WO2016185871A1 - Wireless communication device - Google Patents
Wireless communication device Download PDFInfo
- Publication number
- WO2016185871A1 WO2016185871A1 PCT/JP2016/062777 JP2016062777W WO2016185871A1 WO 2016185871 A1 WO2016185871 A1 WO 2016185871A1 JP 2016062777 W JP2016062777 W JP 2016062777W WO 2016185871 A1 WO2016185871 A1 WO 2016185871A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- radio
- unit
- antenna
- low interference
- frequency
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/02—Transmitters
- H04B1/04—Circuits
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/38—Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
- H04B1/3827—Portable transceivers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/38—Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
- H04B1/40—Circuits
- H04B1/401—Circuits for selecting or indicating operating mode
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/38—TPC being performed in particular situations
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/02—Terminal devices
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/02—Terminal devices
- H04W88/06—Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
Definitions
- the present invention relates to a wireless communication apparatus that simultaneously transmits radio waves of different frequency bands.
- Patent Document 1 discloses a wireless LAN access point capable of simultaneous communication using a plurality of antennas for cellular communication systems and a wireless LAN antenna.
- the reception sensitivity may be deteriorated. This is because, in the wireless LAN access point of Patent Document 1, when simultaneous communication is performed using an antenna for a cellular communication system and an antenna for a wireless LAN, intermodulation distortion occurs in a circuit element for wireless communication using two transmission signals. This is because there may occur (a phenomenon in which radio waves having a frequency that should not be emitted originally) are generated.
- Intermodulation waves radio waves due to third-order intermodulation distortion are generated in the 1.4 to 1.5 GHz band that is the same as the Band 21 reception band.
- the radio wave intensity (level) of the generated intermodulation wave is high, the reception sensitivity of Band 21 is deteriorated.
- the present invention has been made in view of the above problems, and a main object of the present invention is to provide a technique for reducing deterioration of reception sensitivity in a wireless communication apparatus that simultaneously transmits radio waves of different frequency bands.
- a wireless communication device includes a first wireless unit that transmits and receives radio waves, a second wireless unit that transmits at least radio waves, and a radio wave transmitted by the first wireless unit.
- the frequency of the intermodulation wave generated from the radio wave transmitted by the second radio unit is calculated from the transmission frequency of the first radio unit and the transmission frequency of the second radio unit, and the calculated frequency of the intermodulation wave and the first radio
- a control unit that switches the operation of at least one of the first radio unit and the second radio unit from the normal mode to the low interference mode when the reception frequency of the unit overlaps.
- a mobile communication terminal includes a first radio unit that transmits and receives radio waves, a second radio unit that transmits at least radio waves, and radio waves and second radios transmitted by the first radio unit.
- the frequency of the intermodulation wave generated from the radio wave transmitted by the unit is calculated from the transmission frequency of the first radio unit and the transmission frequency of the second radio unit, and the calculated frequency of the intermodulation wave and reception of the first radio unit
- a control unit that switches the operation of at least one of the first radio unit and the second radio unit from the normal mode to the low interference mode when the frequency overlaps is provided.
- the first radio unit By switching at least one of the operations of the second radio unit from the normal mode to the low interference mode, it is possible to reduce deterioration in reception sensitivity due to the intermodulation wave.
- the control unit determines that the frequency of the intermodulation wave and the reception frequency of the first radio unit overlap and the radio wave intensity of the generated intermodulation wave has an effect on the reception sensitivity, the control unit and the first radio unit The operation of at least one of the two radio units may be switched from the normal mode to the low interference mode.
- the first radio unit is set to be used in advance in the low interference mode, and the non-low interference set in advance to be not used in the low interference mode. And the first radio unit transmits radio waves using an antenna selected from the low interference antenna and the non-low interference antenna in the normal mode, and in the low interference mode, the first radio unit transmits the low frequency Transmit radio waves using only the interference antenna.
- FIG. 1 is a block diagram showing the configuration of the mobile communication terminal 1 according to the present embodiment.
- FIG. 2 is a plan view showing an appearance of the mobile communication terminal 1 according to the present embodiment.
- the mobile communication terminal 1 is a mobile terminal that simultaneously performs LTE communication and WiFi communication, and includes an LTE transmission / reception unit 2, a modulation / demodulation processing unit 3, a WiFi transmission / reception unit 4, a modulation / demodulation processing unit 5, and a control unit. 6 is provided.
- the LTE transmission / reception unit 2 and the modulation / demodulation processing unit 3 are collectively referred to as an LTE radio unit 7 (first radio unit).
- the WiFi transmitting / receiving unit 4 and the modulation / demodulation processing unit 5 are collectively referred to as a WiFi wireless unit 8 (second wireless unit).
- the LTE transmission / reception unit 2 is a part that performs LTE communication, and includes a main antenna 21, a sub antenna 22, a switch 23, diplexers 24 and 25, a Band 21 Tx / Rx radio unit 26, a Band 1 Tx / Rx radio unit 27, and a Band 21 unit.
- An Rx radio unit 28 and a Band1 Rx radio unit 29 are provided.
- the main antenna 21 is disposed at the lower end of the mobile communication terminal 1
- the sub antenna 22 is disposed at the upper end of the mobile communication terminal 1.
- the switch 23 switches the connection between the main antenna 21 and the sub antenna 22 and the diplexers 24 and 25.
- the diplexer 24 is a filter interposed between the switch 23, the Band 21 Tx / Rx radio unit 26, and the Band 1 Tx / Rx radio unit 27. Remove frequency band signals. Specifically, regarding the signal between the switch 23 and the Band 21 Tx / Rx radio unit 26, a signal in the Band 21 frequency band (1.5 GHz band) is passed. As for the signal between the switch 23 and the Band1 Tx / Rx radio unit 27, a signal in the Band1 frequency band (2 GHz band) is passed.
- the diplexer 25 is a filter interposed between the switch 23, the Band 21 Rx radio unit 28, and the Band 1 Rx radio unit 29. The diplexer 25 passes signals in the pass band and signals in other frequency bands. Remove. Specifically, for the signal between the switch 23 and the Band 21 Rx radio unit 28, a signal in the Band 21 frequency band is passed. As for the signal between the switch 23 and the Band1 Rx radio unit 29, a signal in the Band1 frequency band is passed.
- the Band 21 Tx / Rx radio unit 26 is a part that performs LTE communication using the Band 21, and includes a duplexer 261, an LNA (Low Noise Amplifier) 262, a mixer 263, an A / D converter 264, a D / A converter 265, a mixer 266, and A power amplifier 267 is provided.
- the duplexer 261 is a filter interposed between the diplexer 24, the LNA 262, and the power amplifier 267, and passes a signal in the pass band and removes a signal in the other frequency band. Specifically, for the signal from the diplexer 24 to the LNA 262, a signal in the reception frequency band of Band 21 is passed.
- the LNA 262, the mixer 263, and the A / D converter 264 are configured as a receiving circuit.
- the LNA 262 is a low noise amplifier that selects and amplifies the signal from the duplexer 261.
- the mixer 263 is a frequency converter that converts the signal from the LNA 262 to a constant low frequency.
- the A / D converter 264 performs A / D conversion on the signal from the mixer 263 and outputs the signal to the modulation / demodulation processing unit 3.
- the D / A converter 265, the mixer 266, and the power amplifier 267 are configured as a transmission circuit.
- the D / A converter 265 D / A converts the signal from the modulation / demodulation processing unit 3 and outputs it to the mixer 266.
- the mixer 266 is a frequency converter that converts the signal from the D / A converter 265 into a constant low frequency.
- the power amplifier 267 is an amplifier that amplifies the signal from the mixer 266.
- the Band 1 Tx / Rx radio unit 27 performs LTE communication using Band 1 and includes a duplexer 271, an LNA 272, a mixer 273, an A / D converter 274, a D / A converter 275, a mixer 276, and a power amplifier 277. ing.
- the duplexer 271 is a filter interposed between the diplexer 24, the LNA 272, and the power amplifier 277, and passes a signal in the pass band and removes a signal in the other frequency band. Specifically, for the signal from the diplexer 24 to the LNA 272, the signal in the Band1 reception frequency band is passed. As for the signal from the power amplifier 277 to the diplexer 24, a signal in the Band1 transmission frequency band is passed.
- the LNA 272, the mixer 273, and the A / D converter 274 are configured as a receiving circuit.
- the LNA 272 is a low noise amplifier that selects and amplifies the signal from the duplexer 271.
- the mixer 273 is a frequency converter that converts the signal from the LNA 272 to a constant low frequency.
- the A / D converter 274 performs A / D conversion on the signal from the mixer 273 and outputs it to the modulation / demodulation processing unit 3.
- the D / A converter 275, the mixer 276, and the power amplifier 277 are configured as a transmission circuit.
- the D / A converter 275 D / A converts the signal from the modulation / demodulation processing unit 3 and outputs it to the mixer 276.
- the mixer 276 is a frequency converter that converts the signal from the D / A converter 275 into a constant low frequency.
- the power amplifier 277 is an amplifier that amplifies the signal from the mixer 276.
- the Band 21 Rx radio unit 28 is a part that performs LTE reception using Band 21, and includes a filter 281, an LNA 282, a mixer 283, and an A / D converter 284.
- the filter 281 is a filter interposed between the diplexer 25 and the LNA 282, and passes signals in the pass band and removes signals in other frequency bands. Specifically, with respect to the signal from the diplexer 25 to the LNA 282, the signal in the reception frequency band of Band 21 is passed.
- the LNA 282 is a low noise amplifier that selects and amplifies the signal from the filter 281.
- the mixer 283 is a frequency converter that converts the signal from the LNA 282 to a constant low frequency.
- the A / D converter 284 performs A / D conversion on the signal from the mixer 283 and outputs the signal to the modulation / demodulation processing unit 3.
- the Band1 Rx radio unit 29 is a part that performs LTE reception using Band1, and includes a filter 291, an LNA 292, a mixer 293, and an A / D converter 294.
- the filter 291 is a filter interposed between the diplexer 25 and the LNA 292, and passes a signal in the pass band and removes signals in other frequency bands. Specifically, with respect to the signal from the diplexer 25 to the LNA 292, the signal in the reception frequency band of Band1 is passed.
- the LNA 292 is a low noise amplifier that selects and amplifies the signal from the filter 291.
- the mixer 293 is a frequency converter that converts the signal from the LNA 292 to a constant low frequency.
- the A / D converter 294 performs A / D conversion on the signal from the mixer 293 and outputs the signal to the modulation / demodulation processing unit 3.
- the modulation / demodulation processing unit 3 is a part that performs modulation / demodulation processing of a digital signal related to LTE communication, and is interposed between the LTE transmission / reception unit 2 and the control unit 6. Specifically, in LTE transmission, the digital signal from the control unit 6 is modulated and output to the Band 21 Tx / Rx radio unit 26 and the Band 1 Tx / Rx radio unit 27. Further, in LTE reception, the control unit 6 demodulates digital signals from the Band21 Tx / Rx radio unit 26, the Band1 Tx / Rx radio unit 27, the Band21 Rx radio unit 28, and the Band1 Rx radio unit 29. Output to.
- the WiFi transceiver unit 4 is a part that performs WiFi communication, and includes a WiFi antenna 41, a switch 42, a filter 43, an LNA 44, a mixer 45, an A / D converter 46, a D / A converter 47, a mixer 48, a power amplifier 49, and A filter 4A is provided.
- the WiFi antenna 41 performs transmission / reception using a TDD (Time Division Duplex) method.
- the TDD system is called time division duplex, and uses the same frequency for transmission and reception.
- the switch 42 is switched in accordance with the transmission and reception timings, so that the transmission circuit including the filter 4A or the reception circuit including the filter 43 is connected.
- the WiFi antenna 41 is arranged on the upper left side of the mobile communication terminal 1.
- the filter 43, LNA 44, mixer 45, and A / D converter 46 are configured as a receiving circuit.
- the filter 43 is a filter interposed between the switch 42 and the LNA 44, and passes the signal in the pass band and removes the signal in the other frequency band. Specifically, with respect to the signal from the switch 42 to the LNA 44, a signal in the reception frequency band of WiFi communication is passed.
- the LNA 44 is a low noise amplifier that selects and amplifies the signal from the filter 43.
- the mixer 45 is a frequency converter that converts the signal from the LNA 44 into a constant low frequency.
- the A / D converter 46 A / D converts the signal from the mixer 45 and outputs it to the modulation / demodulation processing unit 3.
- the D / A converter 47, the mixer 48, the power amplifier 49, and the filter 4A are configured as a transmission circuit.
- the D / A converter 47 D / A converts the signal from the modulation / demodulation processing unit 3 and outputs it to the mixer 48.
- the mixer 48 is a frequency converter that converts the signal from the D / A converter 47 into a constant low frequency.
- the power amplifier 49 is an amplifier that amplifies the signal from the mixer 48.
- the filter 4A is a filter interposed between the switch 42 and the power amplifier 49, and allows a signal in the pass band to pass therethrough and removes signals in other frequency bands. Specifically, with respect to the signal from the power amplifier 49 to the switch 42, the signal in the transmission frequency band of WiFi communication is passed.
- the modulation / demodulation processing unit 5 is a part that performs modulation / demodulation processing of a digital signal related to WiFi communication, and is interposed between the WiFi transmission / reception unit 4 and the control unit 6. Specifically, in WiFi transmission, the digital signal from the control unit 6 is modulated and output to a transmission circuit including the D / A converter 47. In WiFi reception, the digital signal from the receiving circuit including the A / D converter 46 is demodulated and output to the control unit 6.
- the control unit 6 acquires the demodulated digital signal (reception signal) from the modulation / demodulation processing units 3 and 5 and outputs a digital signal (transmission signal) to be modulated to the modulation / demodulation processing units 3 and 5.
- the control unit 6 calculates the frequency of the intermodulation wave generated from the radio wave transmitted by the LTE radio unit 7 and the radio wave transmitted by the WiFi radio unit 8 from the transmission frequency of the LTE radio unit 7 and the transmission frequency of the WiFi radio unit 8. Then, when the calculated frequency of the intermodulation wave and the reception frequency of the LTE radio unit 7 overlap, the operation of at least one of the LTE radio unit 7 and the WiFi radio unit 8 is switched from the normal mode to the low interference mode.
- FIG. 3 is a network configuration diagram showing a communication function of the mobile communication terminal 1 according to the present embodiment.
