WO2016186429A1 - Composition for cancer treatment comprising indocyanine green-liposome composite - Google Patents
Composition for cancer treatment comprising indocyanine green-liposome composite Download PDFInfo
- Publication number
- WO2016186429A1 WO2016186429A1 PCT/KR2016/005209 KR2016005209W WO2016186429A1 WO 2016186429 A1 WO2016186429 A1 WO 2016186429A1 KR 2016005209 W KR2016005209 W KR 2016005209W WO 2016186429 A1 WO2016186429 A1 WO 2016186429A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- glycero
- phosphocholine
- indocyanine green
- composition
- phosphatidylcholine
- Prior art date
Links
- 239000002502 liposome Substances 0.000 title claims abstract description 97
- 206010028980 Neoplasm Diseases 0.000 title claims abstract description 59
- 201000011510 cancer Diseases 0.000 title claims abstract description 51
- 239000000203 mixture Substances 0.000 title claims abstract description 45
- 239000002131 composite material Substances 0.000 title abstract description 7
- MOFVSTNWEDAEEK-UHFFFAOYSA-M indocyanine green Chemical compound [Na+].[O-]S(=O)(=O)CCCCN1C2=CC=C3C=CC=CC3=C2C(C)(C)C1=CC=CC=CC=CC1=[N+](CCCCS([O-])(=O)=O)C2=CC=C(C=CC=C3)C3=C2C1(C)C MOFVSTNWEDAEEK-UHFFFAOYSA-M 0.000 claims abstract description 67
- 229960004657 indocyanine green Drugs 0.000 claims abstract description 67
- 238000000034 method Methods 0.000 claims abstract description 22
- 239000004417 polycarbonate Substances 0.000 claims description 39
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 claims description 37
- GZDFHIJNHHMENY-UHFFFAOYSA-N Dimethyl dicarbonate Chemical compound COC(=O)OC(=O)OC GZDFHIJNHHMENY-UHFFFAOYSA-N 0.000 claims description 30
- KILNVBDSWZSGLL-KXQOOQHDSA-N 1,2-dihexadecanoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCC KILNVBDSWZSGLL-KXQOOQHDSA-N 0.000 claims description 28
- NRJAVPSFFCBXDT-HUESYALOSA-N 1,2-distearoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCCCC NRJAVPSFFCBXDT-HUESYALOSA-N 0.000 claims description 28
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical group OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 18
- 239000003381 stabilizer Substances 0.000 claims description 14
- 230000006907 apoptotic process Effects 0.000 claims description 13
- 239000003960 organic solvent Substances 0.000 claims description 13
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims description 12
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 9
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 9
- 229920005597 polymer membrane Polymers 0.000 claims description 9
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 8
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 8
- 229940127089 cytotoxic agent Drugs 0.000 claims description 8
- 239000006185 dispersion Substances 0.000 claims description 8
- SNKAWJBJQDLSFF-NVKMUCNASA-N 1,2-dioleoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCC\C=C/CCCCCCCC SNKAWJBJQDLSFF-NVKMUCNASA-N 0.000 claims description 7
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 6
- JZNWSCPGTDBMEW-UHFFFAOYSA-N Glycerophosphorylethanolamin Natural products NCCOP(O)(=O)OCC(O)CO JZNWSCPGTDBMEW-UHFFFAOYSA-N 0.000 claims description 5
- 239000002202 Polyethylene glycol Substances 0.000 claims description 5
- 239000002246 antineoplastic agent Substances 0.000 claims description 5
- 150000008104 phosphatidylethanolamines Chemical class 0.000 claims description 5
- 229920001223 polyethylene glycol Polymers 0.000 claims description 5
- AEUCYCQYAUFAKH-DITNKEBASA-N 1,2-di-[(11Z)-eicosenoyl]-sn-glycero-3-phosphocholine Chemical compound CCCCCCCC\C=C/CCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCC\C=C/CCCCCCCC AEUCYCQYAUFAKH-DITNKEBASA-N 0.000 claims description 4
- FVXDQWZBHIXIEJ-LNDKUQBDSA-N 1,2-di-[(9Z,12Z)-octadecadienoyl]-sn-glycero-3-phosphocholine Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCC\C=C/C\C=C/CCCCC FVXDQWZBHIXIEJ-LNDKUQBDSA-N 0.000 claims description 4
- SLKDGVPOSSLUAI-PGUFJCEWSA-N 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine zwitterion Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OCCN)OC(=O)CCCCCCCCCCCCCCC SLKDGVPOSSLUAI-PGUFJCEWSA-N 0.000 claims description 4
- NEZDNQCXEZDCBI-UHFFFAOYSA-N 2-azaniumylethyl 2,3-di(tetradecanoyloxy)propyl phosphate Chemical group CCCCCCCCCCCCCC(=O)OCC(COP(O)(=O)OCCN)OC(=O)CCCCCCCCCCCCC NEZDNQCXEZDCBI-UHFFFAOYSA-N 0.000 claims description 4
- 241000287828 Gallus gallus Species 0.000 claims description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 claims description 4
- MWRBNPKJOOWZPW-CLFAGFIQSA-N dioleoyl phosphatidylethanolamine Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(COP(O)(=O)OCCN)OC(=O)CCCCCCC\C=C/CCCCCCCC MWRBNPKJOOWZPW-CLFAGFIQSA-N 0.000 claims description 4
- 230000000887 hydrating effect Effects 0.000 claims description 4
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 4
- CITHEXJVPOWHKC-UUWRZZSWSA-N 1,2-di-O-myristoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCC CITHEXJVPOWHKC-UUWRZZSWSA-N 0.000 claims description 3
- 239000002254 cytotoxic agent Substances 0.000 claims description 3
- 231100000599 cytotoxic agent Toxicity 0.000 claims description 3
- 239000012634 fragment Substances 0.000 claims description 3
- 230000001024 immunotherapeutic effect Effects 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- 229920000515 polycarbonate Polymers 0.000 claims description 3
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 claims description 3
- YKIOPDIXYAUOFN-YACUFSJGSA-N (2-{[(2r)-2,3-bis(icosanoyloxy)propyl phosphonato]oxy}ethyl)trimethylazanium Chemical compound CCCCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCCCCCC YKIOPDIXYAUOFN-YACUFSJGSA-N 0.000 claims description 2
- LVNGJLRDBYCPGB-LDLOPFEMSA-N (R)-1,2-distearoylphosphatidylethanolamine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[NH3+])OC(=O)CCCCCCCCCCCCCCCCC LVNGJLRDBYCPGB-LDLOPFEMSA-N 0.000 claims description 2
- LJARBVLDSOWRJT-PSXMRANNSA-N 1,2-di-O-pentadecanoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCC LJARBVLDSOWRJT-PSXMRANNSA-N 0.000 claims description 2
- KLJBLQFSKZACGJ-MMKOEKFTSA-N 1,2-di-[(6Z)-octadecenoyl]-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCC\C=C/CCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCC\C=C/CCCCCCCCCCC KLJBLQFSKZACGJ-MMKOEKFTSA-N 0.000 claims description 2
- XXKFQTJOJZELMD-JICBSJGISA-N 1,2-di-[(9Z,12Z,15Z)-octadecatrienoyl]-sn-glycero-3-phosphocholine Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCC\C=C/C\C=C/C\C=C/CC XXKFQTJOJZELMD-JICBSJGISA-N 0.000 claims description 2
- 229940083937 1,2-diarachidoyl-sn-glycero-3-phosphocholine Drugs 0.000 claims description 2
- MLKLDGSYMHFAOC-AREMUKBSSA-N 1,2-dicapryl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCC MLKLDGSYMHFAOC-AREMUKBSSA-N 0.000 claims description 2
- IJFVSSZAOYLHEE-SSEXGKCCSA-N 1,2-dilauroyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCC IJFVSSZAOYLHEE-SSEXGKCCSA-N 0.000 claims description 2
- GPWHCUUIQMGELX-VHQDNGOZSA-N 1,2-dipalmitoleoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCC\C=C/CCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCC\C=C/CCCCCC GPWHCUUIQMGELX-VHQDNGOZSA-N 0.000 claims description 2
- UKDDQGWMHWQMBI-UHFFFAOYSA-O 1,2-diphytanoyl-sn-glycero-3-phosphocholine Chemical compound CC(C)CCCC(C)CCCC(C)CCCC(C)CC(=O)OCC(COP(O)(=O)OCC[N+](C)(C)C)OC(=O)CC(C)CCCC(C)CCCC(C)CCCC(C)C UKDDQGWMHWQMBI-UHFFFAOYSA-O 0.000 claims description 2
- LVNGJLRDBYCPGB-UHFFFAOYSA-N 1,2-distearoylphosphatidylethanolamine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(COP([O-])(=O)OCC[NH3+])OC(=O)CCCCCCCCCCCCCCCCC LVNGJLRDBYCPGB-UHFFFAOYSA-N 0.000 claims description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 claims description 2
- AVCZHZMYOZARRJ-JWLMTKEBSA-N PC(14:1(9Z)/14:1(9Z)) Chemical compound CCCC\C=C/CCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCC\C=C/CCCC AVCZHZMYOZARRJ-JWLMTKEBSA-N 0.000 claims description 2
- RTWAYAIMWLNAJW-RRHRGVEJSA-N PC(17:0/17:0) Chemical compound CCCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCCC RTWAYAIMWLNAJW-RRHRGVEJSA-N 0.000 claims description 2
- CJXPNBSAXZBLEC-USYZEHPZSA-N PC(19:0/19:0) Chemical compound CCCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCCCCC CJXPNBSAXZBLEC-USYZEHPZSA-N 0.000 claims description 2
- SNKAWJBJQDLSFF-PKSSMFHRSA-N [(2r)-2,3-bis[[(e)-octadec-9-enoyl]oxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate Chemical compound CCCCCCCC\C=C\CCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCC\C=C\CCCCCCCC SNKAWJBJQDLSFF-PKSSMFHRSA-N 0.000 claims description 2
- RLNYFMQMIIHWFV-JGCGQSQUSA-N [(2r)-2,3-di(tridecanoyloxy)propyl] 2-(trimethylazaniumyl)ethyl phosphate Chemical compound CCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCC RLNYFMQMIIHWFV-JGCGQSQUSA-N 0.000 claims description 2
- XCCDCYFQYUARAY-MUUNZHRXSA-N [(2r)-2,3-di(undecanoyloxy)propyl] 2-(trimethylazaniumyl)ethyl phosphate Chemical compound CCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCC XCCDCYFQYUARAY-MUUNZHRXSA-N 0.000 claims description 2
- ZGEGCLOFRBLKSE-UHFFFAOYSA-N methylene hexane Natural products CCCCCC=C ZGEGCLOFRBLKSE-UHFFFAOYSA-N 0.000 claims description 2
- WPHGSKGZRAQSGP-UHFFFAOYSA-N methylenecyclohexane Natural products C1CCCC2CC21 WPHGSKGZRAQSGP-UHFFFAOYSA-N 0.000 claims description 2
- 239000011148 porous material Substances 0.000 claims description 2
- 230000000694 effects Effects 0.000 description 38
- 210000004027 cell Anatomy 0.000 description 16
- 238000002835 absorbance Methods 0.000 description 13
- 238000001126 phototherapy Methods 0.000 description 10
- 230000002209 hydrophobic effect Effects 0.000 description 9
- 150000002632 lipids Chemical class 0.000 description 9
- 239000000243 solution Substances 0.000 description 8
- 238000012360 testing method Methods 0.000 description 5
- 230000002776 aggregation Effects 0.000 description 4
- 230000001678 irradiating effect Effects 0.000 description 4
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 3
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 3
- 238000004220 aggregation Methods 0.000 description 3
- 238000000502 dialysis Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000036571 hydration Effects 0.000 description 3
- 238000006703 hydration reaction Methods 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 210000004185 liver Anatomy 0.000 description 3
- 210000001165 lymph node Anatomy 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 239000002105 nanoparticle Substances 0.000 description 3
- 150000003904 phospholipids Chemical class 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000002109 single walled nanotube Substances 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 3
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000012830 cancer therapeutic Substances 0.000 description 2
- 230000030833 cell death Effects 0.000 description 2
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 2
- 229960001231 choline Drugs 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 210000002216 heart Anatomy 0.000 description 2
- 239000000644 isotonic solution Substances 0.000 description 2
- 206010061289 metastatic neoplasm Diseases 0.000 description 2
- 238000007626 photothermal therapy Methods 0.000 description 2
- 239000003642 reactive oxygen metabolite Substances 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 238000001542 size-exclusion chromatography Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 239000003053 toxin Substances 0.000 description 2
- 231100000765 toxin Toxicity 0.000 description 2
- 108700012359 toxins Proteins 0.000 description 2
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- 102000018071 Immunoglobulin Fc Fragments Human genes 0.000 description 1
- 108010091135 Immunoglobulin Fc Fragments Proteins 0.000 description 1
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 1
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 1
- 231100000002 MTT assay Toxicity 0.000 description 1
- 238000000134 MTT assay Methods 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 206010034972 Photosensitivity reaction Diseases 0.000 description 1
- 229920000604 Polyethylene Glycol 200 Polymers 0.000 description 1
- 229920005654 Sephadex Polymers 0.000 description 1
- 239000012507 Sephadex™ Substances 0.000 description 1
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 230000008512 biological response Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 230000003833 cell viability Effects 0.000 description 1
- 210000003679 cervix uteri Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000824 cytostatic agent Substances 0.000 description 1
- 230000001085 cytostatic effect Effects 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000002651 drug therapy Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000002296 dynamic light scattering Methods 0.000 description 1
- 238000013399 early diagnosis Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 238000002695 general anesthesia Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 230000006882 induction of apoptosis Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 210000002429 large intestine Anatomy 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 210000004324 lymphatic system Anatomy 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000001394 metastastic effect Effects 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000002078 nanoshell Substances 0.000 description 1
- 210000003739 neck Anatomy 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 230000036407 pain Effects 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 238000002428 photodynamic therapy Methods 0.000 description 1
- 239000003504 photosensitizing agent Substances 0.000 description 1
- 208000007578 phototoxic dermatitis Diseases 0.000 description 1
- 231100000018 phototoxicity Toxicity 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 150000004671 saturated fatty acids Chemical class 0.000 description 1
- 235000003441 saturated fatty acids Nutrition 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 210000000813 small intestine Anatomy 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 208000021550 spleen neoplasm Diseases 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000011477 surgical intervention Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 210000001550 testis Anatomy 0.000 description 1
- 238000001931 thermography Methods 0.000 description 1
- 210000001541 thymus gland Anatomy 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 210000003932 urinary bladder Anatomy 0.000 description 1
- 210000004291 uterus Anatomy 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/107—Emulsions ; Emulsion preconcentrates; Micelles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/127—Synthetic bilayered vehicles, e.g. liposomes or liposomes with cholesterol as the only non-phosphatidyl surfactant
Definitions
- the present invention relates to a composition for treating cancer comprising a liposome complex encapsulated with indocyanine green, a method for treating cancer using the same, and a method for preparing the same, wherein the induction of apoptosis by therapeutically effective light irradiation is provided. It relates to a composition for treating cancer, a method for treating cancer using the same, and a method for producing the same.
- Indocianin green is a near-infrared fluorescent die (NIR) that is licensed by the US Food and Drug Administration (FDA) for the diagnosis of the heart and liver vascular systems as well as the lymphatic system.
