を生成し、生成した混合画像を画面上に表示するようにした。
また、上記課題を解決するために、本発明では、荷電粒子顕微鏡を用いて試料を観察する方法において、荷電粒子ビームを試料上の第1の領域に照射して走査することにより第1の領域から発生する二次電子又は反射電子を試料に対して異なる位置に配置した複数の検出器で検出し、異なる位置に配置した複数の検出器ごとに二次電子又は反射電子を検出して得た信号から複数の検出器ごとの第1の領域の複数の画像を作成し、作成した複数の検出器ごとの第1の領域の複数の画像それぞれの重みづけとなる混合パラメータを算出し、荷電粒子ビームを試料上の第1の領域の内部の第2の領域に照射して走査することにより第2の領域から発生する二次電子又は反射電子を試料に対して異なる位置に配置した複数の検出器で検出し、異なる位置に配置した複数の検出器ごとに二次電子又は反射電子を検出して得た信号から第1の領域の複数の画像よりも高倍率の複数の検出器ごとの第2の領域の複数の画像を作成し、作成した第2の領域の複数の画像を算出した混合パラメータを用いて混合して高倍率の混合画像を生成し、この生成した高倍率の混合画像を画面上に表示するようにした。
更に、上記課題を解決するために、本発明では、荷電粒子顕微鏡を用いて試料を観察する装置を、荷電粒子ビームを試料上に照射して走査することにより試料から発生する二次電子又は反射電子を試料に対して異なる位置に配置した複数の検出器で検出する複数の検出器を備えた荷電粒子顕微鏡と、荷電粒子顕微鏡の異なる位置に配置した複数の検出器ごとに二次電子又は反射電子を検出して得た信号から複数の検出器ごとの試料の画像を作成する画像作成部と、画像作成部で作成した複数の検出器ごとの試料の画像を混合して混合画像を作成する混合画像作成部と、混合画像作成部で作成した混合画像を表示する表示部とを備えて構成した。
本発明によれば、複数の検出器を備える欠陥観察装置において、欠陥および回路パターンの視認性が高い画像を出力することが可能となり、ユーザによる画像目視作業の負荷を軽減することが可能となった。
また、本発明によれば、複数の検出器で検出された複数の画像について欠陥部位や回路パターンの視認性が考慮されて、複数の画像を混合(合成)するときの重み係数を自動調整し混合して混合画像を生成することが可能となり、ユーザによる画像目視作業の負荷を軽減することが可能となった。
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明は、複数の検出器を備える欠陥観察装置において、欠陥および回路パターンの視認性が高い画像を出力することを可能にし、ユーザによる画像目視作業の負荷を軽減するようにしたものである。
また、本発明は、複数の検出器で検出された複数の画像について欠陥部位や回路パターンの視認性を考慮して、複数の画像を混合(合成)するときの重み係数を自動調整し混合(合成)して混合画像(合成画像)を生成することを可能にし、ユーザによる画像目視作業の負荷を軽減するようにしたものである。
以下、本発明の実施の形態を、図を用いて説明する。なお、本発明は以下に説明する実施例に限定されるものではなく、様々な変形例が含まれる。下記に説明する実施例は本発明を分かりやすく説明するために詳細に説明するものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例に置き換えることが可能であり、また、ある実施例の構成に他の実施例を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
以下に、本発明に関わる欠陥観察装置について説明する。本実施例では走査型電子顕微鏡(SEM)を備えた観察装置を対象に説明するが、本発明に関わる撮像装置はSEM以外でも良く、イオンなどの荷電粒子を用いた撮像装置でも良い。
図1は本発明にかかる装置の全体構成を表しており、画像の撮像を行うSEM101と、全体の制御を行う制御部102、磁気ディスクや半導体メモリなどに情報を記憶する記憶部103、プログラムに従い演算を行う演算部104、装置に接続された外部の記憶媒体との情報の入出力を行う外部記憶媒体入出力部105、ユーザとの情報の入出力を制御するユーザインターフェース部106、ネットワークを介して他の装置などと通信を行うネットワークインターフェース部107からなる。また、ユーザインターフェース部106には、キーボードやマウス、ディスプレイなどから構成される入出力端末113が接続されている。
SEM101は、試料ウェハ108を搭載する可動ステージ109、試料ウェハ108に電子ビーム(一次電子ビーム)1101を照射するため電子源110、試料ウェハから発生した二次電子や反射電子などを検出する検出器111の他、電子ビームを試料上に収束させる電子レンズ(図示せず)や、電子ビームを試料ウェハ上で走査するための偏向器(図示せず)や、検出器111からの信号をデジタル変換してデジタル画像を生成する画像化部112等を備えて構成される。なお、これらはバス114を介して接続され、相互に情報をやり取りすることが可能である。
図2に制御部102、記憶部103、演算部104の構成を示す。
制御部102は試料ウェハ108の搬送を制御するウェハ搬送制御部201、ステージの制御を行うステージ制御部202、電子ビームの照射位置を制御するビームシフト制御部203、電子ビームの走査を制御するビームスキャン制御部204を備える。
制御部102は試料ウェハ108の搬送を制御するウェハ搬送制御部201、ステージの制御を行うステージ制御部202、電子ビームの照射位置を制御するビームシフト制御部203、電子ビームの走査を制御するビームスキャン制御部204を備える。
記憶部103は、取得された画像データを記憶する画像記憶部205、撮像条件(例えば、一次電子ビーム1101の加速電圧や検出器111のプローブ電流、撮像して得た画像の加算フレーム数、撮像視野サイズなど)や処理パラメータなどを記憶するレシピ記憶部206、撮像箇所の座標を記憶する座標記憶部207を備える。また、演算結果などを一時的に記憶するメモリ領域(図示せず)を備える。
演算部104は検出器画像から欠陥情報を抽出する欠陥情報抽出部208、2枚の画像の差を算出する差画像算出部209、差分値の分布情報を算出する差分値分布情報算出部210、画像の混合比や混合方法などを決定する混合パラメータ算出部211、決定された画像の混合比の情報を用いて各検出器で検出された検出器画像を混合する画像混合処理部212、混合処理された画像における欠陥領域を認識する欠陥領域認識部213、混合処理された画像における回路パターン領域を認識する回路パターン領域認識部214を備える。なお、欠陥情報抽出部208、差画像算出部209、差分値分布情報算出部210、混合パラメータ算出部211は各演算を行うように設計されたハードウェアとして構成されても良いほか、ソフトウェアとして実装され汎用的な演算装置(例えばCPUやGPUなど)を用いて実行されるように構成しても良い。
