Nothing Special   »   [go: up one dir, main page]

WO2016104596A1 - Low protein adsorption material, low protein adsorption article, low cell adhesion material, and low cell adhesion article - Google Patents

Low protein adsorption material, low protein adsorption article, low cell adhesion material, and low cell adhesion article Download PDF

Info

Publication number
WO2016104596A1
WO2016104596A1 PCT/JP2015/086016 JP2015086016W WO2016104596A1 WO 2016104596 A1 WO2016104596 A1 WO 2016104596A1 JP 2015086016 W JP2015086016 W JP 2015086016W WO 2016104596 A1 WO2016104596 A1 WO 2016104596A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
low
cell adhesion
material according
vinyl
Prior art date
Application number
PCT/JP2015/086016
Other languages
French (fr)
Japanese (ja)
Inventor
谷原 正夫
安藤 剛
匡康 戸谷
毛利 晴彦
田中 義人
將 神原
三木 淳
Original Assignee
国立大学法人 奈良先端科学技術大学院大学
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 奈良先端科学技術大学院大学, ダイキン工業株式会社 filed Critical 国立大学法人 奈良先端科学技術大学院大学
Priority to JP2016566437A priority Critical patent/JP6810386B2/en
Publication of WO2016104596A1 publication Critical patent/WO2016104596A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/05Containers specially adapted for medical or pharmaceutical purposes for collecting, storing or administering blood, plasma or medical fluids ; Infusion or perfusion containers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L33/00Antithrombogenic treatment of surgical articles, e.g. sutures, catheters, prostheses, or of articles for the manipulation or conditioning of blood; Materials for such treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F218/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid
    • C08F218/02Esters of monocarboxylic acids
    • C08F218/04Vinyl esters

