Nothing Special   »   [go: up one dir, main page]

WO2016106696A1 - 一种预编码矩阵指示pmi的反馈方法 - Google Patents

一种预编码矩阵指示pmi的反馈方法 Download PDF

Info

Publication number
WO2016106696A1
WO2016106696A1 PCT/CN2014/095931 CN2014095931W WO2016106696A1 WO 2016106696 A1 WO2016106696 A1 WO 2016106696A1 CN 2014095931 W CN2014095931 W CN 2014095931W WO 2016106696 A1 WO2016106696 A1 WO 2016106696A1
Authority
WO
WIPO (PCT)
Prior art keywords
precoding
matrix
pmi
submatrix
precoding matrix
Prior art date
Application number
PCT/CN2014/095931
Other languages
English (en)
French (fr)
Inventor
吴强
张雷鸣
刘建琴
刘鹍鹏
刘江华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2017535401A priority Critical patent/JP6580687B2/ja
Priority to PCT/CN2014/095931 priority patent/WO2016106696A1/zh
Priority to CN201480084486.XA priority patent/CN107211486B/zh
Priority to EP14909504.4A priority patent/EP3229553B1/en
Publication of WO2016106696A1 publication Critical patent/WO2016106696A1/zh
Priority to US15/637,636 priority patent/US10056950B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • H04B7/0479Special codebook structures directed to feedback optimisation for multi-dimensional arrays, e.g. horizontal or vertical pre-distortion matrix index [PMI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a broadcast communication method and user equipment.
  • the Long Term Evolution (LTE) technology is a long-term evolution of the Universal Mobile Telecommunications System (UMTS) technology standard developed by the 3rd Generation Partnership Project (3GPP).
  • the LTE system is introduced.
  • Key transmission technologies such as Multi-Input & Multi-Output (MIMO) significantly increase spectral efficiency and data transmission rate.
  • MIMO-based wireless communication systems can achieve diversity and array gain.
  • a MIMO-based wireless communication system requires precoding processing of signals, and a signal transmission function based on precoding can be expressed as:
  • y is the received signal vector and H is the channel matrix.
  • H is the channel matrix.
  • s is the transmitted signal vector
  • n is the measurement noise
  • the transmitted signal vector s is precoded at the transmitting end. Precoding is performed to obtain a precoded matrix, which passes through the channel model matrix H and then superimposes the measurement noise n to receive the received signal vector y at the receiving end.
  • the transmitter and receiver may be base station devices or terminal devices, respectively.
  • the transmitter may be a base station device, and the receiver may be a terminal device.
  • a common method is that the terminal device quantizes the instantaneous CSI and reports it to the base station.
  • the CSI information reported by the terminal includes a Rank Indicator (RI), a Precoding Matrix Indicator (PMI), and a Channel Quality Indicator (CQI) information, etc., where the RI can be used to indicate the data transmission station.
  • RI Rank Indicator
  • PMI Precoding Matrix Indicator
  • CQI Channel Quality Indicator
  • the RI can be used to indicate the data transmission station.
  • Number of transmission layers and precoding matrix used PMI can be used to indicate the precoding matrix used for data transmission
  • the PMI can determine a precoding matrix V first, and then according to the RI or the determined rule indication.
  • the precoding matrix can be represented by a Kronecker Product of the vertical direction precoding matrix and the horizontal direction precoding matrix.
  • the precoding matrix V 1 can be expressed as follows:
  • the size of the matrix V 1 is determined by the number of rows and columns of the precoding matrix A in the vertical direction and the number of rows and columns of the precoding matrix B in the horizontal direction.
  • A may also be a horizontal direction precoding matrix
  • B is a vertical direction precoding matrix.
  • the dimensions of A and B are determined by the number of antenna ports.
  • the user equipment and the base station determine different sets of codebooks for different antenna port configurations.
  • the UE or the base station needs to store different codebook sets, resulting in waste of storage resources.
  • an embodiment of the invention provides a feedback method, user equipment and base station for precoding matrix indication, which overcomes the problem that different codebooks need to be determined for different antenna port configurations, and saves storage resources.
  • an embodiment of the present invention provides a precoding matrix indicating PMI feedback method, where a user equipment UE receives a reference signal, and the UE determines a number of antenna ports used by the base station to transmit the reference signal. And determining, by the UE, a precoding matrix from a precoding matrix set corresponding to the 16 antenna ports, where each precoding matrix W in the precoding matrix set satisfies the following relationship: or The W 1 is a first precoding submatrix, and the W 2 is a second precoding submatrix.
  • the UE sends a precoding matrix indication PMI corresponding to the precoding matrix to a base station.
  • the UE is determined from a precoding matrix set a precoding matrix, including the UE determining the first precoding submatrix and the second precoding submatrix from the precoding matrix set, according to the first precoding submatrix and the The two precoding sub-matrices determine the precoding matrix.
  • the first precoding sub-matrix is a first direction precoding matrix and the second precoding sub
  • the matrix is a second direction precoding sub-matrix, or the first pre-coding sub-matrix is a second direction pre-coding sub-matrix and the second pre-coding sub-matrix is a first direction pre-coding sub-matrix.
  • the configuration manner of the 16 antenna ports includes any one of the following:
  • Two antenna ports are configured in the first direction and eight antenna ports are configured in the second direction;
  • antenna ports are configured in the first direction and 2 antenna ports are configured in the second direction;
  • 16 antenna ports are arranged in the first direction and 1 antenna port are arranged in the second direction.
  • the first direction precoding matrix is a horizontal direction precoding matrix
  • the second direction precoding matrix is a vertical direction precoding.
  • the matrix, or the first direction precoding matrix is a vertical direction precoding matrix
  • the second direction precoding matrix is a horizontal direction precoding matrix.
  • the first precoding sub-matrix is a third pre-coding sub-matrix and a product of four precoding sub-matrices; and/or the second pre-coding sub-matrix is a product of a fifth pre-coding sub-matrix and a sixth pre-coding sub-matrix.
  • the precoding matrix corresponding to the precoding matrix indicates a PMI, and includes: transmitting, to the base station, a PMI of W1 and a PMI of the W2.
  • the UE receives the bit indication information sent by the base station, where the bit indication information is used to indicate at least one of the number of bits corresponding to the PMI of the W1 and the number of bits corresponding to the PMI of the W2.
  • the embodiment of the present invention provides a precoding matrix indicating PMI feedback method, which is characterized in that: a base station sends a reference signal to a UE through 16 antenna ports; and the base station receives a precoding matrix indication fed back by the UE. a PMI; the base station determines a precoding matrix corresponding to the PMI from a precoding matrix set corresponding to a 16 antenna port, where each precoding matrix W in the precoding matrix set satisfies the following relationship: or The W 1 is a first precoding submatrix, and the W 2 is a second precoding submatrix.
  • the base station sends data to the UE by using the precoding matrix.
  • the number of the PMIs is at least two, and the base station determines the precoding matrix from a precoding matrix set corresponding to the 16 antenna ports, including the base station according to the Determining, by the PMI of the first precoding submatrix and the PMI of the second precoding submatrix, the base station according to the first precoding submatrix and the second precoding submatrix according to the first precoding submatrix and the second The precoding submatrix determines the precoding matrix.
  • the first precoding sub-matrix is a first direction precoding matrix and the second precoding sub
  • the matrix is a second direction precoding sub-matrix, or the first pre-coding sub-matrix is a second direction pre-coding sub-matrix and the second pre-coding sub-matrix is a first direction pre-coding sub-matrix.
  • the configuration manner of the 16 antenna ports includes any one of the following:
  • Two antenna ports are configured in the first direction and eight antenna ports are configured in the second direction;
  • antenna ports are configured in the first direction and 2 antenna ports are configured in the second direction;
  • 16 antenna ports are arranged in the first direction and 1 antenna port are arranged in the second direction.
  • the first direction precoding matrix is a horizontal direction precoding matrix
  • the second direction precoding matrix is a vertical direction precoding a matrix
  • the first direction precoding matrix is a vertical direction precoding matrix
  • the second direction The precoding matrix is a horizontal direction precoding matrix
  • the first precoding sub-matrix is a third pre-coding sub-matrix and a product of four precoding sub-matrices; and/or the second pre-coding sub-matrix is a product of a fifth pre-coding sub-matrix and a sixth pre-coding sub-matrix.
  • the method further includes: the base station sending the bit indication information to the UE, where the bit indication information is used to indicate the W1 At least one of the number of bits corresponding to the PMI and the number of bits corresponding to the PMI of the W2.
  • the embodiment of the present invention provides a user equipment (UE), which is characterized in that: a receiving unit is configured to receive a reference signal; and a determining unit is configured to determine, by using, a number of antenna ports used by the base station to transmit the reference signal. 16. Determining a precoding matrix from a set of precoding matrices corresponding to the 16 antenna ports, wherein the reference signal is received by the receiving unit, and each precoding matrix W in the precoding matrix set satisfies the following relationship: or The W 1 is a first precoding submatrix, and the W 2 is a second precoding submatrix.
  • the sending unit is configured to send, to the base station, a precoding matrix indicating PMI corresponding to the precoding matrix, where the precoding matrix is determined by the determining unit.
  • the determining unit configured to determine a precoding matrix from the precoding matrix set, includes: determining the first precoding submatrix from the precoding matrix set And the second precoding submatrix; and determining the precoding matrix according to the first precoding submatrix and the second precoding submatrix.
  • the first precoding sub-matrix is a first direction precoding matrix and the second precoding sub The matrix is a second direction precoding sub-matrix; or the first pre-coding sub-matrix is a second direction pre-coding sub-matrix and the second pre-coding sub-matrix is a first direction pre-coding sub-matrix.
  • the configuration manner of the 16 antenna ports includes any one of the following:
  • Two antenna ports are configured in the first direction and eight antenna ports are configured in the second direction;
  • antenna ports are configured in the first direction and 2 antenna ports are configured in the second direction;
  • 16 antenna ports are arranged in the first direction and 1 antenna port are arranged in the second direction.
  • the first direction precoding matrix is a horizontal direction precoding matrix
  • the second direction precoding matrix is a vertical direction precoding.
  • a matrix or: the first direction precoding matrix is a vertical direction precoding matrix, and the second direction precoding matrix is a horizontal direction precoding matrix.
  • the first precoding sub-matrix is a third pre-coding sub-matrix and a product of four precoding sub-matrices; and/or: the second pre-coding sub-matrix is a product of a fifth pre-coding sub-matrix and a sixth pre-coding sub-matrix.
  • the determining unit is further configured to determine a bit corresponding to the PMI of the W1 Number of bits corresponding to the PMI of the W2, and determining a PMI of W1 and a PMI of the W2 according to the number of bits corresponding to the PMI of the W1 and the number of bits corresponding to the PMI of the W2;
  • the determining unit is further configured to: control the receiving unit to receive bit indication information sent by the base station, where the bit indication information is At least one of a number of bits corresponding to the PMI of the W1 and a number of bits corresponding to the PMI of the W2.
  • an embodiment of the present invention provides a base station apparatus, which is characterized by:
  • a sending unit configured to send a reference signal to the UE through the 16 antenna ports
  • a receiving unit configured to receive a precoding matrix indication PMI fed back by the UE, where the PMI is determined according to the reference signal sent by the sending unit;
  • a determining unit configured to determine, from the precoding matrix set corresponding to the 16 antenna ports, the precoding matrix corresponding to the PMI received by the receiving unit, where each precoding in the precoding matrix set
  • the matrix W satisfies the following relationship: or
  • the W 1 is a first precoding submatrix
  • the W 2 is a second precoding submatrix.
  • a Kronecker product the number of rows of the first precoding submatrix is 2 and the number of rows of the second precoding submatrix is 8; or the number of columns of the first precoding submatrix is 8 and The number of columns of the second precoding submatrix is 2;
  • the sending unit is further configured to send data to the UE by using the precoding matrix determined by the determining unit.
  • the number of the PMI is at least two
  • the determining unit is further configured to determine the precoding matrix from a precoding matrix set corresponding to the 16 antenna ports, including Determining, according to a PMI of the first precoding submatrix and a PMI of the second precoding submatrix, the first precoding submatrix and the second precoding submatrix; and according to the first precoding submatrix and the The two precoding sub-matrices determine the precoding matrix.
  • the first precoding sub-matrix is a first direction precoding matrix and the second precoding sub
  • the matrix is a second direction precoding submatrix, or the first precoding submatrix is a second direction precoding subcode matrix and the second precoding submatrix is a first direction precoding submatrix.
  • the configuration manner of the 16 antenna ports includes any one of the following: configuring two antenna ports in the first direction and configuring the second direction 8 antenna ports; 4 antenna ports in the first direction and 4 antenna ports in the second direction;
  • antenna ports are arranged in the first direction and 2 antenna ports are arranged in the second direction; 16 antenna ports are arranged in the first direction and 1 antenna port is arranged in the second direction.
  • the first direction precoding matrix is a horizontal direction precoding matrix
  • the second direction precoding matrix is a vertical direction precoding.
  • a matrix or: the first direction precoding matrix is a vertical direction precoding matrix, and the second direction precoding matrix is a horizontal direction precoding matrix.
  • the first pre-coding sub-matrix is a third pre-coding sub-matrix and The product of four precoded sub-matrices; and/or:
  • the second precoding submatrix is a product of a fifth precoding submatrix and a sixth precoding submatrix.
  • the six possible implementations include: the determining unit is further configured to determine a PMI of the W1 and a PMI corresponding to the W2; the receiving unit is further configured to correspond to the PMI and the W2 corresponding to the W1 The number of bits of the PMI receives the PMI of the W1 and the PMI of the W2 fed back by the UE.
  • the determining unit is further configured to: control, by the sending unit, to send the bit indication information to the UE, where the bit indication The information is used to indicate at least one of the number of bits corresponding to the PMI of the W1 and the number of bits corresponding to the PMI of the W2.
  • the codebook used in different antenna port configurations is changed to save storage resources and avoid adding signaling to multiple codebooks. The effect of the configuration.
  • FIG. 1 is a flowchart of a UE side PMI feedback method according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a feedback method of a UE-side PMI according to an embodiment of the present invention
  • FIG. 2a is a structural diagram of an antenna port configuration according to an embodiment of the present invention.
  • FIG. 2b is a structural diagram of an antenna port configuration according to an embodiment of the present invention.
  • 2c is a structural diagram of an antenna port configuration according to an embodiment of the present invention.
  • FIG. 2 is a structural diagram of an antenna port configuration according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of a method for feeding back a PMI on a UE side according to an embodiment of the present disclosure
  • FIG. 4 is a flowchart of a method for feeding back a base station side PMI according to an embodiment of the present invention
  • FIG. 5 is a flowchart of a method for feeding back a base station side PMI according to an embodiment of the present invention
  • FIG. 6 is a flowchart of a method for feeding back a base station side PMI according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of a UE apparatus for implementing feedback of a PMI according to an embodiment of the present disclosure
  • FIG. 8 is a schematic diagram of a UE apparatus for implementing feedback of a PMI according to an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram of a UE apparatus for implementing feedback of a PMI according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of a base station apparatus for implementing feedback of a PMI according to an embodiment of the present disclosure
  • FIG. 11 is a schematic diagram of a base station apparatus for implementing feedback of a PMI according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a base station apparatus for implementing feedback of a PMI according to an embodiment of the present invention.
  • FIG. 13 is a flowchart of a method for feeding back a PMI that performs interaction between a base station side and a UE side according to an embodiment of the present invention.
  • FIG. 14 is a flowchart of a method for feeding back a PMI that performs interaction between a base station side and a UE side according to an embodiment of the present invention.
  • the dimensions of A and B are determined by the number of antenna ports.
  • User equipment and network equipment determine different sets of codebooks for different antenna port configurations.
  • the UE or the base station needs to store a lot of codebooks of each type, which causes waste of storage resources.
  • the storage resources are certain, the above five codebooks are stored at the same time, which causes the UE to be insufficient according to the accuracy of the measurement, for example.
  • the UE or the base station needs to store a large number of codebooks of each type, resulting in waste of storage resources, and on the other hand, in storage resources. Under certain circumstances, storing the above five codebooks at the same time causes the UE to be insufficient according to the accuracy of the measurement.
  • the base station involved in the present invention may be, but not limited to, a Node B (Base station, BS), an Access Point, a Transmission Point (TP), and an Evolved Node B. eNB), relay, etc.;
  • the user equipment UE involved in the present invention may be, but not limited to, a mobile station (MS), a relay, a mobile telephone, a handset. And portable equipment, Mobile or non-mobile terminals, etc.
  • FIG. 1 is a schematic flowchart of a communication method according to an embodiment of the present invention, and relates to a feedback method of a precoding matrix indicating PMI.
  • the method specifically includes:
  • Step 101 The user equipment UE receives the reference signal.
  • Step 102 the UE determines that the number of antenna ports used by the base station to transmit the reference signal is 16;
  • Step 103 The UE determines a precoding matrix from a precoding matrix set corresponding to the 16 antenna ports, where each precoding matrix W in the precoding matrix set satisfies the following relationship: or
  • the W 1 is a first precoding submatrix
  • the W 2 is a second precoding submatrix.
  • a Kronecker product the number of rows of the first precoding submatrix is 2 and the number of rows of the second precoding submatrix is 8; or the number of columns of the first precoding submatrix is 8 and The number of columns of the second precoding submatrix is 2;
  • the satisfaction relationship is: or In the embodiment of the present invention, it is collectively referred to as a first relationship.
  • Step 104 The UE sends a precoding matrix indication PMI corresponding to the precoding matrix to a base station.
  • the first precoding matrix corresponding to the dimension 2 is determined in only one codebook set.
  • a second precoding matrix with a dimension of 8 saving storage resources and air interface configuration resources.
  • FIG. 2 is a schematic flowchart of a communication method according to an embodiment of the present invention, and relates to a feedback method of a precoding matrix indicating PMI.
  • the method specifically includes:
  • Step 201 The user equipment UE receives the reference signal.
  • Step 202 the UE determines that the number of antenna ports used by the base station to transmit the reference signal is 16;
  • the present invention does not limit the specific method that the UE determines that the number of antenna ports used by the base station to transmit the reference signal is 16, which may be pre-configured by the UE, or may be determined by measurement.
  • the UE may determine the number of the antenna ports according to the reference signal, and the determining process may be an implicit determining method. For example, if the UE only receives 16 reference signals, the UE can Determining that the number of antenna ports used by the base station to transmit the reference signal is 16.
  • the UE when determining the number of antenna ports used by the base station to transmit the reference signal, the UE may not be determined by a reference signal, but configured by some signaling or has previously passed the preset. The manner is stored in the UE; and in this case, step 202 can be switched to before step 201 or simultaneously.
  • Step 203 The UE determines a precoding matrix from a precoding matrix set corresponding to the 16 antenna ports, where each precoding matrix W in the precoding matrix set satisfies the following relationship: or
  • the W 1 is a first precoding submatrix
  • the W 2 is a second precoding submatrix.
  • a Kronecker product the number of rows of the first precoding submatrix is 2 and the number of rows of the second precoding submatrix is 8; or the number of columns of the first precoding submatrix is 8 and The number of columns of the second precoding submatrix is 2;
  • the UE determines the first precoding submatrix and the second precoding submatrix from the precoding matrix set; the UE according to the first precoding submatrix and the A second precoding submatrix determines the precoding matrix.
  • the precoding matrix set herein may also be an integration of multiple sets, or determine a set of qualified precoding codebooks from a set.
  • the determined precoding matrix W is the Kronecker product of the first precoding matrix W1 and the second precoding matrix W2:
  • W1 is a matrix of m1 rows and m2 columns
  • W2 is a matrix of n1 rows and n2 columns
  • the finally determined matrix W is a matrix of m1 ⁇ n1 rows and m2 ⁇ n2 columns.
  • one dimension of W should be 16, for the base station to pre-code the signal that needs to be transmitted, and for the pre-coding on the UE side. Therefore, there should be a value of 16 in m1 ⁇ n1 and m2 ⁇ n2.
  • the number of rows of the first precoding submatrix is 2 and the number of rows of the second precoding submatrix is 8; or the number of columns of the first precoding submatrix is 8 and the second precoding substring
  • the number of columns in the matrix is 2. It should be understood that the present invention claims various In case of deformation, for example or or Etc., for In the case, as described above, the dimensions of the columns of the two matrices are 2 and 8, respectively, or the dimensions of the rows are 2 and 8, respectively, and the final pre-coding matrix W is determined to conform to one of the dimensions of 16, so that The signal can be precoded or deprecoded using a transposition of W or W.
  • the present invention is not limited to after determining W, and adding other operational steps before precoding or precoding decoding the matrix, for example, selecting a number of vectors of length 16 from W to form a matrix W', The W' pre-coding is then utilized. It should be understood that variations of the various formulas that embody the inventive concepts are within the scope of the invention.
  • the precoding matrix set it should be a final choice range, ie if the set ⁇ W ⁇ A contains the satisfaction relationship except or Element V, however, in the process of finalizing the precoding matrix, V is excluded by any other condition, then the code matrix set should not be the final element of ⁇ W ⁇ A. Therefore, if there is a set ⁇ W ⁇ A of the element V, and then by some conditional filtering, it is determined that ⁇ W ⁇ A 'satisfies only one of the number of rows or the number of columns is 8 or 2, then the ⁇ W ⁇ A belongs to the present The scope of protection of the invention.
  • V 1 there is an element V 1 in the set ⁇ W ⁇ B , and the number of rows or columns of V 1 is neither 2 nor 8, but if V 1 cannot be determined as one of W 1 or W 2 in any case , then the ⁇ W ⁇ B is not the precoding matrix, but should be ⁇ W ⁇ B' , and any element of the ⁇ W ⁇ B' is determined by measurement as the W 1 or The W 2 is also within the scope of protection of the present invention.
  • the first precoding submatrix is a first direction precoding matrix and the second precoding submatrix is a second direction precoding submatrix, or: the first precoding submatrix is The second direction pre-codes the sub-code matrix and the second pre-coding sub-matrix is a first direction pre-coding sub-matrix.
  • a precoding matrix may be composed of two precoding sub-matrices.
  • two sub-matrices may be respectively composed of the first pre-coding sub-matrix and the second pre-coding sub-matrix, and may be constructed in the form of a product or Others are constructed in a manner consistent with their antenna port precoding matrix model, such as the form of the Kronecker product.
  • the precoding sub-matrices can have different physical meanings. According to its physical meaning, the codebook size of different dimensions can be determined.
  • each precoding matrix can correspond to the orientation of two antenna ports, where each direction can correspond to a precoding sub-matrix. In the scenario of a 16-antenna port, the configuration of the antenna port can be configured differently in different directions.
  • each configuration can be regarded as a configuration for different placement forms.
  • Figures 2a, 2b, 2c, 2d show the form of the basic configuration of the 16 antenna port.
  • 2a is configured to configure 4 antenna ports in the first direction and 4 antenna ports in the second direction;
  • 2b to configure 4 antenna ports in the first direction and 4 antenna ports in the second direction;
  • 2c to configure 8 antennas in the first direction Ports are configured with two antenna ports in the second direction;
  • 2d is configured with 16 antenna ports in the first direction and one antenna port in the second direction:
  • the configuration manner of the 16 antenna ports includes any one of the following:
  • Two antenna ports are configured in the first direction and eight antenna ports are configured in the second direction;
  • antenna ports are configured in the first direction and 2 antenna ports are configured in the second direction;
  • 16 antenna ports are arranged in the first direction and 1 antenna port are arranged in the second direction.
  • the precoding matrix may be determined by a first direction precoding matrix and a second direction precoding matrix, where the first direction precoding matrix corresponds to a configuration direction of the first type of antenna port, and the second direction is pre
  • the encoding matrix corresponds to the configuration direction of the second antenna port
  • the first antenna port configuration direction and the second antenna port configuration direction may be physically real configuration directions, or may be a 45° dual-polarized antenna port.
  • one angle is regarded as one of the vertical or horizontal configuration directions
  • the other angle is regarded as the other of the vertical or horizontal configuration directions.
  • the first precoding matrix and the second precoding matrix may be precoding matrices in different directions, for example, the first direction precoding matrix corresponds to the first direction, and the second direction precoding matrix corresponds to the second direction.
  • the first precoding matrix or the second precoding matrix of the same dimension may be determined for the four configurations according to the configuration direction of the antenna port.
  • the first direction precoding matrix is a horizontal direction precoding matrix
  • the second direction precoding matrix is a vertical direction precoding matrix
  • the first direction precoding matrix is a vertical direction precoding matrix.
  • a matrix, the second direction precoding matrix being a horizontal direction precoding matrix.
  • the matrix model of the present invention It can also be further decomposed, that is, the precoding matrix satisfies:
  • W 3 ⁇ W 4 is a matrix having a row number of 2 and the W 2 is a matrix having a row number of 8
  • the W 3 ⁇ W 4 is a matrix having a column number of 2 and the W2 is a column number A matrix of 8.
  • the dimensions of W 3 ⁇ W 4 and W2 may also be exchanged, such as W 3 ⁇ W 4 being a matrix of 8 rows and the W 2 being a matrix of 2 rows, or the W 3 ⁇ W 4 is a matrix having a column number of 8 and the W2 is a matrix having a column number of 2.
  • the first precoding submatrix is a product of a third precoding submatrix and a fourth precoding submatrix; and/or: the second precoding submatrix is a fifth precoding submatrix and a sixth precoding
  • W3 and W4 may be two sub-matrices constituting the first-direction precoding matrix, and W4 may be regarded as a weighting matrix of W3.
  • the specific weighting method can be the same as that of non-3D MIMO.
  • W3 can be used as a long-term broadband characteristic matrix to reflect the long-term broadband characteristics of the antenna port in the first direction.
  • W4 can be used as a short-term narrowband feature matrix to reflect the short-term antenna port in the first direction. Narrowband characteristics. It should be understood that since one dimension of the first precoding submatrix may be 2, and one dimension of the second precoding submatrix may be 8, when the W2 dimension is one of 8 or 2, the product of W3 and W4 should satisfy the dimension. Another one for 8 or 2. Furthermore, the invention claims other embodiments similar to this, for example:
  • the form can be fed back to W3's PMI, W4's PMI, and W2's PMI.
  • W 2 is a matrix having a row number of 8, and the number of rows of W 3 is 2; or, the number of columns of the W 2 is 8, and the number of columns of W 4 is 2; or, W 2 is a matrix of 2 rows, and the number of rows of W 3 is 8; or, the number of columns of W 2 is 2, and the number of columns of W 4 is 8.
  • the number of rows of W 1 is 8, and the number of rows of W 5 is 2; or, the number of columns of W 1 is 8, and the number of columns of W 6 is 2; or, the number of rows of W 1 is 2, the number of rows of W 5 is 8; or, the number of W 1 columns is 2, and the number of columns of W 6 is 8.
  • the number of rows is 2 W 5; or the number of columns is 8 W 4
  • W 6 is the number of columns 2; or, the number of lines 3 W 2, the number of rows of W 5 is 8; or, the number of W 4 columns is 2, and the number of columns of W 6 is 8.
  • a first precoding matrix having a corresponding dimension of 2 and a second precoding matrix having a dimension of 8 are determined in only one codebook set, and may also be two codebook sets, one Codebook The dimensions in the set are both 2, and the other codebook set has a dimension of 8, or a plurality of codebook sets, wherein the elements in the plurality of codebook sets are also elements of 2 or 8, but it is finally determined.
  • the first precoding matrix has a dimension of 2
  • the second precoding matrix has a dimension of 8. Considering the special case, if the matrix in the codebook set contains codebooks of other dimensions, these codebooks should not be in the final determination range.
  • the first precoding matrix or the second precoding matrix is obtained in a patchwork form by using an element in a codebook set, but the first precoding matrix dimension that is used to synthesize the precoding matrix is determined to be 2
  • the dimension of the second precoding matrix should be 8.
  • Step 204 The UE sends a precoding matrix indication PMI corresponding to the precoding matrix to a base station.
  • the PMI is used to indicate the precoding matrix.
  • the present invention does not limit the feedback manner of the PMI, and the PMI may be a field in a certain signaling or a signaling.
  • the PMI may be multiple, or one PMI, but different parts of the one PMI indicate different precoding matrices.
  • the first 3 bits are used to indicate the first precoding matrix
  • the last 5 bits are used to indicate the PMI of the second precoding matrix.
  • the PMI corresponding to a certain matrix may be a field corresponding to the PMI, or may correspond to a single PMI.
  • the UE determines the number of bits corresponding to the PMI 2 W 1 corresponding to the PMI and the number of bits of W; W the UE according to the number of bits corresponding to the PMI and the W 1
  • the number of bits corresponding to the PMI of 2 determines the PMI of W 1 and the PMI of the W 2 ; the UE transmits the PMI of W 1 and the PMI of W 2 to the base station.
  • the feedback resource of the PMI is fixed, the number of elements in the precoding sub-matrix set can be extended by flexibly configuring the bits of the PMI.
  • the antenna ports can be expanded in different directions due to different configurations of the antenna ports.
  • the counting manners of different antenna ports are determined in different configurations, so that a matrix of dimension 8 and a matrix of dimension 2 are determined in the precoding codebook in the different configurations, and the PMI is fed back.
  • the value indicates the precoding matrix, which saves configuration signaling and saves air interface resources.
  • a precoding sub-matrix having a dimension of 8 and a dimension of 2 in the codebook is used, and in addition to the counting effect that can be achieved by the above embodiment, the saving can also be utilized.
  • Resource the number of precoding sub-matrices in the spreading codebook, to achieve more accurate accuracy requirements of the precoding matrix.
  • the number of elements in the extended precoding sub-matrix set is achieved by flexibly configuring the bits of the PMI.
  • Figure 3 shows a method of PMI feedback. It should be understood that the present embodiment can be applied to other various embodiments of the present invention, for example, as a more specific embodiment of step 105 or step 205, or as a separate embodiment.
  • Step 301 the UE determines the number of bits and the number of bits of the W PMI 1 W PMI corresponding to the corresponding 2.
  • the determining process may be a process of receiving a signaling or an indication, or a process determined according to a reference signal, or a preset process, and may also be determined according to some other property. process.
  • Step 302 the UE determines the W PMI 1 and W PMI 2 is the number of bits the number of bits corresponding to W PMI 1 and the corresponding W PMI 2;
  • Steps 301 and 302 can be performed as follows:
  • the codebook includes a plurality of precoding sub-matrices, wherein one of the precoding sub-matrices has one dimension of 2 and the other part of the pre-encoding sub-matrix has a dimension of 8. For example with a dimension of 2:
  • the UE determines that a total of 8 bits can be used in the precoding matrix, and 3 of them are used to indicate a matrix with a dimension of 2, then the UE is allocated. Or the UE itself determines that the UE has enough bits to select a precoding sub-matrix corresponding to the measurement result from the eight codebooks A1-A8 (the precoding sub-matrix may correspond to the embodiment shown in FIG. 1 and FIG.
  • the number of bits occupied by the PMI increases the granularity of the precoding sub-matrix with a dimension of 8.
  • the precoding sub-matrix matrix of dimension 8 does not need to be too fine indication.
  • the precoding sub-matrix of dimension 2 needs a relatively fine indication, the number of bits occupied by the PMI of the precoding sub-matrix of dimension 8 can be reduced. , improve the degree of fineness of the precoding submatrix with a dimension of 2.
  • users are more distributed in the vertical direction.
  • the determined The precoding matrix more accurately reflects the channel characteristics and achieves the purpose of improving signal strength. Therefore, more bit values need to be used to determine the PMI feedback of the precoding submatrix with dimension 2. For a broad plain scene, more dimension bit values are needed to determine the PMI of the precoding submatrix with a dimension of 8. Feedback. It should be understood that the step 301 and the step 302 may be reversed, and the UE may first determine the PMI that needs to be fed back. After determining the number of bits of the respective PMIs to be fed back, the accuracy is adjusted.
  • the PMI that needs to be fed back is determined to be 001, but since the accuracy of the precoding sub-matrix in the direction is not high in the sub-matrix in the other direction, the PMI that needs feedback 00 as the direction may be determined according to a preset rule, and the A1 is used as the A precoding matrix of directions, where A1 and A2 should reflect the characteristics of the channel relatively closely.
  • the number of PMI W PMI bits. 1 and W 2 corresponding to the number of bits may refer W. 1 and W 2 each of the PMI, the W 1 and W 2 in the same situation a PMI of different fields, means Is the case where the bits are allocated for W 1 and W 2 .
  • W 1 in other embodiments may be further determined as the other two matrix representations or W 2 may be further determined as the other two matrix representations
  • the UE It is possible to confirm the number of bits occupied by the PMI corresponding to the plurality of matrices.
  • the number of bits is 8 and the corresponding table is only an example, and the present invention also claims feedback of different bit numbers and forms including tables, and other such as mapping, formula In the determination method of the precoding matrix of the type, the technical solution is adjusted according to the number of bits.
  • the method further includes: receiving, by the base station, a bit indication message sent by the base station, where the bit indication message is used to indicate the number of bits corresponding to the PMI that needs to be fed back; or:
  • the UE determines, according to the measurement, a number of bits corresponding to the PMI that needs to be fed back.
  • the UE sends the number of bits corresponding to the PMI that needs to be fed back to the base station. Sending the number of bits corresponding to the PMI to the base station.
  • the UE may further receive a scenario information, where the scenario information is used to indicate a configuration of different directions corresponding to communications between the current UE and the base station of the UE.
  • the different directions may be a first direction and a second direction, and specifically may be a horizontal direction and a vertical direction, respectively.
  • Step 303 transmits the W PMI 1 and W PMI 2 to the base station.
  • the UE determines the number of bits corresponding to the PMI that needs to be fed back, and determines the respective PMIs that are fed back according to the precoding matrix and the number of bits corresponding to the PMI.
  • the technical solution can flexibly adjust the granularity of the bits of the feedback of the PMI, so that under the same feedback resource, the beam fineness degree in a certain direction can be flexed to achieve the purpose of adapting to various scene requirements.
  • FIG. 4 is a schematic flowchart of a communication method according to an embodiment of the present invention, and relates to a feedback method of a precoding matrix indicating PMI.
  • the method specifically includes:
  • Step 401 The base station sends a reference signal to the UE through the 16 antenna ports.
  • Step 402 The base station receives a precoding matrix indication PMI fed back by the UE.
  • Step 403 The base station determines, according to a precoding matrix set corresponding to the 16 antenna ports, a precoding matrix corresponding to the PMI, where each precoding matrix W in the precoding matrix set satisfies the following relationship: or
  • the W 1 is a first precoding submatrix
  • the W 2 is a second precoding submatrix.
  • a Kronecker product the number of rows of the first precoding submatrix is 2 and the number of rows of the second precoding submatrix is 8; or the number of columns of the first precoding submatrix is 8 and The number of columns of the second precoding submatrix is 2;
  • Step 404 The base station sends data to the UE by using the precoding matrix.
  • the base station determines the corresponding first precoding matrix with the dimension of 2 in only one codebook set. And a second precoding matrix with a dimension of 8, saving storage resources and air interface configuration resources.
  • FIG. 5 is a schematic flowchart of a communication method according to an embodiment of the present invention, and relates to a feedback method of a precoding matrix indicating PMI.
  • the method specifically includes:
  • Step 501 The base station sends a reference signal to the UE through the 16 antenna ports.
  • the base station may first determine a scenario in which a 16 antenna port is adopted.
  • the base station further indicates to the UE that the number of the antenna ports is 16.
  • the indication process may be directly indicated by one signaling, or may be indicated by the process of indicating the UE in the process of sending the reference signal in step 501, or configuring the UE before step 501.
  • Step 502 The base station receives a precoding matrix indication PMI fed back by the UE.
  • the present invention does not limit the feedback manner of the PMI, and the PMI may be a field in a certain signaling or a signaling.
  • the PMI may be multiple, or one PMI, but different parts in the one PMI indicate different precoding sub-matrices, and these precodings
  • the sub-matrix constitutes the pre-coding matrix by a preset rule.
  • the preset rule may be in the form of a product or a Kronecker product. For example, in an 8-bit PMI, the first 3 bits are used to indicate the first precoding matrix, and the last 5 bits are used to indicate the PMI of the second precoding matrix.
  • the first precoding matrix and the second precoding matrix are both precoding sub-matrices. It should be understood that, in various embodiments of the present invention, the PMI corresponding to a certain matrix may be a field corresponding to the PMI, or may correspond to a single PMI.
  • the base station determines the number of bits of the PMI W and W 2 corresponding to the PMI. 1; and the base station according to the W The number of bits of the PMI corresponding to PMI and W 2 of 1 receives at least two PMIs fed back by the UE; this step may be further performed before the base station transmits a reference signal to the UE through 16 antenna ports.
  • the number of elements in the precoding sub-matrix set can be extended by flexibly configuring the bits of the PMI.
  • Step 503 The base station determines a precoding matrix corresponding to the PMI from a precoding matrix set corresponding to a 16 antenna port, where each precoding matrix W in the precoding matrix set satisfies the following relationship: or
  • the W 1 is a first precoding submatrix
  • the W 2 is a second precoding submatrix. a Kronecker product, the number of rows of the first precoding submatrix is 2 and the number of rows of the second precoding submatrix is 8; or the number of columns of the first precoding submatrix is 8 and The number of columns of the second precoding submatrix is 2;
  • Step 504 The base station sends data to the UE by using the precoding matrix.
  • the number of the PMIs is at least two; the base station determines, from the precoding matrix set corresponding to the 16 antenna ports, the precoding matrix corresponding to the at least two PMIs, including: the base station according to the first precoding The PMI of the sub-matrix and the PMI of the second pre-coding sub-matrix determine the first pre-coding sub-matrix and the second pre-coding sub-matrix; the base station according to the first pre-coding sub-matrix and the second pre-coding sub- The matrix determines the precoding matrix.
  • the precoding matrix set herein may also be an integration of multiple sets, or determine a set of qualified precoding codebooks from a set.
  • the determined precoding matrix W is the Kronecker product of the first precoding matrix W1 and the second precoding matrix W2:
  • W1 is a matrix of m1 rows and m2 columns
  • W2 is a matrix of n1 rows and n2 columns
  • the finally determined matrix W is a matrix of m1 ⁇ n1 rows and m2 ⁇ n2 columns.
  • one dimension of W should be 16, for the base station to pre-code the signal that needs to be transmitted, and for the pre-coding on the UE side, in various embodiments of the present invention, here
  • the pre-coding of the solution can also be said to be pre-coding and decoding. Therefore, there should be a value of 16 in m1 ⁇ n1 and m2 ⁇ n2.
  • the number of rows of the first precoding submatrix is 2 and the number of rows of the second precoding submatrix is 8; or the number of columns of the first precoding submatrix is 8 and the second precoding substring
  • the number of columns in the matrix is 2. It should be understood that the present invention claims various In case or Deformation, for example or or Etc., for In the case, as described above, the dimensions of the columns of the two matrices are 2 and 8, respectively, or the dimensions of the rows are 2 and 8, respectively, and the final pre-coding matrix W is determined to conform to one of the dimensions of 16, so that The signal can be precoded using a transposition of W or W.
  • the present invention is not limited to determining the W, and adding other operational steps before precoding the matrix, for example, selecting a number of vectors of length 16 from W to form a matrix W', and then Using the W' precoding. It should be understood that variations of the various formulas that embody the inventive concepts are within the scope of the invention.
  • the precoding matrix set it should be a final choice range, ie if the set ⁇ W ⁇ A contains the satisfaction relationship except or Element V, however, in the process of finalizing the precoding matrix, V is excluded by any other condition, then the code matrix set should not belong to the final element of ⁇ W ⁇ A. Therefore, if there is a set ⁇ W ⁇ A of the element V, and then by some conditional filtering, it is determined that ⁇ W ⁇ A 'satisfies only one of the number of rows or the number of columns is 8 or 2, then the ⁇ W ⁇ A belongs to the present The scope of protection of the invention.
  • V 1 there is an element V 1 in the set ⁇ W ⁇ B , and the number of rows or columns of V 1 is neither 2 nor 8, but if V 1 cannot be determined as one of W 1 or W 2 in any case , then the ⁇ W ⁇ B is not the precoding matrix, but should be ⁇ W ⁇ B' , and any element of the ⁇ W ⁇ B' is determined by measurement as the W 1 or The W 2 is also within the scope of protection of the present invention.
  • the first precoding submatrix is a first direction precoding matrix and the second precoding submatrix is a second direction precoding submatrix, or: the first precoding submatrix is The second direction pre-codes the sub-code matrix and the second pre-coding sub-matrix is a first direction pre-coding sub-matrix.
  • a precoding matrix may be composed of two precoding sub-matrices.
  • two sub-matrices may be respectively composed of the first pre-coding sub-matrix and the second pre-coding sub-matrix, and may be constructed in the form of a product or Others are constructed in a manner consistent with their antenna port precoding matrix model, such as the form of the Kronecker product.
  • the precoding sub-matrices can have different physical meanings. According to its physical meaning, the codebook size of different dimensions can be determined.
  • each precoding matrix can correspond to the orientation of two antenna ports, where each direction can correspond to a precoding sub-matrix. In the scenario of a 16-antenna port, the configuration of the antenna port can be configured differently in different directions.
  • each configuration can be regarded as a configuration for different placement forms.
  • the basic configuration of the 16-antenna port can be given with reference to FIG. 2a, 2b, 2c, and 2d. It has been described in detail in the embodiment shown in FIG. 2, and details are not described herein again.
  • the configuration manner of the 16 antenna ports includes any one of the following:
  • Two antenna ports are configured in the first direction and eight antenna ports are configured in the second direction;
  • antenna ports are configured in the first direction and 2 antenna ports are configured in the second direction;
  • 16 antenna ports are arranged in the first direction and 1 antenna port are arranged in the second direction.
  • the precoding matrix may be precoded by a first direction matrix and a second direction
  • the precoding matrix is determined, wherein the first direction precoding matrix corresponds to a configuration direction of the first antenna port, the second direction precoding matrix corresponds to a configuration direction of the second antenna port, and the first antenna port configuration direction and the
  • the configuration direction of the two antenna ports may be a physically real configuration direction, or one of the vertical or horizontal configuration directions in which the 45° dual-polarized antenna port is regarded as an angle, and another angle is seen. Do another vertical or horizontal configuration direction.
  • the first precoding matrix and the second precoding matrix may be precoding matrices in different directions, for example, the first direction precoding matrix corresponds to the first direction, and the second direction precoding matrix corresponds to the second direction.
  • the first precoding matrix or the second precoding matrix of the same dimension may be determined for the four configurations according to the configuration direction of the antenna port.
  • the first direction precoding matrix is a horizontal direction precoding matrix
  • the second direction precoding matrix is a vertical direction precoding matrix
  • the first direction precoding matrix is a vertical direction precoding matrix.
  • a matrix, the second direction precoding matrix being a horizontal direction precoding matrix.
  • the matrix model of the present invention It can also be further decomposed, that is, the precoding matrix satisfies:
  • W 3 ⁇ W 4 is a matrix having a row number of 2 and the W 2 is a matrix having a row number of 8
  • the W 3 ⁇ W 4 is a matrix having a column number of 2 and the W2 is a column number A matrix of 8.
  • the dimensions of W 3 ⁇ W 4 and W2 may also be exchanged, such as W 3 ⁇ W 4 being a matrix of 8 rows and the W 2 being a matrix of 2 rows, or the W 3 ⁇ W 4 is a matrix having a column number of 8 and the W2 is a matrix having a column number of 2.
  • the first precoding submatrix is a product of a third precoding submatrix and a fourth precoding submatrix; and/or: the second precoding submatrix is a fifth precoding submatrix and a sixth precoding
  • W3 and W4 may be two sub-matrices constituting the first-direction precoding matrix, and W4 may be regarded as a weighting matrix of W3.
  • the specific weighting method can be the same as that of non-3D MIMO.
  • W3 can be used as a long-term broadband characteristic matrix to reflect the long-term broadband characteristics of the antenna port in the first direction.
  • W4 can be used as a short-term narrowband feature matrix to reflect the short-term antenna port in the first direction. Narrowband characteristics. It should be understood that since one dimension of the first precoding submatrix may be 2, and one dimension of the second precoding submatrix may be 8, when the W2 dimension is one of 8 or 2, the product of W3 and W4 should satisfy the dimension. Another one for 8 or 2. Furthermore, the invention claims other embodiments similar to this, for example:
  • the PMI of the W3, the PMI of the W4, and the PMI of the W2 fed back by the UE may be received.
  • the W 2 is a matrix having a row number of 8, and the number of rows of W 3 is 2; or, the number of columns of the W 2 is 8, and the number of columns of W 4 is 2; or, W 2 is a matrix of 2 rows, and the number of rows of W 3 is 8; or, the number of columns of W 2 is 2, and the number of columns of W 4 is 8.
  • the number of rows of W 1 is 8, and the number of rows of W 5 is 2; or, the number of columns of W 1 is 8, and the number of columns of W 6 is 2; or, the number of rows of W 1 is 2, the number of rows of W 5 is 8; or, the number of W 1 columns is 2, and the number of columns of W 6 is 8.
  • the number of rows is 2 W 5; or the number of columns is 8 W 4
  • W 6 is the number of columns 2; or, the number of lines 3 W 2, the number of rows of W 5 is 8; or, the number of W 4 columns is 2, and the number of columns of W 6 is 8.
  • a first precoding matrix having a corresponding dimension of 2 and a second precoding matrix having a dimension of 8 are determined in only one codebook set, and may also be two codebook sets, one The dimensions in the codebook set are both 2, and the other codebook set has a dimension of 8, or a plurality of codebook sets, wherein the elements in the plurality of codebook sets are also 2 or 8 elements, but ultimately The determined first precoding matrix dimension is 2, and the second precoding matrix has a dimension of 8.
  • the matrix in the codebook set contains codebooks of other dimensions, these codebooks should not be in the final determination range.
  • Optional Obtaining the first precoding matrix or the second precoding matrix by patchwork in an element in a codebook set, but finally determining that the first precoding matrix dimension of the precoding matrix is 2, the second pre The dimension of the encoding matrix should be 8.
  • a precoding sub-matrix having a dimension of 8 and a dimension of 2 in the codebook is used, and in addition to the counting effect that can be achieved by the above embodiment, the saving can also be utilized.
  • Resource the number of precoding sub-matrices in the spreading codebook, to achieve more accurate accuracy requirements of the precoding matrix.
  • the number of elements in the extended precoding sub-matrix set is achieved by flexibly configuring the bits of the PMI.
  • Figure 6 shows a method of determining a precoding matrix. It should be understood that the present embodiment can be applied to other various embodiments of the present invention, for example, as a more specific embodiment of step 405 or step 505, or as a separate embodiment.
  • Step 601 the base station determines the number of bits and the bit number W PMI W PMI 1 corresponding to the corresponding 2.
  • the determining process may be a process of receiving signaling or indication from another network device, such as a core network element or other base station, or a process determined according to channel characteristics, or may be a preset. The process can also be determined based on certain other properties.
  • Step 602 the base station receives a UE fed back by the number of bits corresponding to the PMI W1 and W 2 corresponding to the PMI and the W PMI 1 of the W PMI 2.
  • step 601 and step 602 the following example can be performed:
  • the base station determines the number of bits and the bit number W PMI W PMI 1 corresponding to the corresponding 2; at least two of said base station receives the feedback PMI the UE according to the number of bits of the PMI W1 and W2 of the corresponding PMI;
  • the codebook includes a plurality of precoding sub-matrices, wherein one of the precoding sub-matrices has one dimension of 2 and the other part of the pre-encoding sub-matrix has a dimension of 8. For example with a dimension of 2:
  • a pre-coding sub-matrix corresponding to the measurement result is selected from the eight codebooks A1-A8 by assigning enough bits (the pre-coding sub-matrix may correspond to the first pre-coding in the embodiment shown in FIG. 1 and FIG.
  • Submatrix when the base station determines that a total of 8 bits can be used in the precoding matrix, only 2 bits are used to indicate a matrix with a dimension of 2, then after the base station notifies the UE, the UE can only determine the 4 candidate matrices.
  • a precoding sub-matrix matrix of dimension 2 does not need to be too fine indication, and a precoding submatrix of dimension 8 needs a relatively fine indication, and can be reduced by reducing the precoding submatrix of dimension 2.
  • the number of bits occupied by the PMI increases the granularity of the precoding sub-matrix with a dimension of 8.
  • the precoding sub-matrix matrix of dimension 8 does not need to be too fine indication.
  • the precoding sub-matrix of dimension 2 needs a relatively fine indication
  • the number of bits occupied by the PMI of the precoding sub-matrix of dimension 8 can be reduced. , improve the degree of fineness of the precoding submatrix with a dimension of 2.
  • the determined The precoding matrix more accurately reflects the channel characteristics and achieves the purpose of improving signal strength. Therefore, more bit values need to be used to determine the PMI feedback of the precoding submatrix with dimension 2. For a broad plain scene, more dimension bit values are needed to determine the PMI of the precoding submatrix with a dimension of 8. Feedback. It should be understood that, in general, the number of bits is adjusted by the base station, but the base station may receive the bit allocation message of the UE, and negotiate the number of bits with the base station.
  • the number of PMI W PMI bits. 1 and W 2 corresponding to the number of bits may refer W. 1 and W 2 each of the PMI, the W 1 and W 2 in the same situation a PMI of different fields, means Is the case where the bits are allocated for W 1 and W 2 .
  • W 1 in other embodiments may be further determined as the other two matrix representations or W 2 may be further determined as the other two matrix representations, the base station It is possible to confirm the number of bits occupied by the PMI corresponding to the plurality of matrices.
  • the number of bits is 8 and the corresponding table is only an example.
  • the present invention also claims feedback of different bit numbers and forms including tables, and other pre-forms such as mapping and formula types.
  • the technical solution is adjusted according to the number of bits.
  • the base station determines the number of PMI bits corresponding to W 1 and W the number of bits corresponding to the PMI 2 comprises: receiving indication message bits, the bits used for indicating the required indication message corresponding to the PMI fed back The number of bits.
  • the indication message can come from a UE or other network device.
  • the base station determines the number of bits and the number of bits of the W PMI 1 W PMI corresponding to the corresponding 2.
  • step 603 the base station transmits the indication information bits to the UE, the information bits indicating the number of bits indicating the number of bits corresponding to a PMI W 1 and W is the corresponding PMI for 2 At least one of them.
  • the base station may also determine a scene information, the number of bits for the scene information and the number of bits indicating that the base station needs to W PMI feedback corresponds W PMI 1 corresponding to 2.
  • the different directions may be a first direction and a second direction, and specifically may be a horizontal direction and a vertical direction, respectively.
  • Embodiment shown in FIG. 6 embodiment the base station by determining a number of bits corresponding to the PMI 2 W PMI 1 corresponding to the number of bits of the W, the respective receiving the PMI feedback, technical solutions of the embodiments of the present invention can be flexibly adjusted
  • the granularity of the bits of the feedback of the PMI enables the beam to be refined in a certain direction under the same feedback resource to achieve the purpose of adapting to various scenarios.
  • FIG. 7 is a structural diagram of a communication apparatus according to an embodiment of the present invention, and relates to a user equipment UE.
  • the device specifically includes:
  • the receiving unit 701 is configured to receive a reference signal.
  • the determining unit 702 is configured to determine that the number of antenna ports used by the base station to transmit the reference signal is 16, and determine a precoding matrix from a set of precoding matrices corresponding to the 16 antenna ports, where the reference signal is the receiving
  • Each precoding matrix W in the precoding matrix set received by the unit satisfies the following relationship: or
  • the W 1 is a first precoding submatrix
  • the W 2 is a second precoding submatrix. a Kronecker product, the number of rows of the first precoding submatrix is 2 and the number of rows of the second precoding submatrix is 8; or the number of columns of the first precoding submatrix is 8 and The number of columns of the second precoding submatrix is 2;
  • the sending unit 703 is configured to send, to the base station, a precoding matrix indication PMI corresponding to the precoding matrix, where the precoding matrix is determined by the determining unit.
  • the first precoding matrix corresponding to the dimension 2 is determined in only one codebook set.
  • a second precoding matrix with a dimension of 8 saving storage resources and air interface configuration resources.
  • FIG. 8 is a schematic flowchart of a communication method according to an embodiment of the present invention, and relates to a feedback method of a precoding matrix indicating PMI.
  • the method specifically includes:
  • the receiving unit 801 is configured to receive a reference signal.
  • Each precoding matrix W in the precoding matrix set satisfies the following relationship: or
  • the W 1 is a first precoding submatrix
  • the W 2 is a second precoding submatrix. a Kronecker product, the number of rows of the first precoding submatrix is 2 and the number of rows of the second precoding submatrix is 8; or the number of columns of the first precoding submatrix is 8 and The number of columns of the second precoding submatrix is 2;
  • the present invention does not limit the specific method that the determining unit determines that the number of antenna ports used by the base station to transmit the reference signal is 16, which may be pre-configured by the UE, or may be determined by measurement.
  • the determining unit may determine the number of the antenna ports according to the reference signal, and the determining process may be an implicit determining method, for example, the receiving unit receives only 16 reference signals. Then, the determining unit is capable of determining the number of antenna ports used by the base station to transmit the reference signal.
  • the determining unit when determining the number of antenna ports used by the base station to transmit the reference signal, may not be determined by a reference signal, but configured by some signaling or has previously passed The mode is stored in the UE.
  • the determining unit determines the first precoding submatrix and the second precoding submatrix from the precoding matrix set; the determining unit is according to the first precoding submatrix and The second precoding submatrix determines the precoding matrix.
  • the precoding matrix set herein may also be an integration of multiple sets, or determine a set of qualified precoding codebooks from a set.
  • the determined precoding matrix W is the first precoding matrix W1 and the second pre The Kronecker product of the coding matrix W2:
  • W1 is a matrix of m1 rows and m2 columns
  • W2 is a matrix of n1 rows and n2 columns
  • the finally determined matrix W is a matrix of m1 ⁇ n1 rows and m2 ⁇ n2 columns.
  • one dimension of W should be 16, for the base station to pre-code the signal that needs to be transmitted, and for the pre-coding on the UE side. Therefore, there should be a value of 16 in m1 ⁇ n1 and m2 ⁇ n2.
  • the number of rows of the first precoding submatrix is 2 and the number of rows of the second precoding submatrix is 8; or the number of columns of the first precoding submatrix is 8 and the second precoding substring
  • the number of columns in the matrix is 2. It should be understood that the present invention claims various In case of deformation, for example or or Etc., for In the case, as described above, the dimensions of the columns of the two matrices are 2 and 8, respectively, or the dimensions of the rows are 2 and 8, respectively, and the final pre-coding matrix W is determined to conform to one of the dimensions of 16, so that The signal can be precoded or deprecoded using a transposition of W or W.
  • the present invention is not limited to after determining W, and adding other operational steps before precoding or precoding decoding the matrix, for example, selecting a number of vectors of length 16 from W to form a matrix W', The W' pre-coding is then utilized. It should be understood that variations of the various formulas that embody the inventive concepts are within the scope of the invention.
  • the precoding matrix set it should be a final choice range, ie if the set ⁇ W ⁇ A contains the satisfaction relationship except or Element V, however, in the process of finalizing the precoding matrix, V is excluded by any other condition, then the code matrix set should not be the final element of ⁇ W ⁇ A. Therefore, if there is a set ⁇ W ⁇ A of the element V, and then by some conditional filtering, it is determined that ⁇ W ⁇ A 'satisfies only one of the number of rows or the number of columns is 8 or 2, then the ⁇ W ⁇ A belongs to the present The scope of protection of the invention.
  • V 1 there is an element V 1 in the set ⁇ W ⁇ B , and the number of rows or columns of V 1 is neither 2 nor 8, but if V 1 cannot be determined as one of W 1 or W 2 in any case , then the ⁇ W ⁇ B is not the precoding matrix, but should be ⁇ W ⁇ B' , and any element of the ⁇ W ⁇ B' is determined by measurement as the W 1 or The W 2 is also within the scope of protection of the present invention.
  • the first precoding submatrix is a first direction precoding matrix and the second precoding submatrix is a second direction precoding submatrix, or: the first precoding submatrix is The second direction pre-codes the sub-code matrix and the second pre-coding sub-matrix is a first direction pre-coding sub-matrix.
  • a precoding matrix may be composed of two precoding sub-matrices.
  • two sub-matrices may be respectively composed of the first pre-coding sub-matrix and the second pre-coding sub-matrix, and may be constructed in the form of a product or Others are constructed in a manner consistent with their antenna port precoding matrix model, such as the form of the Kronecker product.
  • the precoding sub-matrices can have different physical meanings. According to its physical meaning, the codebook size of different dimensions can be determined.
  • each precoding matrix can correspond to the orientation of two antenna ports, where each direction can correspond to a precoding sub-matrix.
  • the configuration of the antenna port can be configured differently in different directions. In other words, each configuration can be regarded as a configuration for different placement forms.
  • Figures 2a, 2b, 2c, 2d show the form of the basic configuration of the 16 antenna port.
  • the configuration manner of the 16 antenna ports includes any one of the following:
  • Two antenna ports are configured in the first direction and eight antenna ports are configured in the second direction;
  • antenna ports are configured in the first direction and 2 antenna ports are configured in the second direction;
  • 16 antenna ports are arranged in the first direction and 1 antenna port are arranged in the second direction.
  • the precoding matrix may be determined by a first direction precoding matrix and a second direction precoding matrix, where the first direction precoding matrix corresponds to a configuration direction of the first type of antenna port, and the second direction is pre
  • the encoding matrix corresponds to the configuration direction of the second antenna port
  • the first antenna port configuration direction and the second antenna port configuration direction may be physically real configuration directions, or may be a 45° dual-polarized antenna port.
  • one angle is regarded as one of the vertical or horizontal configuration directions
  • the other angle is regarded as the other of the vertical or horizontal configuration directions.
  • the first precoding matrix and the second precoding matrix may be precoding matrices in different directions, for example, the first direction precoding matrix corresponds to the first direction, and the second direction precoding matrix corresponds to the second direction.
  • the first precoding matrix or the second precoding matrix of the same dimension may be determined for the four configurations according to the configuration direction of the antenna port.
  • the first direction precoding matrix is a horizontal direction precoding matrix
  • the second direction precoding matrix is a vertical direction precoding matrix
  • the first direction precoding matrix is a vertical direction precoding matrix.
  • a matrix, the second direction precoding matrix being a horizontal direction precoding matrix.
  • the matrix model of the present invention It can also be further decomposed, that is, the precoding matrix satisfies:
  • W 3 ⁇ W 4 is a matrix having a row number of 2 and the W 2 is a matrix having a row number of 8
  • the W 3 ⁇ W 4 is a matrix having a column number of 2 and the W2 is a column number A matrix of 8.
  • the dimensions of W 3 ⁇ W 4 and W2 may also be exchanged, such as W 3 ⁇ W 4 being a matrix of 8 rows and the W 2 being a matrix of 2 rows, or the W 3 ⁇ W 4 is a matrix having a column number of 8 and the W2 is a matrix having a column number of 2.
  • the first precoding submatrix is a product of a third precoding submatrix and a fourth precoding submatrix; and/or: the second precoding submatrix is a fifth precoding submatrix and a sixth precoding
  • W3 and W4 may be two sub-matrices constituting the first-direction precoding matrix, and W4 may be regarded as a weighting matrix of W3.
  • the specific weighting method can be the same as that of non-3D MIMO.
  • W3 can be used as a long-term broadband characteristic matrix to reflect the long-term broadband characteristics of the antenna port in the first direction.
  • W4 can be used as a short-term narrowband feature matrix to reflect the short-term antenna port in the first direction. Narrowband characteristics. It should be understood that since one dimension of the first precoding submatrix may be 2, and one dimension of the second precoding submatrix may be 8, when the W2 dimension is one of 8 or 2, the product of W3 and W4 should satisfy the dimension. Another one for 8 or 2. Furthermore, the invention claims other embodiments similar to this, for example:
  • the form can be fed back to W3's PMI, W4's PMI, and W2's PMI.
  • W 2 is a matrix having a row number of 8, and the number of rows of W 3 is 2; or, the number of columns of the W 2 is 8, and the number of columns of W 4 is 2; or, W 2 is a matrix of 2 rows, and the number of rows of W 3 is 8; or, the number of columns of W 2 is 2, and the number of columns of W 4 is 8.
  • the number of rows of W 1 is 8, and the number of rows of W 5 is 2; or, the number of columns of W 1 is 8, and the number of columns of W 6 is 2; or, the number of rows of W 1 is 2, the number of rows of W 5 is 8; or, the number of W 1 columns is 2, and the number of columns of W 6 is 8.
  • the number of rows is 2 W 5; or the number of columns is 8 W 4
  • W 6 is the number of columns 2; or, the number of lines 3 W 2, the number of rows of W 5 is 8; or, the number of W 4 columns is 2, and the number of columns of W 6 is 8.
  • a first precoding matrix having a corresponding dimension of 2 and a second precoding matrix having a dimension of 8 are determined in only one codebook set, and may also be two codebook sets, one The dimensions in the codebook set are both 2, and the other codebook set has a dimension of 8, or a plurality of codebook sets, wherein the elements in the plurality of codebook sets are also 2 or 8 elements, but ultimately The determined first precoding matrix dimension is 2, and the second precoding matrix has a dimension of 8.
  • the matrix in the codebook set contains codebooks of other dimensions, these codebooks should not be in the final determination range.
  • the first precoding matrix or the second precoding matrix is obtained in a patchwork form by using an element in a codebook set, but the first precoding matrix dimension that is used to synthesize the precoding matrix is determined to be 2
  • the dimension of the second precoding matrix should be 8.
  • the sending unit 803 is configured to send, to the base station, a precoding matrix indication PMI corresponding to the precoding matrix.
  • the precoding matrix is determined by the determining unit, and the PMI is used to indicate the precoding matrix.
  • the present invention does not limit the feedback manner of the PMI, and the PMI may be a field in a certain signaling or a signaling.
  • the PMI may be multiple, or one PMI, but different parts of the one PMI indicate different precoding matrices.
  • the first 3 bits are used to indicate the first precoding matrix
  • the last 5 bits are used to indicate the PMI of the second precoding matrix.
  • the PMI corresponding to a certain matrix may be a field corresponding to the PMI, or may be a corresponding one. A separate PMI.
  • the determination unit is further configured to determine the number of bits corresponding to the PMI 2 W PMI 1 corresponding to the number of bits and W is; the UE according to the W PMI 1 bit corresponding to and the number of bits corresponding to W PMI 2 W PMI 1 is determined and the W PMI 2; and the transmission unit transmits the W 1 W PMI and PMI 2 to the base station.
  • the number of elements in the precoding sub-matrix set can be extended by flexibly configuring the bits of the PMI.
  • the antenna ports can be expanded in different directions due to different configurations of the antenna ports.
  • the UE device in this embodiment determines the counting manner of different antenna ports in different configurations, so that in the different configurations, a matrix of dimension 8 and a matrix of dimension 2 are determined in the precoding codebook.
  • the value of the PMI is fed back to indicate a precoding matrix, which saves configuration signaling and saves air interface resources.
  • a precoding sub-matrix having a dimension of 8 and a dimension of 2 in the codebook is used, and in addition to the counting effect that can be achieved by the above embodiment, the saving can also be utilized.
  • Resource the number of precoding sub-matrices in the spreading codebook, to achieve more accurate accuracy requirements of the precoding matrix.
  • the number of elements in the extended precoding sub-matrix set is achieved by flexibly configuring the bits of the PMI.
  • the determination unit is further configured to determine the number of bits corresponding to the PMI the PMI W number of bits corresponding to the 1 and W 2 and W according to the number of bits corresponding to the PMI and the 1 The number of bits corresponding to the PMI of W 2 determines the PMI of W 1 and the PMI of the W 2 ;
  • the determination unit is further configured to control the receiving unit receives the base station transmitted the bit indication information, the indication information indicates the bit number of bits corresponding to the PMI and the W 1 At least one of the number of bits corresponding to the PMI of W 2 .
  • Figure 9 shows a method of PMI feedback. It should be understood that the present embodiment can be applied to other various embodiments of the present invention and can be implemented as a single embodiment.
  • the bit determining unit 901 is configured to determine the number of bits corresponding to the PMI of W 1 and the number of bits corresponding to the PMI of the W 2 . It should be understood that the bit determining unit herein may be the determining unit in the embodiment 7 or 8 when the embodiment of FIG. 7 or 8 is combined.
  • the determining process may be a process of receiving a signaling or an indication, or It is a process that is determined based on a reference signal, or it can be a preset process, and the process of determining can be based on some other property.
  • the bit determination unit 901 is further configured to determine the W PMI 1 and W PMI 2 is the number of bits the number of bits of the corresponding W PMI 1 and the corresponding W PMI 2.
  • the bit determining unit 901 can be executed as follows:
  • the bit determining unit determines a number of bits corresponding to the PMI that needs to be fed back in the precoding matrix; the bit determining unit determines the respective PMIs of the feedback according to the precoding matrix;
  • the codebook includes a plurality of precoding sub-matrices, wherein one of the precoding sub-matrices has one dimension of 2 and the other part of the pre-encoding sub-matrix has a dimension of 8. For example with a dimension of 2:
  • the UE determines that a total of 8 bits can be used in the precoding matrix, and 3 of them are used to indicate a matrix with a dimension of 2, then the UE is allocated. Or the UE itself determines that the UE has enough bits to select a precoding sub-matrix corresponding to the measurement result from the eight codebooks A1-A8, and the precoding sub-matrix may correspond to the embodiment shown in FIG. 1 and FIG.
  • the specific determination may be performed by the bit determining unit; however, when the bit determining unit determines that a total of 8 bits can be used in the precoding matrix, only 2 bits are used to indicate that the dimension is 2 Matrix, then, the UE can only indicate one of the four candidate matrices.
  • feedback can be performed according to preset rules, for example, 00, 01, 10, and 11 respectively corresponding to A1, A3, A5, and A7. Although it affects the accuracy, it saves the bit resources of the air interface.
  • a precoding sub-matrix matrix of dimension 2 does not need to be too fine indication, and a precoding submatrix of dimension 8 needs a relatively fine indication, and can be reduced by reducing the precoding submatrix of dimension 2.
  • the number of bits occupied by the PMI increases the granularity of the precoding sub-matrix with a dimension of 8.
  • the precoding sub-matrix matrix of dimension 8 does not need to be too fine indication.
  • the precoding sub-matrix of dimension 2 needs a relatively fine indication
  • the number of bits occupied by the PMI of the precoding sub-matrix of dimension 8 can be reduced. , improve the degree of fineness of the precoding submatrix with a dimension of 2.
  • the determined The precoding matrix more accurately reflects the channel characteristics and achieves the purpose of improving signal strength. Therefore, more bit values need to be used to determine the PMI feedback of the precoding submatrix with dimension 2. For a broad plain scene, more dimension bit values are needed to determine the PMI of the precoding submatrix with a dimension of 8. Feedback.
  • the step 301 and the step 302 may change the order, and the bit determining unit may first determine the PMI that needs to be fed back, and after determining the number of bits of the respective PMIs that are fed back, perform precision adjustment.
  • the PMI that needs to be fed back is determined to be 001, but since the accuracy of the precoding sub-matrix in the direction is not high in the sub-matrix in the other direction, the PMI that needs feedback 00 as the direction may be determined according to a preset rule, and the A1 is used as the A precoding matrix of directions, where A1 and A2 should reflect the characteristics of the channel relatively closely.
  • the number of PMI W PMI bits. 1 and W 2 corresponding to the number of bits may refer W.
  • the bit determining unit can confirm the number of bits occupied by the PMIs corresponding to the plurality of matrices.
  • the number of bits is 8 and the corresponding table is only an example.
  • the present invention also claims feedback of different bit numbers and forms including tables, and other pre-forms such as mapping and formula types.
  • the technical solution is adjusted according to the number of bits.
  • the determining, by the bit determining unit, the number of bits corresponding to the PMI that needs to be fed back in the precoding matrix specifically includes: a bit receiving unit 902, configured to receive a bit indication message sent by the base station, where the bit indication message is used to indicate the The number of bits corresponding to the PMI that needs feedback; or:
  • the bit determining unit determines the number of bits corresponding to the PMI that needs to be fed back according to the measurement.
  • the bit sending unit 903 is configured to send, to the base station, the number of bits corresponding to the PMI that needs to be fed back. Sending the number of bits corresponding to the PMI to the base station.
  • the bit receiving unit and The bit transmitting unit when combined with the embodiment of Fig. 7 or 8, may be a receiving unit and a transmitting unit, respectively.
  • the bit receiving unit may further receive a scenario information, where the scenario information is used to indicate a configuration of different directions corresponding to communications between the current UE and the base station of the UE.
  • the different directions may be a first direction and a second direction, and specifically may be a horizontal direction and a vertical direction, respectively.
  • the bit determining unit determines the number of bits corresponding to the PMI that needs to be fed back, and determines the respective PMIs that are fed back according to the precoding matrix and the number of bits corresponding to the PMI.
  • the technical solution of the example can flexibly adjust the granularity of the bits of the feedback of the PMI, so that the beam fineness in a certain direction can be flexed under the same feedback resource to achieve the purpose of adapting to various scenarios.
  • FIG. 10 is a schematic flowchart of a communication method according to an embodiment of the present invention, and relates to a base station apparatus.
  • the device specifically includes:
  • the sending unit 1001 is configured to send a reference signal to the UE through the 16 antenna ports;
  • the receiving unit 1002 is configured to receive a precoding matrix indication PMI fed back by the UE, where the PMI is determined according to the reference signal sent by the sending unit;
  • the determining unit 1003 is configured to determine, from the precoding matrix set corresponding to the 16 antenna ports, the precoding matrix corresponding to the PMI, where each precoding matrix W in the precoding matrix set satisfies the following relationship: or
  • the W 1 is a first precoding submatrix
  • the W 2 is a second precoding submatrix. a Kronecker product, the number of rows of the first precoding submatrix is 2 and the number of rows of the second precoding submatrix is 8; or the number of columns of the first precoding submatrix is 8 and The number of columns of the second precoding submatrix is 2;
  • the sending unit is further configured to send data to the UE by using the precoding matrix determined by the determining unit.
  • the determining unit determines the corresponding dimension in only one codebook set.
  • the first precoding matrix of 2 and the second precoding matrix of dimension 8 save storage resources and air interface configuration resources.
  • FIG. 11 is a schematic flowchart of a communication method according to an embodiment of the present invention, and relates to a feedback method of a precoding matrix indicating PMI.
  • the method specifically includes:
  • the sending unit 1101 is configured to send a reference signal to the UE by using 16 antenna ports;
  • a determining unit 1102 for determining a scene employing a 16 antenna port.
  • the sending unit further indicates to the UE that the number of the antenna ports is 16.
  • the indication process may be directly indicated by one signaling, or may be the process of indicating the UE in the process of transmitting the reference signal by the sending unit, or configuring the UE before transmitting the reference signal to the UE through the 16 antenna ports. Instructed.
  • the receiving unit 1103 is configured to receive a precoding matrix indication PMI fed back by the UE, where the PMI is determined according to the reference signal sent by the sending unit;
  • the present invention does not limit the feedback manner of the PMI, and the PMI may be a field in a certain signaling or a signaling.
  • the PMI may be multiple, or one PMI, but different parts in the one PMI indicate different precoding sub-matrices, and these precodings
  • the sub-matrix constitutes the pre-coding matrix by a preset rule.
  • the preset rule may be in the form of a product or a Kronecker product. For example, in an 8-bit PMI, the first 3 bits are used to indicate the first precoding matrix, and the last 5 bits are used to indicate the PMI of the second precoding matrix.
  • the first precoding matrix and the second precoding matrix are both precoding sub-matrices. It should be understood that, in various embodiments of the present invention, the PMI corresponding to a certain matrix may be a field corresponding to the PMI, or may correspond to a single PMI.
  • the determination unit for determining the number of bits of the W 1 and W is PMI of the PMI corresponding to 2; according to the receiving unit
  • the PMI of the W 1 and the number of bits of the PMI corresponding to the W 2 receive at least two PMIs fed back by the UE.
  • the feedback resource of the PMI is fixed, the number of elements in the precoding sub-matrix set can be extended by flexibly configuring the bits of the PMI.
  • the determining unit is further configured to determine, from the precoding matrix set corresponding to the 16 antenna ports, the precoding matrix corresponding to the PMI, where each precoding matrix W in the precoding matrix set satisfies the following relationship: or
  • the W 1 is a first precoding submatrix
  • the W 2 is a second precoding submatrix. a Kronecker product, the number of rows of the first precoding submatrix is 2 and the number of rows of the second precoding submatrix is 8; or the number of columns of the first precoding submatrix is 8 and The number of columns of the second precoding submatrix is 2;
  • the sending unit is further configured to send data to the UE by using the precoding matrix determined by the determining unit.
  • the number of the PMIs is at least two, and the determining unit determines the precoding matrix corresponding to the at least two PMIs from the precoding matrix set corresponding to the 16 antenna ports, including: the determining unit according to the first The PMI of the precoding submatrix and the PMI of the second precoding submatrix determine the first precoding submatrix and the second precoding submatrix; the determining unit according to the first precoding submatrix and the second The precoding submatrix determines the precoding matrix.
  • the precoding matrix set herein may also be an integration of multiple sets, or determine a set of qualified precoding codebooks from a set.
  • the determined precoding matrix W is the Kronecker product of the first precoding matrix W1 and the second precoding matrix W2:
  • W1 is a matrix of m1 rows and m2 columns
  • W2 is a matrix of n1 rows and n2 columns
  • the finally determined matrix W is a matrix of m1 ⁇ n1 rows and m2 ⁇ n2 columns.
  • one dimension of W should be 16, for the base station to pre-code the signal that needs to be transmitted, and for the pre-coding on the UE side. Therefore, there should be a value of 16 in m1 ⁇ n1 and m2 ⁇ n2.
  • the number of rows of the first precoding submatrix is 2 and the number of rows of the second precoding submatrix is 8; or the number of columns of the first precoding submatrix is 8 and the second precoding substring
  • the number of columns in the matrix is 2. It should be understood that the present invention claims various In case or Deformation, for example or or Etc., for In the case, as described above, the dimensions of the columns of the two matrices are 2 and 8, respectively, or the dimensions of the rows are 2 and 8, respectively, and the final pre-coding matrix W is determined to conform to one of the dimensions of 16, so that The signal can be precoded using a transposition of W or W.
  • the present invention is not limited to determining the W, and adding other operational steps before precoding the matrix, for example, selecting a number of vectors of length 16 from W to form a matrix W', and then Using the W' precoding. It should be understood that variations of the various formulas that embody the inventive concepts are within the scope of the invention.
  • the precoding matrix set it should be a final choice range, ie if the set ⁇ W ⁇ A contains the satisfaction relationship except or Element V, however, in the process of finalizing the precoding matrix, V is excluded by any other condition, then the code matrix set should not belong to the final element of ⁇ W ⁇ A. Therefore, if there is a set ⁇ W ⁇ A of the element V, and then by some conditional filtering, it is determined that ⁇ W ⁇ A 'satisfies only one of the number of rows or the number of columns is 8 or 2, then the ⁇ W ⁇ A belongs to the present The scope of protection of the invention.
  • V 1 there is an element V 1 in the set ⁇ W ⁇ B , and the number of rows or columns of V 1 is neither 2 nor 8, but if V 1 cannot be determined as one of W 1 or W 2 in any case , then the ⁇ W ⁇ B is not the precoding matrix, but should be ⁇ W ⁇ B' , and any element of the ⁇ W ⁇ B' is determined by measurement as the W 1 or The W 2 is also within the scope of protection of the present invention.
  • the first precoding submatrix is a first direction precoding matrix and the second precoding submatrix is a second direction precoding submatrix, or: the first precoding submatrix is The second direction pre-codes the sub-code matrix and the second pre-coding sub-matrix is a first direction pre-coding sub-matrix.
  • a precoding matrix may be composed of two precoding sub-matrices.
  • two sub-matrices may be respectively composed of the first pre-coding sub-matrix and the second pre-coding sub-matrix, and may be constructed in the form of a product or Others are constructed in a manner consistent with their antenna port precoding matrix model, such as the form of the Kronecker product.
  • the precoding sub-matrices can have different physical meanings. According to its physical meaning, the determining unit can determine the codebook size of different dimensions. For example, for 3D MIMO, each precoding matrix can correspond to the orientation of two antenna ports, where each direction can correspond to a precoding sub-matrix.
  • the configuration of the antenna port can be configured differently in different directions.
  • each configuration can be regarded as a configuration for different placement forms.
  • the basic configuration of the 16-antenna port can be given with reference to FIG. 2a, 2b, 2c, and 2d. It has been described in detail in the embodiment shown in FIG. 2, and details are not described herein again.
  • the configuration manner of the 16 antenna ports includes any one of the following:
  • Two antenna ports are configured in the first direction and eight antenna ports are configured in the second direction;
  • antenna ports are configured in the first direction and 2 antenna ports are configured in the second direction;
  • 16 antenna ports are arranged in the first direction and 1 antenna port are arranged in the second direction.
  • the precoding matrix may be determined by a first direction precoding matrix and a second direction precoding matrix, where the first direction precoding matrix corresponds to a configuration direction of the first type of antenna port, and the second direction is pre
  • the coding matrix corresponds to a configuration direction of the second antenna port, and the first antenna port configuration
  • the direction and the second antenna port configuration direction may be a physically real configuration direction, or may be a 45° dual-polarized antenna port, which is regarded as a vertical or horizontal configuration direction of one angle, and another One angle is seen as the other of the vertical or horizontal configuration directions.
  • the first precoding matrix and the second precoding matrix may be precoding matrices in different directions, for example, the first direction precoding matrix corresponds to the first direction, and the second direction precoding matrix corresponds to the second direction.
  • the first precoding matrix or the second precoding matrix of the same dimension may be determined for the four configurations according to the configuration direction of the antenna port.
  • the first direction precoding matrix is a horizontal direction precoding matrix
  • the second direction precoding matrix is a vertical direction precoding matrix
  • the first direction precoding matrix is a vertical direction precoding matrix.
  • a matrix, the second direction precoding matrix being a horizontal direction precoding matrix.
  • the matrix model of the present invention It can also be further decomposed, that is, the precoding matrix satisfies:
  • W 3 ⁇ W 4 is a matrix having a row number of 2 and the W 2 is a matrix having a row number of 8
  • the W 3 ⁇ W 4 is a matrix having a column number of 2 and the W2 is a column number A matrix of 8.
  • the dimensions of W 3 ⁇ W 4 and W2 herein may also be exchanged, such as W 3 ⁇ W 4 being a matrix of 8 rows and the W 2 being a matrix of 2 rows, or the W 3 ⁇ W 4 is a matrix having a column number of 8 and the W 2 is a matrix having a column number of 2.
  • the first precoding submatrix is a product of a third precoding submatrix and a fourth precoding submatrix; and/or: the second precoding submatrix is a fifth precoding submatrix and a sixth precoding
  • W3 and W4 may be two sub-matrices constituting the first-direction precoding matrix, and W4 may be regarded as a weighting matrix of W3.
  • the specific weighting method can be the same as that of non-3D MIMO.
  • W3 can be used as a long-term broadband characteristic matrix to reflect the long-term broadband characteristics of the antenna port in the first direction.
  • W4 can be used as a short-term narrowband feature matrix to reflect the short-term antenna port in the first direction. Narrowband characteristics. It should be understood that since one dimension of the first precoding submatrix may be 2, and one dimension of the second precoding submatrix may be 8, when the W2 dimension is one of 8 or 2, the product of W3 and W4 should satisfy the dimension. Another one for 8 or 2. Furthermore, the invention claims other embodiments similar to this, for example:
  • the receiving unit receives the PMI of the W3, the PMI of the W4, and the PMI of the W2 fed back by the UE.
  • the W 2 is a matrix having a row number of 8, and the number of rows of W 3 is 2; or, the number of columns of the W 2 is 8, and the number of columns of W 4 is 2; or, W 2 is a matrix of 2 rows, and the number of rows of W 3 is 8; or, the number of columns of W 2 is 2, and the number of columns of W 4 is 8.
  • the number of rows of W 1 is 8, and the number of rows of W 5 is 2; or, the number of columns of W 1 is 8, and the number of columns of W 6 is 2; or, the number of rows of W 1 is 2, the number of rows of W 5 is 8; or, the number of W 1 columns is 2, and the number of columns of W 6 is 8.
  • the number of rows is 2 W 5; or the number of columns is 8 W 4
  • W 6 is the number of columns 2; or, the number of lines 3 W 2, the number of rows of W 5 is 8; or, the number of W 4 columns is 2, and the number of columns of W 6 is 8.
  • a first precoding matrix having a corresponding dimension of 2 and a second precoding matrix having a dimension of 8 are determined in only one codebook set, and may also be two codebook sets, one The dimensions in the codebook set are all 2, and the other codebook set has a dimension of 8, or a plurality of codebook sets, wherein the elements in the plurality of codebook sets are also elements of 2 or 8, but
  • the first precoding matrix dimension finally determined by the determining unit is 2, and the dimension of the second precoding matrix is 8.
  • the matrix in the codebook set contains codebooks of other dimensions, these codebooks should not be in the final determination range.
  • the first precoding matrix or the second precoding matrix is obtained in a patchwork form by using an element in a codebook set, but the first precoding matrix dimension that is finally used to synthesize the precoding matrix is determined to be 2.
  • the dimension of the second precoding matrix should be 8.
  • a precoding sub-matrix having a dimension of 8 and a dimension of 2 in the codebook is used, and in addition to the counting effect that can be achieved by the above embodiment, the saving can also be utilized.
  • Resource the number of precoding sub-matrices in the spreading codebook, to achieve more accurate accuracy requirements of the precoding matrix.
  • the number of elements in the extended precoding sub-matrix set is achieved by flexibly configuring the bits of the PMI.
  • the determination unit is further configured to determine the number of bits of the PMI W PMI 1 and W 2 corresponding; corresponding to the receiving unit is further configured in accordance with the corresponding PMI W 1 and W 2 of The number of bits of the PMI receives the PMI of the W 1 and the PMI of the W 2 fed back by the UE.
  • the determination unit is further for controlling the transmission unit transmits the indication information bits to the UE, the information bits indicating the number of bits for indicating a PMI. 1 W and the corresponding W At least one of the number of bits corresponding to the PMI of 2 .
  • Figure 12 shows a base station. It should be understood that the present embodiment can be applied to other various embodiments of the present invention, such as FIG. 10, FIG. 11, and can also be implemented as a separate embodiment.
  • Bit determining unit 1201 for determining the number of bits of the PMI and PMI W is W 1 corresponding to 2;
  • the determining process may be a process of receiving signaling or indication from another network device, such as a core network element or other base station, or a process determined according to channel characteristics, or may be a preset. The process can also be determined based on certain other properties.
  • Bit receiving unit 1202 configured to receive feedback UE according to the number of bits corresponding to a PMI W 1 and W 2 corresponding to the PMI and the W PMI 1 of the W PMI 2.
  • bit determining unit may be the determining unit
  • bit receiving unit may be the receiving unit
  • Bit determination unit 2 determines the number of bits corresponding to the PMI W PMI 1 corresponding to the number of bits and W is; UE receiving unit receives the bit number of bits of the feedback PMI and W2 W1 corresponding to at least two PMI PMI;
  • the codebook includes a plurality of precoding sub-matrices, wherein one of the precoding sub-matrices has one dimension of 2 and the other part of the pre-encoding sub-matrix has a dimension of 8. For example with a dimension of 2:
  • the bit determining unit determines that a total of 8 bits can be used in the precoding matrix, wherein 3 bits are used to indicate a matrix with a dimension of 2, then the base station is illustrated.
  • the UE is allocated enough bits to select the precoding sub-matrix corresponding to the measurement result from the 8 codebooks A1-A8. This allocation process can be completed by the bit determining unit or an allocating unit.
  • the precoding submatrix may correspond to the first precoding submatrix in the embodiment shown in FIG. 1 and FIG.
  • the bit determining unit determines that a total of 8 bits can be used in the precoding matrix, only 2 bits are used for indicating A matrix of dimension 2, then, after the base station notifies the UE, the UE can only determine one of the four candidate matrices. In this case, according to preset rules, for example, it is determined that 00, 01, 10, and 11 respectively correspond to A1 and A3. A5, A7 performs feedback. Although this method affects the accuracy, the bit resources of the air interface are saved.
  • the notification may be completed by one bit sending unit, but when combined with FIG. 10 and FIG. 11, it may be completed by the sending unit. .
  • a precoding sub-matrix matrix of dimension 2 does not need to be too fine indication, and a precoding submatrix of dimension 8 needs a relatively fine indication, and can be reduced by reducing the precoding submatrix of dimension 2.
  • the number of bits occupied by the PMI increases the granularity of the precoding sub-matrix with a dimension of 8.
  • the precoding sub-matrix matrix of dimension 8 does not need to be too fine indication.
  • the precoding sub-matrix of dimension 2 needs a relatively fine indication
  • the number of bits occupied by the PMI of the precoding sub-matrix of dimension 8 can be reduced. , improve the degree of fineness of the precoding submatrix with a dimension of 2.
  • the determined The precoding matrix more accurately reflects the channel characteristics and achieves the purpose of improving signal strength. Therefore, more bit values need to be used to determine the PMI feedback of the precoding submatrix with dimension 2. For a broad plain scene, more dimension bit values are needed to determine the PMI of the precoding submatrix with a dimension of 8. Feedback. It should be understood that, in general, the number of bits is adjusted by the base station, but the base station may receive the bit allocation message of the UE, and negotiate the number of bits with the base station.
  • the number of PMI W PMI bits. 1 and W 2 corresponding to the number of bits may refer W. 1 and W 2 each of the PMI, the W 1 and W 2 in the same situation a PMI of different fields, means Is the case where the bits are allocated for W 1 and W 2 .
  • W 1 in other embodiments may be further determined as the other two matrix representations or W 2 may be further determined as the other two matrix representations, the bits The determining unit can confirm the number of bits occupied by the PMI corresponding to the plurality of matrices.
  • the number of bits is 8 and the corresponding table is only an example.
  • the present invention also claims feedback of different bit numbers and forms including tables, and other pre-forms such as mapping and formula types.
  • the technical solution is adjusted according to the number of bits.
  • the indication message can come from a UE or other network device.
  • the bit determining unit determines a number of bits corresponding to the PMI of the W 1 and a number of bits corresponding to the PMI of the W 2 .
  • the bit determination unit may also determine a context information, the context information indicative of the number of bits required to be fed to the base of the W PMI 1 corresponding to the number of bits corresponding to W PMI 2.
  • the different directions may be a first direction and a second direction, and specifically may be a horizontal direction and a vertical direction, respectively.
  • Embodiment illustrated by FIG. 12 embodiment the base station by determining a number of bits corresponding to the PMI 2 W PMI 1 corresponding to the number of bits of the W, the respective receiving the PMI feedback, technical solutions of the embodiments of the present invention can be flexibly adjusted
  • the granularity of the bits of the feedback of the PMI enables the beam to be refined in a certain direction under the same feedback resource to achieve the purpose of adapting to various scenarios.
  • Figure 13 is a flow chart of a feedback method of a PMI of the present invention.
  • Step 1301 the base station determines the number of bits and the number of bits of the W PMI 1 W PMI corresponding corresponding 2; This step may be determined by the determining unit of the base station;
  • Step 1302 the base station transmits the indication information bits to the UE, the information bits indicating the number of bits corresponding to the PMI indicating the number of bits corresponding to a PMI W 1 and W 2 of said at least one of .
  • the step may be determined by a sending unit of the base station;
  • Step 1303 the UE receives the base station transmits indication information bits, the bits indicating the number of bits used to indicate the number of information bits and the W PMI corresponding to the W PMI 1 2 corresponding to at least one.
  • the step may be the sending step performed by the sending unit of the UE;
  • the base station may determine a sending mode before sending the bit indication information to the UE, and the manner of determining the sending mode may be indicated by a signaling. Then send a bit indication message.
  • the bit indication information may indicate different PMIs in different forms, and the present invention provides the following embodiments:
  • the transmission mode determines the total number of bits occupied by the PMI.
  • the bit indication information may indicate one of the number of bits of the PMI of the W 1 or the number of bits in the PMI of the W 2 ;
  • the transmission mode determines a number of bits of the PMI of the W 1 or a fixed number of bits of the number of bits in the P 2 of the W 2 , in which case the bit indication information may indicate the W 1 The other of the number of bits of the PMI or the number of bits in the PMI of the W 2 .
  • Step 1304 the UE determines the number of bits and the number of bits of the W PMI 1 W PMI corresponding corresponding 2; This step may be completed determination unit UE said determining step;
  • Step 1305 the UE determines the W PMI 1 and W PMI 2 is the number of bits the number of bits corresponding to W PMI 1 and the corresponding W PMI 2; This step may be completed transmission unit UE Said sending step;
  • Step 1306 the base station receives the UE feeds back according to the number of bits of the PMI the PMI corresponding W 1 and W 2 corresponding to the W PMI 1 and the W PMI 2; this step may be the receiving means of the base station is completed The sending step.
  • FIG. 14 shows still another system embodiment of the present invention, which relates to a terminal device and a base station, and specifically includes:
  • the base station sends a reference signal to the UE, where the number of antenna ports that the base station sends the reference signal is 8;
  • the UE receives the reference signal.
  • the UE determines a value of a rank indication.
  • the UE determines, according to the reference signal and the rank indication, a PMI corresponding to a precoding matrix from a first codebook, where the first codebook is:
  • PMI 1 may be i 1
  • PMI2 may be i2
  • the value of K is 8 and the value of L is 4.
  • the UE sends the PMI to the base station.
  • the base station receives a value of the PMI.
  • the base station determines the precoding matrix according to the value of the PMI.
  • the present invention does not limit the order, the integration, splitting, and modification of the steps in the logical steps.
  • the device embodiment of the present invention may be in the form of various physical devices, for example, the present invention.
  • the transmitting unit may be a transmitter, or an antenna or an antenna system
  • the receiving unit may be a receiver, or an antenna or an antenna system
  • the transmitter and the receiver It can be a transceiver or it can be combined into one antenna or antenna system.
  • the determining unit may be one or more processors.
  • the codebook, signaling or preset rules of the present invention or other content that needs to be stored may be stored in a storage unit, and may be embodied in the form of a memory.
  • the processor may be a general-purpose processor, such as a general-purpose central processing unit (CPU), a network processor (NP Processor, NP for short, a microprocessor, etc., or an application-specific integrated circuit (application-specific integrated circuit). ASIC), or one or more integrated circuits for controlling the execution of the program of the present invention. It can also be a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware components. It is also possible for multiple processors to perform different functions.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • a program for executing the technical solution of the present invention is stored in the memory, and an operating system and other applications can also be saved.
  • the program can include program code, the program code including computer operating instructions.
  • the memory may be a read-only memory (ROM), other types of static storage devices that can store static information and instructions, random access memory (RAM), and storable information. And other types of dynamic storage devices, disk storage, and so on. It can also be a different memory storage.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a computer.
  • computer readable media may comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, disk storage media or other magnetic storage device, or can be used for carrying or storing in the form of an instruction or data structure.
  • connection may suitably be a computer readable medium.
  • the software is transmitted from a website, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave
  • coaxial cable , fiber optic cable, twisted pair, DSL or such as infrared, wireless and microwave Wireless technologies such as those included in the fixing of the associated medium.
  • a disk and a disc include a compact disc (CD), a laser disc, a compact disc, a digital versatile disc (DVD), a floppy disk, and a Blu-ray disc, wherein the disc is usually magnetically copied, and the disc is The laser is used to optically replicate the data. Combinations of the above should also be included within the scope of the computer readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

在16天线端口的3D MIMO场景下,由于天线端口的不同配置方式,可以在各个不同的方向进行扩展。本实施例在不同配置下确定不同的天线端口的计数方式,使得所述不同配置下均在预编码码本中确定一个维度为8的矩阵,和一个维度为2的矩阵,并反馈所述PMI的值以指示预编码矩阵,达到节省配置信令和节约空口资源的效果。

Description

一种预编码矩阵指示PMI的反馈方法 技术领域
本发明涉及无线通信技术领域,尤其涉及一种广播通信方法及用户设备。
背景技术
长期演进(Long Term Evolution,LTE)技术是由第三代合作伙伴计划(The3rd Generation Partnership Project,3GPP)组织制定的通用移动通信系统(Universal Mobile Telecommunications System,UMTS)技术标准的长期演进,LTE系统引入了多输入多输出(Multi-Input&Multi-Output,MIMO)等关键传输技术,显著增加了频谱效率和数据传输速率。通过发射预编码技术和接收合并技术,基于MIMO的无线通信系统可以得到分集和阵列增益。基于MIMO的无线通信系统需要对信号进行预编码处理,基于预编码的信号传输函数可以表示为:
Figure PCTCN2014095931-appb-000001
其中,y是接收信号矢量,H是信道矩阵,
Figure PCTCN2014095931-appb-000002
是预编码矩阵,s是发射信号矢量,n是测量噪声,发射信号矢量s在发射端经过预编码矩阵
Figure PCTCN2014095931-appb-000003
进行预编码,得到预编码后的矩阵,经过信道模型矩阵H,再经过测量噪声n的叠加,在接收端接收到接收信号矢量y。
实现最优预编码通常需要发射机预先获得信道状态信息(Channel State Information,CSI)。发射机和接收机可以分别是基站设备或终端设备。在下行数据传输过程中,发射机可以是基站设备,接收机可以是终端设备。常用的方法是终端设备对瞬时CSI进行量化并报告给基站。
终端报告的CSI信息包括秩指示(Rank Indicator,RI)、预编码矩阵指示(Precoding Matrix Indicator,PMI)和信道质量指示(Channel Quality Indicator,CQI)信息等,其中,RI可以用于指示数据传输所使用的传输层数和预编码矩阵
Figure PCTCN2014095931-appb-000004
PMI可以用于指示数据传输所使用的预编码矩阵
Figure PCTCN2014095931-appb-000005
在这里,可以PMI可以先确定一个预编码矩阵V,再根据RI或确定的规则指示
Figure PCTCN2014095931-appb-000006
在3D MIMO(3Dimension MIMO)的某些场景中,在一个载波下,需要反馈2个预编码矩阵的PMI,分别指示垂直方向预编码矩阵和水平方向预编码矩阵。预编码矩阵可以由垂直方向预编码矩阵和水平方向预编码矩阵的克罗内克积(Kronecker Product)表示。预编码矩阵V1可如下表示:
Figure PCTCN2014095931-appb-000007
其中,
Figure PCTCN2014095931-appb-000008
表示Kronecker Product。矩阵V1的大小由垂直方向预编码矩阵A的行列数和水平方向预编码矩阵B的行列数确定。这里的A也可以是水平方向预编码矩阵,相应的,B是垂直方向预编码矩阵。
通常,A与B的维度是由天线端口数决定的,在选择码本的过程中,需要根据天线端口的分布情况,进一步确定预编码矩阵集合。用户设备和基站会针对不同的天线端口配置方式确定不同的码本集合。UE或基站需要存储不同的码本集合,导致了存储资源的浪费。
发明内容
本发明实施例提供了一种预编码矩阵指示的反馈方法、用户设备和基站,克服了对于不同的天线端口配置都需要确定不同的码本的问题,节省了存储资源。第一方面,本发明实施例提供了一种预编码矩阵指示PMI的反馈方法,其特征在于:用户设备UE接收参考信号;所述UE确定基站用于发射所述参考信号的天线端口的个数为16;所述UE从16天线端口对应的预编码矩阵集合中确定预编码矩阵,其中,所述预编码矩阵集合中的每个预编码矩阵W满足如下关系:
Figure PCTCN2014095931-appb-000009
Figure PCTCN2014095931-appb-000010
所述W1为第一预编码子矩阵,所述W2为第二预编码子矩阵,
Figure PCTCN2014095931-appb-000011
表示克罗内克积,所述第一预编码子矩阵的行数为2且所述第二预编码子矩阵的行数为8;或所述第一预编码子矩阵的列数为8且所述第二预编码子矩阵的列数为2;所述UE向基站发送所述预编码矩阵对应的预编码矩阵指示PMI。
在第一方面的第一种可能的实现方式中,所述UE从预编码矩阵集合中确定 预编码矩阵,包括所述UE从所述预编码矩阵集合中确定所述第一预编码子矩阵和所述第二预编码子矩阵所述UE根据所述第一预编码子矩阵和所述第二预编码子矩阵确定所述预编码矩阵。
结合第一方面,或者第一方面第一种可能的实现方式,在第二种可能的实现方式中,所述第一预编码子矩阵为第一方向预编码矩阵且所述第二预编码子矩阵为第二方向预编码子矩阵,或所述第一预编码子矩阵为第二方向预编子码矩阵且所述第二预编码子矩阵为第一方向预编码子矩阵。
结合第一方面第二种可能的实现方式,在第三种可能的实现方式中,所述16个天线端口的配置方式包括如下任一种:
第一方向配置2个天线端口且第二方向配置8个天线端口;
第一方向配置4个天线端口且第二方向配置4个天线端口;
第一方向配置8个天线端口且第二方向配置2个天线端口;
第一方向配置16个天线端口且第二方向配置1个天线端口。
结合第一方面第三种可能的实现方式,在第四种可能的实现方式中,所述第一方向预编码矩阵为水平方向预编码矩阵,所述第二方向预编码矩阵为垂直方向预编码矩阵,或所述第一方向预编码矩阵为垂直方向预编码矩阵,所述第二方向预编码矩阵为水平方向预编码矩阵。
结合第一方面,或者第一方面第一至第四种任意一种可能的实现方式,在第五种可能的实现方式中,所述第一预编码子矩阵为第三预编码子矩阵和第四预编码子矩阵的乘积;和/或所述第二预编码子矩阵为第五预编码子矩阵和第六预编码子矩阵的乘积。
结合第一方面,或者第一方面第一至第五种任意一种可能的实现方式,在第六种可能的实现方式中,包括所述UE确定所述W1的PMI对应的比特数和所述W2的PMI对应的比特数;所述UE根据所述W1的PMI对应的比特数和所述W2的PMI对应的比特数确定W1的PMI和所述W2的PMI;所述UE向所述基站发送所述预编码矩阵对应的预编码矩阵指示PMI,包括:向所述基站发送W1的PMI和所述W2的PMI。
结合第一方面第六种可能的实现方式,在第七种可能的实现方式中,所述UE确定所述W1的PMI对应的比特数和所述W2的PMI对应的比特数,包括:
所述UE接收所述基站发送的比特指示信息,所述比特指示信息用于指示所述W1的PMI对应的比特数和所述W2的PMI对应的比特数中的至少一个。
第二方面,本发明实施例提供了一种预编码矩阵指示PMI的反馈方法,其特征在于:基站通过16个天线端口向UE发送参考信号;所述基站接收所述UE反馈的预编码矩阵指示PMI;所述基站从16天线端口对应的预编码矩阵集合中确定所述PMI对应的预编码矩阵,其中,所述预编码矩阵集合中的每个预编码矩阵W满足如下关系:
Figure PCTCN2014095931-appb-000012
Figure PCTCN2014095931-appb-000013
所述W1为第一预编码子矩阵,所述W2为第二预编码子矩阵,
Figure PCTCN2014095931-appb-000014
表示克罗内克积,所述第一预编码子矩阵的行数为2且所述第二预编码子矩阵的行数为8;或所述第一预编码子矩阵的列数为8且所述第二预编码子矩阵的列数为2;所述基站使用所述预编码矩阵向所述UE发送数据。
在第二方面的第一种可能的实现方式中,所述PMI的数量至少为2个;所述基站从16天线端口对应的预编码矩阵集合中确定所述预编码矩阵,包括所述基站根据第一预编码子矩阵的PMI和第二预编码子矩阵的PMI确定所述第一预编码子矩阵和第二预编码子矩阵所述基站根据所述第一预编码子矩阵和所述第二预编码子矩阵确定所述预编码矩阵。
结合第二方面,或者第二方面第一种可能的实现方式,在第二种可能的实现方式中,所述第一预编码子矩阵为第一方向预编码矩阵且所述第二预编码子矩阵为第二方向预编码子矩阵,或所述第一预编码子矩阵为第二方向预编子码矩阵且所述第二预编码子矩阵为第一方向预编码子矩阵。
结合第二方面第二种可能的实现方式,在第三种可能的实现方式中,所述16个天线端口的配置方式包括如下任一种:
第一方向配置2个天线端口且第二方向配置8个天线端口;
第一方向配置4个天线端口且第二方向配置4个天线端口;
第一方向配置8个天线端口且第二方向配置2个天线端口;
第一方向配置16个天线端口且第二方向配置1个天线端口。
结合第二方面第三种可能的实现方式,在第四种可能的实现方式中,所述第一方向预编码矩阵为水平方向预编码矩阵,所述第二方向预编码矩阵为垂直方向预编码矩阵,或所述第一方向预编码矩阵为垂直方向预编码矩阵,所述第二方向 预编码矩阵为水平方向预编码矩阵。
结合第二方面,或者第二方面第一至第四种任意一种可能的实现方式,在第五种可能的实现方式中,所述第一预编码子矩阵为第三预编码子矩阵和第四预编码子矩阵的乘积;和/或所述第二预编码子矩阵为第五预编码子矩阵和第六预编码子矩阵的乘积。
结合第二方面,或者第二方面第一至第五种任意一种可能的实现方式,在第六种可能的实现方式中,包括所述基站确定所述W1的PMI对应的比特数和所述W2的PMI对应的比特数;所述基站根据所述W1对应的PMI和W2对应的PMI的比特数接收UE反馈的所述W1的PMI和所述W2的PMI。
结合第二方面第六种可能的实现方式,在第七种可能的实现方式中,还包括:所述基站向所述UE发送所述比特指示信息,所述比特指示信息用于指示所述W1的PMI对应的比特数和所述W2的PMI对应的比特数中的至少一个。
第三方面,本发明实施例提供了一种用户设备UE,其特征在于:接收单元,用于接收参考信号;确定单元,用于确定基站用于发射所述参考信号的天线端口的个数为16,从16天线端口对应的预编码矩阵集合中确定预编码矩阵,其中,所述参考信号是所述接收单元接收的,所述预编码矩阵集合中的每个预编码矩阵W满足如下关系:
Figure PCTCN2014095931-appb-000015
Figure PCTCN2014095931-appb-000016
所述W1为第一预编码子矩阵,所述W2为第二预编码子矩阵,
Figure PCTCN2014095931-appb-000017
表示克罗内克积,所述第一预编码子矩阵的行数为2且所述第二预编码子矩阵的行数为8;或所述第一预编码子矩阵的列数为8且所述第二预编码子矩阵的列数为2;发送单元,用于向基站发送所述预编码矩阵对应的预编码矩阵指示PMI,所述预编码矩阵是所述确定单元确定的。
在第三方面的第一种可能的实现方式中,所述确定单元用于从预编码矩阵集合中确定预编码矩阵,包括:从所述预编码矩阵集合中确定所述第一预编码子矩阵和所述第二预编码子矩阵;以及根据所述第一预编码子矩阵和所述第二预编码子矩阵确定所述预编码矩阵。
结合第三方面,或者第三方面第一种可能的实现方式,在第二种可能的实现方式中,所述第一预编码子矩阵为第一方向预编码矩阵且所述第二预编码子矩阵为第二方向预编码子矩阵;或所述第一预编码子矩阵为第二方向预编子码矩阵且所述第二预编码子矩阵为第一方向预编码子矩阵。
结合第三方面第二种可能的实现方式,在第三种可能的实现方式中,所述16个天线端口的配置方式包括如下任一种:
第一方向配置2个天线端口且第二方向配置8个天线端口;
第一方向配置4个天线端口且第二方向配置4个天线端口;
第一方向配置8个天线端口且第二方向配置2个天线端口;
第一方向配置16个天线端口且第二方向配置1个天线端口。
结合第三方面第三种可能的实现方式,在第四种可能的实现方式中,所述第一方向预编码矩阵为水平方向预编码矩阵,所述第二方向预编码矩阵为垂直方向预编码矩阵,或:所述第一方向预编码矩阵为垂直方向预编码矩阵,所述第二方向预编码矩阵为水平方向预编码矩阵。
结合第三方面,或者第三方面第一至第四种任意一种可能的实现方式,在第五种可能的实现方式中,所述第一预编码子矩阵为第三预编码子矩阵和第四预编码子矩阵的乘积;和/或:所述第二预编码子矩阵为第五预编码子矩阵和第六预编码子矩阵的乘积。
结合第三方面,或者第三方面第一至第五种任意一种可能的实现方式,在第六种可能的实现方式中,所述确定单元还用于,确定所述W1的PMI对应的比特数和所述W2的PMI对应的比特数,并根据所述W1的PMI对应的比特数和所述W2的PMI对应的比特数确定W1的PMI和所述W2的PMI;
结合第三方面第六种可能的实现方式,在第七种可能的实现方式中,所述确定单元还用于,控制所述接收单元接收所述基站发送的比特指示信息,所述比特指示信息用于指示所述W1的PMI对应的比特数和所述W2的PMI对应的比特数中的至少一个。
第四方面,本发明实施例提供了一种基站装置,其特征在于:
发送单元,用于通过16个天线端口向UE发送参考信号;
接收单元,用于接收所述UE反馈的预编码矩阵指示PMI,所述PMI是根据所述发送单元发送的所述参考信号确定的;
以及确定单元,确定单元,用于从16天线端口对应的预编码矩阵集合中确定所述接收单元接收的所述PMI对应的预编码矩阵,其中,所述预编码矩阵集合中的每个预编码矩阵W满足如下关系:
Figure PCTCN2014095931-appb-000018
Figure PCTCN2014095931-appb-000019
所述W1为 第一预编码子矩阵,所述W2为第二预编码子矩阵,
Figure PCTCN2014095931-appb-000020
表示克罗内克积,所述第一预编码子矩阵的行数为2且所述第二预编码子矩阵的行数为8;或所述第一预编码子矩阵的列数为8且所述第二预编码子矩阵的列数为2;
所述发送单元还用于,使用所述确定单元确定的所述预编码矩阵向所述UE发送数据。
在第四方面的第一种可能的实现方式中,所述PMI的数量至少为2个;所述确定单元还用于从16天线端口对应的预编码矩阵集合中确定所述预编码矩阵,包括:根据第一预编码子矩阵的PMI和第二预编码子矩阵的PMI确定所述第一预编码子矩阵和第二预编码子矩阵;以及根据所述第一预编码子矩阵和所述第二预编码子矩阵确定所述预编码矩阵。
结合第四方面,或者第四方面第一种可能的实现方式,在第二种可能的实现方式中,所述第一预编码子矩阵为第一方向预编码矩阵且所述第二预编码子矩阵为第二方向预编码子矩阵,或:所述第一预编码子矩阵为第二方向预编子码矩阵且所述第二预编码子矩阵为第一方向预编码子矩阵。
结合第四方面第二种可能的实现方式,在第三种可能的实现方式中,所述16个天线端口的配置方式包括如下任一种:第一方向配置2个天线端口且第二方向配置8个天线端口;第一方向配置4个天线端口且第二方向配置4个天线端口;
第一方向配置8个天线端口且第二方向配置2个天线端口;第一方向配置16个天线端口且第二方向配置1个天线端口。
结合第四方面第三种可能的实现方式,在第四种可能的实现方式中,所述第一方向预编码矩阵为水平方向预编码矩阵,所述第二方向预编码矩阵为垂直方向预编码矩阵,或:所述第一方向预编码矩阵为垂直方向预编码矩阵,所述第二方向预编码矩阵为水平方向预编码矩阵。
结合第四方面,或者第四方面第一至第四种任意一种可能的实现方式,在第五种可能的实现方式中,所述第一预编码子矩阵为第三预编码子矩阵和第四预编码子矩阵的乘积;和/或:
所述第二预编码子矩阵为第五预编码子矩阵和第六预编码子矩阵的乘积。
结合第四方面,或者第四方面第一至第五种任意一种可能的实现方式,在第 六种可能的实现方式中,包括:所述确定单元还用于确定所述W1的PMI和W2对应的PMI的比特数;所述接收单元还用于根据所述W1对应的的PMI和W2对应的PMI的比特数接收UE反馈的所述W1的PMI和所述W2的PMI。
结合第四方面第六种可能的实现方式,在第七种可能的实现方式中,所述确定单元还用于,控制所述发送单元向所述UE发送所述比特指示信息,所述比特指示信息用于指示所述W1的PMI对应的比特数和所述W2的PMI对应的比特数中的至少一个。
通过上述方案,本发明实施例通过确定天线端口总数量固定为16天线端口的情况下,改变不同的天线端口配置下采用的码本,以达到节省存储资源和避免增加信令对多个码本进行配置的效果。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种UE侧PMI的反馈方法流程图;
图2为本发明实施例提供的一种UE侧PMI的反馈方法流程图;
图2a为本发明实施例提供的一种天线端口配置结构图;
图2b为本发明实施例提供的一种天线端口配置结构图;
图2c为本发明实施例提供的一种天线端口配置结构图;
图2d为本发明实施例提供的一种天线端口配置结构图;
图3为本发明实施例提供的一种UE侧PMI的反馈方法流程图;
图4为本发明实施例提供的一种基站侧PMI的反馈方法流程图;
图5为本发明实施例提供的一种基站侧PMI的反馈方法流程图;
图6为本发明实施例提供的一种基站侧PMI的反馈方法流程图;
图7为本发明实施例提供的一种实现PMI的反馈的UE装置示意图;
图8为本发明实施例提供的一种实现PMI的反馈的UE装置示意图;
图9为本发明实施例提供的一种实现PMI的反馈的UE装置示意图;
图10为本发明实施例提供的一种实现PMI的反馈的基站装置示意图;
图11为本发明实施例提供的一种实现PMI的反馈的基站装置示意图;
图12为本发明实施例提供的一种实现PMI的反馈的基站装置示意图;
图13为本发明实施例提供的一种实现基站侧与UE侧交互的PMI的反馈方法流程图。
图14为本发明实施例提供的一种实现基站侧与UE侧交互的PMI的反馈方法流程图。
具体实施方式
通常,A与B的维度是由天线端口数决定的,在选择码本的过程中,需要根据天线端口的分布情况,进一步确定预编码矩阵集合。用户设备和网络设备会针对不同的天线端口配置方式确定不同的码本集合。UE或基站需要存储很多每个种类的码本,导致了存储资源的浪费,另一方面,在存储资源一定的情况下,同时存储上述5种码本,又导致UE根据测量的精度不足例如在16天线的场景下,需要配置一个维度是1、2、4、8、16这5个种类的码本集合。这样,基站和/或UE需要存储4个种类的码本,在保证精度的情况下,UE或基站需要存储很多每个种类的码本,导致了存储资源的浪费,另一方面,在存储资源一定的情况下,同时存储上述5种码本,又导致UE根据测量的精度不足。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
应理解,本发明涉及的基站可以但不限于是节点B(NodeB)基站(Base station,BS),接入点(Access Point),发射点(Transmission Point,TP),演进节点B(Evolved Node B,eNB)或者中继(Relay)等;本发明涉及的用户设备UE可以但不限于是包括移动台(Mobile Station,MS)、中继(Relay)、移动电话(Mobile Telephone)、手机(handset)及便携设备(portable equipment)、 移动或非移动终端等。
图1是根据本发明实施例的通信方法的示意性流程图,涉及一种预编码矩阵指示PMI的反馈方法。该方法具体包括:
步骤101,用户设备UE接收参考信号;
步骤102,所述UE确定基站用于发射所述参考信号的天线端口的个数为16;
步骤103,所述UE从16天线端口对应的预编码矩阵集合中确定预编码矩阵,其中,所述预编码矩阵集合中的每个预编码矩阵W满足如下关系:
Figure PCTCN2014095931-appb-000021
Figure PCTCN2014095931-appb-000022
所述W1为第一预编码子矩阵,所述W2为第二预编码子矩阵,
Figure PCTCN2014095931-appb-000023
表示克罗内克积,所述第一预编码子矩阵的行数为2且所述第二预编码子矩阵的行数为8;或所述第一预编码子矩阵的列数为8且所述第二预编码子矩阵的列数为2;
为方便表述和图示,所述满足关系:
Figure PCTCN2014095931-appb-000024
Figure PCTCN2014095931-appb-000025
在本发明的实施例中统一称为第一关系。
步骤104,所述UE向基站发送所述预编码矩阵对应的预编码矩阵指示PMI。
通过图1示出的实施例,在16跟天线端口的配置下,用户设备根据参考信号进行测量以获取测量结果后,只在一个码本集合中确定对应的维度为2的第一预编码矩阵和维度为8的第二预编码矩阵,节省了存储资源和空口配置资源。
图2是根据本发明实施例的通信方法的示意性流程图,涉及一种预编码矩阵指示PMI的反馈方法。该方法具体包括:
步骤201,用户设备UE接收参考信号;
步骤202,所述UE确定基站用于发射所述参考信号的天线端口的个数为16;
应理解,本发明不限定所述UE确定基站用于发射所述参考信号的天线端口的个数为16的具体方法,可以是UE预先配置好的,也可以是通过测量确定的。一个实施例中,所述UE可以根据所述参考信号确定所述天线端口的个数,这一确定过程可以是隐含的确定方法,例如UE只接收到16路参考信号,那么,UE就能够确定所述基站用于发射所述参考信号的天线端口的个数为16。另一个实施例中,所述UE在确定所述基站用于发射所述参考信号的天线端口数时,可以不是通过参考信号确定的,而是通过某些信令配置的或者先前已经通过预置等方式存储在所述UE中的;而且在这种情况下,步骤202可以调换到步骤201之前执行或者同时执行。
步骤203,所述UE从16天线端口对应的预编码矩阵集合中确定预编码矩阵,其中,所述预编码矩阵集合中的每个预编码矩阵W满足如下关系:
Figure PCTCN2014095931-appb-000026
Figure PCTCN2014095931-appb-000027
所述W1为第一预编码子矩阵,所述W2为第二预编码子矩阵,
Figure PCTCN2014095931-appb-000028
表示克罗内克积,所述第一预编码子矩阵的行数为2且所述第二预编码子矩阵的行数为8;或所述第一预编码子矩阵的列数为8且所述第二预编码子矩阵的列数为2;
一个实施例中,所述UE从所述预编码矩阵集合中确定所述第一预编码子矩阵和所述第二预编码子矩阵;所述UE根据所述第一预编码子矩阵和所述第二预编码子矩阵确定所述预编码矩阵。应理解,这里的预编码矩阵集合,还可以是多个集合的整合,或者从一个集合中确定出符合条件的预编码码本集合。
在3D MIMO场景下,确定出的预编码矩阵W为第一预编码矩阵W1和第二预编码矩阵W2的克罗内克积:
Figure PCTCN2014095931-appb-000029
根据克罗内克积的具体性质,若W1为m1行m2列的矩阵;W2为n1行n2列的矩阵,那么最终确定出的矩阵W是一个m1×n1行,m2×n2列的矩阵。在3D MIMO的16天线端口场景下,W的一个维度应为16,对于基站用于对需要发射的信号进行预编码,在UE侧用于解预编码。所以,m1×n1和m2×n2中应有一个值为16。所述第一预编码子矩阵的行数为2且所述第二预编码子矩阵的行数为8;或所述第一预编码子矩阵的列数为8且所述第二预编码子矩阵的列数为2。应理解,本发明要求保护各种所述
Figure PCTCN2014095931-appb-000030
情况下,的变形,例如
Figure PCTCN2014095931-appb-000031
Figure PCTCN2014095931-appb-000032
Figure PCTCN2014095931-appb-000033
等情况,对于
Figure PCTCN2014095931-appb-000034
的情况,可以如上面所说,两个矩阵的列的维度分别是2和8,或者行的维度分别是2和8,最终确定的预编码矩阵W为应符合其中一个维度为16,这样,就可以使用W或W的转置对信号进行预编码或解预编码。对于
Figure PCTCN2014095931-appb-000035
Figure PCTCN2014095931-appb-000036
的情况,可以使得所述第一预编码子矩阵的行数为2且所述第二预编码子矩阵的列数为8;或所述第一预编码子矩阵的列数为8且所述第二预编码子矩阵的行数为2。应理解,本发明不限定在确定W之后,且在对矩阵进行预编码或预编码解码前增 加其它的操作步骤,例如从W中选出若干个长度为16的向量组成又一个矩阵W’,然后再利用所述W’解预编码。应理解,凡是能够体现本发明思想的各种公式的变形,都属于本发明的保护范围。
应理解,对于预编码矩阵集合,应是一个最终的选择的范围,即如果集合{W}A包含除了所述满足关系
Figure PCTCN2014095931-appb-000037
Figure PCTCN2014095931-appb-000038
的元素V,但是,在最终确定预编码矩阵的过程中,通过任何其它条件将V进行排除,那么所述码矩阵集合应不是{W}A的最终元素。所以,若存在元素V的集合{W}A,再通过某种条件筛选确定了{W}A’满足仅有行数或列数的一个为8或2,那么所述{W}A属于本发明的保护范围。例如,在集合{W}B存在一元素V1,V1的行数或列数既不是2也不是8,但是如果V1在任何情况下都不能被确定为W1或W2中的一个,那么所述{W}B不是所述预编码矩阵,而应该是{W}B’,所述{W}B’中的任何一个元素都是有可能通过测量确定出来作为所述W1或所述W2的,这也属于本发明的保护范围。
又一个实施例中,所述第一预编码子矩阵为第一方向预编码矩阵且所述第二预编码子矩阵为第二方向预编码子矩阵,或:所述第一预编码子矩阵为第二方向预编子码矩阵且所述第二预编码子矩阵为第一方向预编码子矩阵。
一个预编码矩阵可以由两个预编码子矩阵构成,例如,两个子矩阵可以分别是所述第一预编码子矩阵和第二预编码子矩阵构成,并且,构成的方式可以以乘积的形式或其他符合其天线端口预编码矩阵模型对应的方式构成,如克罗内克积的形式。所述预编码子矩阵可以有不同的物理意义。根据其物理意义,可以确定不同维度的码本大小。例如,对于3D MIMO,每个预编码矩阵都可以对应两个天线端口的摆放方向,其中,每一个方向都可以对应一个预编码子矩阵。在16天线端口的场景下,天线端口的配置方式可以按照不同方向有不同的配置。或者说,对于不同的摆放形式,每种配置形式都可以看作一种配置。图2a、2b、2c、2d给出了16天线端口的基本配置的形式。其中2a为第一方向配置4个天线端口且第二方向配置4个天线端口;2b为第一方向配置4个天线端口且第二方向配置4个天线端口;2c为第一方向配置8个天线端口且第二方向配置2个天线端口;2d为第一方向配置16个天线端口且第二方向配置1个天线端口:
即所述16个天线端口的配置方式包括如下任一种:
第一方向配置2个天线端口且第二方向配置8个天线端口;
第一方向配置4个天线端口且第二方向配置4个天线端口;
第一方向配置8个天线端口且第二方向配置2个天线端口;
第一方向配置16个天线端口且第二方向配置1个天线端口。
在3D MIMO场景下,所述预编码矩阵可以由第一方向预编码矩阵和第二方向预编码矩阵确定,其中,第一方向预编码矩阵对应第一种天线端口的配置方向,第二方向预编码矩阵对应第二种天线端口的配置方向,所述第一种天线端口配置方向和第二种天线端口配置方向可以是物理上真实的配置方向,也可以是将45°双极化的天线端口中,将某一角度看做的垂直或水平的配置方向的一个,将另一个角度看做垂直或水平的配置方向的另一个。所述第一预编码矩阵和第二预编码矩阵可以分别为不同的方向上的预编码矩阵,例如,第一方向预编码矩阵对应第一方向,第二方向预编码矩阵对应第二方向。
虽然16通常情况下天线端口下有4种不同的天线端口配置,但是可以根据天线端口的配置方向,为这4种配置确定相同维度的第一预编码矩阵或第二预编码矩阵。
一个实施例中,所述第一方向预编码矩阵为水平方向预编码矩阵,所述第二方向预编码矩阵为垂直方向预编码矩阵,或:所述第一方向预编码矩阵为垂直方向预编码矩阵,所述第二方向预编码矩阵为水平方向预编码矩阵。根据垂直方向和水平方向的划分方式,可以根据实际的高楼场景或平原场景的用户分布,对天线端口配置进行更加有针对性的选择。例如垂直方向用户较多,可以更多地配置垂直方向的天线端口。
一个实施例中,本发明说的矩阵模型
Figure PCTCN2014095931-appb-000039
还可以进一步分解,即所述预编码矩阵满足:
Figure PCTCN2014095931-appb-000040
其中,
Figure PCTCN2014095931-appb-000041
其中,所述W3×W4为行数为2的矩阵且所述W2为行数为8的矩阵,或所述W3×W4为列数为2的矩阵且所述W2为列数为8的矩阵。当然,这里的W3×W4和W2还的维度还可以交换,如所述W3×W4为行数为8的矩阵且所述W2为行数为2的矩阵,或所述W3×W4为列数为8的矩阵且所述W2为 列数为2的矩阵。即所述第一预编码子矩阵为第三预编码子矩阵和第四预编码子矩阵的乘积;和/或:所述第二预编码子矩阵为第五预编码子矩阵和第六预编码子矩阵的乘积。其中,W3和W4可以是组成第一方向预编码矩阵的两个子矩阵,也可以将W4看做是W3的加权矩阵。具体的加权方式可以与非3D MIMO的确定方式相同,例如W3可以作为长期宽带特性矩阵,反映第一方向天线端口的长期宽带特性,W4可以作为短期窄带特征矩阵,反映第一方向天线端口的短期窄带特性。应理解,由于第一预编码子矩阵的一个维度可以为2,第二预编码子矩阵的一个维度可以为8,所以在W2维度为8或2的一个时,W3与W4的乘积应满足维度为8或2的另一个。此外,本发明要求保护类似于这样的其他实施方式,例如:
Figure PCTCN2014095931-appb-000042
的形式,其中
Figure PCTCN2014095931-appb-000043
或者:
Figure PCTCN2014095931-appb-000044
的形式。当第一预编码子矩阵和第二预编码子矩阵至少有一个可以表示为另
外2个矩阵的积的形式时,需要反馈的PMI可以多于2个。例如对于
Figure PCTCN2014095931-appb-000045
的形式,可以反馈W3的PMI、W4的PMI、W2的PMI。下面,列举一些这样的形式下的各种情况:所述W2是行数为8的矩阵,W3的行数为2;或,所述W2列数为8,W4的列数为2;或,所述W2是行数为2的矩阵,W3的行数为8;或,所述W2列数为2,W4的列数为8。
应理解,这样的形式对于
Figure PCTCN2014095931-appb-000046
同样适用:所述W1的行数为8,W5的行数为2;或,所述W1列数为8,W6的列数为2;或,所述W1的行数为2,W5的行数为8;或,所述W1列数为2,W6的列数为8。
同样的,在
Figure PCTCN2014095931-appb-000047
的形式下,所述W3的行数为8,W5的行数为2;或,所述W4列数为8,W6的列数为2;或,所述W3的行数为2,W5的行数为8;或,所述W4列数为2,W6的列数为8。
应理解,本发明的实施例中,只在一个码本集合中确定对应的维度为2的第一预编码矩阵和维度为8的第二预编码矩阵,也可以是两个码本集合,一个码本 集合中的维度均为2,另一个码本集合的维度均为8,或者是多个码本集合,其中多个码本集合中的元素也均为2或8的元素,但是,最终确定出的第一预编码矩阵维度为2,第二预编码矩阵的维度为8。考虑到特殊情况,如果码本集合中的矩阵包含其它维度的码本,这些码本也不应在最终的确定范围中。可选的,使用一个码本集合中的元素通过拼凑的形式得到第一预编码矩阵或第二预编码矩阵,但是在最终确定出合成所述预编码矩阵的第一预编码矩阵维度应为2,第二预编码矩阵的维度应为8。
步骤204,所述UE向基站发送所述预编码矩阵对应的预编码矩阵指示PMI。所述PMI用于指示所述预编码矩阵。
应理解,所述本发明不限定所述PMI的反馈方式,所述PMI可以是某个信令中的一个字段,或是一个信令。一个实施例中,在需要指示多个预编码矩阵的情况下,所述PMI可以为多个,或者为一个PMI,但是该一个PMI中的不同部分指示不同的预编码矩阵。例如,在一个8比特PMI中,前3比特用于指示第一预编码矩阵,后5比特用于指示第二预编码矩阵的PMI。应理解,在本发明的各个实施例中,涉及到某矩阵对应的PMI可以是对应PMI的一个字段,也可以是对应一个单独的PMI。
可选的,所述UE确定所述W1的PMI对应的比特数和所述W2的PMI对应的比特数;所述UE根据所述所述W1的PMI对应的比特数和所述W2的PMI对应的比特数确定W1的PMI和所述W2的PMI;所述UE向所述基站发送W1的PMI和W2的PMI。PMI的反馈资源固定的情况下,通过灵活配置PMI的比特位,可以扩展预编码子矩阵集合中元素数量。
在16天线端口的3D MIMO场景下,由于天线端口的不同配置方式,可以在各个不同的方向进行扩展。本实施例在不同配置下确定不同的天线端口的计数方式,使得所述不同配置下均在预编码码本中确定一个维度为8的矩阵,和一个维度为2的矩阵,并反馈所述PMI的值以指示预编码矩阵,达到节省配置信令和节约空口资源的效果。
由于本发明实施例在16天线端口的情况下采用码本中一个维度为8和一个维度为2的预编码子矩阵,除了可以达到上面的实施例可以实现的计数效果外,还可以利用节省的资源,扩展码本中的预编码子矩阵的个数,以达到更准确地达到预编码矩阵的精度要求。
下面,将根据本发明的又一个实施例,介绍在PMI的反馈资源固定的情况下,通过灵活配置PMI的比特位,达到扩展预编码子矩阵集合中元素数量。
图3示出了一种PMI反馈的方法。应理解,本实施例可以用于本发明其他各个实施例,例如,可以作为步骤105或步骤205的更具体的实施方式,也可以作为一个单独的实施例实施。
步骤301,所述UE确定所述W1的PMI对应的比特数和所述W2的PMI对应的比特数。
一个实施例中,所述确定过程可以是一个接收一个信令或者指示的过程,或是一个根据参考信号确定的过程,也可以是一个预置的过程,还可以根据某些其它性质进行确定的过程。
步骤302,所述UE根据所述W1的PMI对应的比特数和所述W2的PMI对应的比特数确定W1的PMI和所述W2的PMI;
针对步骤301和步骤302可以按照如下示例执行:
UE确定预编码矩阵中需要反馈的PMI对应的比特数;所述UE根据预编码矩阵确定反馈的所述各个PMI;
例如,所述码本中包含多个预编码子矩阵,其中,其中一部分预编码子矩阵的一个维度为2,另一部分预编码子矩阵的维度为8。以维度为2的部分举例:
Figure PCTCN2014095931-appb-000048
若码本集合中维度为2的矩阵共有8个(A1-A8),当UE确定预编码矩阵中一共可以使用8比特,其中的3比特用于指示维度为2的矩阵,那么说明为UE 分配或者UE自身确定了UE有足够的比特位从A1-A8这8个码本中选择测量结果所对应的预编码子矩阵(该预编码子矩阵可以对应图1和图2示出的实施例中的第一预编码子矩阵);但是,当UE确定预编码矩阵中一共可以使用8比特,其中只有2比特用于指示维度为2的矩阵,那么,UE只能指示4个备选矩阵中的一个,这时,可以根据预置规则,例如确定00,01,10,11分别对应A1,A3,A5,A7进行反馈,这样的方式虽然影响了精度,但是节约了空口的比特资源。在某些情况下,例如维度为2的预编码子矩阵矩阵不需要太精细的指示,维度为8的预编码子矩阵需要比较精细的指示时,可以通过减少维度为2的预编码子矩阵的PMI占用的比特数,提高维度为8的预编码子矩阵的精细程度。同样,维度为8的预编码子矩阵矩阵不需要太精细的指示,维度为2的预编码子矩阵需要比较精细的指示时,可以通过减少维度为8的预编码子矩阵的PMI占用的比特数,提高维度为2的预编码子矩阵的精细程度。目前,由于用户设备分布的场景不同,例如高楼场景,在垂直方向用户的分布较多,在测量并反馈PMI的过程中,如果能够提供更多、更精确的预编码矩阵,就可以使得确定的预编码矩阵更加精确地反映信道特性,达到提高信号强度的目的。因此,需要使用更多的比特值用来确定维度为2的预编码子矩阵的PMI反馈,广阔的平原场景,就需要更多的维度比特值用来确定维度为8的预编码子矩阵的PMI反馈。应理解,所述步骤301和步骤302可以调换顺序,UE可以先确定需要反馈的PMI,待确定反馈的所述各个PMI的比特数后,进行精度上的调整。例如,确定需要反馈的PMI为001,但是由于该方向预编码子矩阵的精度没有另一方向的子矩阵的精度高,可以根据预设规则确定需要反馈00作为该方向的PMI,以A1为该方向的预编码矩阵,其中,A1与A2应比较接近地反映信道的特性。此外,所述W1的PMI和W2对应的PMI的比特数可以是指W1与W2各自的PMI的比特数,在W1和W2在同一个PMI的不同字段情况下,指的是该字段的为W1和W2分配比特的情况。当PMI需要指示的矩阵数多于2个时,例如其它实施例中的W1可以进一步被确定为其它2个矩阵表示或者W2可以进一步被确定为其它2个矩阵表示的情况,所述UE可以确认多个矩阵对应的PMI所占用的比特数。
应理解,本发明中,所述比特数为8和对应的表格仅仅是一个实例,本发明还要求保护不同的比特数的反馈和包括表格的形式的,和其它的例如映射、公式 类型的预编码矩阵的确定方式中,根据比特数进行调整的技术方案。
可选的,所述UE确定预编码矩阵中需要反馈的PMI对应的比特数具体包括:接收基站发送的比特指示消息,所述比特指示消息用于指示所述需要反馈的PMI对应的比特数;或:
所述UE根据所述测量确定所述需要反馈的PMI对应的比特数。一个实施例中,所述UE向所述基站发送所述需要反馈的PMI对应的比特数。向所述基站发送所述PMI对应的比特数。
可选的,所述UE还可以接收一个场景信息,所述场景信息用于指示所述UE当前的UE与基站间的通信对应的不同方向的配置。这里,所述不同方向可以为第一方向和第二方向,具体可以分别为水平方向和垂直方向。
步骤303,向所述基站发送W1的PMI和所述W2的PMI。
通过图3示出的实施例,UE通过确定所述需要反馈的PMI对应的比特数,并根据预编码矩阵和所述PMI对应的比特数,确定反馈的所述各个PMI,本发明实施例的技术方案可以灵活调整PMI的反馈的比特的粒度,使得在同样的反馈资源下,灵活某一方向的波束精细程度,以达到适应各种场景需求的目的。
图4是根据本发明实施例的通信方法的示意性流程图,涉及一种预编码矩阵指示PMI的反馈方法。该方法具体包括:
步骤401,基站通过16个天线端口向UE发送参考信号;
步骤402,所述基站接收UE反馈的预编码矩阵指示PMI;
步骤403,所述基站从16天线端口对应的预编码矩阵集合中确定所述PMI对应的预编码矩阵,其中,所述预编码矩阵集合中的每个预编码矩阵W满足如下关系:
Figure PCTCN2014095931-appb-000049
Figure PCTCN2014095931-appb-000050
所述W1为第一预编码子矩阵,所述W2为第二预编码子矩阵,
Figure PCTCN2014095931-appb-000051
表示克罗内克积,所述第一预编码子矩阵的行数为2且所述第二预编码子矩阵的行数为8;或所述第一预编码子矩阵的列数为8且所述第二预编码子矩阵的列数为2;
步骤404,所述基站使用所述预编码矩阵向所述UE发送数据。
通过图4示出的实施例,在16跟天线端口的配置下,基站通过发送参考信号进行测量以获取测量结果后,只在一个码本集合中确定对应的维度为2的第一预编码矩阵和维度为8的第二预编码矩阵,节省了存储资源和空口配置资源。
图5是根据本发明实施例的通信方法的示意性流程图,涉及一种预编码矩阵指示PMI的反馈方法。该方法具体包括:
步骤501,基站通过16个天线端口向UE发送参考信号;
一个实施例中,步骤501前,所述基站可以先确定采用16天线端口的场景。
另一个实施例中,所述基站还向所述UE指示所述天线端口数为16。这一指示过程可以是通过一个信令直接指示,也可以是通过步骤501中发送参考信号的过程中指示所述UE,或者是在步骤501前对UE进行配置的过程指示的。
步骤502,所述基站接收所述UE反馈的预编码矩阵指示PMI;
应理解,本发明不限定所述PMI的反馈方式,所述PMI可以是某个信令中的一个字段,或是一个信令。一个实施例中,在需要指示多个预编码子矩阵的情况下,所述PMI可以为多个,或者为一个PMI,但是该一个PMI中的不同部分指示不同的预编码子矩阵,这些预编码子矩阵通过预置规则,组成所述预编码矩阵。所述预置规则可以是乘积或者克罗内克积的形式。例如,在一个8比特PMI中,前3比特用于指示第一预编码矩阵,后5比特用于指示第二预编码矩阵的PMI。第一预编码矩阵和第二预编码矩阵均为预编码子矩阵。应理解,在本发明的各个实施例中,涉及到某矩阵对应的PMI可以是对应PMI的一个字段,也可以是对应一个单独的PMI。
可选的,在所述基站接收所述UE反馈的预编码矩阵指示PMI前,所述基站确定所述W1的PMI和W2对应的PMI的比特数;所述基站根据所述所述W1的PMI和W2对应的PMI的比特数接收UE反馈的至少两个PMI;这一步骤可以进一步在基站通过16个天线端口向UE发送参考信号前执行。
PMI的反馈资源固定的情况下,通过灵活配置PMI的比特位,可以扩展预编码子矩阵集合中元素数量。
步骤503,所述基站从16天线端口对应的预编码矩阵集合中确定所述PMI对应的预编码矩阵,其中,所述预编码矩阵集合中的每个预编码矩阵W满足如下关系:
Figure PCTCN2014095931-appb-000052
Figure PCTCN2014095931-appb-000053
所述W1为第一预编码子矩阵,所述W2为第二预编码子矩阵,
Figure PCTCN2014095931-appb-000054
表示克罗内克积,所述第一预编码子矩阵的行数为2且所述第二预编码子矩阵的行数为8;或所述第一预编码子矩阵的列数为8且所述第二预编码子矩阵的列数为2;
步骤504,所述基站使用所述预编码矩阵向所述UE发送数据。
举例说明,所述PMI的数量至少为2个;所述基站从16天线端口对应的预编码矩阵集合中确定所述至少两个PMI对应的预编码矩阵,包括:所述基站根据第一预编码子矩阵的PMI和第二预编码子矩阵的PMI确定所述第一预编码子矩阵和第二预编码子矩阵;所述基站根据所述第一预编码子矩阵和所述第二预编码子矩阵确定所述预编码矩阵。应理解,这里的预编码矩阵集合,还可以是多个集合的整合,或者从一个集合中确定出符合条件的预编码码本集合。
在3D MIMO场景下,确定出的预编码矩阵W为第一预编码矩阵W1和第二预编码矩阵W2的克罗内克积:
Figure PCTCN2014095931-appb-000055
根据克罗内克积的具体性质,若W1为m1行m2列的矩阵;W2为n1行n2列的矩阵,那么最终确定出的矩阵W是一个m1×n1行,m2×n2列的矩阵。在3D MIMO的16天线端口场景下,W的一个维度应为16,对于基站用于对需要发射的信号进行预编码,在UE侧用于解预编码,在本发明的各个实施例中,这里的解预编码也可以说是预编码解码。所以,m1×n1和m2×n2中应有一个值为16。所述第一预编码子矩阵的行数为2且所述第二预编码子矩阵的行数为8;或所述第一预编码子矩阵的列数为8且所述第二预编码子矩阵的列数为2。应理解,本发明要求保护各种所述
Figure PCTCN2014095931-appb-000056
情况下,或所述
Figure PCTCN2014095931-appb-000057
的变形,例如
Figure PCTCN2014095931-appb-000058
Figure PCTCN2014095931-appb-000059
Figure PCTCN2014095931-appb-000060
等情况,对于
Figure PCTCN2014095931-appb-000061
的情况,可以如上面所说,两个矩阵的列的维度分别是2和8,或者行的维度分别是2和8,最终确定的预编码矩阵W为应符合其中一个维度为16,这样,就可以使用W或W的转置对信号进行预编码。对于
Figure PCTCN2014095931-appb-000062
Figure PCTCN2014095931-appb-000063
的情况,可以使得所述第一预编码子矩阵的行数为2且所述第二预编码子矩阵的列数为8;或所述第一预编码子矩阵的列数为8且所述第二预编码子矩阵的行数为2。应理解,本发明不限定在确定所述W之后,且在对矩阵进行预编码前增加其它的操作步骤,例如从W中选出若干个长度为16的向量组成又一个矩阵W’,然后再利用所述W’预编码。应理解,凡是能够体现本发明思想的各种公式的变 形,都属于本发明的保护范围。
应理解,对于预编码矩阵集合,应是一个最终的选择的范围,即如果集合{W}A包含除了所述满足关系
Figure PCTCN2014095931-appb-000064
Figure PCTCN2014095931-appb-000065
的元素V,但是,在最终确定预编码矩阵的过程中,通过任何其它条件将V进行排除,那么所述码矩阵集合应不属于是{W}A的最终元素。所以,若存在元素V的集合{W}A,再通过某种条件筛选确定了{W}A’满足仅有行数或列数的一个为8或2,那么所述{W}A属于本发明的保护范围。例如,在集合{W}B存在一元素V1,V1的行数或列数既不是2也不是8,但是如果V1在任何情况下都不能被确定为W1或W2中的一个,那么所述{W}B不是所述预编码矩阵,而应该是{W}B’,所述{W}B’中的任何一个元素都是有可能通过测量确定出来作为所述W1或所述W2的,这也属于本发明的保护范围。
又一个实施例中,所述第一预编码子矩阵为第一方向预编码矩阵且所述第二预编码子矩阵为第二方向预编码子矩阵,或:所述第一预编码子矩阵为第二方向预编子码矩阵且所述第二预编码子矩阵为第一方向预编码子矩阵。
一个预编码矩阵可以由两个预编码子矩阵构成,例如,两个子矩阵可以分别由所述第一预编码子矩阵和第二预编码子矩阵构成,并且,构成的方式可以以乘积的形式或其他符合其天线端口预编码矩阵模型对应的方式构成,如克罗内克积的形式。所述预编码子矩阵可以有不同的物理意义。根据其物理意义,可以确定不同维度的码本大小。例如,对于3D MIMO,每个预编码矩阵都可以对应两个天线端口的摆放方向,其中,每一个方向都可以对应一个预编码子矩阵。在16天线端口的场景下,天线端口的配置方式可以按照不同方向有不同的配置。或者说,对于不同的摆放形式,每种配置形式都可以看作一种配置。可以参考图2a、2b、2c、2d给出了16天线端口的基本配置的形式,在图2示出的实施例中已经有详细的描述,在此不再赘述。
即所述16个天线端口的配置方式包括如下任一种:
第一方向配置2个天线端口且第二方向配置8个天线端口;
第一方向配置4个天线端口且第二方向配置4个天线端口;
第一方向配置8个天线端口且第二方向配置2个天线端口;
第一方向配置16个天线端口且第二方向配置1个天线端口。
在3D MIMO场景下,所述预编码矩阵可以由第一方向预编码矩阵和第二方向 预编码矩阵确定,其中,第一方向预编码矩阵对应第一种天线端口的配置方向,第二方向预编码矩阵对应第二种天线端口的配置方向,所述第一种天线端口配置方向和第二种天线端口配置方向可以是物理上真实的配置方向,也可以是将45°双极化的天线端口中,将某一角度看做的垂直或水平的配置方向的一个,将另一个角度看做垂直或水平的配置方向的另一个。所述第一预编码矩阵和第二预编码矩阵可以分别为不同的方向上的预编码矩阵,例如,第一方向预编码矩阵对应第一方向,第二方向预编码矩阵对应第二方向。
虽然16通常情况下天线端口下有4种不同的天线端口配置,但是可以根据天线端口的配置方向,为这4种配置确定相同维度的第一预编码矩阵或第二预编码矩阵。
一个实施例中,所述第一方向预编码矩阵为水平方向预编码矩阵,所述第二方向预编码矩阵为垂直方向预编码矩阵,或:所述第一方向预编码矩阵为垂直方向预编码矩阵,所述第二方向预编码矩阵为水平方向预编码矩阵。根据垂直方向和水平方向的划分方式,可以根据实际的高楼场景或平原场景的用户分布,对天线端口配置进行更加有针对性的选择。例如垂直方向用户较多,可以更多地配置垂直方向的天线端口。
一个实施例中,本发明说的矩阵模型
Figure PCTCN2014095931-appb-000066
还可以进一步分解,即所述预编码矩阵满足:
Figure PCTCN2014095931-appb-000067
其中,
Figure PCTCN2014095931-appb-000068
其中,所述W3×W4为行数为2的矩阵且所述W2为行数为8的矩阵,或所述W3×W4为列数为2的矩阵且所述W2为列数为8的矩阵。当然,这里的W3×W4和W2还的维度还可以交换,如所述W3×W4为行数为8的矩阵且所述W2为行数为2的矩阵,或所述W3×W4为列数为8的矩阵且所述W2为列数为2的矩阵。即所述第一预编码子矩阵为第三预编码子矩阵和第四预编码子矩阵的乘积;和/或:所述第二预编码子矩阵为第五预编码子矩阵和第六预编码子矩阵的乘积。其中,W3和W4可以是组成第一方向预编码矩阵的两个子矩阵,也可以将W4看做是W3的加权矩阵。具体的加权方式可以与非3D MIMO的确定方 式相同,例如W3可以作为长期宽带特性矩阵,反映第一方向天线端口的长期宽带特性,W4可以作为短期窄带特征矩阵,反映第一方向天线端口的短期窄带特性。应理解,由于第一预编码子矩阵的一个维度可以为2,第二预编码子矩阵的一个维度可以为8,所以在W2维度为8或2的一个时,W3与W4的乘积应满足维度为8或2的另一个。此外,本发明要求保护类似于这样的其他实施方式,例如:
Figure PCTCN2014095931-appb-000069
的形式,其中
Figure PCTCN2014095931-appb-000070
或者:
Figure PCTCN2014095931-appb-000071
的形式。当第一预编码子矩阵和第二预编码子矩阵至少有一个可以表示为另
外2个矩阵的积的形式时,需要反馈的PMI可以多于2个。例如对于
Figure PCTCN2014095931-appb-000072
的形式,可以接收所述UE反馈的W3的PMI、W4的PMI、W2的PMI。下面,列举一些这样的形式下的各种情况:所述W2是行数为8的矩阵,W3的行数为2;或,所述W2列数为8,W4的列数为2;或,所述W2是行数为2的矩阵,W3的行数为8;或,所述W2列数为2,W4的列数为8。
应理解,这样的形式对于
Figure PCTCN2014095931-appb-000073
同样适用:所述W1的行数为8,W5的行数为2;或,所述W1列数为8,W6的列数为2;或,所述W1的行数为2,W5的行数为8;或,所述W1列数为2,W6的列数为8。
同样的,在
Figure PCTCN2014095931-appb-000074
的形式下,所述W3的行数为8,W5的行数为2;或,所述W4列数为8,W6的列数为2;或,所述W3的行数为2,W5的行数为8;或,所述W4列数为2,W6的列数为8。
应理解,本发明的实施例中,只在一个码本集合中确定对应的维度为2的第一预编码矩阵和维度为8的第二预编码矩阵,也可以是两个码本集合,一个码本集合中的维度均为2,另一个码本集合的维度均为8,或者是多个码本集合,其中多个码本集合中的元素也均为2或8的元素,但是,最终确定出的第一预编码矩阵维度为2,第二预编码矩阵的维度为8。考虑到特殊情况,如果码本集合中的矩阵包含其它维度的码本,这些码本也不应在最终的确定范围中。可选的,使 用一个码本集合中的元素通过拼凑的形式得到第一预编码矩阵或第二预编码矩阵,但是在最终确定出合成所述预编码矩阵的第一预编码矩阵维度应为2,第二预编码矩阵的维度应为8。
由于本发明实施例在16天线端口的情况下采用码本中一个维度为8和一个维度为2的预编码子矩阵,除了可以达到上面的实施例可以实现的计数效果外,还可以利用节省的资源,扩展码本中的预编码子矩阵的个数,以达到更准确地达到预编码矩阵的精度要求。
下面,将根据本发明的又一个实施例,介绍在PMI的反馈资源固定的情况下,通过灵活配置PMI的比特位,达到扩展预编码子矩阵集合中元素数量。
图6示出了一种预编码矩阵的确定的方法。应理解,本实施例可以用于本发明其他各个实施例,例如,可以作为步骤405或步骤505的更具体的实施方式,也可以作为一个单独的实施例实施。
步骤601,基站确定W1的PMI对应的比特数和所述W2的PMI对应的比特数。
一个实施例中,所述确定过程可以是一个接收一个其它网络设备,例如核心网网元或其它基站的信令或者指示的过程,或是一个根据信道特性确定的过程,也可以是一个预置的过程,还可以根据某些其它性质进行确定的过程。
步骤602,所述基站根据所述W1对应的PMI和W2对应的PMI的比特数接收UE反馈的所述W1的PMI和所述W2的PMI。
针对步骤601和步骤602可以按照如下示例执行:
基站确定W1的PMI对应的比特数和所述W2的PMI对应的比特数;所述基站根据所述W1的PMI和W2对应的PMI的比特数接收UE反馈的至少两个PMI;
例如,所述码本中包含多个预编码子矩阵,其中,其中一部分预编码子矩阵的一个维度为2,另一部分预编码子矩阵的维度为8。以维度为2的部分举例:
Figure PCTCN2014095931-appb-000075
Figure PCTCN2014095931-appb-000076
若码本集合中维度为2的矩阵共有8个(A1-A8),当基站确定预编码矩阵中一共可以使用8比特,其中的3比特用于指示维度为2的矩阵,那么说明基站为UE分配了足够的比特位从A1-A8这8个码本中选择测量结果所对应的预编码子矩阵(该预编码子矩阵可以对应图1和图2示出的实施例中的第一预编码子矩阵);但是,当基站确定预编码矩阵中一共可以使用8比特,其中只有2比特用于指示维度为2的矩阵,那么,基站通知UE后,UE只能确定4个备选矩阵中的一个,这时,可以根据预置规则,例如确定00,01,10,11分别对应A1,A3,A5,A7进行反馈,这样的方式虽然影响了精度,但是节约了空口的比特资源。在某些情况下,例如维度为2的预编码子矩阵矩阵不需要太精细的指示,维度为8的预编码子矩阵需要比较精细的指示时,可以通过减少维度为2的预编码子矩阵的PMI占用的比特数,提高维度为8的预编码子矩阵的精细程度。同样,维度为8的预编码子矩阵矩阵不需要太精细的指示,维度为2的预编码子矩阵需要比较精细的指示时,可以通过减少维度为8的预编码子矩阵的PMI占用的比特数,提高维度为2的预编码子矩阵的精细程度。目前,由于用户设备分布的场景不同,例如高楼场景,在垂直方向用户的分布较多,在测量并反馈PMI的过程中,如果能够提供更多、更精确的预编码矩阵,就可以使得确定的预编码矩阵更加精确地反映信道特性,达到提高信号强度的目的。因此,需要使用更多的比特值用来确定维度为2的预编码子矩阵的PMI反馈,广阔的平原场景,就需要更多的维度比特值用来确定维度为8的预编码子矩阵的PMI反馈。应理解,通常情况下是通过基站对所述UE进行比特数的调整,但是,也可以是基站接收UE的比特分配消息,与基站协商所述比特数。此外,所述W1的PMI和W2对应的PMI的比特数可以是指W1与W2各自的PMI的比特数,在W1和W2在同一个PMI的不同字段情况下,指的是该字段的为W1和W2分配比特的情况。当PMI需要指示的矩阵数多于2个时,例如其它实施例中的W1可以进一步被确定为其它2个矩阵表示或者W2可以进一步被确定为其它2个矩阵表示的情况,所述基站可以确认多个矩阵对应的PMI所占用的比 特数。
应理解,本发明中,所述比特数为8和对应的表格仅仅是一个实例,本发明还要求保护不同的比特数的反馈和包括表格的形式的,和其它的例如映射、公式类型的预编码矩阵的确定方式中,根据比特数进行调整的技术方案。
可选的,所述基站确定W1的PMI对应的比特数和所述W2的PMI对应的比特数具体包括:接收比特指示消息,所述比特指示消息用于指示所述需要反馈的PMI对应的比特数。该指示消息可以来自UE或其它网络设备。可选的,所述基站确定所述W1的PMI对应的比特数和所述W2的PMI对应的比特数。
可选的,步骤603,所述基站向所述UE发送所述比特指示信息,所述比特指示信息用于指示所述W1的PMI对应的比特数和所述W2的PMI对应的比特数中的至少一个。
可选的,所述基站还可以确定一个场景信息,所述场景信息用于指示所述基站需要反馈的W1的PMI对应的比特数和所述W2的PMI对应的比特数。当前的UE与基站间的通信对应的不同方向的配置。这里,所述不同方向可以为第一方向和第二方向,具体可以分别为水平方向和垂直方向。
通过图6示出的实施例,基站通过确定W1的PMI对应的比特数和所述W2的PMI对应的比特数,接收反馈的所述各个PMI,本发明实施例的技术方案可以灵活调整PMI的反馈的比特的粒度,使得在同样的反馈资源下,灵活某一方向的波束精细程度,以达到适应各种场景需求的目的。
图7是根据本发明实施例的通信装置的结构图,涉及一种用户设备UE。该装置具体包括:
接收单元701,用于接收参考信号;
确定单元702,用于确定基站用于发射所述参考信号的天线端口的个数为16,从16天线端口对应的预编码矩阵集合中确定预编码矩阵,其中,所述参考信号是所述接收单元接收的,所述预编码矩阵集合中的每个预编码矩阵W满足如下关系:
Figure PCTCN2014095931-appb-000077
Figure PCTCN2014095931-appb-000078
所述W1为第一预编码子矩阵,所述W2为第二预编码子矩阵,
Figure PCTCN2014095931-appb-000079
表示克罗内克积,所述第一预编码子矩阵的行数为2且所述第二预编码子矩阵的行数为8;或所述第一预编码子矩阵的列数为8且所述第二预编码子矩阵的列数为2;
发送单元703,用于向基站发送所述预编码矩阵对应的预编码矩阵指示PMI,所述预编码矩阵是所述确定单元确定的。
通过图7示出的实施例,在16跟天线端口的配置下,用户设备根据参考信号进行测量以获取测量结果后,只在一个码本集合中确定对应的维度为2的第一预编码矩阵和维度为8的第二预编码矩阵,节省了存储资源和空口配置资源。
图8是根据本发明实施例的通信方法的示意性流程图,涉及一种预编码矩阵指示PMI的反馈方法。该方法具体包括:
接收单元801,用于接收参考信号;
确定单元802,用于
确定基站用于发射所述参考信号的天线端口的个数为16,从16天线端口对应的预编码矩阵集合中确定预编码矩阵,其中,所述参考信号是所述接收单元接收的,所述预编码矩阵集合中的每个预编码矩阵W满足如下关系:
Figure PCTCN2014095931-appb-000080
Figure PCTCN2014095931-appb-000081
所述W1为第一预编码子矩阵,所述W2为第二预编码子矩阵,
Figure PCTCN2014095931-appb-000082
表示克罗内克积,所述第一预编码子矩阵的行数为2且所述第二预编码子矩阵的行数为8;或所述第一预编码子矩阵的列数为8且所述第二预编码子矩阵的列数为2;
应理解,本发明不限定所述确定单元确定基站用于发射所述参考信号的天线端口的个数为16的具体方法,可以是UE预先配置好的,也可以是通过测量确定的。一个实施例中,所述确定单元可以根据所述参考信号确定所述天线端口的个数,这一确定过程可以是隐含的确定方法,例如所述接收单元,只接收到16路参考信号,那么,所述确定单元就能够确定所述基站用于发射所述参考信号的天线端口的个数。另一个实施例中,所述确定单元在确定所述基站用于发射所述参考信号的天线端口数时,可以不是通过参考信号确定的,而是通过某些信令配置的或者先前已经通过预置等方式存储在所述UE中的。
一个实施例中,所述确定单元从所述预编码矩阵集合中确定所述第一预编码子矩阵和所述第二预编码子矩阵;所述确定单元根据所述第一预编码子矩阵和所述第二预编码子矩阵确定所述预编码矩阵。应理解,这里的预编码矩阵集合,还可以是多个集合的整合,或者从一个集合中确定出符合条件的预编码码本集合。
在3D MIMO场景下,确定出的预编码矩阵W为第一预编码矩阵W1和第二预 编码矩阵W2的克罗内克积:
Figure PCTCN2014095931-appb-000083
根据克罗内克积的具体性质,若W1为m1行m2列的矩阵;W2为n1行n2列的矩阵,那么最终确定出的矩阵W是一个m1×n1行,m2×n2列的矩阵。在3D MIMO的16天线端口场景下,W的一个维度应为16,对于基站用于对需要发射的信号进行预编码,在UE侧用于解预编码。所以,m1×n1和m2×n2中应有一个值为16。所述第一预编码子矩阵的行数为2且所述第二预编码子矩阵的行数为8;或所述第一预编码子矩阵的列数为8且所述第二预编码子矩阵的列数为2。应理解,本发明要求保护各种所述
Figure PCTCN2014095931-appb-000084
情况下,的变形,例如
Figure PCTCN2014095931-appb-000085
Figure PCTCN2014095931-appb-000086
Figure PCTCN2014095931-appb-000087
等情况,对于
Figure PCTCN2014095931-appb-000088
的情况,可以如上面所说,两个矩阵的列的维度分别是2和8,或者行的维度分别是2和8,最终确定的预编码矩阵W为应符合其中一个维度为16,这样,就可以使用W或W的转置对信号进行预编码或解预编码。对于
Figure PCTCN2014095931-appb-000089
Figure PCTCN2014095931-appb-000090
的情况,可以使得所述第一预编码子矩阵的行数为2且所述第二预编码子矩阵的列数为8;或所述第一预编码子矩阵的列数为8且所述第二预编码子矩阵的行数为2。应理解,本发明不限定在确定W之后,且在对矩阵进行预编码或预编码解码前增加其它的操作步骤,例如从W中选出若干个长度为16的向量组成又一个矩阵W’,然后再利用所述W’解预编码。应理解,凡是能够体现本发明思想的各种公式的变形,都属于本发明的保护范围。
应理解,对于预编码矩阵集合,应是一个最终的选择的范围,即如果集合{W}A包含除了所述满足关系
Figure PCTCN2014095931-appb-000091
Figure PCTCN2014095931-appb-000092
的元素V,但是,在最终确定预编码矩阵的过程中,通过任何其它条件将V进行排除,那么所述码矩阵集合应不是{W}A的最终元素。所以,若存在元素V的集合{W}A,再通过某种条件筛选确定了{W}A’满足仅有行数或列数的一个为8或2,那么所述{W}A属于本发明的保护范围。例如,在集合{W}B存在一元素V1,V1的行数或列数既不是2也不是8,但是如果V1在任何情况下都不能被确定为W1或W2中的一个,那么所述{W}B不是所述预编码矩阵,而应该是{W}B’,所述{W}B’中的任何一个元素都是有可能通过测量 确定出来作为所述W1或所述W2的,这也属于本发明的保护范围。
又一个实施例中,所述第一预编码子矩阵为第一方向预编码矩阵且所述第二预编码子矩阵为第二方向预编码子矩阵,或:所述第一预编码子矩阵为第二方向预编子码矩阵且所述第二预编码子矩阵为第一方向预编码子矩阵。
一个预编码矩阵可以由两个预编码子矩阵构成,例如,两个子矩阵可以分别是所述第一预编码子矩阵和第二预编码子矩阵构成,并且,构成的方式可以以乘积的形式或其他符合其天线端口预编码矩阵模型对应的方式构成,如克罗内克积的形式。所述预编码子矩阵可以有不同的物理意义。根据其物理意义,可以确定不同维度的码本大小。例如,对于3D MIMO,每个预编码矩阵都可以对应两个天线端口的摆放方向,其中,每一个方向都可以对应一个预编码子矩阵。在16天线端口的场景下,天线端口的配置方式可以按照不同方向有不同的配置。或者说,对于不同的摆放形式,每种配置形式都可以看作一种配置。图2a、2b、2c、2d给出了16天线端口的基本配置的形式。
即所述16个天线端口的配置方式包括如下任一种:
第一方向配置2个天线端口且第二方向配置8个天线端口;
第一方向配置4个天线端口且第二方向配置4个天线端口;
第一方向配置8个天线端口且第二方向配置2个天线端口;
第一方向配置16个天线端口且第二方向配置1个天线端口。
在3D MIMO场景下,所述预编码矩阵可以由第一方向预编码矩阵和第二方向预编码矩阵确定,其中,第一方向预编码矩阵对应第一种天线端口的配置方向,第二方向预编码矩阵对应第二种天线端口的配置方向,所述第一种天线端口配置方向和第二种天线端口配置方向可以是物理上真实的配置方向,也可以是将45°双极化的天线端口中,将某一角度看做的垂直或水平的配置方向的一个,将另一个角度看做垂直或水平的配置方向的另一个。所述第一预编码矩阵和第二预编码矩阵可以分别为不同的方向上的预编码矩阵,例如,第一方向预编码矩阵对应第一方向,第二方向预编码矩阵对应第二方向。
虽然16通常情况下天线端口下有4种不同的天线端口配置,但是可以根据天线端口的配置方向,为这4种配置确定相同维度的第一预编码矩阵或第二预编码矩阵。
一个实施例中,所述第一方向预编码矩阵为水平方向预编码矩阵,所述第二方向预编码矩阵为垂直方向预编码矩阵,或:所述第一方向预编码矩阵为垂直方向预编码矩阵,所述第二方向预编码矩阵为水平方向预编码矩阵。根据垂直方向和水平方向的划分方式,可以根据实际的高楼场景或平原场景的用户分布,对天线端口配置进行更加有针对性的选择。例如垂直方向用户较多,可以更多地配置垂直方向的天线端口。
一个实施例中,本发明说的矩阵模型
Figure PCTCN2014095931-appb-000093
还可以进一步分解,即所述预编码矩阵满足:
Figure PCTCN2014095931-appb-000094
其中,
Figure PCTCN2014095931-appb-000095
其中,所述W3×W4为行数为2的矩阵且所述W2为行数为8的矩阵,或所述W3×W4为列数为2的矩阵且所述W2为列数为8的矩阵。当然,这里的W3×W4和W2还的维度还可以交换,如所述W3×W4为行数为8的矩阵且所述W2为行数为2的矩阵,或所述W3×W4为列数为8的矩阵且所述W2为列数为2的矩阵。即所述第一预编码子矩阵为第三预编码子矩阵和第四预编码子矩阵的乘积;和/或:所述第二预编码子矩阵为第五预编码子矩阵和第六预编码子矩阵的乘积。其中,W3和W4可以是组成第一方向预编码矩阵的两个子矩阵,也可以将W4看做是W3的加权矩阵。具体的加权方式可以与非3D MIMO的确定方式相同,例如W3可以作为长期宽带特性矩阵,反映第一方向天线端口的长期宽带特性,W4可以作为短期窄带特征矩阵,反映第一方向天线端口的短期窄带特性。应理解,由于第一预编码子矩阵的一个维度可以为2,第二预编码子矩阵的一个维度可以为8,所以在W2维度为8或2的一个时,W3与W4的乘积应满足维度为8或2的另一个。此外,本发明要求保护类似于这样的其他实施方式,例如:
Figure PCTCN2014095931-appb-000096
的形式,其中
Figure PCTCN2014095931-appb-000097
或者:
Figure PCTCN2014095931-appb-000098
的形式。当第一预编码子矩阵和第二预编码子矩阵至少有一个可以表示为另
外2个矩阵的积的形式时,需要反馈的PMI可以多于2个。例如对于
Figure PCTCN2014095931-appb-000099
的形式,可以反馈W3的PMI、W4的PMI、W2的PMI。下面,列举一些这样的形式下的各种情况:所述W2是行数为8的矩阵,W3的行数为2;或,所述W2列数为8,W4的列数为2;或,所述W2是行数为2的矩阵,W3的行数为8;或,所述W2列数为2,W4的列数为8。
应理解,这样的形式对于
Figure PCTCN2014095931-appb-000100
同样适用:所述W1的行数为8,W5的行数为2;或,所述W1列数为8,W6的列数为2;或,所述W1的行数为2,W5的行数为8;或,所述W1列数为2,W6的列数为8。
同样的,在
Figure PCTCN2014095931-appb-000101
的形式下,所述W3的行数为8,W5的行数为2;或,所述W4列数为8,W6的列数为2;或,所述W3的行数为2,W5的行数为8;或,所述W4列数为2,W6的列数为8。
应理解,本发明的实施例中,只在一个码本集合中确定对应的维度为2的第一预编码矩阵和维度为8的第二预编码矩阵,也可以是两个码本集合,一个码本集合中的维度均为2,另一个码本集合的维度均为8,或者是多个码本集合,其中多个码本集合中的元素也均为2或8的元素,但是,最终确定出的第一预编码矩阵维度为2,第二预编码矩阵的维度为8。考虑到特殊情况,如果码本集合中的矩阵包含其它维度的码本,这些码本也不应在最终的确定范围中。可选的,使用一个码本集合中的元素通过拼凑的形式得到第一预编码矩阵或第二预编码矩阵,但是在最终确定出合成所述预编码矩阵的第一预编码矩阵维度应为2,第二预编码矩阵的维度应为8。
发送单元803,用于向基站发送所述预编码矩阵对应的预编码矩阵指示PMI。所述预编码矩阵是所述确定单元确定的,所述PMI用于指示所述预编码矩阵。
应理解,所述本发明不限定所述PMI的反馈方式,所述PMI可以是某个信令中的一个字段,或是一个信令。一个实施例中,在需要指示多个预编码矩阵的情况下,所述PMI可以为多个,或者为一个PMI,但是该一个PMI中的不同部分指示不同的预编码矩阵。例如,在一个8比特PMI中,前3比特用于指示第一预编码矩阵,后5比特用于指示第二预编码矩阵的PMI。应理解,在本发明的各个实施例中,涉及到某矩阵对应的PMI可以是对应PMI的一个字段,也可以是对应一 个单独的PMI。
可选的,所述确定单元,还用于确定所述W1的PMI对应的比特数和所述W2的PMI对应的比特数;所述UE根据所述所述W1的PMI对应的比特数和所述W2的PMI对应的比特数确定W1的PMI和所述W2的PMI;所述发送单元向所述基站发送W1的PMI和W2的PMI。PMI的反馈资源固定的情况下,通过灵活配置PMI的比特位,可以扩展预编码子矩阵集合中元素数量。
在16天线端口的3D MIMO场景下,由于天线端口的不同配置方式,可以在各个不同的方向进行扩展。本实施例涉及的UE设备,在不同配置下确定不同的天线端口的计数方式,使得所述不同配置下均在预编码码本中确定一个维度为8的矩阵,和一个维度为2的矩阵,并反馈所述PMI的值以指示预编码矩阵,达到节省配置信令和节约空口资源的效果。
由于本发明实施例在16天线端口的情况下采用码本中一个维度为8和一个维度为2的预编码子矩阵,除了可以达到上面的实施例可以实现的计数效果外,还可以利用节省的资源,扩展码本中的预编码子矩阵的个数,以达到更准确地达到预编码矩阵的精度要求。
下面,将根据本发明的又一个实施例,介绍在PMI的反馈资源固定的情况下,通过灵活配置PMI的比特位,达到扩展预编码子矩阵集合中元素数量。
一个实施例中,所述确定单元还用于,确定所述W1的PMI对应的比特数和所述W2的PMI对应的比特数,并根据所述W1的PMI对应的比特数和所述W2的PMI对应的比特数确定W1的PMI和所述W2的PMI;
另一个实施例中,所述确定单元还用于,控制所述接收单元接收所述基站发送的比特指示信息,所述比特指示信息用于指示所述W1的PMI对应的比特数和所述W2的PMI对应的比特数中的至少一个。
图9示出了一种PMI反馈的方法。应理解,本实施例可以用于本发明其他各个实施例,也可以作为一个单独的实施例实施。
比特确定单元901,用于确定W1的PMI对应的比特数和所述W2的PMI对应的比特数。应理解,这里的比特确定单元在于图7或8的实施例结合时,可以为所述实施例7或8中的确定单元。
一个实施例中,所述确定过程可以是一个接收一个信令或者指示的过程,或 是一个根据参考信号确定的过程,也可以是一个预置的过程,还可以根据某些其它性质进行确定的过程。
所述比特确定单元901,还用于根据所述所述W1的PMI对应的比特数和所述W2的PMI对应的比特数确定W1的PMI和所述W2的PMI。
所述比特确定单元901可以按照如下示例执行:
所述比特确定单元确定预编码矩阵中需要反馈的PMI对应的比特数;所述所述比特确定单元根据预编码矩阵确定反馈的所述各个PMI;
例如,所述码本中包含多个预编码子矩阵,其中,其中一部分预编码子矩阵的一个维度为2,另一部分预编码子矩阵的维度为8。以维度为2的部分举例:
Figure PCTCN2014095931-appb-000102
若码本集合中维度为2的矩阵共有8个(A1-A8),当UE确定预编码矩阵中一共可以使用8比特,其中的3比特用于指示维度为2的矩阵,那么说明为UE分配或者UE自身确定了UE有足够的比特位从A1-A8这8个码本中选择测量结果所对应的预编码子矩阵,该预编码子矩阵可以对应图1和图2示出的实施例中的第一预编码子矩阵,具体的确定可以由所述比特确定单元完成;但是,当所述比特确定单元确定预编码矩阵中一共可以使用8比特,其中只有2比特用于指示维度为2的矩阵,那么,UE只能指示4个备选矩阵中的一个,这时,可以根据预置规则,例如确定00,01,10,11分别对应A1,A3,A5,A7进行反馈,这样的方式虽然影响了精度,但是节约了空口的比特资源。在某些情况下,例如维度为2的预编码子矩阵矩阵不需要太精细的指示,维度为8的预编码子矩阵需要比较精细的 指示时,可以通过减少维度为2的预编码子矩阵的PMI占用的比特数,提高维度为8的预编码子矩阵的精细程度。同样,维度为8的预编码子矩阵矩阵不需要太精细的指示,维度为2的预编码子矩阵需要比较精细的指示时,可以通过减少维度为8的预编码子矩阵的PMI占用的比特数,提高维度为2的预编码子矩阵的精细程度。目前,由于用户设备分布的场景不同,例如高楼场景,在垂直方向用户的分布较多,在测量并反馈PMI的过程中,如果能够提供更多、更精确的预编码矩阵,就可以使得确定的预编码矩阵更加精确地反映信道特性,达到提高信号强度的目的。因此,需要使用更多的比特值用来确定维度为2的预编码子矩阵的PMI反馈,广阔的平原场景,就需要更多的维度比特值用来确定维度为8的预编码子矩阵的PMI反馈。应理解,所述步骤301和步骤302可以调换顺序,所述比特确定单元可以先确定需要反馈的PMI,待确定反馈的所述各个PMI的比特数后,进行精度上的调整。例如,确定需要反馈的PMI为001,但是由于该方向预编码子矩阵的精度没有另一方向的子矩阵的精度高,可以根据预设规则确定需要反馈00作为该方向的PMI,以A1为该方向的预编码矩阵,其中,A1与A2应比较接近地反映信道的特性。此外,所述W1的PMI和W2对应的PMI的比特数可以是指W1与W2各自的PMI的比特数,在W1和W2在同一个PMI的不同字段情况下,指的是该字段的为W1和W2分配比特的情况。当PMI需要指示的矩阵数多于2个时,例如其它实施例中的W1可以进一步被确定为其它2个矩阵表示或者W2可以进一步被确定为其它2个矩阵表示的情况,所述所述比特确定单元可以确认多个矩阵对应的PMI所占用的比特数。
应理解,本发明中,所述比特数为8和对应的表格仅仅是一个实例,本发明还要求保护不同的比特数的反馈和包括表格的形式的,和其它的例如映射、公式类型的预编码矩阵的确定方式中,根据比特数进行调整的技术方案。
可选的,所述比特确定单元确定预编码矩阵中需要反馈的PMI对应的比特数具体包括:比特接收单元902,用于接收基站发送的比特指示消息,所述比特指示消息用于指示所述需要反馈的PMI对应的比特数;或:
所述比特确定单元根据所述测量确定所述需要反馈的PMI对应的比特数。一个实施例中,比特发送单元903,用于向所述基站发送所述需要反馈的PMI对应的比特数。向所述基站发送所述PMI对应的比特数。同样,所述比特接收单元和 比特发送单元在和图7或8的实施例结合时,可以分别是接收单元和发送单元。
可选的,所述比特接收单元还可以接收一个场景信息,所述场景信息用于指示所述UE当前的UE与基站间的通信对应的不同方向的配置。这里,所述不同方向可以为第一方向和第二方向,具体可以分别为水平方向和垂直方向。
通过图9示出的实施例,比特确定单元通过确定所述需要反馈的PMI对应的比特数,并根据预编码矩阵和所述PMI对应的比特数,确定反馈的所述各个PMI,本发明实施例的技术方案可以灵活调整PMI的反馈的比特的粒度,使得在同样的反馈资源下,灵活某一方向的波束精细程度,以达到适应各种场景需求的目的。
图10是根据本发明实施例的通信方法的示意性流程图,涉及一种基站装置。该装置具体包括:
发送单元1001,用于通过16个天线端口向UE发送参考信号;
接收单元1002,用于接收UE反馈的预编码矩阵指示PMI,所述PMI是根据所述发送单元发送的所述参考信号确定的;以及
确定单元1003,用于从16天线端口对应的预编码矩阵集合中确定所述PMI对应的预编码矩阵,其中,所述预编码矩阵集合中的每个预编码矩阵W满足如下关系:
Figure PCTCN2014095931-appb-000103
Figure PCTCN2014095931-appb-000104
所述W1为第一预编码子矩阵,所述W2为第二预编码子矩阵,
Figure PCTCN2014095931-appb-000105
表示克罗内克积,所述第一预编码子矩阵的行数为2且所述第二预编码子矩阵的行数为8;或所述第一预编码子矩阵的列数为8且所述第二预编码子矩阵的列数为2;
所述发送单元还用于,使用所述确定单元确定的所述预编码矩阵向所述UE发送数据。
通过图10示出的实施例,在16跟天线端口的配置下,所述发送单元通过发送参考信号进行测量以获取测量结果后,所述确定单元只在一个码本集合中确定对应的维度为2的第一预编码矩阵和维度为8的第二预编码矩阵,节省了存储资源和空口配置资源。
图11是根据本发明实施例的通信方法的示意性流程图,涉及一种预编码矩阵指示PMI的反馈方法。该方法具体包括:
发送单元1101,用于通过16个天线端口向UE发送参考信号;
一个实施例中,在所述发送单元通过16个天线端口向UE发送参考信号前, 还包括确定单元1102,用于确定采用16天线端口的场景。
另一个实施例中,所述发送单元还向所述UE指示所述天线端口数为16。这一指示过程可以是通过一个信令直接指示,也可以是通过发送单元发送参考信号的过程中指示所述UE,或者是在通过16个天线端口向UE发送参考信号前对UE进行配置的过程指示的。
接收单元1103,用于接收所述UE反馈的预编码矩阵指示PMI,所述PMI是根据所述发送单元发送的所述参考信号确定的;
应理解,本发明不限定所述PMI的反馈方式,所述PMI可以是某个信令中的一个字段,或是一个信令。一个实施例中,在需要指示多个预编码子矩阵的情况下,所述PMI可以为多个,或者为一个PMI,但是该一个PMI中的不同部分指示不同的预编码子矩阵,这些预编码子矩阵通过预置规则,组成所述预编码矩阵。所述预置规则可以是乘积或者克罗内克积的形式。例如,在一个8比特PMI中,前3比特用于指示第一预编码矩阵,后5比特用于指示第二预编码矩阵的PMI。第一预编码矩阵和第二预编码矩阵均为预编码子矩阵。应理解,在本发明的各个实施例中,涉及到某矩阵对应的PMI可以是对应PMI的一个字段,也可以是对应一个单独的PMI。
可选的,在所述接收单元接收所述UE反馈的预编码矩阵指示PMI前,所述确定单元用于确定所述W1的PMI和W2对应的PMI的比特数;所述接收单元根据所述所述W1的PMI和W2对应的PMI的比特数接收UE反馈的至少两个PMI。实现了PMI的反馈资源固定的情况下,通过灵活配置PMI的比特位,可以扩展预编码子矩阵集合中元素数量。
所述确定单元,还用于从16天线端口对应的预编码矩阵集合中确定所述PMI对应的预编码矩阵,其中,所述预编码矩阵集合中的每个预编码矩阵W满足如下关系:
Figure PCTCN2014095931-appb-000106
Figure PCTCN2014095931-appb-000107
所述W1为第一预编码子矩阵,所述W2为第二预编码子矩阵,
Figure PCTCN2014095931-appb-000108
表示克罗内克积,所述第一预编码子矩阵的行数为2且所述第二预编码子矩阵的行数为8;或所述第一预编码子矩阵的列数为8且所述第二预编码子矩阵的列数为2;
所述发送单元还用于,使用所述确定单元确定的所述预编码矩阵向所述UE发送数据。
举例说明,所述PMI的数量至少为2个;所述确定单元从16天线端口对应的预编码矩阵集合中确定所述至少两个PMI对应的预编码矩阵,包括:所述确定单元根据第一预编码子矩阵的PMI和第二预编码子矩阵的PMI确定所述第一预编码子矩阵和第二预编码子矩阵;所述确定单元根据所述第一预编码子矩阵和所述第二预编码子矩阵确定所述预编码矩阵。应理解,这里的预编码矩阵集合,还可以是多个集合的整合,或者从一个集合中确定出符合条件的预编码码本集合。
在3D MIMO场景下,确定出的预编码矩阵W为第一预编码矩阵W1和第二预编码矩阵W2的克罗内克积:
Figure PCTCN2014095931-appb-000109
根据克罗内克积的具体性质,若W1为m1行m2列的矩阵;W2为n1行n2列的矩阵,那么最终确定出的矩阵W是一个m1×n1行,m2×n2列的矩阵。在3D MIMO的16天线端口场景下,W的一个维度应为16,对于基站用于对需要发射的信号进行预编码,在UE侧用于解预编码。所以,m1×n1和m2×n2中应有一个值为16。所述第一预编码子矩阵的行数为2且所述第二预编码子矩阵的行数为8;或所述第一预编码子矩阵的列数为8且所述第二预编码子矩阵的列数为2。应理解,本发明要求保护各种所述
Figure PCTCN2014095931-appb-000110
情况下,或所述
Figure PCTCN2014095931-appb-000111
的变形,例如
Figure PCTCN2014095931-appb-000112
Figure PCTCN2014095931-appb-000113
Figure PCTCN2014095931-appb-000114
等情况,对于
Figure PCTCN2014095931-appb-000115
的情况,可以如上面所说,两个矩阵的列的维度分别是2和8,或者行的维度分别是2和8,最终确定的预编码矩阵W为应符合其中一个维度为16,这样,就可以使用W或W的转置对信号进行预编码。对于
Figure PCTCN2014095931-appb-000116
Figure PCTCN2014095931-appb-000117
的情况,可以使得所述第一预编码子矩阵的行数为2且所述第二预编码子矩阵的列数为8;或所述第一预编码子矩阵的列数为8且所述第二预编码子矩阵的行数为2。应理解,本发明不限定在确定所述W之后,且在对矩阵进行预编码前增加其它的操作步骤,例如从W中选出若干个长度为16的向量组成又一个矩阵W’,然后再利用所述W’预编码。应理解,凡是能够体现本发明思想的各种公式的变形,都属于本发明的保护范围。
应理解,对于预编码矩阵集合,应是一个最终的选择的范围,即如果集合{W}A 包含除了所述满足关系
Figure PCTCN2014095931-appb-000118
Figure PCTCN2014095931-appb-000119
的元素V,但是,在最终确定预编码矩阵的过程中,通过任何其它条件将V进行排除,那么所述码矩阵集合应不属于是{W}A的最终元素。所以,若存在元素V的集合{W}A,再通过某种条件筛选确定了{W}A’满足仅有行数或列数的一个为8或2,那么所述{W}A属于本发明的保护范围。例如,在集合{W}B存在一元素V1,V1的行数或列数既不是2也不是8,但是如果V1在任何情况下都不能被确定为W1或W2中的一个,那么所述{W}B不是所述预编码矩阵,而应该是{W}B’,所述{W}B’中的任何一个元素都是有可能通过测量确定出来作为所述W1或所述W2的,这也属于本发明的保护范围。
又一个实施例中,所述第一预编码子矩阵为第一方向预编码矩阵且所述第二预编码子矩阵为第二方向预编码子矩阵,或:所述第一预编码子矩阵为第二方向预编子码矩阵且所述第二预编码子矩阵为第一方向预编码子矩阵。
一个预编码矩阵可以由两个预编码子矩阵构成,例如,两个子矩阵可以分别由所述第一预编码子矩阵和第二预编码子矩阵构成,并且,构成的方式可以以乘积的形式或其他符合其天线端口预编码矩阵模型对应的方式构成,如克罗内克积的形式。所述预编码子矩阵可以有不同的物理意义。根据其物理意义,所述确定单元可以确定不同维度的码本大小。例如,对于3D MIMO,每个预编码矩阵都可以对应两个天线端口的摆放方向,其中,每一个方向都可以对应一个预编码子矩阵。在16天线端口的场景下,天线端口的配置方式可以按照不同方向有不同的配置。或者说,对于不同的摆放形式,每种配置形式都可以看作一种配置。可以参考图2a、2b、2c、2d给出了16天线端口的基本配置的形式,在图2示出的实施例中已经有详细的描述,在此不再赘述。
即所述16个天线端口的配置方式包括如下任一种:
第一方向配置2个天线端口且第二方向配置8个天线端口;
第一方向配置4个天线端口且第二方向配置4个天线端口;
第一方向配置8个天线端口且第二方向配置2个天线端口;
第一方向配置16个天线端口且第二方向配置1个天线端口。
在3D MIMO场景下,所述预编码矩阵可以由第一方向预编码矩阵和第二方向预编码矩阵确定,其中,第一方向预编码矩阵对应第一种天线端口的配置方向,第二方向预编码矩阵对应第二种天线端口的配置方向,所述第一种天线端口配置 方向和第二种天线端口配置方向可以是物理上真实的配置方向,也可以是将45°双极化的天线端口中,将某一角度看做的垂直或水平的配置方向的一个,将另一个角度看做垂直或水平的配置方向的另一个。所述第一预编码矩阵和第二预编码矩阵可以分别为不同的方向上的预编码矩阵,例如,第一方向预编码矩阵对应第一方向,第二方向预编码矩阵对应第二方向。
虽然16通常情况下天线端口下有4种不同的天线端口配置,但是可以根据天线端口的配置方向,为这4种配置确定相同维度的第一预编码矩阵或第二预编码矩阵。
一个实施例中,所述第一方向预编码矩阵为水平方向预编码矩阵,所述第二方向预编码矩阵为垂直方向预编码矩阵,或:所述第一方向预编码矩阵为垂直方向预编码矩阵,所述第二方向预编码矩阵为水平方向预编码矩阵。根据垂直方向和水平方向的划分方式,可以根据实际的高楼场景或平原场景的用户分布,对天线端口配置进行更加有针对性的选择。例如垂直方向用户较多,可以更多地配置垂直方向的天线端口。
一个实施例中,本发明说的矩阵模型
Figure PCTCN2014095931-appb-000120
还可以进一步分解,即所述预编码矩阵满足:
Figure PCTCN2014095931-appb-000121
其中,
Figure PCTCN2014095931-appb-000122
其中,所述W3×W4为行数为2的矩阵且所述W2为行数为8的矩阵,或所述W3×W4为列数为2的矩阵且所述W2为列数为8的矩阵。当然,这里的W3×W4和W2的维度还可以交换,如所述W3×W4为行数为8的矩阵且所述W2为行数为2的矩阵,或所述W3×W4为列数为8的矩阵且所述W2为列数为2的矩阵。即所述第一预编码子矩阵为第三预编码子矩阵和第四预编码子矩阵的乘积;和/或:所述第二预编码子矩阵为第五预编码子矩阵和第六预编码子矩阵的乘积。其中,W3和W4可以是组成第一方向预编码矩阵的两个子矩阵,也可以将W4看做是W3的加权矩阵。具体的加权方式可以与非3D MIMO的确定方式相同,例如W3可以作为长期宽带特性矩阵,反映第一方向天线端口的长期宽带特性,W4可以作为短期窄带特征矩阵,反映第一方向天线端口的短期窄带特性。 应理解,由于第一预编码子矩阵的一个维度可以为2,第二预编码子矩阵的一个维度可以为8,所以在W2维度为8或2的一个时,W3与W4的乘积应满足维度为8或2的另一个。此外,本发明要求保护类似于这样的其他实施方式,例如:
Figure PCTCN2014095931-appb-000123
的形式,其中
Figure PCTCN2014095931-appb-000124
或者:
的形式。当第一预编码子矩阵和第二预编码子矩阵至少有一个可以表示为另
外2个矩阵的积的形式时,需要反馈的PMI可以多于2个。例如对于
Figure PCTCN2014095931-appb-000126
的形式,所述接收单元接收所述UE反馈的W3的PMI、W4的PMI、W2的PMI。下面,列举一些这样的形式下的各种情况:所述W2是行数为8的矩阵,W3的行数为2;或,所述W2列数为8,W4的列数为2;或,所述W2是行数为2的矩阵,W3的行数为8;或,所述W2列数为2,W4的列数为8。
应理解,这样的形式对于
Figure PCTCN2014095931-appb-000127
同样适用:所述W1的行数为8,W5的行数为2;或,所述W1列数为8,W6的列数为2;或,所述W1的行数为2,W5的行数为8;或,所述W1列数为2,W6的列数为8。
同样的,在
Figure PCTCN2014095931-appb-000128
的形式下,所述W3的行数为8,W5的行数为2;或,所述W4列数为8,W6的列数为2;或,所述W3的行数为2,W5的行数为8;或,所述W4列数为2,W6的列数为8。
应理解,本发明的实施例中,只在一个码本集合中确定对应的维度为2的第一预编码矩阵和维度为8的第二预编码矩阵,也可以是两个码本集合,一个码本集合中的维度均为2,另一个码本集合的维度均为8,或者是多个码本集合,其中多个码本集合中的元素也均为2或8的元素,但是,所述确定单元最终确定出的第一预编码矩阵维度为2,第二预编码矩阵的维度为8。考虑到特殊情况,如果码本集合中的矩阵包含其它维度的码本,这些码本也不应在最终的确定范围中。可选的,使用一个码本集合中的元素通过拼凑的形式得到第一预编码矩阵或第二预编码矩阵,但是在最终确定出合成所述预编码矩阵的第一预编码矩阵维度应为 2,第二预编码矩阵的维度应为8。
由于本发明实施例在16天线端口的情况下采用码本中一个维度为8和一个维度为2的预编码子矩阵,除了可以达到上面的实施例可以实现的计数效果外,还可以利用节省的资源,扩展码本中的预编码子矩阵的个数,以达到更准确地达到预编码矩阵的精度要求。
下面,将根据本发明的又一个实施例,介绍在PMI的反馈资源固定的情况下,通过灵活配置PMI的比特位,达到扩展预编码子矩阵集合中元素数量。
一个实施例中,所述确定单元还用于确定所述W1的PMI和W2对应的PMI的比特数;所述接收单元还用于根据所述W1对应的的PMI和W2对应的PMI的比特数接收UE反馈的所述W1的PMI和所述W2的PMI。
可选的,所述确定单元还用于,控制所述发送单元向所述UE发送所述比特指示信息,所述比特指示信息用于指示所述W1的PMI对应的比特数和所述W2的PMI对应的比特数中的至少一个。
图12示出了一种基站。应理解,本实施例可以用于本发明其他各个实施例如图10,图11,也可以作为一个单独的实施例实施。
比特确定单元1201,用于确定所述W1的PMI和W2对应的PMI的比特数;
一个实施例中,所述确定过程可以是一个接收一个其它网络设备,例如核心网网元或其它基站的信令或者指示的过程,或是一个根据信道特性确定的过程,也可以是一个预置的过程,还可以根据某些其它性质进行确定的过程。
比特接收单元1202,用于用于根据所述W1对应的的PMI和W2对应的PMI的比特数接收UE反馈的所述W1的PMI和所述W2的PMI。
应理解,在本实施例和图10、图11结合的情况下,所述比特确定单元可以为所述确定单元,所述比特接收单元可以为所述接收单元。
比特确定单元确定W1的PMI对应的比特数和所述W2的PMI对应的比特数;所述比特接收单元根据所述W1的PMI和W2对应的PMI的比特数接收UE反馈的至少两个PMI;
例如,所述码本中包含多个预编码子矩阵,其中,其中一部分预编码子矩阵的一个维度为2,另一部分预编码子矩阵的维度为8。以维度为2的部分举例:
PMI值(3比特) PMI值(2比特) 对应的预编码矩阵
    (向量)
000 00 A1
001 - A2
010 01 A3
011 - A4
100 10 A5
101 - A6
110 11 A7
111 - A8
若码本集合中维度为2的矩阵共有8个(A1-A8),当比特确定单元确定预编码矩阵中一共可以使用8比特,其中的3比特用于指示维度为2的矩阵,那么说明基站为UE分配了足够的比特位从A1-A8这8个码本中选择测量结果所对应的预编码子矩阵,这一分配过程可以由比特确定单元或一个分配单元完成。该预编码子矩阵可以对应图1和图2示出的实施例中的第一预编码子矩阵;但是,当比特确定单元确定预编码矩阵中一共可以使用8比特,其中只有2比特用于指示维度为2的矩阵,那么,基站通知UE后,UE只能确定4个备选矩阵中的一个,这时,可以根据预置规则,例如确定00,01,10,11分别对应A1,A3,A5,A7进行反馈,这样的方式虽然影响了精度,但是节约了空口的比特资源,这里,所述通知可以由一个比特发送单元完成,但和图10,图11结合时,可以由发送单元完成。在某些情况下,例如维度为2的预编码子矩阵矩阵不需要太精细的指示,维度为8的预编码子矩阵需要比较精细的指示时,可以通过减少维度为2的预编码子矩阵的PMI占用的比特数,提高维度为8的预编码子矩阵的精细程度。同样,维度为8的预编码子矩阵矩阵不需要太精细的指示,维度为2的预编码子矩阵需要比较精细的指示时,可以通过减少维度为8的预编码子矩阵的PMI占用的比特数,提高维度为2的预编码子矩阵的精细程度。目前,由于用户设备分布的场景不同,例如高楼场景,在垂直方向用户的分布较多,在测量并反馈PMI的过程中,如果能够提供更多、更精确的预编码矩阵,就可以使得确定的预编码矩阵更加精确地反映信道特性,达到提高信号强度的目的。因此,需要使用更多的比特值用来确定维度为2的预编码子矩阵的PMI反馈,广阔的平原场景,就需要更多的维度比 特值用来确定维度为8的预编码子矩阵的PMI反馈。应理解,通常情况下是通过基站对所述UE进行比特数的调整,但是,也可以是基站接收UE的比特分配消息,与基站协商所述比特数。此外,所述W1的PMI和W2对应的PMI的比特数可以是指W1与W2各自的PMI的比特数,在W1和W2在同一个PMI的不同字段情况下,指的是该字段的为W1和W2分配比特的情况。当PMI需要指示的矩阵数多于2个时,例如其它实施例中的W1可以进一步被确定为其它2个矩阵表示或者W2可以进一步被确定为其它2个矩阵表示的情况,所述比特确定单元可以确认多个矩阵对应的PMI所占用的比特数。
应理解,本发明中,所述比特数为8和对应的表格仅仅是一个实例,本发明还要求保护不同的比特数的反馈和包括表格的形式的,和其它的例如映射、公式类型的预编码矩阵的确定方式中,根据比特数进行调整的技术方案。
可选的,所述比特确定单元确定W1的PMI对应的比特数和所述W2的PMI对应的比特数具体包括:所述比特接收单元接收比特指示消息,所述比特指示消息用于指示所述需要反馈的PMI对应的比特数。该指示消息可以来自UE或其它网络设备。可选的,所述比特确定单元确定所述W1的PMI对应的比特数和所述W2的PMI对应的比特数。
可选的,所述比特确定单元还可以确定一个场景信息,所述场景信息用于指示所述基站需要反馈的W1的PMI对应的比特数和所述W2的PMI对应的比特数。当前的UE与基站间的通信对应的不同方向的配置。这里,所述不同方向可以为第一方向和第二方向,具体可以分别为水平方向和垂直方向。
通过图12示出的实施例,基站通过确定W1的PMI对应的比特数和所述W2的PMI对应的比特数,接收反馈的所述各个PMI,本发明实施例的技术方案可以灵活调整PMI的反馈的比特的粒度,使得在同样的反馈资源下,灵活某一方向的波束精细程度,以达到适应各种场景需求的目的。
下面,将结合图3、图6、图9、图12示出的实施例给出一个具体的实施例。
图13是本发明一个PMI的反馈方法的流程图。
步骤1301,基站确定所述W1的PMI对应的比特数和所述W2的PMI对应的比特数;该步骤可以是基站的确定单元确定的;
步骤1302,所述基站向所述UE发送所述比特指示信息,所述比特指示信息 用于指示所述W1的PMI对应的比特数和所述W2的PMI对应的比特数中的至少一个。该步骤可以是基站的发送单元确定的;
步骤1303,所述UE接收所述基站发送的比特指示信息,所述比特指示信息用于指示所述W1的PMI对应的比特数和所述W2的PMI对应的比特数中的至少一个。该步骤可以是UE的发送单元完成的所述发送步骤;
一个实施例中,所述步骤1302中,所述基站可以在向所述UE发送比特指示信息前确定一个发送模式,具体的确定所述发送模式的方式可以是通过一个信令指示。再发送一个比特指示信息。对应不同的发送模式,所述比特指示信息可以以不同的形式指示不同的所述PMI,本发明给出如下几个实施例:
实施例1:
所述发送模式确定了PMI所占的总比特数,在这样的情况下,所述比特指示信息可以指示所述W1的PMI的比特数或所述W2的PMI中的比特数中的一个;
实施例2:
所述发送模式确定了W1的PMI的比特数或所述W2的PMI中的比特数中的一个对应的固定比特数,在这样的情况下,所述比特指示信息可以指示所述W1的PMI的比特数或所述W2的PMI中的比特数中的另一个。
步骤1304,所述UE确定所述W1的PMI对应的比特数和所述W2的PMI对应的比特数;该步骤可以是UE的确定单元完成的所述确定步骤;
步骤1305,所述UE根据所述W1的PMI对应的比特数和所述W2的PMI对应的比特数确定W1的PMI和所述W2的PMI;该步骤可以是UE的发送单元完成的所述发送步骤;
步骤1306,所述基站根据所述W1对应的PMI和W2对应的PMI的比特数接收UE反馈的所述W1的PMI和所述W2的PMI;该步骤可以是基站的接收单元完成的所述发送步骤。
图14示出了本发明的又一个系统实施例,涉及到终端装置和基站,具体包括:
1401,所述基站向所述UE发送参考信号;其中,所述基站发送所述参考信号的天线端口数为8;
1402,所述UE接收所述参考信号;
1403,所述UE确定秩指示的值;
1404,确定所述天线端口数为8;
1405,所述UE根据所述参考信号和所述秩指示,从第一码本中确定预编码矩阵对应的PMI,其中,所述第一码本为:
Figure PCTCN2014095931-appb-000129
表1 RI=1
Figure PCTCN2014095931-appb-000130
表2 RI=2
Figure PCTCN2014095931-appb-000131
表3 RI=3
Figure PCTCN2014095931-appb-000132
表4 RI=4
Figure PCTCN2014095931-appb-000133
表5 RI=5
Figure PCTCN2014095931-appb-000134
表6 RI=6
Figure PCTCN2014095931-appb-000135
表7 RI=7
Figure PCTCN2014095931-appb-000136
表8 RI=8
其中,PMI 1可以为i 1,PMI2可以为i2,表中的W为每个码本,所述
Figure PCTCN2014095931-appb-000137
所述
Figure PCTCN2014095931-appb-000138
其中vk=[1 ej2πk/K]T,vl=[1 ej2πl/L]T,其中,m,l,K满足:m=l×K+k,k=mMODK,
Figure PCTCN2014095931-appb-000139
一个实施例中,所述K的值为8,所述L的值为4。
1406,所述UE向所述基站发送所述PMI;
1407,所述基站接收所述PMI的值;
1408,所述基站根据所述PMI的值,确定所述预编码矩阵。
可选的,本发明不限定各个步骤在符合逻辑情况下的调换顺序和装置的整合、拆分和修改。
应理解,本发明的装置实施例中,可以是各种实体装置的形式,例如,本发 明的装置实施例中,发送单元可以是一个发射器,也可以是一个天线或天线系统,接收单元可以是一个接收器,也可以是一个天线或天线系统,所述发射器和所述接收器可以是一个收发器,也可以合并为一个天线或天线系统。所述确定单元可以是一个或多个处理器。本发明的码本、信令或预置的规则或其它需要存储的内容可以存储在一个存储单元中,具体可以以存储器的形式实现。
所述处理器,可以是通用处理器,例如通用中央处理器(CPU)、网络处理器(Network Processor,简称NP)、微处理器等,也可以是特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本发明方案程序执行的集成电路。还可以是数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。也可以是多个处理器完成不同的功能。
存储器中保存有执行本发明技术方案的程序,还可以保存有操作系统和其他应用程序。具体地,程序可以包括程序代码,程序代码包括计算机操作指令。更具体的,所述存储器可以是只读存储器(read-only memory,ROM)、可存储静态信息和指令的其他类型的静态存储设备、随机存取存储器(random access memory,RAM)、可存储信息和指令的其他类型的动态存储设备、磁盘存储器等等。也可以是不同的存储器存储。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本发明可以用硬件实现,或固件实现,或它们的组合方式来实现。当使用软件实现时,可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括RAM、ROM、EEPROM、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。此外。任何连接可以适当的成为计算机可读介质。例如,如果软件是使用同轴电缆、光纤光缆、双绞线、数字用户线(DSL)或者诸如红外线、无线电和微波之类的无线技术从网站、服务器或者其他远程源传输的,那么同轴电缆、光纤光缆、双绞线、DSL或者诸如红外线、无线和微波 之类的无线技术包括在所属介质的定影中。如本发明所使用的,盘(Disk)和碟(disc)包括压缩光碟(CD)、激光碟、光碟、数字通用光碟(DVD)、软盘和蓝光光碟,其中盘通常磁性的复制数据,而碟则用激光来光学的复制数据。上面的组合也应当包括在计算机可读介质的保护范围之内。
总之,以上所述仅为本发明技术方案的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (32)

  1. 一种预编码矩阵指示PMI的反馈方法,其特征在于:
    用户设备UE接收参考信号;
    所述UE确定基站用于发射所述参考信号的天线端口的个数为16;
    所述UE从16天线端口对应的预编码矩阵集合中确定预编码矩阵,其中,所述预编码矩阵集合中的每个预编码矩阵W满足如下关系:
    Figure PCTCN2014095931-appb-100001
    Figure PCTCN2014095931-appb-100002
    所述W1为第一预编码子矩阵,所述W2为第二预编码子矩阵,
    Figure PCTCN2014095931-appb-100003
    表示克罗内克积,所述第一预编码子矩阵的行数为2且所述第二预编码子矩阵的行数为8;或所述第一预编码子矩阵的列数为8且所述第二预编码子矩阵的列数为2;
    所述UE向基站发送所述预编码矩阵对应的预编码矩阵指示PMI。
  2. 根据权利要求1所述方法,其特征在于,所述UE从预编码矩阵集合中确定预编码矩阵,包括:
    所述UE从所述预编码矩阵集合中确定所述第一预编码子矩阵和所述第二预编码子矩阵;
    所述UE根据所述第一预编码子矩阵和所述第二预编码子矩阵确定所述预编码矩阵。
  3. 根据权利要求1或2所述方法,其特征在于,所述第一预编码子矩阵为第一方向预编码矩阵且所述第二预编码子矩阵为第二方向预编码子矩阵,或:
    所述第一预编码子矩阵为第二方向预编子码矩阵且所述第二预编码子矩阵为第一方向预编码子矩阵。
  4. 根据权利要求3所述方法,其特征在于,所述16个天线端口的配置方式包括如下任一种:
    第一方向配置2个天线端口且第二方向配置8个天线端口;
    第一方向配置4个天线端口且第二方向配置4个天线端口;
    第一方向配置8个天线端口且第二方向配置2个天线端口;
    第一方向配置16个天线端口且第二方向配置1个天线端口。
  5. 根据权利要求4所述方法,其特征在于,所述第一方向预编码矩阵为水平方向 预编码矩阵,所述第二方向预编码矩阵为垂直方向预编码矩阵,或
    所述第一方向预编码矩阵为垂直方向预编码矩阵,所述第二方向预编码矩阵为水平方向预编码矩阵。
  6. 根据权利要求1-5任意一项所述方法,其特征在于,所述第一预编码子矩阵为第三预编码子矩阵和第四预编码子矩阵的乘积;和/或
    所述第二预编码子矩阵为第五预编码子矩阵和第六预编码子矩阵的乘积。
  7. 根据权利要求1-6任意一项所述方法,其特征在于,包括:
    所述UE确定所述W1的PMI对应的比特数和所述W2的PMI对应的比特数;
    所述UE根据所述W1的PMI对应的比特数和所述W2的PMI对应的比特数确定W1的PMI和所述W2的PMI;
    所述UE向所述基站发送所述预编码矩阵对应的预编码矩阵指示PMI,包括:
    向所述基站发送W1的PMI和所述W2的PMI。
  8. 根据权利要求7所述方法,其特征在于,所述UE确定所述W1的PMI对应的比特数和所述W2的PMI对应的比特数,包括:
    所述UE接收所述基站发送的比特指示信息,所述比特指示信息用于指示所述W1的PMI对应的比特数和所述W2的PMI对应的比特数中的至少一个。
  9. 一种预编码矩阵指示PMI的反馈方法,其特征在于:
    基站通过16个天线端口向UE发送参考信号;
    所述基站接收所述UE反馈的预编码矩阵指示PMI;
    所述基站从16天线端口对应的预编码矩阵集合中确定所述PMI对应的预编码矩阵,其中,所述预编码矩阵集合中的每个预编码矩阵W满足如下关系:
    Figure PCTCN2014095931-appb-100004
    Figure PCTCN2014095931-appb-100005
    所述W1为第一预编码子矩阵,所述W2为第二预编码子矩阵,
    Figure PCTCN2014095931-appb-100006
    表示克罗内克积,所述第一预编码子矩阵的行数为2且所述第二预编码子矩阵的行数为8;或所述第一预编码子矩阵的列数为8且所述第二预编码子矩阵的列数为2;
    所述基站使用所述预编码矩阵向所述UE发送数据。
  10. 根据权利要求9所述方法,其特征在于,所述PMI的数量至少为2个;
    所述基站从16天线端口对应的预编码矩阵集合中确定所述预编码矩阵,包括:
    所述基站根据第一预编码子矩阵的PMI和第二预编码子矩阵的PMI确定所述第一预编码子矩阵和第二预编码子矩阵;
    所述基站根据所述第一预编码子矩阵和所述第二预编码子矩阵确定所述预编码矩阵。
  11. 根据权利要求9或10所述方法,其特征在于,所述第一预编码子矩阵为第一方向预编码矩阵且所述第二预编码子矩阵为第二方向预编码子矩阵,或
    所述第一预编码子矩阵为第二方向预编子码矩阵且所述第二预编码子矩阵为第一方向预编码子矩阵。
  12. 根据权利要求11所述方法,其特征在于,所述16个天线端口的配置方式包括如下任一种:
    第一方向配置2个天线端口且第二方向配置8个天线端口;
    第一方向配置4个天线端口且第二方向配置4个天线端口;
    第一方向配置8个天线端口且第二方向配置2个天线端口;
    第一方向配置16个天线端口且第二方向配置1个天线端口。
  13. 根据权利要求12所述方法,其特征在于,所述第一方向预编码矩阵为水平方向预编码矩阵,所述第二方向预编码矩阵为垂直方向预编码矩阵,或
    所述第一方向预编码矩阵为垂直方向预编码矩阵,所述第二方向预编码矩阵为水平方向预编码矩阵。
  14. 根据权利要求9-13任意一项所述方法,其特征在于,所述第一预编码子矩阵为第三预编码子矩阵和第四预编码子矩阵的乘积;和/或
    所述第二预编码子矩阵为第五预编码子矩阵和第六预编码子矩阵的乘积。
  15. 根据权利要求9-14任意一项所述方法,其特征在于,包括:
    所述基站确定所述W1的PMI对应的比特数和所述W2的PMI对应的比特数;
    所述基站根据所述W1对应的PMI和W2对应的PMI的比特数接收UE反馈的所述W1的PMI和所述W2的PMI。
  16. 根据权利要求15所述方法,其特征在于,还包括:
    所述基站向所述UE发送所述比特指示信息,所述比特指示信息用于指示所述W1的PMI对应的比特数和所述W2的PMI对应的比特数中的至少一个。
  17. 一种用户设备UE,其特征在于:
    接收单元,用于接收参考信号;
    确定单元,用于
    确定基站用于发射所述参考信号的天线端口的个数为16,从16天线端口对应的预编码矩阵集合中确定预编码矩阵,其中,所述参考信号是所述接收单元接收的,所述预编码矩阵集合中的每个预编码矩阵W满足如下关系:
    Figure PCTCN2014095931-appb-100007
    Figure PCTCN2014095931-appb-100008
    所述W1为第一预编码子矩阵,所述W2为第二预编码子矩阵,
    Figure PCTCN2014095931-appb-100009
    表示克罗内克积,所述第一预编码子矩阵的行数为2且所述第二预编码子矩阵的行数为8;或所述第一预编码子矩阵的列数为8且所述第二预编码子矩阵的列数为2;
    发送单元,用于向基站发送所述预编码矩阵对应的预编码矩阵指示PMI,所述预编码矩阵是所述确定单元确定的。
  18. 根据权利要求17所述UE,其特征在于,所述确定单元用于从预编码矩阵集合中确定预编码矩阵,包括:
    从所述预编码矩阵集合中确定所述第一预编码子矩阵和所述第二预编码子矩阵;以及
    根据所述第一预编码子矩阵和所述第二预编码子矩阵确定所述预编码矩阵。
  19. 根据权利要求17或18所述的UE,其特征在于,所述第一预编码子矩阵为第一方向预编码矩阵且所述第二预编码子矩阵为第二方向预编码子矩阵;或
    所述第一预编码子矩阵为第二方向预编子码矩阵且所述第二预编码子矩阵为第一方向预编码子矩阵。
  20. 根据权利要求19所述UE,其特征在于,所述16个天线端口的配置方式包括如下任一种:
    第一方向配置2个天线端口且第二方向配置8个天线端口;
    第一方向配置4个天线端口且第二方向配置4个天线端口;
    第一方向配置8个天线端口且第二方向配置2个天线端口;
    第一方向配置16个天线端口且第二方向配置1个天线端口。
  21. 根据权利要求20所述UE,其特征在于,所述第一方向预编码矩阵为水平方向预编码矩阵,所述第二方向预编码矩阵为垂直方向预编码矩阵,或:
    所述第一方向预编码矩阵为垂直方向预编码矩阵,所述第二方向预编码矩阵 为水平方向预编码矩阵。
  22. 根据权利要求17-21任意一项所述UE,其特征在于,所述第一预编码子矩阵为第三预编码子矩阵和第四预编码子矩阵的乘积;和/或:
    所述第二预编码子矩阵为第五预编码子矩阵和第六预编码子矩阵的乘积。
  23. 根据权利要求17-22任意一项所述UE,其特征在于,
    所述确定单元还用于,确定所述W1的PMI对应的比特数和所述W2的PMI对应的比特数,并根据所述W1的PMI对应的比特数和所述W2的PMI对应的比特数确定W1的PMI和所述W2的PMI;
  24. 根据权利要求23所述UE,其特征在于,所述确定单元还用于,控制所述接收单元接收所述基站发送的比特指示信息,所述比特指示信息用于指示所述W1的PMI对应的比特数和所述W2的PMI对应的比特数中的至少一个。
  25. 一种基站装置,其特征在于:
    发送单元,用于通过16个天线端口向UE发送参考信号;
    接收单元,用于接收所述UE反馈的预编码矩阵指示PMI,所述PMI是根据所述发送单元发送的所述参考信号确定的;以及
    确定单元,用于从16天线端口对应的预编码矩阵集合中确定所述接收单元接收的所述PMI对应的预编码矩阵,其中,所述预编码矩阵集合中的每个预编码矩阵W满足如下关系:
    Figure PCTCN2014095931-appb-100010
    Figure PCTCN2014095931-appb-100011
    所述W1为第一预编码子矩阵,所述W2为第二预编码子矩阵,
    Figure PCTCN2014095931-appb-100012
    表示克罗内克积,所述第一预编码子矩阵的行数为2且所述第二预编码子矩阵的行数为8;或所述第一预编码子矩阵的列数为8且所述第二预编码子矩阵的列数为2;
    所述发送单元还用于,使用所述确定单元确定的所述预编码矩阵向所述UE发送数据。
  26. 根据权利要求25所述基站,其特征在于,所述PMI的数量至少为2个;
    所述确定单元还用于从16天线端口对应的预编码矩阵集合中确定所述预编码矩阵,包括:
    根据第一预编码子矩阵的PMI和第二预编码子矩阵的PMI确定所述第一预编码子矩阵和第二预编码子矩阵;以及
    根据所述第一预编码子矩阵和所述第二预编码子矩阵确定所述预编码矩阵。
  27. 根据权利要求25或26所述的基站,其特征在于,所述第一预编码子矩阵为第一方向预编码矩阵且所述第二预编码子矩阵为第二方向预编码子矩阵,或:
    所述第一预编码子矩阵为第二方向预编子码矩阵且所述第二预编码子矩阵为第一方向预编码子矩阵。
  28. 根据权利要求27所述基站,其特征在于,所述16个天线端口的配置方式包括如下任一种:
    第一方向配置2个天线端口且第二方向配置8个天线端口;
    第一方向配置4个天线端口且第二方向配置4个天线端口;
    第一方向配置8个天线端口且第二方向配置2个天线端口;
    第一方向配置16个天线端口且第二方向配置1个天线端口。
  29. 根据权利要求28所述基站,其特征在于,所述第一方向预编码矩阵为水平方向预编码矩阵,所述第二方向预编码矩阵为垂直方向预编码矩阵,或:
    所述第一方向预编码矩阵为垂直方向预编码矩阵,所述第二方向预编码矩阵为水平方向预编码矩阵。
  30. 根据权利要求25-29任意一项所述基站,其特征在于,所述第一预编码子矩阵为第三预编码子矩阵和第四预编码子矩阵的乘积;和/或:
    所述第二预编码子矩阵为第五预编码子矩阵和第六预编码子矩阵的乘积。
  31. 根据权利要求25-30任意一项所述基站,其特征在于,包括:
    所述确定单元还用于确定所述W1的PMI和W2对应的PMI的比特数;
    所述接收单元还用于根据所述W1对应的的PMI和W2对应的PMI的比特数接收UE反馈的所述W1的PMI和所述W2的PMI。
  32. 根据权利要求31所述基站,其特征在于,所述确定单元还用于,控制所述发送单元向所述UE发送所述比特指示信息,所述比特指示信息用于指示所述W1的PMI对应的比特数和所述W2的PMI对应的比特数中的至少一个。
PCT/CN2014/095931 2014-12-31 2014-12-31 一种预编码矩阵指示pmi的反馈方法 WO2016106696A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017535401A JP6580687B2 (ja) 2014-12-31 2014-12-31 プリコーディング行列インジケータpmiのフィードバック方法
PCT/CN2014/095931 WO2016106696A1 (zh) 2014-12-31 2014-12-31 一种预编码矩阵指示pmi的反馈方法
CN201480084486.XA CN107211486B (zh) 2014-12-31 2014-12-31 一种预编码矩阵指示pmi的反馈方法
EP14909504.4A EP3229553B1 (en) 2014-12-31 2014-12-31 Precoding matrix indicator (pmi) feedback method
US15/637,636 US10056950B2 (en) 2014-12-31 2017-06-29 Precoding matrix indicator PMI feedback method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/095931 WO2016106696A1 (zh) 2014-12-31 2014-12-31 一种预编码矩阵指示pmi的反馈方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/637,636 Continuation US10056950B2 (en) 2014-12-31 2017-06-29 Precoding matrix indicator PMI feedback method

Publications (1)

Publication Number Publication Date
WO2016106696A1 true WO2016106696A1 (zh) 2016-07-07

Family

ID=56283970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/095931 WO2016106696A1 (zh) 2014-12-31 2014-12-31 一种预编码矩阵指示pmi的反馈方法

Country Status (5)

Country Link
US (1) US10056950B2 (zh)
EP (1) EP3229553B1 (zh)
JP (1) JP6580687B2 (zh)
CN (1) CN107211486B (zh)
WO (1) WO2016106696A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019095309A1 (zh) * 2017-11-17 2019-05-23 华为技术有限公司 信道状态信息的反馈方法、通信装置和系统
US12126466B2 (en) * 2022-03-09 2024-10-22 Qualcomm Incorporated Channel state feedback using demodulation reference signals
US20240275438A1 (en) * 2023-02-10 2024-08-15 Samsung Electronics Co., Ltd. Method and apparatus for codebook-based csi reporting for full channel matrices

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103004104A (zh) * 2010-06-03 2013-03-27 数码士有限公司 差分预编码方法和支持该方法的基站
CN103780332A (zh) * 2012-10-19 2014-05-07 电信科学技术研究院 传输编码指示信息和确定预编码矩阵的方法、系统及设备
CN104065448A (zh) * 2013-03-22 2014-09-24 电信科学技术研究院 一种确定预编码矩阵的方法、系统和设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9203489B2 (en) * 2010-05-05 2015-12-01 Google Technology Holdings LLC Method and precoder information feedback in multi-antenna wireless communication systems
KR20120003781A (ko) * 2010-07-05 2012-01-11 주식회사 팬택 송신장치 및 그 통신방법, 수신장치, 그 통신방법
CN102468928B (zh) * 2010-11-15 2014-07-02 中国移动通信集团公司 下行mimo子带信道状态信息的反馈方法、装置及设备
US9119209B2 (en) * 2012-03-30 2015-08-25 Samsung Electronics Co., Ltd. Apparatus and method for channel-state-information pilot design for an advanced wireless network
US8913682B2 (en) * 2012-05-18 2014-12-16 Samsung Electronics Co., Ltd. Apparatus and method for channel state information codeword construction for a cellular wireless communication system
JP6127146B2 (ja) * 2012-09-28 2017-05-10 インターデイジタル パテント ホールディングス インコーポレイテッド 多次元アンテナ構成を使用する無線通信
WO2014176813A1 (zh) * 2013-04-28 2014-11-06 华为技术有限公司 预编码矩阵指示的反馈方法、接收端和发射端
EP3116280A4 (en) * 2014-03-06 2017-11-15 Alcatel Lucent Method and device for quantifying channel state information
US9755719B2 (en) * 2014-06-12 2017-09-05 Lg Electronics Inc. Method for configuring codebook in multi-antenna wireless communication system and device therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103004104A (zh) * 2010-06-03 2013-03-27 数码士有限公司 差分预编码方法和支持该方法的基站
CN103780332A (zh) * 2012-10-19 2014-05-07 电信科学技术研究院 传输编码指示信息和确定预编码矩阵的方法、系统及设备
CN104065448A (zh) * 2013-03-22 2014-09-24 电信科学技术研究院 一种确定预编码矩阵的方法、系统和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3229553A4 *

Also Published As

Publication number Publication date
CN107211486B (zh) 2020-09-08
EP3229553A4 (en) 2017-12-20
CN107211486A (zh) 2017-09-26
EP3229553A1 (en) 2017-10-11
EP3229553B1 (en) 2024-03-13
US10056950B2 (en) 2018-08-21
JP2018507593A (ja) 2018-03-15
JP6580687B2 (ja) 2019-09-25
US20170310372A1 (en) 2017-10-26

Similar Documents

Publication Publication Date Title
JP7033205B2 (ja) データ伝送方法、基地局および端末
WO2020125422A1 (zh) 一种信道状态信息csi上报的配置方法和通信装置
KR20200055054A (ko) 업링크 전송 방법, 구성 방법, 단말 및 기지국
KR102027075B1 (ko) 프리코딩 정보 송신 및 피드백 방법 및 장치
US11239895B2 (en) Data transmission method, terminal device, and network device
WO2020083057A1 (zh) 指示和确定预编码向量的方法以及通信装置
US20200021343A1 (en) Signaling sending method, apparatus, and system
JP6690848B2 (ja) Csi測定及びフィードバック方法及びデバイス
WO2018082497A1 (zh) 一种空间信息的处理方法及装置、传输节点、存储介质
TWI619358B (zh) Method and device for transmitting channel state information
WO2017193404A1 (zh) 信道状态信息的上报方法、读取方法及相关设备
CN110324071B (zh) 一种tpmi的传输方法、接收端和发送端
JP2022517608A (ja) チャネル状態情報を送受信するための方法、端末装置およびネットワーク装置
WO2016106696A1 (zh) 一种预编码矩阵指示pmi的反馈方法
CN112054831B (zh) 信道状态信息的反馈方法及装置
US20190349053A1 (en) Channel state information transmission method, access network device, and terminal device
WO2016184335A1 (zh) 一种信道状态信息反馈方法和终端
CN107113661B (zh) 一种预编码矩阵指示pmi的反馈方法和装置
JP7580519B2 (ja) チャネル状態情報を送受信するための方法、端末装置およびネットワーク装置
WO2022206409A1 (zh) 信息上报方法、网络侧配置方法、装置、设备及存储介质
TW202408303A (zh) 碼本參數傳輸方法、裝置及存儲介質
TW202416693A (zh) 資訊確定方法、裝置、終端及網路設備
CN115915436A (zh) 资源指示方法、终端、网络侧设备、装置和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14909504

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017535401

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014909504

Country of ref document: EP