指定された座標の画像を取得するための方法を説明する。
まず、計測対象となるウェハ108は、ウェハ搬送制御部201で制御されたロボットアーム(図示せず)によりステージ109の上に設置される。つぎに、撮像視野が電子ビーム1101の照射範囲内に含まれるようにステージ制御部202によりステージ109が移動される。この時、ステージの移動誤差を吸収するため、図示していない手段でステージ位置の計測が行われ、ビームシフト制御部203により移動誤差を打ち消す様にビーム照射位置の調整が行われる。電子ビーム1101は電子源110から出射して、ビームスキャン制御部204により撮像視野内において試料ウェハ108上を走査される。電子ビーム1101の照射により試料ウェハ108から生じる二次電子や反射電子は複数の検出器111により検出され、画像化部112を通して検出器ごとにデジタル画像化される。撮像された画像は撮像条件や撮像日時、撮像座標などの付帯情報とともに画像記憶部205に記憶される。
まず、計測対象となるウェハ108は、ウェハ搬送制御部201で制御されたロボットアーム(図示せず)によりステージ109の上に設置される。つぎに、撮像視野が電子ビーム1101の照射範囲内に含まれるようにステージ制御部202によりステージ109が移動される。この時、ステージの移動誤差を吸収するため、図示していない手段でステージ位置の計測が行われ、ビームシフト制御部203により移動誤差を打ち消す様にビーム照射位置の調整が行われる。電子ビーム1101は電子源110から出射して、ビームスキャン制御部204により撮像視野内において試料ウェハ108上を走査される。電子ビーム1101の照射により試料ウェハ108から生じる二次電子や反射電子は複数の検出器111により検出され、画像化部112を通して検出器ごとにデジタル画像化される。撮像された画像は撮像条件や撮像日時、撮像座標などの付帯情報とともに画像記憶部205に記憶される。
複数の検出器111の配置について図3を用いて説明する。図3A乃至図3Cは、複数の検出器111として検出器301~305を用いた場合を示し、検出器301~305と試料108の位置関係を模式的に表した図であり、図3Aは透視図、図3B、図3Cはそれぞれz軸、y軸方向から見た平面図と正面図である(検出器305は図示せず)。ここで301~304は特定の放出角度をもつ電子(主に反射電子)を選択的に検出するように構成された複数の検出器を表しており、例えば検出器301は試料ウェハ108からy方向に放出された電子を検出する検出器を表している。なお、検出器としては特許文献5に記載されているような分割型の検出器を用いても良い。また、検出器305は試料から放出された二次電子を検出する検出器を表している。以降の説明では簡略化のため図示した5つの検出器を備えた装置を例に説明するが、本発明はこの検出器配置以外にも適用可能であり、検出器の数が増えても適用可能である。
電子の放出角度と検出信号の関係について図4を用いて説明する。電子銃110から出射した一次電子ビーム1101が試料108の表面に到達した際、位置401の様に試料が平面であれば全方位に二次電子1102や反射電子1103が放出される(図4中の矢印)。そのため各検出器において信号強度は同程度となる。試料が平面でない場合、放出される二次電子1102や反射電子1103の角度には偏りが生じる。
例えば位置402では、一次電子ビーム1101の照射位置を中心に左側に放出される電子は、試料108が平面の場合よりも多くなるため左側に配置した検出器303の検出信号は強くなる。一方、右側には放出される電子は少なくなるため右側に配置した検出器304の検出信号は低くなる。位置403では試料108は平面であるが隣接する凹凸410により放出電子が遮蔽されるため左側に配置した検出器303に届く電子が少なくなり検出信号が小さくなる。
このように特定の放出角度を持つ電子を選択的に検出する様に構成された検出器301~304(図3A参照)では試料108の表面の凹凸410により検出器301~304の位置に応じた画像濃淡が生じる。画像上ではあたかも検出器方向から光を当てて陰影を観察している様に見えることからこれらの検出器画像は陰影像とも呼ばれる。なお、上方に位置する検出器305は主に二次電子を検出しており、試料108上に形成されたパターンのエッジ効果によって生じる二次電子の放出量の差異によって画像濃淡が生じる。各検出器303~305の出力を模式的に表した信号プロファイル404~406を図4に示す。図4の下側のグラフで、縦軸は各検出器から出力される信号の強度、横軸は試料上の位置を示している。
図5は、凹形状の欠陥部位551と凸形状の回路パターン552をSEM101で撮像した場合の各検出器301~305の検出信号を模式的に表した図である(断面形状のグラフ501は画像550における(a)-(b)間の断面プロファイル、断面形状のグラフ502は画像550における(c)-(d)間の断面プロファイルである)。
本例の欠陥部位551は画像550のx方向に沿って凹みが生じているため、画像y方向に配置した検出器301および302においては、信号プロファイル511及び512に示すように欠陥部位551の広い範囲で濃淡コントラスト510が生じるが、画像550のx方向に配置した検出器303および304においては、信号プロファイル513及び514に示すように欠陥部位551の両端のみでしか濃淡コントラスト510が生じない。そのため欠陥部位551に関しては画像y方向に配置した検出器301および302の信号プロファイル511及び512から形成される検出器画像において陰影が顕在化され、視認性が高くなる。
一方、y方向に沿って形成された回路パターン552に関しては逆の傾向となり画像550のx方向に配置した検出器303および304の信号プロファイル513及び514から形成される検出器画像において視認性が高くなる。
このように画像550の面内に複数の欠陥部位551や回路パターン552が含まれている場合、対象の視認性が高くなる検出器が異なる場合がある。そのため、例えば欠陥部位551の視認性が高い画像を得るためには欠陥部位551の視認性に関する情報(以下、欠陥情報と記載)を各検出器301~305毎に各信号プロファイル511~515により形成される検出器画像から抽出し、その情報に基づいて視認性が高い検出器画像を選択したり、各検出器301~305の各信号プロファイル511~515毎に得られる複数の検出器画像を混合(合成)して画像を生成したりすることが必要である。以降において具体的方法を説明する。