- NIR near-infrared fluorescent die
- FDA US Food and Drug Administration
- indocyanine green is known as an excellent probe for imaging metastatic lymph nodes and mapping of lymph nodes for early diagnosis of breast cancer.
- indocyanine green has low hydrophilicity, low light stability, low photon yield, and low sensitivity.
- indocyanine green is susceptible to nonspecific aggregation, has a disadvantage of being chemically decomposed by external light, solvent and temperature change, and has a problem of being rapidly absorbed into serum proteins and rapidly removed through the liver due to low molecular weight and hydrophobic characteristics. have.
- indocyanine green probes have been studied, and indocyanine green is trapped in nanoparticles, or polymers are used to examine in vivo and in vitro stability of indocyanine green.
- indocyanine green is trapped in nanoparticles, or polymers are used to examine in vivo and in vitro stability of indocyanine green.
- indocyanine green is combined with liposomes applicable in the body and applied to the composition for treating cancer.
- Cancer phototherapy is based on light, and is a method of treating cancer by radiating light at a tumor site, rather than by dangerous and expensive surgery.
- Phototherapy is nondestructive, simple and has fewer side effects than surgical procedures. In addition, there is no need for general anesthesia, little pain of the patient, a short period of stability and recovery as well as the advantage that can be repeated several times.
- phototherapy technology that combines silica nanoparticles with gold-coated nanoshells and near infrared light
- phototherapy technology that combines single wall carbon nanotubes (SWCNT) with near infrared light
- SWCNT single wall carbon nanotubes
- the inventors of the present application include a complex in which indocyanine green is encapsulated in liposomes, and solve the conventional problems through a composition for treating cancer that can induce apoptosis by therapeutically effective light irradiation. It was confirmed that the desired cancer treatment effect can be achieved, and completed the present invention.
- An object of the present invention is to provide a composition for treating cancer comprising a liposome complex in which indocyanine green is encapsulated by inducing apoptosis by therapeutically effective light irradiation and exhibiting a desired cancer therapeutic effect, and a method for preparing the same. There is.
- the present invention contains indocyanine green-liposomal complex prepared by mixing phosphatidylcholine, stabilizer and indocyanine green, the indocyanine green is encapsulated in liposomes, It provides a composition for treating cancer, which induces apoptosis by therapeutically effective light irradiation.
- the present invention also provides a method for treating cancer, comprising the following steps:
- step (b) irradiating a therapeutically effective light to the complex administered in step (a) accumulated at the tumor site.
- the present invention also provides a method of preparing a composition for treating cancer, comprising the following steps:
- step (c) isolating a complex in which indocyanine green is encapsulated in the liposome in the liposome of step (b).
- 1 is a graph comparing the degree of exotherm upon light irradiation according to the ratio of phosphatidylcholine and ICG in a mixture for preparing an indocyanine green encapsulated liposome complex;
- Figure 2 is a graph comparing the degree of exotherm upon light irradiation according to the DSPC and ICG ratio in the mixture for preparing a liposome complex when preparing a liposome containing DSPC;
- FIG. 3 is a graph comparing the exothermic degree upon light irradiation according to the ratio of DPPC and ICG in a mixture for preparing a liposome complex when preparing a liposome including a DPPC;
- Figure 4 is a graph comparing the exothermic degree upon light irradiation according to the ratio of DMPC and ICG in the mixture for preparing a liposome complex when preparing a liposome containing a DMPC;
- 5 is a graph comparing the degree of exotherm upon light irradiation according to the ratio of DOPC and ICG in a mixture for preparing a liposome complex when preparing a liposome including DOPC;
- Figure 6 is a graph comparing the degree of exotherm when irradiated with light to free ICG (lip ICo) free ICG;
- FIG. 7 is a graph comparing the absorbance according to the DSPC and ICG ratio in the mixture for preparing a liposome complex when preparing a liposome comprising a DSPC;
- FIG. 10 is a graph comparing the absorbance according to the ratio of DOPC and ICG in a mixture for preparing a liposome complex when preparing a liposome including DOPC;
- FIG. 11 is a graph comparing relative fluorescence intensities according to DSPC, DPPC, DMPC and DOPC and ICG ratios in liposomes including DSPC, DPPC, DMPC and DOPC, respectively;
- FIG. 12 is a graph comparing the passive mechanical average diameter according to DSPC, DPPC, DMPC and DOPC and ICG ratios in liposomes including DSPC, DPPC, DMPC and DOPC, respectively;
- FIG. 13 is a graph comparing zeta potential according to DSPC, DPPC, DMPC and DOPC and ICG ratios in liposomes including DSPC, DPPC, DMPC and DOPC, respectively;
- FIG. 14 is a graph comparing polydispersity index (PDI) according to DSPC, DPPC, DMPC and DOPC and ICG ratio in liposomes including DSPC, DPPC, DMPC and DOPC, respectively;
- PDI polydispersity index
- 16 is a graph showing cell viability according to light irradiation in a liposome complex containing DMPC.
- the present invention contains an indocyanine green-liposomal complex prepared by mixing phosphatidylcholine, a stabilizer, and an indocyanine green, wherein the indocyanine green is encapsulated in liposomes and is therapeutic It relates to a composition for treating cancer, which induces cell death by effective light irradiation.
- the inventors of the present application can improve the stability of indocyanine green by overcoming the disadvantages associated with low stability of indocyanine green through liposome complexes in which indocyanine green is encapsulated, It was confirmed that cancer treatment by apoptosis is possible.
- Phototherapy includes photodynamic therapy (PDT) and photothermal therapy (PTT), which include reactive oxygen species (ROS) and light and photosensitizers for thermal energy generation, respectively. Formulation is required.
- the inventors of the present application confirmed that the indocyanine green according to the present invention may exhibit an excellent photothermal treatment effect upon light irradiation to the encapsulated liposome complex. This effect was confirmed to increase the cytotoxicity to cancer cells can exhibit a cancer treatment effect.
- the liposomes are prepared including phosphatidylcholine and stabilizers, and liposomes in the form of a single lamellar or a multilamellar may be used.
- the phosphatidylcholine is a kind of phospholipid with choline, and includes a hydrophobic tail and a choline hydrophilic head of saturated or unsaturated fatty acids, for example, L- ⁇ -phosphatidylcholine (Egg, Chicken), L - ⁇ -phosphatidylcholine, hydrogenated (Egg, Chicken), L- ⁇ -phosphatidylcholine (Soy), L- ⁇ -phosphatidylcholine, hydrogenated (Soy) 1,2-didecanoyl-sn-glycero-3-phosphocholine (10: 0 PC) , 1,2-diundecanoyl-sn-glycero-3-phosphocholine (11: 0 PC), 1,2-dilauroyl-sn-glycero-3-phosphocholine
- encapsulation as used herein means that indocyanine green is substantially present only in the space in the liposome to form a liposome-ICG complex, and only on the free ICG or liposome surface to which the liposome is not bound. Bound ICG is removed to mean that it is substantially nonexistent.
- the inventors of the present application confirmed that the photothermal effect is improved, especially as the hydrophobic tail length of the phospholipid is shortened, and that the unsaturated fatty acid is included in the hydrophobic tail.
- DMPC has 14 carbon atoms in hydrophobic tail, shorter hydrophobic tail length than 16 DPPC, 18 DSPC or DOPC, and showed excellent photothermal effect compared to DOPC containing unsaturated fatty acid in hydrophobic tail (Test Example 3 ).
- the phosphatidylcholine may preferably be DMPC.
- the stabilizer may be a lipid, a lipid derivative, a protein or a peptide, and the like, and specifically, may be phosphatidylethanolamine conjugated with polyethylene glycol.
- the polyethylene glycol may be used without limitation as long as it is a size suitable for stabilization, for example, may have a molecular weight of about 1,000 to 10,000, preferably 2,000 to 8, 000, more preferably 2,000 to 6, 000.
- the phosphatidylethanolamine may be mono or diunsaturated fatty acid, and for example, may be one or more selected from the group consisting of dimyristoylphosphatidylethanolamine (DMPE), dipalmitoylphosphatidylethanolamine (DPPE), dioleoylphosphatidylethanolamine (DOPE), and DSPE (distearoylphosphatidyl-ethanolamine). It is not limited.
- DMPE dimyristoylphosphatidylethanolamine
- DPPE dipalmitoylphosphatidylethanolamine
- DOPE dioleoylphosphatidylethanolamine
- DSPE disearoylphosphatidyl-ethanolamine
- the phosphatidylcholine and stabilizer may be included with indocyanine green to an extent suitable for liposome formation suitable for photothermal effect, for example, the molar ratio of phosphatidylcholine and stabilizer is from about 85:15 to about 98: 2, preferably about 90:10 to 95: 5. Within this molar ratio range, liposomes in vivo are most stable to maximize lifespan.
- Phosphatidylcholine and indocyanine green in the mixture are not limited so long as they are suitable for producing a photothermal effect for cancer treatment, but may be included, for example, in a molar ratio of 250: 0.1-32.
- phosphatidylcholine and indocyanine green in the mixture may be included in a molar ratio of 250: 0.5-16.
- the desired photothermal effect can be exhibited throughout this range, and the inventors of the present application find that indocyanine green is optimally dispersed and encapsulated inside liposomes, particularly when phosphatidylcholine and indocyanine green are included in the molar ratio of the range. Complexes can be formed, and having an optimal absorbance that can exhibit an effective photothermal effect in the treatment of cancer, it was confirmed that it exhibits a significant photothermal effect.
- the amount of indocyanine green is smaller than the range described, the desired degree of photoreaction effect cannot be expected, and the amount of liposomes is relatively high, which is very inefficient considering the cost and time required for preparing liposomes. If the amount of indocyanine green is higher, agglomeration may occur in liposomes, or a threshold level that no longer reacts to light may be reached, and a synergistic photothermal effect may not be expected. In particular, it was confirmed that phosphatidylcholine and indocyanine green had the best photothermal effect when they had a molar ratio of 250: 1. This may be due to the highest dispersion of indocyanine green among liposome complexes prepared from phosphatidylcholine and indocyanine green in a molar ratio of 250: 1.
- heat may be generated when the composite is irradiated with near infrared rays, and the near infrared rays may be irradiated for 3 minutes or more with a power of 100 mW or more at 700-900 nm.
- the power for generating heat may be, for example, 100 mW or more, 1 W or less, preferably 400 mW or more and 800 mW or less.
- the light irradiation time may be 3 minutes or more and 30 minutes or less. In the light irradiation conditions lower than the above range, indocyanine green is not effectively consumed in generating the photothermal effect, and in high light irradiation conditions, surrounding normal cells may be exposed to phototoxicity and damage may be caused.
- the heat generated at this time may be, for example, a temperature of about 45 ° C. or higher, preferably 50 ° C. or higher, more preferably 60 ° C. or higher, at which 90% or more apoptosis, preferably 95% or more, may occur. .
- Indocyanine green in the heat generating complex may include, for example, at a concentration of 0.1-30 ug / ml, preferably 1-10 ug / ml.
- the inventors of the present application confirmed that heat can be generated to a temperature rise of 10 ° C. or more, in which near-infrared irradiation may cause 95% or more apoptosis of liposome complexes including indocyanine green in the aforementioned concentration range.
- the complex may be determined in size (diameter) according to the type and size of liposomes in which indocyanine green is encapsulated, and the average hydrodynamic diameter (HD) of the complex is, for example, It may be 50-200 nm, preferably 100-150 nm.
- the composite exhibits a low degree of polydispersity index to confirm that the molecular weight and structure is uniform, wherein the polydispersity index may be 0.2 or less.
- composition for treating cancer according to the present invention may further include an antibody effective for treating cancer or an immunotherapeutic fragment thereof, a cytotoxic agent or a chemotherapeutic agent thereof.
- Antibodies include monoclonal antibodies, polyclonal antibodies, multispecific antibodies formed from two or more intact antibodies, and antibody fragments exhibiting the desired biological cancer therapeutic activity, wherein immunotherapeutic antibody fragments include antigen binding or variable regions thereof For example, Fab, Fab ', F (ab') 2, Fv and Fc fragments, diabodies, linear antibodies, single chain antibody molecules; And multispecific antibodies formed from antibody fragments, including portions of intact antibodies.
- Cytotoxic agents are substances that inhibit or prevent the function of a cell and / or cause cell disruption, and include radioisotopes, chemotherapeutic agents and toxins such as enzymatically active toxins of bacterial, fungal, plant or animal origin, or And fragments thereof.
- Chemotherapeutic agents include chemical agents that prevent the development, maturation or proliferation of new cells directly on tumor cells, such as by cytostatic or cytotoxic effects and not indirectly through mechanisms such as changes in biological response.
- Chemotherapeutic agents suitable for the present invention preferably include natural or synthetic chemical compounds.
- 'Cancer' and 'tumor' refer to or describe the physiological condition in mammals, typical of uncontrolled cell growth, and according to the compositions of the present invention, breast, heart, lung, small intestine, large intestine, spleen Tumors or metastatic tumors, such as tumors of the kidneys, bladder, head and neck, ovaries, prostate, brain, pancreas, skin, bone, bone marrow, blood, thymus, uterus, testes, cervix and liver, can be treated.
- the present invention provides a cancer treatment method comprising the following steps:
- step (b) irradiating a therapeutically effective light to the complex administered in step (a) accumulated at the tumor site.
- the present invention relates to a method for preparing a composition for treating cancer, comprising the following steps:
- step (c) isolating a complex in which indocyanine green is encapsulated in the liposome in the liposome of step (b).
- step (a) is a step of preparing a cake by dissolving at least one phosphatidylcholine, a stabilizer, and indocyanine green in an organic solvent, and removing the organic solvent.
- Compositions comprising complexes in which indocyanine green is encapsulated in liposomes can be prepared via film hydration / extrusion.
- phosphatidylcholine and stabilizer which are the materials of the liposomes, are equally applicable to the above-mentioned invention related to the preparation method.
- Phosphatidylcholine and a stabilizer may be dissolved in the organic solvent.
- the organic solvent in the step (a) for example, methanol (methanol), ethanol (ethanol), propanol (propanol), isopropanol (isopropanol), butanol (acetone), acetone (acetone), ether (ether), benzene ( It may be at least one selected from the group consisting of benzene, chloroform, ethyl acetate, ethyl acetate, methylene chloride, hexane, and cyclohexane, and preferably chloroform may be used. .
- the dispersion may be prepared by hydration with an isotonic solution, the isotonic solution may include, for example, glucose, trehalose, etc., the isotonic agent may be, for example, 1-10% (w / v), preferably To 3-7% (w / v).
- the dispersion may be prepared by liposomes in the form of single or multi-lamellar vesicles by extruding the porous polymer membrane, wherein the porous polymer membrane may be, for example, a polycarbonate polymer membrane, and the pore diameter of the porous polymer membrane may be, for example. For example 10-1000 nm, preferably 50-200 nm.
- the indocyanine green separates the complex encapsulated in the liposome.
- the method used for removal can be used without limitation as long as indocyanine green can separate complexes encapsulated within liposomes and free indocyanine green and liposome surfaces, or indocyanine green that has been exposed or exposed.
- only the complexes in which the desired indocyanine green is encapsulated in liposomes can be separated by passing through a dialysis membrane or using chromatography (eg, size exclusion chromatography, etc.).
