WO2016199363A1 - 発光素子 - Google Patents
発光素子 Download PDFInfo
- Publication number
- WO2016199363A1 WO2016199363A1 PCT/JP2016/002523 JP2016002523W WO2016199363A1 WO 2016199363 A1 WO2016199363 A1 WO 2016199363A1 JP 2016002523 W JP2016002523 W JP 2016002523W WO 2016199363 A1 WO2016199363 A1 WO 2016199363A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- light emitting
- strain
- refractive index
- cladding layer
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/2205—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
- H01S5/2206—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on III-V materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/32—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
- H01S5/3201—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures incorporating bulkstrain effects, e.g. strain compensation, strain related to polarisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/32—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
- H01S5/3211—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
- G03B21/20—Lamp housings
- G03B21/2006—Lamp housings characterised by the light source
- G03B21/2033—LED or laser light sources
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S2301/00—Functional characteristics
- H01S2301/17—Semiconductor lasers comprising special layers
- H01S2301/173—The laser chip comprising special buffer layers, e.g. dislocation prevention or reduction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/2004—Confining in the direction perpendicular to the layer structure
- H01S5/2009—Confining in the direction perpendicular to the layer structure by using electron barrier layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/305—Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/305—Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
- H01S5/3054—Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure p-doping
- H01S5/3063—Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure p-doping using Mg
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
- H01S5/3403—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having a strained layer structure in which the strain performs a special function, e.g. general strain effects, strain versus polarisation
- H01S5/3406—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having a strained layer structure in which the strain performs a special function, e.g. general strain effects, strain versus polarisation including strain compensation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
- H01S5/343—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
- H01S5/34333—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser
Definitions
- the present disclosure relates to a high-power light source, and more particularly, to a light-emitting element made of a nitride semiconductor.
- a spatial light modulation element such as a small liquid crystal panel that forms an image according to a video signal is illuminated with light from a light source such as a lamp and projected.
- Projectors are widely used as projection-type image display devices that enlarge and project an optical image onto a screen by using a lens.
- a projection-type image display device such as a projector, it is general to configure the light source with an ultra-high pressure mercury lamp capable of obtaining high luminous efficiency in the visible light wavelength band.
- LED Light Emitting Diode
- LED projectors are characterized by low power consumption, high silence, long lamp life, and small body size.
- the LED uses spontaneous emission light in the active layer which is a light emitting layer, it cannot be said that the luminance is sufficient.
- a laser projector that can excite a phosphor with a semiconductor laser capable of high output of a watt class (that is, 1 W or more) as a light source and can obtain sufficient luminance with respect to light in the visible range has been attracting attention. .
- a semiconductor laser (nitride-based semiconductor laser) using a nitride-based material represented by a general formula of In 1-xy Ga x Al y N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1) is visible.
- Light can be emitted from light to ultraviolet light and is suitable as a light source for the laser projector.
- a blue or green light source is formed with a nitride semiconductor laser and a laser using an AlGaInP material is a red light source, a small and low power consumption laser projector can be realized.
- the semiconductor laser used for the projector light source is required to operate not only for a watt-class high-power operation but also for a long-term operation of 10,000 hours or more even at a high temperature operation of 50 ° C. or higher.
- Patent Document 1 a technique related to a nitride blue laser having an oscillation wavelength band of 430 nm (first conventional technique) is disclosed.
- the n-type contact layer 103 is made of Si-doped Al 0.05 Ga 0.95 N.
- the crack prevention layer 104 is made of In 0.06 Ga 0.94 N and has a thickness of 0.15 ⁇ m.
- the n-type cladding layer 105 is a superlattice in which a combination of undoped Al 0.05 Ga 0.95 N with a thickness of 2.5 nm and Si-doped GaN with a thickness of 2.5 nm is repeated 200 times.
- the n-type light guide layer 106 is made of undoped GaN and has a thickness of 0.1 ⁇ m.
- the n-side first nitride semiconductor layer 131b is made of Si-doped In 0.05 Ga 0.95 N with a thickness of 50 nm.
- the multi-quantum well active layer 107 is a well having a thickness of 2.5 nm, comprising three undoped In 0.05 Ga 0.95 N barrier layers having a thickness of 13 nm and undoped In 0.32 Ga 0.68 N.
- the layer consists of two layers.
- the p-type electron confinement layer 108 is made of an Mg-doped Al 0.3 Ga 0.7 N layer having a thickness of 10 nm.
- the p-side first nitride semiconductor layer 131a is made of an Mg-doped In 0.05 Ga 0.95 N layer having a thickness of 50 nm.
- the p-type light guide layer 109 is made of undoped GaN having a thickness of 0.15 ⁇ m.
- the p-type cladding layer 110 is a superlattice having a thickness of 0.45 ⁇ m obtained by repeating a combination of undoped Al 0.05 Ga 0.95 N having a thickness of 2.5 nm and Mg-doped GaN having a thickness of 2.5 nm 90 times. It is.
- the p-type contact layer 111 is made of an Mg-doped p-type GaN layer having a thickness of 15 nm.
- the n-type cladding layer 105 and the p-type cladding layer 110 are perpendicular to the multi-quantum well active layer (in this application, the normal direction of the substrate is referred to as the vertical direction. Also, laser resonance is performed. (The direction perpendicular to the substrate normal direction and perpendicular to the normal direction of the substrate is referred to as the horizontal direction.) The optical confinement is performed horizontally by the ridge formed in the p-type cladding layer 110, thereby enabling laser oscillation. Yes.
- a first nitride semiconductor comprising a 50 nm thick Mg-doped In 0.05 Ga 0.95 N layer provided between the p-type electron confinement layer 108 and the p-type cladding layer 110.
- the layer 131a and the p-type light guide layer 109 made of undoped GaN having a thickness of 0.15 ⁇ m increase the light confinement ratio in the vertical direction to the active layer of the light distribution.
- the p-type electron confinement layer 108 reduces carrier overflow in which electrons injected into the active layer leak into the p-type cladding layer.
- Al x Ga 1-x N (0 ⁇ x ⁇ 1) which is a ternary mixed crystal is AlGaN
- In y Ga 1-y N (0 ⁇ y ⁇ 1) is InGaN, which is a quaternary mixed crystal.
- y Al x Ga 1-x- y N to (0 ⁇ x ⁇ 1,0 ⁇ y ⁇ 1) is sometimes referred to as InAlGaN.
- Semiconductor laser elements used for projector light sources are required to operate not only for watt-class high-power operation but also for long-term operation of 10,000 hours or more even at high temperature operation of 50 ° C. or higher. Therefore, it is necessary to realize a semiconductor laser capable of operating at high temperature and high output in the blue region of the wavelength 445 nm band and the green region of the wavelength 530 nm band.
- the difference in refractive index between the InGaN layer widely used for the active layer and the AlGaN layer widely used for the cladding layer becomes small.
- a blue laser with a long wavelength of 445 nm and a green laser with a long wavelength of 530 nm are compared with a blue-violet laser with a wavelength of 405 nm.
- a nitride laser having an oscillation wavelength region with a long wavelength has a problem that light confinement in the vertical direction becomes small.
- the Al composition of the AlGaN layer used for the cladding layer may be increased to 0.1 or more.
- the difference in thermal expansion coefficient between the AlGaN layer and the InGaN layer used for the active layer is large. As a result, cracks and lattice defects occur.
- the present disclosure has been made to solve the above-described problems.
- An object is to realize a laser capable of suppressing the above.
- a light-emitting element of the present disclosure includes a GaN substrate and a first conductivity type In x Ga 1-x N (0.01 ⁇ x ⁇ 0.03) formed on the GaN substrate.
- the low refractive index layer and the first low refractive index layer are formed of Al z Ga 1-z N (0.03 ⁇ z ⁇ 0.06) of the first conductivity type and are formed on the first low refractive index layer.
- the first low-refractive-index layer made of In 1-ab Ga a Al b N of the first conductivity type is more than AlGaN having an Al composition of 0.06.
- the difference in lattice constant between GaN and GaN having a low refractive index can be made smaller than the difference in lattice constant between AlGaN and GaN having an Al composition of 0.1.
- the refractive index of the first low refractive index layer can be lower than the refractive index of the first cladding layer.
- the light distribution in the vertical direction is attenuated by the first low refractive index layer having a low refractive index, so that it is not easily affected by the first strain correction layer having a high refractive index, and the decrease in ⁇ N can be suppressed.
- the first low refractive index layer suppresses the spread of the light distribution in the vertical direction toward the GaN substrate, it is possible to prevent the light confinement factor from being reduced.
- the light-emitting device of the present disclosure is further formed on the active layer, is made of the second conductivity type Al t Ga 1-t N (0 ⁇ t ⁇ 1), and protrudes in the direction from the GaN substrate toward the active layer. And a second cladding layer having a ridge portion.
- the range of the In composition x of the first strain correction layer is 0.01 ⁇ x ⁇ 0.03. According to this preferred configuration, the tensile strain generated in the first clad layer and the second clad layer grown on the first strain correction layer to which compressive strain is applied can be compensated, and therefore formed on the GaN substrate. The overall average strain size of the double hetero structure is reduced, and the occurrence of cracks can be suppressed.
- the thickness of the first strain correction layer is 0.1 ⁇ m or more and 0.2 ⁇ m or less. According to this preferable configuration, it is possible to suppress the occurrence of lattice defects in the first strain correction layer, to compensate the tensile stress generated in the first cladding layer and the second cladding layer, and to suppress the generation of cracks. .
- the first low refractive index layer is formed of Al b Ga 1-b N (0.06 ⁇ b ⁇ 0.1) of the first conductivity type.
- the layer thickness of the first low refractive index layer is 10 nm or more and 100 nm or less. According to this preferable configuration, by increasing the thickness of the first low refractive index layer to 10 nm or more and 100 nm or less, it is possible to prevent an increase in the operating voltage of the light emitting element, and to suppress a decrease in ⁇ N and a decrease in the optical confinement coefficient. can do.
- the first low refractive index layer further has a single quantum well structure or a multiple quantum well having an average atomic composition of In 1-ab Ga a Al b N.
- the first cladding layer has a layer thickness of 1 ⁇ m or less and 0.03 ⁇ z ⁇ 0.04.
- the average strain of the entire layer can be set as compressive strain. In this case, since the overflow of carriers injected into the active layer is suppressed, the high temperature operating characteristics of the light emitting element are improved and the operating current value is reduced. Therefore, the reliability regarding long-term operation of the light emitting element is improved.
- the light-emitting element of the present disclosure further includes Al s Ga 1-s N (0 ⁇ s ⁇ 0.01) of the first conductivity type from the GaN substrate between the GaN substrate and the first strain correction layer. It is preferable to include a second distortion correction layer. With this preferable configuration, that is, by setting the Al composition of the second strain correction layer made of Al s Ga 1-s N to 0.01 or less, the critical layer thickness of the second strain correction layer is set to 300 nm or more. It is possible to suppress the generation of lattice defects due to lattice mismatch with the GaN substrate.
- an intermediate layer made of GaN of the first conductivity type is sequentially formed between the second strain correction layer and the first strain correction layer.
- the crystallinity can be recovered by providing the intermediate layer made of GaN on the second strain correction layer. Then, by forming the first strain correction layer on the first strain correction layer, even if the first strain correction layer is formed, a second strain correction layer in which tensile strain is generated and a first strain correction layer in which compressive strain is generated Thus, distortion can be compensated for, and hence it is possible to suppress the occurrence of lattice defects at the interface between the intermediate layer and the first strain correction layer. As a result, it is possible to prevent deterioration of the long-term operation reliability of the element.
- the light emitting device of the present disclosure may further include an electron barrier layer made of Al h Ga 1-h N (0 ⁇ h ⁇ 1) of the second conductivity type between the active layer and the second cladding layer. preferable.
- the electron barrier layer further has a compressive strain.
- the second cladding layer further has a compressive strain.
- the active layer further includes a well layer made of In f Ga 1-f N (0 ⁇ f ⁇ 1) and a barrier made of Al g Ga 1-g N (0 ⁇ g ⁇ 1). It is preferable that the quantum well includes at least one layer.
- the active layer is preferably a multiple quantum well including at least two well layers.
- the active layer is preferably a double quantum well or a triple quantum well.
- the characteristic wavelength of the active layer is 445 nm or more.
- the light emitting device of the present disclosure can suppress a decrease in ⁇ N and a decrease in optical confinement factor in a structure using an InGaN buffer layer to suppress the occurrence of cracks in a laser having a wavelength of 445 nm or longer.
- FIG. 1 is a cross-sectional view illustrating a layer structure of a light emitting device according to the first embodiment of the present disclosure.
- FIG. 2 is a view showing a light distribution in the direction perpendicular to the main surface of the GaN substrate 11 of the light emitting element.
- FIG. 3 is a graph showing the dependence of ⁇ N on the light emitting element on the Al composition of the first low refractive index layer 13.
- FIG. 4A is a diagram showing the composition of the first low refractive index layer 13 and the layer thickness dependence of ⁇ N when the In composition of the first strain correction layer 12 is 4% in the light emitting element.
- FIG. 1 is a cross-sectional view illustrating a layer structure of a light emitting device according to the first embodiment of the present disclosure.
- FIG. 2 is a view showing a light distribution in the direction perpendicular to the main surface of the GaN substrate 11 of the light emitting element.
- FIG. 3 is a graph showing the dependence of ⁇ N on the light
- FIG. 4B is a diagram showing the dependency of ⁇ N on the composition and thickness of the first low refractive index layer 13 when the In composition of the first strain correction layer 12 is 3% in the light emitting element.
- FIG. 5 is a diagram comparing the calculation results of the average strain amount at each point in the stacking direction with respect to the light emitting element.
- FIG. 6 is a diagram showing a comparison of calculation results of the average strain amount at each point in the stacking direction with respect to the light emitting element.
- FIG. 7 is a diagram showing a preferable atomic composition range when the first low refractive index layer 13 is InGaAlN in the light emitting element.
- FIG. 8 is a cross-sectional view illustrating a layer structure of a light emitting device according to the second embodiment of the present disclosure.
- FIG. 9 is a diagram showing a comparison of calculation results of the average strain amount at each point in the stacking direction with respect to the light emitting element.
- FIG. 10 is a diagram showing a comparison of calculation results of the average strain amount at each point in the stacking direction with respect to the light emitting element.
- FIG. 11 is a cross-sectional view showing a layer structure of a first conventional light emitting device.
- FIG. 12 is a cross-sectional view showing a layer structure of a second conventional light emitting device.
- Semiconductor laser elements used for projector light sources are required to operate not only for watt-class high-power operation but also for long-term operation of 10,000 hours or more even at high temperature operation of 50 ° C. or higher. Therefore, it is necessary to realize a semiconductor laser capable of operating at high temperature and high output in the blue region of the wavelength 445 nm band and the green region of the wavelength 530 nm band.
- the difference in refractive index between the InGaN layer widely used for the active layer and the AlGaN layer widely used for the cladding layer becomes small.
- a blue laser with a long wavelength of 445 nm and a green laser with a long wavelength of 530 nm are compared with a blue-violet laser with a wavelength of 405 nm.
- a nitride laser having an oscillation wavelength region with a long wavelength has a problem that light confinement in the vertical direction becomes small.
- the Al composition of the AlGaN layer used for the cladding layer may be increased to 0.1 or more.
- the difference in thermal expansion coefficient between the AlGaN layer and the InGaN layer used for the active layer is large.
- cracks and lattice defects occur.
- the resistance of the p-type AlGaN cladding layer increases, and the operating voltage of the device increases. For this reason, in order to suppress generation
- the In composition of the InGaN well layer in the quantum well active layer was about 0.07, but a blue laser having an oscillation wavelength of 445 nm In the InGaN well layer, the In composition needs to be about 0.15 or more. Further, in a green laser having an oscillation wavelength band of 530 nm, a high In composition InGaN layer in which the In composition of the InGaN well layer is about 0.3 or more is required.
- In the InGaN layer when the In composition increases, not only the lattice mismatch with the GaN substrate increases, but also the distance between the stable group III-V atoms of InN and GaN constituting the InGaN layer differs.
- the accumulated internal strain energy increases.
- composition separation in which the composition is separated into a region having a high In composition and a region having a low In composition is likely to occur.
- a temperature around 800 ° C. which is the temperature at which the InGaN layer is grown, when the In composition becomes a high In composition of around 0.15 or more, it becomes thermodynamically unstable and composition separation tends to occur.
- the thickness of the well layer having a high In composition is reduced to 3 nm or less, the volume of the InGaN well layer is reduced, and a barrier grows thereon. It is effective to recover the crystallinity by growing GaN or an InGaN layer having an In composition of about 0.05 or less having a small lattice mismatch with GaN to a thickness of about 10 nm or more.
- the top and bottom of the thin well layer are sandwiched between the GaN layer or InGaN having a lattice constant close to that of the GaN layer, and the InGaN well does not exceed the critical layer thickness that causes lattice defects in the InGaN layer. It becomes possible to suppress the composition separation of the layers to some extent. This is because, even in the case of a high In composition layer due to strain energy due to lattice mismatch between the well layer and the barrier layer generated at the interface between the barrier layer and the well layer, it is more thermodynamically stable if no composition separation occurs. It is. As described above, the thickness of the InGaN well layer having a high In composition needs to be as thin as about 3 nm or less.
- the Al composition of the AlGaN layer used for the cladding layer may be set as high as possible to 0.1 or more.
- the difference in lattice constant of the InGaN layer to be used is increased, and cracks and lattice defects are generated.
- the optical confinement factor in the vertical direction becomes a very small value of about 1%.
- the optical confinement factor is small, the operating carrier density in the active layer increases, and the carrier overflow from the active layer to the p-type cladding layer increases during high-temperature and high-power operation, resulting in deterioration of temperature characteristics and current-light output characteristics. This leads to a decrease in the thermal saturation level of the light output at.
- the normal direction of the substrate is referred to as a vertical direction
- the direction perpendicular to the normal direction of the substrate in the plane of the resonator end surface is referred to as a horizontal direction.
- a free-standing substrate 201 made of GaN and a substrate are formed on the substrate.
- a second buffer layer 203, and an n-side cladding layer 204, an active layer 206, and a p-side cladding layer 209 are sequentially provided on the second buffer layer.
- the function of the buffer layer is divided into the first buffer layer 202 that suppresses the occurrence of dislocations from the regrowth interface and the second buffer layer 203 that suppresses the occurrence of cracks, thereby free-standing substrate 201. It is disclosed that a high-quality AlGaN layer can be grown thereon to obtain a nitride semiconductor device having excellent electrical characteristics.
- the refractive index of the second buffer layer 202 is relatively higher than that of other layers, if the layer thickness between the second buffer layer 202 and the active layer 206 is thin, the second buffer layer 202 is confined in the waveguide. The light distribution is affected by the second buffer layer 202 having a high refractive index, and the light distribution in the vertical direction is biased toward the substrate side where the second buffer layer 202 is located.
- the effective refractive index difference ( ⁇ N) inside and outside the ridge decreases, the horizontal confinement mechanism of the light distribution becomes weak, a kink that causes nonlinearity of the current-light output characteristic occurs, and the operating current value is high.
- the n-side cladding layer 204 between the second buffer layer 202 and the active layer 206 is thickened or the n-side cladding between the substrate and the active layer so that the vertical light distribution does not spread to the second buffer layer 202.
- the stress in the n-side cladding layer 204 increases and cracks are likely to occur.
- the Al composition of the p-side cladding layer 209 is set lower than the Al composition of the n-side cladding layer 204, and the refractive index of the p-side cladding layer 209 is relatively higher than that of the n-side cladding layer 204, so that the vertical direction
- a method of making the light distribution relatively closer to the p-type layer is also conceivable, the light confinement coefficient in the active layer 206 becomes small and the temperature characteristics deteriorate.
- the present disclosure has been made to solve the above-described problems.
- An object is to realize a laser capable of suppressing the above.
- FIG. 1 is a cross-sectional view relating to the structure of the light emitting device according to the first embodiment of the present disclosure.
- the light-emitting element shown in FIG. 1 includes an n-type first strain correction layer 12 made of InGaN and having a layer thickness of 0.1 ⁇ m on a GaN substrate 11 having a principal surface of c-plane ((0001) plane).
- a first low refractive index layer 13 made of n-type AlGaN having a thickness of 0.05 ⁇ m
- a first cladding layer 14 made of n-type AlGaN
- a light guide layer 15 made of N-type GaN having a layer thickness of 0.2 ⁇ m.
- This light emitting element is a semiconductor laser device.
- a ridge 18a is formed in the second cladding layer 18, and the width (W) of the bottom of the ridge 18a is 8.0 ⁇ m.
- the p-side electrode 22 has a laminated structure of Ni, Pt, and Au, and the N-side electrode 21 has a laminated structure of Ti and Al.
- the distance between the upper portion of the ridge 18 a and the active layer 16 is 0.7 ⁇ m, and the distance between the lower end of the ridge 18 a and the active layer 16 is dp (0.05 ⁇ m).
- Si is used as the n-type dopant, and about 10 18 cm ⁇ 3 of Si is added to the n-type semiconductor layer.
- Mg is used as the p-type dopant, and Mg of about 10 19 cm ⁇ 3 is added to the p-type semiconductor layer.
- the electron barrier layer 17 is provided in order to prevent electrons confined in the active layer 16 from overflowing into the second cladding layer 18 (carrier overflow).
- the light-emitting element according to the first embodiment of the present disclosure is a ridge stripe semiconductor laser device, and the ridge 18a extends in a direction perpendicular to the paper surface of FIG. 1 and has a length of 1000 ⁇ m.
- the front end face (not shown) of the light emitting element is coated with a low reflectance (AR), and the rear end face (not shown) is coated with a high reflectance (HR). Both the front end face and the rear end face are perpendicular to the extending direction of the ridge 18a, and form a resonator between the front end face and the rear end face.
- the light emission wavelength of the light emitting element according to the first embodiment of the present disclosure is 445 nm.
- the upper limit of the Al composition of the first cladding layer 14 and the second cladding layer 18 is 0.1 or less, more preferably 0.05 or less.
- the refractive index difference between the active layer 16 and the AlGaN material is reduced, and the optical confinement factor in the vertical direction is reduced.
- the Al composition of the first cladding layer 14 and the second cladding layer 18 must be 0.03 or more.
- the Al composition of the first cladding layer 14 and the second cladding layer 18 is preferably 0.03 or more, and the upper limit of the Al composition is preferably 0.1 or less, more preferably 0.05 or less.
- the active layer 16 of the light emitting element As the active layer 16 of the light emitting element, a quantum well structure having a single well or a plurality of well layers is used. In order to obtain laser oscillation with a wavelength of 445 nm, the In composition of the well layer needs to be about 0.15. However, the lattice mismatch between InGaN and GaN with an In composition of 0.15 is about 1.6%, and when the well layer thickness is greater than 3 nm, the critical layer thickness of the well layer is greatly exceeded, resulting in lattice defects. End up. The lattice defect becomes a light absorption center, which causes an increase in the oscillation threshold current value and the operating current value of the light emitting element, leading to a decrease in reliability. Therefore, it is necessary to suppress the generation as much as possible. Therefore, the thickness of the well layer is preferably 3 nm or less.
- the well layer thickness is thin, the light confinement factor in the vertical direction of the light emitting element is lowered. Therefore, it is necessary to increase the thickness of the well layer.
- the operational carrier density of each well layer tends to vary, and the gain peak wavelength that gives the maximum gain of each well layer varies.
- the oscillation threshold current value increases.
- the number of barrier layers between the well layers increases, the increase in series resistance of the light emitting element and the influence of the slope of the potential potential of the barrier layer due to the piezo effect increase, and the operating voltage increases. .
- the oscillation threshold current value becomes large and the light emitting element has a high operating voltage. As a result, the temperature characteristics of the light emitting element are deteriorated.
- the number of well layers is 1, that is, a single quantum well structure
- the optical confinement factor is reduced and the operating carrier density is increased, so that the carrier overflow is increased and the light output that is thermally saturated in the current-light output characteristics is reduced. End up. Therefore, even if the well layer thickness is a thin well layer of 3 nm or less, the number of well layers is a double quantum well (DQW) structure with two layers, or a triple quantum well with triple layers (Triple Quantum). (Well, TQW) structure.
- DQW double quantum well
- TQW Triple Quantum
- the active layer 16 in the light emitting device of the first embodiment of the present disclosure has a double quantum well structure including two well layers made of InGaN having a thickness of 3 nm and an In composition of 0.15, and GaN as a barrier layer. .
- the Al composition of the first cladding layer 14 and the second cladding layer 18 must be 0.03 or more. In this case, when the thickness of the first cladding layer 14 is about 1.5 ⁇ m, lattice defects and cracks are likely to occur due to the difference in lattice constant between the GaN substrate 11 and the first cladding layer 14.
- the light emitting device includes the first strain correction layer 12 having compressive strain made of InGaN on the GaN substrate 11.
- the tensile strain generated in the first cladding layer 14 can be compensated, so that the average strain of the entire epitaxial layer grown on the GaN substrate 11 can be reduced, and the generation of cracks and lattice defects can be reduced. Can be suppressed.
- the vertical axis represents the logarithm of the light intensity (arbitrary unit) when the light intensity in the active layer 16 is 1, and the horizontal axis represents the semiconductor layer with the origin slightly below the surface of the GaN substrate 11.
- the position of each semiconductor layer measured along the stacking direction is represented.
- the numbers in FIG. 2 indicate the positions where each semiconductor layer exists.
- 1E-05 represents 1 ⁇ 10 ⁇ 5 .
- the light distribution in the vertical direction inside the ridge needs to be closer to the second cladding layer 18.
- the p-type impurity concentration is normally increased to 1 ⁇ 10 18 cm ⁇ 3 or more, the waveguide loss increases due to the influence of the absorption loss of free carriers due to the p-type impurity, and the current-optical output
- the light output change (slope efficiency) per unit current in the characteristics is lowered, and the temperature characteristics are lowered.
- ⁇ N needs to be in the range of 3 ⁇ 10 ⁇ 3 to 6 ⁇ 10 ⁇ 3 .
- the light emitting device includes the first low refractive index layer 13 having a refractive index smaller than that of the first cladding layer 14.
- FIG. 3 shows the calculation result of the dependency of ⁇ N with respect to.
- the layer thickness of the first cladding layer 14 is 1 ⁇ m, 1.5 ⁇ m, and 2 ⁇ m
- the In composition of the first strain correction layer 12 is 4%.
- the decrease in ⁇ N increases as the thickness of the first cladding layer 14 decreases.
- the Al composition is 0.05 or more, that is, the Al composition of the first cladding layer 14 is larger than that. It can be seen that it is necessary to use an AlGaN layer having an Al composition of at least 0.015 or more. Further, in order to set ⁇ N to 3.5 ⁇ 10 ⁇ 3 or more, AlGaN having an Al composition of 0.06 or more, that is, an Al composition that is at least 0.025 or more larger than the Al composition of the first cladding layer 14. It can be seen that it is necessary to use a layer.
- FIG. 4A and FIG. 4B show calculation results of the dependence of ⁇ N on the composition of the first low refractive index layer 13 and the layer thickness when the In composition of the first strain correction layer is 4% and 3%, respectively.
- ⁇ N does not depend much on the composition and layer thickness of the first low refractive index layer 13, but the first strain correction layer 12
- ⁇ N greatly depends on the composition and thickness of the first low refractive index layer 13. Therefore, it can be seen that the In composition of the first strain correction layer 12 should be 3% or less so as not to be affected by the first strain correction layer 12 of ⁇ N.
- the Al composition of the first low refractive index layer 13 is set to 0.06 to 0.1 and the layer thickness is set to 10 nm to 100 nm, it can be seen that ⁇ N of 4 ⁇ 10 ⁇ 3 or more can be realized.
- the In composition of the first strain correction layer 12 is 0.02
- the composition of the first low refractive index layer 13 is 0.025 higher than the Al composition of the first cladding layer 14. 06, even when the thickness of the first cladding layer 14 is 0.05 ⁇ m and the thickness of the first cladding layer 14 is 1 ⁇ m, the prevention of ⁇ N can be suppressed.
- the refractive index of the 1st low refractive index layer 13 can be made small, so that Al composition of the 1st low refractive index layer 13 is large, the optical confinement rate with respect to the active layer 16 can be enlarged, and (DELTA) N is enlarged.
- the Al composition of the first low refractive index layer 13 is preferably 0.1 or less.
- the first low refractive index layer is preferably formed of n-type Al b Ga 1-b N (0.06 ⁇ b ⁇ 0.1).
- the layer thickness of the first low refractive index layer 13 is preferably 10 nm or more and 100 nm or less.
- a well layer is In 0.15 Ga 0.85 N with a layer thickness of 3 nm
- a barrier layer is GaN with a layer thickness of 3 nm
- a double quantum well structure is adopted.
- the first strain correction layer 12, the first low refractive index layer 13, the first cladding layer 14, and the second cladding layer 18 were examined using the In composition, Al composition, and layer thickness as parameters.
- 5 and 6 show comparison results of the average strain amount of each point along the stacking direction of the light emitting device according to the first embodiment of the present disclosure. 5 and 6, the active layer 16 is expanded in the stacking direction.
- the parameters of the first strain correction layer 12, the first low refractive index layer 13, the first cladding layer 14, and the second cladding layer 18 that were examined are as shown in Tables 2 and 3.
- the parameters of the layers other than the layers shown in Table 2 and Table 3 are the same as in Table 1.
- the light emitting device has a structure in which the first strain correction layer 12 and the first low refractive index layer 13 are not provided, the thickness of the first cladding layer 14 is 1 ⁇ m, and the Al composition is 0. 0.035, the thickness of the second cladding layer 18 is 0.7 ⁇ m, and the Al composition is 0.035, the In composition of the first strain correction layer is 0.01, 0.02, 0.03.
- FIG. 5A shows the calculation result of the average strain amount at each point in the stacking direction.
- the average strain amount (Eequ (Z)) at a certain point in the stacking direction is an average value of strain in consideration of the layer thickness of each layer up to a certain point Z in the stacking direction in the structure formed on the GaN substrate 11. Yes, given by (Equation 1).
- e (z ′) is a strain at a point z ′ in the Z direction (stacking direction).
- the first cladding layer 14 has a uniform tensile strain of about 8 ⁇ 10 ⁇ 4. Therefore, the average strain amount is compensated and reduced in the region of the active layer 16 where the compressive strain of the InGaN-based material is applied, and the tensile strain is increased again in the second cladding layer 18 where the tensile strain is generated. I understand that.
- the thickness of the first strain correction layer 12 is 0.1 ⁇ m, and the composition of the first low refractive index layer 13 is 0.06, which is 0.025 higher than the Al composition of the first cladding layer.
- the first strain correction layer 12 FIG. 5 (b) shows the calculation result of the average strain amount at each point in the stacking direction when the In composition is 0.01, 0.02, and 0.03. *
- the average strain generated in the first cladding layer 14 by the first strain correction layer 12 is generated in the first cladding layer 14 with respect to the light emitting element shown in FIG. It can be seen that the average distortion is reduced.
- 5 (c) and 5 (d) show the case where the thickness of the first cladding layer 14 is 1.5 ⁇ m with respect to the light emitting device of FIG. 5 (a) and FIG. 5 (b), respectively.
- the calculation result of is shown. Even when the thickness of the first cladding layer 14 is 1.5 ⁇ m, the tensile property of the first cladding layer 14 is reduced due to the compressive strain of the first strain correction layer 12 as in the result shown in FIG. It can be seen that the distortion is compensated and reduced.
- the In composition of the first strain correction layer 12 is set to 0.1 in the range of the thickness of the first cladding layer 14 from 1.0 ⁇ m to 1.5 ⁇ m. It can be seen that the strain generated in the first cladding layer 14 can be reduced by setting between 01 and 0.03.
- the light emitting device has a structure in which the first strain correction layer 12 and the first low refractive index layer 13 are not provided, the thickness of the first cladding layer 14 is 1 ⁇ m, the Al composition is 0.06, and the second When the thickness of the cladding layer 18 is 0.7 ⁇ m and the Al composition is 0.06, each of the stacking directions in the case where the In composition of the first strain correction layer is 0.01, 0.02, and 0.03
- the calculation result of the average strain amount of the points is shown in FIG.
- the first cladding layer 14 is uniformly strained by about 1.4 ⁇ 10 ⁇ 3.
- the average strain amount is compensated and reduced in the region of the active layer 16 where the compressive strain of the InGaN-based material is applied, and the tensile strain is increased again in the second cladding layer 18 in which the tensile strain is generated.
- a relatively large strain is applied to the first cladding layer 14, and cracks and lattice defects are likely to occur in the first cladding layer 14. I understand that.
- the thickness of the first strain correction layer 12 is 0.1 ⁇ m, and the composition of the first low refractive index layer 13 is 0 than the Al composition of the first cladding layer 14. 0.025 high 0.085, the thickness of the first low refractive index layer 13 is 0.05 ⁇ m, the thickness of the first cladding layer 14 is 1 ⁇ m, and the thickness of the second cladding layer 18 is 0.7 ⁇ m.
- FIG. 6B shows the calculation result of the average strain amount at each point in the stacking direction when the In composition of the first strain correction layer 12 is 0.01, 0.02, and 0.03.
- the average strain generated in the first cladding layer 14 by the first strain correction layer 12 is the average generated in the first cladding layer 14 with respect to the structure shown in FIG. It can be seen that the distortion is reduced.
- the strain generated in the first cladding layer 14 can be reduced by setting the In composition of the first strain correction layer 12 between 0.01 and 0.03.
- FIG. 6 (c) and 6 (d) show the case where the thickness of the first cladding layer 14 is 1.5 ⁇ m with respect to the structure of FIG. 6 (a) and FIG. 6 (b), respectively.
- the calculation result of is shown. Even when the thickness of the first cladding layer 14 is 1.5 ⁇ m, the tensile property of the first cladding layer 14 is reduced due to the compressive strain of the first strain correction layer 12 as in the result shown in FIG. It can be seen that the distortion is compensated and reduced.
- the In composition of the first strain correction layer 12 is 0.01 when the thickness of the first cladding layer 14 is in the range of 1.0 ⁇ m to 1.5 ⁇ m. It can be seen that the strain generated in the first cladding layer 14 can be reduced by setting the value between 1 and 0.03.
- the thickness of the first strain correction layer 12 is set to 0.1 ⁇ m, if this layer thickness is increased, the effect of compensating the tensile strain generated in the first cladding layer 14 is large, and the tension generated in the first cladding layer 14 is increased. The effect of reducing the sexual distortion is increased.
- the first strain correction layer 12 is made too thick, lattice defects are generated in the first strain correction layer 12 due to a difference in lattice constant with the GaN substrate 11, and crystallinity is lowered. Actually, when the thickness of the first strain correction layer 12 exceeds 0.3 ⁇ m, lattice defects are likely to occur in the first strain correction layer 12.
- the thickness of the first strain correction layer is smaller than 0.1 ⁇ m, the effect of compensating the tensile stress generated in the first cladding layer 14 and the second cladding layer 18 becomes small.
- the thickness of the first strain correction layer 12 is set to 0. What is necessary is just to set between 1 micrometer or more and 0.3 micrometer or less.
- the band gap energy of the electron barrier layer 17 and the second cladding layer 18 increases, and the electron barrier layer 17 and the second cladding layer 18.
- the barrier height against electrons of the layer 18 is increased.
- carrier overflow can be reduced. For this reason, the oscillation threshold value and operating current value at the time of high-temperature operation of the light emitting element can be reduced, and the reliability of the long-term operation of the light emitting element can be improved.
- the effect of the first strain correction layer 12 causes the GaN substrate to The average strain amount of the entire layer formed on 11 is almost zero.
- compressive strain is applied to the electron barrier layer 17 and the second cladding layer 18. That is, in the light emitting element shown in FIG. 5B, carrier overflow can be reduced, and as a result, the reliability of long-term operation of the light emitting element can be improved.
- the average strain of the entire layer is reduced by setting the thickness of the first cladding layer 14 to 1 ⁇ m or less for the light emitting device shown in FIG.
- the compressive strain can be applied, and the compressive strain can be applied to the electron barrier layer 17 and the second cladding layer 18.
- the Al composition of the first cladding layer is 0.06
- the average strain of the entire layer becomes tensile strain
- the electron barrier layer 17 and the second cladding layer 18 are pulled. Sexual distortion has been added.
- the Al composition of the first cladding layer is set to 0.04 or less. preferable.
- the Al composition of the first cladding layer 14 and the second cladding layer 18 is preferably 0.03 or more.
- the Al composition is preferably 0.03 or more and 0.04 or less.
- the first low refractive index layer 13 is not limited to an AlGaN material, but may be InGaAlN having a refractive index smaller than that of an AlGaN layer having an Al composition of 0.06.
- the region indicated by is a region where the refractive index of In 1-ab Al b Ga a N is smaller than the refractive index of Al 0.05 Ga 0.95 N. That is, if the condition of (Expression 2) is satisfied, the refractive index of the first low refractive index layer 13 can be made smaller than that of AlGaN having an Al composition of 0.05. In the first low refractive index layer that satisfies this condition, ⁇ N can be increased.
- In 0.02 Al 0.12 Ga 0.86 N can be used as the first low refractive index layer 13.
- In 0.02 Al 0.12 Ga 0.86 N satisfies (Equation 1) and almost satisfies (Equation 2), which is preferable.
- the first low refractive index layer 13 for example, one or more layers of In 0.02 Al 0.12 Ga 0.86 N having a thickness of 5 nm and In 0.04 Al 0.24 Ga 0. 72 N may be alternately formed in two or more layers to form a single quantum well structure or a multiple quantum well structure.
- the thickness of each layer constituting the single quantum well structure or the multiple quantum well structure is not limited to the above.
- the light-emitting element of the present disclosure preferably has the following configuration.
- a first strain correction comprising a GaN substrate 11 as a light emitting element and a first conductivity type (n-type) In x Ga 1-x N (0 ⁇ x ⁇ 1) formed on the GaN substrate 11.
- a low refractive index layer 13 comprising a GaN substrate 11 as a light emitting element and a first conductivity type (n-type) In x Ga 1-x N (0 ⁇ x ⁇ 1) formed on the GaN substrate 11.
- the first low refractive index layer 13 is made of Al z Ga 1 -zN (0.03 ⁇ z ⁇ 0.06) of the first conductivity type and formed on the first low refractive index layer 13.
- the active layer 16 It is formed on the active layer 16 and is made of Al t Ga 1-t N (0 ⁇ t ⁇ 1) of the second conductivity type (p-type) and protrudes in the direction from the GaN substrate 11 toward the active layer.
- the second cladding layer 18 having the ridge portion 18a may be provided.
- the first low refractive index layer 13 may be a multilayer structure having an In 1-ab Ga a Al b N layer whose average atomic composition satisfies the above (formula 3) to (formula 5).
- the In 1-ab Ga a Al b N layer may be thinned to have a quantum effect.
- the first low refractive index layer may be a single quantum well structure or a double quantum well structure.
- the light emitting device according to the second embodiment of the present disclosure includes a light emitting device according to the first embodiment illustrated in FIG. 1 between the GaN substrate 11 and the first strain correction layer 12.
- the second distortion correction layer 32 and the intermediate layer 33 are provided.
- the second strain correction layer 32 is made of an AlGaN material, and the Al composition is an AlGaN layer having an Al composition of 0.01 or less.
- the intermediate layer 33 is made of a GaN layer. This intermediate layer 33 can reduce the stress generated at the interface of the first strain correction layer 12 on the substrate 11 side, compared with the case where the first strain correction layer 12 is directly laminated on the second strain correction layer 32. it can. As a result, it is possible to suppress the occurrence of lattice defects generated in the first strain correction layer 12 as compared with the case where the first strain correction layer 12 is directly formed on the second strain correction layer 32.
- each semiconductor layer, the current blocking layer 20, the n-side electrode 21, and the p-side electrode 22 from the first strain correction layer 12 to the contact layer 19 of the light emitting device according to the second embodiment is the first configuration. This is the same as the light emitting device according to the embodiment.
- the ridge stripe structure is the same as that of the light emitting device according to the first embodiment.
- the light emitting device according to the second embodiment of the present disclosure is further different from the light emitting device disclosed in the first embodiment between the GaN substrate 11 and the first strain correction layer 12.
- 11 includes a second strain correction layer 32 made of Al s Ga 1-s N (0 ⁇ s ⁇ 0.01) of the first conductivity type (n-type) from the 11 side, and further includes the second strain correction layer 32 and the first strain.
- the intermediate layer 33 made of GaN of the first conductivity type (n-type) is provided between the correction layer 12 and the correction layer 12.
- the structural parameters of the light emitting device according to the second embodiment of the present disclosure are as shown in Table 4.
- FIG. 9 and FIG. 10 compare and show the calculation results of the average strain amount at each point along the stacking direction of the light emitting device according to the second embodiment of the present disclosure.
- the active layer 16 is expanded in the stacking direction.
- the parameters of the first strain correction layer 12, the first low refractive index layer 13, the first cladding layer 14, and the second cladding layer 18 that were examined are as shown in Tables 5 and 6.
- the parameters of the layers other than the layers shown in Table 5 and Table 6 are the same as in Table 4.
- the light emission wavelength of the light emitting element according to the second embodiment of the present disclosure is 445 nm.
- the IN composition, Al composition, and layer thickness of the second strain correction layer 32, the first low refractive index layer 13, the first cladding layer 14, and the second cladding layer 18 were examined as parameters.
- FIG. 9A shows a second strain correction layer 32, an intermediate layer 33, a first strain correction layer 12, and a first low refractive index layer in the light emitting device according to the second embodiment of the present disclosure shown in FIG.
- the Al composition is 0.035
- the AlGaN second cladding layer 18 is 0.7 ⁇ m thick
- the Al composition is 0.035. The calculation result of the average distortion amount of each point of the lamination direction in is shown.
- the first cladding layer 14 is uniformly 8 A tensile strain of about ⁇ 10 ⁇ 4 is applied, and the average strain amount is compensated and reduced in the region of the active layer 16 where the compressive strain of the InGaN-based material is applied, and the second cladding layer 18 in which the tensile strain is generated. It can be seen that the tensile strain increases again.
- the layer thickness of the second strain correction layer 32 is 1.0 ⁇ m, the Al composition is 0.01 and 0.005, and the layer thickness of the intermediate layer 33 is.
- the thickness of the first strain correction layer 12 is 0.1 ⁇ m, the composition of the first low refractive index layer 13 is 0.06, which is 0.025 higher than the Al composition of the first cladding layer 14, and the first low
- the layer thickness of the refractive index layer 13 is 0.05 ⁇ m
- the layer thickness of the first cladding layer 14 is 1 ⁇ m
- the layer thickness of the AlGaN second cladding layer 18 is 0.7 ⁇ m
- the In of the first strain correction layer 12 The calculation result of the average distortion amount of each point of the lamination direction when a composition is 0.02 is shown.
- the average strain generated in the first cladding layer 14 is the same as that shown in FIG. 5B, regardless of whether the Al composition of the second strain correction layer 32 is 0.005 or 0.01. It can be seen that the light emitting element shown in FIG.
- the strain of the entire layer is 4 ⁇ 10 ⁇ 4 at the maximum, which is about 1/5 of the light emitting device shown in FIG. The amount of distortion.
- the strain is almost zero. From this, it can be seen that the generation of lattice defects in the first strain correction layer 12 and the first low refractive index layer 13 can be suppressed in the light emitting element shown in FIG.
- the tensile strain amount of the first cladding layer 14 is larger than the tensile strain amount of the first cladding layer 14 in the light emitting element shown in FIG. small.
- the compressive strain of the first strain correction layer 12 and the average strain of the tensile strain of the first cladding layer 14 are reduced. Because.
- FIG. 9 (c) and 9 (d) show the case where the thickness of the first cladding layer 14 is 1.5 ⁇ m, compared to the structure of FIG. 9 (a) and FIG. 9 (b), respectively.
- the calculation result of is shown.
- the first strain correction is performed by using the second strain correction layer 32 having a weak tensile strain, similarly to the result shown in FIG. 9B. It can be seen that the compressive strain of the layer 12 and the average strain of the tensile strain of the first cladding layer 14 are reduced.
- the thickness of the first strain correction layer 12 is set to 0.1 ⁇ m. If this layer thickness is increased, the first cladding layer 14 is generated. The tensile strain compensation effect is increased, and the tensile strain reduction effect generated in the first cladding layer 14 is increased.
- the layer thickness of the first strain correction layer 12 is set to 0. What is necessary is just to set to the range from 1 micrometer to 0.3 micrometer.
- the average strain of the entire layer is reduced by setting the thickness of the first cladding layer 14 to 1 ⁇ m or less in the light emitting device shown in FIG. 9B.
- the compressive strain can be applied, and the compressive strain can be applied to the electron barrier layer 17 and the second cladding layer 18.
- the Al composition of the first cladding layer is 0.06
- the average strain of the entire layer becomes tensile strain
- the electron barrier layer 17 and the second cladding layer 18 are pulled. Distortion has occurred.
- the Al composition of the first cladding layer is set to 0.04 or less. preferable.
- FIG. 10A shows a second strain correction layer 32, an intermediate layer 33, a first strain correction layer 12, and a first low refractive index layer in the light emitting device according to the second embodiment of the present disclosure shown in FIG. 13 is a structure in which the thickness of the first cladding layer 14 is 1 ⁇ m, the Al composition is 0.06, the thickness of the second cladding layer 18 is 0.7 ⁇ m, and the Al composition is 0.06. The calculation result of the average distortion amount of each point of a direction is shown.
- the N-type first cladding layer 14 is uniform.
- the tensile strain of about 1.4 ⁇ 10 ⁇ 3 is applied to the active layer 16, and the average strain amount is compensated and reduced in the region of the active layer 16 where the compressive strain of the INGaN-based material is applied, and the tensile strain is generated. It can be seen that the tensile strain is increased again in the two clad layer 18.
- the thickness of the second strain correction layer 32 is 1.0 ⁇ m, the Al composition is 0.01 and 0.005, and the intermediate layer 33 is used.
- the thickness of the first strain correction layer 12 is 0.1 ⁇ m, and the composition of the first low refractive index layer 13 is 0.025 higher than the Al composition of the first cladding layer 14 by 0.085.
- the calculation results of the average strain amount at each point in the stacking direction when the In composition of the layer is 0.01, 0.02, and 0.03 are shown.
- the Al composition of the first cladding layer and the second cladding layer is 0.035 to 0.005.
- the Al composition of the second strain correction layer 32 is 0.005 to 0.01 in the range of 06 and the thickness of the first cladding layer 14 in the range of 1.0 ⁇ m to 1.5 ⁇ m, the first cladding It can be seen that strain generated in the layer 14 can be reduced.
- the In composition and the layer thickness of the well layer in the active layer 16 are not limited to the above, and the composition and the layer thickness of the barrier layer are not limited to the above.
- the In composition and layer thickness of the well layer in the active layer 16 and the composition and layer thickness of the barrier layer can be appropriately selected according to the emission wavelength of the light emitting element.
- the emission wavelength can be made larger than 445 nm, and light emission such as blue or green can be obtained.
- the emission wavelength can be set to 530 nm.
- the Al compositions of the first cladding layer 14 and the second cladding layer are equal, but this is not always necessary.
- the Al composition may be different.
- the layer structure of the light-emitting element is formed on the c-plane of the GaN substrate 11.
- the layer structure is not limited to the c-plane, but is a plane inclined from the c-plane, that is, GaN.
- the layer structure of the light emitting element may be formed on the off substrate, or the layer structure of the light emitting element may be formed on the GaN substrate having the m-plane, r-plane or a-plane as the main surface.
- the semiconductor laser device has been discussed.
- the technology according to the present disclosure can also be applied to the LED device, and the generation of cracks and lattice defects is suppressed.
- An LED element having a longer wavelength band than blue can be realized.
- the invention according to the present disclosure realizes a watt-class light source that has excellent temperature characteristics capable of operating at an ultrahigh output of 1 watt or more and can guarantee long-term reliability in a light emitting device having a wavelength of 445 nm or more.
- it can be used for watt-class light sources used for projector light sources.
- the light source is not limited to the projector light source, but can be used as a light source for an in-vehicle headlamp, for example, or can be used as an illumination light source for a stadium.
- GaN substrate 12
- First strain correction layer 13
- First low refractive index layer 14
- First cladding layer 15
- Light guide layer 16
- Active layer 17
- Electron barrier layer 18
- Second cladding layer 19
- Contact layer 20
- Current blocking layer 21
- N-side electrode 22
- p Side electrode 32
- Second strain correction layer 33
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Geometry (AREA)
- Semiconductor Lasers (AREA)
- Led Devices (AREA)
Abstract
本開示の発光素子は、GaN基板(11)と、GaN基板(11)上に形成された、n型のInxGa1-xN(0<x≦1)よりなる第1歪補正層(12)と、第1歪補正層(12)の上に形成された、n型のIn1-a-bGaaAlbNからなり、かつ(a/0.98)+(b/0.8)≧1、)(a/1.02)+(b/0.85)≦1および(a/1.03)+(b/0.68)≧1の関係を有する第1低屈折率層(13)と、を備えている。そして、さらに、第1低屈折率層(13)の上に形成された、n型のAlzGa1-zN(0.03≦z≦0.06)からなり、かつ第1低屈折率層(13)よりも屈折率の高い第1クラッド層(14)と、第1クラッド層(14)の上に形成された活性層(16)と、を備えている。
Description
本開示は、高出力の光源に関し、特に窒化物半導体よりなる発光素子に関する。
従来、大画面の画像を効率的に得るための一形態として、映像信号に応じた画像を形成する小型の液晶パネル等の空間光変調素子を、ランプなどの光源からの光で照明し、投射レンズによってその光学像をスクリーン上に拡大投射する投射型画像表示装置としてプロジェクタが広く用いられている。このようなプロジェクタなどの投射型画像表示装置においては、可視光の波長帯域で高い発光効率が得られる超高圧水銀ランプで光源を構成することが一般的である。
これに対して、昨今、プロジェクタの光源に高圧水銀ランプではなく、半導体素子であるLED(Light Emitting Diode)が用いられている。LEDプロジェクタは消費電力が低く、静音性が高く、ランプ寿命が長いといった特徴があり、本体サイズも小型になる。
しかしながら、LEDは発光層である活性層における自然放出光を利用しているために輝度が十分とはいえない。このため、光源にワット級(すなわち1W以上)の大出力が可能な半導体レーザにより蛍光体を励起し、可視域の光に対して十分な輝度を得ることが可能なレーザプロジェクタが注目されている。
一般式がIn1-x-yGaxAlyN(0≦x≦1、0≦y≦1)で表される窒化物系材料を用いた半導体レーザ(窒化物系半導体レーザ)は、可視光から紫外光まで発光可能であり、上記レーザプロジェクタの光源として好適である。
例えば、窒化物系半導体レーザで青色、緑色光の光源を形成し、AlGaInP系材料を用いたレーザを赤色光源とすれば、小型低消費電力のレーザプロジェクタを実現することができる。
ここで、プロジェクタ光源に使用される半導体レーザには、ワット級の大出力動作のみならず、50℃以上の高温動作時においても10000時間以上の長期動作が要望されている。
これに対し、例えば、図11に示す特許文献1にかかる従来の発明において発振波長430nm帯の窒化物系青色レーザに関する技術(第1の従来技術)が開示されている。
この従来の発明においては、GaN基板101上に、Al0.05Ga0.95Nバッファ層102、n型コンタクト層103、クラック防止層104、n型クラッド層105、n型光ガイド層106、n側第1窒化物半導体層131b、多重量子井戸活性層107、p型電子閉じ込め層108、p側第1窒化物半導体層131a、p型光ガイド層109、p型クラッド層110、およびp型コンタクト層111よりなる積層構造にリッジストライプを形成することにより発振波長448nmにおいてレーザ発振を得ている。n型コンタクト層103は、SiドープAl0.05Ga0.95Nからなる。クラック防止層104は、In0.06Ga0.94Nからなり厚さ0.15μmである。n型クラッド層105は、厚さ2.5nmのアンドープAl0.05Ga0.95Nと厚さ2.5nmのSiドープGaNとからなる組み合わせを200回繰り返した超格子である。n型光ガイド層106は、アンドープのGaNからなり、厚さ0.1μmである。n側第1窒化物半導体層131bは、厚さ50nmのSiドープのIn0.05Ga0.95Nからなる。多重量子井戸活性層107は、厚さ13nmのアンドープのIn0.05Ga0.95Nの障壁層が3層とアンドープのIn0.32Ga0.68Nよりなる厚さ2.5nmの井戸層が2層とからなる。p型電子閉じ込め層108は、厚さ10nmのMgドープAl0.3Ga0.7N層からなる。p側第1窒化物半導体層131aは、厚さ50nmのMgドープIn0.05Ga0.95N層からなる。p型光ガイド層109は、厚さ0.15μmのアンドープのGaNからなる。p型クラッド層110は、厚さ2.5nmのアンドープAl0.05Ga0.95Nと厚さ2.5nmのMgドープGaNとからなる組み合わせを90回繰り返した厚さ0.45μmの超格子である。p型コンタクト層111は、厚さ15nmのMgドープのp型GaN層からなる。
図11に示す従来構造においては、n型クラッド層105とp型クラッド層110により、多重量子井戸活性層への垂直方向(本願において、基板の法線方向を垂直方向と呼ぶ。また、レーザ共振器端面に平行で基板の法線方向に垂直な方向を水平方向と呼ぶ。)の光閉じ込めを行い、p型クラッド層110に形成したリッジにより水平方向の光閉じ込めを行い、レーザ発振を可能としている。
また、従来の発明においては、p型電子閉じ込め層108とp型クラッド層110との間に備えた、厚さ50nmのMgドープIn0.05Ga0.95N層よりなる第1窒化物半導体層131aと厚さ0.15μmのアンドープのGaNよりなるp型光ガイド層109とにより、光分布の活性層への垂直方向の光閉じ込め率を増大している。
また、p型電子閉じ込め層108により、活性層に注入した電子がp型クラッド層へ漏れるキャリアオーバーフローを低減している。
この構造において、量子井戸活性層に厚さ2.5nm、In組成0.32のInGaNウェル層を2層用いることで、温度特性の向上とレーザ発振しきい電流値の低減を図った波長448nmの青色レーザを実現している。
なお、以下3元混晶であるAlxGa1-xN(0<x<1)をAlGaN、InyGa1-yN(0<y<1)をInGaN、4元混晶であるInyAlxGa1-x-yN(0<x<1、0<y<1)をInAlGaNと表記することがある。
プロジェクタ光源に使用される半導体レーザ素子には、ワット級の大出力動作のみならず、50℃以上の高温動作時においても10000時間以上の長期動作が要望されている。従って、波長445nm帯の青色域、及び、波長530nm帯の緑色域において、高温、高出力動作可能な半導体レーザを実現する必要がある。
ここで、発振波長が405nmの青紫色域から530nmの青色域へと長波長化するに伴い、活性層に広く用いられるInGaN層と、クラッド層に広く用いられるAlGaN層との屈折率差が小さくなる。このため、クラッド層にAlGaN材料を用いた窒化物系レーザにおいては、波長405nm帯の青紫色レーザに対して長波長の発振波長445nm帯の青色レーザ、さらに長波長の発振波長530nm帯の緑色レーザのように、波長が長い発振波長域の窒化物レーザは、垂直方向の光閉じ込めが小さくなるという課題がある。
この課題を解決するためには、クラッド層に用いるAlGaN層のAl組成を0.1以上に高くすれば良いが、この場合、AlGaN層と活性層に用いるInGaN層の熱膨張係数の差が大きくなり、クラックや格子欠陥が発生してしまう。
本開示は、上記課題を解決するためになされたものであり、波長445nm帯のレーザにおいて、クラックの発生を抑制するためにInGaNバッファ層を用いた構造において、ΔNの低下、光閉じ込め係数の低下を抑制可能なレーザを実現することを目的とする。
上記課題を解決するために、本開示の発光素子は、GaN基板と、GaN基板上に形成された、第1導電型のInxGa1-xN(0.01≦x≦0.03)よりなる第1歪補正層と、第1歪補正層の上に形成された、第1導電型のIn1-a-bGaaAlbNからなり、かつ(a/0.98)+(b/0.8)≧1、(a/1.02)+(b/0.85)≦1、(a/1.03)+(b/0.68)≧1の関係を有する第1低屈折率層と、第1低屈折率層の上に形成された、第1導電型のAlzGa1-zN(0.03≦z≦0.06)からなり、かつ第1低屈折率層よりも屈折率の高い第1クラッド層と、第1クラッド層の上に形成された活性層と、を備えている。
上記構成において、(a/0.98)+(b/0.8)≧1、(a/1.02)+(b/0.85)≦1、(a/1.03)+(b/0.68)≧1の関係を有することにより、第1導電型のIn1-a-bGaaAlbNからなる第1低屈折率層は、Al組成が0.06のAlGaNよりも屈折率が低く、かつ、GaNとの格子定数の差を、Al組成が0.1のAlGaNとGaNとの間の格子定数の差よりも小さくすることができる。さらに第1導電型のAlzGa1-zNからなる第1クラッド層のAl組成zの範囲を、0.03≦z≦0.06とすることで、第1低屈折率層の屈折率は、第1クラッド層の屈折率よりも低くすることが可能となる。その結果、垂直方向の光分布が、屈折率の低い第1低屈折率層で減衰するため、屈折率の高い第1歪補正層の影響を受けにくくなり、ΔNの低下を抑制することができる。また、第1低屈折率層により、垂直方向の光分布のGaN基板方向への拡がりが抑制されるため、光閉じ込め係数が小さくなるのを防止することができる。
本開示の発光素子は、さらに、活性層の上に形成され、第2導電型の AltGa1-tN(0≦t≦1)からなり、かつGaN基板より活性層へ向う方向に凸となるリッジ部を有する第2クラッド層と、を備えることが好ましい。
本開示の発光素子は、さらに、第1歪補正層のIn組成xの範囲を、0.01≦x≦0.03とすることが好ましい。この好ましい構成によれば、圧縮性の歪がかかる第1歪補正層の上に結晶成長した第1クラッド層、第2クラッド層で生じる引っ張り性の歪を補償できるため、GaN基板上に形成したダブルへテロ構造の全体の平均的な歪の大きさが低減し、クラックの発生を抑制することができる。
この結果、クラックの発生を抑制しつつ、ΔNの低下、光閉じ込め係数の低下を抑制することができる。
本開示の発光素子は、さらに、第1歪補正層の層厚が0.1μm以上かつ0.2μm以下であることが好ましい。この好ましい構成によれば、第1歪補正層で格子欠陥が生じるのを抑制でき、第1クラッド層および第2クラッド層で生じる引っ張り性の応力を補償でき、クラックの発生を抑制することができる。
本開示の発光素子は、さらに、第1低屈折率層は、第1導電型のAlbGa1-bN (0.06≦b≦0.1)より形成されていることが好ましい。
本開示の発光素子は、さらに、第1低屈折率層の層厚は10nm以上かつ100nm以下であることが好ましい。この好ましい構成によれば、第1低屈折率層の層厚を10nm以上かつ100nm以下とすることにより、発光素子の動作電圧の増大を防止でき、ΔNの低下と光閉じ込め係数の低下とを抑制することができる。
本開示の発光素子の好ましい構成は、さらに、第1低屈折率層が、平均原子組成がIn1-a-bGaaAlbNの単一量子井戸構造または多重量子井戸である。
この好ましい構成とすることで、多重量子井戸低屈折率層を構成する各層の層厚を臨界層厚以下とすることで、第1低屈折率層での格子欠陥の発生を抑制することが可能となる。この結果、素子の長期動作における信頼性が向上する。
本開示の発光素子は、さらに、第1クラッド層において、z≦0.04であることが好ましい。
本開示の発光素子は、さらに、第1クラッド層において、層厚が1μm以下であり、かつ0.03≦z≦0.04であることが好ましい。の好ましい構成によれば、層全体の平均歪を圧縮性の歪とすることが可能となる。この場合、活性層に注入されたキャリアのオーバーフローが抑制されるため、発光素子の高温動作特性が向上し、動作電流値が小さくなる。そのため、発光素子の長期動作に関する信頼性が向上する。
本開示の発光素子は、さらに、GaN基板と、第1歪補正層との間には、GaN基板より第1導電型のAlsGa1-sN(0<s≦0.01)よりなる第2歪補正層を備えていることが好ましい。この好ましい構成とすること、すなわちAlsGa1-sNよりなる第2歪補正層のAl組成を0.01以下とすることにより、第2歪補正層の臨界層厚を300nm以上とすることができ、GaN基板との格子不整合による格子欠陥の発生を抑制することが可能となる。
本開示の発光素子は、さらに、第2歪補正層と第1歪補正層との間に第1導電型のGaNよりなる中間層が順次形成されたことが好ましい。この好ましい構成によれば、第2歪補正層の上にGaNよりなる中間層を備えることにより結晶性を回復させることができる。そしてその上に第1歪補正層を形成することで、第1歪補正層を形成しても、引っ張り性の歪が生じる第2歪補正層と、圧縮性の歪が生じる第1歪補正層とで、歪を補償することができるため、中間層と第1歪補正層との界面での格子欠陥の発生を抑制することが可能となる。この結果、素子の長期動作信頼性の劣化を防止することが可能となる。
本開示の発光素子は、さらに、活性層と、第2クラッド層との間に、第2導電型のAlhGa1-hN(0<h≦1)よりなる電子障壁層を備えることが好ましい。
本開示の発光素子は、さらに、電子障壁層は、圧縮歪を有することが好ましい。
本開示の発光素子は、さらに、第2クラッド層は、圧縮歪を有することが好ましい。
本開示の発光素子は、さらに、活性層は、InfGa1-fN(0<f≦1)よりなるウェル層と、AlgGa1-gN(0≦g≦1)よりなるバリア層とを少なくとも1層含む量子井戸であることが好ましい。
本開示の発光素子は、さらに、活性層は、ウェル層を少なくとも2層含む、多重量子井戸であることが好ましい。
本開示の発光素子は、さらに、活性層は、2重量子井戸または3重量子井戸であることが好ましい。
本開示の発光素子は、さらに、活性層の特性波長は445nm以上であることが好ましい。
本開示の発光素子により、波長445nm帯以上の長波長のレーザにおいて、クラックの発生を抑制するためにInGaNバッファ層を用いた構造において、ΔNの低下、光閉じ込め係数の低下を抑制できる。
この結果、長期信頼性動作に優れ、高温動作時において温度特性に優れた発光波長445nm帯以上の長波長帯のワット級の窒化物系ワット級レーザを実現できる。
(本発明の基礎となった知見)
本発明者らは、背景技術の欄において記載した発光素子に関し、以下の問題が生じることを見出した。
本発明者らは、背景技術の欄において記載した発光素子に関し、以下の問題が生じることを見出した。
プロジェクタ光源に使用される半導体レーザ素子には、ワット級の大出力動作のみならず、50℃以上の高温動作時においても10000時間以上の長期動作が要望されている。従って、波長445nm帯の青色域及び、波長530nm帯の緑色域において、高温、高出力動作可能な半導体レーザを実現する必要がある。
ここで、発振波長が405nmの青紫色域から530nmの青色域へと長波長化するに伴い、活性層に広く用いられるInGaN層と、クラッド層に広く用いられるAlGaN層との屈折率差が小さくなる。このため、クラッド層にAlGaN材料を用いた窒化物系レーザにおいては、波長405nm帯の青紫色レーザに対して長波長の発振波長445nm帯の青色レーザ、さらに長波長の発振波長530nm帯の緑色レーザのように、波長が長い発振波長域の窒化物レーザは、垂直方向の光閉じ込めが小さくなるという課題がある。
この課題を解決するためには、クラッド層に用いるAlGaN層のAl組成を0.1以上に高くすれば良いが、この場合、AlGaN層と活性層に用いるInGaN層の熱膨張係数の差が大きくなり、クラックや格子欠陥が発生してしまう。さらに、p型AlGaNクラッド層が高抵抗化し、素子の動作電圧が増大してしまう。このため、クラックの発生を抑制するためには、クラッド層にAlGaN層を用いる場合、Al組成は0.1程度以上に高めることは困難である。また、Al組成が0.05から0.1の間のAlGaN層をクラッド層に用いたとしても、p型AlGaN層の抵抗が高くなりやすく、動作電圧の増大を招いてしまう。動作電圧が増大すると素子がレーザ発振した場合における素子の自己発熱が増大し、温度特性が劣化してしまう。
また、波長405nm帯の青紫色レーザに対して、所望の発振波長を得るためには量子井戸活性層におけるInGaNウェル層のIn組成は0.07程度であったが、発振波長445nm帯の青色レーザにおいてはInGaNウェル層のIn組成は0.15程度以上が必要となる。さらに、発振波長530nm帯の緑色レーザにおいてはInGaNウェル層のIn組成が0.3程度以上である高In組成のInGaN層が必要となる。InGaN層において、In組成が高くなると、GaN基板との格子不整合が大きくなるのみならず、InGaN層を構成するInNとGaNの安定なIII族-V族原子間距離が異なるために結晶内部に蓄積される内部歪エネルギーが大きくなる。この内部歪エネルギーを低減するために、高In組成のInGaN層においてはIn組成の高い領域と低い領域に組成が分離する組成分離が生じやすくなる。InGaN層を成長する温度である800℃付近の温度では、In組成が0.15付近以上の高In組成となると熱力学的に不安定となり、組成分離が生じやすくなる。組成分離が生じると、ウェル層内でバンドギャップエネルギーの面内分布にバラツキが生じ、バンドギャップ波長の小さい部分はIn組成が高く格子欠陥が生じやすいのみならず、レーザ発振光に対し、光吸収中心となり、発振しきい電流値や電流-光出力特性における外部微分効率(以下、スロープ効率)の低下を招くことになる。この結果、動作電流値が大きくなり、温度特性の劣化をもたらすことになり、実用上重大な支障をきたすことになる。
そこで、組成分離や格子不整合による格子欠陥の発生を抑制するために、高In組成のウェル層の層厚を3nm以下に薄くしてInGaNウェル層の体積を小さくし、その上に成長する障壁層にはGaNないしは、GaNとの格子不整合が小さいIn組成0.05程度以下のInGaN層を10nm程度以上成長し結晶性の回復を行うことが効果的である。このような構成とすれば、薄いウェル層の上下が、GaN層ないし、GaN層に格子定数が近いInGaNで挟まれる構造となり、InGaN層に格子欠陥が生じる臨界層厚を超えることなく、InGaNウェル層の組成分離をある程度抑制することが可能となる。これは、障壁層とウェル層との界面で発生するウェル層と障壁層間の格子不整合による歪エネルギーにより高In組成層であっても、組成分離を生じない方が熱力学に安定となるためである。この様に、高In組成のInGaNウェル層の層厚は3nm程度以下と薄くする必要がある。
この場合、ウェル層の厚さが薄いため活性層への光の閉じ込め係数がなおさら低下してしまうことになる。従って、光閉じ込め係数を増大させるためには、前述のように、クラッド層に用いるAlGaN層のAl組成を0.1以上に可能な限り高くすれば良いが、この場合、AlGaN層と活性層に用いるInGaN層の格子定数の差が大きくなり、クラックや格子欠陥が発生してしまう。
以上のように、波長445nm帯から530nm帯の窒化物系レーザにおいては、InGaN活性層とAlGaNクラッドの屈折率差を大きくすることが困難であり、さらに、ウェル層の層厚は3nm以下の薄い層厚とする必要があるため、垂直方向の光閉じ込め係数が1%程度と非常に小さい値となってしまう。光閉じ込め係数が小さいと、活性層における動作キャリア密度が大きくなり、高温高出力動作時において、活性層からp型クラッド層へのキャリアのオーバーフローが増大し、温度特性の劣化や電流-光出力特性における光出力の熱飽和レベルの低下を招くことになる。
光の閉じ込め係数を増大させるべくAlGaNクラッド層のAl組成を高くするとクラックや格子欠陥が生じやすく、素子の長期動作信頼性上、重大な支障をきたすことになる。
ここで、本発明では、基板の法線方向を垂直方向、共振器端面の面内において、基板の法線方向と垂直な方向を水平方向と呼ぶことにする。
クラックの発生を防止するためには、特許文献2に示す従来の構造(第2の従来技術)では、図12に示すように、GaNよりなるフリースタンディングの基板201と、基板上に形成されたn型AlxGa1-xN(0≦x≦0.1)よりなる第1バッファ層202と、第1バッファ層上に形成されたn型InyGa1-yN(0<y≦0.1)よりなる第2バッファ層203と、第2バッファ層上にn側クラッド層204、活性層206、p側クラッド層209を順次備えた構造としている。この構成により、バッファ層の機能を、再成長界面からの転位の発生を抑制する第1バッファ層202と、クラックの発生を抑制する第2バッファ層203とに分けることで、フリースタンディングの基板201上に高品質のAlGaN層を成長させ、電気特性の優れた窒化物半導体素子を得ることができることが開示されている。
しかしながら、この構造において、第2バッファ層202は屈折率が他の層と比較して相対的に高いため、第2バッファ層202と活性層206間の層厚が薄いと、導波路に閉じ込められる光分布は屈折率の高い第2バッファ層202の影響を受け、第2バッファ層202のある基板側に垂直方向の光分布が偏ってしまう。
このようになると、リッジ内外の実効屈折率差(ΔN)が低下し、光分布の水平方向の閉じ込め機構が弱くなり、電流-光出力特性が非線形となるキンクが生じたり、動作電流値が高くなるという課題が生じる。この場合、垂直方向光分布が第2バッファ層202まで広がらないように、第2バッファ層202と活性層間206のn側クラッド層204の層厚を厚くするか、基板と活性層間のn側クラッド層のAl組成を高くして垂直方向の光閉じ込めを強くすれば良いが、このようにすると、n側クラッド層204での応力が大きくなり、クラックが生じやすくなる。あるいは、p側クラッド層209のAl組成をn側クラッド層204のAl組成よりも低く設定し、p側クラッド層209の屈折率を相対的にn側クラッド層204よりも高くして、垂直方向光分布を相対的にp型層寄りとする方法も考えられるが、活性層206における光閉じ込め係数が小さくなり、温度特性が劣化してしまう。
このため、InGaNバッファ層を用いた従来の波長445nm帯のレーザにおいては、n側クラッド層の層厚が薄くして、n側クラッド層でのクラックの発生を抑制すると、ΔNの低下、光閉じ込め係数の低下を招き、電流-光出力特性が線形性に優れ、温度特性も優れたレーザを実現することが困難であった。
本開示は、上記課題を解決するためになされたものであり、波長445nm帯のレーザにおいて、クラックの発生を抑制するためにInGaNバッファ層を用いた構造において、ΔNの低下、光閉じ込め係数の低下を抑制可能なレーザを実現することを目的とする。
以下、本開示にかかる発明の実施の形態について図面を参照しながら、説明を行う。
(第1の実施形態)
(1-1 素子構造)
本開示の第1の実施形態に係る発光素子の構造に関する断面図を図1に示す。図1に示す発光素子は、主面をc面((0001)面)とするGaN基板11上に、InGaNよりなり層厚が0.1μmであるn型の第1歪補正層12、層厚が0.05μmであるn型のAlGaNよりなる第1低屈折率層13、n型のAlGaNよりなる第1クラッド層14、層厚が0.2μmであるN型のGaNよりなる光ガイド層15、InGaN系材料からなる多重量子井戸の活性層16、層厚が20nmであり、Al組成が0.2であるAlGaNよりなるp型の電子障壁層17、p型のAlGaNよりなる第2クラッド層18、層厚が0.1μmであるp型のGaNよりなるコンタクト層19、発光光に対して透明なSiO2よりなる電流ブロック層20、p側電極22、及び、n側電極21が形成されてなる。この発光素子は、半導体レーザ装置である。第2クラッド層18にはリッジ18aが形成されているが、このリッジ18aの底部の幅(W)は8.0μmである。また、リッジ18aは、GaN基板11より離れるにつれて幅が狭くなっている。なお、p側電極22は、NiとPtとAuとの積層構造よりなり、N側電極21は、TiとAlとの積層構造よりなる。
(1-1 素子構造)
本開示の第1の実施形態に係る発光素子の構造に関する断面図を図1に示す。図1に示す発光素子は、主面をc面((0001)面)とするGaN基板11上に、InGaNよりなり層厚が0.1μmであるn型の第1歪補正層12、層厚が0.05μmであるn型のAlGaNよりなる第1低屈折率層13、n型のAlGaNよりなる第1クラッド層14、層厚が0.2μmであるN型のGaNよりなる光ガイド層15、InGaN系材料からなる多重量子井戸の活性層16、層厚が20nmであり、Al組成が0.2であるAlGaNよりなるp型の電子障壁層17、p型のAlGaNよりなる第2クラッド層18、層厚が0.1μmであるp型のGaNよりなるコンタクト層19、発光光に対して透明なSiO2よりなる電流ブロック層20、p側電極22、及び、n側電極21が形成されてなる。この発光素子は、半導体レーザ装置である。第2クラッド層18にはリッジ18aが形成されているが、このリッジ18aの底部の幅(W)は8.0μmである。また、リッジ18aは、GaN基板11より離れるにつれて幅が狭くなっている。なお、p側電極22は、NiとPtとAuとの積層構造よりなり、N側電極21は、TiとAlとの積層構造よりなる。
第2クラッド層18は、リッジ18aの上部と活性層16までの距離を0.7μmとし、リッジ18aの下端部と活性層16との距離をdp(0.05μm)としている。なお、n型のドーパントとしてはSiが用いられており、n型半導体層には1018cm-3程度のSiが添加されている。また、p型のドーパントとしてはMgが用いられ、p型半導体層には1019cm-3程度のMgが添加されている。
なお、電子障壁層17は、活性層16に閉じ込められた電子が第2クラッド層18へあふれる(キャリアオーバーフロー)のを抑制するために設けられる。
本開示の第1の実施形態に係る発光素子は、リッジストライプの半導体レーザ装置であり、リッジ18aは図1の紙面に垂直な方向に沿って延び、その長さは1000μmである。また、発光素子の前端面(図示せず)には低反射率(AR)コートがなされ、後端面(図示せず)には高反射率(HR)コートがなされている。前端面及び後端面は、ともにリッジ18aの延びる方向に垂直であり、前端面と後端面との間で共振器を形成している。
本開示の第1の実施形態に係る発光素子の発光波長は、445nmである。
(1-2 第1クラッド層14および第2クラッド層18のAl組成の検討)
ここで、第1クラッド層14及び第2クラッド層18のAl組成を大きくすると、活性層16と第1クラッド層14との間の屈折率差、および活性層16と第2クラッド層18との間の屈折率差を大きくすることができ、活性層16に垂直な方向に光を強く閉じ込めることが可能となり、発振しきい電流値を小さくすることが可能となる。しかしながらAlGaNとGaNとの格子定数の差のために、第1クラッド層14および第2クラッド層18のAl組成を大きくしすぎると格子欠陥が生じ信頼性の低下につながる。さらに、Al組成を高めると、p型不純物の活性化率の低下により、第2クラッド層18の抵抗が大きくなり、発光素子の直列抵抗の増大につながる。そのため、第1クラッド層14および第2クラッド層18のAl組成の上限は0.1以下、より好ましくは0.05以下ということになる。
ここで、第1クラッド層14及び第2クラッド層18のAl組成を大きくすると、活性層16と第1クラッド層14との間の屈折率差、および活性層16と第2クラッド層18との間の屈折率差を大きくすることができ、活性層16に垂直な方向に光を強く閉じ込めることが可能となり、発振しきい電流値を小さくすることが可能となる。しかしながらAlGaNとGaNとの格子定数の差のために、第1クラッド層14および第2クラッド層18のAl組成を大きくしすぎると格子欠陥が生じ信頼性の低下につながる。さらに、Al組成を高めると、p型不純物の活性化率の低下により、第2クラッド層18の抵抗が大きくなり、発光素子の直列抵抗の増大につながる。そのため、第1クラッド層14および第2クラッド層18のAl組成の上限は0.1以下、より好ましくは0.05以下ということになる。
一方、波長445nm帯以上の長波長帯では、活性層16とAlGaN材料との間の屈折率差が小さくなり、垂直方向の光閉じ込め係数が低下する。このため、第1クラッド層14および第2クラッド層18のAl組成を可能な限り高めて、垂直方向の光閉じ込め係数を増大させる必要がある。特に波長445nm帯およびそれよりも長波長の領域では、InGaN層とAlGaN層との屈折率を大きくすることが波長405nm帯よりも難しく、垂直方向光閉じ込め係数を大きくすることが困難である。垂直方向の光閉じ込め係数を大きくするためには、第1クラッド層14および第2クラッド層18のAl組成を0.03以上にしなければならない。
従って、第1クラッド層14および第2クラッド層18のAl組成は0.03以上とすることが好ましく、Al組成の上限として0.1以下、より好ましくは0.05以下であることが好ましい。
(1-3 活性層16のウェル層数の検討)
発光素子の活性層16として、ウェル(井戸)層が単一または複数である量子井戸構造が用いられる。波長が445nmのレーザ発振を得るためには、ウェル層のIn組成を0.15程度とする必要がある。しかしながら、In組成が0.15であるInGaNとGaNと間の格子不整合は約1.6%であり、ウェル層厚を3nmより厚くすると、ウェル層の臨界層厚を大きく上回り格子欠陥が生じてしまう。格子欠陥は、光吸収中心となり、発光素子の発振しきい電流値や動作電流値の増大を招き、信頼性の低下につながるため、極力その発生を抑制する必要がある。従って、ウェル層の厚さは3nm以下とするのが好ましい。
発光素子の活性層16として、ウェル(井戸)層が単一または複数である量子井戸構造が用いられる。波長が445nmのレーザ発振を得るためには、ウェル層のIn組成を0.15程度とする必要がある。しかしながら、In組成が0.15であるInGaNとGaNと間の格子不整合は約1.6%であり、ウェル層厚を3nmより厚くすると、ウェル層の臨界層厚を大きく上回り格子欠陥が生じてしまう。格子欠陥は、光吸収中心となり、発光素子の発振しきい電流値や動作電流値の増大を招き、信頼性の低下につながるため、極力その発生を抑制する必要がある。従って、ウェル層の厚さは3nm以下とするのが好ましい。
一方、ウェル層厚が薄いと、発光素子の垂直方向の光閉じ込め係数が低下する。そこで、ウェル層の層厚を多くする必要がある。ところが、ウェル層の層数が4層以上となると、各ウェル層の動作キャリア密度にばらつきが生じやすくなり、各ウェル層の最大利得を与える利得ピーク波長がばらついてしまう。この結果、発振しきい電流値が増大してしまう。また、ウェル層の間にある障壁層の層数も多くなるため、発光素子の直列抵抗の増大や、ピエゾ効果による障壁層の電位ポテンシャルの傾きの影響が増大し、動作電圧が増大してしまう。この結果、ウェル層数を多くしすぎると、発振しきい電流値が大きくなり、かつ動作電圧が高い発光素子となってしまう。この結果、発光素子の温度特性が劣化してしまう。
また、ウェル層数が1すなわち単一量子井戸構造では光閉じ込め係数が小さくなり、動作キャリア密度が増大するため、キャリアオーバーフローが増大し、電流―光出力特性において熱飽和する光出力が低下してしまう。従って、ウェル層厚が3nm以下の薄いウェル層であっても、ウェル層数は2層備えた2重量子井戸(Double Quantum Well、DQW)構造、または3層備えた3重量子井戸(Triple Quantum Well、TQW)構造とする必要がある。
本開示の第1の実施形態の発光素子における活性層16は、厚さ3nm、In組成0.15のInGaNよりなるウェル層を2層備え、バリア層としてGaNとした2重量子井戸構造としている。
(1-4 第1歪補正層12の導入)
波長445nm帯およびそれよりも長波長の領域では、InGaN層とAlGaN層の屈折率を大きくすることが波長405nm帯よりも難しく、垂直方向光閉じ込め係数を大きくすることが困難である。垂直方向の光閉じ込め係数を大きくするためには、第1クラッド層14および第2クラッド層18のAl組成を0.03以上にしなければならない。この場合、第1クラッド層14の層厚が1.5μm程度となると、GaN基板11と第1クラッド層14との間の格子定数の差により、格子欠陥やクラックが発生しやすくなってしまう。
波長445nm帯およびそれよりも長波長の領域では、InGaN層とAlGaN層の屈折率を大きくすることが波長405nm帯よりも難しく、垂直方向光閉じ込め係数を大きくすることが困難である。垂直方向の光閉じ込め係数を大きくするためには、第1クラッド層14および第2クラッド層18のAl組成を0.03以上にしなければならない。この場合、第1クラッド層14の層厚が1.5μm程度となると、GaN基板11と第1クラッド層14との間の格子定数の差により、格子欠陥やクラックが発生しやすくなってしまう。
この問題を解決するために、本開示の第1の実施形態にかかる発光素子においては、GaN基板11上にInGaNからなる圧縮性の歪を有する第1歪補正層12を備えている。この結果、第1クラッド層14で生じる引っ張り性の歪を補償できるため、GaN基板11上に結晶成長したエピタキシャル層全体の平均的な歪を小さくすることが可能となり、クラックや格子欠陥の発生を抑制することができる。
(1-5 ΔNの検討)
しかしながら、第1歪補正層12の屈折率は、第1クラッド層14の屈折率よりも大きいため、垂直方向の光分布は、図2に示すように、第1歪補正層12によりGaN基板11側へ広がりやすくなる。この結果、リッジ18a内部の光分布及びリッジ外部の光分布の形状が同じ形状となり、リッジ18a内外の実効屈折率差(ΔN)が低下してしまう。ΔNが低下すると、リッジストライプの内外を導波する光分布が、リッジ18aの外側の活性層16で受ける吸収損失の影響が大きくなり、発振しきい値が増大してしまう。さらに、ストライプ内外を導波可能な高次モードの最高次数が小さくなり、導波光のモード数が減るため、各次数のモード間の干渉の影響が大きくなり、電流-光出力特性が非線形性となるキンクが生じやすくなる。この結果、動作電流値が大きくなり、温度特性が低下する。これを防止するためには、3×10-3以上の大きさのΔNが必要である。なお、図2において、縦軸は活性層16における光強度を1としたときの光強度(任意単位)の対数を示し、横軸はGaN基板11の表面より少し下側を原点として半導体層の積層方向に沿って測定した各半導体層の位置を表す。図2における番号は、各半導体層の存在位置を示している。図2の縦軸において1E-05は、1×10-5を表す。
しかしながら、第1歪補正層12の屈折率は、第1クラッド層14の屈折率よりも大きいため、垂直方向の光分布は、図2に示すように、第1歪補正層12によりGaN基板11側へ広がりやすくなる。この結果、リッジ18a内部の光分布及びリッジ外部の光分布の形状が同じ形状となり、リッジ18a内外の実効屈折率差(ΔN)が低下してしまう。ΔNが低下すると、リッジストライプの内外を導波する光分布が、リッジ18aの外側の活性層16で受ける吸収損失の影響が大きくなり、発振しきい値が増大してしまう。さらに、ストライプ内外を導波可能な高次モードの最高次数が小さくなり、導波光のモード数が減るため、各次数のモード間の干渉の影響が大きくなり、電流-光出力特性が非線形性となるキンクが生じやすくなる。この結果、動作電流値が大きくなり、温度特性が低下する。これを防止するためには、3×10-3以上の大きさのΔNが必要である。なお、図2において、縦軸は活性層16における光強度を1としたときの光強度(任意単位)の対数を示し、横軸はGaN基板11の表面より少し下側を原点として半導体層の積層方向に沿って測定した各半導体層の位置を表す。図2における番号は、各半導体層の存在位置を示している。図2の縦軸において1E-05は、1×10-5を表す。
逆に、ΔNを大きくすると、リッジ内部の垂直方向の光分布を第2クラッド層18寄りにする必要がある。この場合、p型の不純物濃度を通常1×1018cm-3以上に大きくしているため、p型不純物によるフリーキャリアの吸収損失の影響を受け、導波路損失が増大し、電流-光出力特性における単位電流あたりの光出力変化(スロープ効率)が低下し、温度特性が低下する。
従って、スロープ効率の低下を伴わずに、線形性の良好な電流-光出力特性を得るためには、ΔNを3×10-3から6×10-3の範囲にする必要がある。
(1-6 第1低屈折率層13のAl組成の検討)
前述のように、第1歪補正層12の影響により、第1クラッド層14の層厚が薄くなるとΔNが低下する。ΔNの低下を抑制するために、本発明の第1の実施の形態にかかる発光素子では、第1クラッド層14よりも屈折率が小さい第1低屈折率層13を備えている。
前述のように、第1歪補正層12の影響により、第1クラッド層14の層厚が薄くなるとΔNが低下する。ΔNの低下を抑制するために、本発明の第1の実施の形態にかかる発光素子では、第1クラッド層14よりも屈折率が小さい第1低屈折率層13を備えている。
ここで、第1低屈折率層13のΔNに及ぼす影響を見積もるために、第1低屈折率層13に厚さ0.1μmのAlGaNを用いた場合における第1低屈折率層13のAl組成に対するΔNの依存性の計算結果を図3に示す。計算では、第1クラッド層14の層厚を1μm、1.5μm、2μmとし、第1歪補正層12のIn組成を4%としている。
図3に示すように、第1クラッド層14の層厚が薄くなるほどΔNの低下が大きいことがわかる。特に、第1クラッド層14の層厚が1μmとなっても、ΔNを3×10-3以上とするためには、Al組成0.05以上、つまり、第1クラッド層14のAl組成よりも少なとも0.015以上大きいAl組成を有するAlGaN層を用いる必要があることがわかる。さらに、ΔNを3.5×10-3以上とするためには、Al組成が0.06以上、つまり、第1クラッド層14のAl組成よりも少なとも0.025以上大きいAl組成を有するAlGaN層を用いる必要があることがわかる。
図4A、図4Bに、第1歪補正層のIn組成をそれぞれ4%、3%とした場合におけるΔNの第1低屈折率層13の組成および層厚依存性の計算結果を示す。図4Bに示すように、第1歪補正層12のIn組成を3%とした場合は、ΔNは、第1低屈折率層13の組成、層厚にあまり依存しないが、第1歪補正層12のIn組成が4%の場合は、ΔNは、第1低屈折率層13の組成、層厚に大きく依存することがわかる。従って、ΔNの第1歪補正層12の影響を受けないようにするためには、第1歪補正層12のIn組成を3%以下とすればよいことがわかる。さらに、第1低屈折率層13のAl組成を0.06から0.1、層厚を10nmから100nmまでの間に設定すれば、4×10-3以上のΔNを実現できることがわかる。本発明の第1の実施形態では、第1歪補正層12のIn組成を0.02、第1低屈折率層13の組成を、第1クラッド層14のAl組成より0.025高い0.06、第1クラッド層14の層厚を0.05μmとして、第1クラッド層14の層厚が1μmとなっても、ΔNの防止を抑制可能としている。なお、第1低屈折率層13のAl組成が大きいほど第1低屈折率層13の屈折率を小さくすることができるので活性層16に対する光閉じ込め率を大きくすることができてΔNを大きくすることができるが、反面GaN基板11との格子定数差が大きくなるので第1低屈折率層13の結晶性を悪化させることになる。そのため、第1低屈折率層13のAl組成は、0.1以下であることが好ましい。
すなわち、第1低屈折率層は、n型のAlbGa1-bN(0.06≦b≦0.1)より形成されていることが好ましい。
また、ΔNの観点から、第1低屈折率層13の層厚は、10nm以上かつ100nm以下であることが好ましい。
以上をまとめると、本開示の第1の実施形態にかかる発光素子の構造パラメータは、表1のようになる。
なお、活性層16として、ウェル層を層厚が3nmのIn0.15Ga0.85Nとし、バリア層を層厚が3nmのGaNとし、2重量子井戸構造を採用した。
第1歪補正層12、第1低屈折率層13、第1クラッド層14および第2クラッド層18のIn組成、Al組成および層厚をパラメータとして検討した。
(1-7 第1歪補正層12と歪の影響との関係)
次に、第1歪補正層12が、発光素子の各層に及ぼす歪の影響について説明する。
次に、第1歪補正層12が、発光素子の各層に及ぼす歪の影響について説明する。
図5および図6に、本開示の第1の実施形態にかかる発光素子の、積層方向に沿った各点の平均歪量の計算結果を比較して示す。なお、図5および図6において、活性層16は積層方向に拡大している。
なお、検討した第1歪補正層12、第1低屈折率層13、第1クラッド層14および第2クラッド層18のパラメータは、表2、表3のようになる。なお、表2および表3に示す各層を除く層のパラメータは、表1に同じである。
本開示の第1の実施形態にかかる発光素子において、第1歪補正層12、第1低屈折率層13が無い場合の構造とし、第1クラッド層14の層厚を1μm、Al組成を0.035とし、第2クラッド層18の層厚を0.7μm、Al組成を0.035とした場合に、第1歪補正層のIn組成を0.01、0.02、0.03とした場合における積層方向の各点の平均歪量の計算結果を図5の(a)に示す。積層方向のある点における平均歪量(Eequ(Z))とは、GaN基板11上に形成された構造における積層方向のある点Zまでの各層の層厚を考慮した歪の平均値のことであり、(式1)で与えられる。
ここで、e(z’)とは、Z方向(積層方向)の点z’における歪のことである。図5の(a)に示すように、第1歪補正層12、第1低屈折率層13が無い場合、第1クラッド層14には均一に8×10-4程度の引っ張り性の歪がかかり、InGaN系材料の圧縮性の歪のかかる活性層16の領域で平均歪量が補償されて低減し、引っ張り性の歪の生じる第2クラッド層18で再び引っ張り性の歪が増大していることがわかる。この計算結果から、第1歪補正層12、第1低屈折率層13が無い場合、第1クラッド層14に相対的に大きな歪がかかり、第1クラッド層14にクラックや格子欠陥が生じやすいことがわかる。
本開示にかかる発光素子において、第1歪補正層12の層厚を0.1μmとし、第1低屈折率層13の組成を第1クラッド層のAl組成よりも0.025高い0.06、第1低屈折率層13の層厚を0.05μm、第1クラッド層14の層厚を1μmとし、第2クラッド層18の層厚を0.7μmとした場合に、第1歪補正層12のIn組成を0.01、0.02、0.03とした場合における積層方向の各点の平均歪量の計算結果を図5の(b)に示す。
図5の(b)に示すように、第1歪補正層12により、第1クラッド層14に生じる平均歪は、図5の(a)に示す発光素子に対し、第1クラッド層14に生じる平均歪が低減されることがわかる。
これは、第1歪補正層12の圧縮性の歪により、第1クラッド層14の引っ張り性の歪が補償されて低減するためである。この結果、第1歪補正層12のIn組成を0.01から0.03に設定することにより、第1クラッド層14に生じる歪を低減することが可能であることがわかる。
図5の(c)、図5の(d)はそれぞれ、図5の(a)、図5の(b)の発光素子に対し、第1クラッド層14の層厚を1.5μmとした場合の計算結果を示す。第1クラッド層14の層厚を1.5μmとしても、図5の(b)に示す結果と同様に、第1歪補正層12の圧縮性の歪により、第1クラッド層14の引っ張り性の歪が補償されて低減されることがわかる。
図5の(a)から図5の(d)の結果より、第1クラッド層14の層厚が1.0μmから1.5μmまでの範囲で、第1歪補正層12のIn組成を0.01から0.03までの間に設定することにより、第1クラッド層14に生じる歪を低減することが可能であることがわかる。
本開示にかかる発光素子において、第1歪補正層12、第1低屈折率層13が無い場合の構造とし、第1クラッド層14の層厚を1μm、Al組成を0.06とし、第2クラッド層18の層厚を0.7μm、Al組成を0.06とした場合に、第1歪補正層のIn組成を0.01、0.02、0.03とした場合における積層方向の各点の平均歪量の計算結果を図6の(a)に示す。
図6の(a)に示すように、第1歪補正層12、第1低屈折率層13が無い場合、第1クラッド層14には均一に1.4×10-3程度の歪がかかり、InGaN系材料の圧縮性の歪のかかる活性層16の領域で平均歪量が補償されて低減し、引っ張り性の歪の生じる第2クラッド層18で再び、引っ張り性の歪が増大していることがわかる。この計算結果から、第1歪補正層12、第1低屈折率層13が無い場合、第1クラッド層14に相対的に大きな歪がかかり、第1クラッド層14にクラックや格子欠陥が生じやすいことがわかる。
本開示の第1の実施形態にかかる発光素子において、第1歪補正層12の層厚を0.1μmとし、第1低屈折率層13の組成を第1クラッド層14のAl組成よりも0.025高い0.085、第1低屈折率層13の層厚を0.05μm、第1クラッド層14の層厚を1μmとし、第2クラッド層18の層厚を0.7μmとした場合に、第1歪補正層12のIn組成を0.01、0.02、0.03とした場合における積層方向の各点の平均歪量の計算結果を図6の(b)に示す。
図6の(b)に示すように、第1歪補正層12により、第1クラッド層14に生じる平均歪は、図6の(a)に示す構造に対し、第1クラッド層14に生じる平均歪が低減されることがわかる。
これは、第1歪補正層12の圧縮性の歪により、第1クラッド層14の引っ張り性の歪が補償されて低減するためである。この結果、第1歪補正層12のIn組成を0.01から0.03までの間に設定することにより、第1クラッド層14に生じる歪を低減することが可能であることがわかる。
図6の(c)、図6の(d)にはそれぞれ、図6の(a)、図6の(b)の構造に対し、第1クラッド層14の層厚を1.5μmとした場合の計算結果を示す。第1クラッド層14の層厚を1.5μmとしても、図6の(b)に示す結果と同様に、第1歪補正層12の圧縮性の歪により、第1クラッド層14の引っ張り性の歪が補償されて低減されることがわかる。
図6の(a)から図6の(d)の結果より、第1クラッド層14の層厚が1.0μmから1.5μmの範囲で、第1歪補正層12のIn組成を0.01から0.03までの間に設定することにより、第1クラッド層14に生じる歪を低減することが可能であることがわかる。
第1歪補正層12の層厚を0.1μmとしているが、この層厚を増加すれば、第1クラッド層14で生じる引っ張り性の歪の補償効果が大きく、第1クラッド層14で生じる引っ張り性の歪の低減効果が大きくなる。
しかしながら、第1歪補正層12をあまりに厚くすると、第1歪補正層12でGaN基板11との格子定数の差で生じる格子欠陥が発生し、結晶性が低下する。実際に、第1歪補正層12の層厚が0.3μmを超えると、第1歪補正層12において格子欠陥が発生しやすくなる。
一方、第1歪補正層の層厚が0.1μmより小さいと第1クラッド層14および第2クラッド層18で生じる引っ張り性の応力を補償する効果が小さくなる。
このため、第1歪補正層12で格子欠陥を生じさせずに、第1クラッド層14で生じる引っ張り性の歪の低減効果を得るためには、第1歪補正層12の層厚を0.1μm以上かつ0.3μm以下の間に設定すればよい。
(1-8 電子障壁層17および第2クラッド層18にかかる歪の検討)
発光素子が動作するとき、発光素子には熱が発生する。そのとき、活性層16に注入される電子が熱により励起され、電子障壁層17および第2クラッド層18へ電子が流れ出す、いわゆるキャリアオーバーフローという現象が起きやすくなる。
発光素子が動作するとき、発光素子には熱が発生する。そのとき、活性層16に注入される電子が熱により励起され、電子障壁層17および第2クラッド層18へ電子が流れ出す、いわゆるキャリアオーバーフローという現象が起きやすくなる。
ここで、電子障壁層17および第2クラッド層18に圧縮性の歪が付加されると、電子障壁層17および第2クラッド層18のバンドギャップエネルギーが大きくなり、電子障壁層17および第2クラッド層18の電子に対する障壁高さが高くなる。この電子に対する障壁高さが高くなることにより、キャリアオーバーフローを低減することができる。このため、発光素子の高温動作時の発振しきい値や動作電流値が低減し、発光素子の長期動作の信頼性を向上させることができる。
図5の(b)に示すように、第1歪補正層12の層厚が0.1μm、第1クラッド層14の層厚が1μmの場合、第1歪補正層12の効果により、GaN基板11上に形成した層全体の平均歪量は、ほぼ0となっている。このとき、電子障壁層17および第2クラッド層18には圧縮性の歪がかかることになる。すなわち、図5の(b)に示す発光素子においては、キャリアオーバーフローを低減でき、結果として発光素子の長期動作の信頼性を向上させることができる。
なお、第1クラッド層14は層全体に対し引っ張り歪を与えるので、図5の(b)に示す発光素子について第1クラッド層14の層厚を1μm以下とすることにより層全体の平均歪を圧縮性の歪とすることができ、電子障壁層17および第2クラッド層18に圧縮性の歪を付加することができる。
一方、図6の(b)に示すように、第1クラッド層のAl組成が0.06の場合、層全体の平均歪は引っ張り歪となり、電子障壁層17および第2クラッド層18には引っ張り性の歪が付加されている。この場合は、発光素子のキャリアオーバーフローの低減には好ましくない。従って、層全体の平均歪を圧縮性の歪として電子障壁層17および第2クラッド層18に圧縮性の歪を付加するために、第1クラッド層のAl組成を0.04以下とするのが好ましい。
なお、上述のように、垂直方向の光閉じ込め係数を大きくするためには、第1クラッド層14および第2クラッド層18のAl組成を0.03以上にすることが好ましいので、第1クラッド層のAl組成としては、0.03以上かつ0.04以下であることが好ましいのである。
(1-9 第1低屈折率層13の材料の検討)
第1低屈折率層13は、AlGaN材料に限らなくとも、Al組成が0.06のAlGaN層よりも小さい屈折率を有するInGaAlNでああってもよい。
第1低屈折率層13は、AlGaN材料に限らなくとも、Al組成が0.06のAlGaN層よりも小さい屈折率を有するInGaAlNでああってもよい。
図7にIn1-X-YAlYGaXN(0≦X≦1、0≦Y≦1)に関する組成図を示す。ここでX=a、Y=bとすると、図7において
また、
を満たすIn1-a-bAlbGaaNは、GaNと格子整合するので、
で示す範囲(図7においてハッチングを付した領域)にa、bを設定すれば、第1低屈折率層13とGaN基板11との格子定数の差は、Al0.1Ga0.9NとGaN基板11との格子定数の差よりも小さくすることができる。そのため、(式4)(式5)の条件を満たす第1低屈折率層13において、格子欠陥の発生が抑制されるのである。
例えば、第1低屈折率層13としてIn0.02Al0.12Ga0.86Nを用いることができる。In0.02Al0.12Ga0.86Nは、(式1)を満たし、かつ(式2)をほぼ満たすので好適である。
また、第1低屈折率層13として例えば厚さが5nmのIn0.02Al0.12Ga0.86Nを1層以上、厚さが3nmのIn0.04Al0.24Ga0.72Nを2層以上交互に形成し、単一量子井戸構造または多重量子井戸構造としてもよい。なお、この単一量子井戸構造または多重量子井戸構造を構成する各層の層厚は、上記に限られないことはいうまでもない。
以上をまとめると、本開示の発光素子は、以下のような構成が好ましいのである。
すなわち、発光素子として、GaN基板11と、このGaN基板11上に形成された、第1導電型(n型)のInxGa1-xN(0<x≦1)よりなる第1歪補正層12と、この第1歪補正層の上に形成された、第1導電型(n型)のIn1-a-bGaaAlbNからなり、かつ(a/0.98)+(b/0.8)≧1、(a/1.02)+(b/0.85)≦1および(a/1.03)+(b/0.68)≧ 1の関係を有する第1低屈折率層13と、を備えている。そして、この第1低屈折率層13の上に形成された、第1導電型のAlzGa1-zN(0.03≦z≦0.06)からなり、かつ第1低屈折率層よりも屈折率の高い第1クラッド層14と、この第1クラッド層の上に形成された活性層16と、を備えている。
なお、活性層16の上に形成され、第2導電型(p型)の AltGa1-tN(0≦t≦1)からなり、かつGaN基板11より活性層へ向う方向に凸となるリッジ部18aを有する第2クラッド層18を備えていてもよい。
なお、ここで第1低屈折率層13として、平均の原子組成が上記(式3)~(式5)を満たすIn1-a-bGaaAlbN層を有する多層構造であってもよく、In1-a-bGaaAlbN層を薄くして量子効果を有する層としてもよい。また、第1低屈折率層として、単一量子井戸構造または2重以上の多重量子井戸構造であってもよい。
(第2の実施形態)
(2-1 素子構造)
本開示の第2の実施形態に係る発光素子は、図8に示すように、図1に示す第1の実施形態に係る発光素子において、GaN基板11と第1歪補正層12との間に、第2歪補正層32および中間層33を備えた構造としている。この構造において、第2歪補正層32はAlGaN材料からなり、Al組成は0.01以下のAl組成を有するAlGaN層としている。また、中間層33はGaN層からなる。この中間層33は、第2歪補正層32上に直接第第1歪補正層12を積層する場合よりも、第1歪補正層12の基板11側での界面で生じる応力を低減することができる。その結果、第2歪補正層32上に直接第1歪補正層12を形成した場合よりも、第1歪補正層12で生じる格子欠陥の発生を抑制することができる。
(2-1 素子構造)
本開示の第2の実施形態に係る発光素子は、図8に示すように、図1に示す第1の実施形態に係る発光素子において、GaN基板11と第1歪補正層12との間に、第2歪補正層32および中間層33を備えた構造としている。この構造において、第2歪補正層32はAlGaN材料からなり、Al組成は0.01以下のAl組成を有するAlGaN層としている。また、中間層33はGaN層からなる。この中間層33は、第2歪補正層32上に直接第第1歪補正層12を積層する場合よりも、第1歪補正層12の基板11側での界面で生じる応力を低減することができる。その結果、第2歪補正層32上に直接第1歪補正層12を形成した場合よりも、第1歪補正層12で生じる格子欠陥の発生を抑制することができる。
第2の実施形態に係る発光素子の、第1歪補正層12からコンタクト層19に至るまでの各半導体層、電流ブロック層20、n側電極21およびp側電極22の構成は、第1の実施形態に係る発光素子と同じである。また、リッジストライプ構造についても第1の実施形態に係る発光素子と同じである。
すなわち、本開示の第2の実施形態に係る発光素子は、第1の実施形態に開示された発光素子に対し、さらに、GaN基板11と、第1歪補正層12との間に、GaN基板11側より第1導電型(n型)のAlsGa1-sN(0<s≦0.01)よりなる第2歪補正層32を備え、さらに第2歪補正層32と第1歪補正層12との間に第1導電型(n型)のGaNよりなる中間層33を有しているのである。
本開示の第2の実施形態にかかる発光素子の構造パラメータは、表4のようになる。
図9および図10に、本開示の第2の実施形態にかかる発光素子の、積層方向に沿った各点の平均歪量の計算結果を比較して示す。なお、図9および図10において、活性層16は積層方向に拡大している。なお、検討した第1歪補正層12、第1低屈折率層13、第1クラッド層14および第2クラッド層18のパラメータは、表5、表6のようになる。なお、表5および表6に示す各層を除く層のパラメータは、表4に同じである。
また、本開示の第2の実施形態に係る発光素子の発光波長は、445nmである。
第2歪補正層32、第1低屈折率層13、第1クラッド層14および第2クラッド層18のIN組成、Al組成および層厚をパラメータとして検討した。
(2-2 第1歪補正層12と歪の影響との関係)
図9の(a)に、図8に示す本開示の第2の実施形態にかかる発光素子において、第2歪補正層32、中間層33、第1歪補正層12、第1低屈折率層13が無い場合の構造とし、第1クラッド層14の層厚を1μm、Al組成を0.035とし、AlGaN第2クラッド層18の層厚を0.7μm、Al組成を0.035とした場合における積層方向の各点の平均歪量の計算結果を示す。
図9の(a)に、図8に示す本開示の第2の実施形態にかかる発光素子において、第2歪補正層32、中間層33、第1歪補正層12、第1低屈折率層13が無い場合の構造とし、第1クラッド層14の層厚を1μm、Al組成を0.035とし、AlGaN第2クラッド層18の層厚を0.7μm、Al組成を0.035とした場合における積層方向の各点の平均歪量の計算結果を示す。
図9の(a)に示すように、第2歪補正層32、中間層33、第1歪補正層12、第1低屈折率層13が無い場合、第1クラッド層14には均一に8×10-4程度の引っ張り性の歪がかかり、InGaN系材料の圧縮性の歪のかかる活性層16の領域で平均歪量が補償されて低減し、引っ張り性の歪の生じる第2クラッド層18で再び引っ張り性の歪が増大していることがわかる。この計算結果から、第1歪補正層12、第1低屈折率層13が無い場合、第1クラッド層14に相対的に大きな歪がかかり、第1クラッド層14にクラックや格子欠陥が生じやすいことがわかる。
図9の(b)に、第2の実施形態にかかる構造において、第2歪補正層32の層厚を1.0μm、Al組成を0.01と0.005、中間層33の層厚を0.1μm、第1歪補正層12の層厚を0.1μmとし、第1低屈折率層13の組成を第1クラッド層14のAl組成よりも0.025高い0.06、第1低屈折率層13の層厚を0.05μm、第1クラッド層14の層厚を1μmとし、AlGaN第2クラッド層18の層厚を0.7μmとした場合に、第1歪補正層12のIn組成を0.02とした場合における積層方向の各点の平均歪量の計算結果を示す。
図9(b)に示すように、第2歪補正層32のAl組成が0.005、0.01のいずれの場合においても、第1クラッド層14に生じる平均歪は、図5の(b)に示す発光素子に対し、さらに低減されることがわかる。
より具体的に述べると、図9の(b)に示す発光素子において層全体の歪は最大でも4×10-4であり、図5の(b)に示す発光素子と比べて1/5程度の歪量となっている。特に第1歪補正層12および第1低屈折率層13においては歪がほぼ0となっている。このことから、図9の(b)に示す発光素子について、第1歪補正層12および第1低屈折率層13での格子欠陥の発生を抑制することができることがわかる。
また、図9の(b)に示す発光素子において、第1クラッド層14の引っ張り性の歪量は図5の(b)に示す発光素子における第1クラッド層14の引っ張り性の歪量よりも小さい。
これらは、弱い引っ張り性の歪を有する第2歪補正層32を用いることにより、第1歪補正層12の圧縮性の歪、第1クラッド層14の引っ張り性の歪の平均歪が低減されるためである。
このことから、図9の(b)に示す発光素子について、第1歪補正層12、第1低屈折率層13および第1クラッド層14での格子欠陥の発生を抑制できることがわかる。
図9の(c)、図9の(d)にはそれぞれ、図9の(a)、図9の(b)の構造に対し、第1クラッド層14の層厚を1.5μmとした場合の計算結果を示す。第1クラッド層14の層厚を1.5μmとしても、図9の(b)に示す結果と同様に、弱い引っ張り性の歪を有する第2歪補正層32を用いることにより、第1歪補正層12の圧縮性の歪、第1クラッド層14の引っ張り性の歪の平均歪が低減されていることがわかる。
図9の(b)、図9の(d)に示す構造では、第1歪補正層12の層厚を0.1μmとしているが、この層厚が増加すれば、第1クラッド層14で生じる引っ張り性の歪の補償効果が大きくなり、第1クラッド層14で生じる引っ張り性の歪の低減効果が大きくなる。
しかしながら、第1歪補正層12の層厚をあまりに厚くすると、第1歪補正層12でGaN基板11との格子定数の差で生じる格子欠陥が発生し、結晶性が低下する。このため、第1歪補正層12で格子欠陥を生じさせずに、第1クラッド層14で生じる引っ張り性の歪の低減効果を得るためには、第1歪補正層12の層厚を0.1μmから0.3μmまでの範囲に設定すればよい。
(2-3 電子障壁層17および第2クラッド層18にかかる歪の検討)
図9の(b)に示すように、第1歪補正層12の層厚が0.1μm、第1クラッド層14の層厚が1μmの場合、第1歪補正層12の効果により、GaN基板11上に形成した層全体の平均歪量は、ほぼ0となっている。このとき、電子障壁層17には圧縮性の歪が付加されることになる。すなわち、図9の(b)に示す発光素子においては、キャリアオーバーフローを低減でき、結果として発光素子の長期動作信頼性を向上させることができる。
図9の(b)に示すように、第1歪補正層12の層厚が0.1μm、第1クラッド層14の層厚が1μmの場合、第1歪補正層12の効果により、GaN基板11上に形成した層全体の平均歪量は、ほぼ0となっている。このとき、電子障壁層17には圧縮性の歪が付加されることになる。すなわち、図9の(b)に示す発光素子においては、キャリアオーバーフローを低減でき、結果として発光素子の長期動作信頼性を向上させることができる。
なお、第1クラッド層14は層全体に対し引っ張り歪を与えるので、図9の(b)に示す発光素子について第1クラッド層14の層厚を1μm以下とすることにより層全体の平均歪を圧縮性の歪とすることができ、電子障壁層17および第2クラッド層18に圧縮性の歪を付加することができる。
一方、図10の(b)に示すように、第1クラッド層のAl組成が0.06の場合、層全体の平均歪は引っ張り歪となり、電子障壁層17および第2クラッド層18には引っ張り歪が生じている。この場合は、発光素子のキャリアオーバーフローの低減には好ましくない。従って、層全体の平均歪を圧縮性の歪として電子障壁層17および第2クラッド層18に圧縮性の歪を付加するために、第1クラッド層のAl組成を0.04以下とするのが好ましい。
(2-4 第1クラッド層14にかかる歪の検討)
図10の(a)に、図8に示す本開示の第2の実施形態にかかる発光素子において、第2歪補正層32、中間層33、第1歪補正層12、第1低屈折率層13が無い場合の構造とし、第1クラッド層14の層厚を1μm、Al組成を0.06とし第2クラッド層18の層厚を0.7μm、Al組成を0.06とした場合における積層方向の各点の平均歪量の計算結果を示す。
図10の(a)に、図8に示す本開示の第2の実施形態にかかる発光素子において、第2歪補正層32、中間層33、第1歪補正層12、第1低屈折率層13が無い場合の構造とし、第1クラッド層14の層厚を1μm、Al組成を0.06とし第2クラッド層18の層厚を0.7μm、Al組成を0.06とした場合における積層方向の各点の平均歪量の計算結果を示す。
図10の(a)に示すように、第2歪補正層32、中間層33、第1歪補正層12、第1低屈折率層13が無い場合、N型第1クラッド層14には均一に1.4×10-3程度の引っ張り性の歪がかかり、INGaN系材料の圧縮性の歪のかかる活性層16の領域で平均歪量が補償されて低減し、引っ張り性の歪の生じる第2クラッド層18で再び引っ張り性の歪が増大していることがわかる。この計算結果から、第1歪補正層12、第1低屈折率層13が無い場合、第1クラッド層14に相対的に大きな歪がかかり、第1クラッド層14にクラックや格子欠陥が生じやすいことがわかる。
図10の(b)に、本開示の第2の実施形態にかかる発光素子において、第2歪補正層32の層厚を1.0μm、Al組成を0.01と0.005、中間層33の層厚を0.1μm、第1歪補正層12の層厚を0.1μmとし、第1低屈折率層13の組成を第1クラッド層14のAl組成よりも0.025高い0.085、第1低屈折率層13の層厚を0.05μm、第1クラッド層14の層厚を1μmとし、AlGaN第2クラッド層18の層厚を0.7μmとした場合に、第1歪補正層のIn組成を0.01、0.02、0.03とした場合における積層方向の各点の平均歪量の計算結果を示す。
図10の(b)に示すように、第2歪補正層32のAl組成が0.005、0.01のいずれの場合においても、第1クラッド層14に生じる平均歪は、図6の(b)に示す構造に対し、さらに低減されることがわかる。
これは、弱い引っ張り性の歪を有する第2歪補正層32を用いることにより、第1歪補正層12の圧縮性の歪、第1クラッド層14の引っ張り性の歪の平均歪が低減されるためである。
図10の(c)、図10の(d)にはそれぞれ、図10の(a)、図10の(b)の構造に対し、第1クラッド層14の層厚を1.5μmとした場合の計算結果を示す。第1クラッド層14の層厚を1.5μmとしても、図10の(b)に示す結果と同様に、弱い引っ張り性の歪を有する第2歪補正層32を用いることにより、第1歪補正層12の圧縮性の歪、第1クラッド層14の引っ張り性の歪の平均歪が低減されていることがわかる。
図9の(a)から図9の(d)、図10の(a)から図10の(d)の結果より、第1クラッド層と第2クラッド層のAl組成が0.035から0.06の範囲、第1クラッド層14の層厚が1.0μmから1.5μmの範囲で、第2歪補正層32のAl組成を0.005から0.01に設定することにより、第1クラッド層14に生じる歪を低減することが可能であることがわかる。
なお、上記第1および第2の実施形態において、活性層16にあるウェル層のIn組成や層厚は上記に限定されず、バリア層の組成や層厚も上記に限定されない。発光素子の発光波長に応じ、活性層16にあるウェル層のIn組成や層厚、バリア層の組成や層厚を適宜選択することができる。
特に、ウェル層のIn組成を0.15より大きくすることにより、発光波長を445nmより大きくすることができ、青色や緑色といった発光を得ることができる。例えば、ウェル層にIn0.3Ga0.7Nを用いれば、発光波長を530nmとすることができる。
また、上記第1および第2の実施形態において、第1クラッド層14および第2クラッド層のAl組成を等しくしているが、必ずしもその必要はなく、第1クラッド層14と第2クラッド層のAl組成が異なっていてもよい。
また、上記第1および第2の実施形態において、発光素子の層構造を、GaN基板11のc面上に形成しているが、c面上に限らず、c面より傾いた面すなわちGaNのオフ基板の上に発光素子の層構造を形成してもよく、m面、r面またはa面を主面とするGaN基板の上に発光素子の層構造を形成してもよい。
上記第1及び第2の実施形態において、半導体レーザ素子関して議論したが、LED素子に対しても本開示に係る技術は適用可能であり、クラックや格子欠陥の発生が抑制された、青色や青色よりも長波長帯のLED素子を実現することができる。
本開示に係る発明によれば、波長445nm帯以上の発光素子において、1ワット以上の超高出力動作可能な温度特性に優れ、長期信頼性を保証できるワット級の光源を実現する。特に、プロジェクタ光源用に用いられるワット級の光源に利用することができる。なお、プロジェクタ光源用に限らず、例えば車載ヘッドランプ用の光源としても利用することができるし、競技場の照明用光源としても利用することができる。
11 GaN基板
12 第1歪補正層
13 第1低屈折率層
14 第1クラッド層
15 光ガイド層
16 活性層
17 電子障壁層
18 第2クラッド層
19 コンタクト層
20 電流ブロック層
21 n側電極
22 p側電極
32 第2歪補正層
33 中間層
12 第1歪補正層
13 第1低屈折率層
14 第1クラッド層
15 光ガイド層
16 活性層
17 電子障壁層
18 第2クラッド層
19 コンタクト層
20 電流ブロック層
21 n側電極
22 p側電極
32 第2歪補正層
33 中間層
Claims (18)
- GaN基板と、
前記GaN基板上に形成された、第1導電型のInxGa1-xN(0<x≦1)よりなる第1歪補正層と、
前記第1歪補正層の上に形成された、第1導電型のIn1-a-bGaaAlbNからなり、かつ
(a/0.98)+(b/0.8)≧1
(a/1.02)+(b/0.85)≦1
(a/1.03)+(b/0.68)≧1
の関係を有する第1低屈折率層と、
前記第1低屈折率層の上に形成された、第1導電型のAlzGa1-zN(0.03≦z≦0.06)からなり、かつ前記第1低屈折率層よりも屈折率の高い第1クラッド層と、
前記第1クラッド層の上に形成された活性層と、を備えている、
発光素子。 - さらに、
前記活性層の上に形成され、第2導電型の AltGa1-tN(0≦t≦1)からなり、かつ前記GaN基板より前記活性層へ向う方向に凸となるリッジ部を有する第2クラッド層と、を備えている、
請求項1に記載の発光素子。 - 前記第1歪補正層のIn組成xの範囲は、0.01≦x≦0.03である、
請求項1または2に記載の発光素子。 - 前記第1歪補正層の層厚は、0.1μm以上かつ0.3μm以下である、
請求項1から3のいずれか1項に記載の発光素子。 - 前記第1低屈折率層は、第1導電型のAlbGa1-bN (0.06≦b≦0.1)より形成されている、
請求項1から4のいずれか1項に記載の発光素子。 - 前記第1低屈折率層の層厚は、10nm以上かつ100nm以下である、
請求項1から5のいずれか1項に記載の発光素子。 - 前記第1低屈折率層は、平均原子組成がIn1-a-bGaaAlbNの多重量子井戸である、
請求項1から4のいずれか1項に記載の発光素子。 - 前記第1クラッド層において、z≦0.04である、
請求項1から6のいずれか1項に記載の発光素子。 - 前記第1クラッド層において、層厚が1μm以下であり、かつ0.03≦z≦0.04である、
請求項8に記載の発光素子。 - さらに、
前記GaN基板と、前記第1歪補正層との間に形成された、前記GaN基板より第1導電型のAlsGa1-sN(0<s≦0.01)よりなる第2歪補正層を備える、
請求項1から9のいずれか1項に記載の発光素子。 - さらに、
前記第2歪補正層と前記第1歪補正層との間に形成された、第1導電型のGaNよりなる中間層を備える、
請求項10に記載の発光素子。 - さらに、
前記活性層と、前記第2クラッド層との間に、第2導電型のAlhGa1-hN(0<h≦1)よりなる電子障壁層を備える、
請求項2に記載の発光素子。 - 前記GaN基板の上面と前記電子障壁層の上面との間に形成された層全体の平均歪は、圧縮性である、
請求項12に記載の発光素子。 - 前記GaN基板の上面と前記第2クラッド層の上面との間に形成された層全体の平均歪は、圧縮性である、
請求項12に記載の発光素子。 - 前記活性層は、InfGa1-fN(0<f≦1)よりなるウェル層と、AlgGa1-gN(0≦g≦1)よりなるバリア層とを少なくとも1層含む量子井戸である、
請求項1から11のいずれか1項に記載の発光素子。 - 前記活性層は、ウェル層を少なくとも2層含む、多重量子井戸である、
請求項15に記載の発光素子。 - 前記活性層は、2重量子井戸または3重量子井戸である、
請求項16に記載の発光素子。 - 前記活性層の特性波長は445nm以上である、
請求項15から17のいずれか1項に記載の発光素子。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017523099A JP6706805B2 (ja) | 2015-06-08 | 2016-05-25 | 半導体レーザ装置 |
CN201680032473.7A CN107615602B (zh) | 2015-06-08 | 2016-05-25 | 发光元件 |
US15/832,248 US10164408B2 (en) | 2015-06-08 | 2017-12-05 | Light emitting element |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015116141 | 2015-06-08 | ||
JP2015-116141 | 2015-06-08 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/832,248 Continuation US10164408B2 (en) | 2015-06-08 | 2017-12-05 | Light emitting element |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016199363A1 true WO2016199363A1 (ja) | 2016-12-15 |
Family
ID=57503771
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/002523 WO2016199363A1 (ja) | 2015-06-08 | 2016-05-25 | 発光素子 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10164408B2 (ja) |
JP (1) | JP6706805B2 (ja) |
CN (1) | CN107615602B (ja) |
WO (1) | WO2016199363A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019187583A1 (ja) * | 2018-03-30 | 2019-10-03 | パナソニックIpマネジメント株式会社 | 半導体発光素子 |
JP2022511728A (ja) * | 2018-11-19 | 2022-02-01 | オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング | 端面発光半導体レーザ |
US11322908B2 (en) * | 2017-05-01 | 2022-05-03 | Nuvoton Technology Corporation Japan | Nitride light emitter |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017195502A1 (ja) * | 2016-05-13 | 2017-11-16 | パナソニックIpマネジメント株式会社 | 窒化物系発光素子 |
WO2020158254A1 (ja) * | 2019-01-30 | 2020-08-06 | パナソニックセミコンダクターソリューションズ株式会社 | 半導体発光素子 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003060314A (ja) * | 2002-08-09 | 2003-02-28 | Matsushita Electric Ind Co Ltd | 窒化物半導体素子 |
JP2003249463A (ja) * | 2002-12-24 | 2003-09-05 | Nichia Chem Ind Ltd | 窒化物半導体基板の製造方法 |
JP2003282862A (ja) * | 2002-03-22 | 2003-10-03 | Sharp Corp | 窒化物半導体層、窒化物半導体素子とその製造方法 |
JP2006080374A (ja) * | 2004-09-10 | 2006-03-23 | Sharp Corp | 窒化物半導体の製造装置および窒化物半導体レーザ素子 |
US20080181274A1 (en) * | 2006-12-28 | 2008-07-31 | Nichia Corporation | Nitride semiconductor laser element |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6144683A (en) * | 1998-01-07 | 2000-11-07 | Xerox Corporation | Red, infrared, and blue stacked laser diode array by wafer fusion |
JP4291960B2 (ja) | 2001-03-09 | 2009-07-08 | 日亜化学工業株式会社 | 窒化物半導体素子 |
JP4788138B2 (ja) | 2004-12-10 | 2011-10-05 | 日亜化学工業株式会社 | 窒化物半導体素子 |
JP4978454B2 (ja) * | 2006-12-28 | 2012-07-18 | 日亜化学工業株式会社 | 窒化物半導体レーザ素子 |
KR102085919B1 (ko) * | 2009-11-05 | 2020-03-06 | 더 리전츠 오브 더 유니버시티 오브 캘리포니아 | 에칭된 미러들을 구비하는 반극성 {20-21} ⅲ-족 질화물 레이저 다이오드들 |
CN103190041A (zh) * | 2010-10-26 | 2013-07-03 | 加利福尼亚大学董事会 | 通过基底和外延层图案化限制在iii-氮化物异质结构中的应变松弛 |
US20130100978A1 (en) * | 2011-10-24 | 2013-04-25 | The Regents Of The University Of California | Hole blocking layer for the prevention of hole overflow and non-radiative recombination at defects outside the active region |
CN104319631B (zh) * | 2014-09-28 | 2017-04-26 | 北京大学东莞光电研究院 | 一种制备GaN基激光器的方法以及一种GaN基激光器 |
-
2016
- 2016-05-25 JP JP2017523099A patent/JP6706805B2/ja active Active
- 2016-05-25 CN CN201680032473.7A patent/CN107615602B/zh active Active
- 2016-05-25 WO PCT/JP2016/002523 patent/WO2016199363A1/ja active Application Filing
-
2017
- 2017-12-05 US US15/832,248 patent/US10164408B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003282862A (ja) * | 2002-03-22 | 2003-10-03 | Sharp Corp | 窒化物半導体層、窒化物半導体素子とその製造方法 |
JP2003060314A (ja) * | 2002-08-09 | 2003-02-28 | Matsushita Electric Ind Co Ltd | 窒化物半導体素子 |
JP2003249463A (ja) * | 2002-12-24 | 2003-09-05 | Nichia Chem Ind Ltd | 窒化物半導体基板の製造方法 |
JP2006080374A (ja) * | 2004-09-10 | 2006-03-23 | Sharp Corp | 窒化物半導体の製造装置および窒化物半導体レーザ素子 |
US20080181274A1 (en) * | 2006-12-28 | 2008-07-31 | Nichia Corporation | Nitride semiconductor laser element |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11322908B2 (en) * | 2017-05-01 | 2022-05-03 | Nuvoton Technology Corporation Japan | Nitride light emitter |
JP2022180584A (ja) * | 2017-05-01 | 2022-12-06 | ヌヴォトンテクノロジージャパン株式会社 | 窒化物系発光装置 |
JP7478205B2 (ja) | 2017-05-01 | 2024-05-02 | ヌヴォトンテクノロジージャパン株式会社 | 窒化物系発光装置 |
WO2019187583A1 (ja) * | 2018-03-30 | 2019-10-03 | パナソニックIpマネジメント株式会社 | 半導体発光素子 |
JPWO2019187583A1 (ja) * | 2018-03-30 | 2020-07-16 | パナソニック株式会社 | 半導体発光素子 |
CN111937261A (zh) * | 2018-03-30 | 2020-11-13 | 松下半导体解决方案株式会社 | 半导体发光元件 |
US11070028B2 (en) | 2018-03-30 | 2021-07-20 | Nuvoton Technology Corporation Japan | Semiconductor light emitting element |
JP2022511728A (ja) * | 2018-11-19 | 2022-02-01 | オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング | 端面発光半導体レーザ |
JP7239696B2 (ja) | 2018-11-19 | 2023-03-14 | エイエムエス-オスラム インターナショナル ゲーエムベーハー | 端面発光半導体レーザ |
US12021350B2 (en) | 2018-11-19 | 2024-06-25 | Osram Opto Semiconductors Gmbh | Edge-emitting semiconductor laser |
Also Published As
Publication number | Publication date |
---|---|
JPWO2016199363A1 (ja) | 2018-03-22 |
CN107615602A (zh) | 2018-01-19 |
US20180109076A1 (en) | 2018-04-19 |
US10164408B2 (en) | 2018-12-25 |
JP6706805B2 (ja) | 2020-06-10 |
CN107615602B (zh) | 2020-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100837404B1 (ko) | 반도체 광전 소자 | |
JP4328366B2 (ja) | 半導体素子 | |
US9184565B2 (en) | Semiconductor light-emitting element | |
JP3433038B2 (ja) | 半導体発光装置 | |
JP6255939B2 (ja) | 窒化物半導体レーザ素子 | |
JP6706805B2 (ja) | 半導体レーザ装置 | |
JP6941771B2 (ja) | 半導体発光素子 | |
WO2011013621A1 (ja) | 窒化物半導体レーザダイオード | |
JP2011035427A (ja) | 半導体光電素子 | |
JP2001237457A (ja) | 発光素子 | |
JP2010177651A (ja) | 半導体レーザ素子 | |
JPH11298090A (ja) | 窒化物半導体素子 | |
JP6754918B2 (ja) | 半導体発光素子 | |
US9214789B2 (en) | Semiconductor light emitting element | |
JP2006135221A (ja) | 半導体発光素子 | |
JP2005302784A (ja) | 半導体発光素子及びその製造方法 | |
WO2017017928A1 (ja) | 窒化物半導体レーザ素子 | |
JP5344676B2 (ja) | 発光素子用基板および発光素子 | |
JP2006324690A (ja) | 半導体レーザ、半導体発光素子、及び、その製造方法 | |
JP4254373B2 (ja) | 窒化物半導体素子 | |
JP2019041102A (ja) | レーザダイオード | |
JP2009302429A (ja) | 窒化物半導体レーザ | |
JP2009206533A (ja) | 半導体発光素子 | |
JP2008177624A5 (ja) | ||
JP2011023473A (ja) | Iii族窒化物半導体レーザダイオード |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16807080 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017523099 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16807080 Country of ref document: EP Kind code of ref document: A1 |