図6は本発明に係る観察処理のメインフロー図である。まず、観察対象の試料ウェハ108をステージ109上にロードし(S601)、レシピ記憶部206から画像撮像条件(加速電圧やプローブ電流、加算フレーム数など)や画像処理条件が記憶されたレシピを読み込み、読み込んだ条件に従って電子光学系の設定などを行う(S602)。次に、座標記憶部207に記憶された観察対象の座標を読み込む(S603)。
以降の処理S604~S607は読み込んだ観察対象座標それぞれに対して行う。まず、観察対象の座標が撮像視野に含まれるようにステージ制御部202を用いて可動ステージ109の移動を行い(S604)、ビームスキャン制御部204を用いて一次電子ビーム1101を撮像視野内において走査し、試料ウェハ108から放出された二次電子や反射電子を複数の検出器111により検出し、複数の検出器111で検出された信号を画像化部112によりそれぞれ画像化し、複数枚の検出器画像を得る(S605)。得られた複数枚の検出器画像から画像混合処理部212で混合画像(合成画像)を生成し(S606)、この生成した混成画像(合成画像)を出力する(S607)。
図7を用いて混合画像(合成画像)を生成するための混合画像生成処理(S606)の詳細について説明する。既に述べた通り、欠陥部位の視認性が高い画像を生成するためには、各検出器ごとに得られる検出器画像から欠陥情報を抽出する必要がある。そのため、まず欠陥情報抽出部208で検出器画像から欠陥情報の抽出を行い(S701)、次に抽出された欠陥情報をもとに混合パラメータ算出部211で欠陥部位の視認性が高くなる混合パラメータを算出し(S702)、算出された混合パラメータをもとに画像混合処理部212で画像を混合する(S703)。以降、S701~S703の各処理の詳細について説明する。
まず、欠陥情報抽出部208で行う欠陥情報抽出処理(S701)の詳細について述べる。図8は欠陥情報のひとつである差分値分布情報の算出フロー図である。差分値分布情報とは欠陥画像と参照画像の差画像を用いて、各検出器の濃淡値の関連を表したものである。差分値分布情報を得るため、各検出器画像について参照画像と欠陥画像を取得し(S801、S802)、差画像算出部209でその差画像を算出する(S803)。
なお、参照画像とは欠陥画像と同様の回路パターンが観察され欠陥を含まない画像である。半導体ウェハにおいては同一の回路パターンが形成されるように製造されたチップもしくは部分領域がウェハ内に複数含まれることを利用し、欠陥が含まれるチップに隣接するチップもしくは欠陥部位の近傍において参照画像を撮像することが可能である。また、同一の回路パターンが形成されるように製造された箇所を撮像した複数枚の欠陥画像を用いて、例えば加重平均を算出することで参照画像を作成するようにしても良い。また、特許文献3に記載されている様に、回路パターンの周期性を利用し、欠陥画像から合成した参照画像を用いても良い。さらには、設計情報をもとにSEMシミュレーションにより作成された参照画像を用いても良い。
差画像算出部209で欠陥画像と参照画像の差を算出することにより欠陥画像と参照画像の両方の回路パターンの同じ場所に現れる回路パターンに関する陰影が除去され、差画像には欠陥部位に関する陰影のみが残る。検出器画像の枚数をnとすると一画素あたりn個の差分値が得られる。これを差分値分布情報算出部210でn次元の空間に散布図としてプロットした一例を図9に示す。軸は検出器の数だけあり、画素の数だけ点がプロットされる。ただし、図9では簡略化のため検出器AとBに関する二次元についてのみ示している。
この例では検出器Aにおける差分値の分布が、検出器Bよりも広く分布している。これは検出器Aの方が検出器Bよりも欠陥の陰影を多く含んでいることを表しており、視認性が高いとみなせる。また、各プロット点を軸上に投影した際に分散が最大になる特徴軸903も主成分分析などの手法を使うことにより容易に算出することが可能である。つまり特徴軸903が第一主成分軸、特徴軸904が第二主成分軸である。主成分軸への投影パラメータを求めることで、より視認性の高い混合画像を生成可能となる。
次に、図7に示したフローにおける混合パラメータ算出部211で行う混合パラメータ算出処理(S702)と、画像混合処理部212で行う画像混合処理(S703)について説明する。混合パラメータとは、画像混合処理(S703)におけるパラメータの総称である。例えば、検出器画像に対して加重平均で画像を混合する際の重み係数は混合パラメータの一つである。画像混合処理部212で行う画像混合処理では、各検出器画像に対し(数1)に示されるように線形混合をしても良いし、(数2)に示されるように非線形混合にしても良い。なお(数1)(数2)において、xi(i=1、2、3、…、n)は検出器画像セット(nは検出器数)、yj(j=1、2、3、…、n)はj番目の混合画像、wiは重み係数、f(xi)は非線形関数、βはオフセット項を表す。また、非線形関数f(xi)は多項式でも良いし、シグモイド関数でも良い。
非線形関数を用いることで画素濃淡値に応じて異なる増幅が可能となり、画素濃淡値が低い領域に集中するノイズ成分の増幅抑制や、画素濃淡値が高い回路パターンの濃淡飽和を抑制することが可能となる。
yj=Σwixi+β … (数1)
yj=Σwif(xi)+β … (数2)
混合パラメータ算出部211で行う混合パラメータ算出処理(S702)では、各検出器画像に対する重み係数wiを欠陥情報抽出処理(S701)で得られる差分値分布の解析結果から算出する。
yj=Σwixi+β … (数1)
yj=Σwif(xi)+β … (数2)
混合パラメータ算出部211で行う混合パラメータ算出処理(S702)では、各検出器画像に対する重み係数wiを欠陥情報抽出処理(S701)で得られる差分値分布の解析結果から算出する。
図9の例を用いて具体的に説明すれば、第一主成分軸の傾き、db/daより、主成分軸への投影パラメータとして検出器Aの重みw1をda、検出器Bの重みw2をdbとすれば良い。なお図9は検出器数nが2の場合を示しているが、検出器数nが3以上の場合も容易に算出可能である。また、第二主成分軸を用いて、第二の混合画像の混合パラメータを算出することも可能である。その他、混合方法として線形混合とするか非線形混合とするかはレシピに記憶された外部パラメータを参照して決定すれば良い。もしくは入力画像に応じて自動的に切り替えるようにしても良い。
画像混合処理(S703)は、混合パラメータ算出部211で算出された混合パラメータをもとに画像混合処理部212で検出器画像を混合し出力する。