- ICG insulin-derived neuropeptide (IR-25, laser grade pure) was obtained from Acros Organics.
- composition of the hydration solution was DSPC, DPPC, DMPC, or the ratio of DOPC and ICG was 250: 0.5, 250: 1, 250: 4, 250: 8, 250: 16 and 250: 32.
- the hydrated liposome solution was extruded to an average of 100 nm single or multi lamellar liposomes.
- Dialysis membranes with a 100 kDa MWCO (molecular weight cut-off) were used for dialysis to remove trace amounts of free ICG and ICG adhering to the liposome surface, thereby preparing an ICG encapsulated liposome complex.
- the concentration of phosphatidylcholine was determined in the liposome-ICG complex from which free ICG was removed by Stewart assay, which shows the concentration of phosphatidylcholine and phosphatidylcholine in DSPE-PEG200.
- Stewart assay shows the concentration of phosphatidylcholine and phosphatidylcholine in DSPE-PEG200.
- the liposome structure is all collapsed, and the ICG shows the original absorbance, and the absorbance has a maximum at 785 nm. Since the absorbance of ICG increases in proportion to the concentration in methanol of 80%, the concentration of ICG contained in the liposome complex was obtained through the absorbance of 785 nm.
- ⁇ (Total Phosphatidylcholine Concentration) / (ICG Concentration) ⁇ can determine the ratio between phosphatidylcholine and ICG in the liposome-ICG complex. This allows comparing the amount of ICG included in the finally synthesized liposome-ICG complex, compared to the amount of ICG added when preparing a phosphatidylcholine-containing cake to synthesize each liposome-ICG complex.
- Liposomal ICG complex prepared in Example 1 all the Liposomal ICG and Free ICG ICG concentrations were adjusted to 5 ug / ml, and the Liposomal ICG complex prepared in Example 1 was irradiated with a laser of 808 nm at 650 mW for 3 minutes (81 J, Joule), the thermal imaging camera (FLIR) to measure the photothermal effect caused by the total volume of liposome solution 100ul.
- FLIR thermal imaging camera
- FIGS. 1 to 6 The measured photothermal effects are shown in FIGS. 1 to 6. Comparing FIGS. 1 and 6, in the case of free ICG not bound to liposomes, the temperature rise is only 5 ° C. despite light irradiation of 150 seconds or more, and is relatively weaker than that of ICG encapsulated in liposomes. It was confirmed that the light heat effect.
- FIGS. 2 to 5 The photothermal effects occurring in each of the complexes including DSPC, DPPC, DMPC, or DOPC in FIG. 1 are shown in FIGS. 2 to 5, respectively.
- the hydrophobic tail length of the phospholipid constituting the complex becomes shorter, the photothermal effect is improved, and when the unsaturated lipid chain is included in the hydrophobic tail, the photothermal effect is reduced.
- DMPC (FIG. 4) shows that the best photothermal effect occurs.
- the molar ratio of DSPC, DPPC, DMPC, or DOPC: ICG was 250: 0.5 to 250: 16, the desired photothermal effect was observed.
- the molar ratio of phosphatidylcholine: ICG was 250: 1, it was related to the type of phosphatidylcholine. Excellent photothermal effect.
- the molar ratio of phosphatidylcholine: ICG is less than 250: 0.5, for example 250: 0.1, in order to obtain a similar degree of photothermal effect, the amount of liposomes added is too high and the cost and time required for the preparation of liposomes is increased. It is very inefficient when considered and is not suitable when considering industrial applications.
- the molar ratio of phosphatidylcholine: ICG in the composition for treating cancer through the photothermal effect can be optimized from the range of 250: 0.5.
- the addition of ICG does not increase the ratio of ICG in the liposome-ICG complex, but rather aggregation occurs. Not suitable (FIG. 15).
- Dynamic light scattering was used to determine the average hydrodynamic diameter (HD), polydispersity index, and zeta potential of each composite.
- absorbance was measured at intervals of 5 nm at a wavelength of 400 nm to 1000 nm, and fluorescence intensity was measured by Excitation 785 nm and Emission 820 nm. The concentration used at this time is 5 ug / ml based on the ICG.
- the composite including DSPC, DPPC, DMPC, or DOPC has a maximum absorbance at 800 nm and shows a low peak at the early 700 nm.
- the higher the molar ratio of DSPC, DPPC, DMPC, or DOPC (M): ICG (M) to ICG the lower the maximum absorbance at 800 nm and the lower peak in the early 700 nm range. This means that if DSPC, DPPC, DMPC or DOPC: ICG exceeds 250: 16, the likelihood of ICG aggregation inside the liposome complex is high.
- HeLa cells (ATCC® CCL-2 TM) were prepared in an amount of 5000 Cells / 100ul 1 Well. Hela cells were treated with lipids (phosphatidylcholine) (M): ICG (M) prepared in 250: 1 ratio, respectively, at 5 ug / ml (based on the concentration of ICG), respectively, at 808 nm. , 650mW laser was irradiated for 3 minutes. After irradiating the laser, the liposomes including indocyanine green remaining in the cell culture were removed after 30 minutes, and the cells were cultured for 24 hours, and then apoptosis was measured by MTT assay.
- M lipids
- ICG ICG
- composition for treating cancer according to the present invention exhibits a significant apoptosis effect by irradiating therapeutically effective light to a complex comprising liposomes encapsulated with indocyanine green, thereby showing an excellent cancer treatment effect, Tumors can be removed without surgical intervention.
- apoptosis effect against cancer cells While minimizing the effect on normal cells, it may selectively exhibit apoptosis effect against cancer cells.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicinal Preparation (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
Abstract
The present invention relates to a composition for cancer treatment comprising an indocyanine green-capsulated liposome composite, a cancer treatment method using the same, and a method for preparing the same and, specifically, to a composition for cancer treatment, which comprises a composite containing indocyanine green and a liposome and treats caner using the light heat generated from the irradiation of therapeutically effective light, to a cancer treatment method using the same, and a method capable of preparing the same.
Description
본 발명은 인도시아닌 그린이 캡슐화된 리포좀 복합체를 포함하는 암 치료용 조성물, 이를 이용한 암 치료방법 및 이의 제조방법에 관한 것으로, 치료적으로 유효한 광 조사에 의해 세포사멸을 유도하는 것을 특징으로 하는 암 치료용 조성물, 이를 이용한 암 치료방법 및 이를 제조할 수 있는 방법에 관한 것이다.The present invention relates to a composition for treating cancer comprising a liposome complex encapsulated with indocyanine green, a method for treating cancer using the same, and a method for preparing the same, wherein the induction of apoptosis by therapeutically effective light irradiation is provided. It relates to a composition for treating cancer, a method for treating cancer using the same, and a method for producing the same.
인도시아닌 그린(Indocianin green, ICG)은 근적외선 형광 다이(NIR)로, 미국 FDA(Food and Drug Administration)에서 림프계 뿐 아니라 심장, 간 혈관 시스템의 진단에 사용 허가를 받은 물질이다. 특히, 인도시아닌 그린은 유방암의 조기 진단을 위한 전이성 림프노드의 이미징 및 감시림프절(sentinel lymph node)의 맵핑에 우수한 프로브로 알려져 있다. Indocianin green (ICG) is a near-infrared fluorescent die (NIR) that is licensed by the US Food and Drug Administration (FDA) for the diagnosis of the heart and liver vascular systems as well as the lymphatic system. In particular, indocyanine green is known as an excellent probe for imaging metastatic lymph nodes and mapping of lymph nodes for early diagnosis of breast cancer.
이러한 인도시아닌 그린은 친수성이 낮고, 광안정성이 낮으며, 광자 수율이 낮고, 감도가 떨어지는 단점을 가지고 있다. 또한, 인도시아닌 그린은 비특이적 응집에 취약하고, 외부 광, 용매 및 온도 변화에 의해 화학적으로 분해되는 단점이 있으며, 낮은 분자량과 소수성 특징 때문에 혈청 단백질로 잘 흡수되어 빠르게 간을 거쳐 제거된다는 문제점이 있다. Such indocyanine green has low hydrophilicity, low light stability, low photon yield, and low sensitivity. In addition, indocyanine green is susceptible to nonspecific aggregation, has a disadvantage of being chemically decomposed by external light, solvent and temperature change, and has a problem of being rapidly absorbed into serum proteins and rapidly removed through the liver due to low molecular weight and hydrophobic characteristics. have.
이러한 단점을 극복하고자, 나노 물질 기반 인도시아닌 그린 프로브가 연구되어 왔으며, 나노파티클에 인도시아닌 그린을 포집하거나, 폴리머 등을 이용하여, 인도시아닌 그린의 in vivo 및 in vitro에서의 안정성을 증가시킨 연구가 있어왔다. 인도시아닌 그린을 나노파티클에 포집함으로써, 외부 광선 및 온도에 대한 물리화학적 안정이 현저히 증가되었다. In order to overcome this drawback, nanomaterial-based indocyanine green probes have been studied, and indocyanine green is trapped in nanoparticles, or polymers are used to examine in vivo and in vitro stability of indocyanine green. There has been increased research. By capturing indocyanine green into nanoparticles, the physicochemical stability against external light and temperature was significantly increased.
그럼에도 불구하고, 현재 인도시아닌 그린을 체내에 적용 가능한 리포좀과 결합시켜 이를 암 치료용 조성물에 적용한 예는 없다. 암 광치료는 광에 기반한 것으로, 암 치료시 위험하고 비용이 많이 드는 수술에 의하지 않고, 종양 부위에 광을 쪼여 암을 치료하는 방법이다.Nevertheless, there is currently no example in which indocyanine green is combined with liposomes applicable in the body and applied to the composition for treating cancer. Cancer phototherapy is based on light, and is a method of treating cancer by radiating light at a tumor site, rather than by dangerous and expensive surgery.
광 치료법은 외과수술법에 비해 비파괴적이고 간단하며 부작용이 적다. 또한, 전신 마취가 불필요하고 환자의 고통도 거의 없으며, 안정과 회복을 위한 기간이 짧을 뿐만 아니라 여러 차례 반복 치료가 가능한 이점도 있다. Phototherapy is nondestructive, simple and has fewer side effects than surgical procedures. In addition, there is no need for general anesthesia, little pain of the patient, a short period of stability and recovery as well as the advantage that can be repeated several times.
한편, 종양 부위에 발열기구를 삽입하여 단순히 가열하는 방식을 갖는 열에 의한 암 치료기술은 이미 오래 전에 시도된 바 있으나, 암세포와 정상세포의 식별이 불가능하여 암세포 주변의 정상세포들도 파괴되는 문제로 인해, 실제 임상에는 널리 적용되지 못하였다. 이에 반해, 광 치료법은 약물 치료법과 방사선 치료법의 단점을 모두 극복한 새로운 암 치료법이라 할 수 있다. 초기의 광 치료법은 광원에 따라 그 종류가 다양하나, 대부분 치료기간이 길고, 치료 부위의 경계면이 부정확하다는 단점을 가지고 있다.On the other hand, cancer treatment technology by heat having a method of simply heating by inserting a heating device in the tumor site has been tried a long time ago, but since it is impossible to identify cancer cells and normal cells, normal cells around cancer cells are also destroyed. Because of this, it is not widely applied in actual clinical practice. In contrast, phototherapy is a new cancer treatment that overcomes the shortcomings of both drug and radiation therapies. Early phototherapy has a variety of types depending on the light source, but most of them have a disadvantage that the treatment period is long, and the interface of the treatment site is inaccurate.
예를 들어, 실리카 나노입자에 금을 코팅한 나노쉘과 근적외선을 결합한 광 치료기술 또는 단일벽 탄소나노튜브 (single wall carbon nanotube: SWCNT)를 근적외선과 결합한 광 치료기술이 선택적 암 치료를 위한 방법으로 사용될 수 있음이 제시되었으나, 이들은 체내 적용에 허가를 받은 물질이 아니어서 임상적 적용에 제한이 있고, 목적하는 열을 얻기 위해 매우 고강도의 근적외선을 사용하여야 하나 광원의 강도가 이렇게 높으면 정상세포가 나노쉘이나 SWCNT와 같은 발열제와 아주 가까이 있지 않더라도 손상될 수 있다는 문제점이 발생한다.For example, phototherapy technology that combines silica nanoparticles with gold-coated nanoshells and near infrared light, or phototherapy technology that combines single wall carbon nanotubes (SWCNT) with near infrared light, is a method for selective cancer treatment. It has been suggested that they can be used, but they are not approved for in vivo application and thus have limitations in clinical applications, and very high intensity NIR should be used to obtain the desired heat. The problem is that they can be damaged even if they are not very close to a heating agent such as a shell or SWCNT.
이러한 기술적 배경하에서, 본 출원의 발명자들은 인도시아닌 그린이 리포좀에 캡슐화되어 있는 복합체를 포함하고, 치료적으로 유효한 광 조사에 의해 세포사멸을 유도할 수 있는 암 치료용 조성물을 통해 종래의 문제점을 해결하고, 목적하는 암 치료 효과를 달성할 수 있음을 확인하고, 본 발명을 완성하였다.Under this technical background, the inventors of the present application include a complex in which indocyanine green is encapsulated in liposomes, and solve the conventional problems through a composition for treating cancer that can induce apoptosis by therapeutically effective light irradiation. It was confirmed that the desired cancer treatment effect can be achieved, and completed the present invention.
발명의 요약Summary of the Invention
본 발명의 목적은 치료적으로 유효한 광 조사에 의해 세포사멸을 유도하여 목적하는 암 치료 효과를 나타낼 수 있는 인도시아닌 그린이 캡슐화된 리포좀 복합체를 포함하는 암 치료용 조성물 및 이의 제조방법을 제공하는 데 있다.Disclosure of Invention An object of the present invention is to provide a composition for treating cancer comprising a liposome complex in which indocyanine green is encapsulated by inducing apoptosis by therapeutically effective light irradiation and exhibiting a desired cancer therapeutic effect, and a method for preparing the same. There is.
상기 목적을 달성하기 위하여 본 발명은 포스파티딜콜린, 안정화제 및 인도시아닌 그린의 혼합에 의해 제조되는 인도시아닌 그린-리포좀 복합체를 함유하고, 상기 인도시아닌 그린은 리포좀에 캡슐화(encapsulation)된 것이며, 치료적으로 유효한 광 조사에 의해 세포사멸을 유도하는 것을 특징으로 하는 암 치료용 조성물을 제공한다.In order to achieve the above object, the present invention contains indocyanine green-liposomal complex prepared by mixing phosphatidylcholine, stabilizer and indocyanine green, the indocyanine green is encapsulated in liposomes, It provides a composition for treating cancer, which induces apoptosis by therapeutically effective light irradiation.
본 발명은 또한, 다음의 단계를 포함하는 암 치료방법을 제공한다:The present invention also provides a method for treating cancer, comprising the following steps:
(a) 인도시아닌 그린이 리포좀에 캡슐화되어 있는 인도시아닌 그린-리포좀 복합체를 환자에 투여하는 단계; 및(a) administering to the patient an indocyanine green-liposomal complex in which the indocyanine green is encapsulated in the liposome; And
(b) 종양 부위에 축적된 상기 (a) 단계에서 투여된 복합체에 치료적으로 유효한 광을 조사하는 단계.(b) irradiating a therapeutically effective light to the complex administered in step (a) accumulated at the tumor site.