Definitions

  • the present invention relates to a low protein adsorbing material, a low protein adsorbing article, a low cell adhering material, and a low cell adhering article.
  • Polymer materials are used as materials constituting instruments for storing blood, instruments for culturing cells, and the like.
  • Patent Document 1 describes a biocompatible substrate in which at least a part of the surface is composed of a hydrophobic fluororesin and a hydrophilic fluororesin.
  • Patent Document 2 includes a medical article, a coating disposed on at least a portion of an implantable medical device, wherein the coating includes (a) a fluorinated polymer, and (b) a biobeneficial polymer. Medical articles are described.
  • Patent Document 3 as a film used for water treatment or medical use, a copolymer of tetrafluoroethylene (TFE) and vinyl acetate (VAc) or at least a part of an acetate group contained in the copolymer is included.
  • a fluorine-containing copolymer film comprising a saponified copolymer and having a tetrafluoroethylene content of 1 to 70 mol% contained in the copolymer.
  • Patent Document 4 describes a copolymer obtained by deprotecting a copolymer of tetrafluoroethylene and t-butyl vinyl ether or vinyl acetate as a hydrophilizing material used for an aqueous liquid separation membrane. .
  • Patent Document 5 discloses a molded product having a low protein adsorption layer on the surface of a support layer, the low protein adsorption layer is made of an amphiphilic polymer, and is bonded to the support layer by a covalent bond to form a layer.
  • Patent Document 6 describes a protein adsorption inhibitor containing a 2-methacryloyloxyethyl phosphorylcholine polymer and / or a copolymer of 2-methacryloyloxyethyl phosphorylcholine-containing components.
  • Patent Document 7 describes a cell culture substrate using a polymer composite in which a water-swellable clay mineral is finely dispersed in a water-soluble (meth) acrylic acid ester polymer.
  • Patent Document 8 describes a cell culture well plate in which the inner surface of the well is composed of polymethacrylate and the growth of anchorage-independent cells is easy.
  • Patent Document 9 describes a culture vessel for embryoid body formation, which is formed by a cell low adhesion treatment or a cell non-adhesion treatment using a water-soluble resin.
  • Japanese Patent Laid-Open No. 4-336072 Special table 2007-515208 JP-A-5-261256 International Publication No. 2012/165503 Japanese Patent Application Laid-Open No. 2004-276552 Japanese Patent Laid-Open No. 7-83923 JP 2013-176402 A JP-A-8-322593 JP 2012-210166 A
  • the present invention makes it difficult for proteins to adsorb, a novel low protein adsorbing material excellent in heat resistance, alkali resistance and molding processability and cells, and excellent in heat resistance, alkali resistance and molding processability.
  • An object is to provide a novel low cell adhesion material.
  • the present invention is a low protein adsorptive material comprising a fluorine-containing copolymer having a fluorine-containing olefin unit and a vinyl alcohol unit.
  • the fluorine-containing olefin unit content in the fluorine-containing copolymer is preferably 60 to 10 mol%.
  • the alternating ratio of fluorine-containing olefin units and vinyl alcohol units in the fluorine-containing copolymer is 1 to 75%.
  • the fluorinated olefin is preferably at least one selected from the group consisting of tetrafluoroethylene, chlorotrifluoroethylene and hexafluoropropylene.
  • the fluorine-containing copolymer preferably has a fluorine-containing olefin unit, a vinyl alcohol unit and a vinyl ester monomer unit.
  • the low protein adsorptive material is preferably a coating film.
  • the present invention also provides a coating composition comprising the above-described low protein adsorptive material.
  • the present invention also provides a coating layer formed from the above-described low protein adsorptive material.
  • the present invention is a low protein comprising the above-described low protein adsorbing material, the above coating composition, or the above coating layer, and being a bag, sheet, film, vial, petri dish, or flask. It is also an absorptive article.
  • the present invention comprises the above-described low protein-adsorbing material, the above-described coating composition, or the above-described coating layer, and includes a biopharmaceutical bag, a biopharmaceutical sheet, a biopharmaceutical film, a biopharmaceutical vial, and a biopharmaceutical. It is also a low protein adsorptive article characterized by being a petri dish or a biopharmaceutical flask.
  • the present invention is also a low cell adhesion material characterized by comprising a fluorine-containing copolymer having a fluorine-containing olefin unit and a vinyl alcohol unit.
  • the fluorine-containing olefin unit content in the fluorine-containing copolymer is preferably 60 to 10 mol%.
  • the alternating rate of the fluorinated olefin unit and the vinyl alcohol unit in the fluorinated copolymer is 1 to 75%.
  • the fluorinated olefin is preferably at least one selected from the group consisting of tetrafluoroethylene, chlorotrifluoroethylene and hexafluoropropylene.
  • the fluorine-containing copolymer preferably has a fluorine-containing olefin unit, a vinyl alcohol unit and a vinyl ester monomer unit.
  • the low cell adhesion material is preferably a coating film.
  • the present invention also provides a coating composition comprising the above-mentioned low cell adhesion material.
  • the present invention is also a coating layer formed from the above-mentioned low cell adhesion material.
  • the present invention comprises the above-mentioned low cell adhesion material, the above-mentioned coating composition, or the above-mentioned coating layer, and is a bag, sheet, film, vial, petri dish or flask, It is also a cell-adhesive article.
  • the present invention comprises the above-mentioned low cell adhesion material, the above-mentioned coating composition, or the above-mentioned coating layer, and comprises a cell culture bag, a cell culture sheet, a cell culture film, a cell culture vial, a cell It is also a low cell adhesion article characterized by being a petri dish for culture or a flask for cell culture.
  • the present invention is also a low cell adhesion article comprising the above-mentioned low cell adhesion material, the above-mentioned coating composition, or the above-mentioned coating layer and being a culture container for embryoid body formation.
  • the low protein adsorptive material of the present invention hardly adsorbs protein, and is excellent in heat resistance, alkali resistance and moldability. From the low protein adsorptive material of the present invention, it is possible to obtain an article that is difficult to adsorb proteins and is excellent in heat resistance, alkali resistance and molding processability. Further, the low cell adhesion material of the present invention is less likely to adhere to cells and is excellent in heat resistance, alkali resistance and molding processability. From the low cell adhesion material of the present invention, it is possible to obtain an article that is difficult to adhere to cells and is excellent in heat resistance, alkali resistance and molding processability.
  • the low protein adsorptive article of the present invention hardly adsorbs protein on the surface, and is excellent in heat resistance, alkali resistance and molding processability.
  • the low cell adhesion article of the present invention is less susceptible to cell adhesion on the surface and is excellent in heat resistance, alkali resistance and molding processability.
  • the low protein adsorptive material and the low cell adhesion material of the present invention comprise a fluorine-containing copolymer having a fluorine-containing olefin unit and a vinyl alcohol unit (—CH 2 —CH (OH) —).
  • the low protein adsorption property and low cell adhesion property of the fluorine-containing copolymer are characteristics newly found by the present inventors.
  • the low protein adsorptive material and the low cell adhesion material of the present invention are excellent in heat resistance, they can withstand sterilization performed at high temperatures. For example, it can withstand autoclave sterilization performed at 121 ° C. It is preferable that the low protein adsorbing material and the low cell adhesion material of the present invention have a decomposition temperature exceeding 121 ° C.
  • the low protein adsorbing material and the low cell adhesion material of the present invention are excellent in alkali resistance, they can withstand disinfection using an alkaline aqueous solution containing hypochlorous acid.
  • the low protein adsorptive material and the low cell adhesion material of the present invention are immersed in an aqueous solution containing 0.5% by mass of sodium hypochlorite and 0.4% by mass of sodium hydroxide for 24 hours
  • the weight change rate is 10% by mass or less.
  • the low protein adsorptive material and the low cell adhesion material of the present invention are excellent in moldability.
  • a weak solvent such as alcohol can be used as the organic solvent, so that it is eroded by the strong solvent. It can also be applied to substrates and undercoats.
  • the fluorine-containing copolymer preferably contains the fluorine-containing olefin unit in an amount of 60 to 10 mol% of all monomer units constituting the fluorine-containing copolymer. More preferably, it is 40 to 10 mol%, still more preferably 35 to 20 mol%, and still more preferably 35 to 25 mol%.
  • the content of the fluorinated olefin unit is within the above range, proteins are more difficult to adsorb to the low protein adsorbing material, and cells are less likely to adhere to the low cell adhering material.
  • the content of the fluorinated olefin unit is less than 10 mol%, the water-soluble property of the fluorinated copolymer is increased, and the fluorinated copolymer is easily eluted in water, and the function is hardly exhibited.
  • the content of the fluorine-containing olefin unit is large, the heat resistance, alkali resistance, and molding processability of the low protein adsorbing material and the low cell adhesion material tend to be excellent.
  • the fluorine-containing copolymer preferably contains 60 to 10 mol% of fluorine-containing olefin units and 40 to 90 mol% of vinyl alcohol units.
  • the content of each monomer unit is 40 to 10 mol% of the fluorinated olefin unit, more preferably 60 to 90 mol% of the vinyl alcohol unit, and 35 to 20 mol% of the fluorinated olefin unit.
  • the vinyl alcohol unit is 65 to 80 mol%
  • the fluorinated olefin unit is 35 to 25 mol%
  • the vinyl alcohol unit is 65 to 75 mol%.
  • each monomer unit When the content of each monomer unit is in such a range, proteins are more difficult to adsorb to the low protein adsorbing material, and cells are less likely to adhere to the low cell adhering material.
  • the content of the fluorinated olefin unit is less than 10 mol%, the water-soluble property of the fluorinated copolymer is increased, and the fluorinated copolymer is easily eluted in water, and the function is hardly exhibited.
  • the content of the fluorine-containing olefin unit When the content of the fluorine-containing olefin unit is large, the heat resistance, alkali resistance, and molding processability of the low protein adsorbing material and the low cell adhesion material tend to be excellent.
  • the said fluorine-containing olefin unit represents the polymerization unit based on a fluorine-containing olefin.
  • the fluorine-containing olefin is a monomer having a fluorine atom.
  • PAVE perfluoro (methyl vinyl ether) [PMVE], perfluoro (ethyl vinyl ether) [PEVE], perfluoro (propyl vinyl ether) [PPVE], perfluoro (butyl vinyl ether), and the like.
  • At least 1 sort (s) selected from the group which consists of TFE, CTFE, and HFP is more preferable, and TFE is still more preferable.
  • the fluorine-containing copolymer preferably has an alternating ratio of fluorine-containing olefin units and vinyl alcohol units of 1 to 75%.
  • the alternating rate is within the above range, proteins are more difficult to adsorb to the low protein adsorbing material, and cells are less likely to adhere to the low cell adhering material. More preferably, it is 10 to 60%, still more preferably 10 to 35%, and particularly preferably 10 to 20%.
  • the alternating rate of the fluorinated olefin unit and the vinyl alcohol unit was determined by performing 1 H-NMR measurement of the fluorinated copolymer using a solvent in which the fluorinated copolymer such as heavy acetone is dissolved, It can be calculated as the alternating rate of chaining.
  • Alternating rate (%) C / (A + B + C) ⁇ 100
  • the number of V units of A, B and C is calculated from the intensity ratio of H of the main chain bonded to the tertiary carbon of the vinyl alcohol unit (—CH 2 —CH (OH) —) measured by 1 H-NMR.
  • the estimation of the strength ratio of H in the main chain by 1 H-NMR measurement is carried out with the fluorine-containing copolymer before saponification.
  • the fluorine-containing copolymer is more difficult to adsorb proteins and more difficult to adhere to cells, —CH (OH) —CXY— (wherein X and Y are the same or different and H, F or a fluoroalkyl group, provided that at least one of X and Y is F or a fluoroalkyl group).
  • the fluorine-containing copolymer preferably has a fluorine alcohol structure represented by —CH (OH) —CF 2 —.
  • the fluorine-containing copolymer is further represented by —CH 2 —CH (O (C ⁇ O) R) — (wherein R represents a hydrogen atom or a hydrocarbon group having 1 to 17 carbon atoms). It may have a vinyl ester monomer unit.
  • R represents a hydrogen atom or a hydrocarbon group having 1 to 17 carbon atoms.
  • the fluorinated copolymer in the present invention has a fluorinated olefin unit, a vinyl alcohol unit, and a vinyl ester monomer unit.
  • fluorine-containing olefin / vinyl alcohol / vinyl ester monomer copolymer consisting essentially of a fluorine-containing olefin unit, a vinyl alcohol unit and a vinyl ester monomer unit.
  • the vinyl ester monomer unit is a monomer represented by —CH 2 —CH (O (C ⁇ O) R) — (wherein R represents a hydrogen atom or a hydrocarbon group having 1 to 17 carbon atoms). Although it is a unit, R in the above formula is preferably an alkyl group having 1 to 11 carbon atoms, more preferably an alkyl group having 1 to 5 carbon atoms. Particularly preferred is an alkyl group having 1 to 3 carbon atoms.
  • vinyl ester monomer unit examples include monomer units derived from the following vinyl esters. Vinyl formate, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl isobutyrate, vinyl valelate, vinyl isovalerate, vinyl caproate, vinyl heptylate, vinyl caprylate, vinyl pivalate, vinyl pelargonate, vinyl caprate, Vinyl laurate, vinyl myristate, vinyl pentadecylate, vinyl palmitate, vinyl margarate, vinyl stearate, vinyl octylate, Veova-9 (manufactured by Showa Shell Sekiyu KK), Veova-10 (Showa Shell Sekiyu KK) )), Vinyl benzoate, vinyl versatate.
  • monomer units derived from vinyl acetate, vinyl propionate, and vinyl versatate are preferable. More preferred are vinyl acetate monomer units and vinyl propionate monomer units, and even more preferred are vinyl acetate monomer units.
  • the fluorine-containing copolymer has a fluorine-containing olefin unit, a vinyl alcohol unit and a vinyl ester monomer unit
  • the content of each monomer unit is 60 to 10 mol% of the fluorine-containing olefin unit, and vinyl alcohol
  • the units are 40 to 90 mol% and the vinyl ester monomer units are more than 0 mol% and less than 30 mol%.
  • the content of each monomer unit is within the above range, proteins are more difficult to adsorb to the low protein adsorbing material, and cells are less likely to adhere to the low cell adhering material.
  • each monomer unit is such that the fluorine-containing olefin unit is 60 to 10 mol%, the vinyl alcohol unit is 40 to 90 mol%, and the vinyl ester monomer unit is more than 0 and less than 10 mol%. More preferably, the fluorine-containing olefin unit is 40 to 10 mol%, the vinyl alcohol unit is 60 to 90 mol%, the vinyl ester monomer unit is more than 0 and less than 1.0 mol%, and more preferably More preferably, the fluorine olefin unit is 35 to 20 mol%, the vinyl alcohol unit is 65 to 80 mol%, the vinyl ester monomer unit is more than 0 and less than 1.0 mol%.
  • the alternating rate of the fluorine-containing olefin unit, the vinyl alcohol unit, and the vinyl ester monomer unit is 1 to 75%. It is preferable.
  • the alternating rate is within the above range, proteins are more difficult to adsorb to the low protein adsorbing material, and cells are less likely to adhere to the low cell adhering material. More preferably, it is 10 to 60%, still more preferably 10 to 35%, and particularly preferably 10 to 20%.
  • the alternating rate of the fluorinated olefin unit, the vinyl alcohol unit, and the vinyl ester monomer unit was measured by 1 H-NMR measurement of the fluorinated copolymer using a solvent in which the fluorinated copolymer such as heavy acetone was dissolved, It can be calculated as an alternating rate of three chains from the following formula.
  • Alternating rate (%) C / (A + B + C) ⁇ 100
  • T- fluorine-containing olefin unit
  • V vinyl alcohol unit or vinyl ester monomer unit
  • the number of V units in A, B, and C is the vinyl alcohol unit (—CH 2 —CH (OH) —) and vinyl ester monomer unit (—CH 2 —CH (O (C ⁇ O)) measured by 1 H-NMR.
  • the said fluorine-containing copolymer may have other monomer units other than a fluorine-containing olefin unit, a vinyl alcohol unit, and a vinyl ester monomer unit in the range which does not impair the effect of this invention.
  • Examples of the other monomer include monomers not containing a fluorine atom (excluding vinyl alcohol and vinyl ester monomers) such as ethylene, propylene, 1-butene, 2-butene, vinyl chloride, Preference is given to at least one fluorine-free ethylenic monomer selected from the group consisting of vinylidene chloride, vinyl ether monomers and unsaturated carboxylic acids.
  • monomers not containing a fluorine atom such as ethylene, propylene, 1-butene, 2-butene, vinyl chloride
  • the total content of the other monomer units is preferably 0 to 50 mol%, more preferably 0 to 40 mol%, and more preferably 0 to 40 mol% of the total monomer units of the fluorine-containing copolymer. More preferably, it is 30 mol%.
  • each monomer unit constituting the fluorine-containing copolymer can be calculated by appropriately combining NMR, FT-IR, and elemental analysis depending on the type of monomer.
  • the weight average molecular weight of the fluorine-containing copolymer is not particularly limited, but is preferably 10,000 or more. More preferably, it is 12,000 to 2,000,000, and still more preferably 12,000 to 1,000,000.
  • the weight average molecular weight can be determined by gel permeation chromatography (GPC).
  • the fluorine-containing copolymer can be produced by saponifying a copolymer having a fluorine-containing olefin unit and a vinyl ester monomer unit. That is, the fluorine-containing copolymer in the present invention is a copolymer obtained by saponifying a copolymer having a fluorine-containing olefin unit and a vinyl ester monomer unit.
  • the fluorine-containing copolymer in the present invention is a copolymer obtained by saponifying a copolymer having a fluorine-containing olefin unit and a vinyl ester monomer unit.
  • the manufacturing method of the fluorine-containing copolymer in this invention is demonstrated.
  • the fluorine-containing copolymer in the present invention is produced by copolymerizing a fluorine-containing olefin such as tetrafluoroethylene and a vinyl ester monomer such as vinyl acetate, and then saponifying the obtained copolymer. can do.
  • a method for polymerizing the fluorine-containing copolymer it is preferable to carry out the polymerization under a condition in which the composition ratio of the fluorine-containing olefin and the vinyl ester monomer is kept substantially constant.
  • the above-mentioned fluorine-containing copolymer is polymerized under a condition in which the composition ratio of the fluorine-containing olefin and the vinyl ester monomer is kept almost constant to obtain a copolymer having a fluorine-containing olefin unit and a vinyl ester monomer unit. It is preferably obtained by a production method comprising a step and a step of saponifying the obtained copolymer to obtain a copolymer having a fluorine-containing olefin unit and a vinyl alcohol unit.
  • vinyl ester monomers examples include vinyl formate, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl isobutyrate, vinyl valerate, vinyl isovalerate, vinyl caproate, vinyl heptylate, vinyl caprylate, vinyl pivalate, pelargon.
  • vinyl acetate, vinyl propionate, and vinyl versatate are preferably used because they are easily available and inexpensive.
  • 1 type of these may be used and 2 or more types may be mixed and used.
  • Examples of the method of copolymerizing the fluorinated olefin and the vinyl ester monomer include solution polymerization, bulk polymerization, emulsion polymerization, suspension polymerization and the like, and emulsion polymerization is easy because it is industrially easy to implement. However, it is preferable to produce by solution polymerization or suspension polymerization, but not limited thereto.
  • a polymerization initiator In emulsion polymerization, solution polymerization, or suspension polymerization, a polymerization initiator, a solvent, a chain transfer agent, a surfactant, a dispersant, and the like can be used, and those usually used can be used.
  • the solvent used in the solution polymerization is preferably a solvent capable of dissolving the fluorine-containing olefin, the vinyl ester monomer, and the fluorine-containing copolymer to be synthesized.
  • n-butyl acetate, t-butyl acetate, ethyl acetate Esters such as methyl acetate and propyl acetate; Ketones such as acetone, methyl ethyl ketone and cyclohexanone; Aliphatic hydrocarbons such as hexane, cyclohexane and octane; Aromatic hydrocarbons such as benzene, toluene and xylene; Methanol and ethanol Alcohols such as tert-butanol and 2-propanol; cyclic ethers such as tetrahydrofuran and dioxane; fluorine-containing solvents such as HCFC-225; dimethyl sulfoxide, di
  • polymerization initiator examples include peroxycarbonates such as diisopropyl peroxydicarbonate (IPP) and di-n-propyl peroxydicarbonate (NPP), and t-butyl peroxypivalate (for example, NOF Corporation).
  • Oil-soluble radical polymerization initiators typified by peroxyesters such as perbutyl PV), for example, persulfuric acid, perboric acid, perchloric acid, perphosphoric acid, ammonium percarbonate, potassium salt, sodium Water-soluble radical polymerization initiators such as salts can be used. Particularly in emulsion polymerization, ammonium persulfate and potassium persulfate are preferred.
  • a commonly used surfactant can be used.
  • a nonionic surfactant an anionic surfactant, a cationic surfactant and the like can be used.
  • dispersant used in suspension polymerization examples include partially saponified polyvinyl acetate, methylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, and other water-soluble cellulose ethers used in ordinary suspension polymerization, and acrylic acid polymers. And water-soluble polymers such as gelatin. Suspension polymerization is carried out under the condition that the ratio of water / monomer is usually 1.5 / 1 to 3/1 by mass ratio, and the dispersant is 0.01 to 0 with respect to 100 parts by mass of the monomer. .1 part by weight is used. If necessary, a pH buffer such as polyphosphate can be used.
  • Examples of the chain transfer agent include hydrocarbons such as ethane, isopentane, n-hexane, and cyclohexane; aromatics such as toluene and xylene; ketones such as acetone; acetates such as ethyl acetate and butyl acetate; Examples include alcohols such as methanol and ethanol; mercaptans such as methyl mercaptan; halogenated hydrocarbons such as carbon tetrachloride, chloroform, methylene chloride, and methyl chloride.
  • the addition amount of the chain transfer agent may vary depending on the chain transfer constant of the compound used, but is usually used in the range of 0.001 to 10% by mass with respect to the polymerization solvent.
  • the polymerization temperature may be in a range in which the composition ratio during the reaction of the fluorinated olefin and the vinyl ester monomer is substantially constant, and may be 0 to 100 ° C.
  • the polymerization pressure may be in a range in which the composition ratio during the reaction of the fluorinated olefin and the vinyl ester monomer is substantially constant, and may be 0 to 10 MPaG.
  • Saponification of an acetate group derived from vinyl acetate is well known in the art, and can be performed by a conventionally known method such as alcoholysis or hydrolysis using an acid or alkali. By this saponification, the acetate group (—OCOCH 3 ) is converted to a hydroxyl group (—OH). Similarly, other vinyl ester monomers can be saponified by a conventionally known method to obtain a hydroxyl group.
  • the degree of saponification in the case of obtaining a fluorine-containing copolymer in the present invention by saponifying a copolymer having a fluorine-containing olefin unit and a vinyl ester monomer unit is the content of each monomer unit of the fluorine-containing copolymer in the present invention. It is sufficient that the rate is in the range described above, specifically 90% or more is preferable, 95% or more is more preferable, and 99% or more is still more preferable.
  • the low protein adsorptive material and the low cell adhesion material may further contain other components other than the fluorine-containing copolymer as long as the effects of the present invention are not impaired.
  • hydrophilic polymers such as polyvinyl alcohol, polyvinyl pyrrolidone, and polyethylene glycol.
  • the blending amount of the other component is preferably 1 to 30% by mass, and more preferably 1 to 10% by mass with respect to 100% by mass of the fluorine-containing copolymer.
  • the surface of the low protein adsorbing material and the low cell adhering material is preferably treated with an aqueous solution containing an organic solvent.
  • an aqueous solution containing an organic solvent By this surface treatment, the hydroxyl structure further increases on the surface of the low protein adsorbing material and the low cell adhering material, so that protein adsorption and cell adhesion are more strongly suppressed.
  • the organic solvent that can be used for the surface treatment is not particularly limited as long as it is soluble in water and can dissolve the fluorine-containing copolymer.
  • Examples of the treatment method using the aqueous solution containing the organic solvent include a method of wetting the surfaces of the low protein adsorbing material and the low cell adhesion material with the aqueous solution.
  • the low protein adsorbing material and the low cell adhering material are provided by being molded into various shapes depending on the application.
  • the molding method is not particularly limited, and spin coating method, drop casting method, dip nip method, spray coating method, brush coating method, dipping method, ink jet printing method, electrostatic coating method, compression molding method, extrusion molding method, calendar molding method. Methods, transfer molding methods, injection molding methods, lotto molding methods, lotining molding methods, thermally induced phase separation methods, non-solvent induced phase separation methods, and the like can be employed.
  • the low protein adsorbing material and the low cell adhering material are preferably coating films.
  • the said coating film means the film
  • the method for forming the coating film include spin coating, drop casting, dip nip, spray coating, brush coating, dipping, electrostatic coating, and inkjet printing. Of these, spin coating, drop casting, and dipping are preferred from the standpoint of simplicity.
  • the coating film is preferably obtained by applying a coating composition containing the fluorine-containing copolymer and an organic solvent.
  • the organic solvent methanol, ethanol, 2-propanol, 2-butanol, 1-butanol, 1-hexanol, acetone, tetrahydrofuran, methyl ethyl ketone, dimethylacetamide, dimethylformamide and the like can be used.
  • 2-butanol, 1-butanol, 1-hexanol and tetrahydrofuran are preferred in that a transparent and uniform coating film can be easily obtained.
  • methanol, ethanol, 2-propanol, tetrahydrofuran, and dimethylformamide are preferable.
  • the said coating film can be obtained also from the coating composition which uses weak solvents, such as alcohol, as an organic solvent, it can be manufactured easily.
  • the film thickness is preferably 0.1 to 50 ⁇ m, more preferably 0.5 to 30 ⁇ m, and 1.0. More preferably, it is ⁇ 20 ⁇ m.
  • the low protein adsorptive material may have an adsorption amount of bovine serum albumin of 200 ng / cm 2 or less when contacted with a 0.05 mg / ml bovine serum albumin solution at 23.4 ° C. for 0.5 hour. it can.
  • the low protein adsorptive material may have a bovine plasma fibrinogen adsorption amount of 500 ng / cm 2 or less when contacted with a 0.05 mg / ml bovine plasma fibrinogen solution at 23.4 ° C. for 0.5 hour. it can.
  • the low protein adsorptive material has an adsorption amount of bovine serum-derived immunoglobulin G of 500 ng / cm when contacted with 0.05 mg / ml bovine serum-derived immunoglobulin G solution at 23.4 ° C. for 0.5 hour. 2 or less.
  • the protein-adsorbing material has a surprising effect that protein hardly adsorbs even when contacted with a protein solution of 10 to 0.05 mg / ml. That is, the protein adsorbing material may be a protein adsorbing material that is brought into contact with a protein solution of 10 to 0.05 mg / ml.
  • the protein adsorption amount is measured by the method described in “Protein adsorption test” described later.
  • a method for preventing adsorption of the protein by applying a low protein adsorbent material to at least the surface of an article in contact with a protein solution of 10 to 0.05 mg / ml is also used as the method for using the low white matter adsorbent material. preferable.
  • the low protein adsorptive material Since the low protein adsorptive material has low protein adsorptivity, it can be applied to various articles required to avoid protein adsorption.
  • the shape of the article is not particularly limited, and may be a bag, a sheet, a film, a vial, a petri dish, or a flask.
  • the method for preventing protein adsorption to the article, comprising the step of applying the low protein adsorptive material to the article, is preferable as a method for using the low protein adsorptive material.
  • the protein include plasma proteins and biopharmaceuticals described below.
  • Examples of the plasma protein include albumin, globulin, and fibrinogen.
  • the method for applying the low protein adsorptive material is not particularly limited, and is not particularly limited as long as at least a part of the surface of the article can be covered with the low protein adsorptive material.
  • a method of forming a coating film by applying the fluorine-containing copolymer or a coating composition containing the fluorine-containing copolymer can be mentioned.
  • the method for forming the coating film is as described above.
  • the present invention is also a coating composition comprising the low protein adsorbing material or the low cell adhesion material.
  • the coating composition may contain an organic solvent.
  • the organic solvent methanol, ethanol, 2-propanol, 2-butanol, 1-butanol, 1-hexanol, acetone, tetrahydrofuran, methyl ethyl ketone, dimethylacetamide, dimethylformamide and the like can be used.
  • 2-butanol, 1-butanol, 1-hexanol and tetrahydrofuran are preferred in that a transparent and uniform coating film can be easily obtained.
  • methanol, ethanol, 2-propanol, tetrahydrofuran, and dimethylformamide are preferable.
  • the said coating composition can use weak solvents, such as alcohol, as an organic solvent. Therefore, the present invention can be applied to a base material or an undercoat that is eroded by a strong solvent.
  • the coating composition can be applied to a desired substrate to form a coating film or coating layer.
  • the coating method include spin coating, drop casting, dip nip, spray coating, brush coating, dipping, electrostatic coating, and inkjet printing. Of these, spin coating, drop casting, and dipping are preferred from the standpoint of simplicity.
  • the coating film or coating layer formed from the coating composition preferably has a thickness of 0.1 to 50 ⁇ m, more preferably 0.5 to 30 ⁇ m, and 1.0 to 20 ⁇ m. Is more preferable.
  • the coating composition can be applied to bags, sheets, films, vials, petri dishes, or flasks.
  • the present invention is also a coating layer formed from the low protein adsorbing material or the low cell adhesion material.
  • the said coating layer is obtained by apply
  • the coating method include spin coating, drop casting, dip nip, spray coating, brush coating, dipping, electrostatic coating, and inkjet printing. Of these, spin coating, drop casting, and dipping are preferred from the standpoint of simplicity.
  • the coating layer is preferably obtained by applying a coating composition containing the fluorine-containing copolymer and an organic solvent.
  • the organic solvent methanol, ethanol, 2-propanol, 2-butanol, 1-butanol, 1-hexanol, acetone, tetrahydrofuran, methyl ethyl ketone, dimethylacetamide, dimethylformamide and the like can be used.
  • 2-butanol, 1-butanol, 1-hexanol and tetrahydrofuran are preferred in that a transparent and uniform coating film can be easily obtained.
  • methanol, ethanol, 2-propanol, tetrahydrofuran, and dimethylformamide are preferable.
  • the said coating layer can be obtained also from the coating composition which uses weak solvents, such as alcohol, as an organic solvent, it can be manufactured easily.
  • the coating layer preferably has a thickness of 0.1 to 50 ⁇ m, more preferably 0.5 to 30 ⁇ m, and still more preferably 1.0 to 20 ⁇ m.
  • the coating layer preferably forms the surface of a bag, sheet, film, vial, petri dish, or flask. Bags, sheets, films, vials, petri dishes, or flasks having the coating layer on the surface are less likely to adhere proteins or cells.
  • the present invention is a low protein comprising the above-described low protein adsorbing material, the above coating composition, or the above coating layer, and being a bag, sheet, film, vial, petri dish, or flask. It is also an absorptive article.
  • the present invention comprises the above-described low protein-adsorbing material, the above-described coating composition, or the above-described coating layer, and includes a biopharmaceutical bag, a biopharmaceutical sheet, a biopharmaceutical film, a biopharmaceutical vial, and a biopharmaceutical. It is also a low protein adsorptive article characterized by being a petri dish or a biopharmaceutical flask.
  • biopharmaceutical If the biopharmaceutical is easily adsorbed to an instrument for storing the biopharmaceutical or an instrument for using the biopharmaceutical, the biopharmaceutical cannot be accurately quantified or accurate analysis becomes difficult. Moreover, since biopharmaceuticals are expensive, there is a great economic loss.
  • a biopharmaceutical bag, a biopharmaceutical sheet, a biopharmaceutical film, a biopharmaceutical vial, a biopharmaceutical petri dish, or a biopharmaceutical flask is the above-described low protein adsorptive material, the above-described coating composition, or When the coating layer is composed of the above-described coating layer, the biopharmaceutical is hardly adsorbed, and the biopharmaceutical can be recovered at a high recovery rate.
  • biopharmaceuticals include protein drugs, genetically modified viruses, cellular therapeutic drugs, and nucleic acid drugs.
  • the above protein drugs include: (1) Enzyme proteins: Arterase, Montebrase, Imiglucerase, Veraglucerase alpha, Agarcidase alpha, Agarcidase beta, Laronidase, Alglucosidase alpha, Idursulfase, Galsulfase, Rasburicase, Dornase alpha, (2 ) Proteins of blood coagulation and fibrinolytic factors: Octocog alpha, Luriooctogog alpha, Eptacog alpha (active form), Nonacog alpha, Turoctocog alpha, Eftrenonacog alpha, thrombomodulin alpha, (3) Serum proteins: Human serum albumin, (4) Hormonal proteins: human insulin, insulin lispro, insulin aspart, insulin glargine, i Surin detemir, insulin gur
  • nucleic acid pharmaceuticals include antisense, siRNA, decoy nucleic acid, nucleic acid aptamer, ribozyme, miRNA antisense, miRNAmimic, and CpG oligodeoxynucleotide.
  • the low cell adhesion material Since the low cell adhesion material has low cell adhesion, it can be applied to various articles required to avoid cell adhesion.
  • the shape of the article is not particularly limited, and may be a bag, a sheet, a film, a vial, a petri dish, or a flask.
  • the method for preventing cell adhesion to the article comprising the step of applying the low cell adhesion material to the article, is preferable as a method for using the low cell adhesion material.
  • the method of applying the low cell adhesion material is not particularly limited as long as it is a method capable of covering at least a part of the surface of the article with the low cell adhesion material.
  • a method of forming a coating film by applying the fluorine-containing copolymer or a coating composition containing the fluorine-containing copolymer can be mentioned.
  • the method for forming the coating film is as described above.
  • the present invention comprises the above-mentioned low cell adhesion material, the above-mentioned coating composition, or the above-mentioned coating layer, and is a bag, sheet, film, vial, petri dish or flask, It is also a cell-adhesive article.
  • the present invention comprises the above-mentioned low cell adhesion material, the above-mentioned coating composition, or the above-mentioned coating layer, and comprises a cell culture bag, a cell culture sheet, a cell culture film, a cell culture vial, a cell It is also a low cell adhesion article characterized by being a petri dish for culture or a flask for cell culture.
  • the present invention also relates to a low cell adhesion article comprising the above-mentioned low cell adhesion material, the above coating composition, or the above coating layer, which is a culture container for embryoid body formation.
  • the culture container for embryoid body formation preferably has two or more wells.
  • the shape of each well is not particularly limited, it is preferable that the cross section in the vertical direction has a substantially U-shaped bottom portion and a substantially circular opening.
  • the curvature radius (R ′) of the inner surface of the bottom is preferably 1.0 mm or more and 3.5 mm or less, and more preferably 3.0 mm or less.
  • the diameter of the opening is preferably 4.0 to 11.0 mm.
  • the volume of each well can be 80-500 ⁇ L.
  • it is preferable that at least the inner surface of the well is composed of the low cell adhesion material, the coating composition described above, or the coating layer described above.
  • a cell culture bag, a cell culture sheet, a cell culture film, a cell culture vial, a cell culture petri dish or a cell culture flask is the above-mentioned low cell adhesion material, the above-mentioned coating composition, or the above-mentioned In the case of the coating layer, cells are difficult to adhere, and cells obtained by culturing can be recovered at a high recovery rate and in a preferable state of cell shape and properties.
  • the cells include hematopoietic stem cells, neural stem cells, mesenchymal hepatocytes, mesodermal stem cells, hepatic stem cells, pancreatic stem cells, embryonic stem cells, and the like, cells obtained by differentiating stem cells into target cells, or the immune system Cells, blood cells, neurons, vascular endothelial cells, fibroblasts, epithelial cells, keratinocytes, corneal cells, osteoblasts, chondrocytes, adipocytes, epidermal cells, hepatocytes, pancreatic ⁇ cells, cardiomyocytes, Cells derived from living bodies such as bone marrow cells, amniotic cells, umbilical cord blood cells, NIH3T3 cells, 3T3-L1 cells, 3T3-E1 cells, Hela ( Healer) cells, PC-12 (PC Zelb) cells, P19 (Pineteen) cells, CHO (Chinese hamster oocytes) cells, C S (SEOS
  • the low cell adhesion article of the present invention can suppress adhesion of cultured cells.
  • EBs embryoid bodies
  • ES cells embryonic stem cells
  • iPS cells induced pluripotent stem cells
  • Embryoid body formation is a widely adopted technique because it is effective in inducing differentiation of pluripotent stem cells including ES cells in vitro.
  • embryoid body formation it is important to culture ES cells and iPS cells in a floating state where they are not allowed to adhere to the culture vessel, and it is difficult to form embryoid bodies in adhesion culture using a normal culture vessel.
  • the embryoid body-forming incubator is composed of the above-mentioned low cell adhesion material, the above-mentioned coating composition, or the above-mentioned coating layer, it is uniform, efficient, and high-quality embryoid body Can be formed.
  • the average molecular weight was calculated from data measured by flowing tetrahydrofuran (THF) as a solvent at a flow rate of 1 ml / min by gel permeation chromatography (GPC). RI was used for the detector, and a polystyrene standard sample was used for the calibration curve sample, and the measurement was performed at a flow rate of 1 ml / min and a sample injection amount of 200 ⁇ L.
  • THF tetrahydrofuran
  • GPC gel permeation chromatography
  • Tm Melting point
  • the decomposition temperature was the temperature at the inflection point that showed a significant weight loss in the thermal decomposition curve in the TGA (calorimeter) measurement. Specifically, in the TGA curve, the decomposition temperature was obtained by a method (intersection method) in which an auxiliary line was drawn before and after a large weight loss to obtain an intersection point.
  • QCM-D crystal oscillator microbalance method
  • the amount of protein adsorbed on the coating films of P-1 to P-4 is determined by using the real mass [ng / cm 2 ] from the Sauerbrey formula introduced in the analysis software QTools for the frequency after 30 minutes of adsorption time obtained from the experiment. ] was calculated. Details of the experiment are described in Example 1.
  • Example 1 A 0.1 mass% methanol solution of polymer P-1 was spin-coated at room temperature on the reaction surface of one side of a PET-coated QCM chip (disc shape: diameter 1.4 cm). Specifically, 30 ⁇ L of the above solution was dropped on a QCM chip and rotated at 2000 rpm for 60 seconds. Then, it dried under reduced pressure with the rotary vacuum pump at room temperature for 3 hours, and obtained the coating film (QCM chip).
  • the obtained coating film was incorporated into QCM-D, and a protein adsorption test (derived from bovine serum albumin and fibrinogen bovine plasma) on the coating film was evaluated by the following method. The results of the experiment are shown in Table 2.
  • the amount of protein adsorbed on the coating film was calculated by analyzing the real mass [ng / cm 2 ] from the Sauerbrey equation introduced in the analysis software QTools, based on the frequency after 30 minutes of adsorption time obtained from the experiment.
  • Examples 2-4 Coating films of polymers P-2 to P-4 were obtained in the same manner as in Example 1. The obtained coating film was subjected to a protein adsorption test in the same manner as in Example 1.
  • Comparative Example 1 A 1.0% by mass solution of polyethylene terephthalate (PET) (dissolved in a mixed solvent of trifluoroacetic acid, dichloromethane and 1,1,2,2 tetrachloroethane (mixing ratio 1/4/45)) at room temperature Spin coating was applied to one side reaction surface of a chip (disk shape: diameter 1.4 cm). Specifically, 30 ⁇ L of the above solution was dropped on a QCM chip and rotated at 2000 rpm for 60 seconds. Then, it dried under reduced pressure with the rotary vacuum pump at 50 degreeC for 3 hours, and obtained the coating film. The obtained coating film was subjected to the protein adsorption test in the same manner as in Example 1.
  • PET polyethylene terephthalate
  • Example 5 A 0.1 mass% methanol solution of polymer P-1 was spin-coated on a PET film (1.0 cm ⁇ 1.0 cm) at room temperature. Specifically, 30 ⁇ L of the above solution was dropped on a PET film and rotated at 2000 rpm for 60 seconds. Then, it dried under reduced pressure with the rotary vacuum pump at room temperature for 3 hours, and obtained the coating film. About the obtained coating film
  • NIH3T3 Mouse fibroblasts (NIH3T3) were cultured in Dulbecco's modified Eagle medium (FCS-containing DMEM) containing 10% fetal calf serum (FCS) in an environment of 5% CO 2 and 37 ° C.
  • FCS-containing DMEM Dulbecco's modified Eagle medium
  • FCS fetal calf serum
  • the cell suspension was centrifuged to collect NIH3T3 cells, and then resuspended in FCS-containing DMEM to obtain a solution of 61.2 ⁇ 10 4 cells / mL.
  • the cell suspension was prepared in a medium at 1 ⁇ 10 4 cells / cm 2 for each well of the cell culture plate on which the coating membrane was fixed, and seeded on the coating membrane. After culturing in an environment of 5% CO 2 and 37 ° C. for 1 hour, the coating membrane was washed three times with PBS, and adherent cells on the coating membrane were immobilized using 4% paraformaldehyde PBS solution. After washing with ultrapure water three times, it was dried under reduced pressure with a rotary vacuum pump. Adherent cells were stained with a crystal violet PBS staining solution at a concentration of 1% by mass, and the number of adherent cells was counted by arbitrarily observing three visual fields using an optical microscope.
  • Examples 6-8 Coating films of polymers P-2 to P-4 were obtained in the same manner as in Example 5. The resulting coating film was subjected to a cell adhesion test in the same manner as in Example 5.
  • Comparative Example 2 A cell adhesion test was performed in the same manner as in Example 5 using a PET film (1.0 cm ⁇ 1.0 cm).
  • Examples 9 to 12 and Comparative Example 3 A protein adsorption test was performed in the same manner as in Examples 1 to 4 and Comparative Example 1 except that bovine serum-derived immunoglobulin G (IgG) was used as the protein. The results are shown in Table 4.
  • IgG bovine serum-derived immunoglobulin G

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Surgery (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Materials For Medical Uses (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided is a novel low protein adsorption material that resists protein adsorption and has excellent heat resistance, alkali resistance, and molding processability. The low protein adsorption material is characterized by comprising a fluorine-containing copolymer having fluorine-containing olefin units and vinyl alcohol units.

Description

低タンパク質吸着性材料、低タンパク質吸着性物品、低細胞付着性材料および低細胞付着性物品Low protein adsorbing material, low protein adsorbing article, low cell adhering material and low cell adhering article
本発明は、低タンパク質吸着性材料、低タンパク質吸着性物品、低細胞付着性材料および低細胞付着性物品に関する。 The present invention relates to a low protein adsorbing material, a low protein adsorbing article, a low cell adhering material, and a low cell adhering article.
血液を保管するための器具、細胞を培養するための器具等を構成する材料として、高分子材料が使用されている。用途によって、高分子材料への血液の吸着を抑制したいとの要求があったり、高分子材料に細胞を吸着させたいとの要求があったりする。これらの要求に応えるために、血液や細胞の高分子材料に対する吸着性を制御する試みがなされてきた。 Polymer materials are used as materials constituting instruments for storing blood, instruments for culturing cells, and the like. Depending on the application, there is a demand for suppressing the adsorption of blood to the polymer material, or a demand for adsorbing cells on the polymer material. In order to meet these demands, attempts have been made to control the adsorptivity of blood and cells to polymer materials.
特許文献1には、表面の少なくとも一部が疎水性弗素樹脂と親水性弗素樹脂とから構成されていることを特徴とする生体親和性基材が記載されている。 Patent Document 1 describes a biocompatible substrate in which at least a part of the surface is composed of a hydrophobic fluororesin and a hydrophilic fluororesin.
特許文献2には、医療用物品であって、埋め込み型医療用具の少なくとも一部に配置されるコーティングを含み、前記コーティングが(a)フッ素化ポリマー、及び(b)生体有益性のポリマーを含む医療用物品が記載されている。 Patent Document 2 includes a medical article, a coating disposed on at least a portion of an implantable medical device, wherein the coating includes (a) a fluorinated polymer, and (b) a biobeneficial polymer. Medical articles are described.
特許文献3には、水処理用や医療用に用いられる膜として、テトラフルオロエチレン(TFE)と酢酸ビニル(VAc)との共重合体又は該共重合体に含まれるアセテート基の少なくとも一部をケン化した共重合体からなり、該共重合体中に含まれるテトラフルオロエチレン含有率が1~70モル%であることを特徴とする含フッ素共重合体膜が記載されている。 In Patent Document 3, as a film used for water treatment or medical use, a copolymer of tetrafluoroethylene (TFE) and vinyl acetate (VAc) or at least a part of an acetate group contained in the copolymer is included. There is described a fluorine-containing copolymer film comprising a saponified copolymer and having a tetrafluoroethylene content of 1 to 70 mol% contained in the copolymer.
特許文献4には、水系液体の分離膜に用いられる親水化材料として、テトラフルオロエチレンとt-ブチルビニルエーテル又は酢酸ビニルとの共重合体を脱保護して得られる共重合体が記載されている。 Patent Document 4 describes a copolymer obtained by deprotecting a copolymer of tetrafluoroethylene and t-butyl vinyl ether or vinyl acetate as a hydrophilizing material used for an aqueous liquid separation membrane. .
特許文献5には、支持層表面に低タンパク質吸着層を有する成形物であって、該低タンパク質吸着層が両親媒性の重合体からなり、支持層に共有結合で結合して層を形成していることを特徴とする低タンパク質吸着性成形物が記載されている。 Patent Document 5 discloses a molded product having a low protein adsorption layer on the surface of a support layer, the low protein adsorption layer is made of an amphiphilic polymer, and is bonded to the support layer by a covalent bond to form a layer. A low protein adsorptive molded product characterized in that is described.
特許文献6には、2-メタクリロイルオキシエチルホスホリルコリン重合体及び/又は2-メタクリロイルオキシエチルホスホリルコリン含有成分の共重合体を含むタンパク質吸着防止剤が記載されている。 Patent Document 6 describes a protein adsorption inhibitor containing a 2-methacryloyloxyethyl phosphorylcholine polymer and / or a copolymer of 2-methacryloyloxyethyl phosphorylcholine-containing components.
特許文献7には、水溶性(メタ)アクリル酸エステル重合体中に、水膨潤性粘土鉱物が微分散している高分子複合体を用いた細胞培養基材が記載されている。 Patent Document 7 describes a cell culture substrate using a polymer composite in which a water-swellable clay mineral is finely dispersed in a water-soluble (meth) acrylic acid ester polymer.
特許文献8には、ウエル内表面がポリメタクリレートにて構成されており、足場非依存性細胞の増殖が容易である細胞培養ウエルプレートが記載されている。 Patent Document 8 describes a cell culture well plate in which the inner surface of the well is composed of polymethacrylate and the growth of anchorage-independent cells is easy.
特許文献9には、水溶性樹脂を用いた細胞低接着化処理または細胞非接着化処理にて形成されることを特徴とする胚様体形成用培養容器が記載されている。 Patent Document 9 describes a culture vessel for embryoid body formation, which is formed by a cell low adhesion treatment or a cell non-adhesion treatment using a water-soluble resin.
特開平4-336072号公報Japanese Patent Laid-Open No. 4-336072 特表2007-515208号公報Special table 2007-515208 特開平5-261256号公報JP-A-5-261256 国際公開第2012/165503号International Publication No. 2012/165503 特開2004-277652号公報Japanese Patent Application Laid-Open No. 2004-276552 特開平7-83923号公報Japanese Patent Laid-Open No. 7-83923 特開2013-176402号公報JP 2013-176402 A 特開平8-322593号公報JP-A-8-322593 特開2012-210166号公報JP 2012-210166 A
本発明は、タンパク質が吸着しにくく、耐熱性、耐アルカリ性及び成形加工性にも優れた新規な低タンパク質吸着性材料および細胞が付着しにくく、耐熱性、耐アルカリ性及び成形加工性にも優れた新規な低細胞付着性材料を提供することを目的とする。 The present invention makes it difficult for proteins to adsorb, a novel low protein adsorbing material excellent in heat resistance, alkali resistance and molding processability and cells, and excellent in heat resistance, alkali resistance and molding processability. An object is to provide a novel low cell adhesion material.
本発明は、含フッ素オレフィン単位及びビニルアルコール単位を有する含フッ素共重合体からなることを特徴とする低タンパク質吸着性材料である。 The present invention is a low protein adsorptive material comprising a fluorine-containing copolymer having a fluorine-containing olefin unit and a vinyl alcohol unit.
本発明の低タンパク質吸着性材料において含フッ素共重合体における含フッ素オレフィン単位の含有率が60~10モル%であることが好ましい。 In the low protein adsorptive material of the present invention, the fluorine-containing olefin unit content in the fluorine-containing copolymer is preferably 60 to 10 mol%.
本発明の低タンパク質吸着性材料において含フッ素共重合体における含フッ素オレフィン単位とビニルアルコール単位との交互率が1~75%であることが好ましい。 In the low protein adsorptive material of the present invention, it is preferable that the alternating ratio of fluorine-containing olefin units and vinyl alcohol units in the fluorine-containing copolymer is 1 to 75%.
本発明の低タンパク質吸着性材料において含フッ素オレフィンは、テトラフルオロエチレン、クロロトリフルオロエチレン及びヘキサフルオロプロピレンからなる群より選択される少なくとも1種であることが好ましい。 In the low protein adsorptive material of the present invention, the fluorinated olefin is preferably at least one selected from the group consisting of tetrafluoroethylene, chlorotrifluoroethylene and hexafluoropropylene.
本発明の低タンパク質吸着性材料において含フッ素共重合体は、含フッ素オレフィン単位、ビニルアルコール単位及びビニルエステルモノマー単位を有することが好ましい。 In the low protein adsorptive material of the present invention, the fluorine-containing copolymer preferably has a fluorine-containing olefin unit, a vinyl alcohol unit and a vinyl ester monomer unit.
上記低タンパク質吸着性材料は、コーティング膜であることが好ましい。 The low protein adsorptive material is preferably a coating film.
本発明は、上述の低タンパク質吸着性材料を含むことを特徴とするコーティング用組成物でもある。 The present invention also provides a coating composition comprising the above-described low protein adsorptive material.
本発明は、上述の低タンパク質吸着性材料から形成されることを特徴とするコーティング層でもある。 The present invention also provides a coating layer formed from the above-described low protein adsorptive material.
本発明は、上述の低タンパク質吸着性材料、上述のコーティング組成物、又は、上述のコーティング層からなり、バッグ、シート、フィルム、バイアル瓶、シャーレ、又は、フラスコであることを特徴とする低タンパク質吸着性物品でもある。 The present invention is a low protein comprising the above-described low protein adsorbing material, the above coating composition, or the above coating layer, and being a bag, sheet, film, vial, petri dish, or flask. It is also an absorptive article.
本発明は、上述の低タンパク質吸着性材料、上述のコーティング組成物、又は、上述のコーティング層からなり、バイオ医薬用バッグ、バイオ医薬用シート、バイオ医薬用フィルム、バイオ医薬用バイアル瓶、バイオ医薬用シャーレ、又は、バイオ医薬用フラスコであることを特徴とする低タンパク質吸着性物品でもある。 The present invention comprises the above-described low protein-adsorbing material, the above-described coating composition, or the above-described coating layer, and includes a biopharmaceutical bag, a biopharmaceutical sheet, a biopharmaceutical film, a biopharmaceutical vial, and a biopharmaceutical. It is also a low protein adsorptive article characterized by being a petri dish or a biopharmaceutical flask.
本発明は、含フッ素オレフィン単位及びビニルアルコール単位を有する含フッ素共重合体からなることを特徴とする低細胞付着性材料でもある。 The present invention is also a low cell adhesion material characterized by comprising a fluorine-containing copolymer having a fluorine-containing olefin unit and a vinyl alcohol unit.
本発明の低細胞付着性材料において含フッ素共重合体における含フッ素オレフィン単位の含有率が60~10モル%であることが好ましい。 In the low cell adhesion material of the present invention, the fluorine-containing olefin unit content in the fluorine-containing copolymer is preferably 60 to 10 mol%.
本発明の低細胞付着性材料において含フッ素共重合体における含フッ素オレフィン単位とビニルアルコール単位との交互率が1~75%であることが好ましい。 In the low cell adhesion material of the present invention, it is preferable that the alternating rate of the fluorinated olefin unit and the vinyl alcohol unit in the fluorinated copolymer is 1 to 75%.
本発明の低細胞付着性材料において含フッ素オレフィンは、テトラフルオロエチレン、クロロトリフルオロエチレン及びヘキサフルオロプロピレンからなる群より選択される少なくとも1種であることが好ましい。 In the low cell adhesion material of the present invention, the fluorinated olefin is preferably at least one selected from the group consisting of tetrafluoroethylene, chlorotrifluoroethylene and hexafluoropropylene.
本発明の低細胞付着性材料において含フッ素共重合体は、含フッ素オレフィン単位、ビニルアルコール単位及びビニルエステルモノマー単位を有することが好ましい。 In the low cell adhesion material of the present invention, the fluorine-containing copolymer preferably has a fluorine-containing olefin unit, a vinyl alcohol unit and a vinyl ester monomer unit.
上記低細胞付着性材料は、コーティング膜であることが好ましい。 The low cell adhesion material is preferably a coating film.
本発明は、上述の低細胞付着性材料を含むことを特徴とするコーティング用組成物でもある。 The present invention also provides a coating composition comprising the above-mentioned low cell adhesion material.
本発明は、上述の低細胞付着性材料から形成されることを特徴とするコーティング層でもある。 The present invention is also a coating layer formed from the above-mentioned low cell adhesion material.
本発明は、上述の低細胞付着性材料、上述のコーティング用組成物、又は、上述のコーティング層からなり、バッグ、シート、フィルム、バイアル瓶、シャーレ、又は、フラスコであることを特徴とする低細胞付着性物品でもある。 The present invention comprises the above-mentioned low cell adhesion material, the above-mentioned coating composition, or the above-mentioned coating layer, and is a bag, sheet, film, vial, petri dish or flask, It is also a cell-adhesive article.
本発明は、上述の低細胞付着性材料、上述のコーティング用組成物、又は、上述のコーティング層からなり、細胞培養用バッグ、細胞培養用シート、細胞培養用フィルム、細胞培養用バイアル瓶、細胞培養用シャーレ、又は、細胞培養用フラスコであることを特徴とする低細胞付着性物品でもある。 The present invention comprises the above-mentioned low cell adhesion material, the above-mentioned coating composition, or the above-mentioned coating layer, and comprises a cell culture bag, a cell culture sheet, a cell culture film, a cell culture vial, a cell It is also a low cell adhesion article characterized by being a petri dish for culture or a flask for cell culture.
本発明は、上述の低細胞付着性材料、上述のコーティング用組成物、又は、上述のコーティング層からなり、胚様体形成用培養容器であることを特徴とする低細胞付着性物品でもある。 The present invention is also a low cell adhesion article comprising the above-mentioned low cell adhesion material, the above-mentioned coating composition, or the above-mentioned coating layer and being a culture container for embryoid body formation.
本発明の低タンパク質吸着性材料は、タンパク質が吸着しにくく、耐熱性、耐アルカリ性及び成形加工性にも優れている。本発明の低タンパク質吸着性材料からは、タンパク質が吸着しにくく、耐熱性、耐アルカリ性及び成形加工性にも優れた物品を得ることができる。また、本発明の低細胞付着性材料は、細胞が付着しにくく、耐熱性、耐アルカリ性及び成形加工性にも優れている。本発明の低細胞付着性材料からは、細胞が付着しにくく、耐熱性、耐アルカリ性及び成形加工性にも優れた物品を得ることができる。 The low protein adsorptive material of the present invention hardly adsorbs protein, and is excellent in heat resistance, alkali resistance and moldability. From the low protein adsorptive material of the present invention, it is possible to obtain an article that is difficult to adsorb proteins and is excellent in heat resistance, alkali resistance and molding processability. Further, the low cell adhesion material of the present invention is less likely to adhere to cells and is excellent in heat resistance, alkali resistance and molding processability. From the low cell adhesion material of the present invention, it is possible to obtain an article that is difficult to adhere to cells and is excellent in heat resistance, alkali resistance and molding processability.
本発明の低タンパク質吸着性物品は、表面にタンパク質が吸着しにくく、耐熱性、耐アルカリ性及び成形加工性にも優れている。また、本発明の低細胞付着性物品は、表面に細胞が付着しにくく、耐熱性、耐アルカリ性及び成形加工性にも優れている。 The low protein adsorptive article of the present invention hardly adsorbs protein on the surface, and is excellent in heat resistance, alkali resistance and molding processability. In addition, the low cell adhesion article of the present invention is less susceptible to cell adhesion on the surface and is excellent in heat resistance, alkali resistance and molding processability.
以下、本発明を具体的に説明する。 Hereinafter, the present invention will be specifically described.
本発明の低タンパク質吸着性材料および低細胞付着性材料は、含フッ素オレフィン単位及びビニルアルコール単位(-CH-CH(OH)-)を有する含フッ素共重合体からなる。上記含フッ素共重合体の低タンパク質吸着性および低細胞付着性は本発明者等によって新たに見出された特性である。 The low protein adsorptive material and the low cell adhesion material of the present invention comprise a fluorine-containing copolymer having a fluorine-containing olefin unit and a vinyl alcohol unit (—CH 2 —CH (OH) —). The low protein adsorption property and low cell adhesion property of the fluorine-containing copolymer are characteristics newly found by the present inventors.
本発明の低タンパク質吸着性材料および低細胞付着性材料は、耐熱性にも優れるので、高温で実施する滅菌処理にも耐え得る。例えば、121℃で実施するオートクレーブ滅菌にも耐え得る。本発明の低タンパク質吸着性材料および低細胞付着性材料は、分解温度が121℃超であることが好ましい。 Since the low protein adsorptive material and the low cell adhesion material of the present invention are excellent in heat resistance, they can withstand sterilization performed at high temperatures. For example, it can withstand autoclave sterilization performed at 121 ° C. It is preferable that the low protein adsorbing material and the low cell adhesion material of the present invention have a decomposition temperature exceeding 121 ° C.
本発明の低タンパク質吸着性材料および低細胞付着性材料は、耐アルカリ性にも優れるので、次亜塩素酸を含むアルカリ性の水溶液を使用する消毒にも耐え得る。例えば、本発明の低タンパク質吸着性材料および低細胞付着性材料は、0.5質量%の次亜塩素酸ナトリウム及び0.4質量%の水酸化ナトリウムを含む水溶液中に、24時間浸漬した場合でも、重量変化率が10質量%以下である。 Since the low protein adsorbing material and the low cell adhesion material of the present invention are excellent in alkali resistance, they can withstand disinfection using an alkaline aqueous solution containing hypochlorous acid. For example, when the low protein adsorptive material and the low cell adhesion material of the present invention are immersed in an aqueous solution containing 0.5% by mass of sodium hypochlorite and 0.4% by mass of sodium hydroxide for 24 hours However, the weight change rate is 10% by mass or less.
本発明の低タンパク質吸着性材料および低細胞付着性材料は、成形加工性にも優れる。例えば、本発明の低タンパク質吸着性材料および低細胞付着性材料が有機溶剤を含む塗料組成物である場合、有機溶剤としてアルコール等の弱溶剤を使用することができるので、強溶剤により侵食される基材や下塗りにも適用できる。 The low protein adsorptive material and the low cell adhesion material of the present invention are excellent in moldability. For example, when the low protein adsorptive material and the low cell adhesion material of the present invention are a coating composition containing an organic solvent, a weak solvent such as alcohol can be used as the organic solvent, so that it is eroded by the strong solvent. It can also be applied to substrates and undercoats.
上記含フッ素共重合体は、上記含フッ素オレフィン単位を、上記含フッ素共重合体を構成する全単量体単位の60~10モル%含有することが好ましい。より好ましくは40~10モル%であり、更に好ましくは35~20モル%であり、より更に好ましくは35~25モル%である。上記含フッ素オレフィン単位の含有率が上記範囲内にあると、低タンパク質吸着性材料にタンパク質が更に吸着しにくく、また、上記低細胞付着性材料に細胞が更に付着しにくい。上記含フッ素オレフィン単位の含有率が10モル%未満にあると、含フッ素共重合体の水溶性が高くなり、含フッ素共重合体が水中に溶出しやすくなり機能が発現しにくくなる。上記含フッ素オレフィン単位の含有量が多い方が、上記低タンパク質吸着性材料及び上記低細胞付着性材料の耐熱性、耐アルカリ性及び成形加工性が優れる傾向がある。 The fluorine-containing copolymer preferably contains the fluorine-containing olefin unit in an amount of 60 to 10 mol% of all monomer units constituting the fluorine-containing copolymer. More preferably, it is 40 to 10 mol%, still more preferably 35 to 20 mol%, and still more preferably 35 to 25 mol%. When the content of the fluorinated olefin unit is within the above range, proteins are more difficult to adsorb to the low protein adsorbing material, and cells are less likely to adhere to the low cell adhering material. When the content of the fluorinated olefin unit is less than 10 mol%, the water-soluble property of the fluorinated copolymer is increased, and the fluorinated copolymer is easily eluted in water, and the function is hardly exhibited. When the content of the fluorine-containing olefin unit is large, the heat resistance, alkali resistance, and molding processability of the low protein adsorbing material and the low cell adhesion material tend to be excellent.
上記含フッ素共重合体は、含フッ素オレフィン単位が60~10モル%であり、ビニルアルコール単位が40~90モル%であることが好ましい。各モノマー単位の含有率としては、含フッ素オレフィン単位が40~10モル%であり、ビニルアルコール単位が60~90モル%であることがより好ましく、含フッ素オレフィン単位が35~20モル%であり、ビニルアルコール単位が65~80モル%であることが更に好ましく、含フッ素オレフィン単位が35~25モル%であり、ビニルアルコール単位が65~75モル%であることがより更に好ましい。各モノマー単位の含有率がこのような範囲であることによって、低タンパク質吸着性材料にタンパク質が更に吸着しにくく、また、上記低細胞付着性材料に細胞が更に付着しにくい。上記含フッ素オレフィン単位の含有率が10モル%未満にあると、含フッ素共重合体の水溶性が高くなり、含フッ素共重合体が水中に溶出しやすくなり機能が発現しにくくなる。上記含フッ素オレフィン単位の含有量が多い方が、上記低タンパク質吸着性材料及び上記低細胞付着性材料の耐熱性、耐アルカリ性及び成形加工性が優れる傾向がある。 The fluorine-containing copolymer preferably contains 60 to 10 mol% of fluorine-containing olefin units and 40 to 90 mol% of vinyl alcohol units. The content of each monomer unit is 40 to 10 mol% of the fluorinated olefin unit, more preferably 60 to 90 mol% of the vinyl alcohol unit, and 35 to 20 mol% of the fluorinated olefin unit. More preferably, the vinyl alcohol unit is 65 to 80 mol%, the fluorinated olefin unit is 35 to 25 mol%, and the vinyl alcohol unit is 65 to 75 mol%. When the content of each monomer unit is in such a range, proteins are more difficult to adsorb to the low protein adsorbing material, and cells are less likely to adhere to the low cell adhering material. When the content of the fluorinated olefin unit is less than 10 mol%, the water-soluble property of the fluorinated copolymer is increased, and the fluorinated copolymer is easily eluted in water, and the function is hardly exhibited. When the content of the fluorine-containing olefin unit is large, the heat resistance, alkali resistance, and molding processability of the low protein adsorbing material and the low cell adhesion material tend to be excellent.
上記含フッ素オレフィン単位とは、含フッ素オレフィンに基づく重合単位を表している。該含フッ素オレフィンは、フッ素原子を有する単量体である。 The said fluorine-containing olefin unit represents the polymerization unit based on a fluorine-containing olefin. The fluorine-containing olefin is a monomer having a fluorine atom.
上記含フッ素オレフィンとしては、テトラフルオロエチレン〔TFE〕、フッ化ビニリデン〔VdF〕、クロロトリフルオロエチレン〔CTFE〕、フッ化ビニル、へキサフルオロプロピレン〔HFP〕、へキサフルオロイソブテン、CH=CZ(CFn1(式中、ZはH、F又はCl、ZはH、F又はCl、n1は1~10の整数である。)で示される単量体、CF=CF-ORf(式中、Rfは、炭素数1~8のパーフルオロアルキル基を表す。)で表されるパーフルオロ(アルキルビニルエーテル)〔PAVE〕、及び、CF=CF-OCH-Rf(式中、Rfは、炭素数1~5のパーフルオロアルキル基)で表されるアルキルパーフルオロビニルエーテル誘導体からなる群より選択される少なくとも1種の含フッ素オレフィンであることが好ましい。 Examples of the fluorine-containing olefin include tetrafluoroethylene [TFE], vinylidene fluoride [VdF], chlorotrifluoroethylene [CTFE], vinyl fluoride, hexafluoropropylene [HFP], hexafluoroisobutene, CH 2 = CZ. 1 (CF 2 ) n1 Z 2 , wherein Z 1 is H, F or Cl, Z 2 is H, F or Cl, and n1 is an integer of 1 to 10, CF 2 = CF-ORf 1 (wherein Rf 1 represents a perfluoroalkyl group having 1 to 8 carbon atoms) and CF 2 = CF-OCH 2 -rf 2 (wherein, Rf 2 is a perfluoroalkyl group having 1 to 5 carbon atoms) selected from the group consisting of alkyl perfluorovinyl ether derivative represented by the It is preferably be at least one kind of fluorine-containing olefin.
上記CH=CZ(CFn1で示される単量体としては、CH=CFCF、CH=CHCF、CH=CFCHF、CH=CClCF等が挙げられる。 Examples of the monomer represented by CH 2 = CZ 1 (CF 2 ) n1 Z 2 include CH 2 = CFCF 3 , CH 2 = CHCF 3 , CH 2 = CFCHF 2 and CH 2 = CClCF 3 .
上記PAVEとしては、パーフルオロ(メチルビニルエーテル)〔PMVE〕、パーフルオロ(エチルビニルエーテル)〔PEVE〕、パーフルオロ(プロピルビニルエーテル)〔PPVE〕、パーフルオロ(ブチルビニルエーテル)等が挙げられる。 Examples of the PAVE include perfluoro (methyl vinyl ether) [PMVE], perfluoro (ethyl vinyl ether) [PEVE], perfluoro (propyl vinyl ether) [PPVE], perfluoro (butyl vinyl ether), and the like.
上記含フッ素オレフィンとしては、TFE、CTFE及びHFPからなる群より選択される少なくとも1種がより好ましく、TFEが更に好ましい。 As said fluorine-containing olefin, at least 1 sort (s) selected from the group which consists of TFE, CTFE, and HFP is more preferable, and TFE is still more preferable.
上記含フッ素共重合体は、含フッ素オレフィン単位とビニルアルコール単位との交互率が1~75%であることが好ましい。交互率が上記範囲内にあると、低タンパク質吸着性材料にタンパク質が更に吸着しにくく、また、上記低細胞付着性材料に細胞が更に付着しにくい。より好ましくは10~60%であり、更に好ましくは10~35%であり、特に好ましくは10~20%である。 The fluorine-containing copolymer preferably has an alternating ratio of fluorine-containing olefin units and vinyl alcohol units of 1 to 75%. When the alternating rate is within the above range, proteins are more difficult to adsorb to the low protein adsorbing material, and cells are less likely to adhere to the low cell adhering material. More preferably, it is 10 to 60%, still more preferably 10 to 35%, and particularly preferably 10 to 20%.
含フッ素オレフィン単位とビニルアルコール単位との交互率は、重アセトン等の含フッ素共重合体が溶解する溶媒を用いて、含フッ素共重合体のH-NMR測定を行い、以下の式より3連鎖の交互率として算出できる。
交互率(%)=C/(A+B+C)×100
A:-V-V-V-のように2つのVと結合したVの個数
B:-V-V-T-のようにVとTとに結合したVの個数
C:-T-V-T-のように2つのTに結合したVの個数
(T:含フッ素オレフィン単位、V:ビニルアルコール単位)
A、B、CのV単位の数は、H-NMR測定のビニルアルコール単位(-CH-CH(OH)-)の3級炭素に結合する主鎖のHの強度比より算出する。H-NMR測定による主鎖のHの強度比の見積もりは、ケン化前の含フッ素共重合体で実施する。
The alternating rate of the fluorinated olefin unit and the vinyl alcohol unit was determined by performing 1 H-NMR measurement of the fluorinated copolymer using a solvent in which the fluorinated copolymer such as heavy acetone is dissolved, It can be calculated as the alternating rate of chaining.
Alternating rate (%) = C / (A + B + C) × 100
A: The number of V bonded to two Vs as in -VVVV- B: The number of Vs bonded to V and T as in -VVVT- C: -TVV- Number of V bonded to two T like T- (T: fluorine-containing olefin unit, V: vinyl alcohol unit)
The number of V units of A, B and C is calculated from the intensity ratio of H of the main chain bonded to the tertiary carbon of the vinyl alcohol unit (—CH 2 —CH (OH) —) measured by 1 H-NMR. The estimation of the strength ratio of H in the main chain by 1 H-NMR measurement is carried out with the fluorine-containing copolymer before saponification.
上記含フッ素共重合体は、タンパク質が更に吸着しにくく、また、細胞が更に付着しにくいことから、-CH(OH)-CXY-(式中、X及びYは、同一又は異なり、それぞれH、F又はフルオロアルキル基を表す。ただし、X及びYのうち少なくとも一つはF又はフルオロアルキル基である。)で表されるフッ素アルコール構造を有することが好ましい。また、上記含フッ素共重合体は、-CH(OH)-CF-で表されるフッ素アルコール構造を有することがより好ましい。 Since the fluorine-containing copolymer is more difficult to adsorb proteins and more difficult to adhere to cells, —CH (OH) —CXY— (wherein X and Y are the same or different and H, F or a fluoroalkyl group, provided that at least one of X and Y is F or a fluoroalkyl group). The fluorine-containing copolymer preferably has a fluorine alcohol structure represented by —CH (OH) —CF 2 —.
上記含フッ素共重合体は、更に、-CH-CH(O(C=O)R)-(式中、Rは、水素原子又は炭素数1~17の炭化水素基を表す。)で表されるビニルエステルモノマー単位を有するものであってもよい。このように、本発明における含フッ素共重合体が、含フッ素オレフィン単位、ビニルアルコール単位及びビニルエステルモノマー単位を有することもまた、本発明の好適な実施形態の1つである。そして更には、実質的に含フッ素オレフィン単位、ビニルアルコール単位及びビニルエステルモノマー単位のみからなる含フッ素オレフィン/ビニルアルコール/ビニルエステルモノマー共重合体であることもまた、本発明の好適な実施形態の1つである。 The fluorine-containing copolymer is further represented by —CH 2 —CH (O (C═O) R) — (wherein R represents a hydrogen atom or a hydrocarbon group having 1 to 17 carbon atoms). It may have a vinyl ester monomer unit. Thus, it is also one of the preferred embodiments of the present invention that the fluorinated copolymer in the present invention has a fluorinated olefin unit, a vinyl alcohol unit, and a vinyl ester monomer unit. Furthermore, it is a fluorine-containing olefin / vinyl alcohol / vinyl ester monomer copolymer consisting essentially of a fluorine-containing olefin unit, a vinyl alcohol unit and a vinyl ester monomer unit. One.
上記ビニルエステルモノマー単位は、-CH-CH(O(C=O)R)-(式中、Rは、水素原子又は炭素数1~17の炭化水素基を表す。)で表されるモノマー単位であるが、上記式中のRとしては、炭素数1~11のアルキル基が好ましく、炭素数1~5のアルキル基がより好ましい。特に好ましくは、炭素数1~3のアルキル基である。 The vinyl ester monomer unit is a monomer represented by —CH 2 —CH (O (C═O) R) — (wherein R represents a hydrogen atom or a hydrocarbon group having 1 to 17 carbon atoms). Although it is a unit, R in the above formula is preferably an alkyl group having 1 to 11 carbon atoms, more preferably an alkyl group having 1 to 5 carbon atoms. Particularly preferred is an alkyl group having 1 to 3 carbon atoms.
上記ビニルエステルモノマー単位としては、中でも、以下のビニルエステルに由来するモノマー単位などが例示される。
ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、イソ酪酸ビニル、バレリン酸ビニル、イソバレリン酸ビニル、カプロン酸ビニル、へプチル酸ビニル、カプリル酸ビニル、ピバリン酸ビニル、ペラルゴン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ミリスチン酸ビニル、ペンタデシル酸ビニル、パルチミン酸ビニル、マルガリン酸ビニル、ステアリン酸ビニル、オクチル酸ビニル、ベオバ-9(昭和シェル石油(株)製)、ベオバ-10(昭和シェル石油(株)製)、安息香酸ビニル、バーサチック酸ビニル。
これらの中でも、酢酸ビニル、プロピオン酸ビニル、バーサチック酸ビニルに由来するモノマー単位が好ましい。より好ましくは、酢酸ビニルモノマー単位、プロピオン酸ビニルモノマー単位であり、更に好ましくは、酢酸ビニルモノマー単位である。
Examples of the vinyl ester monomer unit include monomer units derived from the following vinyl esters.
Vinyl formate, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl isobutyrate, vinyl valelate, vinyl isovalerate, vinyl caproate, vinyl heptylate, vinyl caprylate, vinyl pivalate, vinyl pelargonate, vinyl caprate, Vinyl laurate, vinyl myristate, vinyl pentadecylate, vinyl palmitate, vinyl margarate, vinyl stearate, vinyl octylate, Veova-9 (manufactured by Showa Shell Sekiyu KK), Veova-10 (Showa Shell Sekiyu KK) )), Vinyl benzoate, vinyl versatate.
Among these, monomer units derived from vinyl acetate, vinyl propionate, and vinyl versatate are preferable. More preferred are vinyl acetate monomer units and vinyl propionate monomer units, and even more preferred are vinyl acetate monomer units.
上記含フッ素共重合体が、含フッ素オレフィン単位、ビニルアルコール単位及びビニルエステルモノマー単位を有する場合の、各モノマー単位の含有率としては、含フッ素オレフィン単位が60~10モル%であり、ビニルアルコール単位が40~90モル%であり、ビニルエステルモノマー単位が0モル%より多く30モル%未満であることが好ましい。各モノマー単位の含有率が上記範囲内にあると、低タンパク質吸着性材料にタンパク質が更に吸着しにくく、また、上記低細胞付着性材料に細胞が更に付着しにくい。各モノマー単位の含有率としては、含フッ素オレフィン単位が60~10モル%であり、ビニルアルコール単位が40~90モル%であり、ビニルエステルモノマー単位が0より多く10モル%未満であることがより好ましく、含フッ素オレフィン単位が40~10モル%であり、ビニルアルコール単位が60~90モル%であり、ビニルエステルモノマー単位が0より多く1.0モル%未満であることが更に好ましく、含フッ素オレフィン単位が35~20モル%であり、ビニルアルコール単位が65~80モル%であり、ビニルエステルモノマー単位が0より多く1.0モル%未満であることがより更に好ましく、含フッ素オレフィン単位が35~25モル%であり、ビニルアルコール単位が65~75モル%であり、ビニルエステルモノマー単位が0より多く1.0モル%未満であることがより更にもっと好ましい。上記含フッ素オレフィン単位の含有量が多い方が、上記低タンパク質吸着性材料及び上記低細胞付着性材料の耐熱性、耐アルカリ性及び成形加工性が優れる傾向がある。 When the fluorine-containing copolymer has a fluorine-containing olefin unit, a vinyl alcohol unit and a vinyl ester monomer unit, the content of each monomer unit is 60 to 10 mol% of the fluorine-containing olefin unit, and vinyl alcohol Preferably, the units are 40 to 90 mol% and the vinyl ester monomer units are more than 0 mol% and less than 30 mol%. When the content of each monomer unit is within the above range, proteins are more difficult to adsorb to the low protein adsorbing material, and cells are less likely to adhere to the low cell adhering material. The content of each monomer unit is such that the fluorine-containing olefin unit is 60 to 10 mol%, the vinyl alcohol unit is 40 to 90 mol%, and the vinyl ester monomer unit is more than 0 and less than 10 mol%. More preferably, the fluorine-containing olefin unit is 40 to 10 mol%, the vinyl alcohol unit is 60 to 90 mol%, the vinyl ester monomer unit is more than 0 and less than 1.0 mol%, and more preferably More preferably, the fluorine olefin unit is 35 to 20 mol%, the vinyl alcohol unit is 65 to 80 mol%, the vinyl ester monomer unit is more than 0 and less than 1.0 mol%. Is 35 to 25 mol%, vinyl alcohol units are 65 to 75 mol%, It is even more preferred more mer units is from greater than 0 to less than 1.0 mol%. When the content of the fluorine-containing olefin unit is large, the heat resistance, alkali resistance, and molding processability of the low protein adsorbing material and the low cell adhesion material tend to be excellent.
上記含フッ素共重合体が、含フッ素オレフィン単位、ビニルアルコール単位及びビニルエステルモノマー単位を有する場合、含フッ素オレフィン単位とビニルアルコール単位及びビニルエステルモノマー単位との交互率は、1~75%であることが好ましい。交互率が上記範囲内にあると、低タンパク質吸着性材料にタンパク質が更に吸着しにくく、また、上記低細胞付着性材料に細胞が更に付着しにくい。より好ましくは10~60%であり、更に好ましくは10~35%であり、特に好ましくは10~20%である。 When the fluorine-containing copolymer has a fluorine-containing olefin unit, a vinyl alcohol unit, and a vinyl ester monomer unit, the alternating rate of the fluorine-containing olefin unit, the vinyl alcohol unit, and the vinyl ester monomer unit is 1 to 75%. It is preferable. When the alternating rate is within the above range, proteins are more difficult to adsorb to the low protein adsorbing material, and cells are less likely to adhere to the low cell adhering material. More preferably, it is 10 to 60%, still more preferably 10 to 35%, and particularly preferably 10 to 20%.
含フッ素オレフィン単位とビニルアルコール単位及びビニルエステルモノマー単位との交互率は、重アセトン等の含フッ素共重合体が溶解する溶媒を用いて、含フッ素共重合体のH-NMR測定を行い、以下の式より3連鎖の交互率として算出できる。
交互率(%)=C/(A+B+C)×100
A:-V-V-V-のように2つのVと結合したVの個数
B:-V-V-T-のようにVとTとに結合したVの個数
C:-T-V-T-のように2つのTに結合したVの個数
(T:含フッ素オレフィン単位、V:ビニルアルコール単位又はビニルエステルモノマー単位)
A、B、CのV単位の数は、H-NMR測定のビニルアルコール単位(-CH-CH(OH)-)及びビニルエステルモノマー単位(-CH-CH(O(C=O)R)-)の3級炭素に結合する主鎖のHの強度比より算出する。H-NMR測定による主鎖のHの強度比の見積もりは、ケン化前の含フッ素共重合体で実施する。
The alternating rate of the fluorinated olefin unit, the vinyl alcohol unit, and the vinyl ester monomer unit was measured by 1 H-NMR measurement of the fluorinated copolymer using a solvent in which the fluorinated copolymer such as heavy acetone was dissolved, It can be calculated as an alternating rate of three chains from the following formula.
Alternating rate (%) = C / (A + B + C) × 100
A: The number of V bonded to two Vs as in -VVVV- B: The number of Vs bonded to V and T as in -VVVT- C: -TVV- Number of V bonded to two T's such as T- (T: fluorine-containing olefin unit, V: vinyl alcohol unit or vinyl ester monomer unit)
The number of V units in A, B, and C is the vinyl alcohol unit (—CH 2 —CH (OH) —) and vinyl ester monomer unit (—CH 2 —CH (O (C═O)) measured by 1 H-NMR. Calculated from the strength ratio of H of the main chain bonded to the tertiary carbon of R)-). The estimation of the strength ratio of H in the main chain by 1 H-NMR measurement is carried out with the fluorine-containing copolymer before saponification.
上記含フッ素共重合体は、本発明の効果を損なわない範囲で、含フッ素オレフィン単位、ビニルアルコール単位及びビニルエステルモノマー単位以外の他の単量体単位を有していてもよい。 The said fluorine-containing copolymer may have other monomer units other than a fluorine-containing olefin unit, a vinyl alcohol unit, and a vinyl ester monomer unit in the range which does not impair the effect of this invention.
上記他の単量体としては、フッ素原子を含まない単量体(但し、ビニルアルコール及びビニルエステル単量体を除く)として、例えば、エチレン、プロピレン、1-ブテン、2-ブテン、塩化ビニル、塩化ビニリデン、ビニルエーテル単量体、及び、不飽和カルボン酸からなる群より選択される少なくとも1種のフッ素非含有エチレン性単量体が好ましい。 Examples of the other monomer include monomers not containing a fluorine atom (excluding vinyl alcohol and vinyl ester monomers) such as ethylene, propylene, 1-butene, 2-butene, vinyl chloride, Preference is given to at least one fluorine-free ethylenic monomer selected from the group consisting of vinylidene chloride, vinyl ether monomers and unsaturated carboxylic acids.
上記他の単量体単位の合計含有率は、含フッ素共重合体の全単量体単位の0~50モル%であることが好ましく、0~40モル%であることがより好ましく、0~30モル%であることが更に好ましい。 The total content of the other monomer units is preferably 0 to 50 mol%, more preferably 0 to 40 mol%, and more preferably 0 to 40 mol% of the total monomer units of the fluorine-containing copolymer. More preferably, it is 30 mol%.
本明細書において、含フッ素共重合体を構成する各単量体単位の含有量は、NMR、FT-IR、元素分析を単量体の種類によって適宜組み合わせることで算出できる。 In the present specification, the content of each monomer unit constituting the fluorine-containing copolymer can be calculated by appropriately combining NMR, FT-IR, and elemental analysis depending on the type of monomer.
上記含フッ素共重合体の重量平均分子量は、特に制限されないが、10,000以上であることが好ましい。より好ましくは、12,000~2,000,000であり、更に好ましくは、12,000~1,000,000である。
上記重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)により求めることができる。
The weight average molecular weight of the fluorine-containing copolymer is not particularly limited, but is preferably 10,000 or more. More preferably, it is 12,000 to 2,000,000, and still more preferably 12,000 to 1,000,000.
The weight average molecular weight can be determined by gel permeation chromatography (GPC).
上記含フッ素共重合体は、後述するように、含フッ素オレフィン単位及びビニルエステルモノマー単位を有する共重合体をケン化することにより製造することができる。すなわち、本発明における含フッ素共重合体が、含フッ素オレフィン単位及びビニルエステルモノマー単位を有する共重合体をケン化して得られた共重合体であることもまた、本発明の好適な実施形態の1つである。 As described later, the fluorine-containing copolymer can be produced by saponifying a copolymer having a fluorine-containing olefin unit and a vinyl ester monomer unit. That is, the fluorine-containing copolymer in the present invention is a copolymer obtained by saponifying a copolymer having a fluorine-containing olefin unit and a vinyl ester monomer unit. One.
以下に、本発明における含フッ素共重合体の製造方法について説明する。
通常、本発明における含フッ素共重合体は、テトラフルオロエチレン等の含フッ素オレフィンと酢酸ビニル等のビニルエステルモノマーとを共重合して、その後、得られた共重合体をケン化することにより製造することができる。上記含フッ素共重合体の重合方法としては、含フッ素オレフィンとビニルエステルモノマーの組成比を、ほぼ一定に保つ条件下で重合を行うことが好ましい。すなわち、上記含フッ素共重合体は、含フッ素オレフィンとビニルエステルモノマーの組成比を、ほぼ一定に保つ条件下で重合して、含フッ素オレフィン単位とビニルエステルモノマー単位とを有する共重合体を得る工程、及び、得られた共重合体をケン化して、含フッ素オレフィン単位及びビニルアルコール単位を有する共重合体を得る工程、からなる製造方法により得られたものであることが好ましい。
Below, the manufacturing method of the fluorine-containing copolymer in this invention is demonstrated.
Usually, the fluorine-containing copolymer in the present invention is produced by copolymerizing a fluorine-containing olefin such as tetrafluoroethylene and a vinyl ester monomer such as vinyl acetate, and then saponifying the obtained copolymer. can do. As a method for polymerizing the fluorine-containing copolymer, it is preferable to carry out the polymerization under a condition in which the composition ratio of the fluorine-containing olefin and the vinyl ester monomer is kept substantially constant. That is, the above-mentioned fluorine-containing copolymer is polymerized under a condition in which the composition ratio of the fluorine-containing olefin and the vinyl ester monomer is kept almost constant to obtain a copolymer having a fluorine-containing olefin unit and a vinyl ester monomer unit. It is preferably obtained by a production method comprising a step and a step of saponifying the obtained copolymer to obtain a copolymer having a fluorine-containing olefin unit and a vinyl alcohol unit.
上記ビニルエステルモノマーとしては、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、イソ酪酸ビニル、バレリン酸ビニル、イソバレリン酸ビニル、カプロン酸ビニル、へプチル酸ビニル、カプリル酸ビニル、ピバリン酸ビニル、ペラルゴン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ミリスチン酸ビニル、ペンタデシル酸ビニル、パルチミン酸ビニル、マルガリン酸ビニル、ステアリン酸ビニル、オクチル酸ビニル、ベオバ-9(昭和シェル石油(株)製)、ベオバ-10(昭和シェル石油(株)製)、安息香酸ビニル、バーサチック酸ビニル等が挙げられるが、中でも入手が容易で安価である点から、酢酸ビニル、プロピオン酸ビニル、バーサチック酸ビニルが好ましく用いられる。
上記ビニルエステルモノマーとしてはこれらの1種を用いてもよいし、2種以上を混合して用いてもよい。
Examples of the vinyl ester monomers include vinyl formate, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl isobutyrate, vinyl valerate, vinyl isovalerate, vinyl caproate, vinyl heptylate, vinyl caprylate, vinyl pivalate, pelargon. Vinyl acetate, vinyl caprate, vinyl laurate, vinyl myristate, vinyl pentadecylate, vinyl palmitate, vinyl margarate, vinyl stearate, vinyl octylate, Veova-9 (manufactured by Showa Shell Sekiyu KK), Veova 10 (manufactured by Showa Shell Sekiyu KK), vinyl benzoate, vinyl versatate, and the like. Of these, vinyl acetate, vinyl propionate, and vinyl versatate are preferably used because they are easily available and inexpensive.
As said vinyl ester monomer, 1 type of these may be used and 2 or more types may be mixed and used.
含フッ素オレフィンとビニルエステルモノマーとを共重合させる方法としては、溶液重合、塊状重合、乳化重合、懸濁重合等の重合方法を挙げることができ、工業的に実施が容易であることから乳化重合、溶液重合又は懸濁重合により製造することが好ましいが、この限りではない。 Examples of the method of copolymerizing the fluorinated olefin and the vinyl ester monomer include solution polymerization, bulk polymerization, emulsion polymerization, suspension polymerization and the like, and emulsion polymerization is easy because it is industrially easy to implement. However, it is preferable to produce by solution polymerization or suspension polymerization, but not limited thereto.
乳化重合、溶液重合又は懸濁重合においては、重合開始剤、溶媒、連鎖移動剤、界面活性剤、分散剤等を使用することができ、それぞれ通常用いられるものを使用することができる。 In emulsion polymerization, solution polymerization, or suspension polymerization, a polymerization initiator, a solvent, a chain transfer agent, a surfactant, a dispersant, and the like can be used, and those usually used can be used.
溶液重合において使用する溶媒は、含フッ素オレフィンとビニルエステルモノマー、及び、合成される含フッ素共重合体を溶解することができるものが好ましく、例えば、酢酸n-ブチル、酢酸t-ブチル、酢酸エチル、酢酸メチル、酢酸プロピル等のエステル類;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;ヘキサン、シクロヘキサン、オクタン等の脂肪族炭化水素類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;メタノール、エタノール、tert-ブタノール、2-プロパノール等のアルコール類;テトラヒドロフラン、ジオキサン等の環状エーテル類;HCFC-225等の含フッ素溶媒;ジメチルスルホキシド、ジメチルホルムアミド、又はこれらの混合物等が挙げられる。
乳化重合において使用する溶媒としては、例えば、水、水とアルコールとの混合溶媒等が挙げられる。
The solvent used in the solution polymerization is preferably a solvent capable of dissolving the fluorine-containing olefin, the vinyl ester monomer, and the fluorine-containing copolymer to be synthesized. For example, n-butyl acetate, t-butyl acetate, ethyl acetate Esters such as methyl acetate and propyl acetate; Ketones such as acetone, methyl ethyl ketone and cyclohexanone; Aliphatic hydrocarbons such as hexane, cyclohexane and octane; Aromatic hydrocarbons such as benzene, toluene and xylene; Methanol and ethanol Alcohols such as tert-butanol and 2-propanol; cyclic ethers such as tetrahydrofuran and dioxane; fluorine-containing solvents such as HCFC-225; dimethyl sulfoxide, dimethylformamide, and mixtures thereof.
Examples of the solvent used in the emulsion polymerization include water, a mixed solvent of water and alcohol, and the like.
上記重合開始剤としては、例えば、ジイソプロピルパーオキシジカーボネート(IPP)、ジ-n-プロピルパーオキシジカーボネート(NPP)等のパーオキシカーボネート類やt-ブチルパーオキシピバレート(例えば日油株式会社製のパーブチルPV)等のパーオキシエステル類に代表される油溶性ラジカル重合開始剤や、例えば、過硫酸、過ホウ酸、過塩素酸、過リン酸、過炭酸のアンモニウム塩、カリウム塩、ナトリウム塩等の水溶性ラジカル重合開始剤等を使用できる。特に乳化重合においては、過硫酸アンモニウム、過硫酸カリウムが好ましい。 Examples of the polymerization initiator include peroxycarbonates such as diisopropyl peroxydicarbonate (IPP) and di-n-propyl peroxydicarbonate (NPP), and t-butyl peroxypivalate (for example, NOF Corporation). Oil-soluble radical polymerization initiators typified by peroxyesters such as perbutyl PV), for example, persulfuric acid, perboric acid, perchloric acid, perphosphoric acid, ammonium percarbonate, potassium salt, sodium Water-soluble radical polymerization initiators such as salts can be used. Particularly in emulsion polymerization, ammonium persulfate and potassium persulfate are preferred.
上記界面活性剤としては、通常用いられる界面活性剤が使用でき、例えば、非イオン性界面活性剤、アニオン性界面活性剤、カチオン性界面活性剤等が使用できる。また、含フッ素系界面活性剤を用いてもよい。 As the surfactant, a commonly used surfactant can be used. For example, a nonionic surfactant, an anionic surfactant, a cationic surfactant and the like can be used. Moreover, you may use a fluorine-containing surfactant.
懸濁重合において用いられる上記分散剤としては、通常の懸濁重合に用いられる部分鹸化ポリ酢酸ビニル、メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロースなどの水溶性セルロースエーテル、アクリル酸系重合体、ゼラチンなどの水溶性ポリマーを例示できる。懸濁重合は、水/単量体の比率が通常質量比で1.5/1~3/1である条件下で行なわれ、分散剤は単量体100質量部に対し0.01~0.1質量部が用いられる。また、必要に応じて、ポリリン酸塩のようなpH緩衝剤を用いることもできる。 Examples of the dispersant used in suspension polymerization include partially saponified polyvinyl acetate, methylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, and other water-soluble cellulose ethers used in ordinary suspension polymerization, and acrylic acid polymers. And water-soluble polymers such as gelatin. Suspension polymerization is carried out under the condition that the ratio of water / monomer is usually 1.5 / 1 to 3/1 by mass ratio, and the dispersant is 0.01 to 0 with respect to 100 parts by mass of the monomer. .1 part by weight is used. If necessary, a pH buffer such as polyphosphate can be used.
上記連鎖移動剤としては、例えば、エタン、イソペンタン、n-ヘキサン、シクロヘキサン等の炭化水素類;トルエン、キシレン等の芳香族類;アセトン等のケトン類;酢酸エチル、酢酸ブチル等の酢酸エステル類;メタノール、エタノール等のアルコール類;メチルメルカプタン等のメルカプタン類;四塩化炭素、クロロホルム、塩化メチレン、塩化メチル等のハロゲン化炭化水素等が挙げられる。
上記連鎖移動剤の添加量は用いる化合物の連鎖移動定数の大きさにより変わりうるが、通常重合溶媒に対して0.001~10質量%の範囲で使用される。
Examples of the chain transfer agent include hydrocarbons such as ethane, isopentane, n-hexane, and cyclohexane; aromatics such as toluene and xylene; ketones such as acetone; acetates such as ethyl acetate and butyl acetate; Examples include alcohols such as methanol and ethanol; mercaptans such as methyl mercaptan; halogenated hydrocarbons such as carbon tetrachloride, chloroform, methylene chloride, and methyl chloride.
The addition amount of the chain transfer agent may vary depending on the chain transfer constant of the compound used, but is usually used in the range of 0.001 to 10% by mass with respect to the polymerization solvent.
重合温度としては、含フッ素オレフィンとビニルエステルモノマーの反応中の組成比がほぼ一定になる範囲であればよく、0~100℃であってよい。 The polymerization temperature may be in a range in which the composition ratio during the reaction of the fluorinated olefin and the vinyl ester monomer is substantially constant, and may be 0 to 100 ° C.
重合圧力としては、含フッ素オレフィンとビニルエステルモノマーの反応中の組成比がほぼ一定になる範囲であればよく、0~10MPaGであってよい。 The polymerization pressure may be in a range in which the composition ratio during the reaction of the fluorinated olefin and the vinyl ester monomer is substantially constant, and may be 0 to 10 MPaG.
酢酸ビニルに由来するアセテート基のケン化は従来からよく知られており、アルコリシスや、酸やアルカリを用いた加水分解等の従来公知の方法によって行うことができる。このケン化によって、アセテート基(-OCOCH)は、水酸基(-OH)に変換される。他のビニルエステルモノマーにおいても同様に、従来公知の方法によってケン化され、水酸基を得ることができる。 Saponification of an acetate group derived from vinyl acetate is well known in the art, and can be performed by a conventionally known method such as alcoholysis or hydrolysis using an acid or alkali. By this saponification, the acetate group (—OCOCH 3 ) is converted to a hydroxyl group (—OH). Similarly, other vinyl ester monomers can be saponified by a conventionally known method to obtain a hydroxyl group.
含フッ素オレフィン単位とビニルエステルモノマー単位とを有する共重合体をケン化して本発明における含フッ素共重合体を得る場合のケン化度は、本発明における含フッ素共重合体の各モノマー単位の含有率が上述した範囲となるような範囲であればよく、具体的には90%以上が好ましく、95%以上がより好ましく、99%以上が更に好ましい。 The degree of saponification in the case of obtaining a fluorine-containing copolymer in the present invention by saponifying a copolymer having a fluorine-containing olefin unit and a vinyl ester monomer unit is the content of each monomer unit of the fluorine-containing copolymer in the present invention. It is sufficient that the rate is in the range described above, specifically 90% or more is preferable, 95% or more is more preferable, and 99% or more is still more preferable.
上記ケン化度は、含フッ素共重合体のIR測定又はH-NMR測定により、以下の式から算出される。
ケン化度(%)=D/(D+E)×100
D:含フッ素共重合体中のビニルアルコール単位数
E:含フッ素共重合体中のビニルエステルモノマー単位数
The degree of saponification is calculated from the following formula by IR measurement or 1 H-NMR measurement of a fluorine-containing copolymer.
Saponification degree (%) = D / (D + E) × 100
D: number of vinyl alcohol units in the fluorinated copolymer E: number of vinyl ester monomer units in the fluorinated copolymer
上記低タンパク質吸着性材料及び上記低細胞付着性材料は、本発明の効果を損なわない範囲で、上記含フッ素共重合体以外の他の成分を更に含んでもよい。 The low protein adsorptive material and the low cell adhesion material may further contain other components other than the fluorine-containing copolymer as long as the effects of the present invention are not impaired.
上記他の成分としては、ポリビニルアルコール、ポリビニルピロリドン、ポリエチレングリコール等の親水性高分子等が挙げられる。 Examples of the other components include hydrophilic polymers such as polyvinyl alcohol, polyvinyl pyrrolidone, and polyethylene glycol.
上記他の成分の配合量は、上記含フッ素共重合体100質量%に対して、1~30質量%であることが好ましく、1~10質量%であることがより好ましい。 The blending amount of the other component is preferably 1 to 30% by mass, and more preferably 1 to 10% by mass with respect to 100% by mass of the fluorine-containing copolymer.
上記低タンパク質吸着性材料及び上記低細胞付着性材料は、表面が有機溶剤を含む水溶液により処理されていることが好ましい。この表面処理により、上記低タンパク質吸着性材料及び上記低細胞付着性材料の表面に更に水酸基構造が増加するため、タンパク質の吸着及び細胞の付着がより強く抑制される。 The surface of the low protein adsorbing material and the low cell adhering material is preferably treated with an aqueous solution containing an organic solvent. By this surface treatment, the hydroxyl structure further increases on the surface of the low protein adsorbing material and the low cell adhering material, so that protein adsorption and cell adhesion are more strongly suppressed.
上記表面処理で使用することが可能な有機溶剤としては、水に可溶で上記含フッ素共重合体を溶解する有機溶剤であれば特に限定されないが、メタノール、エタノール、2-プロパノール、アセトン、テトラヒドロフラン、メチルエチルケトン、ジメチルアセトアミド、ジメチルホルムアミド等が挙げられる。中でもメタノール、エタノール、2-プロパノール、テトラヒドロフランが好ましい。 The organic solvent that can be used for the surface treatment is not particularly limited as long as it is soluble in water and can dissolve the fluorine-containing copolymer. However, methanol, ethanol, 2-propanol, acetone, tetrahydrofuran , Methyl ethyl ketone, dimethylacetamide, dimethylformamide and the like. Of these, methanol, ethanol, 2-propanol and tetrahydrofuran are preferred.
上記有機溶剤を含む水溶液による処理の方法としては、当該水溶液で上記低タンパク質吸着性材料及び上記低細胞付着性材料の表面を濡らす方法が挙げられる。 Examples of the treatment method using the aqueous solution containing the organic solvent include a method of wetting the surfaces of the low protein adsorbing material and the low cell adhesion material with the aqueous solution.
上記低タンパク質吸着性材料及び上記低細胞付着性材料は、用途に応じて種々の形状に成形されて提供される。成形方法は特に限定されず、スピンコート法、ドロップキャスト法、ディップニップ法、スプレーコート法、刷毛塗り法、浸漬法、インクジェットプリント法、静電塗装法、圧縮成形法、押出成形法、カレンダー成形法、トランスファー成形法、射出成形法、ロト成形法、ロトライニング成形法、熱誘起相分離法、非溶媒誘起相分離法等が採用できる。 The low protein adsorbing material and the low cell adhering material are provided by being molded into various shapes depending on the application. The molding method is not particularly limited, and spin coating method, drop casting method, dip nip method, spray coating method, brush coating method, dipping method, ink jet printing method, electrostatic coating method, compression molding method, extrusion molding method, calendar molding method. Methods, transfer molding methods, injection molding methods, lotto molding methods, lotining molding methods, thermally induced phase separation methods, non-solvent induced phase separation methods, and the like can be employed.
多様な形状の物品に適用できることから、上記低タンパク質吸着性材料及び上記低細胞付着性材料は、コーティング膜であることが好ましい。上記コーティング膜とは、上記含フッ素共重合体又は上記含フッ素共重合体を含む塗料組成物を塗布することにより得られる膜をいう。コーティング膜の製膜方法としては、スピンコート法、ドロップキャスト法、ディップニップ法、スプレーコート法、刷毛塗り法、浸漬法、静電塗装法、インクジェットプリント法等が挙げられる。中でも、簡便性の点で、スピンコート法、ドロップキャスト法、浸漬法が好ましい。 Since it can be applied to articles of various shapes, the low protein adsorbing material and the low cell adhering material are preferably coating films. The said coating film means the film | membrane obtained by apply | coating the coating composition containing the said fluorine-containing copolymer or the said fluorine-containing copolymer. Examples of the method for forming the coating film include spin coating, drop casting, dip nip, spray coating, brush coating, dipping, electrostatic coating, and inkjet printing. Of these, spin coating, drop casting, and dipping are preferred from the standpoint of simplicity.
上記コーティング膜は、上記含フッ素共重合体及び有機溶剤を含む塗料組成物を塗布することにより得られることが好ましい。有機溶剤としては、メタノール、エタノール、2-プロパノール、2-ブタノール、1-ブタノール、1-ヘキサノール、アセトン、テトラヒドロフラン、メチルエチルケトン、ジメチルアセトアミド、ジメチルホルムアミド等が使用できる。なかでも、透明で均一なコーティング膜が容易に得られる点で、2-ブタノール、1-ブタノール、1-ヘキサノール、テトラヒドロフランが好ましい。また、含フッ素共重合体の溶解性の観点からは、メタノール、エタノール、2-プロパノール、テトラヒドロフラン、ジメチルホルムアミドが好ましい。 The coating film is preferably obtained by applying a coating composition containing the fluorine-containing copolymer and an organic solvent. As the organic solvent, methanol, ethanol, 2-propanol, 2-butanol, 1-butanol, 1-hexanol, acetone, tetrahydrofuran, methyl ethyl ketone, dimethylacetamide, dimethylformamide and the like can be used. Of these, 2-butanol, 1-butanol, 1-hexanol and tetrahydrofuran are preferred in that a transparent and uniform coating film can be easily obtained. From the viewpoint of solubility of the fluorinated copolymer, methanol, ethanol, 2-propanol, tetrahydrofuran, and dimethylformamide are preferable.
上記コーティング膜は、有機溶剤としてアルコール等の弱溶剤を使用した塗料組成物からも得ることができるので、容易に製造することができる。 Since the said coating film can be obtained also from the coating composition which uses weak solvents, such as alcohol, as an organic solvent, it can be manufactured easily.
上記低タンパク質吸着性材料及び上記低細胞付着性材料がコーティング膜である場合、その膜厚は0.1~50μmであることが好ましく、0.5~30μmであることがより好ましく、1.0~20μmであることが更に好ましい。 When the low protein adsorbing material and the low cell adhesion material are coating films, the film thickness is preferably 0.1 to 50 μm, more preferably 0.5 to 30 μm, and 1.0. More preferably, it is ˜20 μm.
上記低タンパク質吸着性材料は、0.05mg/mlのウシ血清アルブミン溶液と23.4℃で0.5時間接触させた場合の、ウシ血清アルブミンの吸着量を200ng/cm以下とすることができる。
上記低タンパク質吸着性材料は、0.05mg/mlのウシ血漿フィブリノーゲン溶液と23.4℃で0.5時間接触させた場合の、ウシ血漿フィブリノーゲンの吸着量を500ng/cm以下とすることができる。
上記低タンパク質吸着性材料は、0.05mg/mlのウシ血清由来免疫グロブリンG溶液と23.4℃で0.5時間接触させた場合の、ウシ血清由来免疫グロブリンGの吸着量を500ng/cm以下とすることができる。
上記タンパク質吸着性材料は、10~0.05mg/mlのタンパク質溶液と接触させた場合でも、タンパク質がほとんど吸着しないという、驚くべき効果を奏する。すなわち、上記タンパク質吸着性材料は、10~0.05mg/mlのタンパク質溶液と接触させるタンパク質吸着性材料であってよい。
上記のタンパク質の吸着量は、後述する「タンパク質吸着試験」に記載の方法により測定する。
10~0.05mg/mlのタンパク質溶液と接触する物品の少なくとも表面に、低タンパク質吸着性材料を適用することにより、上記タンパク質の吸着を防止する方法も、上記低白質吸着性材料の使用方法として好ましい。
The low protein adsorptive material may have an adsorption amount of bovine serum albumin of 200 ng / cm 2 or less when contacted with a 0.05 mg / ml bovine serum albumin solution at 23.4 ° C. for 0.5 hour. it can.
The low protein adsorptive material may have a bovine plasma fibrinogen adsorption amount of 500 ng / cm 2 or less when contacted with a 0.05 mg / ml bovine plasma fibrinogen solution at 23.4 ° C. for 0.5 hour. it can.
The low protein adsorptive material has an adsorption amount of bovine serum-derived immunoglobulin G of 500 ng / cm when contacted with 0.05 mg / ml bovine serum-derived immunoglobulin G solution at 23.4 ° C. for 0.5 hour. 2 or less.
The protein-adsorbing material has a surprising effect that protein hardly adsorbs even when contacted with a protein solution of 10 to 0.05 mg / ml. That is, the protein adsorbing material may be a protein adsorbing material that is brought into contact with a protein solution of 10 to 0.05 mg / ml.
The protein adsorption amount is measured by the method described in “Protein adsorption test” described later.
A method for preventing adsorption of the protein by applying a low protein adsorbent material to at least the surface of an article in contact with a protein solution of 10 to 0.05 mg / ml is also used as the method for using the low white matter adsorbent material. preferable.
上記低タンパク質吸着性材料は、タンパク質の吸着性が低いことから、タンパク質の吸着を避けることが要求される種々の物品に適用できる。上記物品の形状は特に限定されず、バッグ、シート、フィルム、バイアル瓶、シャーレ、又は、フラスコであってよい。
上記低タンパク質吸着性材料を上記物品に適用する工程を含むことを特徴とする、上記物品にタンパク質の吸着を防止する方法は、上記低タンパク質吸着性材料の使用方法として好ましい。上記タンパク質としては、血漿タンパク質、後述するバイオ医薬を挙げることができる。上記血漿タンパク質としては、アルブミン、グロブリン、フィブリノーゲン等が挙げられる。上記低タンパク質吸着性材料を適用する方法は、特に限定されず、物品の少なくとも表面の一部を上記低タンパク質吸着性材料で覆うことができる方法であれば特に限定されない。例えば、上記含フッ素共重合体又は上記含フッ素共重合体を含む塗料組成物を塗布することによりコーティング膜を成膜する方法が挙げられる。上記コーティング膜の成膜方法は上述したとおりである。
Since the low protein adsorptive material has low protein adsorptivity, it can be applied to various articles required to avoid protein adsorption. The shape of the article is not particularly limited, and may be a bag, a sheet, a film, a vial, a petri dish, or a flask.
The method for preventing protein adsorption to the article, comprising the step of applying the low protein adsorptive material to the article, is preferable as a method for using the low protein adsorptive material. Examples of the protein include plasma proteins and biopharmaceuticals described below. Examples of the plasma protein include albumin, globulin, and fibrinogen. The method for applying the low protein adsorptive material is not particularly limited, and is not particularly limited as long as at least a part of the surface of the article can be covered with the low protein adsorptive material. For example, a method of forming a coating film by applying the fluorine-containing copolymer or a coating composition containing the fluorine-containing copolymer can be mentioned. The method for forming the coating film is as described above.
本発明は、上記低タンパク質吸着性材料又は上記低細胞付着性材料を含むことを特徴とするコーティング用組成物でもある。 The present invention is also a coating composition comprising the low protein adsorbing material or the low cell adhesion material.
上記コーティング用組成物は、有機溶剤を含むものであってもよい。有機溶剤としては、メタノール、エタノール、2-プロパノール、2-ブタノール、1-ブタノール、1-ヘキサノール、アセトン、テトラヒドロフラン、メチルエチルケトン、ジメチルアセトアミド、ジメチルホルムアミド等が使用できる。なかでも、透明で均一なコーティング膜が容易に得られる点で、2-ブタノール、1-ブタノール、1-ヘキサノール、テトラヒドロフランが好ましい。また、含フッ素共重合体の溶解性の観点からは、メタノール、エタノール、2-プロパノール、テトラヒドロフラン、ジメチルホルムアミドが好ましい。 The coating composition may contain an organic solvent. As the organic solvent, methanol, ethanol, 2-propanol, 2-butanol, 1-butanol, 1-hexanol, acetone, tetrahydrofuran, methyl ethyl ketone, dimethylacetamide, dimethylformamide and the like can be used. Of these, 2-butanol, 1-butanol, 1-hexanol and tetrahydrofuran are preferred in that a transparent and uniform coating film can be easily obtained. From the viewpoint of solubility of the fluorinated copolymer, methanol, ethanol, 2-propanol, tetrahydrofuran, and dimethylformamide are preferable.
上記コーティング組成物は、有機溶剤としてアルコール等の弱溶剤を使用することができる。従って、強溶剤により侵食される基材や下塗りにも適用できる。 The said coating composition can use weak solvents, such as alcohol, as an organic solvent. Therefore, the present invention can be applied to a base material or an undercoat that is eroded by a strong solvent.
上記コーティング用組成物は、所望の基材に塗布して、コーティング膜又はコーティング層を形成することができる。塗布方法としては、スピンコート法、ドロップキャスト法、ディップニップ法、スプレーコート法、刷毛塗り法、浸漬法、静電塗装法、インクジェットプリント法等が挙げられる。中でも、簡便性の点で、スピンコート法、ドロップキャスト法、浸漬法が好ましい。 The coating composition can be applied to a desired substrate to form a coating film or coating layer. Examples of the coating method include spin coating, drop casting, dip nip, spray coating, brush coating, dipping, electrostatic coating, and inkjet printing. Of these, spin coating, drop casting, and dipping are preferred from the standpoint of simplicity.
上記コーティング用組成物から形成されたコーティング膜又はコーティング層は、膜厚が0.1~50μmであることが好ましく、0.5~30μmであることがより好ましく、1.0~20μmであることが更に好ましい。 The coating film or coating layer formed from the coating composition preferably has a thickness of 0.1 to 50 μm, more preferably 0.5 to 30 μm, and 1.0 to 20 μm. Is more preferable.
上記コーティング用組成物は、バッグ、シート、フィルム、バイアル瓶、シャーレ、又は、フラスコに適用することができる。 The coating composition can be applied to bags, sheets, films, vials, petri dishes, or flasks.
本発明は、上記低タンパク質吸着性材料又は上記低細胞付着性材料から形成されることを特徴とするコーティング層でもある。 The present invention is also a coating layer formed from the low protein adsorbing material or the low cell adhesion material.
上記コーティング層は、上記含フッ素共重合体又は上記含フッ素共重合体を含む塗料組成物を塗布することにより得られる。塗布方法としては、スピンコート法、ドロップキャスト法、ディップニップ法、スプレーコート法、刷毛塗り法、浸漬法、静電塗装法、インクジェットプリント法等が挙げられる。中でも、簡便性の点で、スピンコート法、ドロップキャスト法、浸漬法が好ましい。 The said coating layer is obtained by apply | coating the coating composition containing the said fluorine-containing copolymer or the said fluorine-containing copolymer. Examples of the coating method include spin coating, drop casting, dip nip, spray coating, brush coating, dipping, electrostatic coating, and inkjet printing. Of these, spin coating, drop casting, and dipping are preferred from the standpoint of simplicity.
上記コーティング層は、上記含フッ素共重合体及び有機溶剤を含む塗料組成物を塗布することにより得られることが好ましい。有機溶剤としては、メタノール、エタノール、2-プロパノール、2-ブタノール、1-ブタノール、1-ヘキサノール、アセトン、テトラヒドロフラン、メチルエチルケトン、ジメチルアセトアミド、ジメチルホルムアミド等が使用できる。なかでも、透明で均一なコーティング膜が容易に得られる点で、2-ブタノール、1-ブタノール、1-ヘキサノール、テトラヒドロフランが好ましい。また、含フッ素共重合体の溶解性の観点からは、メタノール、エタノール、2-プロパノール、テトラヒドロフラン、ジメチルホルムアミドが好ましい。 The coating layer is preferably obtained by applying a coating composition containing the fluorine-containing copolymer and an organic solvent. As the organic solvent, methanol, ethanol, 2-propanol, 2-butanol, 1-butanol, 1-hexanol, acetone, tetrahydrofuran, methyl ethyl ketone, dimethylacetamide, dimethylformamide and the like can be used. Of these, 2-butanol, 1-butanol, 1-hexanol and tetrahydrofuran are preferred in that a transparent and uniform coating film can be easily obtained. From the viewpoint of solubility of the fluorinated copolymer, methanol, ethanol, 2-propanol, tetrahydrofuran, and dimethylformamide are preferable.
上記コーティング層は、有機溶剤としてアルコール等の弱溶剤を使用した塗料組成物からも得ることができるので、容易に製造することができる。 Since the said coating layer can be obtained also from the coating composition which uses weak solvents, such as alcohol, as an organic solvent, it can be manufactured easily.
上記コーティング層は、膜厚が0.1~50μmであることが好ましく、0.5~30μmであることがより好ましく、1.0~20μmであることが更に好ましい。 The coating layer preferably has a thickness of 0.1 to 50 μm, more preferably 0.5 to 30 μm, and still more preferably 1.0 to 20 μm.
上記コーティング層は、バッグ、シート、フィルム、バイアル瓶、シャーレ、又は、フラスコの表面を形成するものであることが好ましい。上記コーティング層を表面に備えるバッグ、シート、フィルム、バイアル瓶、シャーレ、又は、フラスコは、タンパク質又は細胞が付着しにくい。 The coating layer preferably forms the surface of a bag, sheet, film, vial, petri dish, or flask. Bags, sheets, films, vials, petri dishes, or flasks having the coating layer on the surface are less likely to adhere proteins or cells.
本発明は、上述の低タンパク質吸着性材料、上述のコーティング組成物、又は、上述のコーティング層からなり、バッグ、シート、フィルム、バイアル瓶、シャーレ、又は、フラスコであることを特徴とする低タンパク質吸着性物品でもある。 The present invention is a low protein comprising the above-described low protein adsorbing material, the above coating composition, or the above coating layer, and being a bag, sheet, film, vial, petri dish, or flask. It is also an absorptive article.
本発明は、上述の低タンパク質吸着性材料、上述のコーティング組成物、又は、上述のコーティング層からなり、バイオ医薬用バッグ、バイオ医薬用シート、バイオ医薬用フィルム、バイオ医薬用バイアル瓶、バイオ医薬用シャーレ、又は、バイオ医薬用フラスコであることを特徴とする低タンパク質吸着性物品でもある。 The present invention comprises the above-described low protein-adsorbing material, the above-described coating composition, or the above-described coating layer, and includes a biopharmaceutical bag, a biopharmaceutical sheet, a biopharmaceutical film, a biopharmaceutical vial, and a biopharmaceutical. It is also a low protein adsorptive article characterized by being a petri dish or a biopharmaceutical flask.
バイオ医薬を保管するための器具やバイオ医薬を使用するための器具にバイオ医薬が吸着しやすいと、バイオ医薬を正確に定量できなかったり、正確な分析が困難になったりする。また、バイオ医薬は高価であるため、経済的損失も大きい。バイオ医薬用バッグ、バイオ医薬用シート、バイオ医薬用フィルム、バイオ医薬用バイアル瓶、バイオ医薬用シャーレ、又は、バイオ医薬用フラスコが、上述の低タンパク質吸着性材料、上述のコーティング組成物、又は、上述のコーティング層からなるものであると、バイオ医薬が吸着しにくく、バイオ医薬を高い回収率で回収することができる。 If the biopharmaceutical is easily adsorbed to an instrument for storing the biopharmaceutical or an instrument for using the biopharmaceutical, the biopharmaceutical cannot be accurately quantified or accurate analysis becomes difficult. Moreover, since biopharmaceuticals are expensive, there is a great economic loss. A biopharmaceutical bag, a biopharmaceutical sheet, a biopharmaceutical film, a biopharmaceutical vial, a biopharmaceutical petri dish, or a biopharmaceutical flask is the above-described low protein adsorptive material, the above-described coating composition, or When the coating layer is composed of the above-described coating layer, the biopharmaceutical is hardly adsorbed, and the biopharmaceutical can be recovered at a high recovery rate.
バイオ医薬としては、タンパク質医薬品、遺伝子組み換えウイルス、細胞性治療薬、核酸医薬品等を挙げることができる。
上記タンパク質医薬品としては、(1)酵素類のタンパク質:アルテラーゼ、モンテブラーゼ、イミグルセラーゼ、ベラグルセラーゼ アルファ、アガルシダーゼ アルファ、アガルシダーゼ ベータ、ラロニダーゼ、アルグルコシダーゼ アルファ、イデュルスルファーゼ、ガルスルファーゼ、ラスブリカーゼ、ドルナーゼ アルファ、(2)血液凝固線溶系因子類のタンパク質:オクトコグ アルファ、ルリオクトコグ アルファ、エプタコグ アルファ(活性型)、ノナコグアルファ、ツロクトコグ アルファ、エフトレノナコグ アルファ、トロンボモデュリン アルファ、(3)血清タンパク質類:人血清アルブミン、(4)ホルモン類のタンパク質:ヒトインスリン、インスリン リスプロ、インスリン アスパルト、インスリン グラルギン、インスリン デテミル、インスリン グルリジン、インスリン デグルデク、インスリン デグルデク及びインスリン アスパルト、ソマトロピン、ペグビソマント、メカセルミン、カルペリチド、グルカゴン、ホリトロピン アルファ、フォリトロピン ベータ、リラグルチド、テリパラチド、メトレレプチン、(5)ワクチン類のタンパク質:組換え沈降B型肝炎ワクチン(酵母由来)、乾燥細胞培養不活化A型肝炎ワクチン、組換え沈降2価ヒトパピローマウイルス様粒子ワクチン(イラクサギンウワバ細胞由来)、組換え沈降4価ヒトパピローマウイルス様粒ワクチン(酵母由来)、(6)インターフェロン類のタンパク質:インターフェロン アルファ(NAMALWA)、インターフェロン アルファ-2b、インターフェロン アルファ(BALL-1)、インターフェロン アルファコン-1、インターフェロン ベータ、インターフェロン ベータ-1a、インターフェロン ベータ-1b、インターフェロン ガンマ-1a、ペグインターフェロン アルファ-2a、ペグインターフェロン アルファ-2b、(7)エリスロポエチン類のタンパク質:エポエチン アルファ、エポエチン ベータ、ダルベポエチン アルファ、エポエチン ベータ ペゴル、エポエチン カッパ、(8)サイトカイン類のタンパク質:フィルグラスチム、ペグフィルグラスチム、レノグラスチム、ナルトグラスチム、セルモロイキン、テセロイキン、トラフェルミン、(9)抗体類のタンパク質:ムロモナブ-CD3、トラスツズマブ、リツキシマブ、パリビズマブ、インフリキシマブ、バシリキシマブ、トシリズマブ、ゲムツズマブ オゾガマイシン、ベバシズマブ、イブリツモマブ チウキセタン、アダリムマブ、セツキシマブ、ラニビズマブ、オマリズマブ、エクリズマブ、パニツムマブ、ウステキヌマブ、ゴリムマブ、カナキヌマブ、デノスマブ、モガムリズマブ、セルトリズマブ ペゴル、オファツムマブ、ペルツズマブ、トラスツズマブ エムタンシン、ブレンツキシマブ ベドチン、ナタリズマブ、ニボルマブ、アレムツズマブ、(10)融合タンパク質類:エタネルセプト、アバタセプト、ロミプロスチム、アフリベルセプト等を挙げることができる。
Examples of biopharmaceuticals include protein drugs, genetically modified viruses, cellular therapeutic drugs, and nucleic acid drugs.
The above protein drugs include: (1) Enzyme proteins: Arterase, Montebrase, Imiglucerase, Veraglucerase alpha, Agarcidase alpha, Agarcidase beta, Laronidase, Alglucosidase alpha, Idursulfase, Galsulfase, Rasburicase, Dornase alpha, (2 ) Proteins of blood coagulation and fibrinolytic factors: Octocog alpha, Luriooctogog alpha, Eptacog alpha (active form), Nonacog alpha, Turoctocog alpha, Eftrenonacog alpha, thrombomodulin alpha, (3) Serum proteins: Human serum albumin, (4) Hormonal proteins: human insulin, insulin lispro, insulin aspart, insulin glargine, i Surin detemir, insulin gurlysine, insulin degludec, insulin degludec and insulin aspart, somatropin, pegvisomant, mecasermine, carperitide, glucagon, follitropin alpha, follitropin beta, liraglutide, teriparatide, metreleptin, (5) vaccine proteins: recombinant precipitated B Hepatitis B vaccine (derived from yeast), dry cell culture inactivated hepatitis A vaccine, recombinant precipitated bivalent human papillomavirus-like particle vaccine (derived from Iraqus guinea waba cells), recombinant precipitated 4-valent human papilloma virus-like granule vaccine (derived from yeast) (6) Interferon proteins: interferon alfa (NAMALWA), interferon alfa-2b, interferon alfa (BA L-1), interferon alphacon-1, interferon beta, interferon beta-1a, interferon beta-1b, interferon gamma-1a, peginterferon alpha-2a, peginterferon alpha-2b, (7) protein of erythropoietins: epoetin Alpha, epoetin beta, darbepoetin alfa, epoetin beta pegol, epoetin kappa, (8) proteins of cytokines: filgrastim, pegfilgrastim, lenograstim, nartograstim, sermoleukin, teseleukin, trafermin, (9) antibody Class of proteins: muromonab-CD3, trastuzumab, rituximab, palivizumab, infliximab, basiliximab, tosiri Mabu, gemtuzumab ozogamicin, bevacizumab, ibritumomab tiuxetan, adalimumab, cetuximab, ranibizumab, omalizumab, eculizumab, panitumumab, Usutekinumabu, golimumab, Kanakinumabu, denosumab, mogamulizumab, certolizumab pegol, ofatumumab, pertuzumab, trastuzumab Emutanshin, brentuximab Bedochin, natalizumab, nivolumab And alemtuzumab, (10) fusion proteins: etanercept, abatacept, romiplostim, aflibercept and the like.
また、核酸医薬品としては、アンチセンス、siRNA、デコイ核酸、核酸アプタマー、リボザイム、miRNAアンチセンス、miRNAmimic、CpGオリゴデオキシヌクレオチドなどを挙げることができる。 Examples of nucleic acid pharmaceuticals include antisense, siRNA, decoy nucleic acid, nucleic acid aptamer, ribozyme, miRNA antisense, miRNAmimic, and CpG oligodeoxynucleotide.
上記低細胞付着性材料は、細胞の付着性が低いことから、細胞の付着を避けることが要求される種々の物品に適用できる。上記物品の形状は特に限定されず、バッグ、シート、フィルム、バイアル瓶、シャーレ、又は、フラスコであってよい。
上記低細胞付着性材料を上記物品に適用する工程を含むことを特徴とする、上記物品に細胞の付着を防止する方法は、上記低細胞付着性材料の使用方法として好ましい。上記低細胞付着性材料を適用する方法は、特に限定されず、物品の少なくとも表面の一部を上記低細胞付着性材料で覆うことができる方法であれば特に限定されない。例えば、上記含フッ素共重合体又は上記含フッ素共重合体を含む塗料組成物を塗布することによりコーティング膜を成膜する方法が挙げられる。上記コーティング膜の成膜方法は上述したとおりである。
Since the low cell adhesion material has low cell adhesion, it can be applied to various articles required to avoid cell adhesion. The shape of the article is not particularly limited, and may be a bag, a sheet, a film, a vial, a petri dish, or a flask.
The method for preventing cell adhesion to the article, comprising the step of applying the low cell adhesion material to the article, is preferable as a method for using the low cell adhesion material. The method of applying the low cell adhesion material is not particularly limited as long as it is a method capable of covering at least a part of the surface of the article with the low cell adhesion material. For example, a method of forming a coating film by applying the fluorine-containing copolymer or a coating composition containing the fluorine-containing copolymer can be mentioned. The method for forming the coating film is as described above.
本発明は、上述の低細胞付着性材料、上述のコーティング用組成物、又は、上述のコーティング層からなり、バッグ、シート、フィルム、バイアル瓶、シャーレ、又は、フラスコであることを特徴とする低細胞付着性物品でもある。 The present invention comprises the above-mentioned low cell adhesion material, the above-mentioned coating composition, or the above-mentioned coating layer, and is a bag, sheet, film, vial, petri dish or flask, It is also a cell-adhesive article.
本発明は、上述の低細胞付着性材料、上述のコーティング用組成物、又は、上述のコーティング層からなり、細胞培養用バッグ、細胞培養用シート、細胞培養用フィルム、細胞培養用バイアル瓶、細胞培養用シャーレ、又は、細胞培養用フラスコであることを特徴とする低細胞付着性物品でもある。 The present invention comprises the above-mentioned low cell adhesion material, the above-mentioned coating composition, or the above-mentioned coating layer, and comprises a cell culture bag, a cell culture sheet, a cell culture film, a cell culture vial, a cell It is also a low cell adhesion article characterized by being a petri dish for culture or a flask for cell culture.
本発明は、また、上述の低細胞付着性材料、上述のコーティング用組成物、又は、上述のコーティング層からなり、胚様体形成用培養容器であることを特徴とする低細胞付着性物品でもある。上記胚様体形成用培養容器は、2個以上のウェルを有することが好ましい。各ウェルの形状は特に限定されないが、垂直方向における断面が略U字形状の底部、及び、略円形の開口部を有することが好ましい。更に、上記底部内面の曲率半径(R’)が、1.0mm以上、3.5mm以下であることが好ましく、3.0mm以下とすることがより好ましい。上記開口部の直径は4.0~11.0mmとすることが好ましい。各ウェルの容量は80~500μLとすることができる。上記胚様体形成用培養容器は、少なくともウェルの内面が上記低細胞付着性材料、上述のコーティング用組成物、又は、上述のコーティング層からなるものであることが好ましい。 The present invention also relates to a low cell adhesion article comprising the above-mentioned low cell adhesion material, the above coating composition, or the above coating layer, which is a culture container for embryoid body formation. is there. The culture container for embryoid body formation preferably has two or more wells. Although the shape of each well is not particularly limited, it is preferable that the cross section in the vertical direction has a substantially U-shaped bottom portion and a substantially circular opening. Furthermore, the curvature radius (R ′) of the inner surface of the bottom is preferably 1.0 mm or more and 3.5 mm or less, and more preferably 3.0 mm or less. The diameter of the opening is preferably 4.0 to 11.0 mm. The volume of each well can be 80-500 μL. In the culture container for embryoid body formation, it is preferable that at least the inner surface of the well is composed of the low cell adhesion material, the coating composition described above, or the coating layer described above.
細胞を培養するために使用する器具に細胞が付着しやすいと、培養した細胞の回収率が低下したり、細胞が増殖している形状のまま回収できなかったり、細胞の性質が変化してしまったりする。細胞培養用バッグ、細胞培養用シート、細胞培養用フィルム、細胞培養用バイアル瓶、細胞培養用シャーレ又は細胞培養用フラスコが、上述の低細胞付着性材料、上述のコーティング用組成物、又は、上述のコーティング層からなるものであると、細胞が付着しにくく、培養により得られた細胞を高い回収率で、かつ細胞の形状や性質を好ましい状態で回収することができる。 If cells tend to adhere to the equipment used to culture the cells, the recovery rate of the cultured cells will decrease, the cells will not be recovered in their proliferated form, or the properties of the cells will change. I'll be relaxed. A cell culture bag, a cell culture sheet, a cell culture film, a cell culture vial, a cell culture petri dish or a cell culture flask is the above-mentioned low cell adhesion material, the above-mentioned coating composition, or the above-mentioned In the case of the coating layer, cells are difficult to adhere, and cells obtained by culturing can be recovered at a high recovery rate and in a preferable state of cell shape and properties.
上記細胞としては、造血幹細胞、神経幹細胞、間葉系肝細胞、中胚葉系幹細胞、肝幹細胞、膵幹細胞、胚性幹細胞等の幹細胞や、幹細胞を目的の細胞に分化させた細胞、あるいは免疫系細胞、血球系細胞、神経細胞、血管内皮細胞、繊維芽細胞、上皮細胞、角化細胞、角膜細胞、骨芽細胞、軟骨細胞、脂肪細胞、表皮細胞、肝細胞、膵β細胞、心筋細胞、骨髄細胞、羊膜細胞、臍帯血細胞などの生体由来の細胞、あるいはNIH3T3(エヌアイエイチスリーティースリー)細胞、3T3-L1(スリーティースリーエルワン)細胞、3T3-E1(スリーティースリーイーワン)細胞、Hela(ヒーラ)細胞、PC-12(ピーシーツェルブ)細胞、P19(ピーナインティーン)細胞、CHO(チャイニーズハムスター卵母)細胞、COS(シーオーエス)細胞、HEK(エッチイーケー)細胞、Hep-G2(ヘップジーツー)細胞、L929(エルナインツーナイン)細胞、C2C12(シーツーシーツェルブ)細胞、Daudi(ダウディ)細胞、Jurkat(ジャーカット)細胞、KG-1a(ケージーワンエー)細胞、CTLL-2(シーティーエルエルツー)細胞、NS-1(エヌエスワン)細胞、MOLT-4(エムオーエルティーフォー)細胞、HUT78(エッチユーティーセブンティエイト)細胞、MT-4(エムティーフォー)細胞などの株化細胞、あるいは抗体産生細胞である各種ハイブリドーマ細胞株、あるいはこれら細胞を遺伝子工学的に改変した細胞などが挙げられる。 Examples of the cells include hematopoietic stem cells, neural stem cells, mesenchymal hepatocytes, mesodermal stem cells, hepatic stem cells, pancreatic stem cells, embryonic stem cells, and the like, cells obtained by differentiating stem cells into target cells, or the immune system Cells, blood cells, neurons, vascular endothelial cells, fibroblasts, epithelial cells, keratinocytes, corneal cells, osteoblasts, chondrocytes, adipocytes, epidermal cells, hepatocytes, pancreatic β cells, cardiomyocytes, Cells derived from living bodies such as bone marrow cells, amniotic cells, umbilical cord blood cells, NIH3T3 cells, 3T3-L1 cells, 3T3-E1 cells, Hela ( Healer) cells, PC-12 (PC Zelb) cells, P19 (Pineteen) cells, CHO (Chinese hamster oocytes) cells, C S (SEOS) cells, HEK (Heek-Ek) cells, Hep-G2 (Hepsey two) cells, L929 (El Nine to Nine) cells, C2C12 (C2 CZ) cells, Daudi cells, Jurkat ( Jurkat) cells, KG-1a cells, CTLL-2 cells, NS-1 cells, MOLT-4 cells, HUT78 Eight) cells, established cell lines such as MT-4 (MT4) cells, various hybridoma cell lines that are antibody-producing cells, or cells obtained by genetically modifying these cells.
特に高分子材料に付着しやすい細胞である接着性細胞を培養する場合であっても、本発明の低細胞付着性物品であれば、培養した細胞の付着を抑制することができる。 Even when culturing adhesive cells, which are cells that are particularly likely to adhere to a polymer material, the low cell adhesion article of the present invention can suppress adhesion of cultured cells.
上記細胞としては、胚性幹細胞(ES細胞)や人工多能性幹細胞(iPS細胞)などの胚様体(embryoid body:EB)も挙げられる。 Examples of the cells include embryoid bodies (EBs) such as embryonic stem cells (ES cells) and induced pluripotent stem cells (iPS cells).
胚様体形成は、ES細胞をはじめとする多能性幹細胞をin vitroで分化誘導する際に有効であるため、広く採用されている手法である。胚様体形成はES細胞やiPS細胞を培養容器に接着させない浮遊状態で培養することが重要であり、通常の培養容器を使用した接着培養では胚様体は形成されにくい。上記胚様体形成用培養器が、上述の低細胞付着性材料、上述のコーティング用組成物、又は、上述のコーティング層からなるものであると、均一で、効率よく、質の高い胚様体を形成することができる。 Embryoid body formation is a widely adopted technique because it is effective in inducing differentiation of pluripotent stem cells including ES cells in vitro. In embryoid body formation, it is important to culture ES cells and iPS cells in a floating state where they are not allowed to adhere to the culture vessel, and it is difficult to form embryoid bodies in adhesion culture using a normal culture vessel. When the embryoid body-forming incubator is composed of the above-mentioned low cell adhesion material, the above-mentioned coating composition, or the above-mentioned coating layer, it is uniform, efficient, and high-quality embryoid body Can be formed.
つぎに本発明を実施例をあげて説明するが、本発明はかかる実施例のみに限定されるものではない。 Next, the present invention will be described with reference to examples, but the present invention is not limited to such examples.
実施例の各数値は以下の方法により測定した。 Each numerical value of the examples was measured by the following method.
〔フッ素含有率による含フッ素オレフィン単位の含有率の測定〕
酸素フラスコ燃焼法により試料10mgを燃焼し、分解ガスを脱イオン水20mlに吸収させ、吸収液中のフッ素イオン濃度をフッ素選択電極法で測定することにより求めた(質量%)。ポリマー中の含フッ素オレフィン単位の含有率(モル%)は、ケン化前のポリマーのフッ素含有率から計算した。
[Measurement of fluorine-containing olefin unit content by fluorine content]
A 10 mg sample was burned by the oxygen flask combustion method, the decomposition gas was absorbed in 20 ml of deionized water, and the fluorine ion concentration in the absorbing solution was measured by the fluorine selective electrode method (mass%). The content (mol%) of the fluorine-containing olefin unit in the polymer was calculated from the fluorine content of the polymer before saponification.
〔NMR(核磁気共鳴法)による交互率の測定〕
H-NMR測定条件:400MHz(テトラメチルシラン=0ppm)
[Measurement of alternating rate by NMR (nuclear magnetic resonance)]
1 H-NMR measurement conditions: 400 MHz (tetramethylsilane = 0 ppm)
〔分子量及び分子量分布〕
ゲルパーミエーションクロマトグラフィー(GPC)により、溶媒としてテトラヒドロフラン(THF)を流速1ml/分で流して測定したデータより、平均分子量を算出した。
検出器にはRI、検量線サンプルはポリスチレン標準サンプルを使用し、流速1ml/分、サンプル打込量200μLで測定を行った。
[Molecular weight and molecular weight distribution]
The average molecular weight was calculated from data measured by flowing tetrahydrofuran (THF) as a solvent at a flow rate of 1 ml / min by gel permeation chromatography (GPC).
RI was used for the detector, and a polystyrene standard sample was used for the calibration curve sample, and the measurement was performed at a flow rate of 1 ml / min and a sample injection amount of 200 μL.
〔IR分析によるケン化度の測定〕
フーリエ変換赤外分光光度計で室温にて測定した。
[Measurement of degree of saponification by IR analysis]
Measurements were made at room temperature with a Fourier transform infrared spectrophotometer.
〔融点(Tm)〕
DSC(示差走査熱量計)を用いて、10℃/分の条件で昇温(セカンドラン)したときの融解熱曲線における極大値に対応する温度をTm(℃)とした。
[Melting point (Tm)]
Using DSC (differential scanning calorimeter), the temperature corresponding to the maximum value in the heat of fusion curve when the temperature was raised (second run) at 10 ° C./min was defined as Tm (° C.).
〔分解温度〕
分解温度は、TGA(熱量測定装置)の測定における熱分解曲線において大きく重量減少を示す変曲点の温度とした。具体的には、TGA曲線において、大きな重量減少の前後で補助線を引いて交点を求める方法(交点法)により分解温度を求めた。
[Decomposition temperature]
The decomposition temperature was the temperature at the inflection point that showed a significant weight loss in the thermal decomposition curve in the TGA (calorimeter) measurement. Specifically, in the TGA curve, the decomposition temperature was obtained by a method (intersection method) in which an auxiliary line was drawn before and after a large weight loss to obtain an intersection point.
〔水晶発振子マイクロバランス法(QCM-D)〕
QCM-D(メイワフォーシス社製QCM-D300)を用いて、P-1~4のコーティング膜上に吸着したタンパク質量を求めた。QCMチップは、qsense社製のもの(QSX 301、Au)を使用した。このQCMチップにまずPETをコートした後、P-1~4をコートしたものを測定に用いた。QCMチップへのPETコーティング方法については、比較例1に詳細を示している。
[Crystal oscillator microbalance method (QCM-D)]
Using QCM-D (QCM-D300 manufactured by Meiwa Forsys), the amount of protein adsorbed on the coating films of P-1 to P-4 was determined. A QCM chip manufactured by qsense (QSX 301, Au) was used. The QCM chip was first coated with PET, and then coated with P-1 to P4 for measurement. The details of the PET coating method on the QCM chip are shown in Comparative Example 1.
P-1~4のコーティング膜に吸着したタンパク質量の求め方は、実験から得られた吸着時間30分後の周波数を解析ソフトQToolsに導入されているSauerbreyの式からAreal mass[ng/cm]の解析を行い算出した。実験の詳細については、実施例1に記す。 The amount of protein adsorbed on the coating films of P-1 to P-4 is determined by using the real mass [ng / cm 2 ] from the Sauerbrey formula introduced in the analysis software QTools for the frequency after 30 minutes of adsorption time obtained from the experiment. ] Was calculated. Details of the experiment are described in Example 1.
実施例で使用したポリマーを表1に示す。
Figure JPOXMLDOC01-appb-T000001
The polymers used in the examples are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
耐アルカリ性の評価
ポリマーP-2が13質量%、メタノールが87質量%からなるポリマー溶液2.3gを調製し、直径約58mmのシャーレ上に展開した後乾燥させてポリマーフィルムを得た。該ポリマーフィルムを100mg、0.5質量%の次亜塩素酸ナトリウム及び0.4質量%の水酸化ナトリウムを含む水溶液に浸漬し、24時間室温にて保持した。重量変化率を測定した結果、約1%しか減少しておらず、十分な耐アルカリ性が確認できた。また、目視による、外観の変化もなかった。
Evaluation of Alkali Resistance 2.3 g of a polymer solution comprising 13% by mass of polymer P-2 and 87% by mass of methanol was prepared, spread on a petri dish having a diameter of about 58 mm, and dried to obtain a polymer film. The polymer film was immersed in an aqueous solution containing 100 mg, 0.5 mass% sodium hypochlorite and 0.4 mass% sodium hydroxide, and kept at room temperature for 24 hours. As a result of measuring the rate of weight change, only about 1% was reduced, and sufficient alkali resistance was confirmed. Further, there was no change in the visual appearance.
実施例1
ポリマーP-1の0.1質量%メタノール溶液を室温でPETコーティング済みQCMチップ(円盤状:直径1.4cm)の片側反応面へスピンコートした。具体的には、上記溶液30μLをQCMチップ上に滴下し、60秒間、2000rpm回転させた。その後、室温にて3時間、ロータリー真空ポンプにて減圧乾燥し、コーティング膜(QCMチップ)を得た。
Example 1
A 0.1 mass% methanol solution of polymer P-1 was spin-coated at room temperature on the reaction surface of one side of a PET-coated QCM chip (disc shape: diameter 1.4 cm). Specifically, 30 μL of the above solution was dropped on a QCM chip and rotated at 2000 rpm for 60 seconds. Then, it dried under reduced pressure with the rotary vacuum pump at room temperature for 3 hours, and obtained the coating film (QCM chip).
得られたコーティング膜をQCM-Dに組み込み、以下の方法でコーティング膜上のタンパク質吸着試験(ウシ血清アルブミンとフィブリノーゲン ウシ血漿由来)を評価した。実験の結果を表2に示す。 The obtained coating film was incorporated into QCM-D, and a protein adsorption test (derived from bovine serum albumin and fibrinogen bovine plasma) on the coating film was evaluated by the following method. The results of the experiment are shown in Table 2.
〔タンパク質吸着試験〕
上記の方法でPETコーティング済みQCMチップに重ねてP-1をコーティングしたQCMチップをQCM-Dに装着させ、23.4℃環境下のリン酸緩衝生理食塩水(PBS)中で安定化を行った。
周波数のベースラインが平行であることを確認した上、タンパク質を含むリン酸緩衝生理食塩水溶液(タンパク質の濃度0.05mg/mL)を0.5mL注入し、吸着時間30分間の周波数の変化量を測定した。タンパク質としては、ウシ血清アルブミン(BSA)またはウシ血漿フィブリノーゲン(BPF)を使用した。
[Protein adsorption test]
The QCM chip coated with P-1 over the PET-coated QCM chip by the above method is attached to the QCM-D, and stabilized in phosphate buffered saline (PBS) at 23.4 ° C. It was.
After confirming that the frequency baselines are parallel, 0.5 mL of a phosphate buffered saline solution containing protein (protein concentration 0.05 mg / mL) is injected, and the amount of change in frequency over an adsorption time of 30 minutes is measured. It was measured. As protein, bovine serum albumin (BSA) or bovine plasma fibrinogen (BPF) was used.
コーティング膜に吸着したタンパク質量は、実験から得られた吸着時間30分後の周波数を解析ソフトQToolsに導入されているSauerbreyの式からAreal mass[ng/cm]の解析を行い算出した。 The amount of protein adsorbed on the coating film was calculated by analyzing the real mass [ng / cm 2 ] from the Sauerbrey equation introduced in the analysis software QTools, based on the frequency after 30 minutes of adsorption time obtained from the experiment.
実施例2~4
実施例1と同様の方法でポリマーP-2からP-4のコーティング膜を得た。得られたコーティング膜について実施例1と同様の方法でタンパク質吸着試験を実施した。
Examples 2-4
Coating films of polymers P-2 to P-4 were obtained in the same manner as in Example 1. The obtained coating film was subjected to a protein adsorption test in the same manner as in Example 1.
比較例1(PET)
ポリエチレンテレフタレート(PET)の1.0質量%溶液(トリフルオロ酢酸、ジクロロメタンと1,1,2,2テトラクロロエタンの混合溶剤(混合比1/4/45)に溶解させたもの)を室温でQCMチップ(円盤状:直径1.4cm)の片側反応面へスピンコートした。具体的には、上記溶液30μLをQCMチップ上に滴下し、60秒間、2000rpm回転させた。その後、50℃にて3時間、ロータリー真空ポンプにて減圧乾燥し、コーティング膜を得た。
得られたコーティング膜について実施例1と同様にタンパク質の吸着試験を実施した。
Comparative Example 1 (PET)
A 1.0% by mass solution of polyethylene terephthalate (PET) (dissolved in a mixed solvent of trifluoroacetic acid, dichloromethane and 1,1,2,2 tetrachloroethane (mixing ratio 1/4/45)) at room temperature Spin coating was applied to one side reaction surface of a chip (disk shape: diameter 1.4 cm). Specifically, 30 μL of the above solution was dropped on a QCM chip and rotated at 2000 rpm for 60 seconds. Then, it dried under reduced pressure with the rotary vacuum pump at 50 degreeC for 3 hours, and obtained the coating film.
The obtained coating film was subjected to the protein adsorption test in the same manner as in Example 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
実施例5
ポリマーP-1の0.1質量%メタノール溶液を室温でPETフィルム(1.0cm×1.0cm)上へスピンコートした。具体的には、上記溶液30μLをPETフィルム上に滴下し、60秒間、2000rpm回転させた。その後、室温にて3時間、ロータリー真空ポンプにて減圧乾燥し、コーティング膜を得た。
得られたコーティング膜について、以下の方法で細胞の接着試験を評価した。結果を表3に示す。
Example 5
A 0.1 mass% methanol solution of polymer P-1 was spin-coated on a PET film (1.0 cm × 1.0 cm) at room temperature. Specifically, 30 μL of the above solution was dropped on a PET film and rotated at 2000 rpm for 60 seconds. Then, it dried under reduced pressure with the rotary vacuum pump at room temperature for 3 hours, and obtained the coating film.
About the obtained coating film | membrane, the cell adhesion test was evaluated with the following method. The results are shown in Table 3.
〔細胞接着試験〕
PETフィルム(1.0cm×1.0cm)上にP-1をスピンコートしたコーティング膜を24穴の細胞培養プレートの底に少量のシリコン接着剤で固定した。超純水で3回洗浄した後に37℃環境下のPBS中で12時間浸漬させた。
[Cell adhesion test]
A coating film obtained by spin-coating P-1 on a PET film (1.0 cm × 1.0 cm) was fixed to the bottom of a 24-well cell culture plate with a small amount of silicon adhesive. After washing with ultrapure water 3 times, it was immersed in PBS at 37 ° C. for 12 hours.
マウス繊維芽細胞(NIH3T3)を5%CO、37℃環境下で10%ウシ胎児血清(FCS)を含有するダルベッコ改変イーグル培地(FCS含有DMEM)中で培養した。培養したNIH3T3細胞を滅菌PBSで一回洗浄し、1mLの0.02% エチレンジアミン四酢酸(EDTA)溶液と1mLの0.25%トリプシン溶液を加え細胞培養プレートから剥がした。その細胞懸濁液を遠心してNIH3T3細胞を回収した後、FCS含有DMEMで再懸濁し61.2×10個/mLの溶液を得た。 Mouse fibroblasts (NIH3T3) were cultured in Dulbecco's modified Eagle medium (FCS-containing DMEM) containing 10% fetal calf serum (FCS) in an environment of 5% CO 2 and 37 ° C. The cultured NIH3T3 cells were washed once with sterile PBS, 1 mL of 0.02% ethylenediaminetetraacetic acid (EDTA) solution and 1 mL of 0.25% trypsin solution were added, and the cells were detached from the cell culture plate. The cell suspension was centrifuged to collect NIH3T3 cells, and then resuspended in FCS-containing DMEM to obtain a solution of 61.2 × 10 4 cells / mL.
細胞懸濁液は、コーティング膜を固定した細胞培養プレートの各ウェルに対して1×10個/cmに培地で調製し、コーティング膜上に播種した。5%CO、37℃環境下で1時間培養した後、コーティング膜をPBSで3回洗浄し、4%パラホルムアルデヒド PBS溶液を用いてコーティング膜上の接着細胞を固定化した。超純水で3回洗浄した後、ロータリー真空ポンプにて減圧乾燥した。1質量%濃度のクリスタルバイオレット PBS染色液で接着細胞を染色し、光学顕微鏡を用いて3視野任意に観察を行い接着細胞の数を数えた。 The cell suspension was prepared in a medium at 1 × 10 4 cells / cm 2 for each well of the cell culture plate on which the coating membrane was fixed, and seeded on the coating membrane. After culturing in an environment of 5% CO 2 and 37 ° C. for 1 hour, the coating membrane was washed three times with PBS, and adherent cells on the coating membrane were immobilized using 4% paraformaldehyde PBS solution. After washing with ultrapure water three times, it was dried under reduced pressure with a rotary vacuum pump. Adherent cells were stained with a crystal violet PBS staining solution at a concentration of 1% by mass, and the number of adherent cells was counted by arbitrarily observing three visual fields using an optical microscope.
実施例6~8
実施例5と同様の方法でポリマーP-2からP-4のコーティング膜を得た。得られたコーティング膜について実施例5と同様の方法で細胞接着試験を実施した。
Examples 6-8
Coating films of polymers P-2 to P-4 were obtained in the same manner as in Example 5. The resulting coating film was subjected to a cell adhesion test in the same manner as in Example 5.
比較例2(PET)
PETフィルム(1.0cm×1.0cm)を用いて実施例5と同様に細胞の接着試験を実施した。
Comparative Example 2 (PET)
A cell adhesion test was performed in the same manner as in Example 5 using a PET film (1.0 cm × 1.0 cm).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
実施例9~12及び比較例3
タンパク質としてウシ血清由来免疫グロブリンG(IgG)を使用したこと以外は実施例1~4及び比較例1と同様にして、タンパク質吸着試験を実施した。結果を表4に示す。
Examples 9 to 12 and Comparative Example 3
A protein adsorption test was performed in the same manner as in Examples 1 to 4 and Comparative Example 1 except that bovine serum-derived immunoglobulin G (IgG) was used as the protein. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

Claims (21)

  1. 含フッ素オレフィン単位及びビニルアルコール単位を有する含フッ素共重合体からなることを特徴とする低タンパク質吸着性材料。 A low protein adsorptive material comprising a fluorine-containing copolymer having a fluorine-containing olefin unit and a vinyl alcohol unit.
  2. 前記含フッ素共重合体における含フッ素オレフィン単位の含有率が60~10モル%である請求項1記載の低タンパク質吸着性材料。 The low protein adsorptive material according to claim 1, wherein the fluorine-containing olefin unit content in the fluorine-containing copolymer is 60 to 10 mol%.
  3. 前記含フッ素共重合体における含フッ素オレフィン単位とビニルアルコール単位との交互率が1~75%である請求項1又は2記載の低タンパク質吸着性材料。 The low protein adsorptive material according to claim 1 or 2, wherein the fluorine-containing copolymer has an alternating ratio of fluorine-containing olefin units and vinyl alcohol units of 1 to 75%.
  4. 前記含フッ素オレフィンは、テトラフルオロエチレン、クロロトリフルオロエチレン及びヘキサフルオロプロピレンからなる群より選択される少なくとも1種である請求項1、2又は3記載の低タンパク質吸着性材料。 The low protein adsorptive material according to claim 1, 2 or 3, wherein the fluorinated olefin is at least one selected from the group consisting of tetrafluoroethylene, chlorotrifluoroethylene and hexafluoropropylene.
  5. 前記含フッ素共重合体は、含フッ素オレフィン単位、ビニルアルコール単位及びビニルエステルモノマー単位を有する請求項1、2、3又は4記載の低タンパク質吸着性材料。 The low protein adsorptive material according to claim 1, wherein the fluorine-containing copolymer has a fluorine-containing olefin unit, a vinyl alcohol unit, and a vinyl ester monomer unit.
  6. コーティング膜である請求項1、2、3、4又は5記載の低タンパク質吸着性材料。 6. The low protein adsorptive material according to claim 1, which is a coating film.
  7. 請求項1、2、3、4又は5記載の低タンパク質吸着性材料を含むことを特徴とするコーティング用組成物。 A coating composition comprising the low protein adsorptive material according to claim 1, 2, 3, 4 or 5.
  8. 請求項1、2、3、4又は5記載の低タンパク質吸着性材料から形成されることを特徴とするコーティング層。 A coating layer formed from the low protein adsorptive material according to claim 1, 2, 3, 4 or 5.
  9. 請求項1、2、3、4、5若しくは6記載の低タンパク質吸着性材料、請求項7記載のコーティング組成物、又は、請求項8記載のコーティング層からなり、バッグ、シート、フィルム、バイアル瓶、シャーレ、又は、フラスコであることを特徴とする低タンパク質吸着性物品。 A bag, sheet, film, vial comprising the low protein adsorptive material according to claim 1, the coating composition according to claim 7, or the coating layer according to claim 8. A low protein adsorptive article characterized by being a petri dish or a flask.
  10. 請求項1、2、3、4、5若しくは6記載の低タンパク質吸着性材料、請求項7記載のコーティング組成物、又は、請求項8記載のコーティング層からなり、バイオ医薬用バッグ、バイオ医薬用シート、バイオ医薬用フィルム、バイオ医薬用バイアル瓶、バイオ医薬用シャーレ、又は、バイオ医薬用フラスコであることを特徴とする低タンパク質吸着性物品。 A low protein-adsorbing material according to claim 1, 2, 3, 4, 5 or 6, a coating composition according to claim 7, or a coating layer according to claim 8, comprising a biopharmaceutical bag and a biopharmaceutical. A low protein adsorptive article characterized by being a sheet, a biopharmaceutical film, a biopharmaceutical vial, a biopharmaceutical petri dish or a biopharmaceutical flask.
  11. 含フッ素オレフィン単位及びビニルアルコール単位を有する含フッ素共重合体からなることを特徴とする低細胞付着性材料。 A low cell adhesion material comprising a fluorine-containing copolymer having a fluorine-containing olefin unit and a vinyl alcohol unit.
  12. 前記含フッ素共重合体における含フッ素オレフィン単位の含有率が60~10モル%である請求項11記載の低細胞付着性材料。 The low cell adhesion material according to claim 11, wherein the content of fluorine-containing olefin units in the fluorine-containing copolymer is 60 to 10 mol%.
  13. 前記含フッ素共重合体における含フッ素オレフィン単位とビニルアルコール単位との交互率が1~75%である請求項11又は12記載の低細胞付着性材料。 The low cell adhesion material according to claim 11 or 12, wherein the fluorine-containing copolymer has an alternating ratio of fluorine-containing olefin units and vinyl alcohol units of 1 to 75%.
  14. 前記含フッ素オレフィンは、テトラフルオロエチレン、クロロトリフルオロエチレン及びヘキサフルオロプロピレンからなる群より選択される少なくとも1種である請求項11、12又は13記載の低細胞付着性材料。 The low cell adhesion material according to claim 11, 12 or 13, wherein the fluorinated olefin is at least one selected from the group consisting of tetrafluoroethylene, chlorotrifluoroethylene and hexafluoropropylene.
  15. 前記含フッ素共重合体は、含フッ素オレフィン単位、ビニルアルコール単位及びビニルエステルモノマー単位を有する請求項11、12、13又は14記載の低細胞付着性材料。 The low cell adhesion material according to claim 11, 12, 13, or 14, wherein the fluorine-containing copolymer has a fluorine-containing olefin unit, a vinyl alcohol unit, and a vinyl ester monomer unit.
  16. コーティング膜である請求項11、12、13、14又は15記載の低細胞付着性材料。 The low cell adhesion material according to claim 11, 12, 13, 14, or 15, which is a coating film.
  17. 請求項11、12、13、14又は15記載の低細胞付着性材料を含むことを特徴とするコーティング用組成物。 A coating composition comprising the low cell adhesion material according to claim 11, 12, 13, 14 or 15.
  18. 請求項11、12、13、14又は15記載の低細胞付着性材料から形成されることを特徴とするコーティング層。 A coating layer formed from the low cell adhesion material according to claim 11, 12, 13, 14 or 15.
  19. 請求項11、12、13、14、15若しくは16記載の低細胞付着性材料、請求項17記載のコーティング用組成物、又は、請求項18記載のコーティング層からなり、バッグ、シート、フィルム、バイアル瓶、シャーレ、又は、フラスコであることを特徴とする低細胞付着性物品。 A bag, sheet, film, vial comprising the low cell adhesion material according to claim 11, 12, 13, 14, 15, or 16, the coating composition according to claim 17, or the coating layer according to claim 18. A low cell adhesion article characterized by being a bottle, a petri dish or a flask.
  20. 請求項11、12、13、14、15若しくは16記載の低細胞付着性材料、請求項17記載のコーティング用組成物、又は、請求項18記載のコーティング層からなり、細胞培養用バッグ、細胞培養用シート、細胞培養用フィルム、細胞培養用バイアル瓶、細胞培養用シャーレ、又は、細胞培養用フラスコであることを特徴とする低細胞付着性物品。 A cell culture bag, a cell culture comprising the low cell adhesion material according to claim 11, 12, 13, 14, 15 or 16, the coating composition according to claim 17, or the coating layer according to claim 18. A low cell-adhesive article characterized by being a sheet for cell culture, a film for cell culture, a vial for cell culture, a petri dish for cell culture, or a flask for cell culture.
  21. 請求項11、12、13、14、15若しくは16記載の低細胞付着性材料、請求項17記載のコーティング用組成物、又は、請求項18記載のコーティング層からなり、胚様体形成用培養容器であることを特徴とする低細胞付着性物品。 A culture container for embryoid body formation comprising the low cell adhesion material according to claim 11, 12, 13, 14, 15 or 16, the coating composition according to claim 17, or the coating layer according to claim 18. A low cell-adhesive article characterized by
PCT/JP2015/086016 2014-12-26 2015-12-24 Low protein adsorption material, low protein adsorption article, low cell adhesion material, and low cell adhesion article WO2016104596A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016566437A JP6810386B2 (en) 2014-12-26 2015-12-24 Low protein adsorptive material, low protein adsorptive article, low cell adhesion material and low cell adhesion article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-264445 2014-12-26
JP2014264445 2014-12-26

Publications (1)

Publication Number Publication Date
WO2016104596A1 true WO2016104596A1 (en) 2016-06-30

Family

ID=56150609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/086016 WO2016104596A1 (en) 2014-12-26 2015-12-24 Low protein adsorption material, low protein adsorption article, low cell adhesion material, and low cell adhesion article

Country Status (2)

Country Link
JP (1) JP6810386B2 (en)
WO (1) WO2016104596A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017110184A1 (en) * 2015-12-24 2017-06-29 旭硝子株式会社 Cell-trapping filter
WO2018135228A1 (en) * 2017-01-18 2018-07-26 ダイキン工業株式会社 Container for administration, storage, delivery or transportation of protein having low protein adsorbability or protein-containing composition, and apparatus for producing protein or protein composition
WO2019035365A1 (en) * 2017-08-15 2019-02-21 国立大学法人 奈良先端科学技術大学院大学 Article
CN109563466A (en) * 2016-07-29 2019-04-02 大金工业株式会社 The manufacturing method of noble cells and culture bag for the manufacturing method
JPWO2020195860A1 (en) * 2019-03-27 2020-10-01
EP4338954A4 (en) * 2021-06-07 2024-10-30 Nissan Chemical Corp Composition for forming coating film, coating film and cell culture container

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51125978A (en) * 1975-03-18 1976-11-02 Rikagaku Kenkyusho Material for antiithrombus artificial human organ
JPH04325160A (en) * 1991-04-24 1992-11-13 Japan Gore Tex Inc Composite material for medical use
JPH04336072A (en) * 1991-05-10 1992-11-24 Japan Gore Tex Inc Living body affinity base material
JPH0523557A (en) * 1991-07-24 1993-02-02 Asahi Chem Ind Co Ltd Hydrophilic heat-resistant film and its manufacture
JPH05261256A (en) * 1992-03-19 1993-10-12 Japan Gore Tex Inc Fluorine-containing copolymer film and separating membrane
JP2008511733A (en) * 2004-08-31 2008-04-17 アドヴァンスド カーディオヴァスキュラー システムズ, インコーポレイテッド Polymers of fluorinated monomers and hydrophilic monomers
JP2011225659A (en) * 2010-04-16 2011-11-10 Asahi Glass Co Ltd Manufacturing method for hydrophilated ethylene/tetrafluoroethylene copolymer porous body, and ethylene/tetrafluoroethylene copolymer porous body
WO2013099966A1 (en) * 2011-12-28 2013-07-04 ダイキン工業株式会社 Porous polymer membrane
WO2014084356A1 (en) * 2012-11-30 2014-06-05 旭硝子株式会社 Separation membrane comprising fluorine-containing copolymer
WO2014208592A1 (en) * 2013-06-26 2014-12-31 ダイキン工業株式会社 Composition, porous polymer membrane and hydrophilic agent
WO2015087966A1 (en) * 2013-12-12 2015-06-18 国立大学法人 奈良先端科学技術大学院大学 Antithrombotic material, antithrombotic article, antibacterial material, antibacterial article and method for inhibiting growth of escherichia coli on article surface

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003180801A (en) * 2001-12-21 2003-07-02 Yoichiro Miyake Antimicrobial material
JP4111794B2 (en) * 2002-09-30 2008-07-02 富士フイルム株式会社 Hydrophilic member

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51125978A (en) * 1975-03-18 1976-11-02 Rikagaku Kenkyusho Material for antiithrombus artificial human organ
JPH04325160A (en) * 1991-04-24 1992-11-13 Japan Gore Tex Inc Composite material for medical use
JPH04336072A (en) * 1991-05-10 1992-11-24 Japan Gore Tex Inc Living body affinity base material
JPH0523557A (en) * 1991-07-24 1993-02-02 Asahi Chem Ind Co Ltd Hydrophilic heat-resistant film and its manufacture
JPH05261256A (en) * 1992-03-19 1993-10-12 Japan Gore Tex Inc Fluorine-containing copolymer film and separating membrane
JP2008511733A (en) * 2004-08-31 2008-04-17 アドヴァンスド カーディオヴァスキュラー システムズ, インコーポレイテッド Polymers of fluorinated monomers and hydrophilic monomers
JP2011225659A (en) * 2010-04-16 2011-11-10 Asahi Glass Co Ltd Manufacturing method for hydrophilated ethylene/tetrafluoroethylene copolymer porous body, and ethylene/tetrafluoroethylene copolymer porous body
WO2013099966A1 (en) * 2011-12-28 2013-07-04 ダイキン工業株式会社 Porous polymer membrane
WO2014084356A1 (en) * 2012-11-30 2014-06-05 旭硝子株式会社 Separation membrane comprising fluorine-containing copolymer
WO2014208592A1 (en) * 2013-06-26 2014-12-31 ダイキン工業株式会社 Composition, porous polymer membrane and hydrophilic agent
WO2015087966A1 (en) * 2013-12-12 2015-06-18 国立大学法人 奈良先端科学技術大学院大学 Antithrombotic material, antithrombotic article, antibacterial material, antibacterial article and method for inhibiting growth of escherichia coli on article surface

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TOSHIAKI TAKAMATSU ET AL.: "Hoshasen ni yoru Takoshitsu polytetrafluoroethylene Graft Kyojugotai no Kyusuisei to Ko Kessensei", JAPANESE JOURNAL OF POLYMER SCIENCE AND TECHNOLOQY, vol. 37, no. 12, 1980, pages 781 - 787 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017110184A1 (en) * 2015-12-24 2017-06-29 旭硝子株式会社 Cell-trapping filter
JP7039473B2 (en) 2016-07-29 2022-03-22 ダイキン工業株式会社 A method for producing differentiated cells, and a culture bag used for the method for producing the same.
CN109563466A (en) * 2016-07-29 2019-04-02 大金工业株式会社 The manufacturing method of noble cells and culture bag for the manufacturing method
EP3492577A4 (en) * 2016-07-29 2020-04-08 Daikin Industries, Ltd. Differentiated cell production method and culture bag used therefor
JP2020127439A (en) * 2016-07-29 2020-08-27 ダイキン工業株式会社 Method for producing differentiated cells, and culture bag used for production method of the cells
WO2018135228A1 (en) * 2017-01-18 2018-07-26 ダイキン工業株式会社 Container for administration, storage, delivery or transportation of protein having low protein adsorbability or protein-containing composition, and apparatus for producing protein or protein composition
WO2019035365A1 (en) * 2017-08-15 2019-02-21 国立大学法人 奈良先端科学技術大学院大学 Article
JPWO2020195860A1 (en) * 2019-03-27 2020-10-01
WO2020195860A1 (en) * 2019-03-27 2020-10-01 Agc株式会社 Polymer, method for producing same, water and oil-resistant agent composition, article, and water and oil-resistant paper
CN113646344A (en) * 2019-03-27 2021-11-12 Agc株式会社 Polymer, method for producing same, water and oil proofing composition, article, and water and oil proofing paper
JP7359202B2 (en) 2019-03-27 2023-10-11 Agc株式会社 Water and oil resistant agent composition, manufacturing method thereof, article and water and oil resistant paper
US11913175B2 (en) 2019-03-27 2024-02-27 AGC Inc. Polymer, method for producing same, water- and oil-proofing composition, article, and water- and oil-proof paper
EP4338954A4 (en) * 2021-06-07 2024-10-30 Nissan Chemical Corp Composition for forming coating film, coating film and cell culture container

Also Published As

Publication number Publication date
JPWO2016104596A1 (en) 2017-10-05
JP6810386B2 (en) 2021-01-06

Similar Documents

Publication Publication Date Title
JP6810386B2 (en) Low protein adsorptive material, low protein adsorptive article, low cell adhesion material and low cell adhesion article
JP7123346B2 (en) Biocompatible materials, coating compositions, coating films and articles
US10689615B2 (en) Temperature-responsive base material, method for producing same, and method for evaluating same
US20220348858A1 (en) Cell culturing scaffold material and cell culturing container
WO2018116904A1 (en) Cell culture substrate
JP6617704B2 (en) Protein adhesion inhibitor
CN107849511A (en) The container bestowed, preserve or cultivated for cell
JP6165280B2 (en) Cell culture equipment
JP2016026520A (en) Compound for prevention of protein deposition, coating liquid and medical device
JP2015180723A (en) Polymer base material, use thereof and method of producing the same
JP2023153774A (en) Copolymer for inhibiting adhesion of protein, method for producing copolymer, resin modifier, molding material, copolymer-containing composition, coating film and article
US11246966B2 (en) Copolymer-comprising antimicrobial, cell culture, antithrombotic, or biopharmaceutical article
Koguchi et al. Altering the bio-inert properties of surfaces by fluorinated copolymers of mPEGMA
WO2015087966A1 (en) Antithrombotic material, antithrombotic article, antibacterial material, antibacterial article and method for inhibiting growth of escherichia coli on article surface
TW201602260A (en) Ion complex material having function for preventing adherence to biological material
US20240287322A1 (en) Composition for forming coating film, coating film, and cell culture vessel
EP4428205A1 (en) Adhesion inhibitor for biological substances
JP2022069292A (en) Biological substance adhesion prevention base material and instrument comprising the base material
JPH05254073A (en) Reflection preventing article and production thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15873164

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016566437

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15873164

Country of ref document: EP

Kind code of ref document: A1