- the mobile communication terminal 1 supports carrier aggregation and wireless LAN communication.
- Carrier aggregation performs communication using a plurality of LTE carriers, and is a technology that uses a plurality of different frequency bands simultaneously.
- the mobile communication terminal 1 performs transmission / reception by Band 1 and reception by Band 21 simultaneously with the LTE base station 11.
- a wireless LAN refers to a LAN system that transmits and receives data using wireless communication.
- the mobile communication terminal 1 performs wireless LAN transmission / reception by 802.11b with the personal computer 12 which is a master station as a slave station, for example.
- FIG. 4 is a table showing a correspondence relationship between the frequency band corresponding to each 802.11b channel of WiFi communication and the frequency band of the intermodulation wave to be generated according to the present embodiment.
- the radio field intensity of the intermodulation wave is the transmission power of each radio wave that causes the generation of the intermodulation wave, the separation state (isolation) between the transmission antennas, and the linearity characteristics of the circuit element that generates the intermodulation distortion. Depends on etc.
- ⁇ indicates that transmission diversity is available
- x indicates that transmission diversity is not available.
- transmission diversity there is a method of receiving radio waves using two or more antennas and using an antenna with high radio field intensity at the time of reception for transmission. For example, in LTE communication in the mobile communication terminal 1 of FIG. 2, either the main antenna 21 or the sub-antenna 22 is used as a transmission antenna according to the received radio wave intensity that changes from time to time.
- FIG. 4 shows the frequency band of the third-order intermodulation distortion (IM3) generated by the transmission radio wave in LTE communication and the transmission radio wave in WiFi communication. It is also possible to take into account the calculated frequency band when calculating the frequency band of IM2) or higher-order intermodulation distortion of 4th order or higher and making a determination on the availability of transmission diversity.
- IM3 third-order intermodulation distortion
- FIG. 4 (a) is a table in the case where the uplink use band of Band1 in LTE communication is 1940 to 1960 [MHz].
- an intermodulation wave is generated by the transmission wave of Band1 in LTE communication and the transmission wave of each channel in WiFi communication.
- the transmission diversity operation should be stopped depending on whether or not the frequency band of the intermodulation wave and the reception frequency band of Band 21 (1495.9 to 1510.9 [MHz]) overlap (that is, cannot be used) ) Or not.
- the frequency bands of intermodulation waves that overlap the Band21 reception frequency band are 1458 to 1518, 1451 to 1513, 1446 to 1508, 1441 to 1503, and 1436 to 1498.
- the 802.11b channel to be transmitted is 1 to 5
- transmit diversity cannot be used.
- the 802.11b channel is 6 to 14, transmit diversity can be used.
- FIG. 4B is a table in the case where the uplink use band of Band 21 in LTE communication is 1447.9 to 1462.9 [MHz].
- an intermodulation wave is generated by the transmission radio wave of Band 21 in LTE communication and the transmission radio wave of each channel in WiFi communication.
- Whether or not the transmission diversity operation should be stopped (that is, cannot be used) is determined depending on whether or not the frequency band of the intermodulation wave overlaps with the reception frequency band of Band1.
- FIG. 4 (b) there is no intermodulation wave frequency band that overlaps the Band1 reception frequency band. Therefore, even if the 802.11b channel is any one of 1 to 14, transmission diversity can be used. is there.
- FIG. 5 is a flowchart showing processing of the mobile communication terminal 1 according to the present embodiment.
- the control unit 6 detects a transmission band and a reception band related to data communication (S501).
- the transmission band and the reception band may be the frequency band itself, or may be channel information that can be converted into the frequency band by a table or the like.
- the control unit 6 obtains the Band 1 transmission band, the reception band, and the Band 21 reception band from the LTE base station 11 and uses WiFi for wireless communication with the personal computer 12.
- Acquires 802.11b channel information of communication is specified from the 802.11b channel information using the table of FIG.
- the control unit 6 calculates the frequency band of the intermodulation wave generated by the radio waves transmitted in the LTE communication transmission band and the wireless LAN channel transmission band detected in S501 (S502).
- the frequency band of the intermodulation wave may be calculated each time, or a table of the frequency band of the intermodulation wave calculated in advance may be stored and the table may be referred to.
- the control unit 6 determines whether or not the frequency band of the intermodulation wave calculated in S502 overlaps the reception band of LTE communication (S503).
- the control unit 6 stops the transmission diversity of LTE communication (S504).
- the control unit 6 controls the switch 23 to select an antenna to be used for LTE communication. Specifically, transmission diversity is stopped, and a low-interference antenna that has been confirmed in advance that the deterioration in reception sensitivity of LTE communication is within an allowable range is fixed as a transmission antenna of LTE communication.
- the LTE radio unit 7 when radio waves are transmitted using each simultaneously with the radio wave transmission by the LTE radio unit 7.
- the deterioration of the reception sensitivity is measured in advance, and it is confirmed in advance whether or not the deterioration of the reception sensitivity is within an allowable range.
- the antenna determined that the degradation of the reception sensitivity is within the allowable range is set in advance as a low interference antenna used in the low interference mode, and the antenna whose degradation of the reception sensitivity is determined to be within the allowable range is It is set in advance as a low interference antenna used in the low interference mode. As shown in FIG.
- the mobile communication terminal 1 includes a main antenna 21 and a sub antenna 22 as LTE communication antennas.
- the main antenna 21 that is away from the WiFi antenna 41 that is a transmission antenna of WiFi communication and has high inter-antenna isolation with the WiFi antenna 41 is set in advance as a low interference antenna, and is close to the WiFi antenna 41.
- the sub antenna 22 having low inter-antenna isolation with the WiFi antenna 41 is set in advance as a non-low interference antenna.
- the control unit is switched to the low-interference mode. 6 fixes the main antenna 21 which is a low interference antenna as a transmission antenna of LTE communication.
- the control unit 6 may fix the low interference antenna corresponding to the antenna currently used by the WiFi radio unit 8 as a transmission antenna for LTE communication.
- the reception sensitivity deterioration of LTE communication is within an allowable range.
- the control unit 6 determines that there is no deterioration in the sensitivity of the reception antenna due to the intermodulation wave, and skips the process of S504 By doing so, the transmission diversity of LTE communication is continued.
- Embodiment 2 of the present invention will be described below with reference to FIGS. 1 to 4 and FIG.
- the control unit overlaps the calculated frequency of the intermodulation wave with the reception frequency of the first radio unit, and the transmission power of the first radio unit and the second radio unit.
- the transmission power of the first radio unit satisfies a predetermined condition, the operation of the first radio unit is switched from the normal mode to the low interference mode.
- 1 to 4 are the same as those described in the first embodiment.
- FIG. 6 is a flowchart showing processing of the mobile communication terminal 1 according to the present embodiment. Note that the processing of S601 to S603 and S605 is the same as the processing of S501 to S504 of the first embodiment, and thus detailed description thereof is omitted.
- the control unit 6 detects a transmission band and a reception band related to data communication (S601).
- the control unit 6 calculates the frequency band of the intermodulation wave generated by the radio wave transmitted in the transmission band of the LTE communication and the transmission band of the wireless LAN channel detected in S601 (S602).
- the control unit 6 determines whether or not the frequency band of the intermodulation wave calculated in S602 overlaps the reception band of LTE communication (S603).
- the control unit 6 determines whether or not the transmission power of the LTE communication and the WiFi communication satisfies a predetermined condition ( S604).
- the predetermined condition is, for example, a condition that transmission power of LTE communication and WiFi communication is a predetermined value or more, but is not limited thereto.
- the control unit 6 stops the transmission diversity of LTE communication (S605).
- the control unit 6 determines that there is no deterioration in sensitivity of the receiving antenna due to the intermodulation wave, and skips the processing of S605, thereby continuing the transmission diversity of LTE communication.
- the second radio unit transmits radio waves in the low interference mode with transmission power smaller than that in the normal mode.
- the first radio unit includes a plurality of antennas, and in the low interference mode, the second radio unit transmits radio waves with transmission power corresponding to the antenna used by the first radio unit for radio wave transmission.
- To do. 1 to 4 are the same as those described in the first embodiment.
- FIG. 7 is a flowchart showing Example 1 of processing of the mobile communication terminal 1 according to the present embodiment. Note that the processing in S701 to S703 is the same as the processing in S501 to S503 in the first embodiment, and thus detailed description thereof is omitted.
- the control unit 6 detects a transmission band and a reception band related to data communication (S701).
- the control unit 6 calculates the frequency band of the intermodulation wave generated by the radio wave transmitted in the LTE communication transmission band and the wireless LAN channel transmission band detected in S701 (S702).
- the control unit 6 determines whether or not the frequency band of the intermodulation wave calculated in S702 overlaps the reception band of LTE communication (S703).
- the control unit 6 switches from the normal mode to the low interference mode, and reduces the transmission power of WiFi communication compared to the normal mode. (S704).
- the control unit 6 controls the power amplifier 49 to reduce the transmission power of WiFi communication.
- the control unit 6 generates radio waves of intermodulation waves generated according to the transmission power of LTE communication and the transmission antenna used for LTE communication (inter-antenna isolation between the WiFi antenna 41). Control is performed so that the strength is such that the sensitivity deterioration of LTE reception falls within an allowable range.
- the reception sensitivity of the LTE radio unit 7 is degraded. Measure in advance. Then, when the antenna used by the LTE radio unit 7 for transmitting radio waves and the transmission power of the LTE radio unit 7 are given, the WiFi radio unit 8 The degree to which the transmission power should be reduced is calculated in advance and stored in a table or the like that can be referred to by the control unit 6. And the control part 6 should just reduce the transmission power of the WiFi radio
- the control unit 6 may reduce the transmission power of the WiFi antenna 41 as the transmission power of the main antenna 21 and the sub antenna 22 increases. Further, when the main antenna 21 is used as a transmission antenna for LTE communication, the control unit 6 has a high inter-antenna isolation between the main antenna 21 and the WiFi antenna 41, so that the transmission power of the WiFi antenna 41 is slightly increased. Lower. On the other hand, when the sub antenna 22 is used as a transmission antenna for LTE communication, since the isolation between the main antenna 21 and the WiFi antenna 41 is low, the transmission power of the WiFi antenna 41 may be greatly reduced. Good. Further, the control unit 6 may reduce the transmission power of the WiFi communication in consideration of either the transmission power of the LTE communication or the transmission antenna used for the LTE communication.
- the control unit 6 determines that there is no sensitivity deterioration of the reception antenna due to the intermodulation wave, and performs the process of S704. By skipping, the transmission power of WiFi communication is not reduced.
- the mobile communication terminal 1 may perform any one of the processes according to each embodiment, or according to the first and third embodiments.
- the processing may be executed simultaneously, or the processing according to the second and third embodiments may be executed simultaneously.
- a wireless communication device (mobile communication terminal 1) according to aspect 1 of the present invention includes a first wireless unit (LTE wireless unit 7) that transmits and receives radio waves, a second wireless unit (WiFi wireless unit 8) that transmits at least radio waves, and The frequency of the intermodulation wave generated from the radio wave transmitted by the first radio unit and the radio wave transmitted by the second radio unit is calculated from the transmission frequency of the first radio unit and the transmission frequency of the second radio unit.
- wireless communication apparatus is 1st radio
- the operation of at least one of the unit and the second radio unit is switched from the normal mode to the low interference mode.
- the first radio unit By switching the operation of at least one of the unit and the second radio unit from the normal mode to the low interference mode, it is possible to reduce deterioration of reception sensitivity due to the intermodulation wave.
- the wireless communication apparatus is the wireless communication apparatus according to aspect 1, in which the first wireless unit is used in advance in the low interference mode and the low interference antenna (main antenna 21) set to be used in the low interference mode in advance.
- the radio wave may be transmitted using only the low interference antenna.
- wireless communication apparatus is provided with the low interference antenna and the non-low interference antenna.
- the first radio unit transmits radio waves using an antenna selected from a low interference antenna and a non-low interference antenna in the normal mode, and transmits radio waves using only the low interference antenna in the low interference mode. To do. Therefore, in the wireless communication device, it is possible to reduce deterioration in reception sensitivity due to intermodulation waves.
- the wireless communication apparatus is the wireless communication apparatus according to aspect 2, in which the first wireless unit performs transmission diversity using the low interference antenna and the non-low interference antenna in the normal mode, and performs the low interference.
- radio waves may be transmitted using only the low interference antenna without performing the transmission diversity.
- the first wireless unit of the wireless communication apparatus performs transmission diversity using the low interference antenna and the non-low interference antenna in the normal mode, and does not perform transmission diversity in the low interference mode. Transmit radio waves using only low-interference antennas. That is, in the wireless communication apparatus, transmission diversity is performed as much as possible, and transmission diversity is stopped only when there is a possibility of deterioration in reception sensitivity. Therefore, efficient data transmission can be performed.
- the wireless communication apparatus is the wireless communication apparatus according to aspects 1 to 3, wherein the control unit overlaps the calculated frequency of the intermodulation wave and the reception frequency of the first wireless unit, and the first wireless unit.
- the control unit of the wireless communication device not only overlaps the frequency of the intermodulation wave and the reception frequency of the first wireless unit, but also includes the radio wave transmitted by the first wireless unit and the second wireless unit.
- the operation of the first radio unit is switched from the normal mode to the low interference mode in consideration of the transmission power of the radio wave transmitted by the radio, that is, the radio wave intensity of the intermodulation wave. Therefore, since the low-interference mode is switched when there is a high possibility that the sensitivity of the receiving antenna is deteriorated, it is possible to reduce the deterioration of the reception sensitivity due to the intermodulation wave while continuing the normal mode as much as possible.
- the second wireless unit in the low interference mode, may transmit radio waves with transmission power smaller than that in the normal mode.
- wireless part transmits an electromagnetic wave with transmission power smaller than normal mode in low interference mode.
- the present invention can be used for a wireless communication device.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Transceivers (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
According to the present invention, a mobile communication terminal (1) calculates the frequency of an intermodulation wave produced from a radio wave transmitted by an LTE wireless unit (7) and from a ratio wave transmitted by a WiFi wireless unit (8), and switches the operation of either the LTE wireless unit (7) or the WiFi wireless unit (8) from a normal mode to a low interference mode when the calculated frequency of the intermodulation wave overlaps the frequency received by the LTE wireless unit (7).
