WO2016117180A1 - Solar battery cell, solar battery module, method for manufacturing solar battery cell, and method for manufacturing solar battery module - Google Patents
Solar battery cell, solar battery module, method for manufacturing solar battery cell, and method for manufacturing solar battery module Download PDFInfo
- Publication number
- WO2016117180A1 WO2016117180A1 PCT/JP2015/078901 JP2015078901W WO2016117180A1 WO 2016117180 A1 WO2016117180 A1 WO 2016117180A1 JP 2015078901 W JP2015078901 W JP 2015078901W WO 2016117180 A1 WO2016117180 A1 WO 2016117180A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- bus electrode
- grid electrode
- bus
- notch
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 20
- 238000000034 method Methods 0.000 title claims description 15
- 239000000758 substrate Substances 0.000 claims abstract description 69
- 238000007639 printing Methods 0.000 claims description 43
- 229910000679 solder Inorganic materials 0.000 claims description 29
- 239000004065 semiconductor Substances 0.000 claims description 10
- 238000007650 screen-printing Methods 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 5
- 238000005304 joining Methods 0.000 claims description 4
- 229910021421 monocrystalline silicon Inorganic materials 0.000 abstract description 52
- 239000007772 electrode material Substances 0.000 description 22
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 11
- 239000010410 layer Substances 0.000 description 11
- 229910052709 silver Inorganic materials 0.000 description 11
- 239000004332 silver Substances 0.000 description 11
- 239000012535 impurity Substances 0.000 description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- 238000009792 diffusion process Methods 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 239000010703 silicon Substances 0.000 description 7
- 238000005476 soldering Methods 0.000 description 7
- 239000011521 glass Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- XHXFXVLFKHQFAL-UHFFFAOYSA-N phosphoryl trichloride Chemical compound ClP(Cl)(Cl)=O XHXFXVLFKHQFAL-UHFFFAOYSA-N 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000003082 abrasive agent Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- RLOWWWKZYUNIDI-UHFFFAOYSA-N phosphinic chloride Chemical compound ClP=O RLOWWWKZYUNIDI-UHFFFAOYSA-N 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- -1 silver aluminum Chemical compound 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0224—Electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a solar cell in which electrodes are formed by screen printing, a solar cell module, a method for manufacturing a solar cell, and a method for manufacturing a solar cell module.
- the electric power generated by the solar cells is collected by the grid electrode and further collected to the bus electrode connected to the grid electrode. Further, by soldering the tab wire on the bus electrode, the solar cells can be connected in series and a large amount of power can be collected.
- the electrode material of the grid electrode and the bus electrode is the same type of electrode material.
- different electrode materials can be used for the electrode material of the grid electrode and the bus electrode.
- the grid electrode and the bus electrode are printed separately, in order to collect the power generated by the solar battery cell, the grid electrode and the bus electrode are electrically connected to each other. It is necessary to overlap the electrode. For this reason, an uneven portion is formed on the surface of the bus electrode around the overlapping portion of the grid electrode and the bus electrode. And when connecting a tab wire to each photovoltaic cell in order to connect a plurality of photovoltaic cells in series, the tab wire is soldered only to the convex portion of the concavo-convex portion. For this reason, there is a problem that a stable soldering area between the bus electrode and the tab wire cannot be obtained, and an electrical resistance between the bus electrode and the tab wire increases to cause power loss.
- the electrode material in order to reduce the manufacturing cost of a solar cell and improve the efficiency of a solar cell, the electrode material is properly used as a laminated structure. And when forming the 1st current collection part and the 2nd current collection part by separate printing, the sides of each current collection part are connected.
- This invention is made
- the present invention provides an elongated grid arranged on one surface of a semiconductor substrate having a pn junction so as to extend in a first direction in the surface direction of the semiconductor substrate.
- An electrode comprising an electrode and a bus electrode extending in a second direction intersecting the first direction and having a width wider than that of the grid electrode, the bus electrode extending from a side surface in the second direction to the first direction
- the grid electrode has a notch portion recessed inward, and the end of the bus electrode side is accommodated in the notch portion so as not to overlap the bus electrode.
- Sectional drawing of the principal part of the light-receiving surface side electrode in the photovoltaic cell concerning Embodiment 1 of this invention The principal part top view which expands and shows the light-receiving surface side electrode in the photovoltaic cell concerning Embodiment 1 of this invention.
- Sectional drawing which shows the principal part which shows the state by which the tab wire for cell connection was soldered to the photovoltaic cell concerning Embodiment 1 of this invention.
- Sectional drawing which shows the principal part which shows the state by which the tab wire for cell connection was soldered to the light-receiving surface side electrode in the photovoltaic cell concerning Embodiment 1 of this invention.
- the typical perspective view which shows the state by which the photovoltaic cell concerning Embodiment 1 of this invention was electrically connected in series via the tab wire for cell connection.
- the principal part top view which shows the modification of the shape of the light-receiving surface side electrode concerning Embodiment 1 of this invention
- the principal part top view which shows the other modification of the shape of the light-receiving surface side electrode concerning Embodiment 1 of this invention.
- the principal part top view which expands and shows the shape of the grid electrode of the photovoltaic cell concerning Embodiment 2 of this invention.
- the principal part top view which expands and shows the shape of the bus electrode of the photovoltaic cell concerning Embodiment 2 of this invention.
- FIG. 1 is a perspective view of a solar battery cell 11 according to a first embodiment of the present invention as viewed from the light receiving surface side.
- the solar cell 11 according to the first embodiment includes an n-type impurity diffusion layer in which an n-type impurity of a second conductivity type is diffused in a surface layer of a p-type single crystal silicon substrate 12b that is a semiconductor substrate of a first conductivity type.
- a back-side electrode (not shown) having a comb shape formed on the opposite back surface.
- the surface of the p-type single crystal silicon substrate 12b that is, the surface of the n-type impurity diffusion layer 12a is surrounded by, for example, a (111) surface of silicon so that the solar battery cell 11 can absorb more sunlight.
- a texture structure (not shown) made of unevenness having a quadrangular pyramidal projection is formed.
- an antireflection film may be provided in a region where the light receiving surface side electrode 13 is not formed on the surface of the single crystal silicon substrate 12 on the light receiving surface side.
- the semiconductor substrate is not limited to a p-type single crystal silicon substrate, and a substrate usable for a solar cell such as a p-type polycrystalline silicon substrate, an n-type single crystal silicon substrate, or an n-type polycrystalline silicon substrate is used. it can.
- a substrate usable for a solar cell such as a p-type polycrystalline silicon substrate, an n-type single crystal silicon substrate, or an n-type polycrystalline silicon substrate is used. it can.
- the conductivity type of each member in the solar battery cell 11 may be reversed.
- the light receiving surface side electrode 13 includes a grid electrode 13a having an elongated shape and two bus electrodes 13b provided wider than the grid electrode 13a.
- the grid electrode 13a is disposed on the light receiving surface of the single crystal silicon substrate 12 having a pn junction so as to extend in the first direction in the plane direction of the single crystal silicon substrate 12.
- the bus electrode 13b is arranged extending in a second direction intersecting the first direction.
- the extending direction of the grid electrode 13 a and the extending direction of the bus electrode 13 b are orthogonal to each other in the plane direction of the single crystal silicon substrate 12. That is, the first direction and the second direction are orthogonal to each other in the plane direction of the single crystal silicon substrate 12.
- the extending direction of the grid electrode 13 a and the extending direction of the bus electrode 13 b may intersect at an angle other than a right angle in the plane direction of the single crystal silicon substrate 12. That is, the first direction and the second direction may intersect at an angle other than a right angle in the plane direction of the single crystal silicon substrate 12.
- the back surface side electrode includes a grid electrode (not shown) having an elongated shape and two bus electrodes provided wider than the grid electrode.
- the longitudinal direction of the bus electrode of the back surface side electrode is the same as the longitudinal direction of the bus electrode 13 b of the light receiving surface side electrode 13.
- FIG. 2 is an enlarged plan view showing a main part of the grid electrode 13a of the solar battery cell 11 according to the first embodiment.
- FIG. 3 is an essential part plan view showing an enlarged shape of the bus electrode 13b of the solar battery cell 11 according to the first embodiment.
- FIG. 4 is an enlarged plan view of a main part of the light receiving surface side electrode 13 in the solar battery cell 11 according to the first embodiment of the present invention.
- the grid electrode 13a is divided and arranged in the longitudinal direction as shown in FIG. That is, the grid electrodes 13a adjacent in the longitudinal direction are arranged on a straight line. And the grid electrode end part 21 which is each edge part has opposed grid electrode 13a adjacent in a longitudinal direction.
- the grid electrodes 13a are elongated in parallel with a predetermined interval in a direction crossing the longitudinal direction of the grid electrodes 13a in the plane direction of the single crystal silicon substrate 12, more precisely in a direction orthogonal to the longitudinal direction of the grid electrodes 13a. Arranged in shape.
- the predetermined interval is the length between the center positions of the adjacent grid electrodes 13a in the width direction of the grid electrodes 13a.
- the bus electrode 13b is provided with a notch 22 on a side surface 23 in the longitudinal direction.
- the notch 22 is recessed in an elongated shape inward from the side surface 23 of the bus electrode 13b in the short direction of the bus electrode 13b, that is, in the width direction, and penetrates in the thickness direction of the bus electrode 13b.
- the extending direction of the notch 22 is the same as the extending direction of the grid electrode 13 a in the plane direction of the single crystal silicon substrate 12.
- the notch 22 is a U-shape that is recessed in the surface direction of the single crystal silicon substrate 12, corresponding to the shape of the grid electrode end 21 and having a dimension larger than the outer dimension of the grid electrode end 21.
- the notches 22 are arranged in parallel at predetermined intervals in the longitudinal direction of the bus electrode 13b in order to accommodate the grid electrode end 21 of the grid electrode 13a on the n-type impurity diffusion layer 12a.
- the predetermined interval is the length between the center positions of the adjacent notches 22 in the longitudinal direction of the bus electrode 13b.
- the predetermined interval at which the bus electrodes 13b are arranged in parallel is the same as the predetermined interval at which the grid electrodes 13a are arranged in parallel.
- the grid electrode 13a and the bus electrode 13b are arranged on the n-type impurity diffusion layer 12a in a state where the grid electrode end portion 21 is housed in the notch 22 of the bus electrode 13b. An electrode 13 is formed.
- a clearance 24 is provided between the side surface of the grid electrode end 21 and the side surface of the bus electrode 13b in the notch 22, as shown in FIGS. Yes. That is, in the plane of the single crystal silicon substrate 12, the grid electrode end portion 21 of the grid electrode 13a is disposed in the notch 22 so as to be separated from the bus electrode 13b.
- the grid electrode 13a and the bus electrode 13b are not in direct contact. For this reason, the grid electrode 13a and the bus electrode 13b do not overlap each other, and the occurrence of uneven portions due to the overlap of the grid electrode 13a and the bus electrode 13b on the surface of the bus electrode 13b is prevented.
- the tab wire and the bus electrode 13b are soldered, it is possible to secure a wide bonding area between the bus electrode 13b and the tab wire, and the solderability between the bus electrode 13b and the tab wire is stabilized. .
- the grid electrode 13a is not continuous in the longitudinal direction and has a shape divided at the position of the bus electrode 13b, thereby suppressing the amount of electrode material used in the grid electrode 13a for the divided region. Has been.
- the back side electrode also has the same structure as the light receiving side electrode 13.
- the back surface side electrode is a structure which has the current collection electrode extended in the longitudinal direction of the bus electrode 13b in the position corresponding to the bus electrode 13b in the back surface of the single crystal silicon substrate 12, it will be light-receiving surface side electrode 13 does not have to have the same comb-shaped structure.
- the p-type single crystal silicon substrate 12b is cut out from the silicon ingot by slicing.
- Organic impurities and metal impurities, which are contaminants made of chips, abrasives, etc., generated by cutting the wire during slicing adhere to the surface of the p-type single crystal silicon substrate 12b cut out from the silicon ingot by slicing. ing.
- the p-type single crystal silicon substrate 12b cut out from the silicon ingot is subjected to a cleaning process such as a water cleaning process.
- a processing strain due to the slice called a damage layer occurs to a depth of about 5 ⁇ m. If this damaged layer remains in the solar battery cell, the damaged layer promotes recombination of electrons, leading to deterioration of the characteristics of the solar battery cell. For this reason, the damage layer is removed.
- anisotropic etching using a high-temperature wet etching solution in which an organic substance such as IPA is added as an additive to an alkaline aqueous solution is performed on the surface of the p-type single crystal silicon substrate 12b, for example, surrounded by the (111) plane of silicon.
- a texture structure composed of irregularities having the projected portions of the quadrangular pyramids is formed on the surface of the p-type single crystal silicon substrate 12b.
- the p-type single crystal silicon substrate 12b having a texture structure formed on the surface thereof is put into a thermal diffusion furnace and heated in the presence of phosphorus oxychloride (POCl 3 ) vapor to thereby surface the p-type single crystal silicon substrate 12b
- phosphorus is diffused into the p-type single crystal silicon substrate 12b by forming phosphorus glass.
- the n-type impurity diffusion layer 12a is formed on the surface layer of the p-type single crystal silicon substrate 12b, and the single crystal silicon substrate 12 having a pn junction is formed.
- an electrode is formed.
- the light receiving surface side electrode 13 is printed on the light receiving surface of the single crystal silicon substrate 12. That is, the aluminum paste mixed with aluminum is screen-printed on the light receiving surface of the single crystal silicon substrate 12 in the shape of the grid electrode 13a. Further, a silver paste mixed with silver is screen-printed on the light receiving surface of the single crystal silicon substrate 12 in the shape of the bus electrode 13b.
- silver paste is generally used for the electrode material of the bus electrode, but the electrode material of the bus electrode 13b according to the first embodiment is not limited to the silver paste.
- the electrode material of the bus electrode 13b other metal pastes such as a gold paste, a copper paste, and a silver aluminum paste can be selected in accordance with the purpose from the viewpoint of conductivity and price.
- the back side electrode is printed on the back side of the single crystal silicon substrate 12. That is, an aluminum paste containing aluminum and glass frit is screen-printed on the back surface of the single crystal silicon substrate 12 in the same grid electrode shape as the grid electrode 13a. Further, a silver paste containing silver and glass frit is screen-printed on the back surface of the single crystal silicon substrate 12 in the same bus electrode shape as the bus electrode 13b. Thereafter, the printed paste is baked to form the light receiving surface side electrode 13 and the back surface side electrode.
- the solar battery cell 11 is produced as described above.
- an aluminum paste for forming an electrode containing aluminum and glass frit is printed on the light-receiving surface of the single crystal silicon substrate 12 as a grid electrode 13a by screen printing and dried.
- the aluminum paste is printed by screen printing at a predetermined position on the light receiving surface of the single crystal silicon substrate 12 in parallel with the elongated shape as shown in FIG.
- a silver paste for electrode formation containing silver and glass frit is printed on the light-receiving surface of the single crystal silicon substrate 12 as a bus electrode 13b by screen printing and dried.
- the silver paste has an arrangement in which a notch portion 22 is provided on the side surface 23 in the longitudinal direction of the bus electrode 13 b and the grid electrode end portion 21 of the grid electrode 13 a is accommodated in the notch portion 22.
- printing is performed at a predetermined position on the light receiving surface of the single crystal silicon substrate 12 by screen printing. Note that the printing order of the electrode forming paste for the grid electrode 13a and the bus electrode 13b may be reversed.
