Nothing Special   »   [go: up one dir, main page]

WO2016121076A1 - Warehouse management system - Google Patents

Warehouse management system Download PDF

Info

Publication number
WO2016121076A1
WO2016121076A1 PCT/JP2015/052610 JP2015052610W WO2016121076A1 WO 2016121076 A1 WO2016121076 A1 WO 2016121076A1 JP 2015052610 W JP2015052610 W JP 2015052610W WO 2016121076 A1 WO2016121076 A1 WO 2016121076A1
Authority
WO
WIPO (PCT)
Prior art keywords
work
warehouse
unit
management system
pattern
Prior art date
Application number
PCT/JP2015/052610
Other languages
French (fr)
Japanese (ja)
Inventor
頼子 風間
宇都木 契
木村 淳一
宏明 高月
小林 美保
昭久 岡田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2015/052610 priority Critical patent/WO2016121076A1/en
Publication of WO2016121076A1 publication Critical patent/WO2016121076A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/137Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed

Definitions

  • the present invention relates to a warehouse management system.
  • Patent Document 1 describes a technique for simulating a change in shelf arrangement when order information is received.
  • a shelf arrangement simulation is performed to calculate the article take-out time in consideration of the passage of the worker's route, the take-out time before the arrangement change and the take-out time after the arrangement change and the shelf arrangement When the sum with the change time is exceeded, it is determined that the shelf arrangement should be changed.
  • Patent Document 1 the change simulation is performed when order information is received. Therefore, as a first problem, it is difficult to change the layout of the warehouse one by one and improve the work efficiency in the warehouse one by one because it is not determined whether or not it is necessary to change the layout during the work.
  • the second issue is to determine whether the work efficiency of the entire warehouse has actually improved even if the time taken to add the take-out time after the placement change and the time to change the shelf placement is shorter than that before the change. It was difficult to do.
  • an object of the present invention is to provide a warehouse management system that makes it easier to change the layout, work flow, or work sharing of a warehouse. It is another object of the present invention to provide a warehouse management system that improves work efficiency in the warehouse and makes it easier to reduce costs in the warehouse.
  • a typical example of the means for solving the first problem is a warehouse management system, a generation unit that generates a plurality of warehouse layouts, and a warehouse based on a quantity determined by a customer order. Select a layout that can satisfy the task from among the layout, a warehouse task calculation unit that calculates tasks related to work in the warehouse, a work efficiency calculation unit that calculates work efficiency in the warehouse when each layout is applied.
  • a first selection unit, a second selection unit that selects a layout whose work efficiency value exceeds a preset threshold among the layouts selected by the first selection unit, and a second selection unit.
  • an instruction generator for generating instructions for a plurality of workers and a plurality of robots, and sending the instructions to a plurality of workers and a plurality of robots
  • a work result receiving unit that receives work results for the sent instructions from a plurality of workers or robots, and the work efficiency calculation unit triggers the work result receiving unit to receive work results
  • a warehouse management system characterized by calculating work efficiency.
  • a warehouse management system a generation unit that generates a plurality of patterns including a layout of a warehouse, a work flow that is an order of work in the warehouse, or a work schedule of a plurality of workers and a plurality of robots, and a customer's
  • the warehouse task calculation unit that calculates the tasks including the work contents, end time, and required work amount of each work in the warehouse from the quantity determined by the order, and the work efficiency in the warehouse when each of the patterns is applied Among the patterns selected by the work efficiency calculation unit, a pattern selected by the first selection unit, and a first selection unit that selects a pattern that can satisfy the required work amount within the end time of each work, among the patterns, A second selection unit that selects a pattern whose work efficiency exceeds a preset threshold value, and a plurality of operations according to the pattern selected by the second selection unit Or, an instruction generation unit that generates instructions to a plurality of robots, an instruction transmission unit that transmits instructions to a plurality of workers or a plurality of robot
  • representative examples of the means for solving the second problem include a warehouse layout, a work flow that is the order of work in the warehouse, or a work of a plurality of workers and a plurality of robots.
  • a generation unit that generates multiple patterns including schedules, a position database that stores information including the positions of multiple workers and multiple robots, and the work content of each operation in the warehouse based on the quantity determined by the customer's order Based on the interference between a plurality of workers and a plurality of robots simulated from the information including the positions of a plurality of workers and a plurality of robots, a warehouse task calculation unit for calculating a task including time and a required amount of work, A work efficiency calculation unit that calculates work efficiency in the warehouse when each of the patterns is applied, and the pattern must be within the end time of each work.
  • a first selection unit that selects a pattern that can satisfy a certain amount of work, and a second selection that selects a pattern whose work efficiency exceeds a preset threshold among the patterns selected by the first selection unit
  • An instruction generation unit that generates instructions to a plurality of workers or a plurality of robots according to a pattern selected by the second selection unit, and an instruction transmission unit that transmits the instructions to a plurality of workers or a plurality of robots
  • a warehouse management system characterized by having
  • the present invention it is possible to provide a warehouse management system that makes it easier to change the warehouse layout, work flow, or work sharing. In addition, it is possible to provide a warehouse management system that makes it easier to improve work efficiency in the warehouse.
  • the schematic diagram of a warehouse management system The flowchart at the time of selecting the produced
  • FIG. The schematic diagram of a warehouse management system.
  • FIG. The flowchart at the time of cost calculation and selecting a pattern.
  • FIG. The schematic diagram showing the layout change of a shelf.
  • a warehouse management system an example of a warehouse management system that generates a warehouse pattern triggered by the timing at which a work result is received from a worker or a robot will be described.
  • FIG. 1 is an example of a configuration diagram of the warehouse management system of the present embodiment.
  • the warehouse management system 100 accepts customer orders 101 and warehouse data in the warehouse database 103, and transmits an instruction generated based on the selected pattern to the worker 104 or the robot 105 in the warehouse 102.
  • the warehouse management system 100 includes a reception unit 106, a generation unit 107, a position database 108, a calculation unit 109, a selection unit 110, an instruction generation unit 111, an instruction transmission unit 112, a quantity database 117, and a work result reception unit 118.
  • the calculation unit 109 includes a warehouse task calculation unit 113 and a work efficiency calculation unit 114
  • the selection unit 110 includes a first selection unit 115 and a second selection unit 116.
  • the warehouse management system 100 manages the warehouse 102 from the outside, but may be a system constructed in the warehouse 102.
  • the quantity database 117 may be built in the warehouse 102.
  • the reception unit 106 receives warehouse data and customer orders 101. At that time, the received data may be converted into a data format handled in the warehouse management system 100.
  • the warehouse data is data related to resources such as workers, robots, various devices, and shelves in the warehouse. For example, it includes the characteristics of workers and robots, the number of shelves, and the like.
  • the receiving unit 106 classifies the received data into data used for pattern generation, data related to the positions of the worker 104 and the robot 105, and data related to the quantity. Therefore, data used for pattern generation is transmitted to the generation unit 107, data relating to the position is stored in the position database 108, and data relating to the quantity is stored in the quantity database 117.
  • the generation unit 107 generates a plurality of patterns to be changed based on data used for pattern generation received by the reception unit 106.
  • the layout is a layout such as shelf arrangement, robot position and worker position, work area setting layout, equipment installation layout, work flow indicating the work order, and work schedule for assigning the designated work to the worker or robot.
  • the generation unit 107 stores a plurality of rules in advance, determines the value of the input data, and generates a corresponding pattern.
  • the position database 108 stores data on the positions of the worker 104 and the robot 105 from the reception unit 106.
  • the position of the worker 104 is acquired from, for example, a sensor attached to the worker 104, a wearable terminal, or a portable terminal possessed by the beacon or the wireless base. Or, it is acquired by a sensor such as a camera in the warehouse.
  • the position of the robot 105 is obtained by, for example, acquiring its own position with a marker or a laser and performing wireless communication.
  • the calculation unit 109 includes a warehouse task calculation unit 113 and a work efficiency calculation unit 114.
  • the value necessary for determining whether the pattern can be changed is determined based on the quantity data in the quantity database 117 and the pattern generated by the generation unit 107. Perform the calculation.
  • the warehouse task calculation unit 113 calculates a task in the warehouse from the quantity data determined by the customer order 101.
  • the quantity data includes the type, number, and size of articles to be stored in the warehouse.
  • the quantity data includes a number representing a plurality of articles of the same type as a pack.
  • an indication of the date and time of warehousing is included.
  • the type, number, size, information of the delivery destination of goods to be delivered from the warehouse, and the date and time for completing the delivery work are included. It also includes information on the type, number and size of inventory items already stored in the warehouse. As a result, this quantity data can be regarded as a work instruction to the warehouse.
  • the task represents the work contents in the warehouse, the time taken for the work, the end time that is the time to finish the work, or the required work amount. For example, the time at which the shipping operation should be completed and the required shipping amount.
  • the task may be described in a format per unit time, but is not limited thereto.
  • Tasks include the priority of work, the priority of goods (such as goods that are shipped earlier due to the expiration date, etc.), the priority of the delivery destination (if the delivery destination is at a long distance, etc.), the order of delivery ( Depending on the article, the order of delivery may be fixed. Further, different work may be set for each article. Further, it may be data predicted based on past trends, market information, or the like instead of actual work data.
  • the work efficiency calculation unit 114 calculates the work efficiency when the pattern generated by the generation unit 107 is applied to the warehouse every time a work result is received from the worker 104 or the robot 105.
  • the work efficiency is a numerical value of the work efficiency in the warehouse. For example, the work time for one work, the labor cost of the worker for the work, the maintenance cost of the robot, etc. Is calculated on the basis of an integrated value such as a work amount obtained by applying the operation rate of the worker or the robot.
  • the work efficiency is calculated by an evaluation formula or a simulation given in advance.
  • the work result is received from the worker 104 or the robot 105 by a work result receiving unit 118 described later, and the work result receiving unit 118 transmits the received timing to the work efficiency calculating unit 114.
  • the timing of receiving the work result of the shelf position changing operation by the transfer robot is the timing at which the transfer robot moves to the changed shelf position and arranges the shelf.
  • the article to be conveyed moves on the belt conveyor and is picked by the worker 104 or the robot 105, and the article disappears from the belt conveyor.
  • a controller or the like determines whether or not an article exists on the belt conveyor.
  • the selection unit 110 includes a first selection unit 115 and a second selection unit 116, and the task value calculated by the warehouse task calculation unit 113 and the work efficiency value calculated by the work efficiency calculation unit 114. Then, one of the patterns generated by the generation unit 107 is selected.
  • the first selection unit 115 selects a pattern satisfying the task calculated by the warehouse task calculation unit 113 from the patterns generated by the generation unit 107. For example, when the generated pattern is applied, it is determined whether a necessary work amount is satisfied within the end time.
  • the second selection unit 116 selects a pattern having high work efficiency from the patterns selected by the first selection unit 115.
  • a plurality of work efficiency values greater than or equal to a preset threshold value may be selected, or a work efficiency value that is the largest may be selected.
  • FIG. 2 is a diagram showing a flow until the selection unit 110 selects a pattern.
  • the generation unit 107 generates a pattern in the warehouse.
  • the pattern is generated by, for example, the brute force method.
  • other pattern generation methods such as pattern generation based on learning, pattern generation by combination optimization, and pattern generation by simulation may be used.
  • pattern generation based on learning learning data is input in advance.
  • the pattern generation 201 may generate a pattern for each trigger calculated by the calculation unit 109, or may always generate a pattern regardless of the calculation by the calculation unit 109.
  • the task determination 202 determines whether the task calculated by the warehouse task calculation unit 113 is satisfied when the pattern generated by the pattern generation 201 is applied. For example, it is determined by simulation or the like whether each work can be completed within the end time of each work. It may be determined whether the pattern satisfies the required work amount calculated by the warehouse task calculation unit 113 within the end time.
  • the pattern determined not to satisfy the task by the task determination 202 is discarded by the pattern discard 203.
  • the work efficiency determination 204 when the pattern determined to satisfy the task by the task determination 202 is applied to the warehouse, whether the value of the work efficiency calculated by the work efficiency calculation unit 114 exceeds a preset threshold value judge.
  • the threshold for determining work efficiency may be fixed or may vary over time.
  • the pattern determined by the work efficiency determination 204 that the work efficiency does not exceed the threshold is discarded by the pattern discard 203.
  • the pattern selection 205 the pattern determined by the work efficiency determination 204 that the work efficiency value exceeds the threshold value is selected. Alternatively, a pattern that maximizes the value of work efficiency may be selected.
  • the instruction generation unit 111 creates a work instruction based on the pattern selected by the second selection unit 116.
  • the work instruction is set for each worker 104 or the robot 105, and the work is determined every time. For example, in order to realize the layout of the read pattern, if one shelf in the warehouse is to be moved to another location, an operator or robot that can move the shelf will be informed of the moving shelf. The position and shelf identification number and the destination position are created as work instructions. In order to realize the read work schedule, when the worker moves to another place in the warehouse, the position of the move destination and the work content are created as work instructions for the worker.
  • the instruction transmission unit 112 transmits a work instruction to the worker 104 or the robot 105 in the warehouse 102.
  • the instruction transmission unit 112 may give an instruction to the worker via the display unit. Furthermore, not only the instruction of each worker 104 but also the state in the warehouse and the future work schedule may be displayed on the display unit. As a result, workers and managers can grasp the overall flow of the warehouse.
  • the display unit may be a terminal screen or a mobile terminal screen. Further, it may be a display projected on the environment, or a wearable terminal worn by an operator.
  • the work result receiving unit 118 receives the result of the work instructed by the instruction sending unit 112 from the worker 104 or the robot 105.
  • the worker 104 and the robot 105 work according to the work instruction.
  • the work result is transmitted to the work result receiving unit 118.
  • the robot 105 transmits via a wireless network or the like, and the worker 104 transmits via an installed terminal or a portable terminal possessed by the operator.
  • a sensor installed in a warehouse or a sensor possessed by the worker 104 may automatically determine the completion of work and transmit a work completion notice.
  • the state may be transmitted in a state such as before starting the work or during the work, or an event in which the instructed work cannot be performed for some reason (for example, the worker 104 picks If an instruction is received but there is no stock, a robot receives a movement instruction but the battery runs out, etc., the status may be transmitted.
  • the warehouse management system 100 can grasp the situation in the warehouse one by one.
  • FIG. 3 is an example of a diagram schematically showing the transition of work efficiency in the warehouse.
  • FIG. 3 shows a change in the amount of delivery work when the delivery operation is completed by the instructed end time 301 for the goods instructed for delivery.
  • Integrating the amount of work from the work start time 302 to the end time 301 represents the quantity related to the entire delivery.
  • the work amount does not change as shown by the transition indicated by the dotted line 303.
  • the shipment work amount shows a transition indicated by a solid line 304, for example. Since resources (workers, robots, etc.) are devoted to the work to make changes, the amount of warehousing work will decrease after the pattern change work starts, but the pattern will be reviewed each time the instruction result is received from the worker or robot. Doing and changing the pattern little by little increases work efficiency over time.
  • the work efficiency calculation unit 114 integrates the output work amount from the work start time 302 to the end time 301, and the value of the work efficiency is obtained. Ask for.
  • the warehouse management system 100 calculates work efficiency at each timing each time work results are received from each worker 104 and each robot 105 in the warehouse, and determines whether the pattern can be changed. An example of this will be described with reference to FIG.
  • FIG. 4 is a sequence diagram schematically showing instruction transmission and work result reception of the warehouse management system 100.
  • the worker 104 and the robot 105 are simply represented by one column, but the warehouse management system 100 exchanges work instructions and work results with all the workers and robots in the warehouse. Further, FIG. 4 illustrates the exchange between the worker 104 and the robot 105, but the case of only the worker or the robot is also included.
  • the warehouse management system 100 generates a pattern by the generation unit 107, selects a pattern by the calculation unit 109 and the selection unit 110, and then generates a work instruction based on the selected pattern (401).
  • the instruction transmission unit 112 transmits work instructions generated to the worker 104 and the robot 105 in the warehouse related to the pattern change.
  • the time t1 here corresponds to 302 in FIG.
  • Each worker 104 and each robot 105 that have received the work instruction via the display unit or the like perform work in accordance with the received work instruction (402 and 403).
  • Each worker 104 and robot 105 creates a work result and transmits it to the warehouse management system 100 at time t2, such as when the work is completed or when the work is disturbed (404).
  • FIG. 4 shows a case where a certain worker finishes the work earliest.
  • the warehouse management system 100 calculates the work efficiency of the generated pattern by the calculation unit 109 and selects the selection unit 110. To select a pattern (not shown). Since a pattern with a large work efficiency value is selected by the selection unit 110, if a pattern with a high work efficiency is not generated by the generation unit 107, a pattern is not selected and a work instruction is also sent to the worker and the robot. Will not be sent. Further, the warehouse management system 100 generates a work instruction based on the selected pattern (406).
  • the warehouse management system 100 calculates the generated work efficiency each time the work result is received. Judge whether the pattern can be changed. Therefore, the work instruction generated by 406 includes work instructions for each worker other than the worker who finished the work earliest and each robot. Therefore, depending on the generated pattern, each worker and each robot may receive a work instruction similar to the work in progress or a work instruction other than the work in progress.
  • each worker and each robot perform work according to the received work instruction (407 and 408).
  • the time t3 here also corresponds to 302 in FIG.
  • Reference numeral 408 indicates that the robot 105 has received a work instruction similar to the work in progress.
  • a work result is created and transmitted to the warehouse management system (409).
  • the warehouse management system 100 receives work results as in 405 and 406, generates work instructions (410 and 411), and works on the workers 104 and the robot 105 in the warehouse by the instruction transmission unit 112 at time t5. Send instructions.
  • the worker 104 and the robot 105 receive the work instruction (412 and 413).
  • FIG. 4 shows that the worker 104 has received a work instruction different from the work being worked in 412.
  • the warehouse management system 100 includes the work result receiving unit 118 that receives work results from the plurality of workers 104 and the plurality of robots 105, and the work efficiency calculation unit 114 that calculates the work efficiency each time the work results are received. ing.
  • the warehouse management system 100 represented in the first embodiment generates a plurality of patterns including a warehouse layout, a work flow that is the order of work in the warehouse, or work schedules of a plurality of workers and a plurality of robots.
  • a warehouse task calculation unit 113 that calculates a task including a necessary work amount
  • a work efficiency calculation unit 114 that calculates work efficiency in the warehouse when each of the patterns is applied, and an end time of each work among the patterns
  • a first selection unit 115 for selecting a pattern capable of satisfying a required work amount, and a pattern selected by the first selection unit.
  • a second selection unit 116 for selecting a pattern whose work efficiency exceeds a preset threshold value, and instructions to a plurality of workers or a plurality of robots according to the pattern selected by the second selection unit An instruction generation unit 111 that generates an instruction, an instruction transmission unit 112 that transmits an instruction to a plurality of workers or a plurality of robots, and a work result reception unit that receives a work result regarding the transmitted instruction from a plurality of workers or a plurality of robots 118, and the work efficiency calculation unit 114 calculates the work efficiency by using the work result reception unit 118 as a trigger.
  • the warehouse management system 100 shown in the first embodiment includes a generation unit 107 that generates a plurality of warehouse layouts, a position database 108 that stores information on the positions of a plurality of workers and a plurality of robots, A warehouse task calculation unit 113 that calculates tasks related to work in the warehouse based on the quantity determined by the customer's order, a work efficiency calculation unit 114 that calculates work efficiency in the warehouse when each of the layouts is applied, Among them, a first selection unit 115 that selects a layout that can satisfy a task, and a second selection unit 116 that selects a layout having the highest work efficiency value among the layouts selected by the first selection unit.
  • the work efficiency calculation unit 114 calculates the work efficiency with the work result reception unit 118 receiving the work result as a trigger.
  • the warehouse management system can determine whether or not it is necessary to change the layout by using the reception of the work result from each worker or each robot as a trigger, thereby improving work efficiency in the warehouse one by one. It becomes possible to do. Therefore, it is possible to reduce the cost in the warehouse.
  • the pattern generated by the generation unit 107 includes a pattern in which the robot 105 is arranged at a position different from the position of the robot 105 before the pattern change. An example thereof will be described with reference to FIG.
  • FIG. 5 schematically shows how the robot carries the shelf.
  • the robot 105 enters under the shelf 501 and transports the shelf 501 to a predetermined position.
  • the robot 105 transports the shelf 501 from the position 504 to the front of the worker 503 like the track 502, the robot 105 transmits the work result to the work result receiving unit 118.
  • the work result receiving unit 118 transmits the timing to the work efficiency calculation unit, and using the reception as a trigger, the work efficiency calculation unit 114 calculates the work efficiency of the pattern generated by the generation unit 107.
  • the pattern includes a pattern for returning the position of the robot to a position different from the position 504.
  • the work efficiency calculation unit 114 may calculate the work efficiency for the pattern in which the shelves are arranged at 405 by calculating the frequency of performing the picking work after the next time.
  • the instruction transmission unit 112 transmits the generated instruction to the robot 105.
  • an instruction to return the shelf 501 to the position 505 is transmitted instead of returning the robot to the original position 504.
  • the warehouse management system 100 includes the generation unit 107 that generates a layout including a layout for returning a plurality of robots to a position different from the position before the layout is changed.
  • FIG. 6 is a diagram illustrating a modification of the generation unit 107.
  • the generating unit 107 receives data used for pattern generation from the receiving unit 106, data related to resources in the warehouse, and data related to the characteristics of the worker 104 and the robot 105 in the warehouse, and generates a plurality of patterns to be changed.
  • the generation unit 107 includes a pattern generation unit 601, a case database 602, a rule creation unit 603, a rule database 604, and a rule selection unit 605.
  • the pattern generation unit 601 searches the case database 602 for cases close to the input data used for pattern generation.
  • the case database 602 stores case data, for example, a layout such as a past shelf arrangement.
  • Each case data has an attribute value that serves as an index for selecting the case data.
  • the attribute value is a determination criterion such as “physical quantity is“ over threshold A ”or“ threshold A ”.
  • the attribute value may be one or plural.
  • the pattern generation unit 601 may create a pattern based on case data stored in the case database.
  • the rule creation unit 603 uses the case data to search for cases that match the data used for pattern generation, creates a common rule from each case, and stores it in the rule database 604.
  • the rule creation unit 603 creates a rule from each case data using, for example, artificial intelligence.
  • rules such as increasing the number of passages and increasing the width of the passage are created.
  • the rule selection unit 605 selects a predetermined rule from the rules stored in the rule database 604 when receiving data related to the resources in the warehouse and data related to the characteristics of the worker 104 and the robot 105 in the warehouse. .
  • the selection is made based on the condition determined by the input resource or the characteristics of the worker 104 and the robot 105.
  • resources represent workers, robots, objects, and places that can be used in the warehouse.
  • the resource may include a space, which indicates the area of the warehouse and the height in the vertical direction.