Description
本発明は、異なる周波数帯の電波を同時に送信する無線通信装置に関する。
The present invention relates to a wireless communication apparatus that simultaneously transmits radio waves of different frequency bands.
従来から、1台の通信機器において、異なる周波数帯の電波を同時に送受信する技術が知られている。例えば、特許文献1には、複数のセルラ通信システム用のアンテナと、無線LAN用のアンテナとを用いて同時に通信可能である無線LANアクセスポイントが開示されている。
Conventionally, a technology for transmitting and receiving radio waves in different frequency bands simultaneously in one communication device is known. For example, Patent Document 1 discloses a wireless LAN access point capable of simultaneous communication using a plurality of antennas for cellular communication systems and a wireless LAN antenna.
しかしながら、従来技術では、受信感度が劣化する場合がある。なぜなら、特許文献1の無線LANアクセスポイントにおいて、セルラ通信システム用のアンテナと、無線LAN用のアンテナとを用いて同時に通信を行うと、2つの送信信号により無線通信用の回路素子で相互変調歪み(本来は出ないはずの周波数の電波が出力される現象)が発生する場合があるためである。例えば、セルラ通信のBand1(2GHz帯)及びBand21(1.5GHz帯)、無線LANの802.11b(2.4GHz帯)を同時に使用するとき、Band1の上りリンクの1.9GHz及び802.11b(2.4GHz~2.5GHz)により、三次相互変調歪みによる電波(以下、「相互変調波」と呼ぶ)がBand21の受信帯域と同じ1.4~1.5GHz帯に発生する。そして、発生した相互変調波の電波強度(レベル)が高いときには、Band21の受信感度が劣化してしまう。
However, in the conventional technology, the reception sensitivity may be deteriorated. This is because, in the wireless LAN access point of Patent Document 1, when simultaneous communication is performed using an antenna for a cellular communication system and an antenna for a wireless LAN, intermodulation distortion occurs in a circuit element for wireless communication using two transmission signals. This is because there may occur (a phenomenon in which radio waves having a frequency that should not be emitted originally) are generated. For example, when using cellular communication Band1 (2 GHz band) and Band21 (1.5 GHz band) and wireless LAN 802.11b (2.4 GHz band) at the same time, Band1 uplink 1.9 GHz and 802.11b ( 2.4 GHz to 2.5 GHz), radio waves (hereinafter referred to as “intermodulation waves”) due to third-order intermodulation distortion are generated in the 1.4 to 1.5 GHz band that is the same as the Band 21 reception band. When the radio wave intensity (level) of the generated intermodulation wave is high, the reception sensitivity of Band 21 is deteriorated.
本発明は、上記課題に鑑みてなされたものであり、その主たる目的は、異なる周波数帯の電波を同時に送信する無線通信装置における受信感度の劣化を低減するための技術を提供することにある。
The present invention has been made in view of the above problems, and a main object of the present invention is to provide a technique for reducing deterioration of reception sensitivity in a wireless communication apparatus that simultaneously transmits radio waves of different frequency bands.
上記課題を解決するために、本発明の一態様に係る無線通信装置は、電波を送受信する第1無線部、電波を少なくとも送信する第2無線部、並びに、第1無線部が送信する電波と第2無線部が送信する電波とから生じる相互変調波の周波数を、第1無線部の送信周波数と第2無線部の送信周波数とから算出し、算出した該相互変調波の周波数と第1無線部の受信周波数とが重なるときに、第1無線部及び第2無線部の少なくとも一方の動作を通常モードから低干渉モードに切り替える制御部を備えている。
In order to solve the above problems, a wireless communication device according to an aspect of the present invention includes a first wireless unit that transmits and receives radio waves, a second wireless unit that transmits at least radio waves, and a radio wave transmitted by the first wireless unit. The frequency of the intermodulation wave generated from the radio wave transmitted by the second radio unit is calculated from the transmission frequency of the first radio unit and the transmission frequency of the second radio unit, and the calculated frequency of the intermodulation wave and the first radio A control unit that switches the operation of at least one of the first radio unit and the second radio unit from the normal mode to the low interference mode when the reception frequency of the unit overlaps.
本発明の一態様によれば、異なる周波数帯の電波を同時に送信する無線通信装置における受信感度の劣化を低減することができるという効果を奏する。
According to one aspect of the present invention, there is an effect that it is possible to reduce deterioration of reception sensitivity in a wireless communication device that simultaneously transmits radio waves of different frequency bands.
以下、本発明の実施形態について、詳細に説明する。ただし、本実施形態に記載されている構成は、特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例に過ぎない。
Hereinafter, embodiments of the present invention will be described in detail. However, unless otherwise specified, the configuration described in the present embodiment is merely an illustrative example, and is not intended to limit the scope of the present invention.
本発明の実施形態に係る携帯通信端末(無線通信装置)は、電波を送受信する第1無線部、電波を少なくとも送信する第2無線部、並びに、第1無線部が送信する電波と第2無線部が送信する電波とから生じる相互変調波の周波数を、第1無線部の送信周波数と第2無線部の送信周波数とから算出し、算出した該相互変調波の周波数と第1無線部の受信周波数とが重なるときに、第1無線部及び第2無線部の少なくとも一方の動作を通常モードから低干渉モードに切り替える制御部を備えている。これにより、第1無線部が送信する電波と第2無線部が送信する電波とから生じる相互変調波が、第1無線部の受信感度に悪影響を及ぼす可能性が高い場合に、第1無線部及び第2無線部の少なくとも一方の動作を通常モードから低干渉モードに切り替えることで、相互変調波による受信感度の劣化を低減することができる。なお、制御部は、相互変調波の周波数と第1無線部の受信周波数とが重なり、発生する相互変調波の電波強度が受信感度に影響があると判断したときに、第1無線部及び第2無線部の少なくとも一方の動作を通常モードから低干渉モードに切り替えるようにしてもよい。
A mobile communication terminal (wireless communication device) according to an embodiment of the present invention includes a first radio unit that transmits and receives radio waves, a second radio unit that transmits at least radio waves, and radio waves and second radios transmitted by the first radio unit. The frequency of the intermodulation wave generated from the radio wave transmitted by the unit is calculated from the transmission frequency of the first radio unit and the transmission frequency of the second radio unit, and the calculated frequency of the intermodulation wave and reception of the first radio unit A control unit that switches the operation of at least one of the first radio unit and the second radio unit from the normal mode to the low interference mode when the frequency overlaps is provided. Thus, when the intermodulation wave generated from the radio wave transmitted by the first radio unit and the radio wave transmitted by the second radio unit is likely to adversely affect the reception sensitivity of the first radio unit, the first radio unit By switching at least one of the operations of the second radio unit from the normal mode to the low interference mode, it is possible to reduce deterioration in reception sensitivity due to the intermodulation wave. When the control unit determines that the frequency of the intermodulation wave and the reception frequency of the first radio unit overlap and the radio wave intensity of the generated intermodulation wave has an effect on the reception sensitivity, the control unit and the first radio unit The operation of at least one of the two radio units may be switched from the normal mode to the low interference mode.
以下の実施形態では、第1無線部として、LTE方式により無線通信を行う無線部を用いるとともに、第2無線部として、WiFi(登録商標)方式により無線通信を行う無線部を用いた場合について説明するが、本発明はこれに限定されない。
In the following embodiments, a case where a wireless unit that performs wireless communication by the LTE scheme is used as the first wireless unit and a wireless unit that performs wireless communication by the WiFi (registered trademark) scheme is used as the second wireless unit will be described. However, the present invention is not limited to this.
〔実施形態1〕
本発明の実施形態1に係る携帯通信端末は、第1無線部が、予め低干渉モードにおいて使用すると設定されている低干渉アンテナと、予め低干渉モードにおいて使用しないと設定されている非低干渉アンテナとを備えており、第1無線部が、上記通常モードでは、上記低干渉アンテナ及び上記非低干渉アンテナから選択されるアンテナを使用して電波を送信し、上記低干渉モードでは、上記低干渉アンテナのみを使用して電波を送信する。 [Embodiment 1]
In the mobile communication terminal according toEmbodiment 1 of the present invention, the first radio unit is set to be used in advance in the low interference mode, and the non-low interference set in advance to be not used in the low interference mode. And the first radio unit transmits radio waves using an antenna selected from the low interference antenna and the non-low interference antenna in the normal mode, and in the low interference mode, the first radio unit transmits the low frequency Transmit radio waves using only the interference antenna.
本発明の実施形態1に係る携帯通信端末は、第1無線部が、予め低干渉モードにおいて使用すると設定されている低干渉アンテナと、予め低干渉モードにおいて使用しないと設定されている非低干渉アンテナとを備えており、第1無線部が、上記通常モードでは、上記低干渉アンテナ及び上記非低干渉アンテナから選択されるアンテナを使用して電波を送信し、上記低干渉モードでは、上記低干渉アンテナのみを使用して電波を送信する。 [Embodiment 1]
In the mobile communication terminal according to
〈携帯通信端末の構成〉
まず、本発明の実施形態に係る携帯通信端末1について、図1及び図2を参照して説明する。図1は、本実施形態に係る携帯通信端末1の構成を示すブロック図である。図2は、本実施形態に係る携帯通信端末1の外観を示す平面図である。図1に示すように、携帯通信端末1は、LTE通信及びWiFi通信を同時に行う携帯端末であり、LTE送受信部2、変復調処理部3、WiFi送受信部4、変復調処理部5、及び、制御部6を備えている。なお、LTE送受信部2、及び、変復調処理部3を、まとめてLTE無線部7(第1無線部)とする。また、WiFi送受信部4、及び、変復調処理部5を、まとめてWiFi無線部8(第2無線部)とする。 <Configuration of mobile communication terminal>
First, amobile communication terminal 1 according to an embodiment of the present invention will be described with reference to FIG. 1 and FIG. FIG. 1 is a block diagram showing the configuration of the mobile communication terminal 1 according to the present embodiment. FIG. 2 is a plan view showing an appearance of the mobile communication terminal 1 according to the present embodiment. As shown in FIG. 1, the mobile communication terminal 1 is a mobile terminal that simultaneously performs LTE communication and WiFi communication, and includes an LTE transmission / reception unit 2, a modulation / demodulation processing unit 3, a WiFi transmission / reception unit 4, a modulation / demodulation processing unit 5, and a control unit. 6 is provided. The LTE transmission / reception unit 2 and the modulation / demodulation processing unit 3 are collectively referred to as an LTE radio unit 7 (first radio unit). In addition, the WiFi transmitting / receiving unit 4 and the modulation / demodulation processing unit 5 are collectively referred to as a WiFi wireless unit 8 (second wireless unit).
まず、本発明の実施形態に係る携帯通信端末1について、図1及び図2を参照して説明する。図1は、本実施形態に係る携帯通信端末1の構成を示すブロック図である。図2は、本実施形態に係る携帯通信端末1の外観を示す平面図である。図1に示すように、携帯通信端末1は、LTE通信及びWiFi通信を同時に行う携帯端末であり、LTE送受信部2、変復調処理部3、WiFi送受信部4、変復調処理部5、及び、制御部6を備えている。なお、LTE送受信部2、及び、変復調処理部3を、まとめてLTE無線部7(第1無線部)とする。また、WiFi送受信部4、及び、変復調処理部5を、まとめてWiFi無線部8(第2無線部)とする。 <Configuration of mobile communication terminal>
First, a
<LTE送受信部2>
LTE送受信部2は、LTE通信を行う部分であり、メインアンテナ21、サブアンテナ22、スイッチ23、ダイプレクサ24及び25、Band21用Tx/Rx無線部26、Band1用Tx/Rx無線部27、Band21用Rx無線部28、並びに及び、Band1用Rx無線部29を備えている。図2に示すように、メインアンテナ21は携帯通信端末1の下端に配置され、サブアンテナ22は携帯通信端末1の上端に配置される。スイッチ23は、メインアンテナ21及びサブアンテナ22と、ダイプレクサ24、25との接続を切り替える。 <LTE transceiver 2>
The LTE transmission /reception unit 2 is a part that performs LTE communication, and includes a main antenna 21, a sub antenna 22, a switch 23, diplexers 24 and 25, a Band 21 Tx / Rx radio unit 26, a Band 1 Tx / Rx radio unit 27, and a Band 21 unit. An Rx radio unit 28 and a Band1 Rx radio unit 29 are provided. As shown in FIG. 2, the main antenna 21 is disposed at the lower end of the mobile communication terminal 1, and the sub antenna 22 is disposed at the upper end of the mobile communication terminal 1. The switch 23 switches the connection between the main antenna 21 and the sub antenna 22 and the diplexers 24 and 25.
LTE送受信部2は、LTE通信を行う部分であり、メインアンテナ21、サブアンテナ22、スイッチ23、ダイプレクサ24及び25、Band21用Tx/Rx無線部26、Band1用Tx/Rx無線部27、Band21用Rx無線部28、並びに及び、Band1用Rx無線部29を備えている。図2に示すように、メインアンテナ21は携帯通信端末1の下端に配置され、サブアンテナ22は携帯通信端末1の上端に配置される。スイッチ23は、メインアンテナ21及びサブアンテナ22と、ダイプレクサ24、25との接続を切り替える。 <LTE transceiver 2>
The LTE transmission /
ダイプレクサ24は、スイッチ23と、Band21用Tx/Rx無線部26、及び、Band1用Tx/Rx無線部27との間に介設されるフィルタであり、通過帯域の信号を通過させ、それ以外の周波数帯の信号を除去する。詳細には、スイッチ23と、Band21用Tx/Rx無線部26との間の信号に関しては、Band21の周波数帯(1.5GHz帯)の信号を通過させる。また、スイッチ23と、Band1用Tx/Rx無線部27との間の信号に関しては、Band1の周波数帯(2GHz帯)の信号を通過させる。ダイプレクサ25は、スイッチ23と、Band21用Rx無線部28、及び、Band1用Rx無線部29との間に介設されるフィルタであり、通過帯域の信号を通過させ、それ以外の周波数帯の信号を除去する。詳細には、スイッチ23と、Band21用Rx無線部28との間の信号に関しては、Band21の周波数帯の信号を通過させる。また、スイッチ23と、Band1用Rx無線部29との間の信号に関しては、Band1の周波数帯の信号を通過させる。
The diplexer 24 is a filter interposed between the switch 23, the Band 21 Tx / Rx radio unit 26, and the Band 1 Tx / Rx radio unit 27. Remove frequency band signals. Specifically, regarding the signal between the switch 23 and the Band 21 Tx / Rx radio unit 26, a signal in the Band 21 frequency band (1.5 GHz band) is passed. As for the signal between the switch 23 and the Band1 Tx / Rx radio unit 27, a signal in the Band1 frequency band (2 GHz band) is passed. The diplexer 25 is a filter interposed between the switch 23, the Band 21 Rx radio unit 28, and the Band 1 Rx radio unit 29. The diplexer 25 passes signals in the pass band and signals in other frequency bands. Remove. Specifically, for the signal between the switch 23 and the Band 21 Rx radio unit 28, a signal in the Band 21 frequency band is passed. As for the signal between the switch 23 and the Band1 Rx radio unit 29, a signal in the Band1 frequency band is passed.