- the grid electrode 13a and the bus electrode 13b are in direct contact with each other by providing a clearance 24 between the grid electrode 13a and the bus electrode 13b and printing the silver paste in the plane of the single crystal silicon substrate 12.
- Printed without any problems the grid electrode 13a and the bus electrode 13b do not overlap each other, and the occurrence of uneven portions due to the overlap between the grid electrode 13a and the bus electrode 13b on the surface of the bus electrode 13b is prevented. Therefore, as will be described later, when the tab wire and the bus electrode 13b are soldered, it is possible to secure a wide bonding area between the bus electrode 13b and the tab wire, and soldering between the bus electrode 13b and the tab wire. Sex is stable. 3 and 4, the corners inside the notch 22 are perpendicular, but if the clearance 24 can be secured, the corners inside the notch 22 have a slight roundness. There is no problem.
- the grid electrode 13a and the bus electrode 13b are paste electrodes formed by printing a paste material for electrode formation by screen printing.
- the size of the clearance 24, that is, the distance between the grid electrode end 21 and the bus electrode 13b in the plane of the single crystal silicon substrate 12, is the grid electrode 13a and the bus electrode in the longitudinal direction of the bus electrode 13b.
- the allowable printing position deviation is a length that allows deviation from the original printing position in the longitudinal direction of the bus electrode 13b.
- the allowable print width deviation is a length that allows deviation from the original print width.
- FIG. 7 is an enlarged plan view showing a main part of the light receiving surface side electrode 13 in the solar battery cell 11 according to the first embodiment of the present invention.
- the size of the clearance 24 in the width direction of the bus electrode 13b is also determined by the bus electrode 13b.
- the grid electrode 13a and the bus electrode 13b have the same value as the total value of the allowable printing position deviation and the printing length deviation.
- the permissible print length deviation is a length that allows deviation from the original print length in the width direction of the bus electrode 13b.
- the printing position in the width direction of the bus electrode 13b by setting the size of the clearance 24 to the same value as the sum of the allowable value of the deviation of the printing position and the allowable value of the deviation of the printing length, the printing position in the width direction of the bus electrode 13b.
- Each printing position of the grid electrode 13a and the bus electrode 13b is shifted to the maximum within the allowable deviation value, and each printing length of the grid electrode 13a and the bus electrode 13b is within the allowable printing length deviation value. Even when the value of the grid electrode 13a reaches the maximum, the grid electrode 13a and the bus electrode 13b do not overlap even if the side surfaces may contact each other in the width direction of the bus electrode 13b.
- the tab wire is generally a copper wire having a surface plated with solder. Then, by heating the tab wire, the plated solder is melted, and the grid electrode 13a and the bus electrode 13b are joined to the copper wire by soldering.
- a solar cell module configured by soldering a plurality of solar cells 11 with inter-cell connection tab wires.
- a solar cell module with excellent power extraction efficiency can be realized.
- one end side of the tab wire 31 whose surface is coated with solder is cut off in which the grid electrode end portion 21 of the grid electrode 13a in the first solar cell among the plurality of solar cells 11 is housed. It arrange
- the other end side of the tab wire 31 is disposed on the bus electrode 13b including the cutout portion 22 in which the grid electrode end portion 21 of the grid electrode 13a in the back surface side electrode of the second solar battery cell is housed. Then, by heating the tab wire 31, in the first solar cell and the second solar cell, the grid electrode end 21 and the bus electrode 13 b of the grid electrode 13 a housed in the notch 22, and the tab wire 31. And the step of joining together with solder to electrically connect the first solar cell and the second solar cell.
- the constituent parts of the back surface side electrode are also described here with the same reference numerals as the constituent parts of the light receiving surface side electrode 13 being described.
- the solar cell module in this specification contains the thing of the form which only joined the tab wire on the electrode of the photovoltaic cell 11 with the solder.
- FIG. 8 is a perspective view of the solar cell 11 according to the first embodiment of the present invention, as viewed from the light receiving surface side, with the tab wire 31 for inter-cell connection soldered.
- FIG. 9 is an enlarged plan view of a main part showing a state in which the inter-cell connection tab wire 31 is soldered to the light receiving surface side electrode 13 in the solar battery cell 11 according to the first embodiment of the present invention.
- FIG. 10 is a cross-sectional view of a principal part showing a state in which the inter-cell connection tab wire 31 is soldered to the solar battery cell 11 according to the first embodiment of the present invention, and is taken along line XX in FIG. It is principal part sectional drawing.
- FIG. 10 is a cross-sectional view of a principal part showing a state in which the inter-cell connection tab wire 31 is soldered to the solar battery cell 11 according to the first embodiment of the present invention, and is taken along line XX in FIG. It is principal part sectional drawing.
- FIG. 11 is a cross-sectional view of the main part showing a state in which the inter-cell connection tab wire 31 is soldered to the light receiving surface side electrode 13 in the solar battery cell 11 according to the first embodiment of the present invention. It is principal part sectional drawing in line segment XI-XI.
- FIG. 12 is a schematic perspective view showing a state in which the solar cells 11a, 11b, and 11c according to the first embodiment of the present invention are electrically connected in series via the inter-cell connection tab wire 31.
- the surface of the tab wire 31 is covered with a solder 32 by plating.
- the metal wire used for the tab wire 31 is preferably copper in terms of conductivity and low cost. Then, by heating the tab wire 31 in a state where the tab wire 31 is disposed on the bus electrode 13b, the plated solder 32 is melted, and the grid electrode end of the grid electrode 13a disposed in the notch portion 22 is melted. The part 21, the bus electrode 13 b, and the tab wire 31 are soldered together by the solder 32.
- the tab line 31 is arranged on the surface of the tab line 31 as shown in FIG. 9 by being arranged on the bus electrode 13b within the tolerance of the arrangement accuracy of the tab line 31 within the width of the bus electrode 13b.
- the grid electrode 13a and the bus electrode 13b are electrically connected through the plated solder 32.
- the allowable range of the arrangement accuracy is a length that allows deviation from the original printing position within the width of the bus electrode 13b.
- the grid electrode 13a and the bus electrode 13b are not electrically connected because they do not overlap by providing the clearance 24.
- the notch 22 is provided in the bus electrode 13 b, and the grid electrode 13 a is formed in a state where the grid electrode end 21 of the grid electrode 13 a enters the notch 22.
- the bus electrode 13b is soldered to the tab wire 31 by heating the tab wire 31, and at the same time in the notch portion 22.
- the grid electrode end 21 is soldered to the tab wire 31, and the bus electrode 13 b and the grid electrode 13 a are electrically connected via the tab wire 31. Thereby, the electric power generated by the solar battery cell 11 can be collected from the bus electrode 13 b and the grid electrode end 21 to the tab wire 31.
- the grid electrode end portion 21 is always arranged in the notch portion 22 of the bus electrode 13b, and a solder joint between the grid electrode end portion 21 and the tab wire 31 is obtained.
- the permissible value of the displacement of the arrangement position is the length of deviation from the original arrangement position of the tab line 31 in the width direction of the bus electrode 13b on the bus electrode 13b.
- the grid electrode end 21 is connected to the bus electrode 13b. Therefore, the grid electrode 13a and the tab wire 31 can be soldered together, and power loss during current collection can be suppressed.
- different materials can be selected for the electrode material of the grid electrode 13a and the electrode material of the bus electrode 13b. For this reason, when an inexpensive electrode material is selected, the solar battery cell 11 can be manufactured at low cost. Furthermore, even when the same kind of electrode material is selected for the electrode material of the grid electrode 13a and the electrode material of the bus electrode 13b, the amount of the electrode material used can be reduced, and the price of the solar battery cell 11 can be reduced.
- the tab wire 31 when the tab wire 31 is soldered to the light receiving surface side electrode 13, the solder of the tab wire 31 melts and flows into the clearance 24 when the tab wire 31 is heated and connected to the light receiving surface side electrode 13. Therefore, the tab line 31 is not joined only to the upper surfaces of the grid electrode 13a and the bus electrode 13b, but as shown in FIGS. 10 and 11, the side surface of the grid electrode end portion 21 of the grid electrode 13a in the clearance 24 and Since the side surface of the bus electrode 13b is also electrically connected via the solder 32, a wide bonding area between the tab wire 31 and the light receiving surface side electrode 13 can be secured.
- the electrical resistance between the light-receiving surface side electrode 13 and the tab wire 31 can be reduced, and the taking-out efficiency of the electric power from the photovoltaic cell 11 can be improved. Therefore, in the solar cell module according to the first embodiment, it is possible to efficiently collect the power generated by the solar cells 11 without waste.
- the grid electrode 13a and the tab wire 31 and the bus electrode 13b and the tab wire 31 are soldered.
- the power generated by the solar battery cell 11 can be collected.
- a conductive material such as solder paste onto the bus electrode 13b in advance, the clearance 24 can be filled with solder or solder paste.
- FIG. 13 is a plan view of a principal part showing a modification of the shape of the light receiving surface side electrode 13 according to the first embodiment.
- the shape of the notch 22 in the bus electrode 13b may be a shape penetrating the bus electrode 13b in the width direction of the bus electrode 13b. That is, the bus electrode 13b may be divided in the longitudinal direction of the bus electrode 13b. Also in this case, a clearance 24 is provided between the grid electrode 13a and the bus electrode 13b, and the grid electrode end portion 21 is accommodated in the cutout portion 22. Even when such a light receiving surface side electrode 13 is formed, the same effect as that of the light receiving surface side electrode 13 shown in FIG. 4 can be obtained.
- the grid electrode 13a and the bus electrode 13b are both divided, it is possible to suppress the amount of electrode material used for the grid electrode 13a, the bus electrode 13b, and the bus electrode 13b.
- FIG. 14 is a plan view of a principal part showing another modification of the shape of the light receiving surface side electrode 13 according to the first exemplary embodiment.
- the shape of the bus electrode 13b is the same as that in FIG.
- the grid electrode 13a is continuously formed without interruption in the extending direction of the grid electrode 13a. For this reason, in the extending direction of the grid electrode 13a in the notch 22, the storage length of the grid electrode end 21 is set to the allowable value of the print position deviation, the allowable value of the print length deviation, and the tab line 31. It is not necessary to make the dimensions taking into account the allowable displacement of the arrangement position.
- the light receiving surface side electrode 13 has been described as an example. However, the same effect as described above can be obtained also in the back surface side electrode in which the grid electrode and the bus electrode intersect and are arranged in a comb shape.
- the grid electrode and the bus electrode are separately printed and formed by separate printing, the grid electrode is formed on the entire light-receiving surface side of the silicon substrate, and then the bus electrode is printed and formed. In this case, since the grid electrode and the bus electrode overlap, an uneven portion is generated at the portion where the grid electrode and the bus electrode overlap.
- the grid electrode 13a and the bus electrode 13b can be printed separately.
- 13a and bus electrode 13b do not overlap.
- the surface of the bus electrode 13b can be flattened, and the bus electrode does not generate an uneven portion where the electrodes overlap each other.
- the solder joint area between 13b and the tab wire 31 can be secured stably and widely, and the grid electrode 13a and the tab wire 31 are also soldered together. Thereby, the electric power generated by the solar battery cell 11 can be collected with low loss.
- the notch 22 is provided in the bus electrode 13b and the clearance 24 is provided between the grid electrode 13a and the bus electrode 13b, the amount of electrode material used can be reduced.
- the manufacturing cost can be reduced and the solar battery cell 11 can be realized at low cost.
- the electrode material of the bus electrode 13b is an expensive material such as silver. Since the material is very inexpensive, an electrode can be formed at a lower cost than that of a general solar battery cell.
- Embodiment 1 of the present invention a solar battery cell and a solar battery module capable of collecting generated power with low loss can be realized at low cost.
- FIG. 15 is an enlarged plan view showing a main part of the grid electrode 13a of the solar battery cell according to the second embodiment.
- FIG. 16 is an essential part plan view showing an enlarged shape of the bus electrode 13b of the solar battery cell according to the second embodiment.
- FIG. 17 is an enlarged plan view of a main part of the light-receiving surface side electrode 13 in the solar battery cell according to the second embodiment of the present invention.
- the grid electrode 13a according to the second embodiment is divided and formed in the longitudinal direction, and the grid electrode end portions 41 that are the respective divided end portions face each other.
- the grid electrode end 41 has a rectangular shape that is perpendicular to the longitudinal direction of the grid electrode 13a, that is, the longitudinal direction of the bus electrode 13b.
- the grid electrode 13a is in the plane direction of the single crystal silicon substrate 12. It has a T shape. That is, the grid electrode end width 43, which is the width of the grid electrode end 41 in the longitudinal direction of the bus electrode 13b, is wider than the grid electrode width 42 of the other part of the grid electrode 13a.
- the bus electrode 13b according to the second embodiment is provided with a notch 44 on the side surface 23.
- the notch 44 is recessed in the shape of an elongated shape inward in the short direction of the bus electrode 13b, that is, in the width direction, from the side surface 23 of the bus electrode 13b, and penetrates in the thickness direction of the bus electrode 13b.
- the extending direction of the notch 44 is the same as the extending direction of the grid electrode 13 a in the plane direction of the single crystal silicon substrate 12.
- the cutout portion 44 has a T shape corresponding to the shape of the grid electrode end portion 41 and having a dimension larger than the outer dimension of the grid electrode end portion 41 in the plane direction of the single crystal silicon substrate 12. . That is, the cutout portion 44 has a rectangular wide cutout portion 45 extending in the longitudinal direction of the bus electrode 13b at an inner portion in the width direction.
- the wide cutout portion 45 has a wide cutout portion width 46 that is the width in the longitudinal direction of the bus electrode 13b, and is wider than a cutout portion width 47 that is the width of the other portion of the cutout portion 44, and the grid. It is wider than the electrode end width 43.
- the light receiving surface side electrode 13 is formed by arranging the grid electrode 13 a in the notch 44 in a state where the grid electrode end 41 is accommodated in the wide notch 45.
- a clearance 24 is provided between the grid electrode 13a and the bus electrode 13b as shown in FIG.
- the grid electrode 13a and the bus electrode 13b are not in direct contact. For this reason, the grid electrode 13a and the bus electrode 13b do not overlap each other, and unevenness due to the overlap of the grid electrode 13a and the bus electrode 13b on the surface of the bus electrode 13b is prevented.
- bus electrode 13b has the cutout portion 44 having the wide cutout portion 45, the amount of the electrode material used for the bus electrode 13b is suppressed.
- the grid electrode end width 43 By setting the grid electrode end width 43 to a value larger than the grid electrode width 42, depending on the relationship between the print position deviation tolerance, the print width deviation tolerance, and the clearance 24 dimension described above, the grid electrode The opposing side surfaces of 13a and bus electrode 13b are likely to contact each other.
- FIG. 19 is an enlarged plan view showing a main part of the light receiving surface side electrode 13 when the grid electrode 13a and the bus electrode 13b are in contact with each other in the width direction of the bus electrode 13b.
- the grid electrode 13 a and the bus electrode 13 b are printed and shifted in the width direction of the bus electrode 13 b within the allowable value of the printing position deviation and the allowable value of the printing width deviation.
- the right side surface of the grid electrode end portion 41 comes into contact with the right side surface of the wide cutout portion 45.
- FIG. 20 is an enlarged plan view showing a main part of another light receiving surface side electrode 13 in the solar battery cell according to the second embodiment of the present invention. As shown in FIG. 20, even when the grid electrode end 41 and the wide cutout 45 are circular, the above-described effects can be obtained as in the case where the grid electrode end 41 is rectangular.