  • Data relating to resources may be a vacant place in a warehouse (a place where work and goods are not allocated) and a shared place used for a plurality of goods or work. For example, in the case of creating a layout pattern, the number of shelves to be installed, the number and size of other equipment, and the positions of pillars.
  • the characteristics shall represent the characteristics and abilities of workers and robots. For example, the picking ability of the worker.
  • each worker's personality leader personality, personality that prefers monotonous work, etc.), familiarity with the work (work years, skill level, etc.), religion (such as taking a break at a fixed time), age (such as age) ) Etc.
  • the characteristics of the robot include the function, life, operation failure, maintenance timing, and maintenance time of each robot.
  • the rule selection unit 605 selects a rule determined to match or close from the rule database 604 using the condition based on the input resource and the characteristics of the worker and the robot as keys. One rule or a plurality of rules may be selected. When multiple rules are selected, select the rules that do not contradict each other.
  • the pattern generation unit 601 may generate a pattern based on the rule selected by the rule selection unit 605. When a plurality of rules are selected and there are conflicting rules, for example, the priority when selecting is calculated, and the rule with the higher priority is selected.
  • the warehouse management system 100 selects a rule from a rule database 604 in which rules for generating a layout are stored, conditions determined based on resources in the warehouse, or characteristics of workers or robots.
  • a selection unit 605 is provided.
  • FIG. 7 is a diagram showing a warehouse management system 100 including a feedback mechanism.
  • the work result receiving unit 118 receives the work results of the worker 104 and the robot 105, and transmits the data to the receiving unit 106 and the calculating unit 109 (701).
  • the data transmitted from the work result receiving unit 118 to the receiving unit 106 relates to the contents of the work result
  • the data transmitted to the calculation unit 109 relates to the timing at which the work result is received.
  • the data related to the contents of the work result includes, for example, information that the work is delayed.
  • the generation unit 107 generates a pattern again based on the work result received by the reception unit 106. For example, when it is determined from the received work result that work delay has occurred, a pattern is generated that causes a worker or robot with sufficient work to perform work for recovering the delay.
  • the warehouse management system 100 includes the work result receiving unit 118 that receives the work result of the transmitted instruction, and the generation unit 107 that generates a pattern based on the work result.
  • FIG. 8 is a diagram illustrating a modification of the calculation unit 109 and the selection unit 110.
  • the calculation unit 109 includes a current cost calculation unit 801, a change cost calculation unit 802, and a reduction cost calculation unit 803.
  • the selection unit 110 includes a third selection unit 804.
  • the current cost calculation unit 801 receives data related to the current warehouse from the warehouse data, and calculates the current cost required when there is no change from the current pattern. For example, the labor cost of a worker and the running cost of a robot necessary for continuing the current layout are calculated.
  • the change cost calculation unit 802 receives data related to the current warehouse from the warehouse data, and calculates a change cost for changing to the pattern generated by the generation unit 107. For example, the amount of work for changing from the current layout received from the warehouse data to the layout generated by the generation unit is obtained, and the cost associated with the change work is calculated. Further, the working time and the degree of influence on other work may be obtained.
  • the reduction cost calculation unit 803 receives data relating to the current warehouse from the pattern and warehouse data generated by the generation unit 107, and calculates a reduction cost that can be reduced when the generated pattern is applied. For example, calculate the operating rate when the layout is changed and the current operating rate read from the data related to the current warehouse, and reduce costs by improving the operating rate (for example, labor costs, robot running costs, etc.) Calculate
  • the operating time for calculating the cost in the change cost calculation unit 701 and the reduction cost calculation unit 702, the labor cost of the worker, the running cost of the robot, and the like may be set in advance.
  • the third selection unit 804 selects a pattern to be really changed from the calculated costs among the patterns selected by the second selection unit 116. Specifically, it is determined whether or not the reduction cost calculated by the reduction cost calculation unit 803 is larger than the sum of the current cost and the change cost.
  • FIG. 9 is a diagram showing a flow for selecting a pattern in the third selection unit 703.
  • the second selection unit 116 selects a pattern having a large work efficiency value.
  • the current cost calculation unit 801, the change cost calculation unit 802, and the reduction cost calculation unit 803 calculate the current cost, the change cost, and the reduction cost, respectively.
  • the change possibility determination 903 it is determined whether or not to change to the generated pattern using the cost calculated by the cost calculation 902. Specifically, it is determined whether the value of the reduction cost calculated by the cost calculation 902 is larger than the value of the sum of the current cost and the change cost. Further, the determination criterion may be changed by increasing or decreasing the input data. For example, when the amount of goods in the warehouse changes from a small state to a large state, the change is judged if the reduction cost increases even a little. When the amount of goods in the warehouse changes from a small state to a small state, the change is judged. Judgment may be made.
  • the determination may be made by an administrator.
  • the calculation unit 109 presents information such as a current cost, a change cost, and a reduction cost to the administrator for the administrator to determine.
  • the administrator determines from the presented information whether to change, and the change permission determination 903 selects a pattern according to the determination of the administrator.
  • the pattern determined not to be changed by the change permission determination 903 is discarded by the pattern discard 904.
  • pattern selection 904 a pattern for which the value of the reduction cost is determined to be larger than the sum of the current cost and the change cost by the change possibility determination 903 is selected.
  • a pattern that maximizes the difference between the value of the reduction cost and the value of the sum of the current cost and the change cost may be selected.
  • whether or not the change can be made is determined based on a difference between the current work flow and the generated work flow.
  • the change cost calculation unit 802 obtains the work amount associated with the work flow change when the work flow is changed to the generated work flow. For example, the movement cost of the article due to the work flow change, the worker position change cost, and the robot position change cost are calculated.
  • the reduction cost calculation unit 803 calculates the reduction cost by using, for example, a dependency relationship set in advance. There is always a dependency on each work, such as picking up the goods that have been received and then inspecting them. From this relationship, for example, the amount of work at the time of picking when changing from a work flow of picking an article and inspecting at the time of packing the article to a work flow of checking at the same time when picking and not inspecting at the time of packing the article Increase of the picking time associated therewith, and further reduction of the amount of work by reducing the inspection work at the time of packing, and reduction of the work time associated therewith. The difference between the obtained increase in the work amount and the decrease in the work amount, or the difference between the extended work time and the shortened work time may be calculated as the reduction cost.
  • the warehouse management system 100 includes a current cost calculation unit 801 that calculates a current cost when the current pattern of the warehouse is maintained, and a pattern generated by the generation unit from the current pattern of the warehouse.
  • a change cost calculation unit 802 that calculates a change cost when changing
  • a reduction cost calculation unit 803 that calculates a reduction cost that is reduced by changing each pattern generated from the current pattern to the generation unit
  • a third selection unit 804 that selects a pattern whose reduction cost is greater than the sum of the current cost and the change cost among the patterns selected by the second selection unit is further provided.
  • FIG. 10 is a diagram showing resource distribution among warehouses.
  • the warehouse management system 100 receives warehouse data from the warehouse 1002 and the warehouse 1003.
  • the warehouse management system 100 includes a resource database 1001, an operation status determination unit 1004, a resource calculation unit 1005, and a resource search unit 1006.
  • the resource database 1001 stores resource data shared by a plurality of warehouses 1002 and 1003.
  • the resource can be shared by a plurality of warehouses 1002 and 1003.
  • warehouse data that can be shared between warehouses is categorized by distance or the like. For example, if the distance between warehouses is short and can be moved in a short time, the resource database 1001 can be used as a shared worker. Register with. Similarly, a robot 105 or a shelf that can move between warehouses is registered in the resource database 1001 as resource data.
  • the warehouse task calculation unit 113 calculates tasks in the warehouse 1002.
  • the operation status determination unit 1004 it is determined whether the calculated task is workable with the resources held by the current warehouse 1002. The determination evaluates whether a given task is expected to be completed within a predetermined time.
  • the resource calculation unit 1005 obtains a resource necessary to complete the task, and the obtained resource count is determined by the resource search unit. 1006 is notified.
  • the resource calculation unit 1005 may notify not only the required number of resources but also the date and time when the resource should arrive at the warehouse and the time and period during which the distributed resource is used.
  • the operation status determination unit 1004 determines the operation status of the input task.
  • the resource calculation unit 1005 inquires the resource search unit 1006 about the insufficient resources.
  • the resource search unit 1006 searches for resources that are not used in other warehouses according to the number of resources inquired from the resource calculation unit 1005. You may search for a resource that is currently used or will be terminated.
  • the resource search unit 1006 distributes the resources obtained by the search to the warehouses 1002 and 1003. The result is notified to the warehouse 1002 and the warehouse 1003. If there are not enough resources in the resource database 1001 that are inquired from each warehouse, the resources in the resource database 1001 are distributed in proportion to the number of requests from the warehouse 1002 and the warehouse 1003. When priority is set for the warehouse 1002 and the warehouse 1003, the distribution ratio may be changed according to the priority. Further, when notifying the number of resources distributed to the warehouse 1002 and the warehouse 1003, the arrival time of the resource may be notified. Also, the resource arrival time may be given to each resource independently, or the time for completion of arrival of all resources may be given.
  • the content is related to the trigger for determining the work efficiency of the pattern using the calculation unit 109.
  • the second embodiment relates to the simulation using the calculation unit 109 in consideration of the interference between the worker and the robot. Content.
  • the basic system configuration is the same as that shown in FIG. 1, except for the following points.
  • FIG. 11 is a diagram illustrating the work efficiency calculation unit 114 according to the present embodiment.
  • the work efficiency calculation unit 114 receives data regarding the positions of the worker 104 and the robot 105 from the position database 108 and a pattern from the generation unit 107, and calculates the work efficiency.
  • the work efficiency calculation unit 114 includes a position data reception unit 1101 and an interference calculation unit 1102.
  • the position data receiving unit 1101 receives data related to the positions of the worker 104 and the robot 105 from the position database 108.
  • the interference calculation unit 1102 calculates the value of the interference between the worker 104 and the robot 105 from the data regarding the positions of the worker 104 and the robot 105 received by the position data receiving unit.
  • the interference represents a case where traffic is hindered by the presence of another worker or robot on the route to be moved. For example, if the passage is wide enough not to be overtaken or set to prohibit overtaking, if there is a worker in front of the route, depending on the movement speed and work time of the worker in front, Forced to move slowly.
  • a detoured route is taken instead of a route that can be moved by the original shortest distance. In this way, it can be said that interference occurs when the travel distance or work time becomes longer due to the presence of other workers as compared to the time during which other workers can pass or work.
  • interference between workers has been described.
  • interference between a forklift, a robot, and an article on a belt conveyor may be used instead of a worker.
  • the interference is represented by a value obtained by simulation or the like that is obtained by reducing the value of the work amount, the delayed work time, or the reduced operation rate compared with the case where there is no interference.
  • the work efficiency calculation unit 114 obtains the work efficiency by reflecting the value of the work amount reduced compared with the case where there is no interference in the graph of FIG.
  • the warehouse management system 100 represented in the second embodiment includes, in addition to the warehouse management system 100 represented in the first embodiment, a plurality of workers and a plurality of workers simulated from information including positions of a plurality of workers and a plurality of robots.
  • a work efficiency calculation unit 114 that calculates the work efficiency in the warehouse when each of the patterns is applied based on the interference with the robot is provided.
  • This example shows another example of the warehouse management system of the present invention.
  • the pattern generation unit 601 generates the pattern in the warehouse, but the third embodiment relates to the generation of a more detailed pattern.
  • the basic system configuration is the same as in FIG.
  • FIG. 12 is a diagram showing an example of changing the layout related to the arrangement of the shelves in the warehouse.
  • the data input to the generation unit 107 is an amount to be picked. Or the order data of loading / unloading may be sufficient.
  • the rule selection unit 605 when the quantity of input data is small, the number of workers 104 required for picking is small, so it is better to arrange the shelves 501 as compactly as possible and shorten the access time to the shelves 501. Select a rule.
  • the pattern generation unit 601 generates a warehouse layout such as 1201 based on the selected rule. Here, an example of a layout in which the number of passages is reduced and the density of the shelves 501 is high is shown.
  • the rule selection unit 605 selects a rule that when the quantity increases and the number of workers picking increases, the number of people accessing the shelf increases and traffic congestion occurs, so that more passages are set.
  • the pattern generation unit 601 generates a layout as indicated by 1202 based on the selected rule. Here, an example of a layout in which the number of passages is increased and the distance between the shelves 501 is increased is shown.
  • the rule selection unit 605 may use the number of workers 104, the number of robots 105, or the like, which is a condition given as an input when selecting a rule.
  • a rule for increasing the density of the shelves 501 without increasing the number of passages may be selected.
  • a rule may be selected from the order data of loading / unloading using the number, size, weight, etc. of articles included in one order. For example, when the number of articles included in one order is small and the size is small and light, the work time required for picking per article is shortened, so that the worker 104 and the robot 105 move more. Therefore, the rule that it is better to increase the number of passages and increase access to the shelf 501 is selected.
  • the pattern generation unit 601 generates a pattern based on the selected rule.
  • FIG. 13 is a diagram showing an example of changing the layout relating to the arrangement of shelves and belt conveyors in the warehouse.
  • the rule selecting unit 605 should be installed at a position where the average of the shortest distance from all the shelves and the variance are small. Select the rule. Further, when the starting point of the belt conveyor 1303 is determined as a constraint condition, a rule that considers the constraint condition is selected. Based on the selected rule, the pattern generation unit 601 generates a pattern in which the shelves 501 and the belt conveyor 1303 are arranged as in the layout shown in 1301, for example.
  • the rule selection unit 605 collects the shelves 501 according to the number of picking processes (the same number of picking processes as possible). And the belt conveyor 1303 should be arranged near the shelf where the number of picking processes is large. Based on the selected rule, the pattern generation unit 601 creates a layout as shown in 1302, for example.
  • FIG. 14 is a diagram showing an example of changing the work area in the warehouse.
  • a processing area 1402 For example, like a warehouse layout 1401, a processing area 1402, a picking area 1403, and a delivery area 1404 are set.
  • the work when the work is expressed by the flow of the article, the work proceeds in the order of processing, picking, and delivery.
  • the rule selection unit 605 selects a rule that determines the size of the work area in accordance with the quantity and the order data for loading and unloading. For example, the number of articles to be processed and the complexity of processing (working time, etc.) are obtained from the order data of loading / unloading, and the time required for processing for each order is calculated. The total machining work time may be calculated instead of every order. In addition, the processing complexity may be set in advance, such as 10 minutes for the package A and 5 minutes for the package B. If there are many orders that require time for processing in the input / output order data, the amount of work to be performed in the processing area is obtained, and the number of workers to perform the processing work is further obtained.
  • the size of the work area necessary for the machining work as a whole can be obtained.
  • the size of the work area required for picking work and delivery work is obtained, and the area allocation in the warehouse is determined.
  • the area and shape that can be used for processing, picking, and issuing work are read from the warehouse data, the ratio of the area required for each operation calculated by the above processing is taken, and each area used in the actual warehouse Calculate the work area.
  • a rule is selected that the processing and the picking area must be in contact with each other, and that the picking and delivery must be in contact.
  • elements having fixed positions such as pillars and elevators in the warehouse are read from the warehouse data, and rules that consider the linkage with these elements are selected. For example, the rule is that the elevator and the exit area must be adjacent to each other.
  • the pattern generation unit 601 Based on the rule selected by the rule selection unit 605 as described above, the pattern generation unit 601 generates a work area division pattern. For example, the work area division when the work time is the longest in the processing area is generated as the work area 1405.
  • the work varies depending on the time, and the picking work may increase the work amount most after the machining work is completed.
  • the area may be changed according to the time when the work has progressed, and if the work amount increases by changing the area, the area may not be changed until the processing, picking, and delivery work are completed. .
  • the data used to determine the work area is set to the peak value of each work. Or you may set to an average value.
  • FIG. 15 is a diagram showing an example of expressing work tasks.
  • the task performed by the robot 105 and the task performed by the worker 104 for the picking work is created will be described.
  • picking There are two types of picking that the robot 105 is good to work and the picking that the worker 104 is good to work.
  • the robot 105 may be more efficient than the worker 104 when picking a large amount of the same article, and the worker 104 may be more efficient than the robot in the case of a deformation. There is.
  • the expandability according to the change in the quantity may be different between the robot 105 and the worker 104.
  • the number of robots 105 is limited, and the increase / decrease in the number of workers 104 may be expanded, the number of workers 104 may be limited, and the number of robots 105 may be changed.
  • the number of robots 105 is limited and the number of workers 104 can be increased will be described.
  • 15 is an example in which the work amount 1502 to be picked by the robot 105 and the work amount 1503 to be picked by the worker 104 are separated.
  • the quantity picked by the robot 105 cannot cope with the inputted quantity, and the quantity of picking by the worker 104 is increased. That is, the ratio of the picking task in the robot 105 is reduced, and the ratio of the picking task by the worker 104 is increased instead.
  • the number of pickings processed by the robot 105 may not be changed. An area necessary for the picking work is obtained from the ratio of picking work of the robot 105 and the worker 104, and the picking work task and work area in the warehouse are changed.
  • the picking area for the robot 105 may be reduced and the picking area for the worker may be increased.
  • the pattern generation unit 601 generates a pattern such as 1504.
  • FIG. 16 is a diagram illustrating an example of a work flow.
  • Reference numeral 1601 denotes a case where certain order data is processed in the order of work A, work B, work C, and work D.
  • the rule selection unit 605 should be changed to a work flow of performing picking, inspection and packing in a lump. Select the rule.
  • a special packing work instruction is added to the order data, a rule is selected to replace the special packing work instead of packing.
  • a processing work instruction such as pricing is added to the order data, a rule for adding the processing work is selected.
  • the pattern generation unit 601 generates a work flow based on the rule selected by the rule selection unit 605. For example, work C is eliminated as in 1602, and flows such as work A, work B, and work D are generated.
  • the rule may be for each category by dividing the order data into categories for each similar order data, not for each input order data.
  • Similar may refer to, for example, items similar in product category or quantity, but is not limited thereto.
  • FIG. 17 is a diagram showing an example of a work schedule for the worker 104.
  • the characteristics of the worker 104 are read based on the characteristics as input from the warehouse data, and the pattern is generated by the pattern generation unit 601.
  • the rule selection unit 605 selects the rule that the schedule of the worker 1 is created according to the time variation of the operation.
  • the pattern generation unit 601 generates a work schedule such as 1701 based on the selected rule.
  • worker 1 works when work A (1702) has many tasks. (1702) is performed, and when the task B (1703) has many tasks, the task B (1703) is performed, and when the task C (1704) has many tasks, the task C (1704) is performed.
  • the rule selection unit 605 causes the worker 2 to continue the same operation as much as possible. Select a rule.
  • the pattern generation unit 601 assigns the worker 2 to the work A (1702), performs the work A (1702) until the time when the work A (1702) is completely completed, and then performs the next work C (1704).
  • a work schedule 1705 to be assigned is generated.
  • the rule selection unit 605 selects a rule that work is not assigned to the worker 3 at a certain time.
  • the pattern generation unit 601 assigns the work A (1702) to the worker 3 based on the selected rule, and assigns the work B (1703) after a fixed work non-assignment period. Further, a work schedule 1706 is assigned to assign work C (1704) as the next work.
  • a work schedule can be generated based on the characteristics of the worker 104.
  • the target is not limited to the worker 104, and the characteristics of the robot can be handled in the same manner. For example, it is possible to select a rule that work cannot be performed for the time allocated for robot maintenance, and if the robot has a plurality of functions, a schedule for changing the work content according to the work amount can be generated.
  • FIG. 18 shows an image diagram showing a pattern being changed by the warehouse management system of the present invention.
  • 1801 when an article is received from a truck, the article is stored in each shelf or pallet rack.
  • picking by an operator, picking by a robot, transportation of an article by a drone, transportation of an article by an unmanned forklift, and the like are performed. Workers, robots, drones, and unmanned forklifts may work with emphasis.
  • the position of equipment such as a belt conveyor may be changed by a robot.
  • inspection, packing, robot inspection, packing, etc. are performed by workers, and they are loaded onto a truck and delivered.
  • the warehouse 1801 is changed based on the quantity data.
  • the arrangement of shelves and belt conveyors has changed, and the work flow has also changed.
  • the number of workers and robots has also been changed.
  • the manager keeps track of the situation in the warehouse and manages the situation. Also, when changes to the layout, work flow, etc. are implemented, in order to instruct the worker on the changed information, the information is displayed on the terminal or wearable terminal worn by the worker, and the worker is instructed. Do.
  • each of the above-described embodiments has been described in detail for easy understanding of the present invention, and is not necessarily limited to the one having all the configurations described.
  • a part of the configuration of a certain embodiment can be replaced with the configuration of another modification, and the configuration of another modification can be added to the configuration of a certain embodiment.
  • each function or the like of the warehouse management system 100 may be realized by hardware by designing a part or all of them, for example, with an integrated circuit.
  • Each function of the warehouse management system 100 may be realized by software by interpreting and executing a program that realizes each function by the processor.
  • Information such as programs, tables, and files for realizing each function is stored in a memory, a hard disk, a recording device such as SSD (Solid State Drive), or a recording medium such as an IC card, SD card, DVD (Digital Versatile Disc). be able to.
  • control lines and information lines indicate what is considered necessary for the explanation, and not all control lines and information lines on the product are necessarily shown. In practice, it may be considered that almost all configurations are connected to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Factory Administration (AREA)

Abstract

A warehouse management system comprises: a generation unit (107) that generates layouts for a warehouse; a warehouse task calculation unit (113) that calculates a task in the warehouse on the basis of a customer order; a work efficiency calculation unit (114) that calculates the work efficiency in the warehouse when a layout is applied; a first selection unit (115) that selects layouts for achieving the task; a second selection unit (116) that selects from among the selected layouts a layout by which work efficiency exceeds a preset threshold value; an instruction generation unit (111) that generates instructions for workers or robots according to the layout selected by the second selection unit; an instruction transmission unit (112) that transmits the instructions to the workers or the robots; and a work result reception unit (118) that receives, from the workers or the robots, work results on the instructions. The warehouse management system is configured such that the work efficiency calculation unit (114) calculates work efficiency in response to the work result reception unit (118) receiving work results. This configuration can provide a system which further facilitates changes in warehouse layout, workflow, or work responsibilities.