図17は画像混合処理部212で行う画像混合処理(S703)の入力と出力を表した図である。混合パラメータ算出部211において混合パラメータ算出処理(S702)で算出した混合パラメータ1701を用いて、画像混合処理(S703)において画像混合処理部212で5枚の入力画像(1711~1715)を混合し、2枚の画像(1721と1722)を出力した例である。入力画像1711~1715は、それぞれ検出器301~305で検出した信号を処理して得られた画像である。出力する画像の枚数は外部パラメータとしても良いし、主成分分析において得られる寄与率をもとに自動的に算出しても良い。
以上はS701の欠陥情報抽出処理ステップで、欠陥情報として差分値分布の解析結果を用いて、混合パラメータを決定する方法を示したが、欠陥情報は差分値分布情報に限らない。
S701の欠陥情報抽出処理ステップで抽出する他の欠陥情報として、欠陥部位の外観特徴量を算出する方法を図10に沿って説明する。まず、欠陥領域認識部213を用いて検出器画像から欠陥領域を認識する(S1001)。この方法としてはADRにおける欠陥再検出と同じ方法を用いることが可能であり、特許文献2や特許文献3に記載されているような、欠陥画像と参照画像との濃淡差を算出し、濃淡差の大きい領域を欠陥部として抽出する方法を用いれば良い。
次に回路パターン領域認識部213を用いて検出器画像から回路パターンの領域を認識する(S1002)。この方法としては特許文献7に記載されているように画素濃淡の分布情報を用いて回路パターン領域と下地領域を認識しても良いし、設計情報を用いて領域を認識するようにしても良い。
以上の認識した欠陥領域と回路パターン領域をもとに、欠陥部位外観特徴量算出215で欠陥部位の外観特徴量を算出する(S1003)。ここで欠陥部位の外観特徴とは、検出器画像から得られる凹凸情報や欠陥の方向、回路パターンとの位置関係などであるが、これらに限られたものではない。例えば画像x方向に沿って生じた欠陥は、画像y方向に配置された検出器において顕在化されることが定性的に明らかである。そこで、混合パラメータ算出処理(S702)では欠陥部位の外観特徴と、事前に作成した外観特徴条件と重み係数の対応表(図11)を用いて混合パラメータを算出する。
具体的には、図11の対応表は、欠陥部位特徴1111の欠陥の特徴毎に検出器A~Eの重み計数を決め、欠陥の種類に応じた特徴を選んで、各検出器ごとに重み計数の平均値を求め、それを重みとする。すなわち、図11に示した対応表において、条件に一致する項目として条件一致判定欄1113で1のフラグが立っている項目(図11の場合は、欠陥部位特徴1111が#2の凸欠陥と#3のX方向間色パターンの溝底の欠陥)を抽出し、その加重平均1114(図11の場合は、重み計数の欄1112の各検出器ごとの重み計数を縦軸方向に加算した値を、加算した重み計数の数で割った値)を各検出器ごとに得られた検出器画像の重み係数wiとして設定すれば良い。
以上、欠陥情報抽出処理(S701)において欠陥情報として、差分値分布情報や欠陥部位外観特徴量を抽出し、混合パラメータを設定する方法について説明した。説明した二つの情報は排他的なものではなく、例えば図9を用いて説明した差分値分布情報を用いて算出した重み計数と図11を用いて説明した外観特徴条件と重み係数の対応表を用いて算出した重み計数とを平均化するなどして、両方の情報を相互補完的に用いることも可能である。また、欠陥情報は混合画像における欠陥部の視認性を決定するのに有用な情報であれば良く、これらに限ったものではない。例えば欠陥検査装置が欠陥を検出する際に利用した情報も活用可能である。
以上は、全ての検出器画像を用いて混合パラメータを算出し、画像を混合する方法を示したが、事前に選択された検出器画像のみを用いて混合パラメータの算出と画像混合を行っても良い。また、複数検出器をグルーピングしておき、各グループごとに混合パラメータを算出し、画像を混合しても良い。例えば、主に反射電子を検出する検出器と、主に二次電子を検出する検出器を別グループとし、主に反射電子を検出した検出器画像から前述の方法により作成した混合画像と、主に二次電子を検出した検出器画像から作成した混合画像をそれぞれ出力するようにしても良い。
最後に混合画像出力(S607)について説明する。本処理は混合画像を入出力端末113や画像記憶部205へ出力する。もしくは、ネットワークインターフェース部107を介して外部装置へ出力しても良い。この際、混合パラメータも合わせて出力する。混合パラメータは出力画像の付帯情報ファイルへ記載されても良いし、画像上にオーバーレイ表示して出力しても良い。
図12A乃至図12Cは、混合画像出力(S607)において混合パラメータのうち各検出器に対する重み係数を画像1201~1203上にオーバーレイ表示する例を示している。図12A乃至図12Cの画像1201~1203は、図17で説明したような、各検出器で検出して得られた検出器画像1711~1715を混合パラメータ1701を用いて画像混合処理部212で、S703において画像混合処理を行って得られた画像1721又は1722に相当する。
画像混合処理を行って得られた画像1201~1203上に、画像混合処理における各検出器に対する重み係数をオーバーレイ表示する仕方としては、図12Aのように文字情報1204を出力しても良いし、図12Bのようにレーダーチャート1205を出力しても良いし、図12Cのように棒グラフ1206として出力しても良く、検出器間の重み係数の大小関係がわかる出力であれば良い。特に図12Bに示したように、レーダーチャート1205の軸1207を実際の検出器方向と一致させることで、検出方向に対する重み係数の大小関係が直観的になり、凹凸情報などの理解が容易となる。また、重み係数の他、混合方法などを出力する様にしても良い。
以上説明したように、試料で生じた放出角度やエネルギーが異なる様々な電子を複数の検出器で検出し、検出器画像を用いて差分値分布情報や欠陥部位の外観特徴量を欠陥情報として抽出し、抽出した欠陥情報をもとに混合パラメータを自動算出し、算出された混合パラメータに基づき画像を混合し、混合パラメータと併せて出力することにより、各種欠陥の視認性が高い画像を出力することが可能となり、画像観察に関してユーザ負荷の低減が可能となる。
このように、試料で生じた放出角度や放出エネルギーが異なる様々な電子を複数の検出器で検出し、検出器画像を用いて差分値分布情報や欠陥部位の外観特徴量を欠陥情報として抽出し、抽出した欠陥情報をもとに混合パラメータを自動算出し、算出された混合パラメータに基づき画像を混合し、混合パラメータと併せて出力することにより、各種欠陥の視認性が高い画像を出力することができる。