Band21用Tx/Rx無線部26は、Band21によるLTE通信を行う部分であり、デュプレクサ261、LNA(Low Noise Amplifier)262、ミキサ263、A/Dコンバータ264、D/Aコンバータ265、ミキサ266、及び、パワーアンプ267を備えている。デュプレクサ261は、ダイプレクサ24と、LNA262及びパワーアンプ267との間に介設されるフィルタであり、通過帯域の信号を通過させ、それ以外の周波数帯の信号を除去する。詳細には、ダイプレクサ24からLNA262への信号に関しては、Band21の受信周波数帯の信号を通過させる。また、パワーアンプ267からダイプレクサ24への信号に関しては、Band21の送信周波数帯の信号を通過させる。LNA262、ミキサ263、及び、A/Dコンバータ264は、受信用回路として構成される。LNA262は、デュプレクサ261からの信号を選択及び増幅する低雑音増幅器である。ミキサ263は、LNA262からの信号を一定の低い周波数に変換する周波数変換器である。A/Dコンバータ264は、ミキサ263からの信号をA/D変換して、変復調処理部3に出力する。D/Aコンバータ265、ミキサ266、及び、パワーアンプ267は、送信用回路として構成される。D/Aコンバータ265は、変復調処理部3からの信号をD/A変換して、ミキサ266に出力する。ミキサ266は、D/Aコンバータ265からの信号を一定の低い周波数に変換する周波数変換器である。パワーアンプ267は、ミキサ266からの信号を増幅する増幅器である。
The Band 21 Tx / Rx radio unit 26 is a part that performs LTE communication using the Band 21, and includes a duplexer 261, an LNA (Low Noise Amplifier) 262, a mixer 263, an A / D converter 264, a D / A converter 265, a mixer 266, and A power amplifier 267 is provided. The duplexer 261 is a filter interposed between the diplexer 24, the LNA 262, and the power amplifier 267, and passes a signal in the pass band and removes a signal in the other frequency band. Specifically, for the signal from the diplexer 24 to the LNA 262, a signal in the reception frequency band of Band 21 is passed. As for the signal from the power amplifier 267 to the diplexer 24, the signal in the Band 21 transmission frequency band is passed. The LNA 262, the mixer 263, and the A / D converter 264 are configured as a receiving circuit. The LNA 262 is a low noise amplifier that selects and amplifies the signal from the duplexer 261. The mixer 263 is a frequency converter that converts the signal from the LNA 262 to a constant low frequency. The A / D converter 264 performs A / D conversion on the signal from the mixer 263 and outputs the signal to the modulation / demodulation processing unit 3. The D / A converter 265, the mixer 266, and the power amplifier 267 are configured as a transmission circuit. The D / A converter 265 D / A converts the signal from the modulation / demodulation processing unit 3 and outputs it to the mixer 266. The mixer 266 is a frequency converter that converts the signal from the D / A converter 265 into a constant low frequency. The power amplifier 267 is an amplifier that amplifies the signal from the mixer 266.
Band1用Tx/Rx無線部27は、Band1によるLTE通信を行う部分であり、デュプレクサ271、LNA272、ミキサ273、A/Dコンバータ274、D/Aコンバータ275、ミキサ276、及び、パワーアンプ277を備えている。デュプレクサ271は、ダイプレクサ24と、LNA272及びパワーアンプ277との間に介設されるフィルタであり、通過帯域の信号を通過させ、それ以外の周波数帯の信号を除去する。詳細には、ダイプレクサ24からLNA272への信号に関しては、Band1の受信周波数帯の信号を通過させる。また、パワーアンプ277からダイプレクサ24への信号に関しては、Band1の送信周波数帯の信号を通過させる。LNA272、ミキサ273、及び、A/Dコンバータ274は、受信用回路として構成される。LNA272は、デュプレクサ271からの信号を選択及び増幅する低雑音増幅器である。ミキサ273は、LNA272からの信号を一定の低い周波数に変換する周波数変換器である。A/Dコンバータ274は、ミキサ273からの信号をA/D変換して、変復調処理部3に出力する。D/Aコンバータ275、ミキサ276、及び、パワーアンプ277は、送信用回路として構成される。D/Aコンバータ275は、変復調処理部3からの信号をD/A変換して、ミキサ276に出力する。ミキサ276は、D/Aコンバータ275からの信号を一定の低い周波数に変換する周波数変換器である。パワーアンプ277は、ミキサ276からの信号を増幅する増幅器である。
The Band 1 Tx / Rx radio unit 27 performs LTE communication using Band 1 and includes a duplexer 271, an LNA 272, a mixer 273, an A / D converter 274, a D / A converter 275, a mixer 276, and a power amplifier 277. ing. The duplexer 271 is a filter interposed between the diplexer 24, the LNA 272, and the power amplifier 277, and passes a signal in the pass band and removes a signal in the other frequency band. Specifically, for the signal from the diplexer 24 to the LNA 272, the signal in the Band1 reception frequency band is passed. As for the signal from the power amplifier 277 to the diplexer 24, a signal in the Band1 transmission frequency band is passed. The LNA 272, the mixer 273, and the A / D converter 274 are configured as a receiving circuit. The LNA 272 is a low noise amplifier that selects and amplifies the signal from the duplexer 271. The mixer 273 is a frequency converter that converts the signal from the LNA 272 to a constant low frequency. The A / D converter 274 performs A / D conversion on the signal from the mixer 273 and outputs it to the modulation / demodulation processing unit 3. The D / A converter 275, the mixer 276, and the power amplifier 277 are configured as a transmission circuit. The D / A converter 275 D / A converts the signal from the modulation / demodulation processing unit 3 and outputs it to the mixer 276. The mixer 276 is a frequency converter that converts the signal from the D / A converter 275 into a constant low frequency. The power amplifier 277 is an amplifier that amplifies the signal from the mixer 276.
Band21用Rx無線部28は、Band21によるLTE受信を行う部分であり、フィルタ281、LNA282、ミキサ283、及び、A/Dコンバータ284を備えている。フィルタ281は、ダイプレクサ25と、LNA282との間に介設されるフィルタであり、通過帯域の信号を通過させ、それ以外の周波数帯の信号を除去する。詳細には、ダイプレクサ25からLNA282への信号に関して、Band21の受信周波数帯の信号を通過させる。LNA282は、フィルタ281からの信号を選択及び増幅する低雑音増幅器である。ミキサ283は、LNA282からの信号を一定の低い周波数に変換する周波数変換器である。A/Dコンバータ284は、ミキサ283からの信号をA/D変換して、変復調処理部3に出力する。
The Band 21 Rx radio unit 28 is a part that performs LTE reception using Band 21, and includes a filter 281, an LNA 282, a mixer 283, and an A / D converter 284. The filter 281 is a filter interposed between the diplexer 25 and the LNA 282, and passes signals in the pass band and removes signals in other frequency bands. Specifically, with respect to the signal from the diplexer 25 to the LNA 282, the signal in the reception frequency band of Band 21 is passed. The LNA 282 is a low noise amplifier that selects and amplifies the signal from the filter 281. The mixer 283 is a frequency converter that converts the signal from the LNA 282 to a constant low frequency. The A / D converter 284 performs A / D conversion on the signal from the mixer 283 and outputs the signal to the modulation / demodulation processing unit 3.
Band1用Rx無線部29は、Band1によるLTE受信を行う部分であり、フィルタ291、LNA292、ミキサ293、及び、A/Dコンバータ294を備えている。フィルタ291は、ダイプレクサ25と、LNA292との間に介設されるフィルタであり、通過帯域の信号を通過させ、それ以外の周波数帯の信号を除去する。詳細には、ダイプレクサ25からLNA292への信号に関して、Band1の受信周波数帯の信号を通過させる。LNA292は、フィルタ291からの信号を選択及び増幅する低雑音増幅器である。ミキサ293は、LNA292からの信号を一定の低い周波数に変換する周波数変換器である。A/Dコンバータ294は、ミキサ293からの信号をA/D変換して、変復調処理部3に出力する。
The Band1 Rx radio unit 29 is a part that performs LTE reception using Band1, and includes a filter 291, an LNA 292, a mixer 293, and an A / D converter 294. The filter 291 is a filter interposed between the diplexer 25 and the LNA 292, and passes a signal in the pass band and removes signals in other frequency bands. Specifically, with respect to the signal from the diplexer 25 to the LNA 292, the signal in the reception frequency band of Band1 is passed. The LNA 292 is a low noise amplifier that selects and amplifies the signal from the filter 291. The mixer 293 is a frequency converter that converts the signal from the LNA 292 to a constant low frequency. The A / D converter 294 performs A / D conversion on the signal from the mixer 293 and outputs the signal to the modulation / demodulation processing unit 3.
<変復調処理部3>
変復調処理部3は、LTE通信に係るデジタル信号の変復調処理を行う部分であり、LTE送受信部2と、制御部6と間に介設される。詳細には、LTE送信において、制御部6からのデジタル信号を変調し、Band21用Tx/Rx無線部26、及び、Band1用Tx/Rx無線部27に出力する。また、LTE受信において、Band21用Tx/Rx無線部26、Band1用Tx/Rx無線部27、Band21用Rx無線部28、及び、Band1用Rx無線部29からのデジタル信号を復調し、制御部6に出力する。 <Modulation /demodulation processing unit 3>
The modulation /demodulation processing unit 3 is a part that performs modulation / demodulation processing of a digital signal related to LTE communication, and is interposed between the LTE transmission / reception unit 2 and the control unit 6. Specifically, in LTE transmission, the digital signal from the control unit 6 is modulated and output to the Band 21 Tx / Rx radio unit 26 and the Band 1 Tx / Rx radio unit 27. Further, in LTE reception, the control unit 6 demodulates digital signals from the Band21 Tx / Rx radio unit 26, the Band1 Tx / Rx radio unit 27, the Band21 Rx radio unit 28, and the Band1 Rx radio unit 29. Output to.
変復調処理部3は、LTE通信に係るデジタル信号の変復調処理を行う部分であり、LTE送受信部2と、制御部6と間に介設される。詳細には、LTE送信において、制御部6からのデジタル信号を変調し、Band21用Tx/Rx無線部26、及び、Band1用Tx/Rx無線部27に出力する。また、LTE受信において、Band21用Tx/Rx無線部26、Band1用Tx/Rx無線部27、Band21用Rx無線部28、及び、Band1用Rx無線部29からのデジタル信号を復調し、制御部6に出力する。 <Modulation /
The modulation /
<WiFi送受信部4>
WiFi送受信部4は、WiFi通信を行う部分であり、WiFiアンテナ41、スイッチ42、フィルタ43、LNA44、ミキサ45、A/Dコンバータ46、D/Aコンバータ47、ミキサ48、パワーアンプ49、及び、フィルタ4Aを備えている。 <WiFi transceiver unit 4>
TheWiFi transceiver unit 4 is a part that performs WiFi communication, and includes a WiFi antenna 41, a switch 42, a filter 43, an LNA 44, a mixer 45, an A / D converter 46, a D / A converter 47, a mixer 48, a power amplifier 49, and A filter 4A is provided.
WiFi送受信部4は、WiFi通信を行う部分であり、WiFiアンテナ41、スイッチ42、フィルタ43、LNA44、ミキサ45、A/Dコンバータ46、D/Aコンバータ47、ミキサ48、パワーアンプ49、及び、フィルタ4Aを備えている。 <
The
WiFiアンテナ41は、TDD(Time Division Duplex)方式で送受信を行う。TDD方式は、時分割複信と呼ばれるものであり、送信及び受信で同じ周波数を使用する。そのために、送信及び受信のタイミングに合わせて、スイッチ42の切り替えにより、フィルタ4Aを含む送信用回路、又は、フィルタ43を含む受信用回路に接続される。図2に示すように、WiFiアンテナ41は携帯通信端末1の左端上側に配置される。
The WiFi antenna 41 performs transmission / reception using a TDD (Time Division Duplex) method. The TDD system is called time division duplex, and uses the same frequency for transmission and reception. For this purpose, the switch 42 is switched in accordance with the transmission and reception timings, so that the transmission circuit including the filter 4A or the reception circuit including the filter 43 is connected. As shown in FIG. 2, the WiFi antenna 41 is arranged on the upper left side of the mobile communication terminal 1.
フィルタ43、LNA44、ミキサ45、及び、A/Dコンバータ46は、受信用回路として構成される。フィルタ43は、スイッチ42と、LNA44との間に介設されるフィルタであり、通過帯域の信号を通過させ、それ以外の周波数帯の信号を除去する。詳細には、スイッチ42からLNA44への信号に関して、WiFi通信の受信周波数帯の信号を通過させる。LNA44は、フィルタ43からの信号を選択及び増幅する低雑音増幅器である。ミキサ45は、LNA44からの信号を一定の低い周波数に変換する周波数変換器である。A/Dコンバータ46は、ミキサ45からの信号をA/D変換して、変復調処理部3に出力する。
The filter 43, LNA 44, mixer 45, and A / D converter 46 are configured as a receiving circuit. The filter 43 is a filter interposed between the switch 42 and the LNA 44, and passes the signal in the pass band and removes the signal in the other frequency band. Specifically, with respect to the signal from the switch 42 to the LNA 44, a signal in the reception frequency band of WiFi communication is passed. The LNA 44 is a low noise amplifier that selects and amplifies the signal from the filter 43. The mixer 45 is a frequency converter that converts the signal from the LNA 44 into a constant low frequency. The A / D converter 46 A / D converts the signal from the mixer 45 and outputs it to the modulation / demodulation processing unit 3.