- the grid electrode end portion 41 has a rectangular or circular shape
- the wide notch portion 45 of the bus electrode 13b has the grid electrode end portion 41. It is possible to increase the possibility of contact between the grid electrode 13a and the bus electrode 13b by adopting a shape corresponding to the shape of the grid electrode and having a dimension larger than the outer dimension of the grid electrode end portion 41. Thereby, the contact area of the grid electrode 13a and the bus electrode 13b can be increased, and the solar cell and solar cell module excellent in the extraction efficiency of the electric power between the grid electrode 13a and the bus electrode 13b are realizable.
- the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Photovoltaic Devices (AREA)
Abstract
A light-receiving-surface-side electrode (13) is provided on one surface of a monocrystalline silicon substrate having a pn junction. The light-receiving-surface-side electrode (13) comprises elongated grid electrodes (13a) disposed extending in a first direction, and a bus electrode (13b) that is wider than the grid electrodes (13a), the bus electrode (13b) extending in a second direction that intersects the first direction. The bus electrode (13b) has cut-out sections (22) that are recessed inward in the first direction from the side surfaces aligned with the second direction. The ends of the grid electrodes (13a) on the bus electrode (13b) side are accommodated inside the cut-out sections (22) without overlapping the bus electrode (13b).
Description
本発明は、スクリーン印刷によって電極が形成される太陽電池セル、太陽電池モジュール、太陽電池セルの製造方法、太陽電池モジュールの製造方法に関する。
The present invention relates to a solar cell in which electrodes are formed by screen printing, a solar cell module, a method for manufacturing a solar cell, and a method for manufacturing a solar cell module.
太陽電池セルで発電された電力は、グリッド電極によって集電され、さらにグリッド電極と接続しているバス電極へ集約される。また、バス電極上にタブ線をはんだ付けすることで、太陽電池セル同士を直列に接続し、大きな電力を集電することができる。ここで、グリッド電極とバス電極とを一括印刷する場合は、グリッド電極とバス電極との電極材は同種の電極材となる。一方、グリッド電極とバス電極とを別々に印刷することで、グリッド電極とバス電極との電極材に異種の電極材を用いることができる。これにより、太陽電池セル内で発電された電力を効率的に集電するための電極材の選択肢が広がるとともに、電極材のコスト低減が可能となる。
The electric power generated by the solar cells is collected by the grid electrode and further collected to the bus electrode connected to the grid electrode. Further, by soldering the tab wire on the bus electrode, the solar cells can be connected in series and a large amount of power can be collected. Here, when the grid electrode and the bus electrode are collectively printed, the electrode material of the grid electrode and the bus electrode is the same type of electrode material. On the other hand, by printing the grid electrode and the bus electrode separately, different electrode materials can be used for the electrode material of the grid electrode and the bus electrode. Thereby, the choice of the electrode material for collecting the electric power generated in the solar cell efficiently can be expanded, and the cost of the electrode material can be reduced.
しかしながら、グリッド電極とバス電極とを別々に印刷する場合は、太陽電池セルで発電された電力を集電するためには、グリッド電極とバス電極とを電気的に接続させるためにグリッド電極とバス電極とを重ねる必要がある。このため、グリッド電極とバス電極との重なり部の周辺のバス電極の表面には凹凸部が形成される。そして、複数枚の太陽電池セルを直列に接続するために各太陽電池セルにタブ線をはんだ付けする場合には、凹凸部の凸部のみにタブ線がはんだ接合される。このため、バス電極とタブ線との安定したはんだ付け面積を得ることができず、バス電極とタブ線との間の電気抵抗が増加して電力損失を発生させる、という問題があった。
However, when the grid electrode and the bus electrode are printed separately, in order to collect the power generated by the solar battery cell, the grid electrode and the bus electrode are electrically connected to each other. It is necessary to overlap the electrode. For this reason, an uneven portion is formed on the surface of the bus electrode around the overlapping portion of the grid electrode and the bus electrode. And when connecting a tab wire to each photovoltaic cell in order to connect a plurality of photovoltaic cells in series, the tab wire is soldered only to the convex portion of the concavo-convex portion. For this reason, there is a problem that a stable soldering area between the bus electrode and the tab wire cannot be obtained, and an electrical resistance between the bus electrode and the tab wire increases to cause power loss.
特許文献1では、太陽電池の製造費用を低減し、また太陽電池の効率を改善するために、電極を積層構造として電極材を使い分けている。そして、第1集電部と第2集電部とを別々の印刷で形成する場合に、それぞれの集電部の側面同士を接続している。
In patent document 1, in order to reduce the manufacturing cost of a solar cell and improve the efficiency of a solar cell, the electrode material is properly used as a laminated structure. And when forming the 1st current collection part and the 2nd current collection part by separate printing, the sides of each current collection part are connected.
しかしながら、上記特許文献1の技術によれば、印刷の位置精度、印刷の寸法精度、印刷マスクの寸法精度等の、第1集電部と第2集電部との形成位置の変動要因が存在する。このため、第1集電部と第2集電部との重なり部を設けなければ接続を形成することは困難である。そして、第1集電部と第2集電部との重なりが発生する場合には、電極表面に凹凸が発生し、太陽電池のモジュール化において、タブ線をはんだ接合する場合に、はんだ付け面積を安定して得ることができず、電力損失が発生する。
However, according to the technique disclosed in Patent Document 1, there are variations in the formation positions of the first current collector and the second current collector, such as printing position accuracy, printing dimensional accuracy, and printing mask dimensional accuracy. To do. For this reason, it is difficult to form a connection unless an overlapping portion between the first current collector and the second current collector is provided. When the first current collector and the second current collector are overlapped, unevenness is generated on the electrode surface, and when the tab wire is soldered in the modularization of the solar cell, the soldering area Cannot be stably obtained, and power loss occurs.
本発明は、上記に鑑みてなされたものであって、集電時の電力損失を低減可能な太陽電池セルを得ることを目的とする。
This invention is made | formed in view of the above, Comprising: It aims at obtaining the photovoltaic cell which can reduce the power loss at the time of current collection.
上述した課題を解決し、目的を達成するために、本発明は、pn接合を有する半導体基板の一面上に、前記半導体基板の面方向における第1方向に伸長して配置される細長形状のグリッド電極と、前記第1方向と交差する第2方向に伸長して前記グリッド電極よりも太幅のバス電極とからなる電極を備え、前記バス電極は、前記第2方向における側面から前記第1方向において内側に凹んだ切り欠き部を有し、前記グリッド電極は、前記バス電極と重ならない状態で前記バス電極側の端部が前記切り欠き部内に収納されていること、を特徴とする。
In order to solve the above-described problems and achieve the object, the present invention provides an elongated grid arranged on one surface of a semiconductor substrate having a pn junction so as to extend in a first direction in the surface direction of the semiconductor substrate. An electrode comprising an electrode and a bus electrode extending in a second direction intersecting the first direction and having a width wider than that of the grid electrode, the bus electrode extending from a side surface in the second direction to the first direction The grid electrode has a notch portion recessed inward, and the end of the bus electrode side is accommodated in the notch portion so as not to overlap the bus electrode.
本発明によれば、集電時の電力損失を低減可能な太陽電池セルが得られる、という効果を奏する。
According to the present invention, it is possible to obtain a solar cell capable of reducing power loss during current collection.
以下に、本発明の実施の形態にかかる太陽電池セル、太陽電池モジュール、太陽電池セルの製造方法、太陽電池モジュールの製造方法を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
Hereinafter, a solar battery cell, a solar battery module, a solar battery cell manufacturing method, and a solar battery module manufacturing method according to embodiments of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
図1は、本発明の実施の形態1にかかる太陽電池セル11を受光面側から見た斜視図である。実施の形態1にかかる太陽電池セル11は、第1導電型の半導体基板であるp型単結晶シリコン基板12bの表層に第2導電型であるn型の不純物が拡散されたn型不純物拡散層12aが形成されてpn接合を有する単結晶シリコン基板12と、単結晶シリコン基板12の受光面側の表面に形成された櫛形形状の受光面側電極13と、単結晶シリコン基板12の受光面と対向する裏面に形成された櫛形形状の図示しない裏面側電極とを備える。 Embodiment 1 FIG.
FIG. 1 is a perspective view of asolar battery cell 11 according to a first embodiment of the present invention as viewed from the light receiving surface side. The solar cell 11 according to the first embodiment includes an n-type impurity diffusion layer in which an n-type impurity of a second conductivity type is diffused in a surface layer of a p-type single crystal silicon substrate 12b that is a semiconductor substrate of a first conductivity type. A single crystal silicon substrate 12 having a pn junction formed thereon, a comb-shaped light receiving surface side electrode 13 formed on the light receiving surface side surface of the single crystal silicon substrate 12, and a light receiving surface of the single crystal silicon substrate 12. And a back-side electrode (not shown) having a comb shape formed on the opposite back surface.
図1は、本発明の実施の形態1にかかる太陽電池セル11を受光面側から見た斜視図である。実施の形態1にかかる太陽電池セル11は、第1導電型の半導体基板であるp型単結晶シリコン基板12bの表層に第2導電型であるn型の不純物が拡散されたn型不純物拡散層12aが形成されてpn接合を有する単結晶シリコン基板12と、単結晶シリコン基板12の受光面側の表面に形成された櫛形形状の受光面側電極13と、単結晶シリコン基板12の受光面と対向する裏面に形成された櫛形形状の図示しない裏面側電極とを備える。 Embodiment 1 FIG.
FIG. 1 is a perspective view of a
なお、p型単結晶シリコン基板12bの表面、すなわちn型不純物拡散層12aの表面には、太陽電池セル11がより多くの太陽光を吸収できるように、たとえばシリコンの(111)面に囲まれた四角錐状の凸部を有する凹凸からなる図示しないテクスチャ構造が形成されている。また、単結晶シリコン基板12の受光面側の表面において、受光面側電極13が形成されていない領域に反射防止膜を備えてもよい。また、半導体基板はp型単結晶シリコン基板に限定されず、p型多結晶シリコン基板、n型単結晶シリコン基板、n型多結晶シリコン基板等の、太陽電池に使用可能な基板を用いることができる。半導体基板にn型の基板を用いる場合には、太陽電池セル11における各部材の導電型を反対にすればよい。
The surface of the p-type single crystal silicon substrate 12b, that is, the surface of the n-type impurity diffusion layer 12a is surrounded by, for example, a (111) surface of silicon so that the solar battery cell 11 can absorb more sunlight. In addition, a texture structure (not shown) made of unevenness having a quadrangular pyramidal projection is formed. Further, an antireflection film may be provided in a region where the light receiving surface side electrode 13 is not formed on the surface of the single crystal silicon substrate 12 on the light receiving surface side. Further, the semiconductor substrate is not limited to a p-type single crystal silicon substrate, and a substrate usable for a solar cell such as a p-type polycrystalline silicon substrate, an n-type single crystal silicon substrate, or an n-type polycrystalline silicon substrate is used. it can. When an n-type substrate is used as the semiconductor substrate, the conductivity type of each member in the solar battery cell 11 may be reversed.
受光面側電極13としては、細長形状を有するグリッド電極13aおよびグリッド電極13aよりも太幅に設けられた2本のバス電極13bを含む。グリッド電極13aは、pn接合を有する単結晶シリコン基板12の受光面上に、単結晶シリコン基板12の面方向における第1方向に伸長して配置されている。バス電極13bは、第1方向と交差する第2方向に伸長して配置されている。本実施の形態においては、グリッド電極13aの伸長方向とバス電極13bの伸長方向とは、単結晶シリコン基板12の面方向において直交している。すなわち、第1方向と第2方向とは、単結晶シリコン基板12の面方向において直交している。なお、グリッド電極13aの伸長方向とバス電極13bの伸長方向とは、単結晶シリコン基板12の面方向において直角以外の角度で交差してもよい。すなわち、第1方向と第2方向とは、単結晶シリコン基板12の面方向において直角以外の角度で交差してもよい。裏面側電極は、受光面側電極13と同様に、図示しない細長形状を有するグリッド電極およびグリッド電極よりも太幅に設けられた2本のバス電極を含む。裏面側電極のバス電極の長手方向は、受光面側電極13のバス電極13bの長手方向と同じ方向とされている。
The light receiving surface side electrode 13 includes a grid electrode 13a having an elongated shape and two bus electrodes 13b provided wider than the grid electrode 13a. The grid electrode 13a is disposed on the light receiving surface of the single crystal silicon substrate 12 having a pn junction so as to extend in the first direction in the plane direction of the single crystal silicon substrate 12. The bus electrode 13b is arranged extending in a second direction intersecting the first direction. In the present embodiment, the extending direction of the grid electrode 13 a and the extending direction of the bus electrode 13 b are orthogonal to each other in the plane direction of the single crystal silicon substrate 12. That is, the first direction and the second direction are orthogonal to each other in the plane direction of the single crystal silicon substrate 12. Note that the extending direction of the grid electrode 13 a and the extending direction of the bus electrode 13 b may intersect at an angle other than a right angle in the plane direction of the single crystal silicon substrate 12. That is, the first direction and the second direction may intersect at an angle other than a right angle in the plane direction of the single crystal silicon substrate 12. Similar to the light receiving surface side electrode 13, the back surface side electrode includes a grid electrode (not shown) having an elongated shape and two bus electrodes provided wider than the grid electrode. The longitudinal direction of the bus electrode of the back surface side electrode is the same as the longitudinal direction of the bus electrode 13 b of the light receiving surface side electrode 13.
つぎに、太陽電池セル11における受光面側電極13について説明する。図2は、本実施の形態1にかかる太陽電池セル11のグリッド電極13aの形状を拡大して示す要部平面図である。図3は、本実施の形態1にかかる太陽電池セル11のバス電極13bの形状を拡大して示す要部平面図である。図4は、本発明の実施の形態1にかかる太陽電池セル11における受光面側電極13を拡大して示す要部平面図である。図5は、本発明の実施の形態1にかかる太陽電池セル11における受光面側電極の要部断面図であり、図4における線分V-Vにおける要部断面図である。図6は、本発明の実施の形態1にかかる太陽電池セル11における受光面側電極13の要部断面図であり、図4における線分VI-VIにおける要部断面図である。
Next, the light receiving surface side electrode 13 in the solar battery cell 11 will be described. FIG. 2 is an enlarged plan view showing a main part of the grid electrode 13a of the solar battery cell 11 according to the first embodiment. FIG. 3 is an essential part plan view showing an enlarged shape of the bus electrode 13b of the solar battery cell 11 according to the first embodiment. FIG. 4 is an enlarged plan view of a main part of the light receiving surface side electrode 13 in the solar battery cell 11 according to the first embodiment of the present invention. FIG. 5 is a cross-sectional view of the main part of the light-receiving surface side electrode in the solar battery cell 11 according to the first embodiment of the present invention, and is a cross-sectional view of the main part along the line VV in FIG. 6 is a cross-sectional view of main parts of the light-receiving surface side electrode 13 in the solar battery cell 11 according to the first embodiment of the present invention, and is a cross-sectional view of main parts taken along the line VI-VI in FIG.