Description

倉庫管理システムWarehouse management system
 本発明は、倉庫管理システムに関する。 The present invention relates to a warehouse management system.
 倉庫内の棚の配置変更をシミュレートし、物品の取出しを管理する装置が知られている。例えば、特許文献1には、注文情報を受け付けたときに、棚の配置変更のシミュレーションを行う技術が記載されている。また、配置変更の可否については、棚の配置のシミュレーションを行い、作業員の経路の通過を考慮した物品の取出時間を演算し、配置変更前の取出時間が配置変更後の取出時間と棚配置変更時間との和を超えている場合に棚の配置を変更した方がよいと判断している。 A device is known that simulates the change in the arrangement of shelves in a warehouse and manages the removal of goods. For example, Patent Document 1 describes a technique for simulating a change in shelf arrangement when order information is received. In addition, regarding whether or not the arrangement can be changed, a shelf arrangement simulation is performed to calculate the article take-out time in consideration of the passage of the worker's route, the take-out time before the arrangement change and the take-out time after the arrangement change and the shelf arrangement When the sum with the change time is exceeded, it is determined that the shelf arrangement should be changed.
特開2010-100386JP2010-100386
 しかしながら、特許文献1では、変更のシミュレーションを行うのは注文情報を受け付けたときとしている。そのため、第一の課題として、作業途中の配置変更の要否を判断していないので、倉庫のレイアウトを逐一変更し、倉庫内の作業効率を逐一改善していくことは難しかった。 However, in Patent Document 1, the change simulation is performed when order information is received. Therefore, as a first problem, it is difficult to change the layout of the warehouse one by one and improve the work efficiency in the warehouse one by one because it is not determined whether or not it is necessary to change the layout during the work.
 また、棚の配置をシミュレートする際に、複数の作業員の経路の通過を考慮しているが、実際に作業員が作業している状況を考慮していないため、作業員同士の干渉を考慮できていない。そのため、第二の課題として、配置変更後の取出時間と棚配置変更時間を加えた時間が、変更前のものよりも短くなったとしても、実際に倉庫全体の作業効率が向上しているか判断するのは困難であった。 In addition, when simulating the layout of shelves, the passage of multiple workers is taken into account, but the situation in which workers are actually working is not taken into account. Not considered. Therefore, the second issue is to determine whether the work efficiency of the entire warehouse has actually improved even if the time taken to add the take-out time after the placement change and the time to change the shelf placement is shorter than that before the change. It was difficult to do.
 そこで、本発明は倉庫のレイアウト、作業フロー、又は作業分担の変更をより容易とする倉庫管理システムを提供することを目的とする。また、倉庫内の作業効率を向上させ、倉庫内のコスト削減をより容易とする倉庫管理システムを提供することを目的とする。 Therefore, an object of the present invention is to provide a warehouse management system that makes it easier to change the layout, work flow, or work sharing of a warehouse. It is another object of the present invention to provide a warehouse management system that improves work efficiency in the warehouse and makes it easier to reduce costs in the warehouse.
 前記第一の課題を解決するための手段のうち代表的なものを例示すれば、倉庫管理システムであって、倉庫のレイアウトを複数生成する生成部と、顧客の注文によって定まる物量に基づいて倉庫内の作業に関するタスクを計算する倉庫タスク計算部と、レイアウトのそれぞれを適用した場合における倉庫内の作業効率を計算する作業効率計算部と、レイアウトのうち、タスクを満たすことの出来るレイアウトを選択する第1の選択部と、第1の選択部によって選択されたレイアウトのうち、作業効率の値が予め設定された閾値を超えるレイアウトを選択する第2の選択部と、第2の選択部によって選択されたレイアウトに従って、複数の作業員と複数のロボットへの指示を生成する指示生成部と、指示を複数の作業員と複数のロボットへ送信する指示送信部と、送信した指示についての作業結果を複数の作業員又は複数のロボットから受け付ける作業結果受付部を有し、作業効率計算部は、作業結果受付部が作業結果を受け付けることをトリガとして、作業効率を計算することを特徴とする倉庫管理システムが挙げられる。 A typical example of the means for solving the first problem is a warehouse management system, a generation unit that generates a plurality of warehouse layouts, and a warehouse based on a quantity determined by a customer order. Select a layout that can satisfy the task from among the layout, a warehouse task calculation unit that calculates tasks related to work in the warehouse, a work efficiency calculation unit that calculates work efficiency in the warehouse when each layout is applied A first selection unit, a second selection unit that selects a layout whose work efficiency value exceeds a preset threshold among the layouts selected by the first selection unit, and a second selection unit. In accordance with the determined layout, an instruction generator for generating instructions for a plurality of workers and a plurality of robots, and sending the instructions to a plurality of workers and a plurality of robots A work result receiving unit that receives work results for the sent instructions from a plurality of workers or robots, and the work efficiency calculation unit triggers the work result receiving unit to receive work results A warehouse management system characterized by calculating work efficiency.
 また、倉庫管理システムであって、倉庫のレイアウト、倉庫内の作業の順序である作業フロー、又は複数の作業員及び複数のロボットの作業スケジュール、を含むパターンを複数生成する生成部と、顧客の注文によって定まる物量から倉庫内の各作業の作業内容、終了時刻、及び必要な作業量を含むタスクを計算する倉庫タスク計算部と、パターンのそれぞれを適用した場合における倉庫内の作業効率を計算する作業効率計算部と、パターンのうち、各作業の終了時刻内に必要な作業量を満たすことの出来るパターンを選択する第1の選択部と、第1の選択部によって選択されたパターンのうち、作業効率が予め設定された閾値を超えるパターンを選択する第2の選択部と、第2の選択部によって選択されたパターンに従って、複数の作業員又は複数のロボットへの指示を生成する指示生成部と、指示を複数の作業員又は複数のロボットへ送信する指示送信部と、送信した指示についての作業結果を複数の作業員又は複数のロボットから受け付ける作業結果受付部を有し、作業効率計算部は、作業結果受付部が作業結果を受け付けることをトリガとして作業効率を計算することを特徴とする倉庫管理システムが挙げられる。 Further, a warehouse management system, a generation unit that generates a plurality of patterns including a layout of a warehouse, a work flow that is an order of work in the warehouse, or a work schedule of a plurality of workers and a plurality of robots, and a customer's The warehouse task calculation unit that calculates the tasks including the work contents, end time, and required work amount of each work in the warehouse from the quantity determined by the order, and the work efficiency in the warehouse when each of the patterns is applied Among the patterns selected by the work efficiency calculation unit, a pattern selected by the first selection unit, and a first selection unit that selects a pattern that can satisfy the required work amount within the end time of each work, among the patterns, A second selection unit that selects a pattern whose work efficiency exceeds a preset threshold value, and a plurality of operations according to the pattern selected by the second selection unit Or, an instruction generation unit that generates instructions to a plurality of robots, an instruction transmission unit that transmits instructions to a plurality of workers or a plurality of robots, and a work result on the transmitted instructions from a plurality of workers or a plurality of robots A warehouse management system having a work result receiving unit that receives the work efficiency and calculating the work efficiency triggered by the work result receiving unit receiving the work result may be mentioned.
 さらに、前記第二の課題を解決するための手段のうち代表的なものを例示すれば、倉庫のレイアウト、倉庫内の作業の順序である作業フロー、又は複数の作業員及び複数のロボットの作業スケジュール、を含むパターンを複数生成する生成部と、複数の作業員と複数のロボットの位置を含む情報を格納する位置データベースと、顧客の注文によって定まる物量から倉庫内の各作業の作業内容、終了時刻、及び必要な作業量を含むタスクを計算する倉庫タスク計算部と、複数の作業員及び複数のロボットの位置を含む情報からシミュレーションした複数の作業員と複数のロボットとの干渉に基づいて、前記パターンのそれぞれを適用した場合における倉庫内の作業効率を計算する作業効率計算部と、パターンのうち、各作業の終了時刻内に必要な作業量を満たすことの出来るパターンを選択する第1の選択部と、第1の選択部によって選択されたパターンのうち、作業効率が予め設定された閾値を超えるパターンを選択する第2の選択部と、第2の選択部によって選択されたパターンに従って、複数の作業員又は複数のロボットへの指示を生成する指示生成部と、指示を複数の作業員又は複数のロボットへ送信する指示送信部と、を有することを特徴とする倉庫管理システムが挙げられる。 Further, representative examples of the means for solving the second problem include a warehouse layout, a work flow that is the order of work in the warehouse, or a work of a plurality of workers and a plurality of robots. A generation unit that generates multiple patterns including schedules, a position database that stores information including the positions of multiple workers and multiple robots, and the work content of each operation in the warehouse based on the quantity determined by the customer's order Based on the interference between a plurality of workers and a plurality of robots simulated from the information including the positions of a plurality of workers and a plurality of robots, a warehouse task calculation unit for calculating a task including time and a required amount of work, A work efficiency calculation unit that calculates work efficiency in the warehouse when each of the patterns is applied, and the pattern must be within the end time of each work. A first selection unit that selects a pattern that can satisfy a certain amount of work, and a second selection that selects a pattern whose work efficiency exceeds a preset threshold among the patterns selected by the first selection unit An instruction generation unit that generates instructions to a plurality of workers or a plurality of robots according to a pattern selected by the second selection unit, and an instruction transmission unit that transmits the instructions to a plurality of workers or a plurality of robots And a warehouse management system characterized by having
 本発明によれば、倉庫のレイアウト、作業フロー又は作業分担の変更をより容易とする倉庫管理システムを提供することができる。また、倉庫内の作業効率の向上をより容易とする倉庫管理システムを提供することができる。 According to the present invention, it is possible to provide a warehouse management system that makes it easier to change the warehouse layout, work flow, or work sharing. In addition, it is possible to provide a warehouse management system that makes it easier to improve work efficiency in the warehouse.
倉庫管理システムの模式図。The schematic diagram of a warehouse management system. 生成されたパターンを選択する際のフロー図。The flowchart at the time of selecting the produced | generated pattern. 作業効率の推移を表した模式図。The schematic diagram showing transition of work efficiency. 倉庫管理システムによる指示送信と作業結果受付を表したシーケンス図。The sequence diagram showing instruction transmission by the warehouse management system and work result reception. 倉庫内のロボットの動きを表した模式図。The schematic diagram showing the movement of the robot in a warehouse. 生成部107を表した模式図。The schematic diagram showing the production | generation part 107. FIG. 倉庫管理システムの模式図。The schematic diagram of a warehouse management system. 計算部109及び選択部110を表した模式図。The schematic diagram showing the calculation part 109 and the selection part 110. FIG. コスト計算をしてパターンを選択する際のフロー図。The flowchart at the time of cost calculation and selecting a pattern. 倉庫管理システムの模式図。The schematic diagram of a warehouse management system. 作業効率計算部114を表した模式図。The schematic diagram showing the work efficiency calculation part 114. FIG. 棚のレイアウト変更を表した模式図。The schematic diagram showing the layout change of a shelf. 棚及びベルトコンベヤのレイアウト変更を表した模式図。The schematic diagram showing the layout change of a shelf and a belt conveyor. 倉庫内の作業エリアの変更を表した模式図。The schematic diagram showing the change of the work area in a warehouse. 作業タスクに伴う作業エリアの変更を表した模式図。The schematic diagram showing the change of the work area accompanying a work task. 作業フローの変更を表した模式図。The schematic diagram showing the change of work flow. 作業スケジュールの変更を表した模式図。The schematic diagram showing the change of a work schedule. 倉庫内のパターンの変更を表した模式図。The schematic diagram showing the change of the pattern in a warehouse.
 本実施例では、倉庫管理システムの例として、作業員又はロボットから作業結果を受け付けたタイミングをトリガとして倉庫のパターンを生成する倉庫管理システムの例を説明する。 In this embodiment, as an example of a warehouse management system, an example of a warehouse management system that generates a warehouse pattern triggered by the timing at which a work result is received from a worker or a robot will be described.
 図1は、本実施例の倉庫管理システムの構成図の例である。倉庫管理システム100は、顧客注文101と倉庫データベース103内の倉庫データを受け付けて、選択したパターンを基に生成した指示を倉庫102内にいる作業員104又はロボット105に送信する。倉庫管理システム100は、受付部106、生成部107、位置データベース108、計算部109、選択部110、指示生成部111、指示送信部112、物量データベース117及び作業結果受信部118を備えている。また、計算部109は、倉庫タスク計算部113及び作業効率計算部114を備えており、選択部110は、第1の選択部115及び第2の選択部116を備えている。なお、ここでは倉庫管理システム100は、外部から倉庫102を管理するものとしているが、倉庫102内に構築されたシステムであってもよい。また、物量データベース117は、倉庫102内に構築されていてもよい。 FIG. 1 is an example of a configuration diagram of the warehouse management system of the present embodiment. The warehouse management system 100 accepts customer orders 101 and warehouse data in the warehouse database 103, and transmits an instruction generated based on the selected pattern to the worker 104 or the robot 105 in the warehouse 102. The warehouse management system 100 includes a reception unit 106, a generation unit 107, a position database 108, a calculation unit 109, a selection unit 110, an instruction generation unit 111, an instruction transmission unit 112, a quantity database 117, and a work result reception unit 118. The calculation unit 109 includes a warehouse task calculation unit 113 and a work efficiency calculation unit 114, and the selection unit 110 includes a first selection unit 115 and a second selection unit 116. Here, the warehouse management system 100 manages the warehouse 102 from the outside, but may be a system constructed in the warehouse 102. The quantity database 117 may be built in the warehouse 102.
 受付部106は、倉庫データ及び顧客注文101を受け付ける。その際、受け付けたデータを倉庫管理システム100中で取り扱うデータ形式に変換してもよい。ここで、倉庫データを、倉庫内の作業員、ロボット、各種機器、棚などのリソースに関するデータであるものとする。例えば、作業員やロボットの特性や、棚の数なども含まれる。その上で、受付部106は、受け付けたデータをパターン生成に用いるデータ、作業員104及びロボット105の位置に関するデータ、及び物量に関するデータに分類する。そこで、パターン生成に用いるデータを生成部107に送信し、位置に関するデータを位置データベース108に格納し、物量に関するデータを物量データベース117に格納する。 The reception unit 106 receives warehouse data and customer orders 101. At that time, the received data may be converted into a data format handled in the warehouse management system 100. Here, it is assumed that the warehouse data is data related to resources such as workers, robots, various devices, and shelves in the warehouse. For example, it includes the characteristics of workers and robots, the number of shelves, and the like. Then, the receiving unit 106 classifies the received data into data used for pattern generation, data related to the positions of the worker 104 and the robot 105, and data related to the quantity. Therefore, data used for pattern generation is transmitted to the generation unit 107, data relating to the position is stored in the position database 108, and data relating to the quantity is stored in the quantity database 117.
 生成部107は、受付部106が受信したパターン生成に用いるデータに基づき、変更案となるパターンを複数生成する。 The generation unit 107 generates a plurality of patterns to be changed based on data used for pattern generation received by the reception unit 106.
 ここで、パターンを、棚配置、ロボット位置、及び作業員位置等のレイアウト、作業エリア設定のレイアウト、機器設置のレイアウト、作業順序を示す作業フロー、並びに指定作業を作業者またはロボットに割り当てる作業スケジュール、などを示すものとする。生成部107には、あらかじめ複数のルールが格納されており、入力されたデータの値を判定して、対応するパターンを生成する。 Here, the layout is a layout such as shelf arrangement, robot position and worker position, work area setting layout, equipment installation layout, work flow indicating the work order, and work schedule for assigning the designated work to the worker or robot. , Etc. The generation unit 107 stores a plurality of rules in advance, determines the value of the input data, and generates a corresponding pattern.
 位置データベース108には、受付部106から作業員104及びロボット105の位置に関するデータが格納される。ここで、作業員104の位置は、例えば、作業員104が付けているセンサ、ウェアラブル端末、又は所持している携帯端末等からビーコンや無線基地を介して取得する。または、倉庫内についているカメラなどのセンサにより取得する。さらに、ロボット105の位置は、例えば、マーカーやレーザ等により、自己位置取得し、無線通信を行うことにより求めたものである。 The position database 108 stores data on the positions of the worker 104 and the robot 105 from the reception unit 106. Here, the position of the worker 104 is acquired from, for example, a sensor attached to the worker 104, a wearable terminal, or a portable terminal possessed by the beacon or the wireless base. Or, it is acquired by a sensor such as a camera in the warehouse. Further, the position of the robot 105 is obtained by, for example, acquiring its own position with a marker or a laser and performing wireless communication.
 計算部109は、倉庫タスク計算部113と作業効率計算部114を備えており、物量データベース117内の物量データと生成部107で生成されたパターンから、パターン変更の可否の判断に必要な値の計算を行う。 The calculation unit 109 includes a warehouse task calculation unit 113 and a work efficiency calculation unit 114. The value necessary for determining whether the pattern can be changed is determined based on the quantity data in the quantity database 117 and the pattern generated by the generation unit 107. Perform the calculation.
 倉庫タスク計算部113は、顧客注文101によって定まる物量データから倉庫内のタスクを計算する。ここで、物量データには、倉庫内に入庫する物品の種類、数、大きさが含まれ、場合によっては同一種類の複数の物品をパックとして表した数が含まれる。さらに、入庫する日時の指示が含まれる。同様に、倉庫内から出庫する物品の種類、数、大きさ、出庫先の情報等が含まれ、出庫作業を完了する日時の指示が含まれる。また、倉庫内にすでに格納されている在庫物品の種類、数、大きさの情報も含まれる。結果として、この物量データは倉庫への作業指示とみなすことが出来る。 The warehouse task calculation unit 113 calculates a task in the warehouse from the quantity data determined by the customer order 101. Here, the quantity data includes the type, number, and size of articles to be stored in the warehouse. In some cases, the quantity data includes a number representing a plurality of articles of the same type as a pack. In addition, an indication of the date and time of warehousing is included. Similarly, the type, number, size, information of the delivery destination of goods to be delivered from the warehouse, and the date and time for completing the delivery work are included. It also includes information on the type, number and size of inventory items already stored in the warehouse. As a result, this quantity data can be regarded as a work instruction to the warehouse.
 また、タスクを、倉庫内での作業内容、作業にかかる時間、作業を終えるべき時間である終了時間、又は必要な作業量などを表すものとする。例えば、出荷作業を終えるべき時間と、必要な出荷量などである。ここで、タスクは、単位時間あたりの形式で記述されても良いが、これに限定されない。タスクは、作業の優先度、物品の優先度(賞味期限などにより、早く出荷する物品など)、配送先の優先度(遠距離の配送先であれば、先に出荷するなど)、出庫順(物品によって、出庫する順序が固定しているなど)を含んでもよい。さらに、物品毎に異なる作業が設定されてもよい。また、実際の作業データではなく、過去の傾向や、市場の情報などから予測したデータであってもよい。 Also, the task represents the work contents in the warehouse, the time taken for the work, the end time that is the time to finish the work, or the required work amount. For example, the time at which the shipping operation should be completed and the required shipping amount. Here, the task may be described in a format per unit time, but is not limited thereto. Tasks include the priority of work, the priority of goods (such as goods that are shipped earlier due to the expiration date, etc.), the priority of the delivery destination (if the delivery destination is at a long distance, etc.), the order of delivery ( Depending on the article, the order of delivery may be fixed. Further, different work may be set for each article. Further, it may be data predicted based on past trends, market information, or the like instead of actual work data.
 作業効率計算部114は、作業員104又はロボット105から作業結果を受信するごとに、生成部107により生成されたパターンを倉庫に適用した場合の作業効率を計算する。ここで、作業効率とは、倉庫内の作業の効率を数値化したものであり、例えば、一つの作業にかかる作業時間、作業にかかる作業員の人件費やロボットの維持費などのコスト、パターンを適用した場合に得られる作業量、又は作業員やロボットの稼働率などの積分値を基に計算される。作業効率は、あらかじめ与えられた評価式やシミュレーション等によって計算される。 The work efficiency calculation unit 114 calculates the work efficiency when the pattern generated by the generation unit 107 is applied to the warehouse every time a work result is received from the worker 104 or the robot 105. Here, the work efficiency is a numerical value of the work efficiency in the warehouse. For example, the work time for one work, the labor cost of the worker for the work, the maintenance cost of the robot, etc. Is calculated on the basis of an integrated value such as a work amount obtained by applying the operation rate of the worker or the robot. The work efficiency is calculated by an evaluation formula or a simulation given in advance.
 ここで、作業員104又はロボット105から作業結果を受信するのは、後述する作業結果受信部118であり、作業結果受信部118は、受信したタイミングを作業効率計算部114に送信する。例えば、搬送ロボットによる棚の位置の変更作業の作業結果を受信するタイミングは、搬送ロボットが変更後の棚の位置に移動し、棚を配置したタイミングである。また、例えば、ベルトコンベアによる物品の搬送作業の作業結果を受信するタイミングは、搬送される物品がベルトコンベア上を移動し、作業員104又はロボット105によりピッキングされ、ベルトコンベア上から物品が無くなったタイミングなどである。ここで、ベルトコンベア上に物品が存在するかどうかはコントローラなどが判断する。 Here, the work result is received from the worker 104 or the robot 105 by a work result receiving unit 118 described later, and the work result receiving unit 118 transmits the received timing to the work efficiency calculating unit 114. For example, the timing of receiving the work result of the shelf position changing operation by the transfer robot is the timing at which the transfer robot moves to the changed shelf position and arranges the shelf. In addition, for example, when receiving the work result of the work of conveying the article by the belt conveyor, the article to be conveyed moves on the belt conveyor and is picked by the worker 104 or the robot 105, and the article disappears from the belt conveyor. Such as timing. Here, a controller or the like determines whether or not an article exists on the belt conveyor.
 選択部110は、第1の選択部115と第2の選択部116を備えており、倉庫タスク計算部113により計算されたタスクの値と、作業効率計算部114により計算された作業効率の値から、生成部107により生成されたパターンのうちいずれかを選択する。 The selection unit 110 includes a first selection unit 115 and a second selection unit 116, and the task value calculated by the warehouse task calculation unit 113 and the work efficiency value calculated by the work efficiency calculation unit 114. Then, one of the patterns generated by the generation unit 107 is selected.
 第1の選択部115は、生成部107によって生成されたパターンのうち、倉庫タスク計算部113により計算されたタスクを満たすパターンを選択する。例えば、生成されたパターンを適用した場合、終了時刻内に必要な作業量を満たすかどうかを判断する。 The first selection unit 115 selects a pattern satisfying the task calculated by the warehouse task calculation unit 113 from the patterns generated by the generation unit 107. For example, when the generated pattern is applied, it is determined whether a necessary work amount is satisfied within the end time.
 第2の選択部116は、第1の選択部115によって選択されたパターンのうち、作業効率が大きいものを選択する。ここでは、作業効率の値があらかじめ設定された閾値以上のものを複数選択してもよいし、最も作業効率の値が大きいものを選択してもよい。 The second selection unit 116 selects a pattern having high work efficiency from the patterns selected by the first selection unit 115. Here, a plurality of work efficiency values greater than or equal to a preset threshold value may be selected, or a work efficiency value that is the largest may be selected.
 図2は、選択部110においてパターンを選択するまでのフローを示した図である。 FIG. 2 is a diagram showing a flow until the selection unit 110 selects a pattern.
 パターン生成201では、生成部107により倉庫内のパターンを生成する。パターンの生成は、例えば、総当たり法などにより行う。その他、学習に基づくパターン生成、組み合わせ最適化法によるパターン生成、シミュレーションによるパターン生成など、ほかのパターン生成方法でもよい。学習に基づくパターン生成の場合には、あらかじめ学習データを入力しておく。パターン生成201は、計算部109が計算をするトリガごとにパターンの生成を行ってもよいし、計算部109による計算に関係なく、常にパターンを生成していてもよい。 In the pattern generation 201, the generation unit 107 generates a pattern in the warehouse. The pattern is generated by, for example, the brute force method. In addition, other pattern generation methods such as pattern generation based on learning, pattern generation by combination optimization, and pattern generation by simulation may be used. In the case of pattern generation based on learning, learning data is input in advance. The pattern generation 201 may generate a pattern for each trigger calculated by the calculation unit 109, or may always generate a pattern regardless of the calculation by the calculation unit 109.
 タスク判定202では、パターン生成201によって生成されたパターンを適用した場合に、倉庫タスク計算部113によって計算されたタスクを満たすかどうか判定する。例えば、各作業の終了時刻内に各作業を終わらせることができるかどうかシミュレーション等により判定する。倉庫タスク計算部113によって計算された必要な作業量を終了時刻内に満たすパターンかどうかを判断してもよい。 The task determination 202 determines whether the task calculated by the warehouse task calculation unit 113 is satisfied when the pattern generated by the pattern generation 201 is applied. For example, it is determined by simulation or the like whether each work can be completed within the end time of each work. It may be determined whether the pattern satisfies the required work amount calculated by the warehouse task calculation unit 113 within the end time.
 タスク判定202によって、タスクを満たさないと判定されたパターンはパターン破棄203によって破棄される。 The pattern determined not to satisfy the task by the task determination 202 is discarded by the pattern discard 203.
 作業効率判定204では、タスク判定202によってタスクを満たすと判定されたパターンを倉庫に適用した場合に、作業効率計算部114によって計算された作業効率の値が予め設定されている閾値を超えるかどうか判定する。作業効率を判定する閾値は固定でもよいし、時間変動してもよい。 In the work efficiency determination 204, when the pattern determined to satisfy the task by the task determination 202 is applied to the warehouse, whether the value of the work efficiency calculated by the work efficiency calculation unit 114 exceeds a preset threshold value judge. The threshold for determining work efficiency may be fixed or may vary over time.
 作業効率判定204によって、作業効率が閾値を超えないと判定されたパターンはパターン破棄203によって破棄される。 The pattern determined by the work efficiency determination 204 that the work efficiency does not exceed the threshold is discarded by the pattern discard 203.
 パターン選択205では、作業効率判定204によって作業効率の値が閾値を超えると判定されたパターンを選択する。または、作業効率の値が最も大きくなるパターンを選択してもよい。 In the pattern selection 205, the pattern determined by the work efficiency determination 204 that the work efficiency value exceeds the threshold value is selected. Alternatively, a pattern that maximizes the value of work efficiency may be selected.
 指示生成部111は、第2の選択部116で選択されたパターンに基づいて、作業指示の作成を行う。ここで、作業指示は、各作業員104またはロボット105に対して設定され、時間ごとに作業を決定する。例えば、読みだされたパターンのレイアウトを実現するために、倉庫内のある棚を別の場所に移動することになった場合、棚を移動することができる作業員又はロボットに、移動する棚の位置および棚の識別番号と、移動先の位置を作業指示として作成する。また、読みだされた作業スケジュールを実現するために、倉庫内で作業員が別の場所に移動することになった場合、作業員に移動先の位置及び作業内容を作業指示として作成する。 The instruction generation unit 111 creates a work instruction based on the pattern selected by the second selection unit 116. Here, the work instruction is set for each worker 104 or the robot 105, and the work is determined every time. For example, in order to realize the layout of the read pattern, if one shelf in the warehouse is to be moved to another location, an operator or robot that can move the shelf will be informed of the moving shelf. The position and shelf identification number and the destination position are created as work instructions. In order to realize the read work schedule, when the worker moves to another place in the warehouse, the position of the move destination and the work content are created as work instructions for the worker.