D/Aコンバータ47、ミキサ48、パワーアンプ49、及び、フィルタ4Aは、送信用回路として構成される。D/Aコンバータ47は、変復調処理部3からの信号をD/A変換して、ミキサ48に出力する。ミキサ48は、D/Aコンバータ47からの信号を一定の低い周波数に変換する周波数変換器である。パワーアンプ49は、ミキサ48からの信号を増幅する増幅器である。フィルタ4Aは、スイッチ42と、パワーアンプ49との間に介設されるフィルタであり、通過帯域の信号を通過させ、それ以外の周波数帯の信号を除去する。詳細には、パワーアンプ49からスイッチ42への信号に関して、WiFi通信の送信周波数帯の信号を通過させる。
The D / A converter 47, the mixer 48, the power amplifier 49, and the filter 4A are configured as a transmission circuit. The D / A converter 47 D / A converts the signal from the modulation / demodulation processing unit 3 and outputs it to the mixer 48. The mixer 48 is a frequency converter that converts the signal from the D / A converter 47 into a constant low frequency. The power amplifier 49 is an amplifier that amplifies the signal from the mixer 48. The filter 4A is a filter interposed between the switch 42 and the power amplifier 49, and allows a signal in the pass band to pass therethrough and removes signals in other frequency bands. Specifically, with respect to the signal from the power amplifier 49 to the switch 42, the signal in the transmission frequency band of WiFi communication is passed.
<変復調処理部5>
変復調処理部5は、WiFi通信に係るデジタル信号の変復調処理を行う部分であり、WiFi送受信部4と、制御部6と間に介設される。詳細には、WiFi送信において、制御部6からのデジタル信号を変調し、D/Aコンバータ47を含む送信用回路に出力する。また、WiFi受信において、A/Dコンバータ46を含む受信用回路からのデジタル信号を復調し、制御部6に出力する。 <Modulation /demodulation processor 5>
The modulation /demodulation processing unit 5 is a part that performs modulation / demodulation processing of a digital signal related to WiFi communication, and is interposed between the WiFi transmission / reception unit 4 and the control unit 6. Specifically, in WiFi transmission, the digital signal from the control unit 6 is modulated and output to a transmission circuit including the D / A converter 47. In WiFi reception, the digital signal from the receiving circuit including the A / D converter 46 is demodulated and output to the control unit 6.
変復調処理部5は、WiFi通信に係るデジタル信号の変復調処理を行う部分であり、WiFi送受信部4と、制御部6と間に介設される。詳細には、WiFi送信において、制御部6からのデジタル信号を変調し、D/Aコンバータ47を含む送信用回路に出力する。また、WiFi受信において、A/Dコンバータ46を含む受信用回路からのデジタル信号を復調し、制御部6に出力する。 <Modulation /
The modulation /
<制御部6>
制御部6は、変復調処理部3、5から復調されたデジタル信号(受信信号)を取得するとともに、変復調処理部3、5に対して変調されるべきデジタル信号(送信信号)を出力する。制御部6は、LTE無線部7が送信する電波とWiFi無線部8が送信する電波とから生じる相互変調波の周波数を、LTE無線部7の送信周波数とWiFi無線部8の送信周波数とから算出し、算出した該相互変調波の周波数とLTE無線部7の受信周波数とが重なるときに、LTE無線部7及びWiFi無線部8の少なくとも一方の動作を通常モードから低干渉モードに切り替える。 <Control unit 6>
Thecontrol unit 6 acquires the demodulated digital signal (reception signal) from the modulation / demodulation processing units 3 and 5 and outputs a digital signal (transmission signal) to be modulated to the modulation / demodulation processing units 3 and 5. The control unit 6 calculates the frequency of the intermodulation wave generated from the radio wave transmitted by the LTE radio unit 7 and the radio wave transmitted by the WiFi radio unit 8 from the transmission frequency of the LTE radio unit 7 and the transmission frequency of the WiFi radio unit 8. Then, when the calculated frequency of the intermodulation wave and the reception frequency of the LTE radio unit 7 overlap, the operation of at least one of the LTE radio unit 7 and the WiFi radio unit 8 is switched from the normal mode to the low interference mode.
制御部6は、変復調処理部3、5から復調されたデジタル信号(受信信号)を取得するとともに、変復調処理部3、5に対して変調されるべきデジタル信号(送信信号)を出力する。制御部6は、LTE無線部7が送信する電波とWiFi無線部8が送信する電波とから生じる相互変調波の周波数を、LTE無線部7の送信周波数とWiFi無線部8の送信周波数とから算出し、算出した該相互変調波の周波数とLTE無線部7の受信周波数とが重なるときに、LTE無線部7及びWiFi無線部8の少なくとも一方の動作を通常モードから低干渉モードに切り替える。 <
The
〈携帯通信端末の通信機能〉
次に、本発明の実施形態に係る携帯通信端末1の通信機能について、図3を参照して説明する。図3は、本実施形態に係る携帯通信端末1の通信機能を示すネットワーク構成図である。図3に示すように、携帯通信端末1は、キャリアアグリゲーション、及び、無線LAN通信に対応する。キャリアアグリゲーションは、複数のLTE搬送波を用いて通信を行うものであり、複数の異なる周波数帯を同時に利用する技術である。携帯通信端末1は、例えば、LTE基地局11との間において、Band1による送受信、及び、Band21による受信を同時に行う。無線LANは、無線通信を利用してデータを送受信するLANシステムのことをいう。携帯通信端末1は、子局として、例えば、親局であるパソコン12との間で、802.11bによる無線LAN送受信を行う。 <Communication function of mobile communication terminal>
Next, the communication function of themobile communication terminal 1 according to the embodiment of the present invention will be described with reference to FIG. FIG. 3 is a network configuration diagram showing a communication function of the mobile communication terminal 1 according to the present embodiment. As shown in FIG. 3, the mobile communication terminal 1 supports carrier aggregation and wireless LAN communication. Carrier aggregation performs communication using a plurality of LTE carriers, and is a technology that uses a plurality of different frequency bands simultaneously. For example, the mobile communication terminal 1 performs transmission / reception by Band 1 and reception by Band 21 simultaneously with the LTE base station 11. A wireless LAN refers to a LAN system that transmits and receives data using wireless communication. The mobile communication terminal 1 performs wireless LAN transmission / reception by 802.11b with the personal computer 12 which is a master station as a slave station, for example.
次に、本発明の実施形態に係る携帯通信端末1の通信機能について、図3を参照して説明する。図3は、本実施形態に係る携帯通信端末1の通信機能を示すネットワーク構成図である。図3に示すように、携帯通信端末1は、キャリアアグリゲーション、及び、無線LAN通信に対応する。キャリアアグリゲーションは、複数のLTE搬送波を用いて通信を行うものであり、複数の異なる周波数帯を同時に利用する技術である。携帯通信端末1は、例えば、LTE基地局11との間において、Band1による送受信、及び、Band21による受信を同時に行う。無線LANは、無線通信を利用してデータを送受信するLANシステムのことをいう。携帯通信端末1は、子局として、例えば、親局であるパソコン12との間で、802.11bによる無線LAN送受信を行う。 <Communication function of mobile communication terminal>
Next, the communication function of the
〈携帯通信端末の周波数帯〉
次に、本発明の実施形態に係る携帯通信端末1が関連する周波数帯について、図4を参照して説明する。図4は、本実施形態に係る、WiFi通信の802.11bの各チャンネルに対応する周波数帯と、発生する相互変調波の周波数帯との対応関係を示すテーブルである。ここで、相互変調波の電波強度は、相互変調波を発生させる要因となる各電波の送信電力、各送信アンテナ間の離隔状態(アイソレーション)、相互変調歪みを発生させる回路素子の線形性特性等に依存する。 <Frequency band of mobile communication terminal>
Next, frequency bands related to themobile communication terminal 1 according to the embodiment of the present invention will be described with reference to FIG. FIG. 4 is a table showing a correspondence relationship between the frequency band corresponding to each 802.11b channel of WiFi communication and the frequency band of the intermodulation wave to be generated according to the present embodiment. Here, the radio field intensity of the intermodulation wave is the transmission power of each radio wave that causes the generation of the intermodulation wave, the separation state (isolation) between the transmission antennas, and the linearity characteristics of the circuit element that generates the intermodulation distortion. Depends on etc.
次に、本発明の実施形態に係る携帯通信端末1が関連する周波数帯について、図4を参照して説明する。図4は、本実施形態に係る、WiFi通信の802.11bの各チャンネルに対応する周波数帯と、発生する相互変調波の周波数帯との対応関係を示すテーブルである。ここで、相互変調波の電波強度は、相互変調波を発生させる要因となる各電波の送信電力、各送信アンテナ間の離隔状態(アイソレーション)、相互変調歪みを発生させる回路素子の線形性特性等に依存する。 <Frequency band of mobile communication terminal>
Next, frequency bands related to the
図4のテーブルには、携帯通信端末1における送信ダイバーシティの使用可否に関する判定結果(使用可判定)も含まれている。図4において、「○」は、送信ダイバーシティが使用可能であることを示し、「×」は、送信ダイバーシティが使用不可であることをしめす。ここで、送信ダイバーシティの実施方法の一例としては、2以上のアンテナを用いて電波を受信し、当該受信時の電波強度が高いアンテナを送信用として使用する方法がある。例えば、図2の携帯通信端末1におけるLTE通信では、随時変化する受信電波強度に応じて、メインアンテナ21及びサブアンテナ22の何れか一方が送信アンテナとして使用される。
4 also includes a determination result (usability determination) regarding whether or not transmission diversity can be used in the mobile communication terminal 1. In FIG. 4, “◯” indicates that transmission diversity is available, and “x” indicates that transmission diversity is not available. Here, as an example of an implementation method of transmission diversity, there is a method of receiving radio waves using two or more antennas and using an antenna with high radio field intensity at the time of reception for transmission. For example, in LTE communication in the mobile communication terminal 1 of FIG. 2, either the main antenna 21 or the sub-antenna 22 is used as a transmission antenna according to the received radio wave intensity that changes from time to time.
なお、図4では、LTE通信における送信電波と、WiFi通信における送信電波とにより発生する3次の相互変調歪み(IM3)の周波数帯を示しているが、それ以外に2次の相互変調歪み(IM2)や4次以上の高次の相互変調歪みの周波数帯を計算し、送信ダイバーシティの使用可否に関する判断を行う際に、当該計算した周波数帯を考慮することも可能である。
FIG. 4 shows the frequency band of the third-order intermodulation distortion (IM3) generated by the transmission radio wave in LTE communication and the transmission radio wave in WiFi communication. It is also possible to take into account the calculated frequency band when calculating the frequency band of IM2) or higher-order intermodulation distortion of 4th order or higher and making a determination on the availability of transmission diversity.
図4(a)は、LTE通信におけるBand1の上りリンク使用帯域が1940~1960[MHz]である場合のテーブルである。この場合、携帯通信端末1において、LTE通信におけるBand1の送信電波と、WiFi通信における各チャンネルの送信電波とにより相互変調波が発生する。そして、その相互変調波の周波数帯と、Band21の受信周波数帯(1495.9~1510.9[MHz])とが重なるか否かに応じて、送信ダイバーシティ動作を停止すべき(すなわち、使用不可)か否かが決まる。
FIG. 4 (a) is a table in the case where the uplink use band of Band1 in LTE communication is 1940 to 1960 [MHz]. In this case, in the mobile communication terminal 1, an intermodulation wave is generated by the transmission wave of Band1 in LTE communication and the transmission wave of each channel in WiFi communication. Then, the transmission diversity operation should be stopped depending on whether or not the frequency band of the intermodulation wave and the reception frequency band of Band 21 (1495.9 to 1510.9 [MHz]) overlap (that is, cannot be used) ) Or not.
図4(a)に示すように、Band21の受信周波数帯に重なる、相互変調波の周波数帯は、1458~1518、1451~1513、1446~1508、1441~1503、1436~1498であり、それに対応する802.11bのチャンネルが1~5のときに、送信ダイバーシティは使用不可である。一方、802.11bのチャンネルが6~14のときに、送信ダイバーシティは使用可能である。
As shown in FIG. 4 (a), the frequency bands of intermodulation waves that overlap the Band21 reception frequency band are 1458 to 1518, 1451 to 1513, 1446 to 1508, 1441 to 1503, and 1436 to 1498. When the 802.11b channel to be transmitted is 1 to 5, transmit diversity cannot be used. On the other hand, when the 802.11b channel is 6 to 14, transmit diversity can be used.
図4(b)は、LTE通信におけるBand21の上りリンク使用帯域が1447.9~1462.9[MHz]である場合のテーブルである。この場合、携帯通信端末1において、LTE通信におけるBand21の送信電波と、WiFi通信における各チャンネルの送信電波とにより相互変調波が発生する。そして、その相互変調波の周波数帯と、Band1の受信周波数帯とが重なるか否かに応じて、送信ダイバーシティ動作を停止すべき(すなわち、使用不可)か否かが決まる。図4(b)に示すように、Band1の受信周波数帯に重なる、相互変調波の周波数帯はないので、802.11bのチャンネルが1~14の何れであっても、送信ダイバーシティは使用可能である。
FIG. 4B is a table in the case where the uplink use band of Band 21 in LTE communication is 1447.9 to 1462.9 [MHz]. In this case, in the mobile communication terminal 1, an intermodulation wave is generated by the transmission radio wave of Band 21 in LTE communication and the transmission radio wave of each channel in WiFi communication. Whether or not the transmission diversity operation should be stopped (that is, cannot be used) is determined depending on whether or not the frequency band of the intermodulation wave overlaps with the reception frequency band of Band1. As shown in FIG. 4 (b), there is no intermodulation wave frequency band that overlaps the Band1 reception frequency band. Therefore, even if the 802.11b channel is any one of 1 to 14, transmission diversity can be used. is there.
〈携帯通信端末の処理〉
次に、本発明の実施形態1に係る携帯通信端末1の処理について、図5を参照して説明する。図5は、本実施形態に係る携帯通信端末1の処理を示すフローチャートである。 <Handling of mobile communication terminals>
Next, processing of themobile communication terminal 1 according to Embodiment 1 of the present invention will be described with reference to FIG. FIG. 5 is a flowchart showing processing of the mobile communication terminal 1 according to the present embodiment.