グリッド電極13aは、図2に示すように、長手方向において分割して配置される。すなわち、長手方向において隣り合うグリッド電極13a同士は、一直線上に配置されている。そして、長手方向において隣り合うグリッド電極13a同士は、それぞれの端部であるグリッド電極端部21が対向している。また、グリッド電極13aは、単結晶シリコン基板12の面方向においてグリッド電極13aの長手方向に交差する方向、正確にはグリッド電極13aの長手方向と直交する方向に既定の間隔で並列して、細長形状に配置される。既定の間隔は、グリッド電極13aの幅方向における、隣り合うグリッド電極13aの中心位置間の長さである。
The grid electrode 13a is divided and arranged in the longitudinal direction as shown in FIG. That is, the grid electrodes 13a adjacent in the longitudinal direction are arranged on a straight line. And the grid electrode end part 21 which is each edge part has opposed grid electrode 13a adjacent in a longitudinal direction. The grid electrodes 13a are elongated in parallel with a predetermined interval in a direction crossing the longitudinal direction of the grid electrodes 13a in the plane direction of the single crystal silicon substrate 12, more precisely in a direction orthogonal to the longitudinal direction of the grid electrodes 13a. Arranged in shape. The predetermined interval is the length between the center positions of the adjacent grid electrodes 13a in the width direction of the grid electrodes 13a.
バス電極13bは、図3に示すように、長手方向における側面23に切り欠き部22を設けている。切り欠き部22は、バス電極13bの側面23からバス電極13bの短手方向、すなわち幅方向において内側に細長形状に凹んで、バス電極13bの厚み方向に貫通する。切り欠き部22の伸長方向は、単結晶シリコン基板12の面方向においてグリッド電極13aの伸長方向と同じ方向である。切り欠き部22は、単結晶シリコン基板12の面方向において、グリッド電極端部21の形状に対応して、且つグリッド電極端部21の外形寸法よりも大きな寸法を有して凹んだコ字形状を有する。
As shown in FIG. 3, the bus electrode 13b is provided with a notch 22 on a side surface 23 in the longitudinal direction. The notch 22 is recessed in an elongated shape inward from the side surface 23 of the bus electrode 13b in the short direction of the bus electrode 13b, that is, in the width direction, and penetrates in the thickness direction of the bus electrode 13b. The extending direction of the notch 22 is the same as the extending direction of the grid electrode 13 a in the plane direction of the single crystal silicon substrate 12. The notch 22 is a U-shape that is recessed in the surface direction of the single crystal silicon substrate 12, corresponding to the shape of the grid electrode end 21 and having a dimension larger than the outer dimension of the grid electrode end 21. Have
切り欠き部22は、n型不純物拡散層12a上においてグリッド電極13aのグリッド電極端部21を収納するために、バス電極13bの長手方向において既定の間隔で並列して配置される。既定の間隔は、バス電極13bの長手方向における、隣り合う切り欠き部22の中心位置間の長さである。バス電極13bが並列する既定の間隔は、グリッド電極13aが並列する既定の間隔と同じである。そして、グリッド電極端部21がバス電極13bの切り欠き部22内に収納された状態で、グリッド電極13aとバス電極13bとがn型不純物拡散層12a上に配置されることにより、受光面側電極13が形成されている。
The notches 22 are arranged in parallel at predetermined intervals in the longitudinal direction of the bus electrode 13b in order to accommodate the grid electrode end 21 of the grid electrode 13a on the n-type impurity diffusion layer 12a. The predetermined interval is the length between the center positions of the adjacent notches 22 in the longitudinal direction of the bus electrode 13b. The predetermined interval at which the bus electrodes 13b are arranged in parallel is the same as the predetermined interval at which the grid electrodes 13a are arranged in parallel. The grid electrode 13a and the bus electrode 13b are arranged on the n-type impurity diffusion layer 12a in a state where the grid electrode end portion 21 is housed in the notch 22 of the bus electrode 13b. An electrode 13 is formed.
単結晶シリコン基板12の面内において、切り欠き部22内においてグリッド電極端部21の側面とバス電極13bの側面との間には、図4~図6に示すようにクリアランス24が設けられている。すなわち、単結晶シリコン基板12の面内において、グリッド電極13aのグリッド電極端部21は切り欠き部22内においてバス電極13bと離間して配置されている。クリアランス24が設けられることにより、グリッド電極13aとバス電極13bとは直接接触することが無い。このため、グリッド電極13aとバス電極13bとは重なることがなく、バス電極13bの表面において、グリッド電極13aとバス電極13bとの重なりによる凹凸部の発生が防止されている。これにより、タブ線とバス電極13bとをはんだ付けする場合に、バス電極13bとタブ線との接合面積を広く確保することが可能となり、バス電極13bとタブ線とのはんだ付け性が安定する。
In the surface of the single crystal silicon substrate 12, a clearance 24 is provided between the side surface of the grid electrode end 21 and the side surface of the bus electrode 13b in the notch 22, as shown in FIGS. Yes. That is, in the plane of the single crystal silicon substrate 12, the grid electrode end portion 21 of the grid electrode 13a is disposed in the notch 22 so as to be separated from the bus electrode 13b. By providing the clearance 24, the grid electrode 13a and the bus electrode 13b are not in direct contact. For this reason, the grid electrode 13a and the bus electrode 13b do not overlap each other, and the occurrence of uneven portions due to the overlap of the grid electrode 13a and the bus electrode 13b on the surface of the bus electrode 13b is prevented. As a result, when the tab wire and the bus electrode 13b are soldered, it is possible to secure a wide bonding area between the bus electrode 13b and the tab wire, and the solderability between the bus electrode 13b and the tab wire is stabilized. .
また、グリッド電極13aが長手方向において連続しておらず、バス電極13bの位置で分断された形状となっていることにより、分断されている領域分のグリッド電極13aの電極材の使用量が抑制されている。
In addition, the grid electrode 13a is not continuous in the longitudinal direction and has a shape divided at the position of the bus electrode 13b, thereby suppressing the amount of electrode material used in the grid electrode 13a for the divided region. Has been.
詳細な説明は省略するが、裏面側電極も、受光面側電極13と同じ構造を有する。なお、裏面側電極は、単結晶シリコン基板12の裏面におけるバス電極13bに対応する位置に、バス電極13bの長手方向に伸長する集電電極を有している構成であれば、受光面側電極13と同じ櫛形形状の構造を有していなくてもよい。
Although detailed description is omitted, the back side electrode also has the same structure as the light receiving side electrode 13. In addition, if the back surface side electrode is a structure which has the current collection electrode extended in the longitudinal direction of the bus electrode 13b in the position corresponding to the bus electrode 13b in the back surface of the single crystal silicon substrate 12, it will be light-receiving surface side electrode 13 does not have to have the same comb-shaped structure.
つぎに、太陽電池セル11を製造するための工程を説明する。なお、ここで説明する工程は、シリコン基板を用いた一般的な太陽電池セルの製造工程と同様であるため、特に図示しない。
Next, a process for manufacturing the solar battery cell 11 will be described. In addition, since the process demonstrated here is the same as the manufacturing process of the general photovoltaic cell using a silicon substrate, it does not show in particular in figure.
まず、p型単結晶シリコン基板12bがシリコンインゴットからスライス加工により切り出される。シリコンインゴットからスライス加工により切り出されたp型単結晶シリコン基板12bの表面には、スライス加工時にワイヤーが削れて生じる切り粉、研磨剤などからなる汚染物質である有機不純物と金属不純物とが付着している。このため、シリコンインゴットから切り出されたp型単結晶シリコン基板12bに対して水洗処理等の洗浄処理が施される。
First, the p-type single crystal silicon substrate 12b is cut out from the silicon ingot by slicing. Organic impurities and metal impurities, which are contaminants made of chips, abrasives, etc., generated by cutting the wire during slicing adhere to the surface of the p-type single crystal silicon substrate 12b cut out from the silicon ingot by slicing. ing. For this reason, the p-type single crystal silicon substrate 12b cut out from the silicon ingot is subjected to a cleaning process such as a water cleaning process.
また、スライスされた基板の表層には、ダメージ層と呼ばれるスライスによる加工ひずみが深さ5μm程度まで生じている。このダメージ層が太陽電池セルに残っていると、該ダメージ層で電子の再結合を促進し、太陽電池セルの特性の悪化を招く。このため、ダメージ層が除去される。
Also, on the surface layer of the sliced substrate, a processing strain due to the slice called a damage layer occurs to a depth of about 5 μm. If this damaged layer remains in the solar battery cell, the damaged layer promotes recombination of electrons, leading to deterioration of the characteristics of the solar battery cell. For this reason, the damage layer is removed.
また、アルカリ性水溶液に添加剤としてIPA等の有機物を加えた高温のウットエッチング液を用いた異方性エッチングをp型単結晶シリコン基板12bの表面に施して、たとえばシリコンの(111)面に囲まれた四角錐状の凸部を有する凹凸からなるテクスチャ構造をp型単結晶シリコン基板12bの表面に形成する。
Further, anisotropic etching using a high-temperature wet etching solution in which an organic substance such as IPA is added as an additive to an alkaline aqueous solution is performed on the surface of the p-type single crystal silicon substrate 12b, for example, surrounded by the (111) plane of silicon. A texture structure composed of irregularities having the projected portions of the quadrangular pyramids is formed on the surface of the p-type single crystal silicon substrate 12b.
つぎに、表面にテクスチャ構造が形成されたp型単結晶シリコン基板12bを熱拡散炉へ投入し、オキシ塩化リン(POCl3)蒸気の存在下で加熱してp型単結晶シリコン基板12bの表面にリンガラスを形成することによりp型単結晶シリコン基板12b中にリンを拡散させる。これにより、p型単結晶シリコン基板12bの表層にn型不純物拡散層12aが形成され、pn接合を有する単結晶シリコン基板12が形成される。
Next, the p-type single crystal silicon substrate 12b having a texture structure formed on the surface thereof is put into a thermal diffusion furnace and heated in the presence of phosphorus oxychloride (POCl 3 ) vapor to thereby surface the p-type single crystal silicon substrate 12b Then, phosphorus is diffused into the p-type single crystal silicon substrate 12b by forming phosphorus glass. Thereby, the n-type impurity diffusion layer 12a is formed on the surface layer of the p-type single crystal silicon substrate 12b, and the single crystal silicon substrate 12 having a pn junction is formed.
つぎに、フッ酸溶液中で単結晶シリコン基板12の表面のリンガラス層を除去した後、電極を形成する。まず、単結晶シリコン基板12の受光面に受光面側電極13を印刷する。すなわち、アルミニウムの混入したアルミニウムペーストを、グリッド電極13aの形状に単結晶シリコン基板12の受光面にスクリーン印刷する。また、銀の混入した銀ペーストを、バス電極13bの形状に単結晶シリコン基板12の受光面にスクリーン印刷する。ここで、一般的にバス電極の電極材には銀ペーストが用いられるが、本実施の形態1にかかるバス電極13bの電極材は銀ペーストに限定されない。バス電極13bの電極材は、たとえば金ペースト、銅ペースト、銀アルミニウムペーストなどの他の金属ペーストを、導電率および価格の面から、目的に合わせて選択することができる。
Next, after removing the phosphorus glass layer on the surface of the single crystal silicon substrate 12 in a hydrofluoric acid solution, an electrode is formed. First, the light receiving surface side electrode 13 is printed on the light receiving surface of the single crystal silicon substrate 12. That is, the aluminum paste mixed with aluminum is screen-printed on the light receiving surface of the single crystal silicon substrate 12 in the shape of the grid electrode 13a. Further, a silver paste mixed with silver is screen-printed on the light receiving surface of the single crystal silicon substrate 12 in the shape of the bus electrode 13b. Here, silver paste is generally used for the electrode material of the bus electrode, but the electrode material of the bus electrode 13b according to the first embodiment is not limited to the silver paste. As the electrode material of the bus electrode 13b, other metal pastes such as a gold paste, a copper paste, and a silver aluminum paste can be selected in accordance with the purpose from the viewpoint of conductivity and price.
つぎに、単結晶シリコン基板12の裏面に裏面側電極を印刷する。すなわち、アルミニウムとガラスフリットとを含むアルミニウムペーストを、グリッド電極13aと同じグリッド電極の形状に単結晶シリコン基板12の裏面にスクリーン印刷する。また、銀とガラスフリットとを含む銀ペーストを、バス電極13bと同じバス電極の形状に単結晶シリコン基板12の裏面にスクリーン印刷する。その後、印刷されたペーストに焼成処理を実施して受光面側電極13と裏面側電極とが形成される。以上のようにして、太陽電池セル11が作製される。
Next, the back side electrode is printed on the back side of the single crystal silicon substrate 12. That is, an aluminum paste containing aluminum and glass frit is screen-printed on the back surface of the single crystal silicon substrate 12 in the same grid electrode shape as the grid electrode 13a. Further, a silver paste containing silver and glass frit is screen-printed on the back surface of the single crystal silicon substrate 12 in the same bus electrode shape as the bus electrode 13b. Thereafter, the printed paste is baked to form the light receiving surface side electrode 13 and the back surface side electrode. The solar battery cell 11 is produced as described above.
つぎに、太陽電池セル11の受光面側電極13の製造方法について説明する。まず、単結晶シリコン基板12の受光面上に、グリッド電極13aとして、アルミニウムとガラスフリットとを含む電極形成用のアルミニウムペーストをスクリーン印刷により印刷し、乾燥させる。アルミニウムペーストは、図2に示すように細長形状に並列して、単結晶シリコン基板12の受光面上の既定の位置に、スクリーン印刷により印刷される。
Next, a method for manufacturing the light receiving surface side electrode 13 of the solar battery cell 11 will be described. First, an aluminum paste for forming an electrode containing aluminum and glass frit is printed on the light-receiving surface of the single crystal silicon substrate 12 as a grid electrode 13a by screen printing and dried. The aluminum paste is printed by screen printing at a predetermined position on the light receiving surface of the single crystal silicon substrate 12 in parallel with the elongated shape as shown in FIG.
つぎに、単結晶シリコン基板12の受光面上に、バス電極13bとして、銀とガラスフリットとを含む電極形成用の銀ペーストをスクリーン印刷により印刷し、乾燥させる。銀ペーストは、図3に示すように、バス電極13bにおける長手方向における側面23に切り欠き部22を設けて、グリッド電極13aのグリッド電極端部21が切り欠き部22内に収納される配置で、単結晶シリコン基板12の受光面上の既定の位置に、スクリーン印刷により印刷される。なお、グリッド電極13aとバス電極13bとの電極形成用のペーストの印刷順序を逆にしてもよい。
Next, a silver paste for electrode formation containing silver and glass frit is printed on the light-receiving surface of the single crystal silicon substrate 12 as a bus electrode 13b by screen printing and dried. As shown in FIG. 3, the silver paste has an arrangement in which a notch portion 22 is provided on the side surface 23 in the longitudinal direction of the bus electrode 13 b and the grid electrode end portion 21 of the grid electrode 13 a is accommodated in the notch portion 22. Then, printing is performed at a predetermined position on the light receiving surface of the single crystal silicon substrate 12 by screen printing. Note that the printing order of the electrode forming paste for the grid electrode 13a and the bus electrode 13b may be reversed.