実施例1では、各種欠陥の視認性が高い画像を出力する方法について述べたが、実施例2では欠陥の視認性のみではなく回路パターンの視認性も高い画像を生成、出力する方法について説明する。
本実施例にかかる装置構成は、実施例1で説明した図1および図2の構成と同様である。また、観察処理のメインフローも、図6で説明した観察処理のフローと同様である。異なるのは混合画像生成処理(S606)の処理方法である。以降においては実施例1と異なる部分についてのみ説明する。
本実施例にかかる画像混合方法は検出器画像を欠陥領域と欠陥以外の領域(背景領域)に弁別し、領域ごとに混合パラメータを算出し、領域ごとに異なる混合パラメータで画像を混合することを特徴とする。具体的な処理フローについて図13を用いて説明する。
まず、領域弁別処理(S1301)では、欠陥領域認識部213で検出器画像から欠陥領域を抽出し、欠陥領域と欠陥以外の領域に弁別する。なお、欠陥領域の抽出の方法は実施例1に記載の方法と同様の方法で良い。また、画像内に複数の欠陥が存在する場合は、各欠陥をそれぞれ別の欠陥領域として弁別するようにしても良い。また、回路パターン領域認識部214を用いて、背景領域を回路パターン領域ごとに分割する様にしても良い。
図14Aに検出器画像1410を示し、図14Bに領域弁別結果1420の例を示す。図14Aの検出器画像1410には画像y方向に沿って形成された上層の回路パターン1411と画像x方向に沿って形成された下層の回路パターン1412、2つの欠陥1413、1414が撮像されている。図14Bは領域弁別結果1420の例であり、背景領域は上層回路パターン領域1421と下層回路パターン領域1422に弁別され、欠陥領域として領域1423、領域1424のふたつの領域が抽出および弁別されている。
領域弁別後、各領域について混合パラメータの算出を独立に行う。背景領域に関しては、差分値情報算出部210で、背景濃淡値分布解析処理(S1302)において、各検出器の濃淡値分布を解析する。これは実施例1において説明した差分値情報算出部210における差分値分布の解析を領域弁別処理(S1301)で弁別した背景領域ごとの濃淡値を用いて処理するものであり、実施例1における差分値分布の解析と同様に、濃淡値の分散が最大となる特徴軸を主成分分析などにより算出する。
次に、差分値情報算出部210におけるS1302の背景領域濃淡値分布の解析結果をもとに、混合パラメータ算出部211で混合パラメータを算出する(S1303)。本処理も実施例1において図8を用いて説明した混合パラメータ算出部211で実行する差分値分布情報をもとにした混合パラメータ算出方法と同様の方法を用いればよい。つまり、S1302で背景領域濃淡値分布の解析により得られる主成分軸の傾きより混合パラメータを設定する。その他、特許文献6記載の様に回路パターンのエッジ方向などをもとに混合パラメータを算出する様にしても良く、さらには背景濃淡値分布の解析結果と回路パターンのエッジ方向などをもとに混合パラメータを算出する様にしても良い。
欠陥領域に関しては実施例1で説明した方法により混合パラメータを算出すれば良い。つまり欠陥情報抽出部208で欠陥情報を抽出し(S1304)、抽出した欠陥情報に基づいて混合パラメータ算出部211で混合パラメータを算出すれば良い(S1305)。図15の表1500に示すように、各領域について算出した混合パラメータ(重み計数1502)は、領域1501に結び付けて記憶部103に記憶される。図15に示した例においては、領域1501の欄の番号1421~1424は、図14Bの領域1421~1424に対応している。
ループ1の処理を繰り返して各領域について混合パラメータの算出が終了すると、次に、画像混合処理部212において、画像混合処理(1306)により領域ごとに画像を混合する。この際、領域の境界において生じる混合パラメータの違いによる不連続性を低減するために、弁別した領域をそれぞれ膨張させておき、重なり合う領域については濃淡の加重平均を算出するようにしても良い。もしくは混合パラメータの加重平均を算出した上で混合するようにしても良い。
以上説明した方法によれば、欠陥部位のみならず回路パターンの視認性も高い画像を出力することが可能となった。
実施例1および実施例2では検出器画像を用いて混合パラメータを算出し、欠陥部位ないし回路パターンの視認性が高い画像を混合する方法について説明した。本実施例ではADRを対象に視認性の高い観察用画像を得る方法について説明する。
ADRは他の欠陥検査装置が出力した欠陥位置座標をもとに、観察用の画像を自動収集する機能である。検査装置が出力した欠陥位置座標には誤差が含まれるため、ADRでは欠陥位置座標を低倍率で撮像した画像から欠陥を再検出し、再検出した欠陥位置を中心に観察用の高倍率画像を撮像する機能を備えている。本実施例では低倍画像から混合パラメータを算出し、高倍画像の画像混合に用いる方法を説明する。
本実施例にかかる装置構成は実施例1および実施例2で示した図1および図2に示した構成と同様である。本実施例に係る欠陥観察のフローを図16に示す。
まず、観察対象のウェハ108をステージ109上にロードし(S1601)、レシピ記憶部206から画像撮像条件(加速電圧やプローブ電流、加算フレーム数など)や画像処理条件が記憶されたレシピを読み込み、読み込んだ条件に従ってSEM101の電子光学系の設定などを行う(S1602)。次に、座標記憶部207に記憶された欠陥検査装置が出力した欠陥位置座標を読み込む(S1603)。
以降の処理S1604~S1611は読み込んだ欠陥位置座標それぞれに対して行う。まず、欠陥位置座標がSEM101の電子光学系の撮像視野に含まれるようにステージ制御部202を用いてステージ109の移動を行い(S1604)、次に視野サイズ(SEM101の電子光学系の撮像視野における試料面の一辺の長さ)が10~3μm程度の低倍率で試料ウェハ108を撮像する(S1605)。次に、この撮像して得た試料ウェハ108の低倍画像の視野内から欠陥を再検出し(S1606)、この低倍画像を用いて混合パラメータを算出し(S1607)、低倍画像の混合画像を生成する(S1608)。次に、低倍画像で再検出した欠陥位置を中心に視野サイズが3~0.5μm程度の高倍率で画像を撮像し(S1609)、処理S1607で算出した混合パラメータを用いて高倍画像を混合し(S1610)、混合した低倍画像および高倍画像を出力する(S1611)。
混合パラメータ算出処理(S1607)に関しては、実施例1ないし実施例2に記載の方法を用いればよい。また、高倍画像撮像後に、高倍撮像画像を用いて混合パラメータを算出し、低倍画像から算出した混合パラメータとの併用により、高倍画像の混合パラメータを算出しても良い。
以上説明した方法によれば、低倍画像の混合画像と、高倍画像の混合画像の見栄えが同様になり、かつ視認性の高い高倍画像を得ることが可能となる。
本発明は、半導体ウェハの製造ラインにおいて、半導体ウェハの製造中において生じる欠陥や回路パターンを観察する荷電粒子顕微鏡に備えられた複数の検出器から得られた画像を用いて欠陥や回路パターンの視認性が高い画像を出力する手段を備えた試料観察装置に適用される。
101…走査型電子顕微鏡(SEM) 108…ウェハ試料 112…画像化部 205…画像記憶部 206…レシピ記憶部 207…座標記憶部 208…欠陥情報抽出部 209…差画像算出部 210…差分値分布情報算出部 211…混合パラメータ算出部 212…画像混合処理部 213…欠陥領域認識部 214…回路パターン領域認識部 215…欠陥部位外観特徴量算出部 301~305…荷電粒子検出器。
Claims (14)
- 荷電粒子顕微鏡を用いて試料を観察する方法であって、
荷電粒子ビームを試料上に照射して走査することにより前記試料から発生する二次電子又は反射電子を前記試料に対して異なる位置に配置した複数の検出器で検出し、
前記異なる位置に配置した複数の検出器ごとに前記二次電子又は反射電子を検出して得た前記複数の検出器ごとの前記試料の複数の画像を混合して混合画像を生成し、
前記生成した混合画像を出力する
ことを特徴とする試料観察方法。 - 請求項1記載の試料観察方法であって、
前記異なる位置に配置した複数の検出器ごとに前記二次電子又は反射電子を検出して得た前記複数の検出器ごとの前記試料の複数の画像を混合して混合画像を生成することにより、前記複数の検出器ごとに得られた前記試料の画像よりも前記試料上の欠陥部位やパターンの視認性を向上させた画像を出力することを特徴とする試料観察方法。 - 請求項1記載の試料観察方法であって、
前記異なる位置に配置した複数の検出器ごとに前記二次電子又は反射電子を検出して得た前記複数の検出器ごとの前記試料の複数の画像を混合して混合画像を生成することを、前記複数の検出器ごとの前記試料の複数の画像のそれぞれに重みをつけて混合することにより行うことを特徴とする試料観察方法。 - 請求項1記載の試料観察方法であって、
前記複数の検出器ごとの前記試料の複数の画像を混合して混合画像を生成することを、前記試料上の観察したいパターン又は欠陥の種類に応じて前記試料の複数の画像のそれぞれの重みを変えて混合することにより行うことを特徴とする試料観察方法。 - 請求項1記載の試料観察方法であって、
前記複数の検出器ごとの前記試料の複数の画像を混合した画像と共に、前記混合した画像における前記複数の検出器ごとの前記試料の複数の画像の重みに関する情報を画面上に表示することを特徴とする試料観察方法。 - 荷電粒子顕微鏡を用いて試料を観察する方法であって、
荷電粒子ビームを試料上の第1の領域に照射して走査することにより前記第1の領域から発生する二次電子又は反射電子を前記試料に対して異なる位置に配置した複数の検出器で検出し、
前記異なる位置に配置した複数の検出器ごとに前記二次電子又は反射電子を検出して得た信号から前記複数の検出器ごとの前記第1の領域の複数の画像を作成し、
前記作成した前記複数の検出器ごとの前記第1の領域の複数の画像それぞれの重みづけとなる混合パラメータを算出し、
荷電粒子ビームを前記試料上の前記第1の領域の内部の第2の領域に照射して走査することにより前記第2の領域から発生する二次電子又は反射電子を前記試料に対して異なる位置に配置した前記複数の検出器で検出し、
前記異なる位置に配置した複数の検出器ごとに前記二次電子又は反射電子を検出して得た信号から前記第1の領域の複数の画像よりも高倍率の前記複数の検出器ごとの前記第2の領域の複数の画像を作成し、
前記作成した前記第2の領域の複数の画像を前記算出した混合パラメータを用いて混合して高倍率の混合画像を生成し、
前記生成した高倍率の混合画像を出力する
ことを特徴とする試料観察方法。 - 請求項6記載の試料観察方法であって、
前記混合パラメータを、前記作成した第1の領域の複数の画像から抽出した欠陥の情報を用いて算出することを特徴とする試料観察方法。 - 請求項6記載の試料観察方法であって、
前記生成した高倍率の混合画像を、前記重みに関する情報と共に画面上に表示することを特徴とする試料観察方法。 - 荷電粒子顕微鏡を用いて試料を観察する装置であって、
荷電粒子ビームを試料上に照射して走査することにより前記試料から発生する二次電子又は反射電子を前記試料に対して異なる位置に配置した複数の検出器で検出する複数の検出器を備えた荷電粒子顕微鏡と、
前記荷電粒子顕微鏡の異なる位置に配置した複数の検出器ごとに前記二次電子又は反射電子を検出して得た信号から前記複数の検出器ごとの前記試料の画像を作成する画像作成部と、
前記画像作成部で作成した前記複数の検出器ごとの前記試料の画像を混合して混合画像を作成する混合画像作成部と、
前記混合画像作成部で作成した混合画像を表示する表示部と
を備えたことを特徴とする試料観察装置。 - 請求項9記載の試料観察装置であって、
前記混合画像作成部は、前記複数の検出器ごとの前記試料の画像にそれぞれに重みをつけて混合することにより混合画像を作成することを特徴とする試料観察装置。 - 請求項9記載の試料観察装置であって、
前記混合画像作成部は、前記試料上の観察したいパターン又は欠陥の種類に応じて前記複数の検出器ごとの前記試料の画像にそれぞれに重みをつけて混合することを特徴とする試料観察装置。 - 請求項9記載の試料観察装置であって、
欠陥情報抽出部と混合パラメータ算出部とを更に備え、前記欠陥情報抽出部で前記異なる位置に配置した複数の検出器ごとに作成した前記試料の画像から前記試料上の欠陥の情報を抽出し、前記混合パラメータ算出部で前記混合画像作成部において前記混合画像を作成するための前記試料の画像の重みである混合パラメータを算出し、前記混合画像作成部において前記混合パラメータ算出部で算出した前記混合パラメータを用いて前記画像作成部で作成した前記異なる位置に配置した複数の検出器ごとの画像に重みをつけて混合することを特徴とする試料観察装置。 - 請求項9記載の試料観察装置であって、
前記表示部に、前記重みをつけて混合した画像を前記重みに関する情報と共に表示することを特徴とする試料観察装置。 - 請求項9記載の試料観察装置であって、
前記混合画像作成部において前記画像作成部で作成した前記異なる位置に配置した複数の検出器ごとの前記試料の画像を重みをつけて混合することにより、前記複数の検出器ごとに得られた前記試料の画像よりも前記試料上の欠陥部位やパターンの視認性を向上させた画像を作成することを特徴とする試料観察装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/544,788 US10229812B2 (en) | 2015-01-26 | 2015-12-21 | Sample observation method and sample observation device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-012155 | 2015-01-26 | ||
JP2015012155A JP2016139467A (ja) | 2015-01-26 | 2015-01-26 | 試料観察方法および試料観察装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016121265A1 true WO2016121265A1 (ja) | 2016-08-04 |
Family
ID=56542898
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/085624 WO2016121265A1 (ja) | 2015-01-26 | 2015-12-21 | 試料観察方法および試料観察装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10229812B2 (ja) |
JP (1) | JP2016139467A (ja) |
WO (1) | WO2016121265A1 (ja) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110036279B (zh) * | 2016-12-06 | 2022-03-15 | 三菱电机株式会社 | 检查装置和检查方法 |
JP7053805B2 (ja) * | 2017-09-29 | 2022-04-12 | エーエスエムエル ネザーランズ ビー.ブイ. | 複数の荷電粒子ビームを用いてサンプルを検査する方法 |
US10473593B1 (en) * | 2018-05-04 | 2019-11-12 | United Technologies Corporation | System and method for damage detection by cast shadows |
US11268881B2 (en) | 2018-05-04 | 2022-03-08 | Raytheon Technologies Corporation | System and method for fan blade rotor disk and gear inspection |
US10902664B2 (en) | 2018-05-04 | 2021-01-26 | Raytheon Technologies Corporation | System and method for detecting damage using two-dimensional imagery and three-dimensional model |
US10685433B2 (en) | 2018-05-04 | 2020-06-16 | Raytheon Technologies Corporation | Nondestructive coating imperfection detection system and method therefor |
US11079285B2 (en) | 2018-05-04 | 2021-08-03 | Raytheon Technologies Corporation | Automated analysis of thermally-sensitive coating and method therefor |
US10488371B1 (en) | 2018-05-04 | 2019-11-26 | United Technologies Corporation | Nondestructive inspection using thermoacoustic imagery and method therefor |
US10914191B2 (en) | 2018-05-04 | 2021-02-09 | Raytheon Technologies Corporation | System and method for in situ airfoil inspection |
US10928362B2 (en) | 2018-05-04 | 2021-02-23 | Raytheon Technologies Corporation | Nondestructive inspection using dual pulse-echo ultrasonics and method therefor |
US10958843B2 (en) | 2018-05-04 | 2021-03-23 | Raytheon Technologies Corporation | Multi-camera system for simultaneous registration and zoomed imagery |
US10943320B2 (en) | 2018-05-04 | 2021-03-09 | Raytheon Technologies Corporation | System and method for robotic inspection |
JP2020043266A (ja) * | 2018-09-12 | 2020-03-19 | 株式会社日立ハイテクノロジーズ | 半導体ウェハの欠陥観察システム及び欠陥観察方法 |
JP7040496B2 (ja) * | 2019-05-28 | 2022-03-23 | Jfeスチール株式会社 | 電子顕微鏡における試料観察方法、電子顕微鏡用画像解析装置、電子顕微鏡および電子顕微鏡用画像解析方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000260380A (ja) * | 1999-03-11 | 2000-09-22 | Toshiba Microelectronics Corp | 電子ビーム検査装置 |
JP2013232435A (ja) * | 2013-07-24 | 2013-11-14 | Hitachi High-Technologies Corp | 走査型荷電粒子顕微鏡の画質改善方法および走査型荷電粒子顕微鏡装置 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2675335B2 (ja) | 1988-06-01 | 1997-11-12 | サンユー電子株式会社 | 反射電子検出装置 |
JP3566589B2 (ja) | 1998-07-28 | 2004-09-15 | 株式会社日立製作所 | 欠陥検査装置およびその方法 |
JP3893825B2 (ja) | 1999-12-28 | 2007-03-14 | 株式会社日立製作所 | 半導体ウェーハの欠陥観察方法及びその装置 |
JP4825469B2 (ja) | 2005-08-05 | 2011-11-30 | 株式会社日立ハイテクノロジーズ | 半導体デバイスの欠陥レビュー方法及びその装置 |
JP5425601B2 (ja) * | 2009-12-03 | 2014-02-26 | 株式会社日立ハイテクノロジーズ | 荷電粒子線装置およびその画質改善方法 |
JP5530980B2 (ja) * | 2011-06-14 | 2014-06-25 | 株式会社アドバンテスト | パターン測定装置及びパターン測定方法 |
JP5640027B2 (ja) | 2012-02-17 | 2014-12-10 | 株式会社日立ハイテクノロジーズ | オーバーレイ計測方法、計測装置、走査型電子顕微鏡およびgui |
JP2012186177A (ja) | 2012-06-18 | 2012-09-27 | Hitachi High-Technologies Corp | 電子線応用装置 |
-
2015
- 2015-01-26 JP JP2015012155A patent/JP2016139467A/ja active Pending
- 2015-12-21 US US15/544,788 patent/US10229812B2/en active Active
- 2015-12-21 WO PCT/JP2015/085624 patent/WO2016121265A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000260380A (ja) * | 1999-03-11 | 2000-09-22 | Toshiba Microelectronics Corp | 電子ビーム検査装置 |
JP2013232435A (ja) * | 2013-07-24 | 2013-11-14 | Hitachi High-Technologies Corp | 走査型荷電粒子顕微鏡の画質改善方法および走査型荷電粒子顕微鏡装置 |
Also Published As
Publication number | Publication date |
---|---|
US10229812B2 (en) | 2019-03-12 |
US20180019097A1 (en) | 2018-01-18 |
JP2016139467A (ja) | 2016-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016121265A1 (ja) | 試料観察方法および試料観察装置 | |
US8237119B2 (en) | Scanning type charged particle beam microscope and an image processing method using the same | |
JP3990981B2 (ja) | 基板を検査するための方法及び装置 | |
US8885950B2 (en) | Pattern matching method and pattern matching apparatus | |
US7932493B2 (en) | Method and system for observing a specimen using a scanning electron microscope | |
JP5118872B2 (ja) | 半導体デバイスの欠陥観察方法及びその装置 | |
KR101479889B1 (ko) | 하전 입자선 장치 | |
TWI785824B (zh) | 構造推定系統、構造推定程式 | |
WO2013168487A1 (ja) | 欠陥解析支援装置、欠陥解析支援装置で実行されるプログラム、および欠陥解析システム | |
JP5164598B2 (ja) | レビュー方法、およびレビュー装置 | |
KR101987726B1 (ko) | 전자선식 패턴 검사 장치 | |
US8330104B2 (en) | Pattern measurement apparatus and pattern measurement method | |
JP2006269489A (ja) | 欠陥観察装置及び欠陥観察装置を用いた欠陥観察方法 | |
JP2014207110A (ja) | 観察装置および観察方法 | |
JP5622398B2 (ja) | Semを用いた欠陥検査方法及び装置 | |
JP2005259396A (ja) | 欠陥画像収集方法およびその装置 | |
JP4654093B2 (ja) | 回路パターン検査方法及びその装置 | |
JP6088337B2 (ja) | パターン検査方法及びパターン検査装置 | |
JP2011174858A (ja) | 欠陥検出方法および半導体装置の製造方法 | |
WO2016092614A1 (ja) | 欠陥検査装置、表示装置、及び欠陥分類装置 | |
TW201428233A (zh) | 相對臨界尺寸之量測的方法及裝置 | |
JP6207893B2 (ja) | 試料観察装置用のテンプレート作成装置 | |
JP2011192766A (ja) | 半導体ウェーハの外観検査方法及びその装置 | |
JP5127411B2 (ja) | 走査型電子顕微鏡 | |
JPWO2012056639A1 (ja) | パターンの判定装置、及びコンピュータプログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15880157 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15544788 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15880157 Country of ref document: EP Kind code of ref document: A1 |