次に、本発明の実施形態1に係る携帯通信端末1の処理について、図5を参照して説明する。図5は、本実施形態に係る携帯通信端末1の処理を示すフローチャートである。 <Handling of mobile communication terminals>
Next, processing of the
携帯通信端末1において、まず、制御部6は、データ通信に係る送信帯域、及び、受信帯域を検出する(S501)。送信帯域、及び、受信帯域は、周波数帯域そのものであってもよいし、テーブル等により周波数帯域に変換可能なチャンネル情報であってもよい。例えば、制御部6は、図3に示すように、LTE基地局11から、Band1の送信帯域、受信帯域、及び、Band21の受信帯域を取得するとともに、パソコン12との無線通信に使用されるWiFi通信の802.11bのチャンネル情報を取得する。そして、図4のテーブルにより、802.11bのチャンネル情報から周波数fの帯域(f_L~f_H)を特定する。
In the mobile communication terminal 1, first, the control unit 6 detects a transmission band and a reception band related to data communication (S501). The transmission band and the reception band may be the frequency band itself, or may be channel information that can be converted into the frequency band by a table or the like. For example, as illustrated in FIG. 3, the control unit 6 obtains the Band 1 transmission band, the reception band, and the Band 21 reception band from the LTE base station 11 and uses WiFi for wireless communication with the personal computer 12. Acquires 802.11b channel information of communication. Then, the band of frequency f (f_L to f_H) is specified from the 802.11b channel information using the table of FIG.
次に、制御部6は、S501で検出した、LTE通信の送信帯域と、無線LANチャンネルの送信帯域とで送信される電波により発生する相互変調波の周波数帯を計算する(S502)。このとき、相互変調波の周波数帯を都度計算してもよいし、事前に計算された相互変調波の周波数帯のテーブルを記憶しておき、当該テーブルを参照してもよい。
Next, the control unit 6 calculates the frequency band of the intermodulation wave generated by the radio waves transmitted in the LTE communication transmission band and the wireless LAN channel transmission band detected in S501 (S502). At this time, the frequency band of the intermodulation wave may be calculated each time, or a table of the frequency band of the intermodulation wave calculated in advance may be stored and the table may be referred to.
そして、制御部6は、S502で計算した相互変調波の周波数帯がLTE通信の受信帯域に重なるか否かを判定する(S503)。相互変調波の周波数帯がLTE通信の受信帯域に重なる場合に(S503のYES)、制御部6は、LTE通信の送信ダイバーシティを停止する(S504)。制御部6は、スイッチ23を制御することにより、LTE通信に使用するアンテナを選択する。具体的には、送信ダイバーシティを停止するとともに、LTE通信の受信感度劣化が許容範囲であると予め確認された低干渉アンテナをLTE通信の送信アンテナとして固定する。
Then, the control unit 6 determines whether or not the frequency band of the intermodulation wave calculated in S502 overlaps the reception band of LTE communication (S503). When the frequency band of the intermodulation wave overlaps the reception band of LTE communication (YES in S503), the control unit 6 stops the transmission diversity of LTE communication (S504). The control unit 6 controls the switch 23 to select an antenna to be used for LTE communication. Specifically, transmission diversity is stopped, and a low-interference antenna that has been confirmed in advance that the deterioration in reception sensitivity of LTE communication is within an allowable range is fixed as a transmission antenna of LTE communication.
すなわち、LTE無線部7が備える複数のアンテナ(メインアンテナ21及びサブアンテナ22)について、LTE無線部7による電波の送信と同時に、各々を使用して電波の送信を行ったときのLTE無線部7における受信感度の劣化を予め測定しておき、その受信感度の劣化が許容範囲内であるか否かを予め確認しておく。そして、受信感度の劣化が許容範囲内であると判断されたアンテナを、予め低干渉モードにおいて使用する低干渉アンテナとして設定し、受信感度の劣化が許容範囲内であると判断されたアンテナを、予め低干渉モードにおいて使用する低干渉アンテナとして設定する。図2に示すように、携帯通信端末1は、LTE通信のアンテナとしてメインアンテナ21及びサブアンテナ22を備えている。それに対して、例えば、WiFi通信の送信アンテナであるWiFiアンテナ41から離れており、WiFiアンテナ41とのアンテナ間アイソレーションが高いメインアンテナ21を低干渉アンテナとして予め設定し、WiFiアンテナ41に近く、WiFiアンテナ41とのアンテナ間アイソレーションが低いサブアンテナ22を非低干渉アンテナとして予め設定しておく。そして、通常モードでは、LTE通信の送信アンテナとして、低干渉アンテナ(メインアンテナ21)及び非低干渉アンテナ(サブアンテナ22)から選択されるアンテナを使用し、低干渉モードに切り替えたとき、制御部6は、低干渉アンテナであるメインアンテナ21をLTE通信の送信アンテナとして固定する。
That is, for the plurality of antennas (the main antenna 21 and the sub-antenna 22) provided in the LTE radio unit 7, the LTE radio unit 7 when radio waves are transmitted using each simultaneously with the radio wave transmission by the LTE radio unit 7. The deterioration of the reception sensitivity is measured in advance, and it is confirmed in advance whether or not the deterioration of the reception sensitivity is within an allowable range. Then, the antenna determined that the degradation of the reception sensitivity is within the allowable range is set in advance as a low interference antenna used in the low interference mode, and the antenna whose degradation of the reception sensitivity is determined to be within the allowable range is It is set in advance as a low interference antenna used in the low interference mode. As shown in FIG. 2, the mobile communication terminal 1 includes a main antenna 21 and a sub antenna 22 as LTE communication antennas. On the other hand, for example, the main antenna 21 that is away from the WiFi antenna 41 that is a transmission antenna of WiFi communication and has high inter-antenna isolation with the WiFi antenna 41 is set in advance as a low interference antenna, and is close to the WiFi antenna 41. The sub antenna 22 having low inter-antenna isolation with the WiFi antenna 41 is set in advance as a non-low interference antenna. In the normal mode, when the antenna selected from the low-interference antenna (main antenna 21) and the non-low-interference antenna (sub-antenna 22) is used as the transmission antenna for LTE communication, the control unit is switched to the low-interference mode. 6 fixes the main antenna 21 which is a low interference antenna as a transmission antenna of LTE communication.
なお、携帯通信端末1がWiFi通信のアンテナを複数備えている場合には、WiFi通信の送信アンテナ毎に、LTE無線部7が備える複数のアンテナにおける低干渉アンテナ及び非低干渉アンテナを予め設定しておき、低干渉モードに切り替えたとき、制御部6は、その時点においてWiFi無線部8が使用しているアンテナに対応する低干渉アンテナをLTE通信の送信アンテナとして固定するようにすればよい。
When the mobile communication terminal 1 includes a plurality of WiFi communication antennas, a low interference antenna and a non-low interference antenna among the plurality of antennas included in the LTE radio unit 7 are set in advance for each WiFi communication transmission antenna. In addition, when the mode is switched to the low interference mode, the control unit 6 may fix the low interference antenna corresponding to the antenna currently used by the WiFi radio unit 8 as a transmission antenna for LTE communication.
なお、本実施形態では図1に示したように送信に使用できるアンテナは2本であるが、3本以上のアンテナを切り替えて使用可能な構成においては、LTE通信の受信感度劣化が許容範囲となる送信アンテナが複数になることもある。このような場合には、LTE通信の受信感度劣化が許容範囲となるアンテナだけの使用に制限して送信ダイバーシティを行うことも可能である。
In this embodiment, as shown in FIG. 1, there are two antennas that can be used for transmission. However, in a configuration in which three or more antennas can be switched and used, the reception sensitivity deterioration of LTE communication is within an allowable range. There may be a plurality of transmission antennas. In such a case, it is also possible to perform transmission diversity by restricting the use of only antennas in which LTE communication reception sensitivity deterioration is within an allowable range.
相互変調波の周波数帯がLTE通信の受信帯域に重ならない場合(S503のNO)には、制御部6は、相互変調波による受信アンテナの感度劣化はないと判断して、S504の処理をスキップすることにより、LTE通信の送信ダイバーシティを継続する。
When the frequency band of the intermodulation wave does not overlap with the reception band of LTE communication (NO in S503), the control unit 6 determines that there is no deterioration in the sensitivity of the reception antenna due to the intermodulation wave, and skips the process of S504 By doing so, the transmission diversity of LTE communication is continued.
〔実施形態2〕
本発明の実施形態2について、図1~図4、図6に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、実施形態1にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。本発明の実施形態2に係る携帯通信端末において、制御部は、算出した相互変調波の周波数と第1無線部の受信周波数とが重なり、かつ、第1無線部の送信電力及び第2無線部の送信電力が所定の条件を満たすときに、第1無線部の動作を通常モードから低干渉モードに切り替える。図1~図4に関しては、実施形態1にて説明した通りである。 [Embodiment 2]
Embodiment 2 of the present invention will be described below with reference to FIGS. 1 to 4 and FIG. For convenience of explanation, members having the same functions as those described in the first embodiment are denoted by the same reference numerals and description thereof is omitted. In the mobile communication terminal according to the second embodiment of the present invention, the control unit overlaps the calculated frequency of the intermodulation wave with the reception frequency of the first radio unit, and the transmission power of the first radio unit and the second radio unit. When the transmission power of the first radio unit satisfies a predetermined condition, the operation of the first radio unit is switched from the normal mode to the low interference mode. 1 to 4 are the same as those described in the first embodiment.
本発明の実施形態2について、図1~図4、図6に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、実施形態1にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。本発明の実施形態2に係る携帯通信端末において、制御部は、算出した相互変調波の周波数と第1無線部の受信周波数とが重なり、かつ、第1無線部の送信電力及び第2無線部の送信電力が所定の条件を満たすときに、第1無線部の動作を通常モードから低干渉モードに切り替える。図1~図4に関しては、実施形態1にて説明した通りである。 [Embodiment 2]
〈携帯通信端末の処理〉
次に、本発明の実施形態2に係る携帯通信端末1の処理について、図6を参照して説明する。図6は、本実施形態に係る携帯通信端末1の処理を示すフローチャートである。なお、S601~S603、S605の処理は、実施形態1のS501~S504の処理と同様であるので、詳細な説明は省略する。携帯通信端末1において、まず、制御部6は、データ通信に係る送信帯域、及び、受信帯域を検出する(S601)。次に、制御部6は、S601で検出した、LTE通信の送信帯域と、無線LANチャンネルの送信帯域とで送信される電波により発生する相互変調波の周波数帯を計算する(S602)。そして、制御部6は、S602で計算した相互変調波の周波数帯がLTE通信の受信帯域に重なるか否かを判定する(S603)。相互変調波の周波数帯がLTE通信の受信帯域に重なる場合に(S603のYES)、制御部6は、LTE通信、及び、WiFi通信の送信電力が所定の条件を満たすか否かを判定する(S604)。所定の条件とは、例えば、LTE通信、及び、WiFi通信の送信電力が所定値以上という条件であるが、これに限定されない。LTE通信、及び、WiFi通信の送信電力が所定の条件を満たす場合に(S604のYES)、制御部6は、LTE通信の送信ダイバーシティを停止する(S605)。相互変調波の周波数帯がLTE通信の受信帯域に重ならない場合(S603のNO)、又は、LTE通信、及び、WiFi通信の送信電力が所定の条件を満たさない場合(S604のNO)には、制御部6は、相互変調波による受信アンテナの感度劣化はないと判断して、S605の処理をスキップすることにより、LTE通信の送信ダイバーシティを継続する。 <Handling of mobile communication terminals>
Next, processing of themobile communication terminal 1 according to Embodiment 2 of the present invention will be described with reference to FIG. FIG. 6 is a flowchart showing processing of the mobile communication terminal 1 according to the present embodiment. Note that the processing of S601 to S603 and S605 is the same as the processing of S501 to S504 of the first embodiment, and thus detailed description thereof is omitted. In the mobile communication terminal 1, first, the control unit 6 detects a transmission band and a reception band related to data communication (S601). Next, the control unit 6 calculates the frequency band of the intermodulation wave generated by the radio wave transmitted in the transmission band of the LTE communication and the transmission band of the wireless LAN channel detected in S601 (S602). Then, the control unit 6 determines whether or not the frequency band of the intermodulation wave calculated in S602 overlaps the reception band of LTE communication (S603). When the frequency band of the intermodulation wave overlaps the reception band of the LTE communication (YES in S603), the control unit 6 determines whether or not the transmission power of the LTE communication and the WiFi communication satisfies a predetermined condition ( S604). The predetermined condition is, for example, a condition that transmission power of LTE communication and WiFi communication is a predetermined value or more, but is not limited thereto. When the transmission power of LTE communication and WiFi communication satisfies a predetermined condition (YES in S604), the control unit 6 stops the transmission diversity of LTE communication (S605). When the frequency band of the intermodulation wave does not overlap the reception band of LTE communication (NO in S603), or when the transmission power of LTE communication and WiFi communication does not satisfy the predetermined condition (NO in S604), The control unit 6 determines that there is no deterioration in sensitivity of the receiving antenna due to the intermodulation wave, and skips the processing of S605, thereby continuing the transmission diversity of LTE communication.
次に、本発明の実施形態2に係る携帯通信端末1の処理について、図6を参照して説明する。図6は、本実施形態に係る携帯通信端末1の処理を示すフローチャートである。なお、S601~S603、S605の処理は、実施形態1のS501~S504の処理と同様であるので、詳細な説明は省略する。携帯通信端末1において、まず、制御部6は、データ通信に係る送信帯域、及び、受信帯域を検出する(S601)。次に、制御部6は、S601で検出した、LTE通信の送信帯域と、無線LANチャンネルの送信帯域とで送信される電波により発生する相互変調波の周波数帯を計算する(S602)。そして、制御部6は、S602で計算した相互変調波の周波数帯がLTE通信の受信帯域に重なるか否かを判定する(S603)。相互変調波の周波数帯がLTE通信の受信帯域に重なる場合に(S603のYES)、制御部6は、LTE通信、及び、WiFi通信の送信電力が所定の条件を満たすか否かを判定する(S604)。所定の条件とは、例えば、LTE通信、及び、WiFi通信の送信電力が所定値以上という条件であるが、これに限定されない。LTE通信、及び、WiFi通信の送信電力が所定の条件を満たす場合に(S604のYES)、制御部6は、LTE通信の送信ダイバーシティを停止する(S605)。相互変調波の周波数帯がLTE通信の受信帯域に重ならない場合(S603のNO)、又は、LTE通信、及び、WiFi通信の送信電力が所定の条件を満たさない場合(S604のNO)には、制御部6は、相互変調波による受信アンテナの感度劣化はないと判断して、S605の処理をスキップすることにより、LTE通信の送信ダイバーシティを継続する。 <Handling of mobile communication terminals>
Next, processing of the
〔実施形態3〕
本発明の実施形態3について、図1~図4、図7に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、実施形態1にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。本発明の実施形態3に係る携帯通信端末において、第2無線部は、低干渉モードでは、通常モードよりも小さい送信電力で電波を送信する。そして、第1無線部は、複数のアンテナを備えており、第2無線部は、低干渉モードでは、第1無線部が電波の送信のために使用するアンテナに応じた送信電力で電波を送信する。図1~図4に関しては、実施形態1にて説明した通りである。 [Embodiment 3]
The third embodiment of the present invention will be described below with reference to FIGS. 1 to 4 and FIG. For convenience of explanation, members having the same functions as those described in the first embodiment are denoted by the same reference numerals and description thereof is omitted. In the mobile communication terminal according toEmbodiment 3 of the present invention, the second radio unit transmits radio waves in the low interference mode with transmission power smaller than that in the normal mode. The first radio unit includes a plurality of antennas, and in the low interference mode, the second radio unit transmits radio waves with transmission power corresponding to the antenna used by the first radio unit for radio wave transmission. To do. 1 to 4 are the same as those described in the first embodiment.
本発明の実施形態3について、図1~図4、図7に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、実施形態1にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。本発明の実施形態3に係る携帯通信端末において、第2無線部は、低干渉モードでは、通常モードよりも小さい送信電力で電波を送信する。そして、第1無線部は、複数のアンテナを備えており、第2無線部は、低干渉モードでは、第1無線部が電波の送信のために使用するアンテナに応じた送信電力で電波を送信する。図1~図4に関しては、実施形態1にて説明した通りである。 [Embodiment 3]
The third embodiment of the present invention will be described below with reference to FIGS. 1 to 4 and FIG. For convenience of explanation, members having the same functions as those described in the first embodiment are denoted by the same reference numerals and description thereof is omitted. In the mobile communication terminal according to
〈携帯通信端末の処理〉
次に、本発明の実施形態3に係る携帯通信端末1の処理について、図7を参照して説明する。図7は、本実施形態に係る携帯通信端末1の処理の実施例1を示すフローチャートである。なお、S701~S703の処理は、実施形態1のS501~S503の処理と同様であるので、詳細な説明は省略する。携帯通信端末1において、まず、制御部6は、データ通信に係る送信帯域、及び、受信帯域を検出する(S701)。次に、制御部6は、S701で検出した、LTE通信の送信帯域と、無線LANチャンネルの送信帯域とで送信される電波により発生する相互変調波の周波数帯を計算する(S702)。そして、制御部6は、S702で計算した相互変調波の周波数帯がLTE通信の受信帯域に重なるか否かを判定する(S703)。相互変調波の周波数帯がLTE通信の受信帯域に重なる場合に(S703のYES)、制御部6は、通常モードから低干渉モードに切り替え、及びWiFi通信の送信電力を通常モード時よりも低減する(S704)。制御部6は、パワーアンプ49を制御することにより、WiFi通信の送信電力を低減する。具体的には、制御部6は、LTE通信の送信電力、及び、LTE通信に使用している送信アンテナ(とWiFiアンテナ41とのアンテナ間アイソレーション)に応じて、発生する相互変調波の電波強度が、LTE受信の感度劣化が許容範囲内となるような電波強度になるように制御する。 <Handling of mobile communication terminals>
Next, processing of themobile communication terminal 1 according to Embodiment 3 of the present invention will be described with reference to FIG. FIG. 7 is a flowchart showing Example 1 of processing of the mobile communication terminal 1 according to the present embodiment. Note that the processing in S701 to S703 is the same as the processing in S501 to S503 in the first embodiment, and thus detailed description thereof is omitted. In the mobile communication terminal 1, first, the control unit 6 detects a transmission band and a reception band related to data communication (S701). Next, the control unit 6 calculates the frequency band of the intermodulation wave generated by the radio wave transmitted in the LTE communication transmission band and the wireless LAN channel transmission band detected in S701 (S702). Then, the control unit 6 determines whether or not the frequency band of the intermodulation wave calculated in S702 overlaps the reception band of LTE communication (S703). When the frequency band of the intermodulation wave overlaps with the reception band of LTE communication (YES in S703), the control unit 6 switches from the normal mode to the low interference mode, and reduces the transmission power of WiFi communication compared to the normal mode. (S704). The control unit 6 controls the power amplifier 49 to reduce the transmission power of WiFi communication. Specifically, the control unit 6 generates radio waves of intermodulation waves generated according to the transmission power of LTE communication and the transmission antenna used for LTE communication (inter-antenna isolation between the WiFi antenna 41). Control is performed so that the strength is such that the sensitivity deterioration of LTE reception falls within an allowable range.
次に、本発明の実施形態3に係る携帯通信端末1の処理について、図7を参照して説明する。図7は、本実施形態に係る携帯通信端末1の処理の実施例1を示すフローチャートである。なお、S701~S703の処理は、実施形態1のS501~S503の処理と同様であるので、詳細な説明は省略する。携帯通信端末1において、まず、制御部6は、データ通信に係る送信帯域、及び、受信帯域を検出する(S701)。次に、制御部6は、S701で検出した、LTE通信の送信帯域と、無線LANチャンネルの送信帯域とで送信される電波により発生する相互変調波の周波数帯を計算する(S702)。そして、制御部6は、S702で計算した相互変調波の周波数帯がLTE通信の受信帯域に重なるか否かを判定する(S703)。相互変調波の周波数帯がLTE通信の受信帯域に重なる場合に(S703のYES)、制御部6は、通常モードから低干渉モードに切り替え、及びWiFi通信の送信電力を通常モード時よりも低減する(S704)。制御部6は、パワーアンプ49を制御することにより、WiFi通信の送信電力を低減する。具体的には、制御部6は、LTE通信の送信電力、及び、LTE通信に使用している送信アンテナ(とWiFiアンテナ41とのアンテナ間アイソレーション)に応じて、発生する相互変調波の電波強度が、LTE受信の感度劣化が許容範囲内となるような電波強度になるように制御する。 <Handling of mobile communication terminals>
Next, processing of the
例えば、LTE無線部7が電波の送信のために使用するアンテナ、LTE無線部7の送信電力、及び、WiFi無線部8の送信電力をそれぞれ変化させながら、LTE無線部7の受信感度の劣化を予め測定する。そして、LTE無線部7が電波の送信のために使用するアンテナ、及び、LTE無線部7の送信電力が与えられたとき、受信感度の劣化を許容範囲内にするために、WiFi無線部8の送信電力をどの程度低減すればよいかを予め算出しておき、制御部6が参照可能なテーブル等に記憶しておく。そして、制御部6は、当該テーブルを参照して、WiFi無線部8の送信電力を低減すればよい。
For example, while changing the antenna used by the LTE radio unit 7 for radio wave transmission, the transmission power of the LTE radio unit 7, and the transmission power of the WiFi radio unit 8, the reception sensitivity of the LTE radio unit 7 is degraded. Measure in advance. Then, when the antenna used by the LTE radio unit 7 for transmitting radio waves and the transmission power of the LTE radio unit 7 are given, the WiFi radio unit 8 The degree to which the transmission power should be reduced is calculated in advance and stored in a table or the like that can be referred to by the control unit 6. And the control part 6 should just reduce the transmission power of the WiFi radio | wireless part 8 with reference to the said table.
及び制御部6は、例えば、メインアンテナ21及びサブアンテナ22の送信電力が大きいほど、WiFiアンテナ41の送信電力を大きく低減するようにしてもよい。また、制御部6は、メインアンテナ21をLTE通信の送信アンテナとして使用している場合には、メインアンテナ21とWiFiアンテナ41とのアンテナ間アイソレーションが高いので、WiFiアンテナ41の送信電力を少し下げる。一方、サブアンテナ22をLTE通信の送信アンテナとして使用している場合には、メインアンテナ21とWiFiアンテナ41とのアンテナ間アイソレーションが低いので、WiFiアンテナ41の送信電力を大きく下げるようにしてもよい。また、制御部6は、LTE通信の送信電力、及び、LTE通信に使用している送信アンテナの何れか一方を考慮して、WiFi通信の送信電力を低減するようにしてもよい。
For example, the control unit 6 may reduce the transmission power of the WiFi antenna 41 as the transmission power of the main antenna 21 and the sub antenna 22 increases. Further, when the main antenna 21 is used as a transmission antenna for LTE communication, the control unit 6 has a high inter-antenna isolation between the main antenna 21 and the WiFi antenna 41, so that the transmission power of the WiFi antenna 41 is slightly increased. Lower. On the other hand, when the sub antenna 22 is used as a transmission antenna for LTE communication, since the isolation between the main antenna 21 and the WiFi antenna 41 is low, the transmission power of the WiFi antenna 41 may be greatly reduced. Good. Further, the control unit 6 may reduce the transmission power of the WiFi communication in consideration of either the transmission power of the LTE communication or the transmission antenna used for the LTE communication.
S703において、相互変調波の周波数帯がLTE通信の受信帯域に重ならない場合(S703のNO)、制御部6は、相互変調波による受信アンテナの感度劣化はないと判断して、S704の処理をスキップすることにより、WiFi通信の送信電力を低減することはしない。
In S703, when the frequency band of the intermodulation wave does not overlap with the reception band of LTE communication (NO in S703), the control unit 6 determines that there is no sensitivity deterioration of the reception antenna due to the intermodulation wave, and performs the process of S704. By skipping, the transmission power of WiFi communication is not reduced.
〔付記事項〕
上記において、本発明の実施形態1~3を個別に説明したが、携帯通信端末1は、各実施形態に係る処理の何れか1つを実施してもよいし、実施形態1及び3に係る処理を同時に実行してもよいし、実施形態2及び3に係る処理を同時に実行してもよい。 [Additional Notes]
In the above, the first to third embodiments of the present invention have been described individually. However, themobile communication terminal 1 may perform any one of the processes according to each embodiment, or according to the first and third embodiments. The processing may be executed simultaneously, or the processing according to the second and third embodiments may be executed simultaneously.
上記において、本発明の実施形態1~3を個別に説明したが、携帯通信端末1は、各実施形態に係る処理の何れか1つを実施してもよいし、実施形態1及び3に係る処理を同時に実行してもよいし、実施形態2及び3に係る処理を同時に実行してもよい。 [Additional Notes]
In the above, the first to third embodiments of the present invention have been described individually. However, the
〔まとめ〕
本発明の態様1に係る無線通信装置(携帯通信端末1)は、電波を送受信する第1無線部(LTE無線部7)、電波を少なくとも送信する第2無線部(WiFi無線部8)、並びに、第1無線部が送信する電波と第2無線部が送信する電波とから生じる相互変調波の周波数を、第1無線部の送信周波数と第2無線部の送信周波数とから算出し、算出した該相互変調波の周波数と第1無線部の受信周波数とが重なるときに、第1無線部及び第2無線部の少なくとも一方の動作を通常モードから低干渉モードに切り替える制御部(6)を備えている。上記の構成によれば、無線通信装置の制御部は、第1無線部及び第2無線部が送信する電波による相互変調波の周波数と第1無線部の受信周波数が重なるときに、第1無線部及び第2無線部の少なくとも一方の動作を通常モードから低干渉モードに切り替える。このように、第1無線部が送信する電波と第2無線部が送信する電波とから生じる相互変調波が、第1無線部の受信感度に悪影響を及ぼす可能性が高い場合に、第1無線部及び第2無線部の少なくとも一方の動作を通常モードから低干渉モードに切り替えることで、相互変調波による受信感度の劣化を低減することができる。 [Summary]
A wireless communication device (mobile communication terminal 1) according toaspect 1 of the present invention includes a first wireless unit (LTE wireless unit 7) that transmits and receives radio waves, a second wireless unit (WiFi wireless unit 8) that transmits at least radio waves, and The frequency of the intermodulation wave generated from the radio wave transmitted by the first radio unit and the radio wave transmitted by the second radio unit is calculated from the transmission frequency of the first radio unit and the transmission frequency of the second radio unit. A control unit (6) for switching the operation of at least one of the first radio unit and the second radio unit from the normal mode to the low interference mode when the frequency of the intermodulation wave and the reception frequency of the first radio unit overlap; ing. According to said structure, the control part of a radio | wireless communication apparatus is 1st radio | wireless when the frequency of the intermodulation wave by the electromagnetic wave which a 1st radio | wireless part and a 2nd radio | wireless part transmit overlaps with the receiving frequency of a 1st radio | wireless part. The operation of at least one of the unit and the second radio unit is switched from the normal mode to the low interference mode. Thus, when the intermodulation wave generated from the radio wave transmitted by the first radio unit and the radio wave transmitted by the second radio unit is highly likely to adversely affect the reception sensitivity of the first radio unit, the first radio unit By switching the operation of at least one of the unit and the second radio unit from the normal mode to the low interference mode, it is possible to reduce deterioration of reception sensitivity due to the intermodulation wave.
本発明の態様1に係る無線通信装置(携帯通信端末1)は、電波を送受信する第1無線部(LTE無線部7)、電波を少なくとも送信する第2無線部(WiFi無線部8)、並びに、第1無線部が送信する電波と第2無線部が送信する電波とから生じる相互変調波の周波数を、第1無線部の送信周波数と第2無線部の送信周波数とから算出し、算出した該相互変調波の周波数と第1無線部の受信周波数とが重なるときに、第1無線部及び第2無線部の少なくとも一方の動作を通常モードから低干渉モードに切り替える制御部(6)を備えている。上記の構成によれば、無線通信装置の制御部は、第1無線部及び第2無線部が送信する電波による相互変調波の周波数と第1無線部の受信周波数が重なるときに、第1無線部及び第2無線部の少なくとも一方の動作を通常モードから低干渉モードに切り替える。このように、第1無線部が送信する電波と第2無線部が送信する電波とから生じる相互変調波が、第1無線部の受信感度に悪影響を及ぼす可能性が高い場合に、第1無線部及び第2無線部の少なくとも一方の動作を通常モードから低干渉モードに切り替えることで、相互変調波による受信感度の劣化を低減することができる。 [Summary]
A wireless communication device (mobile communication terminal 1) according to
本発明の態様2に係る無線通信装置は、上記態様1において、第1無線部が、予め低干渉モードにおいて使用すると設定されている低干渉アンテナ(メインアンテナ21)と、予め低干渉モードにおいて使用しないと設定されている非低干渉アンテナ(サブアンテナ22)とを備えており、第1無線部が、上記通常モードでは、上記低干渉アンテナ及び上記非低干渉アンテナから選択されるアンテナを使用して電波を送信し、上記低干渉モードでは、上記低干渉アンテナのみを使用して電波を送信することとしてもよい。上記の構成によれば、無線通信装置の第1無線部は、低干渉アンテナと、非低干渉アンテナとを備えている。そして、第1無線部は、通常モードでは、低干渉アンテナ及び非低干渉アンテナから選択されるアンテナを使用して電波を送信し、低干渉モードでは、低干渉アンテナのみを使用して電波を送信する。したがって、無線通信装置において、相互変調波による受信感度の劣化を低減することができる。
The wireless communication apparatus according to aspect 2 of the present invention is the wireless communication apparatus according to aspect 1, in which the first wireless unit is used in advance in the low interference mode and the low interference antenna (main antenna 21) set to be used in the low interference mode in advance. A non-low interference antenna (sub-antenna 22) that is set not to be used, and the first radio unit uses an antenna selected from the low interference antenna and the non-low interference antenna in the normal mode. In the low interference mode, the radio wave may be transmitted using only the low interference antenna. According to said structure, the 1st radio | wireless part of the radio | wireless communication apparatus is provided with the low interference antenna and the non-low interference antenna. The first radio unit transmits radio waves using an antenna selected from a low interference antenna and a non-low interference antenna in the normal mode, and transmits radio waves using only the low interference antenna in the low interference mode. To do. Therefore, in the wireless communication device, it is possible to reduce deterioration in reception sensitivity due to intermodulation waves.
本発明の態様3に係る無線通信装置は、上記態様2において、第1無線部が、上記通常モードでは、上記低干渉アンテナ及び上記非低干渉アンテナを使用して送信ダイバーシティを行い、上記低干渉モードでは、上記送信ダイバーシティを行わずに、上記低干渉アンテナのみを使用して電波を送信することとしてもよい。上記の構成によれば、無線通信装置の第1無線部は、通常モードでは、低干渉アンテナ及び非低干渉アンテナを使用して送信ダイバーシティを行い、低干渉モードでは、送信ダイバーシティを行わずに、低干渉アンテナのみを使用して電波を送信する。すなわち、無線通信装置において、極力送信ダイバーシティを実施するとともに、受信感度の劣化の可能性があるときに限り、送信ダイバーシティを停止する。したがって、効率のよいデータ送信を行うことができる。
The wireless communication apparatus according to aspect 3 of the present invention is the wireless communication apparatus according to aspect 2, in which the first wireless unit performs transmission diversity using the low interference antenna and the non-low interference antenna in the normal mode, and performs the low interference. In the mode, radio waves may be transmitted using only the low interference antenna without performing the transmission diversity. According to the above configuration, the first wireless unit of the wireless communication apparatus performs transmission diversity using the low interference antenna and the non-low interference antenna in the normal mode, and does not perform transmission diversity in the low interference mode. Transmit radio waves using only low-interference antennas. That is, in the wireless communication apparatus, transmission diversity is performed as much as possible, and transmission diversity is stopped only when there is a possibility of deterioration in reception sensitivity. Therefore, efficient data transmission can be performed.
本発明の態様4に係る無線通信装置は、上記態様1から3において、上記制御部が、上記算出した相互変調波の周波数と第1無線部の受信周波数とが重なり、かつ、第1無線部の送信電力及び第2無線部の送信電力が所定の条件を満たすときに、第1無線部の動作を通常モードから低干渉モードに切り替えることとしてもよい。上記の構成によれば、無線通信装置の制御部は、相互変調波の周波数と第1無線部の受信周波数との重なりだけでなく、第1無線部が送信する電波、及び、第2無線部が送信する電波の送信電力、すなわち、相互変調波の電波強度も考慮して、第1無線部の動作を通常モードから低干渉モードに切り替える。したがって、受信アンテナの感度劣化の可能性が高いときに低干渉モードに切り替えるので、通常モードを極力継続しながら、相互変調波による受信感度の劣化を低減することができる。
The wireless communication apparatus according to aspect 4 of the present invention is the wireless communication apparatus according to aspects 1 to 3, wherein the control unit overlaps the calculated frequency of the intermodulation wave and the reception frequency of the first wireless unit, and the first wireless unit. When the transmission power of the second radio unit and the transmission power of the second radio unit satisfy a predetermined condition, the operation of the first radio unit may be switched from the normal mode to the low interference mode. According to the above configuration, the control unit of the wireless communication device not only overlaps the frequency of the intermodulation wave and the reception frequency of the first wireless unit, but also includes the radio wave transmitted by the first wireless unit and the second wireless unit. The operation of the first radio unit is switched from the normal mode to the low interference mode in consideration of the transmission power of the radio wave transmitted by the radio, that is, the radio wave intensity of the intermodulation wave. Therefore, since the low-interference mode is switched when there is a high possibility that the sensitivity of the receiving antenna is deteriorated, it is possible to reduce the deterioration of the reception sensitivity due to the intermodulation wave while continuing the normal mode as much as possible.
本発明の態様5に係る無線通信装置は、上記態様1において、第2無線部が、低干渉モードでは、通常モードよりも小さい送信電力で電波を送信することとしてもよい。上記の構成によれば、第2無線部が低干渉モードでは通常モードよりも小さい送信電力で電波を送信する。これにより、第2無線部の送信電力の値により変動する、相互変調波の電波強度が低減される。したがって、無線通信装置において、相互変調波による受信感度の劣化を低減することができる。
In the wireless communication device according to aspect 5 of the present invention, in the above aspect 1, in the low interference mode, the second wireless unit may transmit radio waves with transmission power smaller than that in the normal mode. According to said structure, a 2nd radio | wireless part transmits an electromagnetic wave with transmission power smaller than normal mode in low interference mode. As a result, the radio field intensity of the intermodulation wave that varies depending on the value of the transmission power of the second radio unit is reduced. Therefore, in the wireless communication device, it is possible to reduce deterioration in reception sensitivity due to intermodulation waves.
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention. Furthermore, a new technical feature can be formed by combining the technical means disclosed in each embodiment.
本発明は、無線通信装置に利用することができる。
The present invention can be used for a wireless communication device.
1 携帯通信端末(無線通信装置) 6 制御部 7 LTE無線部(第1無線部)
8 WiFi無線部(第2無線部) 21 メインアンテナ(低干渉アンテナ) 22
サブアンテナ(非低干渉アンテナ) DESCRIPTION OFSYMBOLS 1 Portable communication terminal (wireless communication apparatus) 6 Control part 7 LTE radio | wireless part (1st radio | wireless part)
8 WiFi wireless unit (second wireless unit) 21 Main antenna (low interference antenna) 22
Sub antenna (non-low interference antenna)
8 WiFi無線部(第2無線部) 21 メインアンテナ(低干渉アンテナ) 22
サブアンテナ(非低干渉アンテナ) DESCRIPTION OF
8 WiFi wireless unit (second wireless unit) 21 Main antenna (low interference antenna) 22
Sub antenna (non-low interference antenna)
Claims (5)
- 電波を送受信する第1無線部、
電波を少なくとも送信する第2無線部、並びに、
第1無線部が送信する電波と第2無線部が送信する電波とから生じる相互変調波の周波数を、第1無線部の送信周波数と第2無線部の送信周波数とから算出し、算出した該相互変調波の周波数と第1無線部の受信周波数とが重なるときに、第1無線部及び第2無線部の少なくとも一方の動作を通常モードから低干渉モードに切り替える制御部
を備えていることを特徴とする無線通信装置。 A first wireless unit for transmitting and receiving radio waves,
A second wireless unit that transmits at least radio waves, and
The frequency of the intermodulation wave generated from the radio wave transmitted by the first radio unit and the radio wave transmitted by the second radio unit is calculated from the transmission frequency of the first radio unit and the transmission frequency of the second radio unit. A controller that switches the operation of at least one of the first radio unit and the second radio unit from the normal mode to the low interference mode when the frequency of the intermodulation wave and the reception frequency of the first radio unit overlap. A wireless communication device. - 第1無線部は、予め低干渉モードにおいて使用すると設定されている低干渉アンテナと、予め低干渉モードにおいて使用しないと設定されている非低干渉アンテナとを備えており、
第1無線部は、
上記通常モードでは、上記低干渉アンテナ及び上記非低干渉アンテナから選択されるアンテナを使用して電波を送信し、
上記低干渉モードでは、上記低干渉アンテナのみを使用して電波を送信する
ことを特徴とする請求項1に記載の無線通信装置。 The first radio unit includes a low interference antenna that is set in advance to be used in the low interference mode and a non-low interference antenna that is set in advance to be not used in the low interference mode.
The first radio unit is
In the normal mode, radio waves are transmitted using an antenna selected from the low interference antenna and the non-low interference antenna,
The radio communication apparatus according to claim 1, wherein in the low interference mode, radio waves are transmitted using only the low interference antenna. - 第1無線部は、
上記通常モードでは、上記低干渉アンテナ及び上記非低干渉アンテナを使用して送信ダイバーシティを行い、
上記低干渉モードでは、上記送信ダイバーシティを行わずに、上記低干渉アンテナのみを使用して電波を送信する
ことを特徴とする請求項2に記載の無線通信装置。 The first radio unit is
In the normal mode, transmit diversity is performed using the low interference antenna and the non-low interference antenna,
The radio communication apparatus according to claim 2, wherein, in the low interference mode, radio waves are transmitted using only the low interference antenna without performing the transmission diversity. - 上記制御部は、
上記算出した相互変調波の周波数と第1無線部の受信周波数とが重なり、かつ、第1無線部の送信電力及び第2無線部の送信電力が所定の条件を満たすときに、第1無線部の動作を通常モードから低干渉モードに切り替える
ことを特徴とする請求項1から3の何れか一項に記載の無線通信装置。 The control unit
When the calculated frequency of the intermodulation wave and the reception frequency of the first radio unit overlap, and the transmission power of the first radio unit and the transmission power of the second radio unit satisfy a predetermined condition, the first radio unit The radio communication apparatus according to claim 1, wherein the operation is switched from the normal mode to the low interference mode. - 第2無線部は、低干渉モードでは、通常モードよりも小さい送信電力で電波を送信することを特徴とする請求項1に記載の無線通信装置。 The radio communication apparatus according to claim 1, wherein the second radio unit transmits radio waves with a lower transmission power than in the normal mode in the low interference mode.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015101212 | 2015-05-18 | ||
JP2015-101212 | 2015-05-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016185871A1 true WO2016185871A1 (en) | 2016-11-24 |
Family
ID=57320007
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/062777 WO2016185871A1 (en) | 2015-05-18 | 2016-04-22 | Wireless communication device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016185871A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110197944A (en) * | 2018-02-26 | 2019-09-03 | 矢崎总业株式会社 | Integrated antenna module and onboard system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009267678A (en) * | 2008-04-24 | 2009-11-12 | Panasonic Corp | Communication device and communication method |
WO2013089891A1 (en) * | 2011-12-12 | 2013-06-20 | Apple Inc. | Wireless electronic device with antenna switching circuitry |
JP2015041791A (en) * | 2013-08-20 | 2015-03-02 | シャープ株式会社 | Portable terminal device |
-
2016
- 2016-04-22 WO PCT/JP2016/062777 patent/WO2016185871A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009267678A (en) * | 2008-04-24 | 2009-11-12 | Panasonic Corp | Communication device and communication method |
WO2013089891A1 (en) * | 2011-12-12 | 2013-06-20 | Apple Inc. | Wireless electronic device with antenna switching circuitry |
JP2015041791A (en) * | 2013-08-20 | 2015-03-02 | シャープ株式会社 | Portable terminal device |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110197944A (en) * | 2018-02-26 | 2019-09-03 | 矢崎总业株式会社 | Integrated antenna module and onboard system |
JP2019149612A (en) * | 2018-02-26 | 2019-09-05 | 矢崎総業株式会社 | Integrated antenna module and on-vehicle system |
US11056775B2 (en) | 2018-02-26 | 2021-07-06 | Yazaki Corporation | Integrated antenna module and in-vehicle system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101803342B1 (en) | Apparatus and method for a multiband radio operating in a wireless network | |
US10985461B2 (en) | Terminal device | |
US9161386B1 (en) | Hybrid LMR transceiver with LTE and dynamic antenna control | |
US12063017B2 (en) | Multi-mode power amplifier system and related wireless devices and methods | |
US11916577B2 (en) | Systems and methods for duplexer circuits having signal cancellation paths | |
US10499352B2 (en) | Power amplification module for multiple bands and multiple standards | |
CN112532282B (en) | Communication method and terminal device | |
US11855328B2 (en) | Remote compensators for mobile devices | |
US11863217B2 (en) | Module arranged to bidirectionally pass coupled power signal | |
US9344264B2 (en) | Reversible radio architecture between transmission and reception functions in a mobile communication system | |
US20240063831A1 (en) | Configurable filter bands for radio frequency communication | |
JP6035120B2 (en) | Energy consumption reduction method and wireless communication terminal | |
WO2016185871A1 (en) | Wireless communication device | |
US20160119016A1 (en) | Antenna switching in a communication circuit | |
US11901920B2 (en) | Front-end circuit, diversity circuit, and communication device | |
CN112600582A (en) | Radio frequency circuit and electronic equipment | |
JP7504709B2 (en) | Repeater Device | |
US20240244540A1 (en) | Transmission power determination for forwarding nodes in wireless communication systems | |
US20240333317A1 (en) | Diplexed extractor based on phase cancellation of overlapping filters | |
CN116980932A (en) | Base station and communication method thereof | |
JP2004289713A (en) | Frequency convertor | |
JP2013070147A (en) | Base station device and base station control method | |
JP2009206649A (en) | Radio apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16796265 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16796265 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |