WO2016198620A1 - Verfahren zur herstellung von optoelektronischen konversions-halbleiterchips und verbund von konversions-halbleiterchips - Google Patents
Verfahren zur herstellung von optoelektronischen konversions-halbleiterchips und verbund von konversions-halbleiterchips Download PDFInfo
- Publication number
- WO2016198620A1 WO2016198620A1 PCT/EP2016/063328 EP2016063328W WO2016198620A1 WO 2016198620 A1 WO2016198620 A1 WO 2016198620A1 EP 2016063328 W EP2016063328 W EP 2016063328W WO 2016198620 A1 WO2016198620 A1 WO 2016198620A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conversion
- growth substrate
- semiconductor chips
- semiconductor layer
- layer
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 267
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 225
- 230000005693 optoelectronics Effects 0.000 title claims abstract description 30
- 239000002131 composite material Substances 0.000 title claims description 30
- 238000004519 manufacturing process Methods 0.000 title abstract description 26
- 239000000758 substrate Substances 0.000 claims abstract description 125
- 238000000034 method Methods 0.000 claims description 60
- 230000005855 radiation Effects 0.000 claims description 27
- 229910052751 metal Inorganic materials 0.000 claims description 20
- 239000002184 metal Substances 0.000 claims description 20
- 238000004806 packaging method and process Methods 0.000 claims description 3
- 239000008187 granular material Substances 0.000 claims description 2
- 238000003698 laser cutting Methods 0.000 claims description 2
- 238000000465 moulding Methods 0.000 claims description 2
- 238000004382 potting Methods 0.000 claims description 2
- 238000002360 preparation method Methods 0.000 claims 1
- 238000005507 spraying Methods 0.000 claims 1
- 239000000463 material Substances 0.000 description 22
- 239000011159 matrix material Substances 0.000 description 7
- -1 nitride compound Chemical class 0.000 description 7
- 238000005520 cutting process Methods 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 5
- 230000003595 spectral effect Effects 0.000 description 4
- 235000012431 wafers Nutrition 0.000 description 4
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910052594 sapphire Inorganic materials 0.000 description 3
- 239000010980 sapphire Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical class COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- JNDMLEXHDPKVFC-UHFFFAOYSA-N aluminum;oxygen(2-);yttrium(3+) Chemical compound [O-2].[O-2].[O-2].[Al+3].[Y+3] JNDMLEXHDPKVFC-UHFFFAOYSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Inorganic materials [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000002223 garnet Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229910052605 nesosilicate Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 150000004762 orthosilicates Chemical class 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000002096 quantum dot Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910019655 synthetic inorganic crystalline material Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 150000003673 urethanes Chemical class 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000004018 waxing Methods 0.000 description 1
- 229910019901 yttrium aluminum garnet Inorganic materials 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
- H01L33/505—Wavelength conversion elements characterised by the shape, e.g. plate or foil
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/03—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/075—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
- H01L25/0753—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0093—Wafer bonding; Removal of the growth substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/44—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2933/00—Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
- H01L2933/0008—Processes
- H01L2933/0025—Processes relating to coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2933/00—Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
- H01L2933/0008—Processes
- H01L2933/0033—Processes relating to semiconductor body packages
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2933/00—Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
- H01L2933/0008—Processes
- H01L2933/0033—Processes relating to semiconductor body packages
- H01L2933/0041—Processes relating to semiconductor body packages relating to wavelength conversion elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/36—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
- H01L33/38—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
- H01L33/382—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending partially in or entirely through the semiconductor body
Definitions
- the invention relates to a method for the production of optoelectronic conversion semiconductor chips. Furthermore, the invention relates to a composite of conversion semiconductor chips.
- An object of the invention is to provide a method for
- the method of producing optoelectronic conversion semiconductor chips comprises the steps:
- optoelectronic conversion semiconductor chips are produced.
- at least two conversion semiconductor chips are produced.
- the method comprises the production of at least two conversion semiconductor chips.
- the conversion semiconductor chip is It is in particular a light emitting diode, short LED.
- Semiconductor chip is then preferably configured to emit blue light or white light.
- the conversion layer is adapted to that of the
- Semiconductor chip emitted radiation, in particular from the blue region to convert into white light.
- the conversion semiconductor chips are each a flip-chip.
- the conversion semiconductor chips all have their electrical contacts arranged on a main surface, via which the conversion semiconductor chips are respectively mounted on carriers, in particular a final carrier.
- the final support may be a housing, a ceramic or a metal core board.
- Such conversion semiconductor chips have the advantage that for the electrical connection, for example, no
- Bonding wires are more necessary.
- the method provides a growth substrate.
- the growth substrate may comprise an insulator material or a semiconductor material, for example a III-V compound semiconductor material.
- the growth substrate may be sapphire,
- GaAs, GaP, GaN, InP, SiC, Si and / or Ge may include or be of such material.
- Process step A) can in a subsequent
- Process step D) the growth substrate are thinned out. This means here and below that the
- Layer thickness of the growth substrate is reduced.
- the layer thickness of the growth substrate is reduced by a factor of 2 to 10, for example 10.
- the layer thickness of the growth substrate is reduced from 1 mm to 100 ym or from 700 ym to 250 ym or 300 ym.
- the thinning can be done by grinding and / or plasma processes.
- the method comprises a step B) growing one
- the growth takes place over the entire surface, that is, on the entire growth substrate.
- a layer or an element is arranged "on” or “over” another layer or another element or applied or grown on can here and below mean that the one layer or the one element directly in direct
- Layer or the other element is arranged. In this case, further layers and / or elements can then be arranged between the one and the other layer or between the one and the other element.
- the semiconductor layer sequence of the conversion semiconductor chips are preferably each based on a III-V compound semiconductor material.
- Semiconductor material may be preferred to a
- Nitride compound semiconductor material "means in present context, that the semiconductor layer sequence or at least one layer thereof comprises a III-nitride compound semiconductor material, preferably In x AlyGa ] _ x -yN, wherein 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1 and x + y ⁇ 1. In this This material does not necessarily have to be a mathematically exact one
- composition according to the above formula may contain one or more dopants as well as additional
- the semiconductor layer sequence may be aluminum nitride and / or
- Silicon nitride include.
- the semiconductor layer sequence includes an active layer with at least one pn junction and / or with one or more quantum well structures.
- an active layer with at least one pn junction and / or with one or more quantum well structures.
- a wavelength or the wavelength maximum of the radiation is preferably in the ultraviolet and / or visible spectral range
- wavelengths between 400 nm and 680 nm inclusive for example between 440 nm and 480 nm inclusive.
- the method has a method step C), application of an electrical contact to the reverse side of the semiconductor layer sequence facing away from the growth substrate.
- the rear side of the semiconductor layer sequence facing away from the growth substrate means here and in the following that the rear side is perpendicular to one Growth direction of the semiconductor layer sequence of the conversion semiconductor chips is oriented. In particular, the back is on the opposite side of the
- Waxing substrate of the semiconductor layer sequence ie facing away from the growth substrate arranged.
- the resulting conversion semiconductor chips may each have at least the electrical contact and another
- the electrical contacts are used for electrical contacting of the conversion semiconductor chips.
- the electrical contact is a p-terminal contact, that is to say a contact which electrically contacts at least one p-type semiconductor layer of the semiconductor layer sequence.
- the further electrical contact is an n-terminal contact, that is to say a contact which electrically contacts at least one n-type semiconductor layer of the semiconductor layer sequence.
- the electrical contacts may, for example, comprise at least one of the metals gold, silver, titanium, platinum, palladium, copper, nickel, indium, rhodium, chromium, aluminum or tungsten. These metals are for example by vapor deposition, sputtering or electrochemical
- the electrical contacts are separated from one another by at least one insulating layer
- the electrical contact and / or the further electrical contact may be formed as a layer.
- the growth process can in particular in the wafer composite
- a growth substrate is provided in the form of a wafer, for example one
- the grown semiconductor layer sequence can in another
- Step in individual semiconductor chips, in particular conversion semiconductor chips are singled, wherein the side surfaces of the semiconductor chips can be formed by the singulation.
- the method comprises a method step E), applying the conversion layer to the thinned growth substrate.
- the conversion layer is thinned over the entire surface
- the conversion layer is set up to emit the light emitted from the semiconductor layer sequence
- the primary radiation a For example, the primary radiation a
- Wavelength range while the secondary radiation may have a wavelength range from a blue to infrared wavelength range. Particularly preferred may be the primary radiation and the secondary radiation
- the primary radiation can arouse a bluish light impression and the secondary radiation a yellow-colored
- the primary radiation is selected from the blue spectral range, in particular from 440 nm to 480 nm.
- the secondary radiation is selected from the wavelength range between 515 nm to 560 nm and / or 600 nm to 750 nm.
- the conversion layer has a conversion material, which is in particular adapted to operate during operation of the
- Semiconductor layer sequence is emitted to at least partially absorb and as secondary radiation with an at least partially different from the primary radiation
- the conversion layer can be configured as a layered film or as a layer system. With shift system here is meant that the
- Conversion layer is composed of partial layers with different conversion materials, wherein in the individual partial layers differently composed conversion materials are present.
- the conversion material may be a phosphor.
- Phosphor can be distributed in a matrix material.
- the matrix material may be selected from a group comprising siloxanes, oxides, acrylates, silicones, methylacrylates, imides, carbonates, olefins, styrenes, urethanes, their derivatives and mixtures, copolymers and compounds thereof. These compounds can take the form of
- Monomers, oligomers or polymers are present.
- the matrix material may be an epoxy resin
- PMMA Polymethyl methacrylate
- polystyrene polystyrene
- polycarbonate Polyacrylate
- polyurethane polyurethane
- silicone resin such as
- Polysiloxane or mixtures thereof include or be.
- the conversion material may be selected from a group comprising garnets, calsines, quantum dots and rare earth doped orthosilicates.
- a garnet can be an yttrium-aluminum garnet, or YAG for short. This is doped in particular with cerium.
- Ca may at least partially be replaced by strontium and / or barium.
- a rare earth-doped orthosilicate may be used.
- Conversion layer additionally a filler, such as
- a metal oxide such as titanium dioxide
- Salt barium sulfate and / or glass particles The
- Fillers may be adapted to those of the
- Semiconductor chip emitted primary radiation at least partially scatter and / or from the in the
- Semiconductor layer sequence absorbed radiation to scatter.
- the conversion layer can be applied in process step E) in liquid form.
- the solid conversion material is dispersed in a liquid phase of the matrix material and both are applied together.
- Matrix material and the conversion material for example on the semiconductor layer sequence with the active region
- the matrix material and the conversion material are applied directly to the growth substrate.
- step D) takes place by means of molding, spraycoting or potting.
- the conversion layer is applied as a paste, granules, liquid and / or solution.
- the conversion layer is applied as a paste, granules, liquid and / or solution.
- Conversion layer also be laminated.
- the method comprises a method step F), separating at least the
- Semiconductor layer sequence for generating at least two optoelectronic conversion semiconductor chips arise more than two conversion semiconductor chips, for example, more than 100 or 200 conversion semiconductor chips.
- Method step F) by means of sawing, stealth dicing,
- step D) Laser dicing, laser cutting or scribing and breaking. Cracking and breaking means, in particular, that at least the growth substrate is at least mechanically scratched, for example by means of a diamond trimmer, or by means of a laser and then broken.
- an additional step D1) is carried out, severing the
- the conversion layer is additionally arranged in step E) in the first intermediate space.
- the growth substrate is in
- a first intermediate space is formed, that is, a space between the adjacent resulting conversion semiconductor chips, if they have not yet been singulated.
- the conversion layer is additionally arranged in step E). In particular, the covered
- the first space form fit and / or directly, ie in direct mechanical contact.
- the first gap extends only through the
- step F in particular optoelectronic conversion semiconductor chips are produced which have side flanks which are free of the conversion layer.
- step D) a
- step E) the conversion layer is arranged in step E) then additionally in this second gap, wherein after step F) opto-electronic conversion semiconductor chips are generated having side edges which are at least partially covered with the conversion layer.
- the growth substrate is the
- the at least one electrical contact, the dielectric or the metal layer is not severed. In this second space, the
- side flanks is meant here and below, the side surfaces of the respective conversion semiconductor chips, that is, the side surfaces of the growth substrate and the semiconductor layer sequence. These side surfaces are at least partially covered by the conversion layer.
- the side surfaces of the growth substrate and the semiconductor layer sequence are
- step D) an additional step D4), cutting through the growth substrate and the semiconductor layer sequence and the electrical
- step E Contacting to form a third gap, wherein the conversion layer is additionally arranged in the third gap in step E), wherein after step F)
- Interspace is completely filled with the conversion layer in step E), in particular form-fitting. This allows conversion semiconductor chips in the direct
- Processing can be generated, which both the
- first the first gap, then the second gap and finally the third gap are formed in one process.
- the spaces are successively formed in one process.
- an additional step D3) takes place after step D) and / or before step D4),
- step D4 Semiconductor layer sequence and the electrical contact on a temporary carrier, wherein in step D4) first the growth substrate, then the semiconductor layer sequence and then the electrical contact are severed, the
- the temporary carrier is not severed, so is present undivided.
- a dielectric or a metal layer may be present, which are applied in step D3) and severed in step D4).
- the temporary carrier is removed after step E) or F).
- the temporary carrier may be, for example, a foil (English: Foil) a
- Circuit board or generally act around a plate with a plastic material, a metal, a ceramic
- the temporary carrier is in particular attached to the growth substrate
- a step takes place before step D), ie before the thinning substrate is thinned
- Metal layer be present, which is then severed.
- the abrading of the growth substrate takes place up to this severed region.
- semiconductor chips can be generated which are separated from each other. In particular, these semiconductor chips do not have a conversion layer. According to at least one embodiment, the
- Conversion layer on the side edges of the conversion semiconductor chips a layer thickness of 1 ym to 1 mm
- the conversion layer on the growth substrate may have a layer thickness of 20 ym to 400 ym.
- the layer thickness of the conversion layer on the growth substrate may have a layer thickness of 20 ym to 400 ym.
- steps G) and / or H) additionally take place after step F).
- Step G) involves testing the optoelectronic conversion semiconductor chips. This means in particular that the conversion semiconductor chips are tested for their functionality or operability.
- the method step H) comprises the packaging of the optoelectronic conversion semiconductor chips, in particular the packaging for sale. Furthermore, a composite of conversion semiconductor chips is specified.
- the method for producing conversion semiconductor chips preferably constitutes a composite of
- the composite of conversion semiconductor chips comprises one each
- Semiconductor layer sequence with at least one n-type semiconductor layer and at least one p-type semiconductor layer. Between the at least one n-type semiconductor layer and the at least one p-type semiconductor layer, an active layer is arranged.
- the active layer is for the emission of
- the composite of conversion semiconductor chips comprises a common
- Semiconductor layer sequence is in each case arranged downstream of a growth substrate, in particular directly downstream.
- the composite of conversion semiconductor chips comprises one each
- both electrical contacts are arranged in particular on the rear side of the common or the respective semiconductor layer sequence facing away from the growth substrate. It is about
- the conversion semiconductor chips have a common conversion layer in the composite of conversion semiconductor chips.
- the common conversion layer in the composite of conversion semiconductor chips.
- Conversion layer is directly downstream of the respective growth substrates. In other words, it envelops you
- the conversion layer can be a
- Layer thickness of 1 ym to 1 mm in particular from 20 ym to 400 ym.
- a composite of conversion semiconductor chips is specified here, wherein the conversion semiconductor chips are not yet separated or singulated and thus are connected to one another at least via a common conversion layer.
- the conversion semiconductor chips in addition to the common conversion layer, a common
- each conversion semiconductor chip has its own growth substrate, its own semiconductor layer sequence and / or its own electrical contact, so that they are only connected to one another via a common conversion layer.
- the common conversion layer covers at least the surface of the
- the common conversion layer is the respective one
- the common conversion layer covers the side surfaces of the
- FIGS. 7A to 7C schematically show a side view of a semiconductor chip
- a composite of conversion semiconductor chips according to an embodiment.
- identical, identical or identically acting elements can each be provided with the same reference numerals.
- the illustrated elements and their proportions with each other are not to be regarded as true to scale. Rather, individual elements, such as layers, components, components and areas for exaggerated representability and / or better understanding can be displayed exaggerated.
- Figures 1A and 1B show a schematic side view of a method for the production of optoelectronic Conversion semiconductor chips 61, 62 according to a
- FIG. 1A shows method step A). A growth substrate 1 is provided. The
- Growth substrate 1 is in particular a sapphire substrate.
- FIG. 1B shows method step B). In method step B), the semiconductor layer sequence 2 is applied to the
- Growth substrate 1 applied, in particular grown.
- Semiconductor layer sequence 2 is particularly on the
- Rear side 12 of the growth substrate 1 is arranged.
- Semiconductor layer sequence 2 may comprise an aluminum nitride layer.
- FIGS. 2A to 6E and 8A to 9D show, by way of example, the production of two conversion semiconductor chips. However, this is here
- the described method is not limited to the production of two conversion semiconductor chips, but it can also more than two conversion semiconductor chips with this method, in particular simultaneously produced.
- the conversion semiconductor chips described in FIGS. 2A to 7C may have insulation layers (not shown here). In particular, the insulation layers are arranged between a first contact 3 and a further contact 8 to avoid a short circuit.
- FIGS. 2A to 2D schematically show a method for producing optoelectronic conversion semiconductor chips 61, 62 according to an embodiment.
- FIG. 2A shows a growth substrate 1, on which the
- FIG. 2A shows the electrical contact 3, which here is formed as a layer, and the further electrical contact 8, which extends into the n-semiconductor layer sequence 23.
- FIG. 2A shows the production process up to
- Method step D as shown in Figure 2B, by thinning the growth substrate.
- the layer thickness of the growth substrate is reduced here.
- the conversion layer 4 is in particular applied over the whole area directly to the growth substrate 1.
- the method step F in which a singling takes place for the production of optoelectronic conversion semiconductor chips, takes place here
- Conversion semiconductor chips 61, 62 are in particular
- the conversion semiconductor chips 61, 62 have a conversion layer 4, a growth substrate 1, a
- Rear side contacts 5 or other contacts 8 may be arranged.
- Singling 7 can be done by means of sawing, stealth dicing or
- the singulated conversion semiconductor chips 61, 62 can be tested and packaged (not shown here).
- the method of FIGS. 2A to 2D provides conversion semiconductor chips, each of which has a conversion layer 4, which in particular has the conversion layer 4 Surface of the growth substrate 1 positively covered.
- the side flanks 13 of the respective conversion semiconductor chips 61, 62 are not covered by the conversion layer 4, that is to say free from the conversion layer 4.
- FIGS. 3A to 3D schematically show a method for producing conversion semiconductor chips 61, 62 according to an embodiment.
- FIG. 3A corresponds to FIG. 2A.
- the method step D) takes place, that is, the growth substrate 1 is thinned out (FIG. 3B). Subsequently, at least the growth substrate 1 is severed.
- the cutting is carried out in side view vertically to the semiconductor layer sequence 2.
- a first gap 9 as shown in Figure 3B or 3C, formed.
- this first space 9 can in
- the conversion layer 4 are arranged.
- singulation takes place and conversion semiconductor chips 61, 62 are produced, each of which has a conversion layer 4, which has the
- Cover side edges 13 at least partially.
- FIGS. 4A to 4D schematically show a method for
- FIG. 4A corresponds to FIGS. 2A and 3A. Subsequently, it is shown in FIG. 4B that at least the thinned growth substrate 1 as well as the
- Conversion layer 4 is applied to the surface of the growth substrate 1 and this additionally arranged in the second gap 10.
- the conversion layer 4 thus covers both the side surfaces 14 of the growth substrate and the side surfaces 15 of the semiconductor layer sequence 2. As shown in FIG. 4D, after singulation, the singulation can then take place
- Conversion semiconductor chips 61, 62 are generated, both the side surfaces 14 of the growth substrate 1 and the side surfaces 15 of the semiconductor layer sequence 2 with the
- Conversion layer 4 cover form fit.
- FIGS. 5A to 5D schematically show a method for producing conversion semiconductor chips 61, 62 according to an embodiment.
- FIG. 5A corresponds to FIGS. 2A to 4A.
- FIG. 5B shows the method step D4).
- the growth substrate 1, the semiconductor layer sequence 2 and the electrical contact 3 are severed. It will be between adjacent
- conversion layer 4 is applied and also deposits in this third intermediate space 11.
- conversion semiconductor chips 61, 62 can be produced that have both a conversion layer 4 on the side surfaces 14 of the growth substrate 1, on the side surfaces 15 of the semiconductor layer sequence 2 and on the side surfaces 16 of the electrical contact 3.
- conversion semiconductor chips 61, 62 may be provided here which comprise a conversion layer 4
- FIGS. 6A to 6E schematically show a method of manufacturing conversion semiconductor chips 61, 62 according to an embodiment.
- FIG. 6A corresponds to FIGS. 2A to 5A.
- FIG. 6B shows that first the electrical contact 3, then the semiconductor layer sequence 2 and then at least partially the growth substrate 1 are severed. Instead of the electrical contact 3, a
- Dielectric 17a or a metal layer 17b may be present, which is cut through (not shown here).
- the method step D ie, the thinning of the growth substrate 1.
- the growth substrate 1 is ground down until the severed part of the
- FIGS. 7A to 7C each show a schematic
- FIG. 7A corresponds to FIG. 3C.
- FIG. 7B corresponds to FIG. 4C.
- FIG. 7C corresponds to FIG. 5C.
- FIGS. 7A, B and C show a semiconductor layer sequence 2, arranged downstream
- the common conversion layer 4 directly covers the respective growth substrates 1.
- the first space 9 is through a structured growth substrate 1 is formed.
- the second gap 10 is through a structured growth substrate
- the third gap 11 is a structured one
- a dielectric 17a or a metal layer 17b may be present between the electrical contact 3 and the conversion layer 4 (not shown here).
- the conversion semiconductor chips 61, 62 in one
- the composite of conversion semiconductor chips 61, 62 of FIG. 7A has a common one
- the conversion semiconductor chips 61, 62 of FIG. 7A each have a growth substrate 1.
- the composite of conversion semiconductor chips 61, 62 of FIG. 7B has at least one
- the conversion semiconductor chips 61, 62 of FIG. 7B each have one
- the composite of conversion semiconductor chips 61, 62 of FIG. 7C has a common one
- FIGS. 8A to 8D schematically show a method of manufacturing conversion semiconductor chips 61, 62 according to an embodiment.
- FIGS. 8A to 8D substantially correspond to FIGS. 4A to 4D, with the exception that the adjacent semiconductor chips 61, 62 have further layers, such as, for example, a dielectric 17a or a metal layer 17b (not shown here). These can serve to protect the conversion semiconductor chips 61, 62.
- the electrical contact 3 and the further contact 8 of adjacent semiconductor chips 61, 62 are separated from one another by a dielectric 17a. The separation of the layers is then not up to the electrical contact 3 or through the electrical contact 3, as shown in Figures 4A to 4D, but to the dielectric 17a ( Figure 8B) or through the dielectric 17a ( Figure 8D).
- FIGS. 9A to 9D schematically show a method of manufacturing conversion semiconductor chips 61, 62 according to an embodiment.
- FIGS. 9A to 9D essentially correspond to FIGS. 5A to 5D, with the exception that the adjacent semiconductor chips 61, 62 have further layers, such as, for example, a dielectric 17a or a metal layer 17b (not shown here). These can serve to protect the conversion semiconductor chips 61, 62.
- Dielectric 17a separated from each other. The separation of the layers is then not performed by the electrical contact. 3 As shown in Figures 5A to 5D, but by the
- FIGS. 10A to 10D schematically show a method for the production of optoelectronic conversion
- FIGS. 10A to 10C essentially correspond to FIGS. 2A to 2C.
- the optoelectronic semiconductor components are separated from the side facing away from the growth substrate, that is to say from the p-type semiconductor layer, via the active layer to the n-type semiconductor layer.
- the resulting gaps or trenches can also be made of dielectrics or metals
- the separation or separation can only take place at least up to the growth substrate.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Led Device Packages (AREA)
- Led Devices (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112016002661.7T DE112016002661A5 (de) | 2015-06-12 | 2016-06-10 | Verfahren zur herstellung von optoelektronischen konversions-halbleiterchips und verbund von konversions-halbleiterchips |
US15/735,945 US10424698B2 (en) | 2015-06-12 | 2016-06-10 | Method for producing optoelectronic conversion semiconductor chips and composite of conversion semiconductor chips |
CN201680042666.0A CN107851687A (zh) | 2015-06-12 | 2016-06-10 | 用于制造光电子转换半导体芯片的方法和转换半导体芯片的复合件 |
JP2017564378A JP2018517305A (ja) | 2015-06-12 | 2016-06-10 | オプトエレクトロニクス変換半導体チップの製造方法および変換半導体チップの複合体 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102015109413.4A DE102015109413A1 (de) | 2015-06-12 | 2015-06-12 | Verfahren zur Herstellung von optoelektronischen Konversions-Halbleiterchips und Verbund von Konversions-Halbleiterchips |
DE102015109413.4 | 2015-06-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016198620A1 true WO2016198620A1 (de) | 2016-12-15 |
Family
ID=56116459
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2016/063328 WO2016198620A1 (de) | 2015-06-12 | 2016-06-10 | Verfahren zur herstellung von optoelektronischen konversions-halbleiterchips und verbund von konversions-halbleiterchips |
Country Status (5)
Country | Link |
---|---|
US (1) | US10424698B2 (de) |
JP (1) | JP2018517305A (de) |
CN (1) | CN107851687A (de) |
DE (2) | DE102015109413A1 (de) |
WO (1) | WO2016198620A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11646392B2 (en) | 2020-06-09 | 2023-05-09 | Nichia Corporation | Method of manufacturing light-emitting device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102016108682A1 (de) | 2016-05-11 | 2017-11-16 | Osram Opto Semiconductors Gmbh | Verfahren zur Herstellung eines optoelektronischen Bauelements und optoelektronisches Bauelement |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2325906A1 (de) * | 2009-11-19 | 2011-05-25 | Kabushiki Kaisha Toshiba | Dispositif électroluminescent semi-conducteur et son procédé de fabrication |
US20110297994A1 (en) * | 2010-06-03 | 2011-12-08 | Kabushiki Kaisha Toshiba | Semiconductor light emitting device |
WO2013109774A1 (en) * | 2012-01-20 | 2013-07-25 | Cree, Inc. | Light emitting diode (led) arrays including direct die attach and related assemblies |
WO2013150427A1 (en) * | 2012-04-05 | 2013-10-10 | Koninklijke Philips N.V. | Led thin-film device partial singulation prior to substrate thinning or removal |
Family Cites Families (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5019771A (en) * | 1990-05-09 | 1991-05-28 | Knights Technology, Inc. | Contact sensing for integrated circuit testing |
US7263097B1 (en) * | 2001-11-26 | 2007-08-28 | Integrated Device Technology, Inc. | Programmably sliceable switch-fabric unit and methods of use |
US7038288B2 (en) * | 2002-09-25 | 2006-05-02 | Microsemi Corporation | Front side illuminated photodiode with backside bump |
US20060003477A1 (en) * | 2002-10-30 | 2006-01-05 | Bert Braune | Method for producing a light source provided with electroluminescent diodes and comprising a luminescence conversion element |
JP3978514B2 (ja) * | 2002-12-24 | 2007-09-19 | 株式会社ナノテム | 発光素子の製造方法および発光素子 |
JP4343559B2 (ja) * | 2003-03-07 | 2009-10-14 | キヤノン株式会社 | 収差測定装置 |
US7008861B2 (en) * | 2003-12-11 | 2006-03-07 | Cree, Inc. | Semiconductor substrate assemblies and methods for preparing and dicing the same |
DE102004060358A1 (de) * | 2004-09-30 | 2006-04-13 | Osram Opto Semiconductors Gmbh | Verfahren zum Herstellen von Lumineszenzdiodenchips und Lumineszenzdiodenchip |
WO2006124597A2 (en) * | 2005-05-12 | 2006-11-23 | Foster Ron B | Infinitely stackable interconnect device and method |
US7452739B2 (en) * | 2006-03-09 | 2008-11-18 | Semi-Photonics Co., Ltd. | Method of separating semiconductor dies |
US8124429B2 (en) * | 2006-12-15 | 2012-02-28 | Richard Norman | Reprogrammable circuit board with alignment-insensitive support for multiple component contact types |
US9159888B2 (en) * | 2007-01-22 | 2015-10-13 | Cree, Inc. | Wafer level phosphor coating method and devices fabricated utilizing method |
US9024349B2 (en) * | 2007-01-22 | 2015-05-05 | Cree, Inc. | Wafer level phosphor coating method and devices fabricated utilizing method |
US7955955B2 (en) * | 2007-05-10 | 2011-06-07 | International Business Machines Corporation | Using crack arrestor for inhibiting damage from dicing and chip packaging interaction failures in back end of line structures |
US10505083B2 (en) * | 2007-07-11 | 2019-12-10 | Cree, Inc. | Coating method utilizing phosphor containment structure and devices fabricated using same |
US9754926B2 (en) * | 2011-01-31 | 2017-09-05 | Cree, Inc. | Light emitting diode (LED) arrays including direct die attach and related assemblies |
EP2216834B1 (de) * | 2007-11-29 | 2017-03-15 | Nichia Corporation | Lichtemittierende vorrichtung |
JP4724222B2 (ja) * | 2008-12-12 | 2011-07-13 | 株式会社東芝 | 発光装置の製造方法 |
CN101477982B (zh) * | 2009-01-07 | 2011-08-17 | 苏州晶方半导体科技股份有限公司 | 光转换器及其制造方法和发光二极管 |
JP2011071272A (ja) * | 2009-09-25 | 2011-04-07 | Toshiba Corp | 半導体発光装置及びその製造方法 |
US8476918B2 (en) * | 2010-04-28 | 2013-07-02 | Tsmc Solid State Lighting Ltd. | Apparatus and method for wafer level classification of light emitting device |
US8329482B2 (en) * | 2010-04-30 | 2012-12-11 | Cree, Inc. | White-emitting LED chips and method for making same |
JP5390472B2 (ja) * | 2010-06-03 | 2014-01-15 | 株式会社東芝 | 半導体発光装置及びその製造方法 |
JP4778107B1 (ja) * | 2010-10-19 | 2011-09-21 | 有限会社ナプラ | 発光デバイス、及び、その製造方法 |
DE102011013821B4 (de) * | 2011-03-14 | 2024-05-23 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Verfahren zur Herstellung zumindest eines optoelektronischen Halbleiterchips |
US8436386B2 (en) * | 2011-06-03 | 2013-05-07 | Micron Technology, Inc. | Solid state lighting devices having side reflectivity and associated methods of manufacture |
US9653643B2 (en) * | 2012-04-09 | 2017-05-16 | Cree, Inc. | Wafer level packaging of light emitting diodes (LEDs) |
US9666764B2 (en) * | 2012-04-09 | 2017-05-30 | Cree, Inc. | Wafer level packaging of multiple light emitting diodes (LEDs) on a single carrier die |
US9437581B2 (en) * | 2012-05-31 | 2016-09-06 | Panasonic Intellectual Property Management Co., Ltd. | LED module |
US9490398B2 (en) * | 2012-12-10 | 2016-11-08 | Citizen Holdings Co., Ltd. | Manufacturing method of light emitting device in a flip-chip configuration with reduced package size |
KR20140130618A (ko) * | 2013-05-01 | 2014-11-11 | 서울바이오시스 주식회사 | 솔더 페이스트를 통해 접착된 발광 다이오드를 갖는 발광 다이오드 모듈 및 발광 다이오드 |
CN105393373B (zh) * | 2013-05-15 | 2020-10-16 | 亮锐控股有限公司 | 具有光学元件和反射体的发光器件 |
EP3005427B1 (de) * | 2013-06-06 | 2019-01-16 | Lumileds Holding B.V. | Herstellungsverfahren für eine mit einer leuchtstofffolie laminierte leuchtdiode |
KR102180388B1 (ko) * | 2013-07-08 | 2020-11-19 | 루미리즈 홀딩 비.브이. | 파장 변환 반도체 발광 디바이스 |
WO2015011583A1 (en) * | 2013-07-22 | 2015-01-29 | Koninklijke Philips N.V. | Method of separating light emitting devices formed on a substrate wafer |
DE102013111496A1 (de) * | 2013-10-18 | 2015-04-23 | Osram Opto Semiconductors Gmbh | Verfahren zum Herstellen von optoelektronischen Halbleiterbauelementen und optoelektronisches Halbleiterbauelement |
JP6209949B2 (ja) * | 2013-11-13 | 2017-10-11 | 日亜化学工業株式会社 | 発光装置及び発光装置の製造方法 |
JP6237181B2 (ja) * | 2013-12-06 | 2017-11-29 | 日亜化学工業株式会社 | 発光装置の製造方法 |
KR102075981B1 (ko) * | 2014-02-21 | 2020-02-11 | 삼성전자주식회사 | 발광다이오드 패키지의 제조방법 |
KR102171024B1 (ko) * | 2014-06-16 | 2020-10-29 | 삼성전자주식회사 | 반도체 발광소자 패키지의 제조 방법 |
WO2016064216A1 (ko) * | 2014-10-22 | 2016-04-28 | 안상정 | 반도체 소자용 지지 기판, 이를 포함하는 반도체 장치 및 이를 제조하는 방법 |
US9773711B2 (en) * | 2014-12-01 | 2017-09-26 | Industrial Technology Research Institute | Picking-up and placing process for electronic devices and electronic module |
US20160276546A1 (en) * | 2015-03-18 | 2016-09-22 | Genesis Photonics Inc. | Chip package structure and method of manufacturing the same |
JP6537891B2 (ja) * | 2015-05-25 | 2019-07-03 | スタンレー電気株式会社 | 発光装置及びその製造方法 |
US10529696B2 (en) * | 2016-04-12 | 2020-01-07 | Cree, Inc. | High density pixelated LED and devices and methods thereof |
-
2015
- 2015-06-12 DE DE102015109413.4A patent/DE102015109413A1/de not_active Withdrawn
-
2016
- 2016-06-10 JP JP2017564378A patent/JP2018517305A/ja active Pending
- 2016-06-10 DE DE112016002661.7T patent/DE112016002661A5/de active Pending
- 2016-06-10 US US15/735,945 patent/US10424698B2/en active Active
- 2016-06-10 CN CN201680042666.0A patent/CN107851687A/zh active Pending
- 2016-06-10 WO PCT/EP2016/063328 patent/WO2016198620A1/de active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2325906A1 (de) * | 2009-11-19 | 2011-05-25 | Kabushiki Kaisha Toshiba | Dispositif électroluminescent semi-conducteur et son procédé de fabrication |
US20110297994A1 (en) * | 2010-06-03 | 2011-12-08 | Kabushiki Kaisha Toshiba | Semiconductor light emitting device |
WO2013109774A1 (en) * | 2012-01-20 | 2013-07-25 | Cree, Inc. | Light emitting diode (led) arrays including direct die attach and related assemblies |
WO2013150427A1 (en) * | 2012-04-05 | 2013-10-10 | Koninklijke Philips N.V. | Led thin-film device partial singulation prior to substrate thinning or removal |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11646392B2 (en) | 2020-06-09 | 2023-05-09 | Nichia Corporation | Method of manufacturing light-emitting device |
Also Published As
Publication number | Publication date |
---|---|
DE102015109413A1 (de) | 2016-12-15 |
US10424698B2 (en) | 2019-09-24 |
JP2018517305A (ja) | 2018-06-28 |
CN107851687A (zh) | 2018-03-27 |
DE112016002661A5 (de) | 2018-02-22 |
US20180198037A1 (en) | 2018-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102012109460B4 (de) | Verfahren zur Herstellung eines Leuchtdioden-Displays und Leuchtdioden-Display | |
DE102010053362B4 (de) | Verfahren zur Herstellung eines strahlungsemittierenden Halbleiterchips, strahlungsemittierender Halbleiterchip und strahlungsemittierendes Bauelement | |
DE102010034665B4 (de) | Optoelektronischer Halbleiterchip und Verfahren zur Herstellung von optoelektronischen Halbleiterchips | |
DE112014005954B4 (de) | Optoelektronisches Halbleiterbauteil und Verfahren zur Herstellung eines optoelektronischen Halbleiterbauteils | |
WO2014060355A2 (de) | Verfahren zur herstellung einer vielzahl von optoelektronischen halbleiterbauteilen | |
EP2901479B1 (de) | Optoelektronisches bauelement | |
DE102013100711B4 (de) | Verfahren zur Herstellung einer Vielzahl optoelektronischer Bauelemente | |
DE102015114849A1 (de) | Verfahren zur Herstellung von Leuchtdiodenfilamenten und Leuchtdiodenfilament | |
EP2162927A1 (de) | Verfahren zur herstellung von optoelektronischen bauelementen und optoelektronisches bauelement | |
EP2294614B1 (de) | Verfahren zur herstellung einer vielzahl von optoelektronischen bauelementen | |
DE102013111496A1 (de) | Verfahren zum Herstellen von optoelektronischen Halbleiterbauelementen und optoelektronisches Halbleiterbauelement | |
DE102010044986A1 (de) | Leuchtdiodenchip und Verfahren zur Herstellung eines Leuchtdiodenchips | |
WO2014095923A1 (de) | Verfahren zur herstellung eines optoelektronischen halbleiterbauteils und optoelektronisches halbleiterbauteil | |
WO2015036231A1 (de) | Optoelektronisches halbleiterbauteil und verfahren zur herstellung eines optoelektronischen halbleiterbauteils | |
DE102014101492A1 (de) | Optoelektronisches Halbleiterbauelement | |
WO2014019865A1 (de) | Verfahren zur herstellung einer mehrzahl von optoelektronischen halbleiterchips und optoelektronischer halbleiterchip | |
WO2015010997A1 (de) | Oberflächenmontierbares optoelektronisches halbleiterbauteil und verfahren zur herstellung zumindest eines oberflächenmontierbaren optoelektronischen halbleiterbauteils | |
EP2486604B1 (de) | Kontaktierung eines optoelektronischen halbleiterbauteils durch konversionselement | |
WO2015110460A1 (de) | Verfahren zur herstellung von optoelektronischen halbleiterbauelementen und optoelektronisches halbleiterbauelement | |
WO2016180810A1 (de) | Optoelektronischer halbleiterchip und leuchtmittel | |
WO2013029862A1 (de) | Verfahren zur herstellung einer leuchtdiode und leuchtdiode | |
WO2016198620A1 (de) | Verfahren zur herstellung von optoelektronischen konversions-halbleiterchips und verbund von konversions-halbleiterchips | |
DE102008021659A1 (de) | LED-Element mit Dünnschicht-Halbleiterbauelement auf Galliumnitrid-Basis | |
WO2018019846A1 (de) | Strahlungsemittierender halbleiterchip, verfahren zur herstellung einer vielzahl strahlungsemittierender halbleiterchips, strahlungsemittierendes bauelement und verfahren zur herstellung eines strahlungsemittierenden bauelements | |
WO2017194623A1 (de) | Verfahren zur herstellung eines optoelektronischen bauelements und optoelektronisches bauelement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16728058 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017564378 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112016002661 Country of ref document: DE |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: R225 Ref document number: 112016002661 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16728058 Country of ref document: EP Kind code of ref document: A1 |