본 발명은 또한, 다음 단계를 포함하는 암 치료용 조성물의 제조방법을 제공한다: The present invention also provides a method of preparing a composition for treating cancer, comprising the following steps:
(a) 유기용매 중에 1종 이상의 포스파티딜콜린과 안정화제 및 인도시아닌 그린을 용해시키고, 유기용매를 제거하여 케익을 제조하는 단계;(a) dissolving at least one phosphatidylcholine and stabilizer and indocyanine green in an organic solvent and removing the organic solvent to prepare a cake;
(b) 상기 케익을 수화시켜 분산액을 제조하고, 다공성 고분자막에 압출시켜 인도시아닌 그린이 포함된 리포좀을 제조하는 단계; 및(b) hydrating the cake to prepare a dispersion, and extruding the porous polymer membrane to prepare liposomes containing indocyanine green; And
(c) 상기 단계 (b)의 리포좀 중 인도시아닌 그린이 리포좀 내에 캡슐화된 복합체를 분리하는 단계.(c) isolating a complex in which indocyanine green is encapsulated in the liposome in the liposome of step (b).
도 1은 인도시아닌 그린이 캡슐화된 리포좀 복합체를 제조하기 위한 혼합물 중 포스파티딜콜린과 ICG 비율에 따라 광 조사시 발열 정도를 비교한 그래프이다;1 is a graph comparing the degree of exotherm upon light irradiation according to the ratio of phosphatidylcholine and ICG in a mixture for preparing an indocyanine green encapsulated liposome complex;
도 2는 DSPC를 포함하는 리포좀 제조시, 리포좀 복합체를 제조하기 위한 혼합물 중 DSPC와 ICG 비율에 따라 광 조사시 발열 정도를 비교한 그래프이다;Figure 2 is a graph comparing the degree of exotherm upon light irradiation according to the DSPC and ICG ratio in the mixture for preparing a liposome complex when preparing a liposome containing DSPC;
도 3은 DPPC를 포함하는 리포좀 제조시, 리포좀 복합체를 제조하기 위한 혼합물 중 DPPC와 ICG 비율에 따라 광 조사시 발열 정도를 비교한 그래프이다;3 is a graph comparing the exothermic degree upon light irradiation according to the ratio of DPPC and ICG in a mixture for preparing a liposome complex when preparing a liposome including a DPPC;
도 4는 DMPC를 포함하는 리포좀 제조시, 리포좀 복합체를 제조하기 위한 혼합물 중 DMPC와 ICG 비율에 따라 광 조사시 발열 정도를 비교한 그래프이다;Figure 4 is a graph comparing the exothermic degree upon light irradiation according to the ratio of DMPC and ICG in the mixture for preparing a liposome complex when preparing a liposome containing a DMPC;
도 5는 DOPC를 포함하는 리포좀 제조시, 리포좀 복합체를 제조하기 위한 혼합물 중 DOPC와 ICG 비율에 따라 광 조사시 발열 정도를 비교한 그래프이다;5 is a graph comparing the degree of exotherm upon light irradiation according to the ratio of DOPC and ICG in a mixture for preparing a liposome complex when preparing a liposome including DOPC;
도 6은 리포좀과 결합하지 않은 자유 ICG (free ICG)에 광 조사시 발열 정도를 비교한 그래프이다;Figure 6 is a graph comparing the degree of exotherm when irradiated with light to free ICG (lip ICo) free ICG;
도 7은 DSPC를 포함하는 리포좀 제조시, 리포좀 복합체를 제조하기 위한 혼합물 중 DSPC와 ICG 비율에 따라 흡광도를 비교한 그래프이다;7 is a graph comparing the absorbance according to the DSPC and ICG ratio in the mixture for preparing a liposome complex when preparing a liposome comprising a DSPC;
도 8은 DPPC를 포함하는 리포좀 제조시, 리포좀 복합체를 제조하기 위한 혼합물 중 DPPC와 ICG 비율에 따라 흡광도를 비교한 그래프이다;8 is a graph comparing the absorbance according to the ratio of DPPC and ICG in a mixture for preparing a liposome complex when preparing liposomes including DPPC;
도 9는 DMPC를 포함하는 리포좀 제조시, 리포좀 복합체를 제조하기 위한 혼합물 중 DMPC와 ICG 비율에 따라 흡광도를 비교한 그래프이다;9 is a graph comparing the absorbance according to the DMPC and ICG ratio in the mixture for preparing liposome complex when preparing liposomes including DMPC;
도 10은 DOPC를 포함하는 리포좀 제조시, 리포좀 복합체를 제조하기 위한 혼합물 중 DOPC와 ICG 비율에 따라 흡광도를 비교한 그래프이다;10 is a graph comparing the absorbance according to the ratio of DOPC and ICG in a mixture for preparing a liposome complex when preparing a liposome including DOPC;
도 11은 DSPC, DPPC, DMPC 및 DOPC 각각을 포함한 리포좀에서 DSPC, DPPC, DMPC 및 DOPC과 ICG 비율에 따라 상대적 형광 세기를 비교한 그래프이다;FIG. 11 is a graph comparing relative fluorescence intensities according to DSPC, DPPC, DMPC and DOPC and ICG ratios in liposomes including DSPC, DPPC, DMPC and DOPC, respectively; FIG.
도 12는 DSPC, DPPC, DMPC 및 DOPC 각각을 포함한 리포좀에서 DSPC, DPPC, DMPC 및 DOPC과 ICG 비율에 따라 수동력학적 평균 직경을 비교한 그래프이다;FIG. 12 is a graph comparing the passive mechanical average diameter according to DSPC, DPPC, DMPC and DOPC and ICG ratios in liposomes including DSPC, DPPC, DMPC and DOPC, respectively; FIG.
도 13은 DSPC, DPPC, DMPC 및 DOPC 각각을 포함한 리포좀에서 DSPC, DPPC, DMPC 및 DOPC과 ICG 비율에 따라 제타 포텐셜을 비교한 그래프이다;FIG. 13 is a graph comparing zeta potential according to DSPC, DPPC, DMPC and DOPC and ICG ratios in liposomes including DSPC, DPPC, DMPC and DOPC, respectively; FIG.
도 14는 DSPC, DPPC, DMPC 및 DOPC 각각을 포함한 리포좀에서 DSPC, DPPC, DMPC 및 DOPC과 ICG 비율에 따라 다분산지수(Polydispersity Index, PDI)를 비교한 그래프이다; FIG. 14 is a graph comparing polydispersity index (PDI) according to DSPC, DPPC, DMPC and DOPC and ICG ratio in liposomes including DSPC, DPPC, DMPC and DOPC, respectively; FIG.
도 15는 DSPC, DPPC, DMPC 및 DOPC과 ICG 비율에 따른 광열 효과를 나타낸 그래프이다; 및15 is a graph showing the photothermal effect according to the DSPC, DPPC, DMPC and DOPC and ICG ratios; And
도 16은 DMPC를 포함하는 리포좀 복합체에서 광 조사에 따른 세포생존도를 나타낸 그래프이다.16 is a graph showing cell viability according to light irradiation in a liposome complex containing DMPC.
발명의 상세한 설명 및 바람직한 Detailed description of the invention and preferred
구현예Embodiment
본 발명은 일 관점에서, 포스파티딜콜린, 안정화제 및 인도시아닌 그린의 혼합에 의해 제조되는 인도시아닌 그린-리포좀 복합체를 함유하고, 상기 인도시아닌 그린은 리포좀에 캡슐화(encapsulation)된 것이며, 치료적으로 유효한 광 조사에 의해 세포사멸을 유도하는 것을 특징으로 하는 암 치료용 조성물에 관한 것이다.In one aspect, the present invention contains an indocyanine green-liposomal complex prepared by mixing phosphatidylcholine, a stabilizer, and an indocyanine green, wherein the indocyanine green is encapsulated in liposomes and is therapeutic It relates to a composition for treating cancer, which induces cell death by effective light irradiation.
본 출원의 발명자들은 인도시아닌 그린이 캡슐화된 리포좀 복합체를 통해 인도시아닌 그린의 낮은 안정성과 관련된 단점을 극복함으로써 인도시아닌 그린의 안정성을 향상시킬 수 있을 뿐 아니라, 치료적으로 유효한 광 조사시 세포사멸에 의한 암 치료가 가능함을 확인하였다.The inventors of the present application can improve the stability of indocyanine green by overcoming the disadvantages associated with low stability of indocyanine green through liposome complexes in which indocyanine green is encapsulated, It was confirmed that cancer treatment by apoptosis is possible.
본 명세서에서 광 조사에 의한 세포사멸은 광치료(phototherapy)에 의해 달성되는 것으로, 광치료는 부작용이 적고, 비침습적이며, 특정 파장의 광에 특이적이기 때문에, 암치료에 널리 사용되는 임상 방법 중 하나이다. 광치료는 광역치료 (photodynamic therapy, PDT) 및 광열치료 (photothermal therapy, PTT)를 포함하며, 이를 위해 각각 활성 산소종(reactive oxygen species, ROS)과 열에너지 발생을 위한 빛과 광민감제(photosensitizer)를 포함한 제제가 필요하다. In the present specification, apoptosis by light irradiation is achieved by phototherapy, and phototherapy is one of clinical methods widely used in cancer treatment because it has fewer side effects, is non-invasive, and is specific for light of a specific wavelength. Phototherapy includes photodynamic therapy (PDT) and photothermal therapy (PTT), which include reactive oxygen species (ROS) and light and photosensitizers for thermal energy generation, respectively. Formulation is required.
본 출원의 발명자들은 특히, 본 발명에 따른 인도시아닌 그린이 캡슐화된 리포좀 복합체에 광 조사시 우수한 광열 치료 효과가 나타날 수 있음을 확인하였다. 이러한 효과는 암세포에 대한 세포 독성을 높여 암 치료 효과를 나타낼 수 있음을 확인하였다. In particular, the inventors of the present application confirmed that the indocyanine green according to the present invention may exhibit an excellent photothermal treatment effect upon light irradiation to the encapsulated liposome complex. This effect was confirmed to increase the cytotoxicity to cancer cells can exhibit a cancer treatment effect.
하나의 실시예에서, 상기 리포좀은 포스파티딜콜린 및 안정화제를 포함하여 제조되는데, 단일 라멜라 (unilamellar) 또는 복합 라멜라 (multilamellar) 형태의 리포좀이 사용될 수 있다. 상기 포스파티딜콜린은 콜린을 도입한 인지질의 일종으로, 포화 또는 불포화 지방산의 소수성 꼬리 (hydrophobic tail) 및 콜린 친수성 머리 (hydrophilic head)를 포함하며, 예를 들어 L-α-phosphatidylcholine (Egg, Chicken) , L-α-phosphatidylcholine, hydrogenated (Egg, Chicken), L-α-phosphatidylcholine (Soy), L-α-phosphatidylcholine, hydrogenated (Soy) 1,2-didecanoyl-sn-glycero-3-phosphocholine (10:0 PC), 1,2-diundecanoyl-sn-glycero-3-phosphocholine (11:0 PC), 1,2-dilauroyl-sn-glycero-3-phosphocholine (12:0 PC (DLPC)), 1,2-ditridecanoyl-sn-glycero-3-phosphocholine (13:0 PC), 1,2-dipentadecanoyl-sn-glycero-3-phosphocholine (15:0 PC), 1,2-diphytanoyl-sn-glycero-3-phosphocholine (4ME 16:0 PC), 1,2-diheptadecanoyl-sn-glycero-3-phosphocholine (17:0 PC), 1,2-dinonadecanoyl-sn-glycero-3-phosphocholine (19:0 PC), 1,2-diarachidoyl-sn-glycero-3-phosphocholine (20:0 PC), 1,2-dimyristoleoyl-sn-glycero-3-phosphocholine (14:1 (Δ9-Cis) PC), 1,2-dimyristelaidoyl-sn-glycero-3-phosphocholine (14:1 (Δ9-Trans) PC), 1,2-dipalmitoleoyl-sn-glycero-3-phosphocholine (16:1 (Δ9-Cis) PC), 1,2-dipalmitelaidoyl-sn-glycero-3-phosphocholine (16:1 (Δ9-Trans) PC), 1,2-dipetroselenoyl-sn-glycero-3-phosphocholine (18:1 (Δ6-Cis) PC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (18:1 (Δ9-Cis) PC (DOPC)), 1,2-dielaidoyl-sn-glycero-3-phosphocholine (18:1 (Δ9-Trans) PC), 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (18:2 (Cis) PC), 1,2-dilinolenoyl-sn-glycero-3-phosphocholine (18:3 (Cis) PC), 1,2-dieicosenoyl-sn-glycero-3-phosphocholine (20:1 (Cis) PC), DSPC (1,2-distearoyl-sn-glycero-3-phosphocholine), DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine), DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) 및 DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine)로 이루어진 군에서 선택된 하나 이상일 수 있으나, 이에 제한되는 것은 아니다.In one embodiment, the liposomes are prepared including phosphatidylcholine and stabilizers, and liposomes in the form of a single lamellar or a multilamellar may be used. The phosphatidylcholine is a kind of phospholipid with choline, and includes a hydrophobic tail and a choline hydrophilic head of saturated or unsaturated fatty acids, for example, L-α-phosphatidylcholine (Egg, Chicken), L -α-phosphatidylcholine, hydrogenated (Egg, Chicken), L-α-phosphatidylcholine (Soy), L-α-phosphatidylcholine, hydrogenated (Soy) 1,2-didecanoyl-sn-glycero-3-phosphocholine (10: 0 PC) , 1,2-diundecanoyl-sn-glycero-3-phosphocholine (11: 0 PC), 1,2-dilauroyl-sn-glycero-3-phosphocholine (12: 0 PC (DLPC)), 1,2-ditridecanoyl- sn-glycero-3-phosphocholine (13: 0 PC), 1,2-dipentadecanoyl-sn-glycero-3-phosphocholine (15: 0 PC), 1,2-diphytanoyl-sn-glycero-3-phosphocholine (4ME 16 : 0 PC), 1,2-diheptadecanoyl-sn-glycero-3-phosphocholine (17: 0 PC), 1,2-dinonadecanoyl-sn-glycero-3-phosphocholine (19: 0 PC), 1,2-diarachidoyl -sn-glycero-3-phosphocholine (20: 0 PC), 1,2-dimyristoleoyl-sn-glycero-3-phosphocholine (14: 1 (Δ9-Cis) PC), 1,2-dimyr istelaidoyl-sn-glycero-3-phosphocholine (14: 1 (Δ9-Trans) PC), 1,2-dipalmitoleoyl-sn-glycero-3-phosphocholine (16: 1 (Δ9-Cis) PC), 1,2- dipalmitelaidoyl-sn-glycero-3-phosphocholine (16: 1 (Δ9-Trans) PC), 1,2-dipetroselenoyl-sn-glycero-3-phosphocholine (18: 1 (Δ6-Cis) PC), 1,2- dioleoyl-sn-glycero-3-phosphocholine (18: 1 (Δ9-Cis) PC (DOPC)), 1,2-dielaidoyl-sn-glycero-3-phosphocholine (18: 1 (Δ9-Trans) PC), 1 , 2-dilinoleoyl-sn-glycero-3-phosphocholine (18: 2 (Cis) PC), 1,2-dilinolenoyl-sn-glycero-3-phosphocholine (18: 3 (Cis) PC), 1,2-dieicosenoyl -sn-glycero-3-phosphocholine (20: 1 (Cis) PC), DSPC (1,2-distearoyl-sn-glycero-3-phosphocholine), DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine ), DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) and DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) may be one or more selected from, but is not limited thereto. .