このとき、単結晶シリコン基板12の面内において、グリッド電極13aとバス電極13bとの間にクリアランス24を設けて銀ペーストが印刷されることにより、グリッド電極13aとバス電極13bとは直接接触すること無く印刷される。このため、グリッド電極13aとバス電極13bとは重なることがなく、バス電極13bの表面における、グリッド電極13aとバス電極13bとの重なりによる凹凸部の発生が防止される。したがって、後述するように、タブ線とバス電極13bとをはんだ付けする場合に、バス電極13bとタブ線との接合面積を広く確保することが可能となり、バス電極13bとタブ線とのはんだ付け性が安定する。なお、図3および図4においては、切り欠き部22の内部の角部は直角とされているが、クリアランス24を確保できれば、切り欠き部22の内部の角部は多少の丸みを有していても問題ない。
At this time, the grid electrode 13a and the bus electrode 13b are in direct contact with each other by providing a clearance 24 between the grid electrode 13a and the bus electrode 13b and printing the silver paste in the plane of the single crystal silicon substrate 12. Printed without any problems. For this reason, the grid electrode 13a and the bus electrode 13b do not overlap each other, and the occurrence of uneven portions due to the overlap between the grid electrode 13a and the bus electrode 13b on the surface of the bus electrode 13b is prevented. Therefore, as will be described later, when the tab wire and the bus electrode 13b are soldered, it is possible to secure a wide bonding area between the bus electrode 13b and the tab wire, and soldering between the bus electrode 13b and the tab wire. Sex is stable. 3 and 4, the corners inside the notch 22 are perpendicular, but if the clearance 24 can be secured, the corners inside the notch 22 have a slight roundness. There is no problem.
グリッド電極13aとバス電極13bとは、電極形成用のペースト材料をスクリーン印刷により印刷して形成されたペースト電極である。グリッド電極13aとバス電極13bとの形成においては、単結晶シリコン基板12の受光面上にペースト材料を印刷する際の印刷位置精度と、その他の印刷条件によって発生する印刷幅精度とが存在する。このため、クリアランス24の大きさ、すなわち、単結晶シリコン基板12の面内におけるグリッド電極端部21とバス電極13bとの間の距離は、バス電極13bの長手方向において、グリッド電極13aとバス電極13bとのそれぞれについての、既定の印刷位置からの印刷位置のずれの許容値と、既定の印刷幅からの印刷幅のずれの許容値との合計値と同じ値とすることが好ましい。印刷位置のずれの許容値は、バス電極13bの長手方向において、本来の印刷位置からのずれが許容される長さである。印刷幅のずれの許容値は、本来の印刷幅からのずれが許容される長さである。
The grid electrode 13a and the bus electrode 13b are paste electrodes formed by printing a paste material for electrode formation by screen printing. In the formation of the grid electrodes 13a and the bus electrodes 13b, there are printing position accuracy when printing a paste material on the light receiving surface of the single crystal silicon substrate 12, and printing width accuracy generated by other printing conditions. For this reason, the size of the clearance 24, that is, the distance between the grid electrode end 21 and the bus electrode 13b in the plane of the single crystal silicon substrate 12, is the grid electrode 13a and the bus electrode in the longitudinal direction of the bus electrode 13b. It is preferable to set the same value as the sum of the allowable value of the deviation of the printing position from the default printing position and the allowable value of the deviation of the printing width from the default printing width for each of 13b. The allowable printing position deviation is a length that allows deviation from the original printing position in the longitudinal direction of the bus electrode 13b. The allowable print width deviation is a length that allows deviation from the original print width.
ここで、クリアランス24の大きさを、印刷位置のずれの許容値と印刷幅のずれの許容値との合計値と同じ値とすることにより、バス電極13bの長手方向において印刷位置のずれの許容値内でグリッド電極13aとバス電極13bとのそれぞれの印刷位置が最大にずれ、さらに印刷幅のずれの許容値内でグリッド電極13aとバス電極13bとのそれぞれの印刷幅が最大となった場合でも、図7に示すように、グリッド電極13aとバス電極13bとは、バス電極13bの長手方向において側面同士が接触する当接面25が発生することがあっても、重なることはない。図7は、本発明の実施の形態1にかかる太陽電池セル11における受光面側電極13を拡大して示す要部平面図である。
Here, by setting the size of the clearance 24 to the same value as the sum of the allowable printing position deviation and the printing width deviation allowable value, the printing position deviation is allowed in the longitudinal direction of the bus electrode 13b. When the printing position of each of the grid electrode 13a and the bus electrode 13b is shifted to the maximum within the value, and further, the printing width of each of the grid electrode 13a and the bus electrode 13b is within the allowable value of the printing width shift However, as shown in FIG. 7, the grid electrode 13a and the bus electrode 13b do not overlap even if a contact surface 25 where the side surfaces contact with each other in the longitudinal direction of the bus electrode 13b may be generated. FIG. 7 is an enlarged plan view showing a main part of the light receiving surface side electrode 13 in the solar battery cell 11 according to the first embodiment of the present invention.
このため、バス電極13b上に、グリッド電極13aとバス電極13bとの重なりによる凹凸が発生することがない。したがって、後述するように、タブ線31をバス電極13b上にはんだ付けする場合に、バス電極13bとタブ線31とは良好な接合面積を得ることが可能となる。なお、クリアランス24の大きさは、前記の合計値よりも多少長くすることも可能である。この場合も、上記と同様にグリッド電極13aとバス電極13bとが重なることはない。
Therefore, irregularities due to the overlap of the grid electrode 13a and the bus electrode 13b do not occur on the bus electrode 13b. Therefore, as described later, when the tab wire 31 is soldered onto the bus electrode 13b, the bus electrode 13b and the tab wire 31 can obtain a good bonding area. Note that the size of the clearance 24 can be slightly longer than the total value. Also in this case, the grid electrode 13a and the bus electrode 13b do not overlap in the same manner as described above.
同様に、バス電極13bの幅方向におけるクリアランス24の大きさ、すなわち、バス電極13bの幅方向における切り欠き部22におけるグリッド電極端部21とバス電極13bとの間の距離も、バス電極13bの幅方向において、グリッド電極13aとバス電極13bとのそれぞれについての、印刷位置のずれの許容値と印刷長さのずれの許容値との合計値と同じ値とすることが好ましい。印刷長さのずれの許容値は、バス電極13bの幅方向において、本来の印刷長さからのずれが許容される長さである。
Similarly, the size of the clearance 24 in the width direction of the bus electrode 13b, that is, the distance between the grid electrode end portion 21 and the bus electrode 13b in the notch 22 in the width direction of the bus electrode 13b is also determined by the bus electrode 13b. In the width direction, it is preferable that the grid electrode 13a and the bus electrode 13b have the same value as the total value of the allowable printing position deviation and the printing length deviation. The permissible print length deviation is a length that allows deviation from the original print length in the width direction of the bus electrode 13b.
この場合も、クリアランス24の大きさを、印刷位置のずれの許容値と印刷長さのずれの許容値との合計値と同じの値とすることにより、バス電極13bの幅方向において、印刷位置のずれの許容値内でグリッド電極13aとバス電極13bとのそれぞれの印刷位置が最大にずれ、さらに印刷長さのずれの許容値内でグリッド電極13aとバス電極13bとのそれぞれの印刷長さが最大となった場合でも、グリッド電極13aとバス電極13bとは、バス電極13bの幅方向において側面同士が接触することがあっても、重なることはない。
Also in this case, by setting the size of the clearance 24 to the same value as the sum of the allowable value of the deviation of the printing position and the allowable value of the deviation of the printing length, the printing position in the width direction of the bus electrode 13b. Each printing position of the grid electrode 13a and the bus electrode 13b is shifted to the maximum within the allowable deviation value, and each printing length of the grid electrode 13a and the bus electrode 13b is within the allowable printing length deviation value. Even when the value of the grid electrode 13a reaches the maximum, the grid electrode 13a and the bus electrode 13b do not overlap even if the side surfaces may contact each other in the width direction of the bus electrode 13b.
グリッド電極13aとバス電極13bとの厚みを同じ厚みとすることによって、後述するタブ線をバス電極13b上にはんだ付けする場合に、バス電極13bとタブ線との間で良好な接合面積を確保することができる。また、グリッド電極13aとバス電極13bとの厚みの差は、最大でも受光面側電極13に接続されるタブ線のはんだめっき厚さと同じとする。後述するように、一般的にタブ線は、表面にはんだがめっきされた銅線である。そして、タブ線を加熱することによって、めっきされたはんだが溶融し、グリッド電極13aおよびバス電極13bと、銅線と、がはんだ接合される。グリッド電極13aとバス電極13bとの厚みの差を、受光面側電極13に接続されるタブ線のはんだめっき厚さ以下とすることで、後述するタブ線をバス電極13b上にはんだ付けする場合に、バス電極13bとタブ線との間で良好な接合面積を確保することができる。すなわち、バス電極13bとグリッド電極13aとの厚さの差を抑制することで、切り欠き部22内でのグリッド電極13aの凹凸を低減でき、またバス電極13bとグリッド電極13aとを確実にタブ線と接続できる。これにより、タブ線を接合する際に適正なタブ線のはんだ接合面積を確保でき、集電時の電力損失を抑制できる。
By ensuring that the grid electrode 13a and the bus electrode 13b have the same thickness, when a tab wire to be described later is soldered onto the bus electrode 13b, a good bonding area is ensured between the bus electrode 13b and the tab wire. can do. The difference in thickness between the grid electrode 13a and the bus electrode 13b is the same as the solder plating thickness of the tab wire connected to the light receiving surface side electrode 13 at the maximum. As will be described later, the tab wire is generally a copper wire having a surface plated with solder. Then, by heating the tab wire, the plated solder is melted, and the grid electrode 13a and the bus electrode 13b are joined to the copper wire by soldering. When soldering a tab wire to be described later onto the bus electrode 13b by setting the difference in thickness between the grid electrode 13a and the bus electrode 13b to be equal to or less than the solder plating thickness of the tab wire connected to the light receiving surface side electrode 13 In addition, a good bonding area can be secured between the bus electrode 13b and the tab wire. That is, by suppressing the difference in thickness between the bus electrode 13b and the grid electrode 13a, the unevenness of the grid electrode 13a in the notch 22 can be reduced, and the bus electrode 13b and the grid electrode 13a can be reliably tabbed. Can be connected with a line. Thereby, when joining a tab wire, the solder joint area of an appropriate tab wire can be ensured, and the power loss at the time of current collection can be suppressed.
つぎに、複数の太陽電池セル11をセル間接続用のタブ線によりはんだ付けして構成される太陽電池モジュールについて説明する。太陽電池セル11を複数形成し、隣接する太陽電池セル11同士を電気的に直列に接続することにより、電力の取り出し効率に優れた太陽電池モジュールが実現できる。この場合は、まず、表面がはんだで被覆されたタブ線31の一端側を、複数の太陽電池セル11のうちの第1太陽電池セルにおけるグリッド電極13aのグリッド電極端部21が収納された切り欠き部22上を含むバス電極13b上に配置する。つぎに、タブ線31の他端側を、第2太陽電池セルの裏面側電極におけるグリッド電極13aのグリッド電極端部21が収納された切り欠き部22上を含むバス電極13b上に配置する。そして、タブ線31を加熱することにより、第1太陽電池セルおよび第2太陽電池セルにおいて、切り欠き部22に収納されたグリッド電極13aのグリッド電極端部21およびバス電極13bと、タブ線31と、をはんだによって接合する工程とを行って、第1太陽電池セルと第2太陽電池セルとを電気的に接続する。なお、理解の容易のため、ここでは裏面側電極の構成部についても受光面側電極13の構成部と同じ符号を記載して説明している。また、本明細書における太陽電池モジュールは、太陽電池セル11の電極上にタブ線がはんだによって接合されただけの形態のものを含む。
Next, a solar cell module configured by soldering a plurality of solar cells 11 with inter-cell connection tab wires will be described. By forming a plurality of solar cells 11 and electrically connecting adjacent solar cells 11 in series, a solar cell module with excellent power extraction efficiency can be realized. In this case, first, one end side of the tab wire 31 whose surface is coated with solder is cut off in which the grid electrode end portion 21 of the grid electrode 13a in the first solar cell among the plurality of solar cells 11 is housed. It arrange | positions on the bus electrode 13b containing on the notch part 22. FIG. Next, the other end side of the tab wire 31 is disposed on the bus electrode 13b including the cutout portion 22 in which the grid electrode end portion 21 of the grid electrode 13a in the back surface side electrode of the second solar battery cell is housed. Then, by heating the tab wire 31, in the first solar cell and the second solar cell, the grid electrode end 21 and the bus electrode 13 b of the grid electrode 13 a housed in the notch 22, and the tab wire 31. And the step of joining together with solder to electrically connect the first solar cell and the second solar cell. For the sake of easy understanding, the constituent parts of the back surface side electrode are also described here with the same reference numerals as the constituent parts of the light receiving surface side electrode 13 being described. Moreover, the solar cell module in this specification contains the thing of the form which only joined the tab wire on the electrode of the photovoltaic cell 11 with the solder.
図8は、本発明の実施の形態1にかかる太陽電池セル11にセル間接続用のタブ線31がはんだ付けされた状態を受光面側から見た斜視図である。図9は、本発明の実施の形態1にかかる太陽電池セル11における受光面側電極13にセル間接続用のタブ線31がはんだ付けされた状態を拡大して示す要部平面図である。図10は、本発明の実施の形態1にかかる太陽電池セル11にセル間接続用のタブ線31がはんだ付けされた状態を示す要部断面図であり、図9における線分X-Xにおける要部断面図である。図11は、本発明の実施の形態1にかかる太陽電池セル11における受光面側電極13にセル間接続用のタブ線31がはんだ付けされた状態を示す要部断面図であり、図9における線分XI-XIにおける要部断面図である。図12は、本発明の実施の形態1にかかる太陽電池セル11a,11b,11cがセル間接続用のタブ線31を介して電気的に直列に接続された状態を示す模式的斜視図ある。
FIG. 8 is a perspective view of the solar cell 11 according to the first embodiment of the present invention, as viewed from the light receiving surface side, with the tab wire 31 for inter-cell connection soldered. FIG. 9 is an enlarged plan view of a main part showing a state in which the inter-cell connection tab wire 31 is soldered to the light receiving surface side electrode 13 in the solar battery cell 11 according to the first embodiment of the present invention. FIG. 10 is a cross-sectional view of a principal part showing a state in which the inter-cell connection tab wire 31 is soldered to the solar battery cell 11 according to the first embodiment of the present invention, and is taken along line XX in FIG. It is principal part sectional drawing. FIG. 11 is a cross-sectional view of the main part showing a state in which the inter-cell connection tab wire 31 is soldered to the light receiving surface side electrode 13 in the solar battery cell 11 according to the first embodiment of the present invention. It is principal part sectional drawing in line segment XI-XI. FIG. 12 is a schematic perspective view showing a state in which the solar cells 11a, 11b, and 11c according to the first embodiment of the present invention are electrically connected in series via the inter-cell connection tab wire 31.
タブ線31は、図10に示すようにタブ線31の表面に、はんだ32がめっきにより被覆されている。タブ線31に用いる金属線には、導電性および価格の安さの面から銅が好ましい。そして、タブ線31をバス電極13b上に配置した状態でタブ線31を加熱することによって、めっきされているはんだ32が溶融し、切り欠き部22内に配置されたグリッド電極13aのグリッド電極端部21およびバス電極13bと、タブ線31と、がはんだ32によりはんだ接合される。
As shown in FIG. 10, the surface of the tab wire 31 is covered with a solder 32 by plating. The metal wire used for the tab wire 31 is preferably copper in terms of conductivity and low cost. Then, by heating the tab wire 31 in a state where the tab wire 31 is disposed on the bus electrode 13b, the plated solder 32 is melted, and the grid electrode end of the grid electrode 13a disposed in the notch portion 22 is melted. The part 21, the bus electrode 13 b, and the tab wire 31 are soldered together by the solder 32.
ここで、タブ線31は、バス電極13bの幅内において、タブ線31の配置精度の許容範囲内においてバス電極13b上に配置されることで、図9に示すようにタブ線31の表面にめっきされたはんだ32を介してグリッド電極13aおよびバス電極13bと電気的に接続される。配置精度の許容範囲は、バス電極13bの幅内において、本来の印刷位置からのずれが許容される長さである。
Here, the tab line 31 is arranged on the surface of the tab line 31 as shown in FIG. 9 by being arranged on the bus electrode 13b within the tolerance of the arrangement accuracy of the tab line 31 within the width of the bus electrode 13b. The grid electrode 13a and the bus electrode 13b are electrically connected through the plated solder 32. The allowable range of the arrangement accuracy is a length that allows deviation from the original printing position within the width of the bus electrode 13b.
グリッド電極13aとバス電極13bとは、クリアランス24を設けることによって重なることがないため、電気的に接続していない。しかし、バス電極13bに切り欠き部22を設け、この切り欠き部22内にグリッド電極13aのグリッド電極端部21が入り込んだ状態にグリッド電極13aを形成している。そして、バス電極13bの切り欠き部22上にもタブ線31が配置されるため、タブ線31を加熱することによってバス電極13bがタブ線31にはんだ接合されると同時に、切り欠き部22内のグリッド電極端部21がタブ線31にはんだ接合され、タブ線31を介してバス電極13bとグリッド電極13aとが電気的に接続される。これにより、太陽電池セル11で発電した電力をバス電極13bおよびグリッド電極端部21からタブ線31に集電できる。
The grid electrode 13a and the bus electrode 13b are not electrically connected because they do not overlap by providing the clearance 24. However, the notch 22 is provided in the bus electrode 13 b, and the grid electrode 13 a is formed in a state where the grid electrode end 21 of the grid electrode 13 a enters the notch 22. Since the tab wire 31 is also disposed on the notch portion 22 of the bus electrode 13b, the bus electrode 13b is soldered to the tab wire 31 by heating the tab wire 31, and at the same time in the notch portion 22. The grid electrode end 21 is soldered to the tab wire 31, and the bus electrode 13 b and the grid electrode 13 a are electrically connected via the tab wire 31. Thereby, the electric power generated by the solar battery cell 11 can be collected from the bus electrode 13 b and the grid electrode end 21 to the tab wire 31.
ここで、図4に示した、切り欠き部22に配置されたグリッド電極13aのグリッド電極端部21と、バス電極13bとの、バス電極13bの幅方向における重なり幅26は、バス電極13bの幅方向において、上述した単結晶シリコン基板12の受光面上にペースト材料を印刷する際のグリッド電極13aおよびバス電極13bのそれぞれの印刷位置のずれの許容値と印刷長さのずれの許容値との合計値に加えて、タブ線31のバス電極13b上への配置位置のずれの許容値を加えた値よりも大きな値とする。これにより、バス電極13bの幅方向において、必ずグリッド電極端部21がバス電極13bの切り欠き部22の中に配置されるとともに、グリッド電極端部21とタブ線31とのはんだ接合を得ることができる。配置位置のずれの許容値は、バス電極13b上におけるバス電極13bの幅方向における本来のタブ線31の配置位置からのずれの長さである。
Here, the overlap width 26 in the width direction of the bus electrode 13b between the grid electrode end portion 21 of the grid electrode 13a arranged in the notch 22 and the bus electrode 13b shown in FIG. In the width direction, an allowable value of deviation of the printing position and an allowable value of deviation of the printing length of the grid electrode 13a and the bus electrode 13b when the paste material is printed on the light receiving surface of the single crystal silicon substrate 12 described above. In addition to the total value, a value larger than a value obtained by adding an allowable value of the displacement of the arrangement position of the tab line 31 on the bus electrode 13b. Thereby, in the width direction of the bus electrode 13b, the grid electrode end portion 21 is always arranged in the notch portion 22 of the bus electrode 13b, and a solder joint between the grid electrode end portion 21 and the tab wire 31 is obtained. Can do. The permissible value of the displacement of the arrangement position is the length of deviation from the original arrangement position of the tab line 31 in the width direction of the bus electrode 13b on the bus electrode 13b.
すなわち、グリッド電極13aとバス電極13bとのそれぞれの印刷位置のずれの許容値内と印刷長さのずれの許容値内において、最大ずれが発生した場合でも、グリッド電極端部21がバス電極13bの切り欠き部22内に収まるため、グリッド電極13aとタブ線31とのはんだ接合が可能となり、集電時の電力ロスを抑制できる。また、グリッド電極13aの電極材とバス電極13bの電極材とに異種材料を選択可能となる。このため、安価な電極材を選択した場合には、太陽電池セル11を安価に作製することができる。さらに、グリッド電極13aの電極材とバス電極13bの電極材とに同種の電極材を選択した場合でも、電極材の使用量が低減でき、太陽電池セル11の価格を安価にすることができる。
In other words, even when the maximum deviation occurs within the allowable value of the printing position deviation and the allowable value of the printing length deviation between the grid electrode 13a and the bus electrode 13b, the grid electrode end 21 is connected to the bus electrode 13b. Therefore, the grid electrode 13a and the tab wire 31 can be soldered together, and power loss during current collection can be suppressed. Further, different materials can be selected for the electrode material of the grid electrode 13a and the electrode material of the bus electrode 13b. For this reason, when an inexpensive electrode material is selected, the solar battery cell 11 can be manufactured at low cost. Furthermore, even when the same kind of electrode material is selected for the electrode material of the grid electrode 13a and the electrode material of the bus electrode 13b, the amount of the electrode material used can be reduced, and the price of the solar battery cell 11 can be reduced.
また、受光面側電極13にタブ線31がはんだ付けされた場合、タブ線31を加熱して受光面側電極13に接続するはんだ加熱時にタブ線31のはんだが溶融し、クリアランス24に流れ込む。したがって、タブ線31は、グリッド電極13aおよびバス電極13bの上面のみと接合されるのではなく、図10および図11に示すようにクリアランス24内におけるグリッド電極13aのグリッド電極端部21の側面およびバス電極13bの側面ともはんだ32を介して電気的に接続されるため、タブ線31と受光面側電極13との接合面積を広く確保できる。これにより、受光面側電極13とタブ線31との間の電気抵抗を低減でき、太陽電池セル11からの電力の取り出し効率を向上できる。したがって、本実施の形態1にかかる太陽電池モジュールでは、太陽電池セル11で発電した電力を無駄なく、効率的に集電することが可能となる。
Further, when the tab wire 31 is soldered to the light receiving surface side electrode 13, the solder of the tab wire 31 melts and flows into the clearance 24 when the tab wire 31 is heated and connected to the light receiving surface side electrode 13. Therefore, the tab line 31 is not joined only to the upper surfaces of the grid electrode 13a and the bus electrode 13b, but as shown in FIGS. 10 and 11, the side surface of the grid electrode end portion 21 of the grid electrode 13a in the clearance 24 and Since the side surface of the bus electrode 13b is also electrically connected via the solder 32, a wide bonding area between the tab wire 31 and the light receiving surface side electrode 13 can be secured. Thereby, the electrical resistance between the light-receiving surface side electrode 13 and the tab wire 31 can be reduced, and the taking-out efficiency of the electric power from the photovoltaic cell 11 can be improved. Therefore, in the solar cell module according to the first embodiment, it is possible to efficiently collect the power generated by the solar cells 11 without waste.
また、タブ線31にめっきされたはんだ32の量が少なく、溶融したはんだ32がクリアランス24に流れ込まない場合でも、グリッド電極13aとタブ線31、およびバス電極13bとタブ線31とがはんだ接合されることで、太陽電池セル11で発電した電力を集電できる。さらに事前にソルダーペースト等の導電材料をバス電極13b上に塗布しておくことで、クリアランス24をはんだまたはソルダーペーストで満たすことも可能である。
Even when the amount of solder 32 plated on the tab wire 31 is small and the molten solder 32 does not flow into the clearance 24, the grid electrode 13a and the tab wire 31 and the bus electrode 13b and the tab wire 31 are soldered. Thus, the power generated by the solar battery cell 11 can be collected. Further, by applying a conductive material such as solder paste onto the bus electrode 13b in advance, the clearance 24 can be filled with solder or solder paste.
図13は、本実施の形態1にかかる受光面側電極13の形状の変形例を示す要部平面図である。図13に示すように、バス電極13bにおける切り欠き部22の形状は、バス電極13bの幅方向においてバス電極13bを貫通した形状とされてもよい。すなわち、バス電極13bは、バス電極13bの長手方向において分割されてもよい。この場合も、グリッド電極13aとバス電極13bとの間にクリアランス24が設けられ、グリッド電極端部21が切り欠き部22内に収納される配置とされる。このような受光面側電極13を形成した場合でも、図4に示す受光面側電極13の場合と同様の効果が得られる。また、グリッド電極13aとバス電極13bとがともに分割された形状となっていることで、グリッド電極13aとバス電極13bとバス電極13bとの電極材の使用量を抑制することが可能である。
FIG. 13 is a plan view of a principal part showing a modification of the shape of the light receiving surface side electrode 13 according to the first embodiment. As shown in FIG. 13, the shape of the notch 22 in the bus electrode 13b may be a shape penetrating the bus electrode 13b in the width direction of the bus electrode 13b. That is, the bus electrode 13b may be divided in the longitudinal direction of the bus electrode 13b. Also in this case, a clearance 24 is provided between the grid electrode 13a and the bus electrode 13b, and the grid electrode end portion 21 is accommodated in the cutout portion 22. Even when such a light receiving surface side electrode 13 is formed, the same effect as that of the light receiving surface side electrode 13 shown in FIG. 4 can be obtained. In addition, since the grid electrode 13a and the bus electrode 13b are both divided, it is possible to suppress the amount of electrode material used for the grid electrode 13a, the bus electrode 13b, and the bus electrode 13b.
図14は、本実施の形態1にかかる受光面側電極13の形状の他の変形例を示す要部平面図である。図14に示す受光面側電極13では、バス電極13bの形状は図13と同じである。一方、グリッド電極13aは、グリッド電極13aの伸長方向において途切れることなく連続して形成されている。このため、切り欠き部22内におけるグリッド電極13aの伸長方向においては、グリッド電極端部21の収納長さについて、印刷位置のずれの許容値と印刷長さのずれの許容値とタブ線31の配置位置のずれの許容値とを考慮した寸法とする必要がない。
FIG. 14 is a plan view of a principal part showing another modification of the shape of the light receiving surface side electrode 13 according to the first exemplary embodiment. In the light-receiving surface side electrode 13 shown in FIG. 14, the shape of the bus electrode 13b is the same as that in FIG. On the other hand, the grid electrode 13a is continuously formed without interruption in the extending direction of the grid electrode 13a. For this reason, in the extending direction of the grid electrode 13a in the notch 22, the storage length of the grid electrode end 21 is set to the allowable value of the print position deviation, the allowable value of the print length deviation, and the tab line 31. It is not necessary to make the dimensions taking into account the allowable displacement of the arrangement position.
なお、上記においては、受光面側電極13を例に説明したが、グリッド電極とバス電極とが交差して櫛形形状に配置される裏面側電極においても、上記と同様の効果が得られる。
In the above description, the light receiving surface side electrode 13 has been described as an example. However, the same effect as described above can be obtained also in the back surface side electrode in which the grid electrode and the bus electrode intersect and are arranged in a comb shape.
一方、本実施の形態1にかかる受光面側電極13の形状を有していない受光面側電極の場合、すなわち、グリッド電極とバス電極との間にクリアランスがない受光面側電極の場合は、グリッド電極とバス電極との印刷を分けて別々の印刷で形成する場合に、グリッド電極をシリコン基板の受光面側の全面に形成した後、さらにバス電極を印刷し形成する。この場合、グリッド電極とバス電極は重なるため、グリッド電極とバス電極とが重なった部分に凹凸部が発生する。このため、バス電極上にタブ線をはんだ付けした場合に、凹凸部の凸部のみがタブ線にはんだ接合され、バス電極とタブ線との接合面積が小さくなることにより、バス電極とタブ線との間の電気抵抗が大きくなり、電力損失につながる。
On the other hand, in the case of the light receiving surface side electrode not having the shape of the light receiving surface side electrode 13 according to the first embodiment, that is, in the case of the light receiving surface side electrode having no clearance between the grid electrode and the bus electrode, When the grid electrode and the bus electrode are separately printed and formed by separate printing, the grid electrode is formed on the entire light-receiving surface side of the silicon substrate, and then the bus electrode is printed and formed. In this case, since the grid electrode and the bus electrode overlap, an uneven portion is generated at the portion where the grid electrode and the bus electrode overlap. For this reason, when the tab wire is soldered on the bus electrode, only the convex portion of the concavo-convex portion is soldered to the tab wire, and the joint area between the bus electrode and the tab wire is reduced, so that the bus electrode and the tab wire are reduced. The electrical resistance between and increases, leading to power loss.
また、グリッド電極とバス電極を分けて印刷し、且つグリッド電極とバス電極との重なり領域を小さくするために、グリッド電極の長手方向における端面とバス電極の側面とを接続する場合でも、バス電極の両側面部においてバス電極がグリッド電極の端部周辺上に重なって凹凸が発生する。このため、上記と同様に、凹凸部の凸部のみがタブ線にはんだ接合されてバス電極とタブ線との接合面積が小さくなることにより、バス電極とタブ線との間の電気抵抗が大きくなり、電力損失につながる。
Even when the grid electrode and the bus electrode are printed separately and the end surface in the longitudinal direction of the grid electrode and the side surface of the bus electrode are connected in order to reduce the overlapping region between the grid electrode and the bus electrode, the bus electrode On both side surfaces, the bus electrode overlaps with the periphery of the end of the grid electrode to generate irregularities. For this reason, as described above, only the protrusions of the concavo-convex portions are solder-bonded to the tab wires, and the bonding area between the bus electrodes and the tab wires is reduced, thereby increasing the electrical resistance between the bus electrodes and the tab wires. Leads to power loss.
上述したように、本発明の実施の形態1においては、グリッド電極13aとバス電極13bとの間にクリアランス24を設けることで、グリッド電極13aとバス電極13bとを分けて印刷してもグリッド電極13aとバス電極13bとが重なることがない。このため、グリッド電極13aとバス電極13bとのスクリーン印刷を分けて行う場合でもバス電極13bの表面を平坦化でき、バス電極13b上に電極同士の重なった凹凸部が発生することなく、バス電極13bとタブ線31とのはんだ接合面積を安定して広く確保でき、且つグリッド電極13aとタブ線31ともはんだ接合される。これにより、太陽電池セル11で発電された電力を低損失で集電できる。
As described above, in the first embodiment of the present invention, by providing the clearance 24 between the grid electrode 13a and the bus electrode 13b, the grid electrode 13a and the bus electrode 13b can be printed separately. 13a and bus electrode 13b do not overlap. For this reason, even when screen printing of the grid electrode 13a and the bus electrode 13b is performed separately, the surface of the bus electrode 13b can be flattened, and the bus electrode does not generate an uneven portion where the electrodes overlap each other. The solder joint area between 13b and the tab wire 31 can be secured stably and widely, and the grid electrode 13a and the tab wire 31 are also soldered together. Thereby, the electric power generated by the solar battery cell 11 can be collected with low loss.
また、本発明の実施の形態1においては、バス電極13bに切り欠き部22を設けてグリッド電極13aとバス電極13bとの間にクリアランス24を設けているため、電極材料の使用量を低減でき、製造コストを低減して太陽電池セル11を安価に実現できる。また、受光面側電極13とタブ線31との接合において、さらにソルダーペースト等の導電材料を用いた場合でも、バス電極13bの電極材は銀等の高価な材料であるのに対して、はんだ材料は非常に安価なため、一般的な太陽電池セルの電極よりも安価に電極を形成できる。
In the first embodiment of the present invention, since the notch 22 is provided in the bus electrode 13b and the clearance 24 is provided between the grid electrode 13a and the bus electrode 13b, the amount of electrode material used can be reduced. The manufacturing cost can be reduced and the solar battery cell 11 can be realized at low cost. Even when a conductive material such as a solder paste is used for joining the light-receiving surface side electrode 13 and the tab wire 31, the electrode material of the bus electrode 13b is an expensive material such as silver. Since the material is very inexpensive, an electrode can be formed at a lower cost than that of a general solar battery cell.
したがって、本発明の実施の形態1によれば、発電された電力を低損失で集電可能な太陽電池セルおよび太陽電池モジュールを安価に実現できる。
Therefore, according to Embodiment 1 of the present invention, a solar battery cell and a solar battery module capable of collecting generated power with low loss can be realized at low cost.
実施の形態2.
本実施の形態2では、実施の形態1にかかる受光面側電極13の変形例について説明する。以下に示す図においては、実施の形態1と同様の部材については同じ符号を付している。図15は、本実施の形態2にかかる太陽電池セルのグリッド電極13aの形状を拡大して示す要部平面図である。図16は、本実施の形態2にかかる太陽電池セルのバス電極13bの形状を拡大して示す要部平面図である。図17は、本発明の実施の形態2にかかる太陽電池セルにおける受光面側電極13を拡大して示す要部平面図である。図18は、本発明の実施の形態2にかかる太陽電池セルにおける受光面側電極13の要部断面図であり、図17における線分XVIII-XVIIIにおける要部断面図である。 Embodiment 2. FIG.
In the second embodiment, a modification of the light receivingsurface side electrode 13 according to the first embodiment will be described. In the figure shown below, the same code | symbol is attached | subjected about the member similar to Embodiment 1. FIG. FIG. 15 is an enlarged plan view showing a main part of the grid electrode 13a of the solar battery cell according to the second embodiment. FIG. 16 is an essential part plan view showing an enlarged shape of the bus electrode 13b of the solar battery cell according to the second embodiment. FIG. 17 is an enlarged plan view of a main part of the light-receiving surface side electrode 13 in the solar battery cell according to the second embodiment of the present invention. 18 is a main-portion cross-sectional view of the light-receiving surface side electrode 13 in the solar battery cell according to the second embodiment of the present invention, and is a main-portion cross-sectional view taken along line XVIII-XVIII in FIG.
本実施の形態2では、実施の形態1にかかる受光面側電極13の変形例について説明する。以下に示す図においては、実施の形態1と同様の部材については同じ符号を付している。図15は、本実施の形態2にかかる太陽電池セルのグリッド電極13aの形状を拡大して示す要部平面図である。図16は、本実施の形態2にかかる太陽電池セルのバス電極13bの形状を拡大して示す要部平面図である。図17は、本発明の実施の形態2にかかる太陽電池セルにおける受光面側電極13を拡大して示す要部平面図である。図18は、本発明の実施の形態2にかかる太陽電池セルにおける受光面側電極13の要部断面図であり、図17における線分XVIII-XVIIIにおける要部断面図である。 Embodiment 2. FIG.
In the second embodiment, a modification of the light receiving
グリッド電極13aで集電した電力を低損失で集電するためには、グリッド電極13aよりも断面積の大きなバス電極13b、さらにバス電極13bよりも大きな断面積のタブ線31へ、集電する必要がある。そこで、本実施の形態2にかかるグリッド電極13aは、図15に示すように、長手方向において分割して形成され、分割されたそれぞれの端部であるグリッド電極端部41が対向している。そして、グリッド電極端部41は、グリッド電極13aの長手方向に直交する方向、すなわちバス電極13bの長手方向を長手方向とする矩形形状とされ、グリッド電極13aは単結晶シリコン基板12の面方向においてT形状を有する。すなわち、バス電極13bの長手方向におけるグリッド電極端部41の幅であるグリッド電極端部幅43は、グリッド電極13aにおける他の部分のグリッド電極幅42よりも幅広とされている。
In order to collect the power collected by the grid electrode 13a with low loss, the current is collected to the bus electrode 13b having a larger cross-sectional area than the grid electrode 13a and further to the tab wire 31 having a larger cross-sectional area than the bus electrode 13b. There is a need. Therefore, as shown in FIG. 15, the grid electrode 13a according to the second embodiment is divided and formed in the longitudinal direction, and the grid electrode end portions 41 that are the respective divided end portions face each other. The grid electrode end 41 has a rectangular shape that is perpendicular to the longitudinal direction of the grid electrode 13a, that is, the longitudinal direction of the bus electrode 13b. The grid electrode 13a is in the plane direction of the single crystal silicon substrate 12. It has a T shape. That is, the grid electrode end width 43, which is the width of the grid electrode end 41 in the longitudinal direction of the bus electrode 13b, is wider than the grid electrode width 42 of the other part of the grid electrode 13a.
また、図16に示すように、本実施の形態2にかかるバス電極13bは、側面23に切り欠き部44が設けられる。切り欠き部44は、バス電極13bの側面23からバス電極13bの短手方向、すなわち幅方向において内側に細長形状に凹んで、バス電極13bの厚み方向に貫通する。切り欠き部44の伸長方向は、単結晶シリコン基板12の面方向においてグリッド電極13aの伸長方向と同じである。
As shown in FIG. 16, the bus electrode 13b according to the second embodiment is provided with a notch 44 on the side surface 23. The notch 44 is recessed in the shape of an elongated shape inward in the short direction of the bus electrode 13b, that is, in the width direction, from the side surface 23 of the bus electrode 13b, and penetrates in the thickness direction of the bus electrode 13b. The extending direction of the notch 44 is the same as the extending direction of the grid electrode 13 a in the plane direction of the single crystal silicon substrate 12.
また、切り欠き部44は、単結晶シリコン基板12の面方向において、グリッド電極端部41の形状に対応して、且つグリッド電極端部41の外形寸法よりも大きな寸法を有したT形状を有する。すなわち、切り欠き部44は、幅方向における内側の部分に、バス電極13bの長手方向に伸長する矩形形状の幅広切り欠き部45を有する。幅広切り欠き部45は、バス電極13bの長手方向における幅である幅広切り欠き部幅46が、切り欠き部44における他の部分の幅である切り欠き部幅47よりも幅広であり、且つグリッド電極端部幅43よりも幅広とされる。そして、グリッド電極端部41が幅広切り欠き部45内に収納される状態で、グリッド電極13aが切り欠き部44内に配置されることにより、受光面側電極13が形成されている。
Further, the cutout portion 44 has a T shape corresponding to the shape of the grid electrode end portion 41 and having a dimension larger than the outer dimension of the grid electrode end portion 41 in the plane direction of the single crystal silicon substrate 12. . That is, the cutout portion 44 has a rectangular wide cutout portion 45 extending in the longitudinal direction of the bus electrode 13b at an inner portion in the width direction. The wide cutout portion 45 has a wide cutout portion width 46 that is the width in the longitudinal direction of the bus electrode 13b, and is wider than a cutout portion width 47 that is the width of the other portion of the cutout portion 44, and the grid. It is wider than the electrode end width 43. The light receiving surface side electrode 13 is formed by arranging the grid electrode 13 a in the notch 44 in a state where the grid electrode end 41 is accommodated in the wide notch 45.
また、単結晶シリコン基板12の面内において、グリッド電極13aとバス電極13bとの間には、図17に示すようにクリアランス24が設けられている。クリアランス24が設けられることにより、グリッド電極13aとバス電極13bとは直接接触することが無い。このため、グリッド電極13aとバス電極13bとは重なることがなく、バス電極13bの表面に、グリッド電極13aとバス電極13bとの重なりによる凹凸の発生が防止されている。
Further, in the plane of the single crystal silicon substrate 12, a clearance 24 is provided between the grid electrode 13a and the bus electrode 13b as shown in FIG. By providing the clearance 24, the grid electrode 13a and the bus electrode 13b are not in direct contact. For this reason, the grid electrode 13a and the bus electrode 13b do not overlap each other, and unevenness due to the overlap of the grid electrode 13a and the bus electrode 13b on the surface of the bus electrode 13b is prevented.
また、バス電極13bが、幅広切り欠き部45を有する切り欠き部44を有することにより、バス電極13bの電極材の使用量が抑制されている。
Further, since the bus electrode 13b has the cutout portion 44 having the wide cutout portion 45, the amount of the electrode material used for the bus electrode 13b is suppressed.
グリッド電極端部幅43をグリッド電極幅42よりも大きな値とすることで、上述した印刷位置のずれの許容値と印刷幅のずれの許容値とクリアランス24の寸法との関係によっては、グリッド電極13aとバス電極13bとにおける対向する側面同士が接触しやすくなる。
By setting the grid electrode end width 43 to a value larger than the grid electrode width 42, depending on the relationship between the print position deviation tolerance, the print width deviation tolerance, and the clearance 24 dimension described above, the grid electrode The opposing side surfaces of 13a and bus electrode 13b are likely to contact each other.
図19は、バス電極13bの幅方向においてグリッド電極13aとバス電極13bとが接触した場合の受光面側電極13を拡大して示す要部平面図である。たとえば図19に示すように、グリッド電極13aとバス電極13bとが、バス電極13bの幅方向において、印刷位置のずれの許容値内と印刷幅のずれの許容値内でずれて印刷形成された場合に、グリッド電極端部41の右側の側面と、幅広切り欠き部45の右側の側面とが接触することになる。
FIG. 19 is an enlarged plan view showing a main part of the light receiving surface side electrode 13 when the grid electrode 13a and the bus electrode 13b are in contact with each other in the width direction of the bus electrode 13b. For example, as shown in FIG. 19, the grid electrode 13 a and the bus electrode 13 b are printed and shifted in the width direction of the bus electrode 13 b within the allowable value of the printing position deviation and the allowable value of the printing width deviation. In this case, the right side surface of the grid electrode end portion 41 comes into contact with the right side surface of the wide cutout portion 45.
そして、バス電極13bの幅方向およびバス電極13bの長手方向の両方向において同様の現象が起き得る。このため、全てのグリッド電極端部41において、バス電極13bの幅広切り欠き部45と接触する可能性が高まる。なお、グリッド電極13aとバス電極13bとが接触しない場合でも、グリッド電極13aおよびバス電極13bはタブ線31とはんだ接合されるため、電力損失が発生することはない。
The same phenomenon can occur in both the width direction of the bus electrode 13b and the longitudinal direction of the bus electrode 13b. For this reason, in all the grid electrode edge parts 41, possibility that it will contact with the wide notch part 45 of the bus electrode 13b increases. Even when the grid electrode 13a and the bus electrode 13b are not in contact with each other, the grid electrode 13a and the bus electrode 13b are soldered to the tab wire 31, so that no power loss occurs.
図20は、本発明の実施の形態2にかかる太陽電池セルにおける他の受光面側電極13を拡大して示す要部平面図である。図20に示すように、グリッド電極端部41および幅広切り欠き部45の形状を円形状とすることでも、グリッド電極端部41が矩形の場合と同様に、上述した効果が得られる。
FIG. 20 is an enlarged plan view showing a main part of another light receiving surface side electrode 13 in the solar battery cell according to the second embodiment of the present invention. As shown in FIG. 20, even when the grid electrode end 41 and the wide cutout 45 are circular, the above-described effects can be obtained as in the case where the grid electrode end 41 is rectangular.
本発明の実施の形態2によれば、上述した実施の形態1における効果に加え、グリッド電極端部41の形状を矩形もしくは円形とし、バス電極13bの幅広切り欠き部45をグリッド電極端部41の形状に対応して且つグリッド電極端部41の外形寸法よりも大きな寸法を有する形状とすることで、グリッド電極13aとバス電極13bとの接触の可能性を高めることが可能となる。これにより、グリッド電極13aとバス電極13bとの接触面積を増加させて、グリッド電極13aとバス電極13bとの間の電力の取り出し効率に優れた太陽電池および太陽電池モジュールを実現できる。
According to the second embodiment of the present invention, in addition to the effects in the first embodiment described above, the grid electrode end portion 41 has a rectangular or circular shape, and the wide notch portion 45 of the bus electrode 13b has the grid electrode end portion 41. It is possible to increase the possibility of contact between the grid electrode 13a and the bus electrode 13b by adopting a shape corresponding to the shape of the grid electrode and having a dimension larger than the outer dimension of the grid electrode end portion 41. Thereby, the contact area of the grid electrode 13a and the bus electrode 13b can be increased, and the solar cell and solar cell module excellent in the extraction efficiency of the electric power between the grid electrode 13a and the bus electrode 13b are realizable.
以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
11,11a,11b,11c 太陽電池セル、12 単結晶シリコン基板、12a n型不純物拡散層、12b p型単結晶シリコン基板、13 受光面側電極、13a グリッド電極、13b バス電極、21 グリッド電極端部、22,44 切り欠き部、23 側面、24 クリアランス、25 当接面、26 重なり幅、31 タブ線、41 グリッド電極端部、42 グリッド電極幅、43 グリッド電極端部幅、45 幅広切り欠き部、46 幅広切り欠き部幅、47 切り欠き部幅。
11, 11a, 11b, 11c Solar cells, 12 single crystal silicon substrate, 12a n-type impurity diffusion layer, 12b p-type single crystal silicon substrate, 13 light receiving surface side electrode, 13a grid electrode, 13b bus electrode, 21 grid electrode end Part, 22, 44 notch part, 23 side face, 24 clearance, 25 contact face, 26 overlap width, 31 tab line, 41 grid electrode edge, 42 grid electrode width, 43 grid electrode edge width, 45 wide notch Part, 46 wide notch part width, 47 notch part width.
Claims (15)
- pn接合を有する半導体基板の一面上に、前記半導体基板の面方向における第1方向に伸長して配置される細長形状のグリッド電極と、前記第1方向と交差する第2方向に伸長して前記グリッド電極よりも太幅のバス電極とからなる電極を備え、
前記バス電極は、前記第2方向における側面から前記第1方向において内側に凹んだ切り欠き部を有し、
前記グリッド電極は、前記バス電極と重ならない状態で前記バス電極側の端部が前記切り欠き部内に収納されていること、
を特徴とする太陽電池セル。 On one surface of a semiconductor substrate having a pn junction, an elongated grid electrode disposed extending in a first direction in the surface direction of the semiconductor substrate, and extending in a second direction intersecting the first direction, Equipped with an electrode consisting of a bus electrode wider than the grid electrode,
The bus electrode has a notch that is recessed inward in the first direction from a side surface in the second direction,
The grid electrode is housed in the notch at the end on the bus electrode side so as not to overlap the bus electrode,
A solar cell characterized by. - 前記グリッド電極は、前記切り欠き部内において、側面の一部が前記バス電極の側面と接触しているとともに前記バス電極の他の側面との間にクリアランスを有して、前記バス電極と重ならない状態で前記バス電極側の端部が前記切り欠き部内に収納されていること、
を特徴とする請求項1に記載の太陽電池セル。 The grid electrode has a clearance between the side surface of the bus electrode and the other side surface of the bus electrode and does not overlap the bus electrode in the cutout portion. In the state, the end on the bus electrode side is accommodated in the notch,
The solar battery cell according to claim 1. - 前記グリッド電極は、前記切り欠き部内において、前記バス電極の全ての側面との間にクリアランスを有して、前記バス電極と重ならない状態で前記バス電極側の端部が前記切り欠き部内に収納されていること、
を特徴とする請求項1に記載の太陽電池セル。 The grid electrode has a clearance between all side surfaces of the bus electrode in the cutout portion, and the end on the bus electrode side is accommodated in the cutout portion without overlapping the bus electrode. is being done,
The solar battery cell according to claim 1. - 前記グリッド電極における前記バス電極側の端部が前記グリッド電極における前記切り欠き部よりも幅広であること、
を特徴とする請求項1から3のいずれか1つに記載の太陽電池セル。 The bus electrode side end of the grid electrode is wider than the notch in the grid electrode,
The solar cell according to any one of claims 1 to 3, wherein: - 請求項1から4のいずれか1つに記載の太陽電池セルの前記バス電極に、表面がはんだで被覆されたタブ線が電気的に接続された太陽電池モジュールであって、
前記タブ線は、前記第2方向に沿って前記グリッド電極の端部が収納された前記切り欠き部上を含む前記バス電極上に配置された状態で、前記バス電極および前記切り欠き部内に収納された前記グリッド電極の端部と前記はんだにより接続されていること、
を特徴とする太陽電池モジュール。 A solar cell module in which a tab wire whose surface is coated with solder is electrically connected to the bus electrode of the solar cell according to any one of claims 1 to 4,
The tab line is accommodated in the bus electrode and the notch in a state of being arranged on the bus electrode including the notch in which an end portion of the grid electrode is accommodated along the second direction. Connected to the end of the grid electrode by the solder,
A solar cell module characterized by. - 前記グリッド電極と前記バス電極とは、厚さが同じ厚さである、または厚さの差が前記タブ線の表面を被覆している前記はんだの厚さ以下の厚さであること、
を特徴とする請求項5に記載の太陽電池モジュール。 The grid electrode and the bus electrode have the same thickness, or the difference in thickness is equal to or less than the thickness of the solder covering the surface of the tab wire,
The solar cell module according to claim 5. - 前記切り欠き部における前記バス電極の側面と前記切り欠き部内に収納された前記グリッド電極の端部の側面とがはんだにより接合されていること、
を特徴とする請求項5または6に記載の太陽電池モジュール。 The side surface of the bus electrode in the notch and the side surface of the end of the grid electrode housed in the notch are joined by solder,
The solar cell module according to claim 5 or 6. - 半導体基板にpn接合を形成する第1工程と、
前記pn接合を有する半導体基板の一面上に、前記半導体基板の面方向における第1方向に伸長して配置される細長形状のグリッド電極と、前記第1方向と交差する第2方向に伸長して前記グリッド電極よりも太幅のバス電極とからなる電極を形成する第2工程と、
を含み、
前記第2工程は、
前記第2方向における側面から前記第1方向において内側に凹んだ切り欠き部を有する前記バス電極を、スクリーン印刷により形成する第3工程と、
前記切り欠き部内において、前記バス電極と重ならない状態で前記バス電極側の端部が前記切り欠き部内に収納される前記グリッド電極を、前記第3工程と異なる工程でスクリーン印刷により形成する第4工程と、
を含むこと、
を特徴とする太陽電池セルの製造方法。 A first step of forming a pn junction on a semiconductor substrate;
An elongated grid electrode disposed on one surface of the semiconductor substrate having the pn junction and extending in a first direction in the surface direction of the semiconductor substrate, and extending in a second direction intersecting the first direction. A second step of forming an electrode composed of a bus electrode wider than the grid electrode;
Including
The second step includes
A third step of forming the bus electrode having a notch recessed inward in the first direction from the side surface in the second direction by screen printing;
The grid electrode in which the end on the bus electrode side is accommodated in the notch without being overlapped with the bus electrode in the notch is formed by screen printing in a step different from the third step. Process,
Including,
The manufacturing method of the photovoltaic cell characterized by these. - 前記第4工程では、前記切り欠き部内において、前記グリッド電極の側面の一部が前記バス電極の側面と接触するとともに前記バス電極の他の側面との間にクリアランスを有して、前記バス電極と重ならない状態で前記バス電極側の端部が前記切り欠き部内に収納される前記グリッド電極を形成すること、
を特徴とする請求項8に記載の太陽電池セルの製造方法。 In the fourth step, a part of the side surface of the grid electrode is in contact with the side surface of the bus electrode and has a clearance with the other side surface of the bus electrode in the notch, and the bus electrode Forming the grid electrode in which the end on the bus electrode side is accommodated in the notch without overlapping with
The manufacturing method of the photovoltaic cell of Claim 8 characterized by these. - 前記第4工程では、前記切り欠き部内において、前記グリッド電極と前記バス電極の全ての側面との間にクリアランスを有して、前記バス電極と重ならない状態で前記バス電極側の端部が前記切り欠き部内に収納される前記グリッド電極を形成すること、
を特徴とする請求項8に記載の太陽電池セルの製造方法。 In the fourth step, in the cutout portion, there is a clearance between the grid electrode and all side surfaces of the bus electrode, and the end on the bus electrode side is not overlapped with the bus electrode. Forming the grid electrode housed in the notch,
The manufacturing method of the photovoltaic cell of Claim 8 characterized by these. - 前記グリッド電極における前記バス電極側の端部が前記グリッド電極における前記切り欠き部よりも幅広であること、
を特徴とする請求項8から10のいずれか1つに記載の太陽電池セルの製造方法。 The bus electrode side end of the grid electrode is wider than the notch in the grid electrode,
The manufacturing method of the photovoltaic cell as described in any one of Claims 8-10 characterized by these. - 前記クリアランスの幅を、前記グリッド電極および前記バス電極のそれぞれの印刷位置のずれの許容値と印刷幅のずれの許容値との和よりも大きな値とすること、
を特徴とする請求項9または10に記載の太陽電池セルの製造方法。 The width of the clearance is set to a value larger than the sum of an allowable value of deviation of the printing positions of the grid electrode and the bus electrode and an allowable value of deviation of the printing width;
The manufacturing method of the photovoltaic cell of Claim 9 or 10 characterized by these. - 請求項8から12のいずれか1つに記載の太陽電池セルの製造方法により太陽電池セルを形成する工程と、
表面がはんだで被覆されたタブ線を、前記グリッド電極の端部が収納された前記切り欠き部上を含む前記バス電極上に前記第2方向に沿って配置する第5工程と、
前記タブ線を加熱することにより、前記切り欠き部に収納された前記グリッド電極の端部および前記バス電極と、前記タブ線と、を前記はんだによって接合する第6工程と、
を含むことを特徴とする太陽電池モジュールの製造方法。 Forming a solar battery cell by the method for manufacturing a solar battery cell according to any one of claims 8 to 12, and
A fifth step of arranging a tab wire, the surface of which is covered with solder, along the second direction on the bus electrode including the notch in which an end of the grid electrode is housed;
A sixth step of joining the tab electrode and the end of the grid electrode housed in the notch and the tab wire by heating the tab wire; and
The manufacturing method of the solar cell module characterized by including. - 前記グリッド電極と前記バス電極とにおいて、厚さを同じ厚さにする、または厚さの差を前記タブ線の表面を被覆する前記はんだの厚さ以下の厚さにすること、
を特徴とする請求項13に記載の太陽電池モジュールの製造方法。 In the grid electrode and the bus electrode, the thickness is made the same, or the thickness difference is made equal to or less than the thickness of the solder covering the surface of the tab wire,
The method for manufacturing a solar cell module according to claim 13. - 前記第6工程では、前記切り欠き部における前記バス電極の側面と前記切り欠き部内に収納された前記グリッド電極の端部の側面とを前記はんだにより接合すること、
を特徴とする請求項13または14に記載の太陽電池モジュールの製造方法。 In the sixth step, the side surface of the bus electrode in the notch and the side surface of the end of the grid electrode housed in the notch are joined by the solder,
The method for manufacturing a solar cell module according to claim 13 or 14, wherein:
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016504829A JP5944081B1 (en) | 2015-01-21 | 2015-10-13 | Solar cell, solar cell module, method for manufacturing solar cell, method for manufacturing solar cell module |
TW105101522A TWI585989B (en) | 2015-01-21 | 2016-01-19 | Solar cell unit, solar cell module, method for manufacturing the solar cell, and method for manufacturing the solar cell module |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015009696 | 2015-01-21 | ||
JP2015-009696 | 2015-01-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016117180A1 true WO2016117180A1 (en) | 2016-07-28 |
Family
ID=56416742
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/078901 WO2016117180A1 (en) | 2015-01-21 | 2015-10-13 | Solar battery cell, solar battery module, method for manufacturing solar battery cell, and method for manufacturing solar battery module |
Country Status (2)
Country | Link |
---|---|
TW (1) | TWI585989B (en) |
WO (1) | WO2016117180A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018061646A1 (en) * | 2016-09-27 | 2018-04-05 | パナソニックIpマネジメント株式会社 | Solar battery cell, solar battery module, and method for manufacturing solar battery cell |
WO2018123687A1 (en) * | 2016-12-30 | 2018-07-05 | アートビーム有限会社 | Solar battery and solar battery manufacturing method |
KR20190126524A (en) * | 2018-05-02 | 2019-11-12 | 에스케이이노베이션 주식회사 | Electrode plate position inspection system and inspection method |
JP2023158216A (en) * | 2021-10-29 | 2023-10-26 | 晶科能源股分有限公司 | Electrode structure, solar cell, and photovoltaic module |
WO2024213517A1 (en) * | 2023-04-11 | 2024-10-17 | Institut Für Solarenergieforschung Gmbh | Solar cell with narrow connecting region between contact finger and busbar |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112310245B (en) * | 2020-10-29 | 2022-06-17 | 晶科能源(海宁)有限公司 | Battery piece combined printing method and battery piece |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000261012A (en) * | 1999-03-09 | 2000-09-22 | Mitsubishi Electric Corp | Solar battery |
JP2005353691A (en) * | 2004-06-08 | 2005-12-22 | Sharp Corp | Electrode and solar cell, and manufacturing method thereof |
JP2012004571A (en) * | 2010-06-21 | 2012-01-05 | Lg Electronics Inc | Solar cell and method for manufacturing the same |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013098190A (en) * | 2011-10-28 | 2013-05-20 | Kyocera Corp | Photoelectric conversion device |
JP5616913B2 (en) * | 2012-01-24 | 2014-10-29 | 三菱電機株式会社 | Solar cell module and manufacturing method thereof |
TWM467180U (en) * | 2013-06-25 | 2013-12-01 | Topcell Solar Internat Co Ltd | Electrode structure of solar cell |
-
2015
- 2015-10-13 WO PCT/JP2015/078901 patent/WO2016117180A1/en active Application Filing
-
2016
- 2016-01-19 TW TW105101522A patent/TWI585989B/en not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000261012A (en) * | 1999-03-09 | 2000-09-22 | Mitsubishi Electric Corp | Solar battery |
JP2005353691A (en) * | 2004-06-08 | 2005-12-22 | Sharp Corp | Electrode and solar cell, and manufacturing method thereof |
JP2012004571A (en) * | 2010-06-21 | 2012-01-05 | Lg Electronics Inc | Solar cell and method for manufacturing the same |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018061646A1 (en) * | 2016-09-27 | 2018-04-05 | パナソニックIpマネジメント株式会社 | Solar battery cell, solar battery module, and method for manufacturing solar battery cell |
WO2018123687A1 (en) * | 2016-12-30 | 2018-07-05 | アートビーム有限会社 | Solar battery and solar battery manufacturing method |
JP2018110178A (en) * | 2016-12-30 | 2018-07-12 | アートビーム有限会社 | Solar cell and manufacturing method for the same |
KR20190082991A (en) * | 2016-12-30 | 2019-07-10 | 아토비무 유겐가이샤 | Manufacturing method of solar cell and solar cell |
CN110268531A (en) * | 2016-12-30 | 2019-09-20 | 亚特比目有限会社 | The manufacturing method of solar battery and solar battery |
KR102227075B1 (en) | 2016-12-30 | 2021-03-11 | 아토비무 유겐가이샤 | Solar cell and manufacturing method of solar cell |
KR20190126524A (en) * | 2018-05-02 | 2019-11-12 | 에스케이이노베이션 주식회사 | Electrode plate position inspection system and inspection method |
KR102629119B1 (en) | 2018-05-02 | 2024-01-26 | 에스케이온 주식회사 | Electrode plate position inspection system and inspection method |
JP2023158216A (en) * | 2021-10-29 | 2023-10-26 | 晶科能源股分有限公司 | Electrode structure, solar cell, and photovoltaic module |
JP7471500B2 (en) | 2021-10-29 | 2024-04-19 | 晶科能源股分有限公司 | Electrode structure, solar cell and photovoltaic power generation module |
US12021157B2 (en) | 2021-10-29 | 2024-06-25 | Jinko Solar Co. Ltd. | Electrode structure, solar cell, and photovoltaic module |
WO2024213517A1 (en) * | 2023-04-11 | 2024-10-17 | Institut Für Solarenergieforschung Gmbh | Solar cell with narrow connecting region between contact finger and busbar |
Also Published As
Publication number | Publication date |
---|---|
TWI585989B (en) | 2017-06-01 |
TW201639182A (en) | 2016-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016117180A1 (en) | Solar battery cell, solar battery module, method for manufacturing solar battery cell, and method for manufacturing solar battery module | |
JP5289625B1 (en) | Solar cell module | |
US11715806B2 (en) | Method for fabricating a solar module of rear contact solar cells using linear ribbon-type connector strips and respective solar module | |
EP3525246B1 (en) | Solar cell module | |
JP5709797B2 (en) | Solar cell and solar cell module | |
JP5879512B2 (en) | Solar cell module | |
CN115832093A (en) | Photovoltaic cell structure, manufacturing method thereof and photovoltaic module | |
JP2013211341A (en) | Solar cell and solar cell module | |
JP2008186928A (en) | Solar battery and solar battery module | |
JP2013048146A (en) | Solar cell module | |
JP5944081B1 (en) | Solar cell, solar cell module, method for manufacturing solar cell, method for manufacturing solar cell module | |
JP2010283052A (en) | Wiring sheet, back electrode type solar cell, solar cell with wiring sheet, and solar cell module | |
JP4809018B2 (en) | Solar cell | |
JP2012015360A (en) | Solar battery cell with wiring, solar battery module and method for manufacturing solar battery cell with wiring | |
JP2014027133A (en) | Solar cell, solar cell with interconnector and solar cell module | |
WO2018207312A1 (en) | Solar cell and method for manufacturing solar cell | |
JP2013062308A (en) | Solar cell, manufacturing method of solar cell, and solar cell module | |
JP2004179260A (en) | Solar battery module | |
JP2014027124A (en) | Solar cell with interconnector and solar cell module | |
KR20150083746A (en) | Interconnector and solar cell module with the same | |
JP2013016845A (en) | Solar battery cell with wiring, solar battery module, and method for manufacturing solar battery cell with wiring | |
KR102156358B1 (en) | Connecting member and solar cell module with the same | |
JP2016213350A (en) | Manufacturing method of solar cell module, and manufacturing device for solar cell module | |
JP2016072597A (en) | Reverse face electrode type solar cell with wiring sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2016504829 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15878869 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15878869 Country of ref document: EP Kind code of ref document: A1 |