 指示送信部112は、倉庫102内の作業員104又はロボット105へと作業指示を送信する。指示送信部112は、表示部を介して指示を作業員に与えてもよい。さらに、表示部に、各作業員104の指示だけでなく、倉庫内の状態や今後の作業予定などを表示してもよい。これにより、作業員や管理者が倉庫の全体的な流れを把握することができる。表示部は端末の画面でもよいし、携帯端末の画面でもよい。さらに、環境に投影する表示でもよいし、作業者が身につけるウェアラブル端末でもよい。 The instruction transmission unit 112 transmits a work instruction to the worker 104 or the robot 105 in the warehouse 102. The instruction transmission unit 112 may give an instruction to the worker via the display unit. Furthermore, not only the instruction of each worker 104 but also the state in the warehouse and the future work schedule may be displayed on the display unit. As a result, workers and managers can grasp the overall flow of the warehouse. The display unit may be a terminal screen or a mobile terminal screen. Further, it may be a display projected on the environment, or a wearable terminal worn by an operator.
 作業結果受信部118は、作業員104やロボット105から指示送信部112によって指示した作業の結果を受け付ける。作業員104やロボット105は作業指示に従って作業するが、指示された作業が終了すると、作業結果を作業結果受信部118に送信する。ロボット105は無線等のネットワークを介して送信し、作業員104は設置してある端末、または所持している携帯端末を介して送信する。または、倉庫に設置してあるセンサまたは作業員104が所持しているセンサが作業の完了を自動的に判断し、作業完了通知を送信してもよい。さらに、指示された作業の完了だけでなく、作業開始前、作業中などの状態で、その状態を送信してもよいし、指示した作業が何らかの原因によってできない事象(例えば、作業員104はピッキング指示を受けたが、在庫がない、ロボットが移動指示を受けたがバッテリーが切れたなど)が発生した場合には、その状態を送信してもよい。これにより倉庫管理システム100は、逐一倉庫内の状況を把握することが可能となる。 The work result receiving unit 118 receives the result of the work instructed by the instruction sending unit 112 from the worker 104 or the robot 105. The worker 104 and the robot 105 work according to the work instruction. When the instructed work is finished, the work result is transmitted to the work result receiving unit 118. The robot 105 transmits via a wireless network or the like, and the worker 104 transmits via an installed terminal or a portable terminal possessed by the operator. Alternatively, a sensor installed in a warehouse or a sensor possessed by the worker 104 may automatically determine the completion of work and transmit a work completion notice. Furthermore, not only the instructed work is completed, but also the state may be transmitted in a state such as before starting the work or during the work, or an event in which the instructed work cannot be performed for some reason (for example, the worker 104 picks If an instruction is received but there is no stock, a robot receives a movement instruction but the battery runs out, etc., the status may be transmitted. As a result, the warehouse management system 100 can grasp the situation in the warehouse one by one.
 図3は、倉庫内の作業効率の推移を模式的に示した図の例である。 FIG. 3 is an example of a diagram schematically showing the transition of work efficiency in the warehouse.
 ここでは、例として作業効率が出荷作業量である場合を説明する。出庫指示された物品について、指示された終了時刻301までに出庫作業を完了する場合の出庫作業量の推移を図3に示している。 Here, the case where the work efficiency is the shipment work amount will be described as an example. FIG. 3 shows a change in the amount of delivery work when the delivery operation is completed by the instructed end time 301 for the goods instructed for delivery.
 作業開始時刻302から終了時刻301までの作業量を積分したものが全体の出庫に関する物量を表現している。パターン変更を行わない場合、作業量は点線303で示される推移を示す通り、変化しない。また、パターン変更を行う場合、出荷作業量は例えば実線304で示される推移を示す。変更を行うための作業にリソース(作業員やロボットなど)が割かれるため、パターン変更作業開始後は出庫作業量が下がるが、作業員又はロボットから指示結果を受信したタイミングごとにパターンの見直しを行い、パターンを少しずつ変更することで、時間の経過とともに作業効率が上がっていく。出庫作業が終了すべき終了時刻301は倉庫タスク計算部113により計算されているため、作業効率計算部114は、作業開始時刻302から終了時刻301までの出庫作業量を積分し、作業効率の値を求める。 Integrating the amount of work from the work start time 302 to the end time 301 represents the quantity related to the entire delivery. When the pattern change is not performed, the work amount does not change as shown by the transition indicated by the dotted line 303. Further, when the pattern is changed, the shipment work amount shows a transition indicated by a solid line 304, for example. Since resources (workers, robots, etc.) are devoted to the work to make changes, the amount of warehousing work will decrease after the pattern change work starts, but the pattern will be reviewed each time the instruction result is received from the worker or robot. Doing and changing the pattern little by little increases work efficiency over time. Since the end time 301 at which the exit work should be finished is calculated by the warehouse task calculation unit 113, the work efficiency calculation unit 114 integrates the output work amount from the work start time 302 to the end time 301, and the value of the work efficiency is obtained. Ask for.
 倉庫管理システム100は、倉庫内の各作業員104及び各ロボット105から作業結果を受け付けるごとにそれぞれのタイミングで作業効率を計算し、パターン変更の可否を判断する。その例を、図4を用いて説明する。 The warehouse management system 100 calculates work efficiency at each timing each time work results are received from each worker 104 and each robot 105 in the warehouse, and determines whether the pattern can be changed. An example of this will be described with reference to FIG.
 図4は、倉庫管理システム100の指示送信及び作業結果受信を模式的に図示したシーケンス図である。図4では、作業員104及びロボット105を簡易的に1つの列で表しているが、倉庫管理システム100は倉庫内のすべての作業員及びロボットと作業指示や作業結果のやり取りを行う。また、図4では、作業員104及びロボット105とのやり取りが図示されているが、作業員のみ又はロボットのみの場合も含まれる。 FIG. 4 is a sequence diagram schematically showing instruction transmission and work result reception of the warehouse management system 100. In FIG. 4, the worker 104 and the robot 105 are simply represented by one column, but the warehouse management system 100 exchanges work instructions and work results with all the workers and robots in the warehouse. Further, FIG. 4 illustrates the exchange between the worker 104 and the robot 105, but the case of only the worker or the robot is also included.
 倉庫管理システム100は、生成部107によりパターンを生成し、計算部109及び選択部110によりパターンを選択した後に、選択されたパターンに基づいて作業指示を生成する(401)。 The warehouse management system 100 generates a pattern by the generation unit 107, selects a pattern by the calculation unit 109 and the selection unit 110, and then generates a work instruction based on the selected pattern (401).
 そして時刻t1に、パターン変更に関係する倉庫内の作業員104及びロボット105に生成した作業指示を指示送信部112により送信する。ここでの時刻t1は、図3の302に該当する。表示部などを介して作業指示を受信した各作業員104及び各ロボット105は、受信した作業指示に応じて作業を行う(402及び403)。各々の作業員104及びロボット105は、作業が完了した場合や作業に支障が起った場合などの時刻t2で、作業結果を作成して倉庫管理システム100に送信する(404)。図4では、ある作業員が最も早く作業を終えた場合を示している。 At time t1, the instruction transmission unit 112 transmits work instructions generated to the worker 104 and the robot 105 in the warehouse related to the pattern change. The time t1 here corresponds to 302 in FIG. Each worker 104 and each robot 105 that have received the work instruction via the display unit or the like perform work in accordance with the received work instruction (402 and 403). Each worker 104 and robot 105 creates a work result and transmits it to the warehouse management system 100 at time t2, such as when the work is completed or when the work is disturbed (404). FIG. 4 shows a case where a certain worker finishes the work earliest.
 次に、倉庫管理システム100の作業結果受信部118により作業結果を受信した時刻t2で(405)、倉庫管理システム100は、生成されたパターンの作業効率を計算部109により計算して選択部110によりパターンを選択する(図示せず)。なお、作業効率の値が大きいパターンが選択部110により選択されるので、作業効率が大きいパターンが生成部107により生成されなかった場合には、パターンが選択されず作業指示も作業員及びロボットには送信されない。さらに、倉庫管理システム100は、選択されたパターンに基づいて作業指示を生成する(406)。ここで、405のタイミングでは最も早く作業を終えた作業員以外の各作業員及び各ロボットは未だ作業中だが、倉庫管理システム100は作業結果を受け付ける度に、生成された作業効率を計算してパターンの変更の可否を判断する。そのため、406により生成された作業指示には、最も作業を早く終えた作業員以外の各作業員及び各ロボットへの作業指示も含まれている。よって、生成されたパターンによっては、各作業員及び各ロボットは作業中の作業と同様の作業指示を受信する場合や作業中の作業以外の作業指示を受信する場合がある。 Next, at time t2 when the work result is received by the work result receiving unit 118 of the warehouse management system 100 (405), the warehouse management system 100 calculates the work efficiency of the generated pattern by the calculation unit 109 and selects the selection unit 110. To select a pattern (not shown). Since a pattern with a large work efficiency value is selected by the selection unit 110, if a pattern with a high work efficiency is not generated by the generation unit 107, a pattern is not selected and a work instruction is also sent to the worker and the robot. Will not be sent. Further, the warehouse management system 100 generates a work instruction based on the selected pattern (406). Here, at the timing of 405, each worker and each robot other than the worker who finished the work earliest are still working, but the warehouse management system 100 calculates the generated work efficiency each time the work result is received. Judge whether the pattern can be changed. Therefore, the work instruction generated by 406 includes work instructions for each worker other than the worker who finished the work earliest and each robot. Therefore, depending on the generated pattern, each worker and each robot may receive a work instruction similar to the work in progress or a work instruction other than the work in progress.
 次に、時刻t3で指示送信部112により倉庫内の作業員104及びロボット105に作業指示を送信した後、各作業員及び各ロボットは受信した作業指示に従って作業を行う(407及び408)。ここでの時刻t3も、図3の302に該当する。408では、ロボット105は作業中の作業と同様の作業指示を受けたことを表している。時刻t4に、ロボットが指示された作業を終えた場合、作業結果を作成して倉庫管理システムに送信する(409)。 Next, after transmitting a work instruction to the worker 104 and the robot 105 in the warehouse by the instruction transmission unit 112 at time t3, each worker and each robot perform work according to the received work instruction (407 and 408). The time t3 here also corresponds to 302 in FIG. Reference numeral 408 indicates that the robot 105 has received a work instruction similar to the work in progress. When the robot completes the instructed work at time t4, a work result is created and transmitted to the warehouse management system (409).
 その後、倉庫管理システム100は、405及び406と同様に作業結果を受信して作業指示を生成し(410及び411)、時刻t5に指示送信部112により倉庫内の作業員104及びロボット105に作業指示を送信する。作業員104及びロボット105は作業指示を受信する(412及び413)。 After that, the warehouse management system 100 receives work results as in 405 and 406, generates work instructions (410 and 411), and works on the workers 104 and the robot 105 in the warehouse by the instruction transmission unit 112 at time t5. Send instructions. The worker 104 and the robot 105 receive the work instruction (412 and 413).
 図4では、作業員104は412において作業中の作業と異なる作業指示を受信したことを示している。 FIG. 4 shows that the worker 104 has received a work instruction different from the work being worked in 412.
 このように、倉庫管理システム100は、複数の作業員104及び複数のロボット105から作業結果を受け付ける作業結果受信部118、及び作業結果を受け付ける度に作業効率を計算する作業効率計算部114を備えている。 As described above, the warehouse management system 100 includes the work result receiving unit 118 that receives work results from the plurality of workers 104 and the plurality of robots 105, and the work efficiency calculation unit 114 that calculates the work efficiency each time the work results are received. ing.
 図3及び図4に示す通り、作業員又はロボットが作業結果を作成したタイミングごとに作業効率を向上するパターンに変更することが可能となる。その結果、倉庫全体の作業効率を逐一改善していくことが可能となる。 As shown in FIG. 3 and FIG. 4, it is possible to change to a pattern that improves work efficiency at each timing when a worker or a robot creates a work result. As a result, the work efficiency of the entire warehouse can be improved step by step.
 このように、実施例1に表す倉庫管理システム100は、倉庫のレイアウト、前記倉庫内の作業の順序である作業フロー、又は複数の作業員及び複数のロボットの作業スケジュール、を含むパターンを複数生成する生成部107と、複数の作業員と複数のロボットの位置及び作業内容、を含む情報を格納する位置データベース108と、顧客の注文によって定まる物量から倉庫内の各作業の作業内容、終了時刻、及び必要な作業量を含むタスクを計算する倉庫タスク計算部113と、パターンのそれぞれを適用した場合における倉庫内の作業効率を計算する作業効率計算部114と、パターンのうち、各作業の終了時刻内に必要な作業量を満たすことの出来るパターンを選択する第1の選択部115と、第1の選択部によって選択されたパターンのうち、作業効率が予め設定された閾値を超えるパターンを選択する第2の選択部116と、第2の選択部によって選択されたパターンに従って、複数の作業員又は複数のロボットへの指示を生成する指示生成部111と、指示を複数の作業員又は複数のロボットへ送信する指示送信部112と、送信した指示についての作業結果を複数の作業員又は複数のロボットから受け付ける作業結果受付部118を備えており、作業効率計算部114は、作業結果受付部118が作業結果を受け付けることをトリガとして、作業効率を計算する。 As described above, the warehouse management system 100 represented in the first embodiment generates a plurality of patterns including a warehouse layout, a work flow that is the order of work in the warehouse, or work schedules of a plurality of workers and a plurality of robots. Generating section 107, position database 108 for storing information including positions and work contents of a plurality of workers and robots, work contents of each work in the warehouse from the quantity determined by the customer's order, end time, And a warehouse task calculation unit 113 that calculates a task including a necessary work amount, a work efficiency calculation unit 114 that calculates work efficiency in the warehouse when each of the patterns is applied, and an end time of each work among the patterns A first selection unit 115 for selecting a pattern capable of satisfying a required work amount, and a pattern selected by the first selection unit. A second selection unit 116 for selecting a pattern whose work efficiency exceeds a preset threshold value, and instructions to a plurality of workers or a plurality of robots according to the pattern selected by the second selection unit An instruction generation unit 111 that generates an instruction, an instruction transmission unit 112 that transmits an instruction to a plurality of workers or a plurality of robots, and a work result reception unit that receives a work result regarding the transmitted instruction from a plurality of workers or a plurality of robots 118, and the work efficiency calculation unit 114 calculates the work efficiency by using the work result reception unit 118 as a trigger.
 別の表現をすれば、実施例1に表す倉庫管理システム100は、倉庫のレイアウトを複数生成する生成部107と、複数の作業員と複数のロボットの位置の情報を格納する位置データベース108と、顧客の注文によって定まる物量に基づいて倉庫内の作業に関するタスクを計算する倉庫タスク計算部113と、レイアウトのそれぞれを適用した場合における倉庫内の作業効率を計算する作業効率計算部114と、レイアウトのうち、タスクを満たすことの出来るレイアウトを選択する第1の選択部115と、第1の選択部によって選択されたレイアウトのうち、作業効率の値が最も大きいレイアウトを選択する第2の選択部116と、第2の選択部によって選択されたレイアウトに従って、複数の作業員と複数のロボットへの指示を生成する指示生成部111と、指示を複数の作業員と複数のロボットへ送信する指示送信部112と、送信した指示についての作業結果を複数の作業員又は複数のロボットから受け付ける作業結果受付部118を備えており、作業効率計算部114は、作業結果受付部118が作業結果を受け付けることをトリガとして、作業効率を計算する。 In other words, the warehouse management system 100 shown in the first embodiment includes a generation unit 107 that generates a plurality of warehouse layouts, a position database 108 that stores information on the positions of a plurality of workers and a plurality of robots, A warehouse task calculation unit 113 that calculates tasks related to work in the warehouse based on the quantity determined by the customer's order, a work efficiency calculation unit 114 that calculates work efficiency in the warehouse when each of the layouts is applied, Among them, a first selection unit 115 that selects a layout that can satisfy a task, and a second selection unit 116 that selects a layout having the highest work efficiency value among the layouts selected by the first selection unit. And generate instructions to multiple workers and multiple robots according to the layout selected by the second selection unit An instruction generation unit 111, an instruction transmission unit 112 that transmits instructions to a plurality of workers and a plurality of robots, and a work result reception unit 118 that receives work results on the transmitted instructions from a plurality of workers or a plurality of robots. The work efficiency calculation unit 114 calculates the work efficiency with the work result reception unit 118 receiving the work result as a trigger.
 係る構成により、本実施例に係る倉庫管理システムは、各作業員又は各ロボットからの作業結果の受信をトリガとして、配置変更の要否を判断することができ、倉庫内の作業効率を逐一改善していくことが可能となる。そのため、倉庫内のコストを抑えることが可能となる。 With this configuration, the warehouse management system according to the present embodiment can determine whether or not it is necessary to change the layout by using the reception of the work result from each worker or each robot as a trigger, thereby improving work efficiency in the warehouse one by one. It becomes possible to do. Therefore, it is possible to reduce the cost in the warehouse.
 <ロボットの戻り位置に関する変形例>
生成部107が生成するパターンには、パターン変更前のロボット105の位置とは異なる位置にロボット105を配置するようなパターンが含まれている。その例を、図5を用いて説明する。
<Variation of robot return position>
The pattern generated by the generation unit 107 includes a pattern in which the robot 105 is arranged at a position different from the position of the robot 105 before the pattern change. An example thereof will be described with reference to FIG.
 図5は、ロボットが棚を運搬する様子を模式的に図示したものである。ここでは、ロボット105は、棚501の下に入り込み、棚501を所定の位置に運搬するものとする。 FIG. 5 schematically shows how the robot carries the shelf. Here, it is assumed that the robot 105 enters under the shelf 501 and transports the shelf 501 to a predetermined position.
 ロボット105が棚501を位置504から作業員503の前へ軌道502のように運搬すると、ロボット105は作業結果受信部118に作業結果を送信する。作業結果受信部118は、作業効率計算部にそのタイミングを送信し、その受信をトリガとして、作業効率計算部114は生成部107が生成したパターンの作業効率を計算する。ここで、パターンには、ロボットの位置を位置504とは異なる位置に戻すものが含まれている。作業効率計算部114では、次以降にピッキング作業を行う頻度を計算することにより、棚が405に配置されるパターンについての作業効率を計算してもよい。 When the robot 105 transports the shelf 501 from the position 504 to the front of the worker 503 like the track 502, the robot 105 transmits the work result to the work result receiving unit 118. The work result receiving unit 118 transmits the timing to the work efficiency calculation unit, and using the reception as a trigger, the work efficiency calculation unit 114 calculates the work efficiency of the pattern generated by the generation unit 107. Here, the pattern includes a pattern for returning the position of the robot to a position different from the position 504. The work efficiency calculation unit 114 may calculate the work efficiency for the pattern in which the shelves are arranged at 405 by calculating the frequency of performing the picking work after the next time.
 その後、指示送信部112は、生成された指示をロボット105に送信する。ここでは、ロボットを元の場所である位置504に戻すのではなく、位置505に棚501を戻す指示を送信する。 Thereafter, the instruction transmission unit 112 transmits the generated instruction to the robot 105. Here, an instruction to return the shelf 501 to the position 505 is transmitted instead of returning the robot to the original position 504.
 このように、倉庫管理システム100は、複数のロボットをレイアウトが変わる前の位置とは異なる位置に戻すレイアウトを含むものを生成する生成部107を備えている。 As described above, the warehouse management system 100 includes the generation unit 107 that generates a layout including a layout for returning a plurality of robots to a position different from the position before the layout is changed.
 係る構成により、作業が終わる度に、レイアウトを元のパターンとは異なる作業効率がより良くなるレイアウトに変更することが可能となる。その結果、倉庫全体としてスムーズなレイアウト変更を逐一することが可能となる。 With such a configuration, it is possible to change the layout to a layout with better work efficiency different from the original pattern every time work is completed. As a result, smooth layout changes can be made for the entire warehouse one by one.
 <ルールに基づくパターン生成に関する変形例>
図6は、生成部107の変形例を表した図である。
<Modified example of pattern generation based on rules>
FIG. 6 is a diagram illustrating a modification of the generation unit 107.
 生成部107は、受付部106からパターン生成に用いるデータ、倉庫内のリソースに関するデータ、及び倉庫内の作業員104並びにロボット105の特性に関するデータを受け付け、変更案となるパターンを複数生成する。生成部107は、パターン生成部601、事例データベース602、ルール作成部603、ルールデータベース604、及びルール選択部605を備えている。 The generating unit 107 receives data used for pattern generation from the receiving unit 106, data related to resources in the warehouse, and data related to the characteristics of the worker 104 and the robot 105 in the warehouse, and generates a plurality of patterns to be changed. The generation unit 107 includes a pattern generation unit 601, a case database 602, a rule creation unit 603, a rule database 604, and a rule selection unit 605.
 生成部107にパターン生成に用いるデータが入力されると、パターン生成部601は、事例データベース602から、入力されたパターン生成に用いるデータに近い事例を検索する。ここで、事例データベース602は事例データが格納されており、例えば過去の棚配置等のレイアウトが格納されている。各事例データには、それを選択するために指標となる属性値があり、例えば、属性値は物量が「閾値A以上」「閾値A以下」などといった判定基準である。なお、属性値はひとつでもよいし、複数であってもよい。パターン生成部601は、事例データベースに格納されている事例データを基にパターンを作成しても良い。 When data used for pattern generation is input to the generation unit 107, the pattern generation unit 601 searches the case database 602 for cases close to the input data used for pattern generation. Here, the case database 602 stores case data, for example, a layout such as a past shelf arrangement. Each case data has an attribute value that serves as an index for selecting the case data. For example, the attribute value is a determination criterion such as “physical quantity is“ over threshold A ”or“ threshold A ”. The attribute value may be one or plural. The pattern generation unit 601 may create a pattern based on case data stored in the case database.
 また、ルール作成部603は、事例データを利用して、パターン生成に用いるデータに合致する事例を検索し、各事例から共通のルールを作成し、ルールデータベース604に格納する。ルール作成部603は、例えば、人工知能を利用して各事例データからルールを作成する。物量が閾値Aよりも多いときには通路を多くする、通路の幅を大きくするなどのルールを作成する。 Also, the rule creation unit 603 uses the case data to search for cases that match the data used for pattern generation, creates a common rule from each case, and stores it in the rule database 604. The rule creation unit 603 creates a rule from each case data using, for example, artificial intelligence. When the quantity is larger than the threshold A, rules such as increasing the number of passages and increasing the width of the passage are created.
 また、ルール選択部605は、倉庫内のリソースに関するデータ及び倉庫内の作業員104並びにロボット105の特性に関するデータを受け付けた際に、ルールデータベース604に格納されているルールから所定のルールを選択する。例えば、入力されたリソースによって定まる条件又は作業員104及びロボット105の特性に基づいて選択する。 Also, the rule selection unit 605 selects a predetermined rule from the rules stored in the rule database 604 when receiving data related to the resources in the warehouse and data related to the characteristics of the worker 104 and the robot 105 in the warehouse. . For example, the selection is made based on the condition determined by the input resource or the characteristics of the worker 104 and the robot 105.
 ここで、リソースを倉庫内の利用できる作業員、ロボット、物、及び場所を表すものとする。リソースは、空間を含んでもよく、空間とは倉庫の面積や縦方向の高さを示す。倉庫内の空き場所(作業、物品が割りつけられていない場所)や、複数の物品または作業で使用する共有場所をリソースに関するデータとしてもよい。例えば、レイアウトのパターンを作成する場合、設置する棚の数やその他の設備の数およびその大きさ、また柱の位置などである。 Suppose here that resources represent workers, robots, objects, and places that can be used in the warehouse. The resource may include a space, which indicates the area of the warehouse and the height in the vertical direction. Data relating to resources may be a vacant place in a warehouse (a place where work and goods are not allocated) and a shared place used for a plurality of goods or work. For example, in the case of creating a layout pattern, the number of shelves to be installed, the number and size of other equipment, and the positions of pillars.
 さらに、特性を作業員やロボットの特徴や能力を表すものとする。例えば、作業員のピッキング能力などである。さらに、作業員それぞれの性格(リーダー的性格、単調作業を好む性格など)、その作業への慣れ(作業年数、熟練度など)、宗教(決まった時間に休憩をとるなど)、年齢(年代など)などである。また、ロボットの特性として、ロボットそれぞれの機能、寿命、動作の癖、メンテナンスの時期、メンテナンスにかかる時間などがある。 Furthermore, the characteristics shall represent the characteristics and abilities of workers and robots. For example, the picking ability of the worker. In addition, each worker's personality (leader personality, personality that prefers monotonous work, etc.), familiarity with the work (work years, skill level, etc.), religion (such as taking a break at a fixed time), age (such as age) ) Etc. Further, the characteristics of the robot include the function, life, operation failure, maintenance timing, and maintenance time of each robot.
 ルール選択部605は、入力されたリソースに基づく条件と作業員及びロボットの特性をキーとして、ルールデータベース604から合致する、又は近いと判定したルールを選択する。ルールはひとつでもよいし、複数選択してもよい。ルールを複数選択する場合、ルールはそれぞれ矛盾しないものを選択するようにする。 The rule selection unit 605 selects a rule determined to match or close from the rule database 604 using the condition based on the input resource and the characteristics of the worker and the robot as keys. One rule or a plurality of rules may be selected. When multiple rules are selected, select the rules that do not contradict each other.
 パターン生成部601は、ルール選択部605で選択したルールに基づき、パターンを生成しても良い。ルールを複数選択している場合で、矛盾するものがある場合には、例えば、選択するときの優先度を計算し、優先度が高い方のルールを選択する。 The pattern generation unit 601 may generate a pattern based on the rule selected by the rule selection unit 605. When a plurality of rules are selected and there are conflicting rules, for example, the priority when selecting is calculated, and the rule with the higher priority is selected.
 このように、倉庫管理システム100は、レイアウトを生成するためのルールが格納されているルールデータベース604と、倉庫内のリソースに基づいて定まる条件、又は作業員若しくはロボットの特性からルールを選択するルール選択部605を備えている。 As described above, the warehouse management system 100 selects a rule from a rule database 604 in which rules for generating a layout are stored, conditions determined based on resources in the warehouse, or characteristics of workers or robots. A selection unit 605 is provided.
 係る構成により、多種多様な倉庫のパターンを容易に生成することが可能となる。 Such a configuration makes it possible to easily generate a wide variety of warehouse patterns.
 <作業結果をフィードバックする変形例>
次に、指示をした結果を受けて再度指示を作成するフィードバック機構をもつ倉庫管理システムについて説明する。
<Variation that feeds back work results>
Next, a warehouse management system having a feedback mechanism for receiving an instruction result and creating an instruction again will be described.
 図7は、フィードバック機構を備える倉庫管理システム100を表した図である。 FIG. 7 is a diagram showing a warehouse management system 100 including a feedback mechanism.
 作業結果受信部118では、作業員104やロボット105の作業結果を受け取り、そのデータを受付部106及び計算部109に送信する(701)。ここで、作業結果受信部118が受付部106に送信するデータは、作業結果の内容に関するものであり、計算部109に送信するデータは、作業結果の受信したタイミングに関するものである。作業結果の内容に関するデータは、例えば、作業に遅延が生じているという情報が含まれる。 The work result receiving unit 118 receives the work results of the worker 104 and the robot 105, and transmits the data to the receiving unit 106 and the calculating unit 109 (701). Here, the data transmitted from the work result receiving unit 118 to the receiving unit 106 relates to the contents of the work result, and the data transmitted to the calculation unit 109 relates to the timing at which the work result is received. The data related to the contents of the work result includes, for example, information that the work is delayed.