본 출원의 발명자들은 리포좀이 결합되지 않은 자유 ICG (공지의 인도시아닌 그린 단독 사용) 및 리포좀 표면에 결합된 ICG에 비해 리포좀이 캡슐화된 ICG에서 향상된 광열 효과가 나타남을 확인하였다. 이를 바탕으로, 본 명세서에서 사용되는 캡슐화는 인도시아닌 그린이 실질적으로 리포좀 내 공간에만 존재하여 리포좀-ICG 복합체를 형성하는 것을 의미하며, 리포좀이 결합되지 않은 자유 ICG (free ICG) 또는 리포좀 표면에만 결합된 ICG는 제거되어 실질적으로 존재하지 않는 것을 의미한다.The inventors of the present application confirmed that the liposome-encapsulated ICG exhibited an improved photothermal effect as compared to free ICG with liposomes unbound (known indocyanine green alone) and ICG bound to liposome surfaces. Based on this, encapsulation as used herein means that indocyanine green is substantially present only in the space in the liposome to form a liposome-ICG complex, and only on the free ICG or liposome surface to which the liposome is not bound. Bound ICG is removed to mean that it is substantially nonexistent.
또한, 본 출원의 발명자들은 특히 인지질의 소수성 꼬리 길이가 짧아질수록 광열 효과가 향상되고, 소수성 꼬리에 불포화 지방산이 포함되면 광열 효과가 감소할 수 있음을 확인하였다. In addition, the inventors of the present application confirmed that the photothermal effect is improved, especially as the hydrophobic tail length of the phospholipid is shortened, and that the unsaturated fatty acid is included in the hydrophobic tail.
이를 바탕으로, DSPC, DPPC, DMPC 또는 DOPC를 포함하는 리포좀을 고려한 결과, 동일한 인도시아닌 그린 농도일 때 DMPC를 포함하는 리포좀 제조시, 가장 우수한 광열효과가 나타남을 확인하였다. DMPC는 소수성 꼬리의 탄소수가 14개로, 16개인 DPPC, 18개인 DSPC 또는 DOPC에 비해 소수성 꼬리 길이가 짧고, 소수성 꼬리에 불포화 지방산이 포함된 DOPC에 비해 우수한 광열 효과를 나타냄을 확인하였다 (시험예 3). 따라서, 상기 포스파티딜콜린은 바람직하게 DMPC일 수 있다.Based on this, considering liposomes including DSPC, DPPC, DMPC or DOPC, it was confirmed that the liposomes containing DMPC showed the best photothermal effect at the same indocyanine green concentration. DMPC has 14 carbon atoms in hydrophobic tail, shorter hydrophobic tail length than 16 DPPC, 18 DSPC or DOPC, and showed excellent photothermal effect compared to DOPC containing unsaturated fatty acid in hydrophobic tail (Test Example 3 ). Thus, the phosphatidylcholine may preferably be DMPC.
상기 안정화제는 지질, 지질 유도체, 단백질 또는 펩타이드 등일 수 있고, 구체적으로 폴리에틸렌글리콜이 컨쥬게이션된 포스파티딜에탄올아민일 수 있다. 상기 폴리에틸렌글리콜은 안정화에 적합한 정도의 크기라면 제한없이 사용될 수 있으나, 예를 들어 분자량이 약 1, 000 내지 10,000, 바람직하게 2,000 내지 8, 000, 더욱 바람직하게 2,000 내지 6, 000일 수 있다. The stabilizer may be a lipid, a lipid derivative, a protein or a peptide, and the like, and specifically, may be phosphatidylethanolamine conjugated with polyethylene glycol. The polyethylene glycol may be used without limitation as long as it is a size suitable for stabilization, for example, may have a molecular weight of about 1,000 to 10,000, preferably 2,000 to 8, 000, more preferably 2,000 to 6, 000.
상기 포스파티딜에탄올아민은 모노 또는 디 불포화지방산일 수 있으며, 예를 들어 DMPE (dimyristoylphosphatidylethanolamine), DPPE (dipalmitoylphosphatidylethanolamine), DOPE (dioleoylphosphatidylethanolamine) 및 DSPE (distearoylphosphatidyl-ethanolamine)로 이루어진 군에서 선택된 1종 이상일 수 있으나, 이에 제한되는 것은 아니다.The phosphatidylethanolamine may be mono or diunsaturated fatty acid, and for example, may be one or more selected from the group consisting of dimyristoylphosphatidylethanolamine (DMPE), dipalmitoylphosphatidylethanolamine (DPPE), dioleoylphosphatidylethanolamine (DOPE), and DSPE (distearoylphosphatidyl-ethanolamine). It is not limited.
상기 포스파티딜콜린 및 안정화제는 인도시아닌 그린과 함께 광열 효과를 내기에 적합한 리포좀 형성에 적합한 정도로 포함될 수 있으며, 예를 들어 포스파티딜콜린 및 안정화제의 몰비가 약 85:15 내지 약 98:2, 바람직하게 약 90:10 내지 95:5일 수 있다. 상기 몰비 범위 내에서, 생체 내 리포좀이 가장 안정되어 수명을 최대화 시킬 수 있다. The phosphatidylcholine and stabilizer may be included with indocyanine green to an extent suitable for liposome formation suitable for photothermal effect, for example, the molar ratio of phosphatidylcholine and stabilizer is from about 85:15 to about 98: 2, preferably about 90:10 to 95: 5. Within this molar ratio range, liposomes in vivo are most stable to maximize lifespan.
상기 혼합물 중 포스파티딜콜린과 인도시아닌 그린은 암 치료를 위한 광열 효과를 내기에 적합한 정도라면 제한되지 않으나, 예를 들어 250:0.1-32의 몰비로 포함될 수 있다. 바람직하게, 상기 혼합물 중 포스파티딜콜린과 인도시아닌 그린은 250:0.5-16의 몰비로 포함될 수 있다. 해당 범위 전체에서 목적하는 광열 효과를 나타낼 수 있으며, 본 출원의 발명자들은 특히, 해당 범위의 몰비로 포스파티딜콜린과 인도시아닌 그린을 포함하는 경우, 인도시아닌 그린이 리포좀 내부에서 최적으로 분산되어 캡슐화된 복합체를 형성할 수 있으며, 암 치료에 유효한 광열 효과를 나타낼 수 있는 최적 흡광도를 가짐으로써, 유의한 광열 효과를 나타냄을 확인하였다. Phosphatidylcholine and indocyanine green in the mixture are not limited so long as they are suitable for producing a photothermal effect for cancer treatment, but may be included, for example, in a molar ratio of 250: 0.1-32. Preferably, phosphatidylcholine and indocyanine green in the mixture may be included in a molar ratio of 250: 0.5-16. The desired photothermal effect can be exhibited throughout this range, and the inventors of the present application find that indocyanine green is optimally dispersed and encapsulated inside liposomes, particularly when phosphatidylcholine and indocyanine green are included in the molar ratio of the range. Complexes can be formed, and having an optimal absorbance that can exhibit an effective photothermal effect in the treatment of cancer, it was confirmed that it exhibits a significant photothermal effect.
기재된 범위보다 인도시아닌 그린의 포함량이 적으면 목적하는 정도의 광 반응 효과를 기대할 수 없고, 상대적으로 리포좀의 양이 많아져 리포좀 제조에 소요되는 비용 및 시간을 고려하였을 때 매우 비효율적이며, 기재된 범위보다 인도시아닌 그린의 포함량이 많으면, 오히려 리포좀 내에서 응집이 일어나거나, 더 이상 광에 반응하지 않는 정도의 임계치에 도달하게 되어 상승적 광열 효과 기대할 수 없다. 특히, 포스파티딜콜린과 인도시아닌 그린이 250:1의 몰비를 가지는 경우 가장 우수한 광열 효과를 나타냄을 확인하였다. 이는 250:1의 몰비로 포함된 포스파티딜콜린과 인도시아닌 그린으로부터 제조된 리포좀 복합체 중 인도시아닌 그린이 가장 높은 분산도로 분포되어 있기 때문일 것으로 판단된다. When the amount of indocyanine green is smaller than the range described, the desired degree of photoreaction effect cannot be expected, and the amount of liposomes is relatively high, which is very inefficient considering the cost and time required for preparing liposomes. If the amount of indocyanine green is higher, agglomeration may occur in liposomes, or a threshold level that no longer reacts to light may be reached, and a synergistic photothermal effect may not be expected. In particular, it was confirmed that phosphatidylcholine and indocyanine green had the best photothermal effect when they had a molar ratio of 250: 1. This may be due to the highest dispersion of indocyanine green among liposome complexes prepared from phosphatidylcholine and indocyanine green in a molar ratio of 250: 1.
하나의 실시예에서, 상기 복합체에 근적외선 조사시 열이 발생할 수 있으며, 상기 근적외선은 700-900nm에서 100 mW 이상의 전력으로 3분 이상 조사될 수 있다. 이 때, 열을 발생시키는 전력은 예를 들어 100 mW 이상, 1 W 이하일 수 있으며, 바람직하게 400mW 이상 800mW 이하일 수 있다. 광 조사 시간은 3분 이상 30분 이하일 수 있다. 전술한 범위 보다 낮은 광 조사 조건에서는 인도시아닌 그린이 효과적으로 광열효과 발생에 소모되지 않으며, 높은 광 조사 조건에서는 주변 정상세포가 광 독성에 노출되어 손상이 유발될 수 있다.In one embodiment, heat may be generated when the composite is irradiated with near infrared rays, and the near infrared rays may be irradiated for 3 minutes or more with a power of 100 mW or more at 700-900 nm. At this time, the power for generating heat may be, for example, 100 mW or more, 1 W or less, preferably 400 mW or more and 800 mW or less. The light irradiation time may be 3 minutes or more and 30 minutes or less. In the light irradiation conditions lower than the above range, indocyanine green is not effectively consumed in generating the photothermal effect, and in high light irradiation conditions, surrounding normal cells may be exposed to phototoxicity and damage may be caused.
이 때 발생하는 열은 예를 들어, 90% 이상의 세포사멸, 바람직하게 95% 이상의 세포사멸이 일어날 수 있는 약 45℃ 이상의 온도, 바람직하게 50℃ 이상의 온도, 더욱 바람직하게 60℃ 이상의 온도일 수 있다.The heat generated at this time may be, for example, a temperature of about 45 ° C. or higher, preferably 50 ° C. or higher, more preferably 60 ° C. or higher, at which 90% or more apoptosis, preferably 95% or more, may occur. .
상기 열을 내는 복합체 중 인도시아닌 그린은 예를 들어, 0.1-30 ug/ml, 바람직하게 1-10 ug/ml의 농도로 포함할 수 있다. 본 출원의 발명자들은 전술한 농도 범위의 인도시아닌 그린을 포함하는 리포좀 복합체에 근적외선 조사시 95% 이상의 세포사멸이 일어날 수 있는 10℃ 이상의 온도 상승을 나타내는 정도로 열이 발생할 수 있음을 확인하였다. Indocyanine green in the heat generating complex may include, for example, at a concentration of 0.1-30 ug / ml, preferably 1-10 ug / ml. The inventors of the present application confirmed that heat can be generated to a temperature rise of 10 ° C. or more, in which near-infrared irradiation may cause 95% or more apoptosis of liposome complexes including indocyanine green in the aforementioned concentration range.
특히, 종양이 발생한 림프절 중 인도시아닌 그린을 포함하는 리포좀 복합체의 축적량이 높을수록 열 발생량 역시 높아져, 주요 세포 파괴에 충분한 정도 이상의 열이 발생하여 세포사멸이 일어날 수 있음을 확인하였다. 이를 통해, FDA 허가받은 물질에 기반하여 개발된 인도시아닌 그린을 포함하는 리포좀 복합체는 큰 임상적 잠재성을 가질 수 있음을 확인하였다.In particular, the higher the accumulation amount of liposome complex containing indocyanine green in the tumor-induced lymph nodes, the higher the heat generation, it was confirmed that more than enough heat to generate a major cell destruction can cause cell death. Through this, it was confirmed that the liposome complex including indocyanine green, which was developed based on the FDA approved substance, may have great clinical potential.
하나의 실시예에서, 상기 복합체는 인도시아닌 그린이 캡슐화된 리포좀의 종류 및 크기에 따라 크기 (직경)이 결정될 수 있으며, 복합체의 평균 수동력학적 직경(hydrodynamic diameter, HD)은 예를 들어, 50-200nm, 바람직하게 100-150 nm 일 수 있다.In one embodiment, the complex may be determined in size (diameter) according to the type and size of liposomes in which indocyanine green is encapsulated, and the average hydrodynamic diameter (HD) of the complex is, for example, It may be 50-200 nm, preferably 100-150 nm.
또 다른 실시예에서, 상기 복합체는 낮은 정도의 다분산지수를 나타내어 분자량 및 구조가 균일함을 확인하였는데, 이 때 상기 다분산지수는 0.2 이하일 수 있다.In yet another embodiment, the composite exhibits a low degree of polydispersity index to confirm that the molecular weight and structure is uniform, wherein the polydispersity index may be 0.2 or less.
경우에 따라서, 본 발명에 따른 암 치료용 조성물은 암 치료에 유효한 항체 또는 이의 면역치료적으로 유효한 단편, 세포독성제 또는 화학치료제를 추가로 포함할 수 있다. In some cases, the composition for treating cancer according to the present invention may further include an antibody effective for treating cancer or an immunotherapeutic fragment thereof, a cytotoxic agent or a chemotherapeutic agent thereof.
항체는 단클론 항체, 다클론 항체, 2 개 이상의 온전한 항체로 형성되는 다중특이성 항체 및 목적하는 생물학적 암 치료 활성을 나타내는 항체 단편을 포함하며, 면역치료적으로 유효한 항체 단편은 항원 결합 또는 이들의 가변 구역을 포함하는 예를 들어, Fab, Fab', F(ab')2, Fv 및 Fc 단편, 디아바디 (diabodies), 선형 항체, 단일쇄 항체 분자; 및 항체 단편으로부터 형성된 다중특이성 항체로, 온전한 항체의 일부를 포함한다.Antibodies include monoclonal antibodies, polyclonal antibodies, multispecific antibodies formed from two or more intact antibodies, and antibody fragments exhibiting the desired biological cancer therapeutic activity, wherein immunotherapeutic antibody fragments include antigen binding or variable regions thereof For example, Fab, Fab ', F (ab') 2, Fv and Fc fragments, diabodies, linear antibodies, single chain antibody molecules; And multispecific antibodies formed from antibody fragments, including portions of intact antibodies.
세포독성제는 세포의 기능을 저해하거나 또는 방지하고/하거나 세포의 붕괴를 야기하는 물질로, 방사성 동위원소, 화학치료제 및 독소, 예컨대 박테리아, 균류, 식물 또는 동물 기원의 효소적으로 활성인 독소 또는 그의 단편을 포함할 수 있다.Cytotoxic agents are substances that inhibit or prevent the function of a cell and / or cause cell disruption, and include radioisotopes, chemotherapeutic agents and toxins such as enzymatically active toxins of bacterial, fungal, plant or animal origin, or And fragments thereof.
화학치료제는 종양 세포 상에 직접적으로, 예컨대 세포정지 또는 세포 독성 효과에 의해서 및 생물학적 응답 변화와 같은 메카니즘을 통해 간접적이지 않게, 신규 세포의 발생, 성숙 또는 확산을 방지하는 화학적 약제가 포함된다. 본 발명에 적합한 화학치료제는 바람직하게는 천연 또는 합성 화학적 화합물이 포함된다.Chemotherapeutic agents include chemical agents that prevent the development, maturation or proliferation of new cells directly on tumor cells, such as by cytostatic or cytotoxic effects and not indirectly through mechanisms such as changes in biological response. Chemotherapeutic agents suitable for the present invention preferably include natural or synthetic chemical compounds.
'암' 및 '종양'은 비제어적인 세포 성장을 전형적인 특징으로 하는, 포유류에서의 생리학적 상태를 의미하거나 또는 설명하는 것으로, 본 발명의 조성물에 의해 유방, 심장, 폐, 소장, 대장, 비장, 신장, 방광, 두경부, 난소, 전립선, 뇌, 췌장, 피부, 뼈, 골수, 혈액, 흉선, 자궁, 정소, 자궁경부 및 간의 종양과 같은 종양 또는 전이성 종양이 치료될 수 있다. 'Cancer' and 'tumor' refer to or describe the physiological condition in mammals, typical of uncontrolled cell growth, and according to the compositions of the present invention, breast, heart, lung, small intestine, large intestine, spleen Tumors or metastatic tumors, such as tumors of the kidneys, bladder, head and neck, ovaries, prostate, brain, pancreas, skin, bone, bone marrow, blood, thymus, uterus, testes, cervix and liver, can be treated.
이를 바탕으로, 본 발명은 다음의 단계를 포함하는 암 치료방법을 제공한다:Based on this, the present invention provides a cancer treatment method comprising the following steps:
(a) 인도시아닌 그린이 리포좀에 캡슐화되어 있는 인도시아닌 그린-리포좀 복합체를 환자에 투여하는 단계; 및(a) administering to the patient an indocyanine green-liposomal complex in which the indocyanine green is encapsulated in the liposome; And
(b) 종양 부위에 축적된 상기 (a) 단계에서 투여된 복합체에 치료적으로 유효한 광을 조사하는 단계.(b) irradiating a therapeutically effective light to the complex administered in step (a) accumulated at the tumor site.
다른 관점에서, 본 발명은 하기 단계를 포함하는 암 치료용 조성물의 제조방법에 관한 것이다:In another aspect, the present invention relates to a method for preparing a composition for treating cancer, comprising the following steps:
(a) 유기용매 중에 1종 이상의 포스파티딜콜린과 안정화제 및 인도시아닌 그린을 용해시켜 이의 혼합물을 제조하고, 유기용매를 제거하여 케익을 제조하는 단계;(a) dissolving at least one phosphatidylcholine and stabilizer and indocyanine green in an organic solvent to prepare a mixture thereof, and removing the organic solvent to prepare a cake;
(b) 상기 케익을 수화시켜 분산액을 제조하고, 다공성 고분자막에 압출시켜 인도시아닌 그린이 포함된 리포좀을 제조하는 단계; 및(b) hydrating the cake to prepare a dispersion, and extruding the porous polymer membrane to prepare liposomes containing indocyanine green; And
(c) 상기 단계 (b)의 리포좀 중 인도시아닌 그린이 리포좀 내에 캡슐화된 복합체를 분리하는 단계.(c) isolating a complex in which indocyanine green is encapsulated in the liposome in the liposome of step (b).
본 발명에 따른 제조방법에서 단계 (a)는 유기용매 중에 1종 이상의 포스파티딜콜린과 안정화제 및 인도시아닌 그린을 용해시키고 유기용매를 제거하여 케익을 제조하는 단계이다. 인도시아닌 그린이 리포좀에 캡슐화되어 있는 복합체를 포함한 조성물은 필름 수화/압출법을 통해 제조될 수 있다.In the manufacturing method according to the present invention, step (a) is a step of preparing a cake by dissolving at least one phosphatidylcholine, a stabilizer, and indocyanine green in an organic solvent, and removing the organic solvent. Compositions comprising complexes in which indocyanine green is encapsulated in liposomes can be prepared via film hydration / extrusion.
상기 리포좀의 재료가 되는 포스파티딜콜린 및 안정화제는 앞서 언급한 내용이 제조방법과 관련된 발명에도 동일하게 적용된다. 상기 유기용매에 포스파티딜콜린 및 안정화제를 용해시킬 수 있다. The phosphatidylcholine and stabilizer, which are the materials of the liposomes, are equally applicable to the above-mentioned invention related to the preparation method. Phosphatidylcholine and a stabilizer may be dissolved in the organic solvent.
상기 단계 (a)에서 유기용매는 예를 들어, 메탄올(methanol), 에탄올(ethanol), 프로판올(propanol), 이소프로판올(isopropanol), 부탄올(butanol), 아세톤(acetone), 에테르(ether), 벤젠(benzene), 클로로포름(chloroform), 에틸아세테이트(ethyl acetate), 메틸렌클로라이드(methylene chloride), 헥산(hexane) 및 시클로헥산(cyclohexane)으로 이루어진 군에서 선택된 1종 이상일 수 있으며, 바람직하게 클로로포름을 사용할 수 있다. The organic solvent in the step (a), for example, methanol (methanol), ethanol (ethanol), propanol (propanol), isopropanol (isopropanol), butanol (acetone), acetone (acetone), ether (ether), benzene ( It may be at least one selected from the group consisting of benzene, chloroform, ethyl acetate, ethyl acetate, methylene chloride, hexane, and cyclohexane, and preferably chloroform may be used. .
이후 (b) 유기용매를 제거하고 건조시켜 제조된 케익을 수화시켜 분산액을 제조하고, 다공성 고분자막에 압출시켜 인도시아닌 그린이 포함된 리포좀을 제조하는 단계를 거친다. 상기 분산액은 등장액으로 수화시켜 제조될 수 있는데, 상기 등장액은 등장화제로 예를 들어, 글루코스, 트레할로스 등을 포함할 수 있으며, 등장화제는 예를 들어, 1-10% (w/v), 바람직하게 3-7 % (w/v)의 농도로 포함될 수 있다.Thereafter, (b) hydrating the cake prepared by removing the organic solvent and drying to prepare a dispersion, and is extruded to a porous polymer membrane to prepare a liposome containing indocyanine green. The dispersion may be prepared by hydration with an isotonic solution, the isotonic solution may include, for example, glucose, trehalose, etc., the isotonic agent may be, for example, 1-10% (w / v), preferably To 3-7% (w / v).
상기 분산액은 다공성 고분자막에 압출시켜 단일 또 멀티 라멜라 소포(vesicle) 형태의 리포좀으로 제조될 수 있으며, 이 때 사용되는 다공성 고분자막은 예를 들어 폴리카보네이트 고분자막일 수 있고, 다공성 고분자막의 공극 직경은 예를 들어 10∼1000 nm, 바람직하게 50∼200 nm일 수 있다.The dispersion may be prepared by liposomes in the form of single or multi-lamellar vesicles by extruding the porous polymer membrane, wherein the porous polymer membrane may be, for example, a polycarbonate polymer membrane, and the pore diameter of the porous polymer membrane may be, for example. For example 10-1000 nm, preferably 50-200 nm.
다음 단계 (c)에서 인도시아닌 그린이 리포좀 내에 캡슐화된 복합체를 분리한다. 제거에 사용되는 방법은 인도시아닌 그린이 리포좀 내에 캡슐화된 복합체와 자유 인도시아닌 그린 및 리포좀 표면에 단순히 결합하거나 노출된 인도시아닌 그린을 분리할 수 있는 방법이라면 제한없이 사용될 수 있으며, 예를 들어 투석 막에 통과시키거나, 크로마토그래피 (예를 들어, 크기 배제 크로마토그래피 등)를 사용하여, 목적하는 인도시아닌 그린이 리포좀 내에 캡슐화된 복합체만을 분리할 수 있다. In the next step (c), the indocyanine green separates the complex encapsulated in the liposome. The method used for removal can be used without limitation as long as indocyanine green can separate complexes encapsulated within liposomes and free indocyanine green and liposome surfaces, or indocyanine green that has been exposed or exposed. For example, only the complexes in which the desired indocyanine green is encapsulated in liposomes can be separated by passing through a dialysis membrane or using chromatography (eg, size exclusion chromatography, etc.).
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention, it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as being limited by these examples.
실시예 1: Liposomal ICG의 제조Example 1 Preparation of Liposomal ICG
ICG (IR-25, laser grade pure)는 Acros Organics에서 입수하였다. 주성분 지질로 DSPC (1,2-distearoyl-sn-glycero-3-phosphocholine), DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine), DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) 또는 DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine)와 DSPE-PEG2000 (1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000])을 95:5의 몰비율로 혼합하여 클로로포름에 녹인 용액에 1mg/ml로 메탄올에 녹인 인도시아닌 그린 (지질 몰농도 총합: ICG = 250:X (M)) 을 필요한 농도만큼 혼합하고 유기용매를 완전히 증발시킨 후 플라스크 바닥에 생성된 지질 케익을 5% 글루코스 수용액 2ml로 수화(hydration)하였다.ICG (IR-25, laser grade pure) was obtained from Acros Organics. The main component lipids are DSPC (1,2-distearoyl-sn-glycero-3-phosphocholine), DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine), DMPC (1,2-dimyristoyl-sn-glycero-3 -phosphocholine) or DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) and DSPE-PEG2000 (1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N- [methoxy (polyethylene glycol) -2000] ) Mixed in a solution of chloroform in a ratio of 95: 5, and mixed indocyanine green (total molar concentration: ICG = 250: X (M)) dissolved in methanol at 1 mg / ml in an amount of the required organic solvent. After fully evaporating the resulting lipid cake at the bottom of the flask was hydrated with 2 ml of 5% aqueous glucose solution.
이 때, 수화 용액 중 조성은 DSPC, DPPC, DMPC 또는 DOPC과 ICG의 비율이 각각 250:0.5, 250:1, 250:4, 250:8, 250:16 및 250:32이었다.At this time, the composition of the hydration solution was DSPC, DPPC, DMPC, or the ratio of DOPC and ICG was 250: 0.5, 250: 1, 250: 4, 250: 8, 250: 16 and 250: 32.
0.1um 폴리카보네이트 막을 이용해 수화 완료한 리포좀 용액을 평균 100nm의 단일 또는 멀티 라멜라 리포좀이 되도록 압출하였다. 압출을 완료한 100nm 단일 또는 멀티 라멜라 리포좀 용액을 Sephadex G-50이 채워진 컬럼을 통과시켜, 크기 배제 크로마토그래피 (Size-exclusion chromatography) 기법을 이용해 리포좀에 포함되지 않은 ICG와 ICG가 함유된 리포좀을 분리한다. 100kDa MWCO (molecular weight cut-off)를 갖는 투석막 (dialysis membrane)을 이용해 투석하여 미량 존재하는 자유 ICG (Free ICG)와 리포좀 표면에 붙어 있는 ICG를 제거하고, ICG가 캡슐화된 리포좀 복합체를 제조하였다.Using a 0.1 um polycarbonate membrane, the hydrated liposome solution was extruded to an average of 100 nm single or multi lamellar liposomes. A 100 nm single or multi lamellar liposome solution, complete with extrusion, was passed through a column filled with Sephadex G-50 to separate ICG and ICG-containing liposomes, which were not included in liposomes, using a size-exclusion chromatography technique. do. Dialysis membranes with a 100 kDa MWCO (molecular weight cut-off) were used for dialysis to remove trace amounts of free ICG and ICG adhering to the liposome surface, thereby preparing an ICG encapsulated liposome complex.
ICG가 리포좀에 캡슐화되어 생기는 분산효과로 인한 형광세기 증가 및 흡광도 변화를 이용해, 리포좀 ICG 용액에 존재 하는 자유 ICG 및 리포좀 표면에 노출된 ICG의 유무를 확인하였다.The increase in fluorescence intensity and absorbance due to the dispersion effect of ICG encapsulated in liposomes were used to determine the presence of free ICG and liposomes exposed to liposome surface in liposome ICG solution.
리포좀을 구성하는 포스파티딜콜린과 DSPE-PEG200 중 포스파티딜콜린의 농도를 알 수 있는 Stewart assay를 통해 자유 ICG를 제거한 리포좀-ICG 복합체에서 포스파티딜콜린의 농도를 구하였다. 또한, 메탄올 80%와 리포좀 용액 20%를 혼합하면 리포좀 구조가 모두 붕괴되고 ICG가 본래의 흡광도를 나타내고, 785nm에서 흡광도가 최대치를 갖는다. 메탄올 80%에서 ICG는 농도에 비례하여 흡광도가 증가하기 때문에, 이를 통해 리포좀 복합체내에 포함되어 있는 ICG의 농도를 785nm의 흡광도를 통해 구하였다. {(총 포스파티딜콜린 농도) / (ICG 농도)}을 통해 리포좀-ICG 복합체 중 포스파티딜콜린과 ICG 간의 비율을 구할 수 있다. 이를 통해 각각의 리포좀-ICG 복합체를 합성하기 위해 포스파티딜콜린 포함 케익을 제작할 때에 첨가된 ICG의 양에 비해, 최종적으로 합성된 리포좀-ICG 복합체에 포함된 ICG의 양을 비교할 수 있다.The concentration of phosphatidylcholine was determined in the liposome-ICG complex from which free ICG was removed by Stewart assay, which shows the concentration of phosphatidylcholine and phosphatidylcholine in DSPE-PEG200. In addition, when 80% methanol and 20% liposome solution are mixed, the liposome structure is all collapsed, and the ICG shows the original absorbance, and the absorbance has a maximum at 785 nm. Since the absorbance of ICG increases in proportion to the concentration in methanol of 80%, the concentration of ICG contained in the liposome complex was obtained through the absorbance of 785 nm. {(Total Phosphatidylcholine Concentration) / (ICG Concentration)} can determine the ratio between phosphatidylcholine and ICG in the liposome-ICG complex. This allows comparing the amount of ICG included in the finally synthesized liposome-ICG complex, compared to the amount of ICG added when preparing a phosphatidylcholine-containing cake to synthesize each liposome-ICG complex.
그 결과, 케익 제작시 첨가된 ICG의 양이 포스파티딜콜린:ICG의 몰비가 250:0.5~16 (M)의 범위일 때는 첨가된 ICG의 양이 증가할 수록 리포좀 내부에 포함되는 ICG의 양이 증가한다. 그러나, 케익 제작시 첨가된 ICG의 양이 포스파티딜콜린:ICG의 몰비가 250: 16을 초과하면, 리포좀 내부에 포함되는 ICG의 양이 증가하지 않게 된다.As a result, when the amount of ICG added during cake making was in the range of phosphatidylcholine: ICG in the range of 250: 0.5 to 16 (M), the amount of ICG contained in liposomes increased as the amount of ICG added increased. . However, if the molar ratio of phosphatidylcholine: ICG exceeds 250: 16, the amount of ICG contained in the liposomes does not increase.
시험예 1: Liposomal ICG의 광열효과Test Example 1 Photothermal Effect of Liposomal ICG
실시예 1에서 제조된 Liposomal ICG 복합체 중 모든 Liposomal ICG와 Free ICG의 ICG 농도를 5ug/ml에 맞추었고, 실시예 1에서 제조된 Liposomal ICG 복합체에 808nm의 레이져를 650mW로 3분간 조사하고(81J, Joule), 열화상카메라(FLIR)를 통해 리포좀 용액 총 부피 100ul에 의해 발생하는 광열효과를 측정하였다. In the Liposomal ICG complex prepared in Example 1, all the Liposomal ICG and Free ICG ICG concentrations were adjusted to 5 ug / ml, and the Liposomal ICG complex prepared in Example 1 was irradiated with a laser of 808 nm at 650 mW for 3 minutes (81 J, Joule), the thermal imaging camera (FLIR) to measure the photothermal effect caused by the total volume of liposome solution 100ul.
측정된 광열 효과를 도 1 내지 도 6에 나타내었다. 도 1 및 도 6을 비교하면, 리포좀에 결합되지 않은 자유 ICG의 경우 150초 이상의 광 조사에도 불구하고 온도 상승 정도가 5℃에 불과하여, 리포좀에 캡슐화되어 포함된 ICG에 비해 보다 상대적으로 미약한 광열효과를 나타냄을 확인하였다. The measured photothermal effects are shown in FIGS. 1 to 6. Comparing FIGS. 1 and 6, in the case of free ICG not bound to liposomes, the temperature rise is only 5 ° C. despite light irradiation of 150 seconds or more, and is relatively weaker than that of ICG encapsulated in liposomes. It was confirmed that the light heat effect.
도 1 중 DSPC, DPPC, DMPC 또는 DOPC를 포함하는 복합체 각각에서 발생하는 광열효과를 각각 도 2 내지 도 5에 나타내었다. 복합체를 구성하는 인지질의 소수성 꼬리 길이가 짧아질수록 광열 효과가 향상됨을 확인하였고, 소수성 꼬리에 불포화 지질쇄가 포함되면 광열 효과가 감소함을 확인할 수 있다. DSPC, DPPC, DMPC 및DOPC 중 DMPC (도 4)에서 가장 우수한 광열 효과가 발생함을 확인할 수 있다. DSPC, DPPC, DMPC 또는 DOPC: ICG의 몰비가 250:0.5 내지 250:16인 경우 목적하는 광열 효과가 나타남을 확인할 수 있었는데, 특히, 포스파티딜콜린: ICG의 몰비가 250:1인 경우 포스파티딜콜린의 종류와 관계없이 우수한 광열 효과를 나타내었다.The photothermal effects occurring in each of the complexes including DSPC, DPPC, DMPC, or DOPC in FIG. 1 are shown in FIGS. 2 to 5, respectively. As the hydrophobic tail length of the phospholipid constituting the complex becomes shorter, the photothermal effect is improved, and when the unsaturated lipid chain is included in the hydrophobic tail, the photothermal effect is reduced. Among the DSPC, DPPC, DMPC and DOPC, DMPC (FIG. 4) shows that the best photothermal effect occurs. When the molar ratio of DSPC, DPPC, DMPC, or DOPC: ICG was 250: 0.5 to 250: 16, the desired photothermal effect was observed. In particular, when the molar ratio of phosphatidylcholine: ICG was 250: 1, it was related to the type of phosphatidylcholine. Excellent photothermal effect.
포스파티딜콜린: ICG의 몰비가 250:0.5 미만, 예를 들어 250:0.1인 경우는 유사한 정도의 광열 효과를 얻고자 하는 경우 상대적으로 투입되는 리포좀의 양이 지나치게 많아져 리포좀 제조에 소요되는 비용 및 시간을 고려하였을 때 매우 비효율적이며, 산업적 적용을 고려하면 적합하지 않다. 따라서, 광열 효과를 통해 암을 치료하기 위한 조성물에서 포스파티딜콜린: ICG의 몰비는 250:0.5의 범위에서부터 최적화될 수 있다. 또한, 포스파티딜콜린: ICG의 몰비가 250:16 초과, 예를 들어 250:32인 경우에는 ICG를 추가로 넣은 경우에도 리포좀-ICG 복합체에서 ICG의 비율이 증가하지 않고, 오히려 뭉침 (aggregation)이 발생하여 적합하지 않다 (도 15). If the molar ratio of phosphatidylcholine: ICG is less than 250: 0.5, for example 250: 0.1, in order to obtain a similar degree of photothermal effect, the amount of liposomes added is too high and the cost and time required for the preparation of liposomes is increased. It is very inefficient when considered and is not suitable when considering industrial applications. Thus, the molar ratio of phosphatidylcholine: ICG in the composition for treating cancer through the photothermal effect can be optimized from the range of 250: 0.5. In addition, if the phosphatidylcholine: ICG molar ratio is greater than 250: 16, for example 250: 32, the addition of ICG does not increase the ratio of ICG in the liposome-ICG complex, but rather aggregation occurs. Not suitable (FIG. 15).
시험예 2: Liposomal ICG의 특성Test Example 2: Characteristics of Liposomal ICG
Dynamic light scattering 방법을 이용하여 각 복합체의 평균 수동력학적 직경(hydrodynamic diameter, HD), 다분산 지수 (polydispersity index) 및 제타포텐셜 (zeta potential)을 측정하였다. 또한, 400nm ~ 1000nm의 파장에서 5nm 간격으로 흡광도를 측정하였으며, Excitation 785nm 및 Emission 820nm로 형광 세기를 측정하였다. 이 때 사용된 농도는 ICG 기준으로 5 ug/ml 이다.Dynamic light scattering was used to determine the average hydrodynamic diameter (HD), polydispersity index, and zeta potential of each composite. In addition, absorbance was measured at intervals of 5 nm at a wavelength of 400 nm to 1000 nm, and fluorescence intensity was measured by Excitation 785 nm and Emission 820 nm. The concentration used at this time is 5 ug / ml based on the ICG.
그 결과를 도 7 내지 도 14에 나타내었다. 도 7 내지 도 10을 참조하면, DSPC, DPPC, DMPC 또는 DOPC를 포함하는 복합체는 800nm에서 최대 흡광도를 가지고, 700nm 초반대에서 낮은 peak를 나타냄을 확인할 수 있다. 동일한 ICG 농도에서 DSPC, DPPC, DMPC 또는 DOPC (M): ICG (M) 중 ICG의 몰비가 높아질수록 800nm에서 가지는 최대 흡광도가 낮아지고, 700nm 초반대에서 나타나는 낮은 peak가 상대적으로 높아짐을 알 수 있는데, 이는 DSPC, DPPC, DMPC 또는 DOPC:ICG가 250:16을 초과하는 경우, 리포좀 복합체 내부에서 ICG가 응집될 가능성이 높음을 의미한다. The results are shown in FIGS. 7 to 14. 7 to 10, it can be seen that the composite including DSPC, DPPC, DMPC, or DOPC has a maximum absorbance at 800 nm and shows a low peak at the early 700 nm. At the same ICG concentration, the higher the molar ratio of DSPC, DPPC, DMPC, or DOPC (M): ICG (M) to ICG, the lower the maximum absorbance at 800 nm and the lower peak in the early 700 nm range. This means that if DSPC, DPPC, DMPC or DOPC: ICG exceeds 250: 16, the likelihood of ICG aggregation inside the liposome complex is high.
도 11을 참조하면, 동일한 ICG 농도에서 총 지질 (M): ICG (M) 중 ICG의 비율이 높아질수록 형광 세기가 감소함을 확인할 수 있으며, 도 12 내지 도 14에서와 같이 평균 수동력학적 직경(hydrodynamic diameter, HD), 제타포텐셜 및 다분산 지수는 총 지질 (M): ICG (M)의 비율 또는 지질 종류에 따라 큰 차이가 없었다.Referring to FIG. 11, it can be seen that the fluorescence intensity decreases as the ratio of total lipid (M) to ICG (M) in the same ICG concentration increases, as shown in FIGS. 12 to 14. (hydrodynamic diameter, HD), zeta potential, and polydispersity index were not significantly different depending on the ratio of total lipid (M): ICG (M) or lipid type.
시험예 3: Liposomal ICG의 세포 사멸 효과Test Example 3: Apoptosis of Liposomal ICG
HeLa 세포 (ATCC® CCL-2™)를 5000 Cells/100ul 1 Well의 양으로 준비하였다. Hela 세포에 제조예 1 중 지질(포스파티딜콜린) (M): ICG (M)을 250:1 비율로 각각 합성한 리포좀-ICG 복합체를 5 ug/ml (ICG의 농도 기준)로 각각 처리한 뒤, 808nm, 650mW의 레이져를 3분 동안 조사하였다. 레이저를 조사하고 30분 이후에 세포 배양액 내에 잔존하는 인도시아닌 그린을 포함한 리포좀을 제거하고 24시간 동안 세포를 배양한 후 MTT Assay를 통해 세포사멸 효과를 측정하였다. HeLa cells (ATCC® CCL-2 ™) were prepared in an amount of 5000 Cells / 100ul 1 Well. Hela cells were treated with lipids (phosphatidylcholine) (M): ICG (M) prepared in 250: 1 ratio, respectively, at 5 ug / ml (based on the concentration of ICG), respectively, at 808 nm. , 650mW laser was irradiated for 3 minutes. After irradiating the laser, the liposomes including indocyanine green remaining in the cell culture were removed after 30 minutes, and the cells were cultured for 24 hours, and then apoptosis was measured by MTT assay.
그 결과를 도 16에 나타내었다. 도 16을 참조하면, DMPC를 포함하는 리포좀-ICG 복합체에서 가장 향상된 세포사멸 효과를 나타냄을 확인하였다. The results are shown in FIG. Referring to FIG. 16, it was confirmed that the liposome-ICG complex including DMPC exhibited the most improved apoptosis effect.
본 발명에 따른 암 치료용 조성물은 인도시아닌 그린이 캡슐화된 리포좀을 포함하는 복합체에 치료적으로 유효한 광을 조사하여 유의한 세포사멸 효과를 나타냄으로써, 우수한 암 치료 효과를 나타낼 수 있을 뿐 아니라, 외과 수술법에 의하지 않고도 종양을 제거할 수 있다. 또한, 정상세포에의 영향을 최소화하면서도 암 세포에 대하여 선별적으로 세포사멸 효과를 나타낼 수 있다.The composition for treating cancer according to the present invention exhibits a significant apoptosis effect by irradiating therapeutically effective light to a complex comprising liposomes encapsulated with indocyanine green, thereby showing an excellent cancer treatment effect, Tumors can be removed without surgical intervention. In addition, while minimizing the effect on normal cells, it may selectively exhibit apoptosis effect against cancer cells.
본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.Those skilled in the art to which the present invention pertains will be able to perform various applications and modifications within the scope of the present invention based on the above contents.
Claims (15)
- 포스파티딜콜린, 안정화제 및 인도시아닌 그린의 혼합에 의해 제조되는 인도시아닌 그린-리포좀 복합체를 함유하고,Contains indocyanine green-liposomal complex prepared by mixing phosphatidylcholine, stabilizer and indocyanine green,상기 인도시아닌 그린은 리포좀에 캡슐화(encapsulation)된 것이며,The indocyanine green is encapsulated in liposomes,치료적으로 유효한 광 조사에 의해 세포사멸을 유도하는 것을 특징으로 하는 암 치료용 조성물.A composition for treating cancer, which induces apoptosis by therapeutically effective light irradiation.
- 제1항에 있어서, 상기 포스파티딜콜린은 L-α-phosphatidylcholine (Egg, Chicken) , L-α-phosphatidylcholine, hydrogenated (Egg, Chicken), L-α-phosphatidylcholine (Soy), L-α-phosphatidylcholine, hydrogenated (Soy) 1,2-didecanoyl-sn-glycero-3-phosphocholine (10:0 PC), 1,2-diundecanoyl-sn-glycero-3-phosphocholine (11:0 PC), 1,2-dilauroyl-sn-glycero-3-phosphocholine (12:0 PC (DLPC)), 1,2-ditridecanoyl-sn-glycero-3-phosphocholine (13:0 PC), 1,2-dipentadecanoyl-sn-glycero-3-phosphocholine (15:0 PC), 1,2-diphytanoyl-sn-glycero-3-phosphocholine (4ME 16:0 PC), 1,2-diheptadecanoyl-sn-glycero-3-phosphocholine (17:0 PC), 1,2-dinonadecanoyl-sn-glycero-3-phosphocholine (19:0 PC), 1,2-diarachidoyl-sn-glycero-3-phosphocholine (20:0 PC), 1,2-dimyristoleoyl-sn-glycero-3-phosphocholine (14:1 (Δ9-Cis) PC), 1,2-dimyristelaidoyl-sn-glycero-3-phosphocholine (14:1 (Δ9-Trans) PC), 1,2-dipalmitoleoyl-sn-glycero-3-phosphocholine (16:1 (Δ9-Cis) PC), 1,2-dipalmitelaidoyl-sn-glycero-3-phosphocholine (16:1 (Δ9-Trans) PC), 1,2-dipetroselenoyl-sn-glycero-3-phosphocholine (18:1 (Δ6-Cis) PC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (18:1 (Δ9-Cis) PC (DOPC)), 1,2-dielaidoyl-sn-glycero-3-phosphocholine (18:1 (Δ9-Trans) PC), 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (18:2 (Cis) PC), 1,2-dilinolenoyl-sn-glycero-3-phosphocholine (18:3 (Cis) PC), 1,2-dieicosenoyl-sn-glycero-3-phosphocholine (20:1 (Cis) PC), DSPC (1,2-distearoyl-sn-glycero-3-phosphocholine), DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine), DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) 및 DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine)로 이루어진 군에서 선택된 하나 이상인 것을 특징으로 하는 암 치료용 조성물.According to claim 1, wherein the phosphatidylcholine is L-α-phosphatidylcholine (Egg, Chicken), L-α-phosphatidylcholine, hydrogenated (Egg, Chicken), L-α-phosphatidylcholine (Soy), L-α-phosphatidylcholine, hydrogenated ( Soy) 1,2-didecanoyl-sn-glycero-3-phosphocholine (10: 0 PC), 1,2-diundecanoyl-sn-glycero-3-phosphocholine (11: 0 PC), 1,2-dilauroyl-sn- glycero-3-phosphocholine (12: 0 PC (DLPC)), 1,2-ditridecanoyl-sn-glycero-3-phosphocholine (13: 0 PC), 1,2-dipentadecanoyl-sn-glycero-3-phosphocholine (15 : 0 PC), 1,2-diphytanoyl-sn-glycero-3-phosphocholine (4ME 16: 0 PC), 1,2-diheptadecanoyl-sn-glycero-3-phosphocholine (17: 0 PC), 1,2- dinonadecanoyl-sn-glycero-3-phosphocholine (19: 0 PC), 1,2-diarachidoyl-sn-glycero-3-phosphocholine (20: 0 PC), 1,2-dimyristoleoyl-sn-glycero-3-phosphocholine ( 14: 1 (Δ9-Cis) PC), 1,2-dimyristelaidoyl-sn-glycero-3-phosphocholine (14: 1 (Δ9-Trans) PC), 1,2-dipalmitoleoyl-sn-glycero-3-phosphocholine ( 16: 1 (Δ9-Cis) PC), 1,2-dipalmitelaidoyl-sn-glycero-3-phosphochol ine (16: 1 (Δ9-Trans) PC), 1,2-dipetroselenoyl-sn-glycero-3-phosphocholine (18: 1 (Δ6-Cis) PC), 1,2-dioleoyl-sn-glycero-3- phosphocholine (18: 1 (Δ9-Cis) PC (DOPC)), 1,2-dielaidoyl-sn-glycero-3-phosphocholine (18: 1 (Δ9-Trans) PC), 1,2-dilinoleoyl-sn-glycero -3-phosphocholine (18: 2 (Cis) PC), 1,2-dilinolenoyl-sn-glycero-3-phosphocholine (18: 3 (Cis) PC), 1,2-dieicosenoyl-sn-glycero-3-phosphocholine (20: 1 (Cis) PC), DSPC (1,2-distearoyl-sn-glycero-3-phosphocholine), DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine), DMPC (1,2- Dimyristoyl-sn-glycero-3-phosphocholine) and DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) The composition for treatment of cancer, characterized in that at least one selected from the group consisting of.
- 제1항에 있어서, 상기 안정화제는 폴리에틸렌글리콜에 컨쥬게이션된 포스파티딜에탄올아민 (phosphatidylethanolamine)인 것을 특징으로 하는 암 치료용 조성물.According to claim 1, wherein the stabilizer is a composition for treating cancer, characterized in that the phosphatidylethanolamine conjugated to polyethylene glycol (phosphatidylethanolamine).
- 제3항에 있어서, 상기 폴리에틸렌글리콜은 1, 000 내지 10, 000의 분자량을 가지는 것을 특징으로 하는 암 치료용 조성물.The composition of claim 3, wherein the polyethylene glycol has a molecular weight of 1, 000 to 10, 000.
- 제3항에 있어서, 상기 포스파티딜에탄올아민은 DMPE (dimyristoylphosphatidylethanolamine), DPPE (dipalmitoylphosphatidylethanolamine), DOPE (dioleoylphosphatidylethanolamine) 및 DSPE (distearoylphosphatidyl-ethanolamine)로 이루어진 군에서 선택된 1종 이상인 것을 특징으로 하는 암 치료용 조성물.According to claim 3, wherein the phosphatidyl ethanolamine is DMPE (dimyristoylphosphatidylethanolamine), DPPE (dipalmitoylphosphatidylethanolamine), DOPE (dioleoylphosphatidylethanolamine) and DSPE (distearoylphosphatidyl-ethanolamine) composition for cancer treatment, characterized in that at least one.
- 제1항에 있어서, 상기 인도시아닌 그린은 0.1-30 ug/ml의 농도로 포함되는 것을 특징으로 하는 암 치료용 조성물.The method of claim 1, wherein the indocyanine green is a cancer treatment composition, characterized in that it comprises a concentration of 0.1-30 ug / ml.
- 제1항에 있어서, 상기 포스파티딜콜린과 인도시아닌 그린은 250:0.1-32의 몰비로 포함되는 것을 특징으로 하는 암 치료용 조성물.According to claim 1, wherein the phosphatidylcholine and indocyanine green is a cancer treatment composition, characterized in that contained in a molar ratio of 250: 0.1-32.
- 제7항에 있어서, 상기 포스파티딜콜린과 인도시아닌 그린은 250:0.5-16의 몰비로 포함되는 것을 특징으로 하는 암 치료용 조성물.8. The composition of claim 7, wherein the phosphatidylcholine and indocyanine green are included in a molar ratio of 250: 0.5-16.
- 제1항에 있어서, 상기 치료적으로 유효한 광은 700-900nm에서 100 mW 이상 1 W 이하의 전력으로 3분 이상 30분 이하로 조사되는 것을 특징으로 하는 암 치료용 조성물.The composition for treating cancer according to claim 1, wherein the therapeutically effective light is irradiated for 3 minutes to 30 minutes at a power of 100 mW or more and 1 W or less at 700-900 nm.
- 제1항에 있어서, 상기 복합체의 평균 수동력학적 직경(hydrodynamic diameter, HD)은 50-200nm인 것을 특징으로 하는 암 치료용 조성물.The composition of claim 1, wherein the complex has an average hydrodynamic diameter (HD) of 50-200 nm.
- 제1항에 있어서, 상기 복합체의 다분산지수(polydispersity index)는 0.2 이하인 것을 특징으로 하는 암 치료용 조성물.According to claim 1, wherein the polydispersity index (polydispersity index) of the complex is a cancer treatment composition, characterized in that less than 0.2.
- 제1항에 있어서, 암 치료에 유효한 항체 또는 이의 면역치료적으로 유효한 단편, 세포독성제 또는 화학치료제를 추가로 포함하는 것을 특징으로 하는 암 치료용 조성물.The composition for treating cancer of claim 1, further comprising an antibody effective for treating cancer or an immunotherapeutic fragment thereof, a cytotoxic agent, or a chemotherapeutic agent.
- 하기 단계를 포함하는 제1항 내지 제12항 중 어느 한 항에 따른 암 치료용 조성물의 제조방법:A method for preparing a composition for treating cancer according to any one of claims 1 to 12, comprising the following steps:(a) 유기용매 중에 1종 이상의 포스파티딜콜린과 안정화제 및 인도시아닌 그린을 용해시키고, 유기용매를 제거하여 케익을 제조하는 단계;(a) dissolving at least one phosphatidylcholine and stabilizer and indocyanine green in an organic solvent and removing the organic solvent to prepare a cake;(b) 상기 케익을 수화시켜 분산액을 제조하고, 다공성 고분자막에 압출시켜 인도시아닌 그린이 포함된 리포좀을 제조하는 단계; 및(b) hydrating the cake to prepare a dispersion, and extruding the porous polymer membrane to prepare liposomes containing indocyanine green; And(c) 상기 단계 (b)의 리포좀 중 인도시아닌 그린이 리포좀 내에 캡슐화된 복합체를 분리하는 단계.(c) isolating a complex in which indocyanine green is encapsulated in the liposome in the liposome of step (b).
- 제13항에 있어서, 상기 유기용매는 메탄올(methanol), 에탄올(ethanol), 프로판올(propanol), 이소프로판올(isopropanol), 부탄올(butanol), 아세톤(acetone), 에테르(ether), 벤젠(benzene), 클로로포름(chloroform), 에틸아세테이트(ethyl acetate), 메틸렌클로라이드(methylene chloride), 헥산(hexane) 및 시클로헥산(cyclohexane)으로 이루어진 군에서 선택된 1종 이상인 것을 특징으로 하는 암 치료용 조성물의 제조방법. The method of claim 13, wherein the organic solvent is methanol, ethanol, propanol, isopropanol, butanol, acetone, ether, ether, benzene, Method for producing a composition for treating cancer, characterized in that at least one selected from the group consisting of chloroform, ethyl acetate, ethyl acetate, methylene chloride, hexane, and cyclohexane.
- 제13항에 있어서, 상기 다공성 고분자막은 공극의 직경이 50-200nm인 폴리카보네이트로 이루어진 것임을 특징으로 하는 암 치료용 조성물의 제조방법.The method of claim 13, wherein the porous polymer membrane is made of a polycarbonate having a pore diameter of 50-200 nm.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2015-0068674 | 2015-05-18 | ||
KR1020150068674A KR101686145B1 (en) | 2015-05-18 | 2015-05-18 | Composition for Phototherapy of Cancer Comprising Complex of Liposome And Indocyanine Green |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016186429A1 true WO2016186429A1 (en) | 2016-11-24 |
Family
ID=57320704
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2016/005209 WO2016186429A1 (en) | 2015-05-18 | 2016-05-17 | Composition for cancer treatment comprising indocyanine green-liposome composite |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101686145B1 (en) |
WO (1) | WO2016186429A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113750241A (en) * | 2021-10-21 | 2021-12-07 | 新疆生产建设兵团医院 | Calcium-containing micro-precipitation liposome encapsulating photo-thermal agent and chemotherapeutic drug, and preparation method and application thereof |
WO2023102877A1 (en) * | 2021-12-10 | 2023-06-15 | 深圳先进技术研究院 | Indocyanine green liposome, large-scale preparation method therefor, and application thereof |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101967537B1 (en) | 2017-07-10 | 2019-04-09 | 가톨릭대학교 산학협력단 | Light-driven gas-forming liposome composition |
KR20190113376A (en) | 2018-03-28 | 2019-10-08 | 영남대학교 산학협력단 | Anti-cancer liposome composition with amphiphilic doxorubicin and folic acid |
JP7160385B2 (en) * | 2018-06-01 | 2022-10-25 | ソガン ユニバーシティ リサーチ ファウンデーション | Nanoparticle complex with improved intracellular uptake efficiency by surface modification using lipid and method for producing the same |
KR102742323B1 (en) * | 2021-07-15 | 2024-12-11 | 인천대학교 산학협력단 | Tumor Targeting Exosome loaded with sonosensitizers and a preparing method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6602274B1 (en) * | 1999-01-15 | 2003-08-05 | Light Sciences Corporation | Targeted transcutaneous cancer therapy |
KR20110138003A (en) * | 2010-06-18 | 2011-12-26 | 김진왕 | Skin lesions, skin neoplasms and skin cancer, skin vessels, pain relief, hirsutism relief, scalp hair regeneration, skin regeneration, skin whitening, skin rejuvenation, anti-aging, local fat cell reduction, fat tissue reduction, stem cell combination therapy, facial and In the treatment of whole body simple or complex light therapy, pneumatic massage therapy, pneumatic photodynamic therapy, radiofrequency, ultrasound device complex therapy, plastic surgery, dermatology, spa treatment, LED, OAL, laser, laser diode, light beam, light beam Mechanics and Photodynamic Therapy |
KR20120018234A (en) * | 2010-07-20 | 2012-03-02 | 임경원 | The method for treating tumor or skin diseases using photodynamic therapy |
CN103893761A (en) * | 2014-03-13 | 2014-07-02 | 中国科学院深圳先进技术研究院 | Ultrasonic-assisted optothermal agent-based tumor cell killing method and system and application thereof |
-
2015
- 2015-05-18 KR KR1020150068674A patent/KR101686145B1/en active IP Right Grant
-
2016
- 2016-05-17 WO PCT/KR2016/005209 patent/WO2016186429A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6602274B1 (en) * | 1999-01-15 | 2003-08-05 | Light Sciences Corporation | Targeted transcutaneous cancer therapy |
KR20110138003A (en) * | 2010-06-18 | 2011-12-26 | 김진왕 | Skin lesions, skin neoplasms and skin cancer, skin vessels, pain relief, hirsutism relief, scalp hair regeneration, skin regeneration, skin whitening, skin rejuvenation, anti-aging, local fat cell reduction, fat tissue reduction, stem cell combination therapy, facial and In the treatment of whole body simple or complex light therapy, pneumatic massage therapy, pneumatic photodynamic therapy, radiofrequency, ultrasound device complex therapy, plastic surgery, dermatology, spa treatment, LED, OAL, laser, laser diode, light beam, light beam Mechanics and Photodynamic Therapy |
KR20120018234A (en) * | 2010-07-20 | 2012-03-02 | 임경원 | The method for treating tumor or skin diseases using photodynamic therapy |
CN103893761A (en) * | 2014-03-13 | 2014-07-02 | 中国科学院深圳先进技术研究院 | Ultrasonic-assisted optothermal agent-based tumor cell killing method and system and application thereof |
Non-Patent Citations (1)
Title |
---|
SHEMESH, COLBY S. ET AL.: "Indocyanine Green Loaded Liposome Nanocarriers for Photodynamic Therapy Using Human Triple Negative Breast Cancer Cells", PHOTODIAGNOSIS AND PHOTODYNAMIC THERAPY, vol. 11, no. 2, 19 March 2014 (2014-03-19), pages 193 - 203, XP055330452 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113750241A (en) * | 2021-10-21 | 2021-12-07 | 新疆生产建设兵团医院 | Calcium-containing micro-precipitation liposome encapsulating photo-thermal agent and chemotherapeutic drug, and preparation method and application thereof |
WO2023102877A1 (en) * | 2021-12-10 | 2023-06-15 | 深圳先进技术研究院 | Indocyanine green liposome, large-scale preparation method therefor, and application thereof |
Also Published As
Publication number | Publication date |
---|---|
KR101686145B1 (en) | 2016-12-13 |
KR20160135424A (en) | 2016-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016186429A1 (en) | Composition for cancer treatment comprising indocyanine green-liposome composite | |
Zhu et al. | CaCO 3-assisted preparation of pH-responsive immune-modulating nanoparticles for augmented chemo-immunotherapy | |
Nunes et al. | Influence of PEG coating on the biodistribution and tumor accumulation of pH-sensitive liposomes | |
CN102573914B (en) | Porphyrin nanovesicles | |
CN111956614B (en) | Paclitaxel liposome and preparation method thereof | |
WO2017115991A1 (en) | Composition containing anticancer drug-indocyanine green-liposome complex for treating cancer | |
CN102271659B (en) | Liposome of irinotecan or its hydrochloride and preparation method thereof | |
US10092506B2 (en) | Encapsulation of lipophilic or amphiphilic therapeutic agents in nano-emulsion | |
CN110960694B (en) | Indocyanine green liposome for near-infrared two-region fluorescence detection and preparation method and application thereof | |
CN103479578B (en) | The Liposomal formulation of a kind of maleic acid Pixantrone and preparation technology thereof | |
CN103120645B (en) | Irinotecan or irinotecan hydrochloride lipidosome and preparation method thereof | |
EA024930B1 (en) | Nanoparticles delivery systems, preparation and uses thereof | |
SUCHARITHA | Somes: a review on composition, formulation methods and evaluations of different types of “somes” drug delivery system | |
CN112535676A (en) | Nano-structure lipid preparation for improving adriamycin tumor active targeting and kidney protection and preparation method thereof | |
KR101791244B1 (en) | Composition for delivery of a liposome comprising synthetic receptor-phospholipid conjugates and a functional substance containing the functional substance conjugated ligand binding to the synthetic receptor | |
CN106109415B (en) | A kind of load camptothecin antineoplastic agents liposome, preparation method and applications | |
CN112546062A (en) | Perfluorocarbon silicon plastid and preparation method and application thereof | |
CN111214459B (en) | Perfluorocarbon albumin nanoparticles and their application in the preparation of tumor therapeutic drugs | |
CA3117914A1 (en) | Fusogenic liposomes for selective imaging of tumor cells | |
CN110859805A (en) | Tumor-targeted radiotherapy sensitization liposome nano preparation and preparation method thereof | |
CN116251062A (en) | Preparation method and application of bacterial membrane-liposome drug-loading system | |
CN110882218A (en) | Liposome composition and preparation and application thereof | |
WO2024053974A1 (en) | Composition for photothermal therapy and preparation method therefor | |
CN105797172A (en) | ATP (adenosine triphosphate) sensitive fluorescent probe lipidosome with tumor targeting and tracing effects, and preparation method and application thereof | |
CN101732232B (en) | Docetaxel nano-particle composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16796756 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16796756 Country of ref document: EP Kind code of ref document: A1 |