 生成部107では、受付部106が受信した作業結果に基づいてパターンを再度生成する。例えば受信した作業結果から、作業の遅延が発生していると判断した場合、作業に余裕がある作業員又はロボットに遅延を回復するための作業をさせるようなパターンを生成する。 The generation unit 107 generates a pattern again based on the work result received by the reception unit 106. For example, when it is determined from the received work result that work delay has occurred, a pattern is generated that causes a worker or robot with sufficient work to perform work for recovering the delay.
 このように、倉庫管理システム100は、送信した指示についての作業結果を受け取る作業結果受信部118と、作業結果に基づいてパターンを生成する生成部107を備えている。 As described above, the warehouse management system 100 includes the work result receiving unit 118 that receives the work result of the transmitted instruction, and the generation unit 107 that generates a pattern based on the work result.
 係る構成により、倉庫内での逐次的状態を把握し、状態に即した作業指示を作業員104やロボット105に与えることができる。 With such a configuration, it is possible to grasp the sequential state in the warehouse and give a work instruction in accordance with the state to the worker 104 or the robot 105.
 <変更に伴うコスト考慮に関する変形例>
次に、変更に伴うコストを考慮したパターン選択に関する内容を説明する。
<Modification regarding cost considerations associated with changes>
Next, contents related to pattern selection in consideration of the cost associated with the change will be described.
 図8は、計算部109及び選択部110の変形例を表した図である。 FIG. 8 is a diagram illustrating a modification of the calculation unit 109 and the selection unit 110.
 計算部109は、現状コスト計算部801、変更コスト計算部802、及び削減コスト計算部803を備えている。また、選択部110は、第3の選択部804を備えている。 The calculation unit 109 includes a current cost calculation unit 801, a change cost calculation unit 802, and a reduction cost calculation unit 803. The selection unit 110 includes a third selection unit 804.
 現状コスト計算部801は、倉庫データから現状の倉庫に関するデータを受け取り、現状のパターンから変更をしなかった場合にかかる現状コストを計算する。例えば、現状のレイアウトを継続するにあたって必要な作業員の人件費、ロボットのランニングコストなどを計算する。 The current cost calculation unit 801 receives data related to the current warehouse from the warehouse data, and calculates the current cost required when there is no change from the current pattern. For example, the labor cost of a worker and the running cost of a robot necessary for continuing the current layout are calculated.
 変更コスト計算部802は、倉庫データから現状の倉庫に関するデータを受け取り、生成部107が生成したパターンに変更するための変更コストを計算する。例えば、倉庫データから受け取った現状のレイアウトから、生成部が生成したレイアウトに変更するための作業量などを求めて、変更作業に伴うコストを計算する。また、作業時間や他の作業への影響度を求めても良い。 The change cost calculation unit 802 receives data related to the current warehouse from the warehouse data, and calculates a change cost for changing to the pattern generated by the generation unit 107. For example, the amount of work for changing from the current layout received from the warehouse data to the layout generated by the generation unit is obtained, and the cost associated with the change work is calculated. Further, the working time and the degree of influence on other work may be obtained.
 削減コスト計算部803は、生成部107が生成したパターン及び倉庫データから現状の倉庫に関するデータを受け取り、生成したパターンを適用した場合に削減することができる削減コストを計算する。例えば、レイアウトを変更した場合の稼働率、及び現状の倉庫に関するデータから読みだした現状の稼働率を計算し、稼働率の向上で削減されるコスト(例えば、人件費、ロボットのランニングコストなど)を計算する。 The reduction cost calculation unit 803 receives data relating to the current warehouse from the pattern and warehouse data generated by the generation unit 107, and calculates a reduction cost that can be reduced when the generated pattern is applied. For example, calculate the operating rate when the layout is changed and the current operating rate read from the data related to the current warehouse, and reduce costs by improving the operating rate (for example, labor costs, robot running costs, etc.) Calculate
 変更コスト計算部701及び削減コスト計算部702においてコストを計算するための稼働時間、作業者の人件費、及びロボットのランニングコスト等は予め設定しておいても良い。 The operating time for calculating the cost in the change cost calculation unit 701 and the reduction cost calculation unit 702, the labor cost of the worker, the running cost of the robot, and the like may be set in advance.
 第3の選択部804は、第2の選択部116により選択されたパターンのうち、計算されたコストから、本当に変更すべきパターンを選択する。具体的には、削減コスト計算部803によって計算された削減コストが、現状コストと変更コストの和よりも大きいかどうか判断する。 The third selection unit 804 selects a pattern to be really changed from the calculated costs among the patterns selected by the second selection unit 116. Specifically, it is determined whether or not the reduction cost calculated by the reduction cost calculation unit 803 is larger than the sum of the current cost and the change cost.
 図9は、第3の選択部703においてパターンを選択するフローを示した図である。 FIG. 9 is a diagram showing a flow for selecting a pattern in the third selection unit 703.
 パターン選択901では、第2の選択部116により作業効率の値が大きいパターンを選択する。 In pattern selection 901, the second selection unit 116 selects a pattern having a large work efficiency value.
 コスト計算902では、現状コスト計算部801、変更コスト計算部802、及び削減コスト計算部803により、現状コスト、変更コスト、及び削減コストをそれぞれ計算する。 In the cost calculation 902, the current cost calculation unit 801, the change cost calculation unit 802, and the reduction cost calculation unit 803 calculate the current cost, the change cost, and the reduction cost, respectively.
 変更可否判定903では、コスト計算902によって計算されたコストを利用して、生成したパターンに変更すべきかどうか判定する。具体的には、コスト計算902によって計算された削減コストの値が、現状コストと変更コストの和の値よりも大きいかどうか判定する。また、入力されるデータの増減によって、判定基準を変更しても良い。例えば、倉庫内の物量が少ない状態から多い状態に変化したときには削減コストが少しでも増大すれば変更の判定をし、倉庫内の物量が多い状態から少ない状態に変化したときには削減コストが多ければ変更判定をしても良い。 In the change possibility determination 903, it is determined whether or not to change to the generated pattern using the cost calculated by the cost calculation 902. Specifically, it is determined whether the value of the reduction cost calculated by the cost calculation 902 is larger than the value of the sum of the current cost and the change cost. Further, the determination criterion may be changed by increasing or decreasing the input data. For example, when the amount of goods in the warehouse changes from a small state to a large state, the change is judged if the reduction cost increases even a little. When the amount of goods in the warehouse changes from a small state to a small state, the change is judged. Judgment may be made.
 これにより、倉庫内の物量に応じた、変更の可否を容易に行うことが出来る。 This makes it easy to determine whether or not changes can be made according to the quantity in the warehouse.
 さらに、変更可否判定では、自動的に変更を実施するか判定しなくてもよい。例えば、管理者によって判定してもよい。その場合、管理者が判定するために、現状コスト、変更コスト、及び、削減コストといった情報を、計算部109は管理者に提示する。管理者は提示された情報から、変更を実施するか判定し、変更可否判定903は管理者の判定に応じてパターンの選択を行う。 Furthermore, it is not necessary to determine whether the change is automatically performed in the change permission determination. For example, the determination may be made by an administrator. In this case, the calculation unit 109 presents information such as a current cost, a change cost, and a reduction cost to the administrator for the administrator to determine. The administrator determines from the presented information whether to change, and the change permission determination 903 selects a pattern according to the determination of the administrator.
 変更可否判定903によって、変更すべきでないと判定されたパターンはパターン破棄904によって破棄される。 The pattern determined not to be changed by the change permission determination 903 is discarded by the pattern discard 904.
 パターン選択904では、変更可否判定903によって削減コストの値が、現状コストと変更コストの和の値よりも大きいと判定されたパターンを選択する。または、削減コストの値と、現状コストと変更コストの和の値との差が最も大きくなるパターンを選択してもよい。 In pattern selection 904, a pattern for which the value of the reduction cost is determined to be larger than the sum of the current cost and the change cost by the change possibility determination 903 is selected. Alternatively, a pattern that maximizes the difference between the value of the reduction cost and the value of the sum of the current cost and the change cost may be selected.
 他の例として、例えば、パターンが作業フローである場合では、現状の作業フローと生成した作業フローの違いから変更の可否を判断する。 As another example, for example, when the pattern is a work flow, whether or not the change can be made is determined based on a difference between the current work flow and the generated work flow.
 変更コスト計算部802は、作業フローを生成した作業フローに変更した場合に、作業フロー変更に伴う作業量を求める。例えば、作業フロー変更による物品の移動コスト、作業員の位置変更コスト、及びロボットの位置変更コストを計算する。 The change cost calculation unit 802 obtains the work amount associated with the work flow change when the work flow is changed to the generated work flow. For example, the movement cost of the article due to the work flow change, the worker position change cost, and the robot position change cost are calculated.
 削減コスト計算部803は、例えば、あらかじめ設定した作業間の依存関係等を用いて、削減コストを計算する。入庫した物品をピッキングした後に検品する、など各作業には必ず依存関係がある。この関係から、例えば、物品をピッキングし、物品の梱包時に検品するという作業フローから、ピッキングする時に同時に検品し、物品の梱包時には検品しないという作業フローに変更した場合の、ピッキング時での作業量の増加、これに伴うピッキング時間の延長を求め、さらに梱包時の検品作業の削減による作業量の減少、これに伴う作業時間の短縮を求める。求めた作業量増加と作業量の減少の差、又は、延長された作業時間と短縮された作業時間の差を削減コストとして計算してもよい。 The reduction cost calculation unit 803 calculates the reduction cost by using, for example, a dependency relationship set in advance. There is always a dependency on each work, such as picking up the goods that have been received and then inspecting them. From this relationship, for example, the amount of work at the time of picking when changing from a work flow of picking an article and inspecting at the time of packing the article to a work flow of checking at the same time when picking and not inspecting at the time of packing the article Increase of the picking time associated therewith, and further reduction of the amount of work by reducing the inspection work at the time of packing, and reduction of the work time associated therewith. The difference between the obtained increase in the work amount and the decrease in the work amount, or the difference between the extended work time and the shortened work time may be calculated as the reduction cost.
 その後は、変更可否判定903により、作業フローを変更すべきかどうか判定する。 Thereafter, it is determined whether or not the work flow should be changed by a changeability determination 903.
 以上に示したことは、作業スケジュールがパターンであっても同様である。 The above is the same even if the work schedule is a pattern.
 このように、倉庫管理システム100は、倉庫の現状のパターンを維持した場合にかかる現状コストを計算する現状コスト計算部801と、倉庫の現状のパターンから、生成部によって生成されたパターンのそれぞれに変更する際にかかる変更コストを計算する変更コスト計算部802と、現状のパターンから生成部によって生成されたパターンのそれぞれに変更することで削減される削減コストを計算する削減コスト計算部803と、第2の選択部によって選択されたパターンのうち、削減コストが現状コストと変更コストの和よりも大きくなるパターンを選択する第3の選択部804と、を更に備えている。 As described above, the warehouse management system 100 includes a current cost calculation unit 801 that calculates a current cost when the current pattern of the warehouse is maintained, and a pattern generated by the generation unit from the current pattern of the warehouse. A change cost calculation unit 802 that calculates a change cost when changing, a reduction cost calculation unit 803 that calculates a reduction cost that is reduced by changing each pattern generated from the current pattern to the generation unit, and A third selection unit 804 that selects a pattern whose reduction cost is greater than the sum of the current cost and the change cost among the patterns selected by the second selection unit is further provided.
 係る構成により、倉庫のパターンの要否判断を容易にすることができ、倉庫内のコストを抑えることが可能となる。 With such a configuration, it is possible to easily determine whether the warehouse pattern is necessary, and it is possible to reduce the cost in the warehouse.
 <複数倉庫の管理に関する変形例>
次に、複数の倉庫があった場合の倉庫間のリソース変更の生成に関する内容について示す。
<Modifications for managing multiple warehouses>
Next, contents related to generation of a resource change between warehouses when there are a plurality of warehouses will be described.
 図10は、倉庫間のリソース分配を表した図である。 FIG. 10 is a diagram showing resource distribution among warehouses.
 倉庫管理システム100は、倉庫1002と倉庫1003から倉庫データを受け付ける。倉庫管理システム100は、リソースデータベース1001、稼働状況判定部1004、リソース計算部1005、及びリソース検索部1006を有している。 The warehouse management system 100 receives warehouse data from the warehouse 1002 and the warehouse 1003. The warehouse management system 100 includes a resource database 1001, an operation status determination unit 1004, a resource calculation unit 1005, and a resource search unit 1006.
 リソースデータベース1001は、複数の倉庫1002及び1003で共有するリソースデータを蓄積する。ここで、リソースは、複数の倉庫1002及び1003で共有できるものとする。また、倉庫間で共有できる倉庫データは距離などでカテゴリ化しておき、例えば倉庫間の距離が短く、短時間で移動可能であれば、移動可能である作業員104を共有作業員としてリソースデータベース1001に登録する。同様に、倉庫間で移動可能であるロボット105や棚などをリソースデータとしてリソースデータベース1001に登録する。 The resource database 1001 stores resource data shared by a plurality of warehouses 1002 and 1003. Here, the resource can be shared by a plurality of warehouses 1002 and 1003. Also, warehouse data that can be shared between warehouses is categorized by distance or the like. For example, if the distance between warehouses is short and can be moved in a short time, the resource database 1001 can be used as a shared worker. Register with. Similarly, a robot 105 or a shelf that can move between warehouses is registered in the resource database 1001 as resource data.
 物量データが入力データとして倉庫管理システム100に与えられると、倉庫タスク計算部113が倉庫1002内のタスクを計算する。稼働状況判定部1004において、現状の倉庫1002が保有するリソースで、計算したタスクが作業可能か判定を行う。判定には、与えられたタスクが所定の時間内に完了する見込みがあるかを評価する。 When the quantity data is given as input data to the warehouse management system 100, the warehouse task calculation unit 113 calculates tasks in the warehouse 1002. In the operation status determination unit 1004, it is determined whether the calculated task is workable with the resources held by the current warehouse 1002. The determination evaluates whether a given task is expected to be completed within a predetermined time.
 稼働状況判定部1004で判定した結果、リソースが不足していることが判定されると、リソース計算部1005はタスクを完了するのに必要なリソースを求め、求めた必要リソース数を、リソース検索部1006に通知する。リソース計算部1005は、必要なリソース数だけでなく、倉庫にリソースが到着するべき日時、分配されたリソースが使用される時間や期間を通知してもよい。 As a result of the determination by the operation status determination unit 1004, when it is determined that the resource is insufficient, the resource calculation unit 1005 obtains a resource necessary to complete the task, and the obtained resource count is determined by the resource search unit. 1006 is notified. The resource calculation unit 1005 may notify not only the required number of resources but also the date and time when the resource should arrive at the warehouse and the time and period during which the distributed resource is used.
 倉庫1003も倉庫1002と同様に、作業すべきタスクが計算されると、稼働状況判定部1004が入力されたタスクによる稼働状況を判定する。倉庫1003に現在あるリソースではタスクを完了できないと、稼働状況判定部1004が判定すると、足りない分のリソースをリソース計算部1005がリソース検索部1006に問い合わせる。 Similarly to the warehouse 1002, when the task to be worked is calculated in the warehouse 1003, the operation status determination unit 1004 determines the operation status of the input task. When the operation status determination unit 1004 determines that the task cannot be completed with the resources currently in the warehouse 1003, the resource calculation unit 1005 inquires the resource search unit 1006 about the insufficient resources.
 リソース検索部1006は、リソース計算部1005から問い合わせされたリソース数に応じて、他の倉庫で使用されていないリソースを検索する。現在使用されていても、使用が終了する予定のリソースを検索してもよい。リソース検索部1006は、検索して得られたリソースを、倉庫1002及び1003に分配する。そして、その結果を倉庫1002、倉庫1003に通知する。リソースデータベース1001に、各倉庫から問い合わせがあった数のリソースが足りなければ、倉庫1002、倉庫1003から要求があった数に比例して、リソースデータベース1001のリソースを分配する。倉庫1002、倉庫1003に優先度が設定されている場合には、優先度に応じて分配する比率を変更してもよい。また、倉庫1002、倉庫1003に分配するリソース数を通知する際に、リソースの到着時間も通知してもよい。また、リソースの到着時間は、各リソースに独立して与えてもよいし、全てのリソースが到着完了する時間を与えてもよい。上記説明は、2つの倉庫におけるリソースの共有について説明したが、倉庫の数は2つに限らない。 The resource search unit 1006 searches for resources that are not used in other warehouses according to the number of resources inquired from the resource calculation unit 1005. You may search for a resource that is currently used or will be terminated. The resource search unit 1006 distributes the resources obtained by the search to the warehouses 1002 and 1003. The result is notified to the warehouse 1002 and the warehouse 1003. If there are not enough resources in the resource database 1001 that are inquired from each warehouse, the resources in the resource database 1001 are distributed in proportion to the number of requests from the warehouse 1002 and the warehouse 1003. When priority is set for the warehouse 1002 and the warehouse 1003, the distribution ratio may be changed according to the priority. Further, when notifying the number of resources distributed to the warehouse 1002 and the warehouse 1003, the arrival time of the resource may be notified. Also, the resource arrival time may be given to each resource independently, or the time for completion of arrival of all resources may be given. Although the above description has explained the sharing of resources in two warehouses, the number of warehouses is not limited to two.
 これにより、作業タスクの増減があっても、複数の倉庫間でリソースを分配して利用することで、複数の倉庫の作業効率を改善することが容易となる。 This makes it easy to improve the work efficiency of multiple warehouses by distributing and using resources among multiple warehouses, even if the number of work tasks increases or decreases.
 本発明の倉庫管理システムの別の例を示す。 Another example of the warehouse management system of the present invention is shown.
 実施例1では、計算部109を用いた、パターンの作業効率を判断するトリガに関する内容であったが、実施例2は、計算部109を用いた、作業員とロボットの干渉を考慮したシミュレーションに関する内容である。基本的なシステム構成は図1と同じであるが、以下の点が相違する。 In the first embodiment, the content is related to the trigger for determining the work efficiency of the pattern using the calculation unit 109. However, the second embodiment relates to the simulation using the calculation unit 109 in consideration of the interference between the worker and the robot. Content. The basic system configuration is the same as that shown in FIG. 1, except for the following points.
 図11は、本実施例に係る作業効率計算部114を表した図である。 FIG. 11 is a diagram illustrating the work efficiency calculation unit 114 according to the present embodiment.
 作業効率計算部114は、位置データベース108から作業員104及びロボット105の位置に関するデータ、並びに生成部107からパターンを受け付け、作業効率を計算する。作業効率計算部114は、位置データ受付部1101及び干渉計算部1102を備えている。 The work efficiency calculation unit 114 receives data regarding the positions of the worker 104 and the robot 105 from the position database 108 and a pattern from the generation unit 107, and calculates the work efficiency. The work efficiency calculation unit 114 includes a position data reception unit 1101 and an interference calculation unit 1102.
 位置データ受付部1101は、位置データベース108から作業員104及びロボット105の位置に関するデータを受け付ける。 The position data receiving unit 1101 receives data related to the positions of the worker 104 and the robot 105 from the position database 108.
 干渉計算部1102は、位置データ受付部が受け付けた作業員104及びロボット105の位置に関するデータから、作業員104及びロボット105間の干渉の値を計算する。 The interference calculation unit 1102 calculates the value of the interference between the worker 104 and the robot 105 from the data regarding the positions of the worker 104 and the robot 105 received by the position data receiving unit.
 ここで、干渉を、作業員又はロボットが移動を行う際に、移動しようとする経路上に他作業員又はロボットが存在することによって、通行が阻害される場合などを表すものとする。例えば、通路が追い越しできない幅である、または追い越し禁止の設定をしている場合、経路の前方に作業員が存在すると、前方の作業員の移動速度や作業時間に応じて、その場で待機または低速移動を強いられる。また、前方の作業員を避けるために、本来の最短距離で移動できる経路ではなく、迂回した経路をとる場合もある。このように、他作業員が存在しない場合に通行または作業できる時間と比較し、他作業員が存在することによって通行距離または作業時間が長くなる場合には干渉が生じていると言える。 Here, when the worker or the robot moves, the interference represents a case where traffic is hindered by the presence of another worker or robot on the route to be moved. For example, if the passage is wide enough not to be overtaken or set to prohibit overtaking, if there is a worker in front of the route, depending on the movement speed and work time of the worker in front, Forced to move slowly. In addition, in order to avoid workers in front, there are cases where a detoured route is taken instead of a route that can be moved by the original shortest distance. In this way, it can be said that interference occurs when the travel distance or work time becomes longer due to the presence of other workers as compared to the time during which other workers can pass or work.
 上記は作業員間の干渉について説明したが、作業員ではなく、フォークリフトやロボット、ベルトコンベア上での物品などの間の干渉でもよい。 In the above description, interference between workers has been described. However, interference between a forklift, a robot, and an article on a belt conveyor may be used instead of a worker.
 例えば、干渉は、干渉が無かった場合と比べて減った作業量の値、遅延した作業時間、または減少した稼働率の値をシミュレーション等によって求めたもので表される。 For example, the interference is represented by a value obtained by simulation or the like that is obtained by reducing the value of the work amount, the delayed work time, or the reduced operation rate compared with the case where there is no interference.
 例えば、作業効率計算部114は、干渉が無かった場合と比べて減った作業量の値を図3のグラフに反映させることで作業効率を求める。 For example, the work efficiency calculation unit 114 obtains the work efficiency by reflecting the value of the work amount reduced compared with the case where there is no interference in the graph of FIG.
 このように、実施例2に表す倉庫管理システム100は、実施例1に表す倉庫管理システム100の他に、複数の作業員及び複数のロボットの位置を含む情報からシミュレーションした複数の作業員と複数のロボットとの干渉に基づいて、パターンのそれぞれを適用した場合における倉庫内の作業効率を計算する作業効率計算部114を備えている。 As described above, the warehouse management system 100 represented in the second embodiment includes, in addition to the warehouse management system 100 represented in the first embodiment, a plurality of workers and a plurality of workers simulated from information including positions of a plurality of workers and a plurality of robots. A work efficiency calculation unit 114 that calculates the work efficiency in the warehouse when each of the patterns is applied based on the interference with the robot is provided.
 係る構成により、倉庫のパターンの変更の要否判断を、より実態に即したものとすることが可能となる。 With such a configuration, it is possible to determine whether or not it is necessary to change the warehouse pattern according to the actual situation.
 本実施例では、本発明の倉庫管理システムの別の例を示す。 This example shows another example of the warehouse management system of the present invention.
 実施例1では、パターン生成部601により倉庫内のパターンを生成していたが、実施例3は、より詳細なパターンの生成に関する内容である。 In the first embodiment, the pattern generation unit 601 generates the pattern in the warehouse, but the third embodiment relates to the generation of a more detailed pattern.
 基本的なシステム構成は図1と同様である。 The basic system configuration is the same as in FIG.
 図12は倉庫内の棚の配置に関するレイアウトを変更する一例を表した図である。ここでは、棚501からのピッキング作業に限定してレイアウトを生成する例について説明する。生成部107に入力されるデータは、ピッキング処理を行う物量とする。または入出庫のオーダーデータでもよい。 FIG. 12 is a diagram showing an example of changing the layout related to the arrangement of the shelves in the warehouse. Here, an example in which a layout is generated only for picking work from the shelf 501 will be described. The data input to the generation unit 107 is an amount to be picked. Or the order data of loading / unloading may be sufficient.
 ルール選択部605は、入力データの物量が少ない場合、ピッキングに必要な作業員104の人数は少ないため、できるだけ棚501をコンパクトに配置し、棚501へのアクセス時間を短くした方がよい、というルールを選択する。パターン生成部601は、選択されたルールに基づいて1201のような倉庫のレイアウトを生成する。ここでは、通路の数が少なくなり、棚501の密度が高いレイアウトの例を示している。 According to the rule selection unit 605, when the quantity of input data is small, the number of workers 104 required for picking is small, so it is better to arrange the shelves 501 as compactly as possible and shorten the access time to the shelves 501. Select a rule. The pattern generation unit 601 generates a warehouse layout such as 1201 based on the selected rule. Here, an example of a layout in which the number of passages is reduced and the density of the shelves 501 is high is shown.
 ルール選択部605は、物量が多くなり、ピッキングする作業員の人数が多くなると、棚へのアクセス人数が多くなり渋滞が発生するため、通路を多く設定する、というルールを選択する。パターン生成部601は、選択されたルールに基づいて、1202で示すようなレイアウトを生成する。ここでは、通路の本数が増え、各棚501の間の距離が長くなったレイアウトの例を示している。ルール選択部605はルールを選択する際に、入力として与えられる条件である、作業員104の人数、またはロボット105の数等を利用してもよい。例えば、物量が増えても作業員104やロボット105の数が少なければ渋滞の発生確率が小さくなるので、通路の数を増やさず棚501の密度を高くするルールを選択する、などがある。さらに、入出庫のオーダーデータから、ひとつのオーダーに含まれる物品の数や大きさ、重さなどを利用してルールを選択してもよい。例えば、ひとつのオーダーに含まれる物品の数が少なく、またサイズも小さくて軽い場合には、物品あたりのピッキングに要する作業時間が短くなるため、作業員104やロボット105の移動が多くなる。そのため、通路を多くし、棚501へのアクセスを増やした方がよい、というルールを選択する。逆に、物量は多いがオーダーあたりの物品数が多く、また重さも重いといった場合には、同じ物品のピッキングに要する作業時間が長くなり、作業員104やロボット105の移動が少なくなり、できるだけ通路を減らして棚への移動距離を短くした方がよい、というルールを選択する。パターン生成部601は、選択されたルールに基づき、パターンを生成する。 The rule selection unit 605 selects a rule that when the quantity increases and the number of workers picking increases, the number of people accessing the shelf increases and traffic congestion occurs, so that more passages are set. The pattern generation unit 601 generates a layout as indicated by 1202 based on the selected rule. Here, an example of a layout in which the number of passages is increased and the distance between the shelves 501 is increased is shown. The rule selection unit 605 may use the number of workers 104, the number of robots 105, or the like, which is a condition given as an input when selecting a rule. For example, if the number of workers 104 or robots 105 is small even if the quantity increases, the probability of occurrence of traffic congestion decreases, so a rule for increasing the density of the shelves 501 without increasing the number of passages may be selected. Furthermore, a rule may be selected from the order data of loading / unloading using the number, size, weight, etc. of articles included in one order. For example, when the number of articles included in one order is small and the size is small and light, the work time required for picking per article is shortened, so that the worker 104 and the robot 105 move more. Therefore, the rule that it is better to increase the number of passages and increase access to the shelf 501 is selected. On the other hand, if the quantity is large but the number of articles per order is large and the weight is heavy, the work time required for picking the same article becomes longer, the movement of the worker 104 and the robot 105 is reduced, and the path is as much as possible. Select the rule that it is better to reduce the distance to the shelf by reducing The pattern generation unit 601 generates a pattern based on the selected rule.
 このように、入力された物量やオーダーに関するデータに応じてルールを選択し、さらにルールに基づいたレイアウトパターンを生成することにより、稼働率を高めた柔軟なレイアウトに変更することが容易となる。 Thus, it becomes easy to change to a flexible layout with an increased operation rate by selecting a rule according to the input quantity and data relating to the order and generating a layout pattern based on the rule.
 <棚とベルトコンベヤのレイアウトに関する変形例>
倉庫には棚だけでなく、各種機器も設置されている。次に、棚と機器を連携したレイアウトのパターンを生成する例を示す。
<Modifications regarding the layout of shelves and belt conveyors>
In addition to shelves, various equipment is installed in the warehouse. Next, an example of generating a layout pattern in which shelves and devices are linked will be described.
 図13は、倉庫内の棚及びベルトコンベヤの配置に関するレイアウトを変更する一例を表した図である。 FIG. 13 is a diagram showing an example of changing the layout relating to the arrangement of shelves and belt conveyors in the warehouse.
 ここでも、棚501から物品をピッキングするピッキング作業について説明する。作業者104またはロボット105が対象の物品をピッキングし、ピッキングした物品をベルトコンベヤ1303に載せる作業を実施する。ルール選択部605は、例えば、ピッキング処理を行う物品が、全ての棚に均等に格納されている場合、ベルトコンベヤ1303は全棚からの最短距離平均と分散が小さくなる位置に設置した方がよい、というルールを選択する。さらに、ベルトコンベヤ1303の始点が制約条件として決まっている場合には、制約条件を加味したルールを選択する。パターン生成部601は、選択されたルールに基づき、例えば、1301に示すレイアウトのように棚501とベルトコンベヤ1303を配置するパターンを生成する。 Here again, picking work for picking an article from the shelf 501 will be described. The worker 104 or the robot 105 picks the target article and places the picked article on the belt conveyor 1303. For example, when the articles to be picked are stored evenly on all the shelves, the rule selecting unit 605 should be installed at a position where the average of the shortest distance from all the shelves and the variance are small. Select the rule. Further, when the starting point of the belt conveyor 1303 is determined as a constraint condition, a rule that considers the constraint condition is selected. Based on the selected rule, the pattern generation unit 601 generates a pattern in which the shelves 501 and the belt conveyor 1303 are arranged as in the layout shown in 1301, for example.
 また、各棚501に格納されている物品に対して、ピッキング処理を行う回数の偏りが大きい場合、ルール選択部605は、ピッキング処理回数に応じて棚501をまとめ(できるだけ同程度のピッキング処理回数の棚を隣接させる)、かつピッキング処理回数が多い棚の近くにベルトコンベヤ1303を配置した方がよい、とのルールを選択する。選択されたルールに基づき、パターン生成部601は、例えば、1302に示すようなレイアウトを作成する。 In addition, when the deviation of the number of times of picking processing is large for the articles stored in each shelf 501, the rule selection unit 605 collects the shelves 501 according to the number of picking processes (the same number of picking processes as possible). And the belt conveyor 1303 should be arranged near the shelf where the number of picking processes is large. Based on the selected rule, the pattern generation unit 601 creates a layout as shown in 1302, for example.
 これにより、棚だけでなくベルトコンベヤのように機器との連携を加味したレイアウトを作成することができる。 This makes it possible to create a layout that takes into account cooperation with equipment, such as a belt conveyor, as well as a shelf.
 <作業エリアに関する変形例>
次に、パターンが作業エリアである例について図14を用いて説明する。
<Modifications related to work area>
Next, an example in which the pattern is a work area will be described with reference to FIG.
 図14は倉庫内の作業エリアの変更の例を表す図である。 FIG. 14 is a diagram showing an example of changing the work area in the warehouse.
 例えば、倉庫レイアウト1401のように、加工エリア1402、ピッキングエリア1403、出庫エリア1404が設定されている。ここで、作業は物品の流れで表現すると加工、ピッキング、出庫の順に進むものとする。 For example, like a warehouse layout 1401, a processing area 1402, a picking area 1403, and a delivery area 1404 are set. Here, when the work is expressed by the flow of the article, the work proceeds in the order of processing, picking, and delivery.
 ルール選択部605では、物量、入出庫のオーダーデータに応じて、作業エリアの大きさを決定するルールを選択する。例えば、入出庫のオーダーデータから、加工作業を行う物品の数や、加工の複雑度(作業時間など)を求め、オーダーごとの加工にかかる時間を算出する。オーダーごとではなく、トータルの加工作業時間を算出してもよい。また、加工の複雑度は、梱包Aであれば作業時間が10分、梱包Bであれば作業時間が5分など、あらかじめ設定していてもよい。入力された入出庫のオーダーデータのうち、加工に時間を要するオーダーが多い場合は、加工エリアで加工作業を行う作業量を求め、さらに加工作業を行うための作業人数を求める。求めた作業人数に対して、あらかじめ設定した作業員あたりに必要な作業スペースサイズを掛け合わせることで、全体として加工作業に必要な作業エリアの大きさを求めることができる。同様にピッキング作業、出庫作業に必要な作業エリアの大きさを求め、倉庫内の面積割り当てを決定する。 The rule selection unit 605 selects a rule that determines the size of the work area in accordance with the quantity and the order data for loading and unloading. For example, the number of articles to be processed and the complexity of processing (working time, etc.) are obtained from the order data of loading / unloading, and the time required for processing for each order is calculated. The total machining work time may be calculated instead of every order. In addition, the processing complexity may be set in advance, such as 10 minutes for the package A and 5 minutes for the package B. If there are many orders that require time for processing in the input / output order data, the amount of work to be performed in the processing area is obtained, and the number of workers to perform the processing work is further obtained. By multiplying the determined number of workers by the work space size required for each worker set in advance, the size of the work area necessary for the machining work as a whole can be obtained. Similarly, the size of the work area required for picking work and delivery work is obtained, and the area allocation in the warehouse is determined.
 次に、倉庫内で、加工、ピッキング、出庫の作業に利用できる面積および形状を倉庫データから読み出し、上記処理によって算出した各作業で必要な面積の比を取り、実際の倉庫内で使用する各作業の面積を計算する。さらに、作業順によって、加工からピッキング、出庫という流れで進む場合には、必ず加工とピッキングエリアの面が接し、かつピッキングと出庫の面が接する必要がある、というルールを選択する。また、倉庫内の柱やエレベータなどの固定位置を持つ要素を、倉庫データから読み出し、これらの要素との連携を考慮したルールを選択する。例えば、エレベータと出庫エリアは隣接している必要がある、などのルールである。 Next, in the warehouse, the area and shape that can be used for processing, picking, and issuing work are read from the warehouse data, the ratio of the area required for each operation calculated by the above processing is taken, and each area used in the actual warehouse Calculate the work area. Further, according to the work order, when the process proceeds from processing to picking and delivery, a rule is selected that the processing and the picking area must be in contact with each other, and that the picking and delivery must be in contact. In addition, elements having fixed positions such as pillars and elevators in the warehouse are read from the warehouse data, and rules that consider the linkage with these elements are selected. For example, the rule is that the elevator and the exit area must be adjacent to each other.
 上記のようにルール選択部605にて選択したルールに基づき、パターン生成部601は作業エリア分けのパターンを生成する。例えば、加工エリアで最も作業時間がかかる場合の作業エリア分けは、1405の作業エリアのように生成される。 Based on the rule selected by the rule selection unit 605 as described above, the pattern generation unit 601 generates a work area division pattern. For example, the work area division when the work time is the longest in the processing area is generated as the work area 1405.
 また、作業は時間によって変動し、加工作業が終了した後にはピッキング作業が最も作業量が増える場合がある。その場合、作業が進んだ時間によってエリアを変更してもよいし、変更することによって作業量が増加する場合には、加工、ピッキング、出庫の作業が終了するまでエリアを変更しない、としてもよい。全ての作業が終了するまでエリアを変更しない場合、作業エリアの決定に利用するデータは、各作業のピーク値に設定する。または平均値に設定してもよい。 Also, the work varies depending on the time, and the picking work may increase the work amount most after the machining work is completed. In that case, the area may be changed according to the time when the work has progressed, and if the work amount increases by changing the area, the area may not be changed until the processing, picking, and delivery work are completed. . When the area is not changed until all work is completed, the data used to determine the work area is set to the peak value of each work. Or you may set to an average value.
 これにより、各作業の作業量に応じたエリアの設定を容易に行うことができ、柔軟にレイアウトを決定することができる。 This makes it possible to easily set the area according to the work amount of each work, and to determine the layout flexibly.
 <作業タスクに関する変形例>
次に、パターンが作業タスクである例について、図15を用いて説明する。
<Modifications related to work tasks>
Next, an example in which the pattern is a work task will be described with reference to FIG.
 図15は作業タスクを表現した一例を表す図である。ここでは、ピッキング作業に対してロボット105が行うタスクと、作業員104が行うタスクの振り分けを作成する例について説明する。ピッキングには、ロボット105が作業する場合がよいものと、作業員104が作業する場合がよいものがある。例えば、同じ物品を大量にピッキングする場合には、ロボット105の方が作業員104よりも効率が良い場合があるし、変形物の場合には作業員104の方がロボットよりも効率がよい場合がある。また、物量の変動に応じた拡張性もロボット105、作業員104では異なる場合がある。例えば、ロボット105の台数が限られており、作業員104の人数の増減は拡張できる場合があるし、作業員104の人数が限られており、ロボット105の台数は変更できる場合などがある。ここでは、ロボット105の台数が限られており、作業員104は増員することができる場合について説明する。 FIG. 15 is a diagram showing an example of expressing work tasks. Here, an example in which the task performed by the robot 105 and the task performed by the worker 104 for the picking work is created will be described. There are two types of picking that the robot 105 is good to work and the picking that the worker 104 is good to work. For example, the robot 105 may be more efficient than the worker 104 when picking a large amount of the same article, and the worker 104 may be more efficient than the robot in the case of a deformation. There is. Further, the expandability according to the change in the quantity may be different between the robot 105 and the worker 104. For example, the number of robots 105 is limited, and the increase / decrease in the number of workers 104 may be expanded, the number of workers 104 may be limited, and the number of robots 105 may be changed. Here, a case where the number of robots 105 is limited and the number of workers 104 can be increased will be described.
 図15の1501は、ロボット105がピッキングすべき作業量1502と、作業員104によってピッキングすべき作業量1503を分けた例である。 15 is an example in which the work amount 1502 to be picked by the robot 105 and the work amount 1503 to be picked by the worker 104 are separated.
 入力データである物量データが増加した場合、ロボット105でのピッキング数では入力した物量に対応できなくなり、作業員104によるピッキングの量を増加させる。すなわち、ロボット105でのピッキングタスクの比率を下げ、代わりに作業員104によるピッキングタスクの比率を上げる。ただし、ロボット105で処理するピッキング数は変更しなくてもよい。ロボット105、作業員104のピッキング作業する比率から、ピッキング作業に必要な領域を求め、倉庫内でのピッキング作業タスクおよび作業エリアを変更する。1501から1504へのパターン変更の場合は、ロボット105によるピッキングエリアを小さくし、作業員によるピッキングエリアを大きくしてもよい。このように、作業員104の増員によって物量の増加に対応する場合には、パターン生成部601は1504のようなパターンを生成する。 When the quantity data that is input data increases, the quantity picked by the robot 105 cannot cope with the inputted quantity, and the quantity of picking by the worker 104 is increased. That is, the ratio of the picking task in the robot 105 is reduced, and the ratio of the picking task by the worker 104 is increased instead. However, the number of pickings processed by the robot 105 may not be changed. An area necessary for the picking work is obtained from the ratio of picking work of the robot 105 and the worker 104, and the picking work task and work area in the warehouse are changed. When changing the pattern from 1501 to 1504, the picking area for the robot 105 may be reduced and the picking area for the worker may be increased. As described above, when the increase in the number of workers 104 corresponds to the increase in the quantity, the pattern generation unit 601 generates a pattern such as 1504.
 このように、物量の変動に応じて、作業員およびロボットのタスクを振り分けることで、様々な物量に対応できる倉庫を実現することができる。 In this way, a warehouse that can handle various quantities can be realized by assigning the tasks of the workers and robots according to the quantity fluctuation.
 <作業フローに関する変形例>
次に、パターンが作業フローの場合の例について、図16を用いて説明する。
<Modifications related to work flow>
Next, an example where the pattern is a workflow will be described with reference to FIG.
 図16は、作業フローの一例を示す図である。1601は、あるオーダーデータが作業A,作業B、作業C、作業Dの順に処理される場合を示している。例えば、ピッキングした後に検品、梱包という作業フローがあった場合、オーダーあたりの物品数が少なければ、ルール選択部605は、ピッキング、検品、及び梱包を一括で行うという作業フローに変更した方がよい、というルールを選択する。また、オーダーデータに特殊梱包の作業指示が付加されている場合、梱包ではなく、特殊梱包の作業に入れ替える、というルールを選択する。また、オーダーデータに値付けといった加工作業の指示が付加していれば、加工作業を追加するルールを選択する。パターン生成部601は、ルール選択部605が選択したルールに基づいて作業フローを生成する。例えば、1602のように作業Cを無くし、作業A、作業B、作業Dといったフローを生成する。 FIG. 16 is a diagram illustrating an example of a work flow. Reference numeral 1601 denotes a case where certain order data is processed in the order of work A, work B, work C, and work D. For example, when there is a work flow of inspection and packing after picking, if the number of articles per order is small, the rule selection unit 605 should be changed to a work flow of performing picking, inspection and packing in a lump. Select the rule. Also, when a special packing work instruction is added to the order data, a rule is selected to replace the special packing work instead of packing. Further, if a processing work instruction such as pricing is added to the order data, a rule for adding the processing work is selected. The pattern generation unit 601 generates a work flow based on the rule selected by the rule selection unit 605. For example, work C is eliminated as in 1602, and flows such as work A, work B, and work D are generated.
 また、ルールは、入力されたオーダーデータごとではなく、オーダーデータを類似オーダーデータごとにカテゴリに分け、カテゴリごとのものであってもよい。類似とは、例えば、商品カテゴリや数量が類似しているものを指してもよいし、これに限らない。 Also, the rule may be for each category by dividing the order data into categories for each similar order data, not for each input order data. “Similar” may refer to, for example, items similar in product category or quantity, but is not limited thereto.
 これにより、オーダーデータに応じて作業フローを作成することが容易となる。 This makes it easy to create a work flow according to the order data.
 <作業スケジュールに関する変形例>
次に、パターンが、作業員104またはロボット105ごとの作業スケジュールである例について、図17を用いて説明する。
<Modified example of work schedule>
Next, an example in which the pattern is a work schedule for each worker 104 or robot 105 will be described with reference to FIG.
 図17は、作業員104の作業スケジュールの例を示した図である。倉庫データからの入力としての特性により作業員104の特性を読み出し、パターン生成部601にてパターンを作成する場合を例にとって説明する。作業員1は、複数の作業を行えるスキルを持っているとすると、ルール選択部605は、作業員1のスケジュールを作業の時間変動に従って作成する、というルールを選択する。パターン生成部601は、選択されたルールに基づいて1701のような作業スケジュールを生成する。ここで、例えばあるオーダーデータは、作業A(1702),作業B(1703),作業C(1704)の順に作業が発生すると、作業者1は、作業A(1702)のタスクが多いときには作業A(1702)を行い、作業B(1703)のタスクが多いときには作業B(1703)を行い、作業C(1704)のタスクが多いときには作業C(1704)を行う作業スケジュールとなる。 FIG. 17 is a diagram showing an example of a work schedule for the worker 104. An example will be described in which the characteristics of the worker 104 are read based on the characteristics as input from the warehouse data, and the pattern is generated by the pattern generation unit 601. If the worker 1 has the skill to perform a plurality of operations, the rule selection unit 605 selects the rule that the schedule of the worker 1 is created according to the time variation of the operation. The pattern generation unit 601 generates a work schedule such as 1701 based on the selected rule. Here, for example, when certain order data is generated in the order of work A (1702), work B (1703), and work C (1704), worker 1 works when work A (1702) has many tasks. (1702) is performed, and when the task B (1703) has many tasks, the task B (1703) is performed, and when the task C (1704) has many tasks, the task C (1704) is performed.
 作業員2は、作業A(1702)を長時間行ってもパフォーマンスが落ちないスキル(単調作業を好むなど)がある場合、ルール選択部605は、作業員2にできるだけ同じ作業を継続させる、というルールを選択する。パターン生成部601は、作業A(1702)に作業員2を割り当て、作業A(1702)が全て終了する時間まで作業A(1702)を行い、その後、次の作業である作業C(1704)を割り当てる作業スケジュール1705を生成する。 If the worker 2 has a skill (such as monotonous work) in which the performance does not decrease even after performing the operation A (1702) for a long time, the rule selection unit 605 causes the worker 2 to continue the same operation as much as possible. Select a rule. The pattern generation unit 601 assigns the worker 2 to the work A (1702), performs the work A (1702) until the time when the work A (1702) is completely completed, and then performs the next work C (1704). A work schedule 1705 to be assigned is generated.
 作業員3は、ある特定の時間帯は作業ができないという特性を持っているとすると、ルール選択部605は、一定の時間には作業員3に作業を割り当てない、というルールを選択する。パターン生成部601は、選択されたルールに基づき作業員3に作業A(1702)を割り当て、一定時間の作業割り当てなし期間を経て、作業B(1703)を割り当てる。さらに、次の作業である作業C(1704)を割り当てる、という作業スケジュール1706を生成する。 Suppose that the worker 3 has a characteristic that work cannot be performed during a specific time period, the rule selection unit 605 selects a rule that work is not assigned to the worker 3 at a certain time. The pattern generation unit 601 assigns the work A (1702) to the worker 3 based on the selected rule, and assigns the work B (1703) after a fixed work non-assignment period. Further, a work schedule 1706 is assigned to assign work C (1704) as the next work.
 これにより、作業員104の特性に基づいて作業スケジュールを生成できる。上記の説明は作業員104への作業スケジュール生成について説明したが、対象は作業員104に限らず、ロボットの特性も同様に扱うことができる。例えば、ロボットのメンテナンスに割り当てる時間は、作業ができない、というルールを選択できるし、複数の機能を持ったロボットであれば、作業量に応じて作業内容を変更するスケジュールを生成することができる。 Thereby, a work schedule can be generated based on the characteristics of the worker 104. Although the above description has explained the generation of a work schedule for the worker 104, the target is not limited to the worker 104, and the characteristics of the robot can be handled in the same manner. For example, it is possible to select a rule that work cannot be performed for the time allocated for robot maintenance, and if the robot has a plurality of functions, a schedule for changing the work content according to the work amount can be generated.
 本発明は上記した各実施例に限定されるものではなく、様々な変形例が含まれる。例えば、本発明の倉庫管理システムによりパターンが変更されている様子を表したイメージ図を図18に示す。1801では、トラックから物品が入庫されると、物品は、各棚やパレットラックに格納される。顧客の要求による物量データに応じて、作業員によるピッキング、ロボットによるピッキング、ドローンによる物品運搬、無人フォークリフトによる物品の運搬などが行われる。作業員、ロボット、ドローン、及び無人フォークリフトが強調して作業してもよい。また、ロボットによって、ベルトコンベヤのような設備機器の位置を変更してもよい。さらに作業員による検品、梱包、ロボットによる検品、梱包などの作業が行われ、トラックに積み込んで出庫する。1802は、1801の倉庫を、物量データに基づいて変更した例である。棚の配置やベルトコンベヤの配置が変更され、作業フローも変更している。また、作業員とロボットの数なども変更している。倉庫内の様子は、管理者が逐次把握し、状況を管理する。また、レイアウトや作業フローなどの変更が実施されると、変更した情報を作業員に指示するために、作業員が装着している端末やウェアラブル端末などに情報を表示し、作業員に指示を行う。 The present invention is not limited to the above-described embodiments, and includes various modifications. For example, FIG. 18 shows an image diagram showing a pattern being changed by the warehouse management system of the present invention. In 1801, when an article is received from a truck, the article is stored in each shelf or pallet rack. Depending on the quantity data requested by the customer, picking by an operator, picking by a robot, transportation of an article by a drone, transportation of an article by an unmanned forklift, and the like are performed. Workers, robots, drones, and unmanned forklifts may work with emphasis. Further, the position of equipment such as a belt conveyor may be changed by a robot. Furthermore, inspection, packing, robot inspection, packing, etc. are performed by workers, and they are loaded onto a truck and delivered. 1802 is an example in which the warehouse 1801 is changed based on the quantity data. The arrangement of shelves and belt conveyors has changed, and the work flow has also changed. The number of workers and robots has also been changed. The manager keeps track of the situation in the warehouse and manages the situation. Also, when changes to the layout, work flow, etc. are implemented, in order to instruct the worker on the changed information, the information is displayed on the terminal or wearable terminal worn by the worker, and the worker is instructed. Do.
 このように、例えば、上記した各実施例は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも、説明したすべての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の変形例の構成に置き換えることが可能であり、ある実施例の構成に他の変形例の構成を加えることも可能である。また、各実施例の構成の一部について、他の実施例の構成の追加・削除・置換をすることが可能である。 Thus, for example, each of the above-described embodiments has been described in detail for easy understanding of the present invention, and is not necessarily limited to the one having all the configurations described. Further, a part of the configuration of a certain embodiment can be replaced with the configuration of another modification, and the configuration of another modification can be added to the configuration of a certain embodiment. Further, it is possible to add, delete, and replace the configurations of other embodiments with respect to a part of the configurations of the embodiments.
 また、倉庫管理システム100の各機能等は、それらの一部または全部を、例えば、集積回路で設計すること等によりハードウェアで実現してもよい。また、倉庫管理システム100の各機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、またはICカード、SDカード、DVD(Digital Versatile Disc)等の記録媒体に置くことができる。 Also, each function or the like of the warehouse management system 100 may be realized by hardware by designing a part or all of them, for example, with an integrated circuit. Each function of the warehouse management system 100 may be realized by software by interpreting and executing a program that realizes each function by the processor. Information such as programs, tables, and files for realizing each function is stored in a memory, a hard disk, a recording device such as SSD (Solid State Drive), or a recording medium such as an IC card, SD card, DVD (Digital Versatile Disc). be able to.
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしもすべての制御線や情報線を示しているとは限らない。実際には、ほとんどすべての構成が相互に接続されていると考えてもよい。 In addition, the control lines and information lines indicate what is considered necessary for the explanation, and not all control lines and information lines on the product are necessarily shown. In practice, it may be considered that almost all configurations are connected to each other.
 100 倉庫管理システム
 101 顧客注文
 102 倉庫
 103 倉庫データベース
 104 作業員
 105 ロボット
 106 受付部
 107 生成部
 108 位置データベース
 109 計算部
 110 選択部
 111 指示生成部
 112 指示送信部
 113 倉庫タスク計算部
 114 作業効率計算部
 115 第1の選択部
 116 第2の選択部
 117 物量データベース
 118 作業結果受信部
 201 パターン生成
 202 タスク判定
 203 パターン破棄
 204 作業効率判定
 205 パターン選択
 301 終了時刻
 302 作業開始時間
 303 パターン変更無しの作業量の推移
 304 パターン変更有りの作業量の推移
 401 指示生成
 402 作業員による作業指示受信
 403 ロボットによる作業指示受信
 404 作業員による作業結果送信
 405 作業結果受信
 406 指示生成
 407 作業員による作業指示受信
 408 ロボットによる作業指示受信
 409 ロボットによる作業結果送信
 410 作業結果受信
 411 指示生成
 412 作業員による作業指示受信
 413 ロボットによる作業指示受信
 501 棚
 502 ロボットの軌道線
 503 作業員
 504 移動前の棚の位置
 505 移動後の棚の位置
 601 パターン生成部
 602 事例データベース
 603 ルール作成部
 604 ルールデータベース
 605 ルール選択部
 701 受付部への作業結果送信
 801 現状コスト計算部
 802 変更コスト計算部
 803 削減コスト計算部
 804 第3の選択部
 901 パターン選択
 902 コスト計算
 903 変更可否判定
 904 パターン破棄
 905 パターン選択
 1001 リソースデータベース
 1002 倉庫
 1003 倉庫
 1004 稼働状況判定部
 1005 リソース計算部
 1006 リソース検索部
 1101 位置データ受付部
 1102 干渉計算部
 1201 物量が少ない場合のレイアウト
 1202 物量が多い場合のレイアウト
 1301 物品に対するピッキング回数がすべての棚で近い場合のレイアウト
 1302 物品に対するピッキング回数が棚ごとに偏りがある場合のレイアウト
 1303 ベルトコンベヤ
 1401 変更前の各エリアについてのレイアウト
 1402 加工エリア
 1403 ピッキングエリア
 1404 出庫エリア
 1405 変更後の各エリアについてのレイアウト
 1501 変更前の各タスクに伴う各エリアについてのレイアウト
 1502 ロボットによるピッキングエリア
 1503 作業員によるピッキングエリア
 1504 変更後の各タスクに伴う各エリアについてのレイアウト
 1601 作業A、作業B、作業C、作業Dの順の作業フロー
 1602 作業A、作業C、作業Dの順の作業フロー
 1701 作業員1の作業スケジュール
 1702 作業A
 1703 作業B
 1704 作業C
 1705 作業員2の作業スケジュール
 1706 作業員3の作業スケジュール
 1801 変更前の倉庫内のイメージ
 1802 変更後の倉庫内のイメージ。
DESCRIPTION OF SYMBOLS 100 Warehouse management system 101 Customer order 102 Warehouse 103 Warehouse database 104 Worker 105 Robot 106 Reception part 107 Generation part 108 Position database 109 Calculation part 110 Selection part 111 Instruction generation part 112 Instruction transmission part 113 Warehouse task calculation part 114 Work efficiency calculation part 115 First selection unit 116 Second selection unit 117 Physical quantity database 118 Work result reception unit 201 Pattern generation 202 Task determination 203 Pattern discard 204 Work efficiency determination 205 Pattern selection 301 End time 302 Work start time 303 Work amount without pattern change 304 Transition of work amount with pattern change 401 Instruction generation 402 Work instruction reception by worker 403 Work instruction reception by robot 404 Work result transmission by worker 405 Result reception 406 Instruction generation 407 Work instruction reception by worker 408 Robot work instruction reception 409 Robot work result transmission 410 Work result reception 411 Instruction generation 412 Worker work instruction reception 413 Robot work instruction reception 501 Shelf 502 Robot trajectory Line 503 Worker 504 Position of shelf before movement 505 Position of shelf after movement 601 Pattern generation unit 602 Example database 603 Rule creation unit 604 Rule database 605 Rule selection unit 701 Transmission of work result to reception unit 801 Current cost calculation unit 802 Change cost calculation unit 803 Reduction cost calculation unit 804 Third selection unit 901 Pattern selection 902 Cost calculation 903 Change possibility determination 904 Pattern discard 905 Pattern selection 1001 Resource database 002 Warehouse 1003 Warehouse 1004 Operation status determination unit 1005 Resource calculation unit 1006 Resource search unit 1101 Position data reception unit 1102 Interference calculation unit 1201 Layout when quantity is small 1202 Layout when quantity is large 1301 Number of picking for goods on all shelves Layout in the case of near 1302 Layout in the case where the number of picking with respect to goods is uneven for each shelf 1303 Belt conveyor 1401 Layout for each area before change 1402 Processing area 1403 Picking area 1404 Delivery area 1405 Layout for each area after change 1501 Layout for each area associated with each task before change 1502 Picking area by robot 1503 Picking area by worker 1504 Layout for each area associated with each task after change 1601 Work flow in the order of work A, work B, work C, work D 1602 Work flow in the order of work A, work C, work D 1701 Work of worker 1 Schedule 1702 Work A
1703 Work B
1704 Work C
1705 Work schedule of worker 2 1706 Work schedule of worker 3 1801 Image in warehouse before change 1802 Image in warehouse after change.

Claims (15)

  1.  倉庫のレイアウトを複数生成する生成部と、
     顧客の注文に基づいて前記倉庫内の作業に関するタスクを計算する倉庫タスク計算部と、
     前記レイアウトのそれぞれを適用した場合における前記倉庫の作業効率を計算する作業効率計算部と、
     前記レイアウトのうち、前記タスクを満たすことの出来るレイアウトを選択する第1の選択部と、
     前記第1の選択部によって選択されたレイアウトのうち、前記作業効率の値が予め設定された閾値を超えるレイアウトを選択する第2の選択部と、
     前記第2の選択部によって選択されたレイアウトに従って、前記複数の作業員又は前記複数のロボットへの指示を生成する指示生成部と、
     前記指示を前記複数の作業員又は前記複数のロボットへ送信する指示送信部と、
     前記指示についての作業結果を前記複数の作業員又は前記複数のロボットのいずれかから受け付ける作業結果受付部を有し、
     前記作業効率計算部は、前記作業結果受付部が前記作業結果を受け付けることをトリガとして、前記作業効率を計算することを特徴とする倉庫管理システム。
    A generator that generates multiple warehouse layouts;
    A warehouse task calculation unit for calculating tasks related to work in the warehouse based on customer orders;
    A work efficiency calculator that calculates the work efficiency of the warehouse when applying each of the layouts;
    A first selection unit that selects a layout that can satisfy the task among the layouts;
    A second selection unit that selects a layout in which the value of the work efficiency exceeds a preset threshold among the layouts selected by the first selection unit;
    An instruction generation unit for generating instructions to the plurality of workers or the plurality of robots according to the layout selected by the second selection unit;
    An instruction transmitter for transmitting the instructions to the plurality of workers or the plurality of robots;
    A work result receiving unit that receives work results for the instructions from either the plurality of workers or the plurality of robots;
    The warehouse management system characterized in that the work efficiency calculation unit calculates the work efficiency by using the work result reception unit as a trigger to receive the work result.
  2.  請求項1に記載の倉庫管理システムにおいて、
     前記作業結果受付部は、前記複数の作業員及び前記複数のロボットから前記作業結果を受け付け、
     前記作業効率計算部は、前記作業結果を受け付ける度に前記作業効率を計算することを特徴とする倉庫管理システム。
    In the warehouse management system according to claim 1,
    The work result receiving unit receives the work results from the plurality of workers and the plurality of robots,
    The said work efficiency calculation part calculates the said work efficiency whenever it receives the said work result, The warehouse management system characterized by the above-mentioned.
  3.  請求項1に記載の倉庫管理システムにおいて、
     前記生成部は、前記複数のロボットを前記レイアウトが変わる前の位置とは異なる位置に戻すレイアウトを生成することを特徴とする倉庫管理システム。
    In the warehouse management system according to claim 1,
    The said management part produces | generates the layout which returns the said some robot to the position different from the position before the said layout changes, The warehouse management system characterized by the above-mentioned.
  4.  請求項1に記載の倉庫管理システムにおいて、
     前記作業効率は、前記倉庫内の作業の作業時間、前記倉庫内の作業にかかるコスト、前記倉庫内の作業の作業量、又は前記複数の作業員若しくは前記複数のロボットの稼働率、に関する値の、前記作業の作業開始時刻から作業終了時刻までの間の積分値によって求められることを特徴とする倉庫管理システム。
    In the warehouse management system according to claim 1,
    The work efficiency is a value related to a work time of work in the warehouse, a cost of work in the warehouse, a work amount of work in the warehouse, or an operation rate of the plurality of workers or the plurality of robots. The warehouse management system characterized in that it is obtained by an integral value between the work start time and the work end time of the work.
  5.  請求項1に記載の倉庫管理システムにおいて、
     前記生成部は、前記レイアウトを生成するためのルールが格納されているルールデータベースと、
     前記顧客の注文によって定まる物量、前記顧客の注文によって定まる入出庫データ、倉庫内のリソースに基づいて定まる条件、又は前記作業員若しくは前記ロボットの特性から前記ルールを選択するルール選択部と、を有し、
     前記生成部は、前記ルール選択部によって選択されたルールに基づいて前記レイアウトを生成することを特徴とする倉庫管理システム。
    In the warehouse management system according to claim 1,
    The generation unit includes a rule database storing rules for generating the layout;
    A rule selection unit that selects the rule based on the quantity determined by the customer's order, the entry / exit data determined by the customer's order, the condition determined based on the resources in the warehouse, or the characteristics of the worker or the robot. And
    The said management part produces | generates the said layout based on the rule selected by the said rule selection part, The warehouse management system characterized by the above-mentioned.
  6.  請求項1に記載の倉庫管理システムにおいて、
     前記生成部は、前記作業結果に基づいて前記レイアウトを生成することを特徴とする倉庫管理システム。
    In the warehouse management system according to claim 1,
    The said management part produces | generates the said layout based on the said operation result, The warehouse management system characterized by the above-mentioned.
  7.  請求項1に記載の倉庫管理システムにおいて、
     前記倉庫の現状のレイアウトを維持した場合にかかる第1のコストを計算する現状コスト計算部と、
     前記現状のレイアウトから、前記生成部によって生成されたレイアウトのそれぞれに変更する際にかかる変第2のコストを計算する変更コスト計算部と、
     前記現状のレイアウトから前記生成部によって生成されたレイアウトのそれぞれに変更することで削減される第3のコストを計算する削減コスト計算部と、
     前記第2の選択部によって選択されたレイアウトのうち、前記第3のコストが前記第1のコストと前記第2のコストの和よりも大きくなるパターンを選択する第3の選択部と、を有することを特徴とする倉庫管理システム。
    In the warehouse management system according to claim 1,
    A current cost calculation unit for calculating a first cost when the current layout of the warehouse is maintained;
    A change cost calculation unit that calculates a second variable cost when changing from the current layout to each of the layouts generated by the generation unit;
    A reduction cost calculation unit that calculates a third cost that is reduced by changing from the current layout to each of the layouts generated by the generation unit;
    A third selection unit that selects a pattern in which the third cost is greater than the sum of the first cost and the second cost among the layouts selected by the second selection unit; A warehouse management system characterized by that.
  8.  倉庫のレイアウト、前記倉庫内の作業の順序である作業フロー、又は複数の作業員及び複数のロボットの作業スケジュール、を含むパターンを複数生成する生成部と、
     顧客の注文によって定まる物量から前記倉庫内の各作業の作業内容、終了時刻、及び必要な作業量を含むタスクを計算する倉庫タスク計算部と、
     前記パターンのそれぞれを適用した場合における前記倉庫内の作業効率を計算する作業効率計算部と、
     前記パターンのうち、前記各作業の終了時刻内に前記必要な作業量を満たすことの出来るパターンを選択する第1の選択部と、
     前記第1の選択部によって選択されたパターンのうち、前記作業効率が予め設定された閾値を超えるパターンを選択する第2の選択部と、
     前記第2の選択部によって選択されたパターンに従って、前記複数の作業員又は前記複数のロボットへの指示を生成する指示生成部と、
     前記指示を前記複数の作業員又は前記複数のロボットへ送信する指示送信部と、
     前記送信した指示についての作業結果を前記複数の作業員又は前記複数のロボットから受け付ける作業結果受付部を有し、
     前記作業効率計算部は、前記作業結果受付部が前記作業結果を受け付けることをトリガとして前記作業効率を計算することを特徴とする倉庫管理システム。
    A generation unit that generates a plurality of patterns including a layout of a warehouse, a work flow that is an order of work in the warehouse, or work schedules of a plurality of workers and a plurality of robots;
    A warehouse task calculation unit for calculating a task including a work content, an end time, and a necessary work amount of each work in the warehouse from an amount determined by a customer order;
    A work efficiency calculation unit for calculating work efficiency in the warehouse when each of the patterns is applied;
    A first selection unit that selects a pattern that can satisfy the required amount of work within an end time of each of the patterns;
    A second selection unit that selects a pattern in which the work efficiency exceeds a preset threshold among the patterns selected by the first selection unit;
    An instruction generation unit for generating instructions to the plurality of workers or the plurality of robots according to the pattern selected by the second selection unit;
    An instruction transmitter for transmitting the instructions to the plurality of workers or the plurality of robots;
    A work result receiving unit for receiving work results on the transmitted instructions from the plurality of workers or the plurality of robots;
    The warehouse management system, wherein the work efficiency calculation unit calculates the work efficiency by using the work result reception unit as a trigger to receive the work result.
  9.  請求項8に記載の倉庫管理システムにおいて、
     前記作業結果受付部は、前記複数の作業員及び前記複数のロボットから前記作業結果を受け付け、
     前記作業効率計算部は、前記作業結果を受け付ける度に前記作業効率を計算することを特徴とする倉庫管理システム。
    In the warehouse management system according to claim 8,
    The work result receiving unit receives the work results from the plurality of workers and the plurality of robots,
    The said work efficiency calculation part calculates the said work efficiency whenever it receives the said work result, The warehouse management system characterized by the above-mentioned.
  10.  倉庫のレイアウト、前記倉庫内の作業の順序である作業フロー、又は複数の作業員及び複数のロボットの作業スケジュール、を含むパターンを複数生成する生成部と、
     前記複数の作業員と前記複数のロボットの位置を含む情報を格納する位置データベースと、
     顧客の注文によって定まる物量から前記倉庫内の各作業の作業内容、終了時刻、及び必要な作業量を含むタスクを計算する倉庫タスク計算部と、
     前記複数の作業員及び前記複数のロボットの位置を含む情報からシミュレーションした前記複数の作業員と前記複数のロボットとの干渉に基づいて、前記パターンのそれぞれを適用した場合における前記倉庫内の作業効率を計算する作業効率計算部と、
     前記パターンのうち、前記各作業の終了時刻内に前記必要な作業量を満たすことの出来るパターンを選択する第1の選択部と、
     前記第1の選択部によって選択されたパターンのうち、前記作業効率が予め設定された閾値を超えるパターンを選択する第2の選択部と、
     前記第2の選択部によって選択されたパターンに従って、前記複数の作業員又は前記複数のロボットへの指示を生成する指示生成部と、
     前記指示を前記複数の作業員又は前記複数のロボットへ送信する指示送信部と、を有することを特徴とする倉庫管理システム。
    A generation unit that generates a plurality of patterns including a layout of a warehouse, a work flow that is an order of work in the warehouse, or work schedules of a plurality of workers and a plurality of robots;
    A position database for storing information including positions of the plurality of workers and the plurality of robots;
    A warehouse task calculation unit for calculating a task including a work content, an end time, and a necessary work amount of each work in the warehouse from an amount determined by a customer order;
    Work efficiency in the warehouse when each of the patterns is applied based on interference between the plurality of workers and the plurality of robots simulated from information including the positions of the plurality of workers and the plurality of robots A work efficiency calculator that calculates
    A first selection unit that selects a pattern that can satisfy the required amount of work within an end time of each of the patterns;
    A second selection unit that selects a pattern in which the work efficiency exceeds a preset threshold among the patterns selected by the first selection unit;
    An instruction generation unit for generating instructions to the plurality of workers or the plurality of robots according to the pattern selected by the second selection unit;
    A warehouse management system comprising: an instruction transmission unit configured to transmit the instruction to the plurality of workers or the plurality of robots.
  11.  請求項8乃至10のいずれか1つに記載の倉庫管理システムにおいて、
     前記作業効率は、前記各作業の作業時間、前記各作業にかかるコスト、前記各作業の作業量、又は前記複数の作業員若しくは前記複数のロボットの稼働率、に関する値の前記各作業の作業開始時間から前記終了時刻までの間の積分値によって求められることを特徴とする倉庫管理システム。
    The warehouse management system according to any one of claims 8 to 10,
    The work efficiency is a work start value of each work with a value related to a work time of each work, a cost of each work, a work amount of each work, or an operation rate of the plurality of workers or the plurality of robots. A warehouse management system characterized by being obtained by an integral value between time and the end time.
  12.  請求項8乃至10のいずれか1つに記載の倉庫管理システムにおいて、
     前記生成部は、前記パターンを生成するためのルールが格納されているルールデータベースと、
     前記顧客の注文によって定まる物量、前記顧客の注文によって定まる入出庫データ、倉庫内のリソースに基づいて定まる条件、又は前記作業員若しくは前記ロボットの特性から前記ルールを選択するルール選択部と、を有し、
     前記生成部は、前記ルール選択部によって選択されたルールに基づいて前記パターンを生成することを特徴とする倉庫管理システム。
    The warehouse management system according to any one of claims 8 to 10,
    The generation unit includes a rule database in which rules for generating the pattern are stored;
    A rule selection unit that selects the rule based on the quantity determined by the customer's order, the entry / exit data determined by the customer's order, the condition determined based on the resources in the warehouse, or the characteristics of the worker or the robot. And
    The said management part produces | generates the said pattern based on the rule selected by the said rule selection part, The warehouse management system characterized by the above-mentioned.
  13.  請求項8乃至10のいずれか1つに記載の倉庫管理システムにおいて、
     前記倉庫管理システムは、前記送信した指示についての作業結果を受け付ける作業結果受信部を有し、
     前記生成部は、前記作業結果に基づいて前記パターンを生成することを特徴とする倉庫管理システム。
    The warehouse management system according to any one of claims 8 to 10,
    The warehouse management system has a work result receiving unit that receives a work result for the transmitted instruction,
    The said management part produces | generates the said pattern based on the said operation result, The warehouse management system characterized by the above-mentioned.
  14.  請求項8乃至10のいずれか1つに記載の倉庫管理システムにおいて、
     前記倉庫の現状のパターンを維持した場合にかかる現状コストを計算する現状コスト計算部と、
     前記現状のパターンから、前記生成部によって生成されたパターンのそれぞれに変更する際にかかる変更コストを計算する変更コスト計算部と、
     前記現状のパターンから前記生成部によって生成されたパターンのそれぞれに変更することで削減される削減コストを計算する削減コスト計算部と、
     前記第2の選択部によって選択されたパターンのうち、前記削減コストが前記現状コストと前記変更コストの和よりも大きくなるパターンを選択する第3の選択部と、を有することを特徴とする倉庫管理システム。
    The warehouse management system according to any one of claims 8 to 10,
    A current cost calculation unit for calculating a current cost when the current pattern of the warehouse is maintained;
    A change cost calculation unit for calculating a change cost when changing from the current pattern to each of the patterns generated by the generation unit;
    A reduction cost calculation unit that calculates a reduction cost that is reduced by changing from the current pattern to each of the patterns generated by the generation unit;
    A warehouse having a third selection unit that selects a pattern in which the reduction cost is greater than the sum of the current cost and the change cost among the patterns selected by the second selection unit; Management system.
  15.  請求項8乃至10のいずれか1つに記載の倉庫管理システムにおいて、
     前記倉庫管理システムは、複数の倉庫のリソースに関するデータが格納されているリソースデータベースと、
     前記倉庫タスク計算部により計算した前記複数の倉庫でのタスクと前記複数の倉庫のリソースから、前記複数の倉庫それぞれにおいて前記タスクを完了することができるか判定する稼働状況判定部と、
     前記稼働状況判定部によってタスクを完了することができないと判定された第1の倉庫に必要なリソースを計算するリソース計算部と、
     前記必要なリソースを補うために、前記稼働状況判定部によってタスクを完了することができると判定された第2の倉庫で利用されていないリソースを検索するリソース検索部を有し、
     前記指示生成部は、前記検索したリソースを前記第1の倉庫に分配するように前記指示を生成し、
     前記指示送信部は、前記生成した指示を前記第1の倉庫内及び前記第2の倉庫内にいる前記複数の作業員又は前記複数のロボットへ送信することを特徴とする倉庫管理システム。
    The warehouse management system according to any one of claims 8 to 10,
    The warehouse management system includes a resource database storing data on resources of a plurality of warehouses,
    From the tasks in the plurality of warehouses calculated by the warehouse task calculation unit and the resources of the plurality of warehouses, an operation status determination unit that determines whether the tasks can be completed in each of the plurality of warehouses;
    A resource calculation unit for calculating resources required for the first warehouse determined by the operating status determination unit to be unable to complete the task;
    In order to supplement the necessary resources, a resource search unit that searches for resources that are not used in the second warehouse that is determined to be able to complete the task by the operating status determination unit,
    The instruction generation unit generates the instruction to distribute the searched resource to the first warehouse,
    The warehouse management system, wherein the instruction transmission unit transmits the generated instruction to the plurality of workers or the plurality of robots in the first warehouse and the second warehouse.
PCT/JP2015/052610 2015-01-30 2015-01-30 Warehouse management system WO2016121076A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/052610 WO2016121076A1 (en) 2015-01-30 2015-01-30 Warehouse management system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/052610 WO2016121076A1 (en) 2015-01-30 2015-01-30 Warehouse management system

Publications (1)

Publication Number Publication Date
WO2016121076A1 true WO2016121076A1 (en) 2016-08-04

Family

ID=56542727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052610 WO2016121076A1 (en) 2015-01-30 2015-01-30 Warehouse management system

Country Status (1)

Country Link
WO (1) WO2016121076A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106204401A (en) * 2016-09-06 2016-12-07 江苏高科物流科技股份有限公司 The management method in warehouse, management equipment and logistics system
CN106503954A (en) * 2016-12-05 2017-03-15 顺丰科技有限公司 Movable object stream Integrated Processing System and logistics processing method
WO2018051498A1 (en) * 2016-09-16 2018-03-22 ヤマハ発動機株式会社 Substrate working system and method for conveying component in substrate working system
CN109013374A (en) * 2018-07-24 2018-12-18 苏州沸特纸业有限公司 A kind of corrugation paper conversion intelligent memory system
CN113811825A (en) * 2019-05-09 2021-12-17 欧姆龙株式会社 Job analysis device, job analysis method, and program
CN114415617A (en) * 2022-03-31 2022-04-29 机科发展科技股份有限公司 Warehouse-in and warehouse-out scheduling system based on mobile robot and optimal scheduling method thereof
CN114493457A (en) * 2022-02-11 2022-05-13 常州刘国钧高等职业技术学校 Intelligent control method and system for automatic three-dimensional storage
JP2023169535A (en) * 2022-05-17 2023-11-30 株式会社フレームワークス Warehouse operation execution apparatus, warehouse operation execution method, and computer program for executing warehouse operation
WO2023233977A1 (en) * 2022-05-31 2023-12-07 オムロン株式会社 Information processing device, information processing method, and information processing program
KR20230169614A (en) * 2022-06-09 2023-12-18 주식회사 플로틱 Method and system for processing item order
EP4194987A4 (en) * 2020-08-06 2024-02-21 OMRON Corporation Environment change proposition system and environment change proposition program
JP7555815B2 (en) 2020-12-24 2024-09-25 株式会社東芝 Information processing device, information processing method, program, and control system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08137972A (en) * 1994-11-14 1996-05-31 Toshiba Corp Shortest shipping route judging device
JPH1139367A (en) * 1997-07-22 1999-02-12 Hitachi Ltd Physical distribution warehouse design supporting method/system and recording medium recording physical distribution warehouse design supporting program
JP2010100386A (en) * 2008-10-22 2010-05-06 Murata Machinery Ltd Article takeout management device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08137972A (en) * 1994-11-14 1996-05-31 Toshiba Corp Shortest shipping route judging device
JPH1139367A (en) * 1997-07-22 1999-02-12 Hitachi Ltd Physical distribution warehouse design supporting method/system and recording medium recording physical distribution warehouse design supporting program
JP2010100386A (en) * 2008-10-22 2010-05-06 Murata Machinery Ltd Article takeout management device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106204401A (en) * 2016-09-06 2016-12-07 江苏高科物流科技股份有限公司 The management method in warehouse, management equipment and logistics system
WO2018051498A1 (en) * 2016-09-16 2018-03-22 ヤマハ発動機株式会社 Substrate working system and method for conveying component in substrate working system
JPWO2018051498A1 (en) * 2016-09-16 2019-04-11 ヤマハ発動機株式会社 Board working system and component conveying method in board working system
US11912412B2 (en) 2016-09-16 2024-02-27 Yamaha Hatsudoki Kabushiki Kaisha Substrate working system and method for conveying component in substrate working system
CN106503954A (en) * 2016-12-05 2017-03-15 顺丰科技有限公司 Movable object stream Integrated Processing System and logistics processing method
CN109013374A (en) * 2018-07-24 2018-12-18 苏州沸特纸业有限公司 A kind of corrugation paper conversion intelligent memory system
US20220215327A1 (en) * 2019-05-09 2022-07-07 Omron Corporation Work analysis device, work analysis method and computer-readable medium
CN113811825A (en) * 2019-05-09 2021-12-17 欧姆龙株式会社 Job analysis device, job analysis method, and program
CN113811825B (en) * 2019-05-09 2024-08-23 欧姆龙株式会社 Job analysis device, job analysis method, and computer-readable recording medium
EP4194987A4 (en) * 2020-08-06 2024-02-21 OMRON Corporation Environment change proposition system and environment change proposition program
JP7555815B2 (en) 2020-12-24 2024-09-25 株式会社東芝 Information processing device, information processing method, program, and control system
CN114493457A (en) * 2022-02-11 2022-05-13 常州刘国钧高等职业技术学校 Intelligent control method and system for automatic three-dimensional storage
CN114493457B (en) * 2022-02-11 2023-03-28 常州刘国钧高等职业技术学校 Intelligent control method and system for automatic three-dimensional warehousing
CN114415617A (en) * 2022-03-31 2022-04-29 机科发展科技股份有限公司 Warehouse-in and warehouse-out scheduling system based on mobile robot and optimal scheduling method thereof
JP2023169535A (en) * 2022-05-17 2023-11-30 株式会社フレームワークス Warehouse operation execution apparatus, warehouse operation execution method, and computer program for executing warehouse operation
JP7486132B2 (en) 2022-05-17 2024-05-17 株式会社フレームワークス WAREHOUSE OPERATION EXECUTION DEVICE, WAREHOUSE OPERATION EXECUTION METHOD, AND COMPUTER PROGRAM FOR WAREHOUSE OPERATION EXECUTION
WO2023233977A1 (en) * 2022-05-31 2023-12-07 オムロン株式会社 Information processing device, information processing method, and information processing program
KR20230169614A (en) * 2022-06-09 2023-12-18 주식회사 플로틱 Method and system for processing item order
KR102658665B1 (en) * 2022-06-09 2024-04-18 주식회사 플로틱 Method and system for processing item order

Similar Documents

Publication Publication Date Title
WO2016121076A1 (en) Warehouse management system
Xie et al. Introducing split orders and optimizing operational policies in robotic mobile fulfillment systems
Bartholdi et al. Warehouse & distribution science: release 0.96
US11027920B2 (en) Rack management system and rack management method
Shah et al. A comprehensive review of warehouse operational issues
TWI810488B (en) Computer-implemented system and computer-implemented method for intelligent generation of purchase orders
WO2020238657A1 (en) Goods sorting method and goods sorting system
KR102443182B1 (en) Methods, systems and apparatus for controlling movement of transporting devices
Bartholdi et al. Warehouse & Distribution Science: Release 0.89
US10229385B2 (en) Free location item and storage retrieval
US20140046634A1 (en) Facility Design and Management Systems Using Order Processing
JP2021519473A (en) GTP system management methods and equipment, systems, servers and computer storage media
Rimélé et al. Robotic mobile fulfillment systems: a mathematical modelling framework for e-commerce applications
WO2021019702A1 (en) Automated warehouse optimization system
JP2018150124A (en) Picking management system, and picking management method
Vasili et al. Automated storage and retrieval systems: a review on travel time models and control policies
Onal et al. Modelling and performance evaluation of explosive storage policies in internet fulfilment warehouses
JP6832829B2 (en) Inventory management device and inventory management method
JP2024527549A (en) Method and system for scheduling a transport robot, and computer program product
Martins et al. Delivery mode planning for distribution to brick-and-mortar retail stores: discussion and literature review
JP2020113276A (en) Method, computer program, and management system for managing part collection
WO2021111806A1 (en) Management system, and method for managing acceptance and delivery of products
Xie et al. Efficient order picking methods in robotic mobile fulfillment systems
JP6946680B2 (en) Inventory allocation device, inventory allocation method and inventory allocation program
Sartangi et al. A Mixed Integer Linear Formulation and a Grouping League Championship Algorithm for a Multiperiod-Multitrip Order Picking System with Product Replenishment to Minimize Total Tardiness

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15879973

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15879973

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP