Nothing Special   »   [go: up one dir, main page]

WO2016185515A1 - Control device and wireless module - Google Patents

Control device and wireless module Download PDF

Info

Publication number
WO2016185515A1
WO2016185515A1 PCT/JP2015/064036 JP2015064036W WO2016185515A1 WO 2016185515 A1 WO2016185515 A1 WO 2016185515A1 JP 2015064036 W JP2015064036 W JP 2015064036W WO 2016185515 A1 WO2016185515 A1 WO 2016185515A1
Authority
WO
WIPO (PCT)
Prior art keywords
control unit
temperature
radio wave
wireless module
communication
Prior art date
Application number
PCT/JP2015/064036
Other languages
French (fr)
Japanese (ja)
Inventor
聡平 海野
真吾 柳本
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Priority to PCT/JP2015/064036 priority Critical patent/WO2016185515A1/en
Publication of WO2016185515A1 publication Critical patent/WO2016185515A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits

Definitions

  • Embodiments described herein relate generally to a control device and a wireless module.
  • an MCU Micro Control
  • the unit has adjusted the radio wave transmission output by controlling the RF-IC (Radio-Frequency-Integrated-Circuit).
  • the apparatus since the temperature sensor is provided in the communication module, the apparatus itself may be increased in size or cost may be increased.
  • the problem to be solved by the present invention is to provide a control device and a wireless module that can output a radio wave having a desired transmission output with a simpler configuration.
  • the control device of the embodiment includes a wireless module, a first temperature sensor, and a control unit.
  • the wireless module includes a radio wave generation unit that generates radio waves for performing wireless communication, and a communication control unit that controls the radio wave generation unit.
  • the first temperature sensor is disposed in the vicinity of the control unit that controls the wireless module, and outputs a signal indicating the detected temperature to the control unit.
  • the control unit is a control unit that communicates with an external device via the wireless module and controls a control target based on information obtained by communication, and based on a signal input from the first temperature sensor Then, a signal indicating the temperature is transmitted to the communication control unit of the wireless module.
  • the communication control unit of the wireless module controls the intensity of the radio wave generated by the radio wave generation unit based on the signal received from the control unit.
  • FIG. The flowchart which shows the flow of the process which MCU36 of 2nd Embodiment performs.
  • control device controls an inverter unit that converts electric power supplied from a DC power source into AC.
  • FIG. 1 is a diagram illustrating a configuration of an inverter system 1 according to the first embodiment.
  • the inverter system 1 of the first embodiment includes a central control device 10 and a plurality of inverter units 20-1 to 20-n.
  • DC power sources 100-1 to 100-n are connected to the inverter units 20-1 to 20-n, respectively.
  • the plurality of inverter units 20-1 to 20-n are not distinguished, they are simply referred to as the inverter unit 20.
  • the DC power supplies 100-1 to 100-n are not distinguished, they are simply expressed as the DC power supply 100.
  • Each inverter unit 20 converts DC power generated by the DC power source 100 into AC power and outputs the AC power to the power line 2 connected to a system power source (not shown). Thereby, the inverter system 1 links the plurality of DC power supplies 100 and the system power supply to supply AC power to a load (not shown) connected to the power line 2.
  • Each inverter unit 20 transmits the operating state of the inverter unit 20 itself, information held by the inverter unit 20, and the like to the central control device 10.
  • the DC power supply 100 generates DC power and supplies it to inverter unit 20.
  • the DC power supply 100 is a solar cell panel, for example.
  • Each DC power source 100 is, for example, one solar cell panel among a plurality of solar cell panels installed on the roof of a house.
  • a solar cell panel is illustrated as the DC power source 100, but the DC power source 100 is not limited to the solar cell panel, and may be another type of DC power source such as a fuel cell.
  • one inverter unit 20 is provided for the DC power supply 100, the present invention is not limited to this, and one inverter unit 20 may be provided for a plurality of DC power supplies 100, A plurality of inverter units 20 may be provided for the DC power supply 100.
  • the central control device 10 includes a wireless communication unit 12, a network communication unit 14, a central control unit 15, and a display unit 16.
  • the wireless communication unit 12 is a communication interface for performing wireless communication with the inverter unit 20. For example, communication using the low-power wireless 920 [MHz] band is performed between the wireless communication unit 12 and the wireless module 30 of the inverter unit 20.
  • the network communication unit 14 is a communication interface for connecting to the network NW.
  • the network NW is, for example, a WAN (Wide Area Network) or a LAN (Local Area Network).
  • the central control unit 15 centrally controls the plurality of inverter units 20 based on the information received by the wireless communication unit 12.
  • the central control unit 15 controls the operating state (operation or stop) of the inverter unit 20, the amount of AC power output from the inverter unit 20, and the like.
  • the display unit 16 is a display device such as an LED digital display unit having a plurality of segments, an LCD (Liquid Crystal Display), an organic EL (Electroluminescence), or the like.
  • the display unit 16 displays the state of control by the central control unit 15 and the like.
  • FIG. 2 is a diagram showing the configuration of the inverter unit 20 of the first embodiment in more detail.
  • the inverter unit 20 includes a wireless module 30, a CPU (Central Processing Unit) 40, a first temperature sensor 42, and a conversion device 50.
  • the CPU 40 is an example of a “control unit”.
  • the wireless module 30 of the inverter unit 20 includes an antenna 32, an RF-IC 34, and an MCU 36.
  • the antenna 32 radiates a radio wave on which transmission contents are superimposed in the air and outputs the received radio wave to the RF-IC 34.
  • the RF-IC 34 performs modulation and power amplification to generate a radio wave on which the transmission content instructed from the MCU 36 is superimposed, and radiates the generated radio wave to the antenna 32.
  • the RF-IC 34 demodulates the radio wave received by the antenna 32, generates a signal corresponding to the received radio wave, and outputs the signal to the MCU 36.
  • the MCU 36 controls the RF-IC 34 based on the information (transmission contents) received from the CPU 40 to radiate a desired radio wave to the antenna 32. Further, the MCU 36 acquires a signal corresponding to the radio wave received by the antenna 32 from the RF-IC 34, and transmits information based on the acquired signal to the CPU 40.
  • the CPU 40 controls the conversion device 50 and transfers a signal input from the first temperature sensor 42 to the wireless module 30 to assist the correction process in the wireless module 30. This will be described later.
  • the conversion device 50 includes, for example, an inverter, a drive unit, etc. (not shown).
  • the inverter includes a plurality of switching elements, and converts DC power into AC power by performing on / off control of the switching elements based on a gate control signal output by the drive unit.
  • the drive unit includes a PWM (Pulse Width Modulation) control unit, a gate drive unit, and the like.
  • the PWM control unit calculates the on / off time of the switching element based on the signal input from the CPU 40.
  • the PWM control unit generates a PWM signal based on the calculated on / off time, and outputs the PWM signal to the gate drive unit.
  • the gate drive unit turns each switching element on and off based on the PWM signal generated by the PWM control unit.
  • the CPU 40 performs various controls as follows.
  • the CPU 40 detects the frequency of the AC power output from the inverter unit 20, and calculates the advance amount or delay amount of the phase angle based on the relationship between the detected frequency and the rated frequency. Further, the CPU 40 changes the phase angle of the AC voltage supplied to the load by controlling the conversion device 50 based on the calculated advance amount or delay amount of the phase angle. Further, the CPU 40 supplies the wireless module 30 with the amount of direct current power supplied from the direct current power source 100, the amount of alternating current power obtained by converting the direct current power into alternating current power, information indicating the operation state or the stop state of the own device, and the like. And transmitted to the centralized control device 10.
  • the first temperature sensor 42 is installed in the vicinity of the CPU 40 on the same substrate as the substrate on which the CPU 40 is disposed. “Nearby” means a positional relationship such that it can be equated with the temperature of the CPU 40, for example, that the interval is within about 1 [cm]. Further, “near” includes being installed in contact with the CPU 40.
  • the first temperature sensor 42 is a thermistor, for example. The first temperature sensor 42 outputs a signal indicating the detected temperature to the CPU 40.
  • the CPU 40 transmits a signal indicating the temperature to the wireless module 30 based on the temperature indicated by the signal input from the first temperature sensor 42.
  • the CPU 40 may directly transfer the signal input from the first temperature sensor 42 to the wireless module 30, or the signal input from the first temperature sensor 42 may be in a format suitable for communication with the wireless module 30. It may be converted into and transmitted to the wireless module 30.
  • the CPU 40 transmits a signal indicating temperature to the wireless module 30 at a predetermined cycle, for example.
  • FIG. 3 is a flowchart showing a flow of processing executed by the MCU 36 of the first embodiment.
  • the MCU 36 receives a signal indicating the temperature detected by the first temperature sensor 42 from the CPU 40 (step S100).
  • the MCU 36 determines whether or not the temperature obtained from the signal indicating the temperature received in step S100 is equal to or lower than the predetermined temperature T1 (step S102).
  • the MCU 36 When the temperature obtained from the signal indicating the temperature received in step S100 is not equal to or lower than the predetermined temperature T1 (when the temperature exceeds the predetermined temperature T1), the MCU 36 causes the RF-IC 34 to generate a radio wave and the generated radio wave to the antenna 32. Radiate (step S106). In the first embodiment, when the MCU 36 obtains a negative determination in step S102, the MCU 36 generates the maximum output radio wave that can be output by the wireless module 30 in the RF-IC 34, and radiates the generated radio wave to the antenna 32. Shall be allowed to.
  • the MCU 36 determines that the transmission output (intensity) of the radio wave radiated from the antenna 32 is equal to or lower than the upper limit value. Control the IC 34 (step S104). Next, the MCU 36 causes the RF-IC 34 to generate a radio wave and radiate the radio wave generated by the antenna 32 based on the process of step S104 (step S106). Thereby, the processing of this flowchart is completed.
  • FIG. 4 is a diagram for explaining the limitation on the transmission output of the radio wave radiated from the antenna 32 of the wireless module 30.
  • the vertical axis represents the transmission output of radio waves radiated from the antenna 32
  • the horizontal axis represents the temperature around the wireless module 30 or the CPU 40.
  • the transition line Tr indicates the relationship between the transmission output of the radio wave radiated from the wireless module 30 and the temperature around the wireless module 30. As shown in the figure, when the temperature around the wireless module 30 decreases, the transmission output of radio waves radiated by the wireless module 30 tends to increase even if the output set in the RF-IC 34 is constant.
  • the MCU 36 sets the transmission output slightly lower than that (for example, 19.5 [mW]) as the upper limit value and limits the radio wave transmission output to the upper limit value or less.
  • the temperature at which the transition line Tr intersects the upper limit value (zero degree in FIG. 4) can be considered as the threshold value.
  • the inverter system 1 does not include a temperature sensor that detects the temperature around the wireless module 30, it may not be appropriate to set the temperature at which the transition line Tr intersects the upper limit value as a threshold (predetermined temperature).
  • the control line Tr1 in FIG. 4 is a control line when the transition line Tr intersects the upper limit value as a threshold value.
  • a first temperature sensor 42 that outputs a signal indicating the detected temperature to the CPU 40 is provided.
  • the temperature detected by the first temperature sensor 42 tends to be different from the temperature around the wireless module 30.
  • the temperature detected by the first temperature sensor 42 may tend to be higher than the temperature detected by the temperature sensor that detects the temperature around the wireless module 30 due to heat generated by the CPU 40 or the like. Therefore, the MPU 36 according to the first embodiment performs transmission output restriction control by offsetting the threshold value for temperature to the high temperature side. Specifically, the MPU 36 shifts the threshold value for temperature to a higher temperature side (for example, T1) than the temperature corresponding to the intersection of the transition line Tr and the upper limit value. As a result, it is possible to absorb the deviation of the actual temperature caused by the location where the temperature sensor is attached.
  • the control line Tr2 in FIG. 4 is a preferable control line when the threshold value T1 for temperature is shifted to the high temperature side.
  • communication using the 2.4 [GHz] band may be performed between the wireless communication unit 12 and the wireless module 30 of the inverter unit 20. Further, the CPU 40 may transmit a signal for causing the RF-IC 34 to execute transmission output restriction control to the MCU 36 based on the temperature detected by the first temperature sensor 42.
  • the first temperature sensor 42 is disposed in the vicinity of the CPU 40, and the CPU 40 outputs a signal indicating the temperature based on the signal input from the first temperature sensor 42. Since the control is performed to limit the intensity of the radio wave generated by the RF-IC 34 based on the temperature obtained from the signal received by the MCU 36 and transmitted to the MCU 36 of the wireless module 30, a desired transmission output can be obtained with a simpler configuration. Radio waves can be output.
  • the MCU 36 controls the RF-IC 34 so that the transmission output of the radio wave radiated to the antennan 32 is constant based on the signal indicating the temperature detected by the first temperature sensor 42. .
  • FIG. 5 is a flowchart showing a flow of processing executed by the MCU 36 of the second embodiment.
  • the MCU 36 receives a signal indicating the temperature detected by the first temperature sensor 42 from the CPU 40 (step S200).
  • the MCU 36 determines whether or not the temperature obtained from the signal indicating the temperature received in step S200 is equal to or lower than the predetermined temperature T2 (step S202).
  • the MCU 36 controls the RF-IC 34 so as to reduce the transmission output of the radio wave radiated from the antenna 32 (step S204).
  • the MCU 36 increases the RF-IC 34 so as to increase the transmission output of the radio wave radiated from the antenna 32. Is controlled (step S206).
  • the MCU 36 causes the RF-IC 34 to generate radio waves and radiate the radio waves generated from the antenna 32 based on the processing of step S204 or step S206 (step S208). Thereby, the processing of this flowchart is completed.
  • FIG. 6 is a diagram for explaining the limitation on the transmission output of radio waves radiated from the antenna 32 of the wireless module 30 according to the second embodiment.
  • TA indicates the target value of the transmission output of the radiated radio wave.
  • a transition line Tr indicates a transmission output of radio waves that are output when the MCU 36 applies a certain amount of power to the RF-IC 34.
  • the control line Tr3 is controlled so as to decrease the transmission output when the temperature is equal to or lower than the predetermined temperature T2, and the control line when the transmission output is controlled to increase when the temperature exceeds the predetermined temperature T2. It is.
  • the predetermined temperature T2 is a temperature shifted to a higher temperature side than the temperature at which the transition line Tr intersects the predetermined temperature. For this reason, as indicated by the control line Tr3, the transmission output appears to be lower than TA, but in actuality, the transmission output is controlled to approach TA due to temperature deviation.
  • a transition line Tr4 indicates the result when control is performed using the control line Tr3. As a result, the MCU 36 can cause the antenna 32 to emit a radio wave having a transmission output that matches the target value.
  • the first temperature sensor 42 is disposed in the vicinity of the CPU 40, and the CPU 40 outputs a signal indicating the temperature based on the signal input from the first temperature sensor 42.
  • the radio wave having a desired transmission output is output with a simpler configuration. be able to.
  • the MCU 36 controls the transmission output of radio waves radiated from the antenna 32 based on the temperature detected by the second temperature sensor 44 provided in the inverter unit 20A.
  • FIG. 7 is a diagram showing in more detail the configuration of the inverter unit 20A of the third embodiment.
  • the inverter unit 20 ⁇ / b> A of the third embodiment includes a second temperature sensor 44 in addition to the first temperature sensor 42.
  • the second temperature sensor 44 is disposed on a substrate on which the CPU 40 of the inverter unit 20A, the conversion device 50, and the first temperature sensor 42 are disposed.
  • the second temperature sensor 44 is disposed at an end or corner on the substrate on which the CPU 40 of the inverter unit 20A, the conversion device 50, and the first temperature sensor 42 are disposed.
  • the second temperature sensor 44 is disposed at a position farther from the first temperature sensor 42 with respect to the CPU 40, for example.
  • the second temperature sensor 44 may be disposed, for example, in the vicinity of the region A1 or the region A2 in the drawing.
  • the CPU 40 transmits a signal indicating the temperature detected by the second temperature sensor 44 to the MCU 36.
  • the MCU 36 receives the signal indicating the temperature transmitted from the CPU 40 and controls the transmission output of the radio wave generated by the RF-IC 34 based on the received signal. Since the second temperature sensor 44 is farther from the CPU 40 than the first temperature sensor 42, the second temperature sensor 44 is less susceptible to temperature changes caused by heat generated by the CPU 40. Thereby, the MCU 36 can radiate the radio wave of a desired transmission output to the antenna 32 with higher accuracy.
  • the CPU 40 transmits a signal indicating the temperature detected by the second temperature sensor 44 located far from the first temperature sensor 42 to the CPU 40.
  • the intensity of the radio wave generated by the RF-IC 34 is controlled based on the signal transmitted to the MCU 36 and received by the MCU 36. Thereby, the radio wave of a desired transmission output may be able to be output with higher accuracy.
  • the CPU 40 is a signal indicating a lower temperature among the temperature obtained from the signal indicating the temperature input by the first temperature sensor 42 and the temperature acquired from the signal indicating the temperature input by the second temperature sensor 44. Is transmitted to the MCU 36. Thereby, the MCU 36 can control the RF-IC 34 based on the temperature detected by the second temperature sensor 44 that is not easily affected by the temperature change caused by the heat generation of the CPU 40. As a result, a radio wave having a desired transmission output can be radiated to the antenna 32 with higher accuracy.
  • the CPU 40 calculates the temperature obtained from the signal indicating the temperature input by the first temperature sensor 42 and the temperature input by the second temperature sensor 44. Of the temperatures obtained from the indicated signal, a signal indicating a lower temperature is transmitted to the MCU 36, and the MCU 36 controls the transmission output of the radio wave generated by the RF-IC 34 based on the received signal. Thereby, it is possible to output a radio wave having a desired transmission output with higher accuracy.
  • the fifth embodiment will be described below. Here, the description will focus on differences from the third embodiment, and descriptions of functions and the like common to the third embodiment will be omitted.
  • a configuration diagram of the inverter unit 20 of the fifth embodiment will be described with reference to FIG.
  • the CPU 40 transmits both the signal input by the first temperature sensor 42 and the signal input by the second temperature sensor 44 to the MCU 36.
  • the MCU 36 refers to both of these signals and controls the transmission output of the radio wave generated by the RF-IC 34.
  • the MCU 36 receives a signal indicating the temperature detected by the first temperature sensor 42 and a signal indicating the temperature detected by the second temperature sensor 44 from the CPU 40.
  • the MCU 36 has a lower temperature between the temperature obtained from the received signal indicating the temperature detected by the first temperature sensor 42 and the temperature obtained from the received signal indicating the temperature detected by the second temperature sensor 44. Select the temperature.
  • the MCU 36 can control the RF-IC 34 based on a signal indicating the temperature detected by the temperature sensor that is not easily affected by the temperature change caused by the heat generation of the CPU 40.
  • the CPU 40 outputs a signal indicating the temperature input by the first temperature sensor 42 and a signal indicating the temperature input by the second temperature sensor 44.
  • the MCU 36 controls the transmission output of radio waves generated by the RF-IC 34 based on the lower temperature obtained from the received signal. Thereby, it is possible to output a radio wave having a desired transmission output with higher accuracy.
  • the CPU 40 transmits an average value or a weighted average value of the temperature detected by the first temperature sensor 42 and the temperature detected by the second temperature sensor 44 to the MCU 36, and the MCU 36 has received it.
  • the RF-IC 34 may be controlled based on the value.
  • the CPU 40 transmits both the temperature detected by the first temperature sensor 42 and the temperature detected by the second temperature sensor 44 to the MCU 36, and the MCU 36 receives the first temperature sensor received from the CPU 40.
  • the RF-IC 34 may be controlled based on the average value of the temperature detected by 42 and the temperature detected by the second temperature sensor 44, or a weighted average value.
  • a radio module having a radio wave generator (34) that generates radio waves for performing wireless communication, and a communication controller (36) that controls the radio wave generators;
  • a first temperature sensor (42) disposed near the control unit (40) for controlling the wireless module and outputting a signal indicating the detected temperature to the control unit, and communicates with the external device via the wireless module
  • a control unit that controls a control target based on the information obtained by the control unit, wherein the control unit transmits a signal indicating the temperature to the communication control unit of the wireless module based on the signal input from the first temperature sensor;
  • the communication control unit of the wireless module controls the intensity of the radio wave generated by the radio wave generation unit based on the signal received from the control unit. Can output a radio wave transmission output.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

According to an embodiment of the present invention, a control device has a wireless module, a first temperature sensor, and a control unit. The wireless module has an electromagnetic wave generating unit that generates electromagnetic waves for performing wireless communication, and a communication control unit that controls the electromagnetic wave generating unit. The first temperature sensor is disposed close to the control unit that controls the wireless module, and outputs to the control unit a signal indicating a detected temperature. The control unit communicates with an external device via the wireless module, and on the basis of information obtained by means of the communication, controls a subject to be controlled, said control unit transmitting, on the basis of the signal inputted from the first temperature sensor, the signal indicating the temperature to the communication control unit of the wireless module. On the basis of the signal received from the control unit, the communication control unit of the wireless module controls the intensity of the electromagnetic waves to be generated by the electromagnetic wave generating unit.

Description

制御装置、および無線モジュールControl device and wireless module
 本発明の実施形態は、制御装置、および無線モジュールに関する。 Embodiments described herein relate generally to a control device and a wireless module.
 従来、自装置を統合的に制御するCPU(Central Processing Unit)と、他の装置と通信する通信モジュールとを備える制御装置において、通信モジュールが有する温度センサの検出結果に基づいて、MCU(Micro Controll Unit)がRF-IC(Radio Frequency Integrated Circuit)を制御することで、電波の送信出力を調整している場合があった。この場合、通信モジュールに温度センサが設けられるため、装置自体が大型化したり、コストが増加したりする場合があった。 2. Description of the Related Art Conventionally, in a control device that includes a CPU (Central Processing Unit) that integrally controls its own device and a communication module that communicates with other devices, an MCU (Micro Control) In some cases, the unit) has adjusted the radio wave transmission output by controlling the RF-IC (Radio-Frequency-Integrated-Circuit). In this case, since the temperature sensor is provided in the communication module, the apparatus itself may be increased in size or cost may be increased.
米国特許第7925459号明細書US Pat. No. 7,925,459 米国特許第8359176号明細書US Pat. No. 8,359,176
 本発明が解決しようとする課題は、より簡易な構成で所望の送信出力の電波を出力することができる制御装置、および無線モジュールを提供することである。 The problem to be solved by the present invention is to provide a control device and a wireless module that can output a radio wave having a desired transmission output with a simpler configuration.
 実施形態の制御装置は、無線モジュールと、第1の温度センサと、制御部とを持つ。無線モジュールは、無線通信を行うための電波を生成する電波生成部、および前記電波生成部を制御する通信制御部を有する。第1の温度センサは、前記無線モジュールを制御する制御部付近に配置され、検出した温度を示す信号を前記制御部に出力する。制御部は、前記無線モジュールを介して外部装置と通信し、通信によって得られた情報に基づいて制御対象を制御する制御部であって、前記第1の温度センサから入力された信号に基づいて、温度を示す信号を前記無線モジュールの通信制御部に送信する。前記無線モジュールの通信制御部は、前記制御部から受信した信号に基づいて、前記電波生成部により生成される電波の強度を制御する。 The control device of the embodiment includes a wireless module, a first temperature sensor, and a control unit. The wireless module includes a radio wave generation unit that generates radio waves for performing wireless communication, and a communication control unit that controls the radio wave generation unit. The first temperature sensor is disposed in the vicinity of the control unit that controls the wireless module, and outputs a signal indicating the detected temperature to the control unit. The control unit is a control unit that communicates with an external device via the wireless module and controls a control target based on information obtained by communication, and based on a signal input from the first temperature sensor Then, a signal indicating the temperature is transmitted to the communication control unit of the wireless module. The communication control unit of the wireless module controls the intensity of the radio wave generated by the radio wave generation unit based on the signal received from the control unit.
第1の実施形態のインバータシステム1の構成を示す図。The figure which shows the structure of the inverter system 1 of 1st Embodiment. 第1の実施形態のインバータユニット20の構成を、より詳細に示す図。The figure which shows the structure of the inverter unit 20 of 1st Embodiment in detail. 第1の実施形態のMCU36により実行される処理の流れを示すフローチャート。The flowchart which shows the flow of the process performed by MCU36 of 1st Embodiment. 無線モジュール30のアンテナ32から放射される電波の送信出力の制限について説明するための図。The figure for demonstrating the restriction | limiting of the transmission output of the electromagnetic wave radiated | emitted from the antenna 32 of the radio | wireless module 30. FIG. 第2の実施形態のMCU36が実行する処理の流れを示すフローチャート。The flowchart which shows the flow of the process which MCU36 of 2nd Embodiment performs. 第2の実施形態の無線モジュール30のアンテナ32から放射される電波の送信出力の制限について説明するための図。The figure for demonstrating the restriction | limiting of the transmission output of the electromagnetic wave radiated | emitted from the antenna 32 of the wireless module 30 of 2nd Embodiment. 第3の実施形態のインバータユニット20Aの構成を、より詳細に示す図。The figure which shows the structure of 20 A of inverter units of 3rd Embodiment in detail.
 以下、実施形態の制御装置、および無線モジュールを、図面を参照して説明する。以下の実施形態では、一例として制御装置は、直流電源から供給される電力を交流に変換するインバータユニットを制御するものとして説明する。 Hereinafter, the control device and the wireless module of the embodiment will be described with reference to the drawings. In the following embodiments, a control device will be described as an example that controls an inverter unit that converts electric power supplied from a DC power source into AC.
 (第1の実施形態)
 図1は、第1の実施形態のインバータシステム1の構成を示す図である。第1の実施形態のインバータシステム1は、集中制御装置10と、複数のインバータユニット20-1から20-nとを備える。インバータユニット20-1から20-nには、直流電源100-1から100-nがそれぞれ接続される。以下、複数のインバータユニット20-1から20-nを区別しない場合は、単にインバータユニット20と表記する。また、直流電源100-1から100-nを区別しない場合は、単に直流電源100と表記する。
(First embodiment)
FIG. 1 is a diagram illustrating a configuration of an inverter system 1 according to the first embodiment. The inverter system 1 of the first embodiment includes a central control device 10 and a plurality of inverter units 20-1 to 20-n. DC power sources 100-1 to 100-n are connected to the inverter units 20-1 to 20-n, respectively. Hereinafter, when the plurality of inverter units 20-1 to 20-n are not distinguished, they are simply referred to as the inverter unit 20. Further, when the DC power supplies 100-1 to 100-n are not distinguished, they are simply expressed as the DC power supply 100.
 各インバータユニット20は、直流電源100により生成された直流電力を交流電力に変換して、系統電源(不図示)に接続された電力線2に出力する。これにより、インバータシステム1は、複数の直流電源100と系統電源とを連係させて、電力線2に接続された負荷(不図示)に交流電力を供給する。また、各インバータユニット20は、インバータユニット20自身の稼働状態、インバータユニット20が保持する情報等を集中制御装置10に送信する。 Each inverter unit 20 converts DC power generated by the DC power source 100 into AC power and outputs the AC power to the power line 2 connected to a system power source (not shown). Thereby, the inverter system 1 links the plurality of DC power supplies 100 and the system power supply to supply AC power to a load (not shown) connected to the power line 2. Each inverter unit 20 transmits the operating state of the inverter unit 20 itself, information held by the inverter unit 20, and the like to the central control device 10.
 直流電源100は、直流電力を生成してインバータユニット20に供給する。直流電源100は、例えば太陽電池パネルである。各直流電源100は、例えば、住宅の屋根に設置された複数の太陽電池パネルのうち一枚の太陽電池パネルである。なお、本実施形態では、直流電源100として太陽電池パネルを例示しているが、直流電源100は太陽電池パネルに限らず、燃料電池等の他の種類の直流電源であってもよい。また、インバータユニット20は、直流電源100に対して一つ備えられているが、これに限らず、複数の直流電源100に対して一つのインバータユニット20が備えられていてもよいし、一つの直流電源100に対して複数のインバータユニット20が備えられていてもよい。 DC power supply 100 generates DC power and supplies it to inverter unit 20. The DC power supply 100 is a solar cell panel, for example. Each DC power source 100 is, for example, one solar cell panel among a plurality of solar cell panels installed on the roof of a house. In the present embodiment, a solar cell panel is illustrated as the DC power source 100, but the DC power source 100 is not limited to the solar cell panel, and may be another type of DC power source such as a fuel cell. In addition, although one inverter unit 20 is provided for the DC power supply 100, the present invention is not limited to this, and one inverter unit 20 may be provided for a plurality of DC power supplies 100, A plurality of inverter units 20 may be provided for the DC power supply 100.
 集中制御装置10は、無線通信部12と、ネットワーク通信部14と、集中制御部15と、表示部16とを備える。無線通信部12は、インバータユニット20と無線通信するための通信インターフェースである。無線通信部12とインバータユニット20の無線モジュール30との間では、例えば小電力無線の920[MHz]帯域を利用した通信が行われる。ネットワーク通信部14は、ネットワークNWに接続するための通信インターフェースである。ネットワークNWは、例えばWAN(Wide Area Network)やLAN(Local Area Network)等である。 The central control device 10 includes a wireless communication unit 12, a network communication unit 14, a central control unit 15, and a display unit 16. The wireless communication unit 12 is a communication interface for performing wireless communication with the inverter unit 20. For example, communication using the low-power wireless 920 [MHz] band is performed between the wireless communication unit 12 and the wireless module 30 of the inverter unit 20. The network communication unit 14 is a communication interface for connecting to the network NW. The network NW is, for example, a WAN (Wide Area Network) or a LAN (Local Area Network).
 集中制御部15は、無線通信部12により受信された情報に基づいて複数のインバータユニット20を集中的に制御する。集中制御部15は、インバータユニット20の稼働状態(運転または停止)、インバータユニット20が出力する交流電力の電力量等を制御する。表示部16は、例えば複数のセグメントを有するLEDのデジタル表示部や、LCD(Liquid Crystal Display)、有機EL(Electroluminescence)等の表示装置である。表示部16は、集中制御部15による制御の状態などを表示する。 The central control unit 15 centrally controls the plurality of inverter units 20 based on the information received by the wireless communication unit 12. The central control unit 15 controls the operating state (operation or stop) of the inverter unit 20, the amount of AC power output from the inverter unit 20, and the like. The display unit 16 is a display device such as an LED digital display unit having a plurality of segments, an LCD (Liquid Crystal Display), an organic EL (Electroluminescence), or the like. The display unit 16 displays the state of control by the central control unit 15 and the like.
 図2は、第1の実施形態のインバータユニット20の構成を、より詳細に示す図である。インバータユニット20は、無線モジュール30と、CPU(Central Processing Unit)40と、第1の温度センサ42と、変換装置50とを備える。CPU40は、「制御部」の一例である。 FIG. 2 is a diagram showing the configuration of the inverter unit 20 of the first embodiment in more detail. The inverter unit 20 includes a wireless module 30, a CPU (Central Processing Unit) 40, a first temperature sensor 42, and a conversion device 50. The CPU 40 is an example of a “control unit”.
 インバータユニット20の無線モジュール30は、アンテナ32と、RF-IC34と、MCU36とを備える。アンテナ32は、送信内容を重畳させた電波を空気中に放射すると共に、受信した電波をRF-IC34に出力する。RF-IC34は、変調や電力増幅を行うことにより、MCU36から指示された送信内容を重畳させた電波を生成し、生成した電波をアンテナ32に放射させる。また、RF-IC34は、アンテナ32により受信された電波を復調して、受信した電波に応じた信号を生成してMCU36に出力する。MCU36は、CPU40から受信した情報(送信内容)に基づいて、RF-IC34を制御して所望の電波をアンテナ32に放射させる。また、MCU36は、RF-IC34から、アンテナ32により受信された電波に応じた信号を取得し、取得した信号に基づく情報をCPU40に送信する。 The wireless module 30 of the inverter unit 20 includes an antenna 32, an RF-IC 34, and an MCU 36. The antenna 32 radiates a radio wave on which transmission contents are superimposed in the air and outputs the received radio wave to the RF-IC 34. The RF-IC 34 performs modulation and power amplification to generate a radio wave on which the transmission content instructed from the MCU 36 is superimposed, and radiates the generated radio wave to the antenna 32. The RF-IC 34 demodulates the radio wave received by the antenna 32, generates a signal corresponding to the received radio wave, and outputs the signal to the MCU 36. The MCU 36 controls the RF-IC 34 based on the information (transmission contents) received from the CPU 40 to radiate a desired radio wave to the antenna 32. Further, the MCU 36 acquires a signal corresponding to the radio wave received by the antenna 32 from the RF-IC 34, and transmits information based on the acquired signal to the CPU 40.
 CPU40は、変換装置50を制御すると共に、第1の温度センサ42から入力される信号を無線モジュール30に転送することで、無線モジュール30における補正処理を補助する。これについては後述する。 The CPU 40 controls the conversion device 50 and transfers a signal input from the first temperature sensor 42 to the wireless module 30 to assist the correction process in the wireless module 30. This will be described later.
 変換装置50は、例えば不図示のインバータや駆動部等を有する。インバータは、複数のスイッチング素子を備え、駆動部により出力されたゲート制御信号に基づいてスイッチング素子をオンオフ制御することで、直流電力を交流電力に変換する。駆動部は、PWM(Pulse Width Modulation)制御部、ゲート駆動部等を有する。PWM制御部は、CPU40から入力された信号に基づいて、スイッチング素子のオンオフ時間を演算する。PWM制御部は、演算したオンオフ時間に基づいてPWM信号を生成し、ゲート駆動部にPWM信号を出力する。ゲート駆動部は、PWM制御部によって生成されたPWM信号に基づいて各スイッチング素子をオンオフ動作させる。 The conversion device 50 includes, for example, an inverter, a drive unit, etc. (not shown). The inverter includes a plurality of switching elements, and converts DC power into AC power by performing on / off control of the switching elements based on a gate control signal output by the drive unit. The drive unit includes a PWM (Pulse Width Modulation) control unit, a gate drive unit, and the like. The PWM control unit calculates the on / off time of the switching element based on the signal input from the CPU 40. The PWM control unit generates a PWM signal based on the calculated on / off time, and outputs the PWM signal to the gate drive unit. The gate drive unit turns each switching element on and off based on the PWM signal generated by the PWM control unit.
 CPU40は、以下のような種々の制御を行う。CPU40は、インバータユニット20が出力している交流電力の周波数を検出し、検出した周波数と定格の周波数との関係に基づいて位相角の進み量または遅れ量を算出する。また、CPU40は、算出した位相角の進み量または遅れ量に基づいて変換装置50を制御することによって、負荷に供給される交流電圧の位相角を変化させる。また、CPU40は、直流電源100から供給される直流電力の電力量、直流電力を交流電力に変換した交流電流の電力量、自装置の運転状態または停止状態を示す情報等を、無線モジュール30を用いて集中制御装置10に送信する。 The CPU 40 performs various controls as follows. The CPU 40 detects the frequency of the AC power output from the inverter unit 20, and calculates the advance amount or delay amount of the phase angle based on the relationship between the detected frequency and the rated frequency. Further, the CPU 40 changes the phase angle of the AC voltage supplied to the load by controlling the conversion device 50 based on the calculated advance amount or delay amount of the phase angle. Further, the CPU 40 supplies the wireless module 30 with the amount of direct current power supplied from the direct current power source 100, the amount of alternating current power obtained by converting the direct current power into alternating current power, information indicating the operation state or the stop state of the own device, and the like. And transmitted to the centralized control device 10.
 第1の温度センサ42は、CPU40が配置される基板と同一の基板上において、CPU40の付近に設置される。「付近」とは、CPU40の温度と同視できる程度の位置関係であることをいい、例えば間隔が1[cm]程度以内であることをいう。また、「付近」とは、CPU40に接して設置されることを含む。第1の温度センサ42は、例えばサーミスタである。第1の温度センサ42は、検出した温度を示す信号をCPU40に出力する。 The first temperature sensor 42 is installed in the vicinity of the CPU 40 on the same substrate as the substrate on which the CPU 40 is disposed. “Nearby” means a positional relationship such that it can be equated with the temperature of the CPU 40, for example, that the interval is within about 1 [cm]. Further, “near” includes being installed in contact with the CPU 40. The first temperature sensor 42 is a thermistor, for example. The first temperature sensor 42 outputs a signal indicating the detected temperature to the CPU 40.
 CPU40は、第1の温度センサ42から入力された信号の示す温度に基づいて、その温度を示す信号を無線モジュール30に送信する。CPU40は、第1の温度センサ42から入力された信号をそのまま無線モジュール30に転送してもよいし、第1の温度センサ42から入力された信号を、無線モジュール30との通信に適した形式に変換して無線モジュール30に送信してもよい。CPU40は、例えば所定周期で、温度を示す信号を無線モジュール30に送信する。 The CPU 40 transmits a signal indicating the temperature to the wireless module 30 based on the temperature indicated by the signal input from the first temperature sensor 42. The CPU 40 may directly transfer the signal input from the first temperature sensor 42 to the wireless module 30, or the signal input from the first temperature sensor 42 may be in a format suitable for communication with the wireless module 30. It may be converted into and transmitted to the wireless module 30. The CPU 40 transmits a signal indicating temperature to the wireless module 30 at a predetermined cycle, for example.
 以下、MCU36による補正処理について説明する。図3は、第1の実施形態のMCU36により実行される処理の流れを示すフローチャートである。まず、MCU36は、第1の温度センサ42により検出された温度を示す信号をCPU40から受信する(ステップS100)。次に、MCU36は、ステップS100で受信した温度を示す信号から得られる温度が所定温度T1以下であるか否かを判定する(ステップS102)。 Hereinafter, correction processing by the MCU 36 will be described. FIG. 3 is a flowchart showing a flow of processing executed by the MCU 36 of the first embodiment. First, the MCU 36 receives a signal indicating the temperature detected by the first temperature sensor 42 from the CPU 40 (step S100). Next, the MCU 36 determines whether or not the temperature obtained from the signal indicating the temperature received in step S100 is equal to or lower than the predetermined temperature T1 (step S102).
 ステップS100で受信した温度を示す信号から得られる温度が所定温度T1以下でない場合(所定温度T1を超える場合)、MCU36は、RF-IC34に電波を生成させて、生成させた電波をアンテナ32に放射させる(ステップS106)。なお、第1の実施形態ではMCU36は、ステップS102で否定的な判定を得た場合、無線モジュール30が出力できる最大出力の電波をRF-IC34に生成させ、生成させた電波をアンテナ32に放射させるものとする。 When the temperature obtained from the signal indicating the temperature received in step S100 is not equal to or lower than the predetermined temperature T1 (when the temperature exceeds the predetermined temperature T1), the MCU 36 causes the RF-IC 34 to generate a radio wave and the generated radio wave to the antenna 32. Radiate (step S106). In the first embodiment, when the MCU 36 obtains a negative determination in step S102, the MCU 36 generates the maximum output radio wave that can be output by the wireless module 30 in the RF-IC 34, and radiates the generated radio wave to the antenna 32. Shall be allowed to.
 一方、ステップS100で受信した温度を示す信号から得られる温度が所定温度T1以下である場合、MCU36は、アンテナ32から放射される電波の送信出力(強度)が上限値以下となるように、RF-IC34を制御する(ステップS104)。次に、MCU36は、ステップS104の処理に基づいて、RF-IC34に電波を生成させてアンテナ32に生成させた電波を放射させる(ステップS106)。これにより本フローチャートの処理は終了する。 On the other hand, when the temperature obtained from the signal indicating the temperature received in step S100 is equal to or lower than the predetermined temperature T1, the MCU 36 determines that the transmission output (intensity) of the radio wave radiated from the antenna 32 is equal to or lower than the upper limit value. Control the IC 34 (step S104). Next, the MCU 36 causes the RF-IC 34 to generate a radio wave and radiate the radio wave generated by the antenna 32 based on the process of step S104 (step S106). Thereby, the processing of this flowchart is completed.
 図4は、無線モジュール30のアンテナ32から放射される電波の送信出力の制限について説明するための図である。図中の縦軸はアンテナ32により放射される電波の送信出力を示し、横軸は無線モジュール30周辺、またはCPU40周辺の温度を示している。図中、推移線Trは、無線モジュール30により放射される電波の送信出力と無線モジュール30周辺の温度との関係を示している。図示すように無線モジュール30周辺の温度が低くなると、RF-IC34に設定される出力が一定であっても、無線モジュール30により放射される電波の送信出力は大きくなる傾向となる。ここで、インバータシステム1の設置地域によっては、920[MHz]帯等の通信帯域を利用する場合、電波の送信出力を20[mW]以下に制限する必要がある。このため、MCU36は、それよりも若干低い送信出力(例えば19.5[mW])を上限値とし、上限値以下に電波の送信出力を制限すると好適である。 FIG. 4 is a diagram for explaining the limitation on the transmission output of the radio wave radiated from the antenna 32 of the wireless module 30. In the figure, the vertical axis represents the transmission output of radio waves radiated from the antenna 32, and the horizontal axis represents the temperature around the wireless module 30 or the CPU 40. In the drawing, the transition line Tr indicates the relationship between the transmission output of the radio wave radiated from the wireless module 30 and the temperature around the wireless module 30. As shown in the figure, when the temperature around the wireless module 30 decreases, the transmission output of radio waves radiated by the wireless module 30 tends to increase even if the output set in the RF-IC 34 is constant. Here, depending on the installation area of the inverter system 1, when a communication band such as the 920 [MHz] band is used, it is necessary to limit the radio wave transmission output to 20 [mW] or less. For this reason, it is preferable that the MCU 36 sets the transmission output slightly lower than that (for example, 19.5 [mW]) as the upper limit value and limits the radio wave transmission output to the upper limit value or less.
 ここで、推移線Trが上限値と交差する温度(図4ではゼロ度)を、閾値とすることが考えられる。しかしながら、インバータシステム1では、無線モジュール30周辺の温度を検出する温度センサを設けていないため、推移線Trが上限値と交差する温度を閾値(所定温度)とするのは適切でない場合がある。図4の制御線Tr1は、推移線Trが上限値と交差する温度を閾値とした場合の制御線である。 Here, the temperature at which the transition line Tr intersects the upper limit value (zero degree in FIG. 4) can be considered as the threshold value. However, since the inverter system 1 does not include a temperature sensor that detects the temperature around the wireless module 30, it may not be appropriate to set the temperature at which the transition line Tr intersects the upper limit value as a threshold (predetermined temperature). The control line Tr1 in FIG. 4 is a control line when the transition line Tr intersects the upper limit value as a threshold value.
 第1の実施形態では検出した温度を示す信号をCPU40に出力する第1の温度センサ42を設けている。第1の温度センサ42により検出された温度は、無線モジュール30周辺の温度とは異なる傾向となる。例えば第1の温度センサ42により検出された温度は、CPU40の発熱等によって、無線モジュール30周辺の温度を検出する温度センサにより検出された温度より高い傾向を示す場合がある。したがって、第1の実施形態に係るMPU36は、温度に対する閾値を、高温側にオフセットさせて送信出力の制限制御を行う。具体的には、MPU36は、温度に対する閾値を、推移線Trと上限値との交点に対応する温度よりも高温側(例えばT1)にシフトする。これによって、温度センサの取り付け箇所に起因する実温度のズレを吸収することができる。図4の制御線Tr2は、温度に対する閾値T1を高温側にシフトした場合の好ましい制御線である。 In the first embodiment, a first temperature sensor 42 that outputs a signal indicating the detected temperature to the CPU 40 is provided. The temperature detected by the first temperature sensor 42 tends to be different from the temperature around the wireless module 30. For example, the temperature detected by the first temperature sensor 42 may tend to be higher than the temperature detected by the temperature sensor that detects the temperature around the wireless module 30 due to heat generated by the CPU 40 or the like. Therefore, the MPU 36 according to the first embodiment performs transmission output restriction control by offsetting the threshold value for temperature to the high temperature side. Specifically, the MPU 36 shifts the threshold value for temperature to a higher temperature side (for example, T1) than the temperature corresponding to the intersection of the transition line Tr and the upper limit value. As a result, it is possible to absorb the deviation of the actual temperature caused by the location where the temperature sensor is attached. The control line Tr2 in FIG. 4 is a preferable control line when the threshold value T1 for temperature is shifted to the high temperature side.
 なお、無線通信部12とインバータユニット20の無線モジュール30との間では、2.4[GHz]帯域を利用した通信を行ってもよい。また、CPU40が、第1の温度センサ42により検出された温度に基づいて、RF-IC34に対して送信出力の制限制御を実行させるための信号をMCU36に送信してもよい。 Note that communication using the 2.4 [GHz] band may be performed between the wireless communication unit 12 and the wireless module 30 of the inverter unit 20. Further, the CPU 40 may transmit a signal for causing the RF-IC 34 to execute transmission output restriction control to the MCU 36 based on the temperature detected by the first temperature sensor 42.
 以上説明した第1の実施形態の制御装置によれば、CPU40の付近に第1の温度センサ42を配置し、CPU40が第1の温度センサ42から入力された信号に基づいて温度を示す信号を無線モジュール30のMCU36に送信し、MCU36が受信した信号から得られる温度に基づいてRF-IC34により生成される電波の強度を制限するように制御するため、より簡易な構成で所望の送信出力の電波を出力させることができる。 According to the control device of the first embodiment described above, the first temperature sensor 42 is disposed in the vicinity of the CPU 40, and the CPU 40 outputs a signal indicating the temperature based on the signal input from the first temperature sensor 42. Since the control is performed to limit the intensity of the radio wave generated by the RF-IC 34 based on the temperature obtained from the signal received by the MCU 36 and transmitted to the MCU 36 of the wireless module 30, a desired transmission output can be obtained with a simpler configuration. Radio waves can be output.
 (第2の実施形態)
 以下、第2の実施形態について説明する。ここでは、第1の実施形態との相違点を中心に説明し、第1の実施形態と共通する機能等についての説明は省略する。第2の実施形態では、MCU36が、第1の温度センサ42により検出された温度を示す信号に基づいて、アンテナン32に放射させる電波の送信出力が一定になるようにRF-IC34を制御する。
(Second Embodiment)
Hereinafter, the second embodiment will be described. Here, the difference from the first embodiment will be mainly described, and description of functions and the like common to the first embodiment will be omitted. In the second embodiment, the MCU 36 controls the RF-IC 34 so that the transmission output of the radio wave radiated to the antennan 32 is constant based on the signal indicating the temperature detected by the first temperature sensor 42. .
 図5は、第2の実施形態のMCU36が実行する処理の流れを示すフローチャートである。まず、MCU36は、第1の温度センサ42により検出された温度を示す信号をCPU40から受信する(ステップS200)。次に、MCU36は、ステップS200で受信した温度を示す信号から得られる温度が所定温度T2以下であるか否かを判定する(ステップS202)。 FIG. 5 is a flowchart showing a flow of processing executed by the MCU 36 of the second embodiment. First, the MCU 36 receives a signal indicating the temperature detected by the first temperature sensor 42 from the CPU 40 (step S200). Next, the MCU 36 determines whether or not the temperature obtained from the signal indicating the temperature received in step S200 is equal to or lower than the predetermined temperature T2 (step S202).
 ステップS200で受信した温度を示す信号から得られる温度が所定温度T2以下である場合、MCU36は、アンテナ32から放射される電波の送信出力を下げるように、RF-IC34を制御する(ステップS204)。ステップS200で受信した温度を示す信号から得られる温度が所定温度T2以下でない場合(所定温度T2を超える場合)、MCU36は、アンテナ32から放射される電波の送信出力を上げるように、RF-IC34を制御する(ステップS206)。次に、MCU36は、ステップS204またはステップS206の処理に基づいて、RF-IC34に電波を生成させてアンテナ32に生成させた電波を放射させる(ステップS208)。これにより本フローチャートの処理は終了する。 When the temperature obtained from the signal indicating the temperature received in step S200 is equal to or lower than the predetermined temperature T2, the MCU 36 controls the RF-IC 34 so as to reduce the transmission output of the radio wave radiated from the antenna 32 (step S204). . When the temperature obtained from the signal indicating the temperature received in step S200 is not equal to or lower than the predetermined temperature T2 (when the temperature exceeds the predetermined temperature T2), the MCU 36 increases the RF-IC 34 so as to increase the transmission output of the radio wave radiated from the antenna 32. Is controlled (step S206). Next, the MCU 36 causes the RF-IC 34 to generate radio waves and radiate the radio waves generated from the antenna 32 based on the processing of step S204 or step S206 (step S208). Thereby, the processing of this flowchart is completed.
 図6は、第2の実施形態の無線モジュール30のアンテナ32から放射される電波の送信出力の制限について説明するための図である。図中、TAは放射する電波の送信出力の目標値を示している。図中、推移線Trは、MCU36が一定の電力をRF-IC34に与えた場合に、出力される電波の送信出力を示している。制御線Tr3は、図5のフローチャートで示すように、所定温度T2以下である場合に送信出力を下げるように制御し、所定温度T2を超える場合に送信出力を上げるように制御した場合の制御線である。ここで、所定温度T2は、第1の実施形態で説明したように、推移線Trが所定温度と交差する温度よりも高温側にシフトさせた温度である。このため、制御線Tr3で示すように、送信出力はTAを下回るように見えるが、実際は、温度のズレによってTAに近づくように制御される。推移線Tr4は、制御線Tr3を用いて制御した場合の結果を示している。この結果、MCU36は、目標値に合致する送信出力の電波をアンテナ32に放射させることができる。 FIG. 6 is a diagram for explaining the limitation on the transmission output of radio waves radiated from the antenna 32 of the wireless module 30 according to the second embodiment. In the figure, TA indicates the target value of the transmission output of the radiated radio wave. In the drawing, a transition line Tr indicates a transmission output of radio waves that are output when the MCU 36 applies a certain amount of power to the RF-IC 34. As shown in the flowchart of FIG. 5, the control line Tr3 is controlled so as to decrease the transmission output when the temperature is equal to or lower than the predetermined temperature T2, and the control line when the transmission output is controlled to increase when the temperature exceeds the predetermined temperature T2. It is. Here, as described in the first embodiment, the predetermined temperature T2 is a temperature shifted to a higher temperature side than the temperature at which the transition line Tr intersects the predetermined temperature. For this reason, as indicated by the control line Tr3, the transmission output appears to be lower than TA, but in actuality, the transmission output is controlled to approach TA due to temperature deviation. A transition line Tr4 indicates the result when control is performed using the control line Tr3. As a result, the MCU 36 can cause the antenna 32 to emit a radio wave having a transmission output that matches the target value.
 以上説明した第2の実施形態の制御装置によれば、CPU40の付近に第1の温度センサ42を配置し、CPU40が第1の温度センサ42から入力された信号に基づいて温度を示す信号を無線モジュール30のMCU36に送信し、MCU36が受信した信号から得られる温度に基づいてRF-IC34により生成される電波の強度を制御するため、より簡易な構成で所望の送信出力の電波を出力させることができる。 According to the control device of the second embodiment described above, the first temperature sensor 42 is disposed in the vicinity of the CPU 40, and the CPU 40 outputs a signal indicating the temperature based on the signal input from the first temperature sensor 42. In order to control the intensity of the radio wave transmitted to the MCU 36 of the wireless module 30 and generated by the RF-IC 34 based on the temperature obtained from the signal received by the MCU 36, the radio wave having a desired transmission output is output with a simpler configuration. be able to.
 (第3の実施形態)
 以下、第3の実施形態について説明する。ここでは、第1の実施形態との相違点を中心に説明し、第1の実施形態と共通する機能等についての説明は省略する。第3の実施形態では、MCU36が、インバータユニット20Aに設けられる第2の温度センサ44により検出された温度に基づいて、アンテナ32から放射される電波の送信出力を制御する。
(Third embodiment)
Hereinafter, a third embodiment will be described. Here, the difference from the first embodiment will be mainly described, and description of functions and the like common to the first embodiment will be omitted. In the third embodiment, the MCU 36 controls the transmission output of radio waves radiated from the antenna 32 based on the temperature detected by the second temperature sensor 44 provided in the inverter unit 20A.
 図7は、第3の実施形態のインバータユニット20Aの構成を、より詳細に示す図である。第3の実施形態のインバータユニット20Aは、第1の温度センサ42に加え、第2の温度センサ44を備える。第2の温度センサ44は、例えばインバータユニット20AのCPU40と、変換装置50と、第1の温度センサ42とが配置される基板上に配置される。第2の温度センサ44は、例えばインバータユニット20AのCPU40と、変換装置50と、第1の温度センサ42とが配置される基板上の端、または隅に配置される。第2の温度センサ44は、例えばCPU40に対して第1の温度センサ42より遠い位置に配置される。また、第2の温度センサ44は、例えば図中、領域A1、または領域A2付近に配置されてもよい。 FIG. 7 is a diagram showing in more detail the configuration of the inverter unit 20A of the third embodiment. The inverter unit 20 </ b> A of the third embodiment includes a second temperature sensor 44 in addition to the first temperature sensor 42. For example, the second temperature sensor 44 is disposed on a substrate on which the CPU 40 of the inverter unit 20A, the conversion device 50, and the first temperature sensor 42 are disposed. For example, the second temperature sensor 44 is disposed at an end or corner on the substrate on which the CPU 40 of the inverter unit 20A, the conversion device 50, and the first temperature sensor 42 are disposed. The second temperature sensor 44 is disposed at a position farther from the first temperature sensor 42 with respect to the CPU 40, for example. Further, the second temperature sensor 44 may be disposed, for example, in the vicinity of the region A1 or the region A2 in the drawing.
 CPU40は、第2の温度センサ44により検出された温度を示す信号をMCU36に送信する。MCU36は、CPU40から送信された温度を示す信号を受信し、受信した信号に基づいてRF-IC34によって生成される電波の送信出力を制御する。第2の温度センサ44は、第1の温度センサ42よりもCPU40から遠いため、CPU40の発熱等によって生じる温度変化の影響を受けにくい。これによりMCU36は、より精度よく所望の送信出力の電波をアンテナ32に放射させることができる。 The CPU 40 transmits a signal indicating the temperature detected by the second temperature sensor 44 to the MCU 36. The MCU 36 receives the signal indicating the temperature transmitted from the CPU 40 and controls the transmission output of the radio wave generated by the RF-IC 34 based on the received signal. Since the second temperature sensor 44 is farther from the CPU 40 than the first temperature sensor 42, the second temperature sensor 44 is less susceptible to temperature changes caused by heat generated by the CPU 40. Thereby, the MCU 36 can radiate the radio wave of a desired transmission output to the antenna 32 with higher accuracy.
 以上説明した第3の実施形態の制御装置によれば、CPU40に対して第1の温度センサ42より遠い位置にある第2の温度センサ44により検出された温度を示す信号を、CPU40が無線モジュール30のMCU36に送信し、MCU36が受信した信号に基づいてRF-IC34により生成される電波の強度を制御する。これにより、より精度よく所望の送信出力の電波を出力させることができる場合がある。 According to the control device of the third embodiment described above, the CPU 40 transmits a signal indicating the temperature detected by the second temperature sensor 44 located far from the first temperature sensor 42 to the CPU 40. The intensity of the radio wave generated by the RF-IC 34 is controlled based on the signal transmitted to the MCU 36 and received by the MCU 36. Thereby, the radio wave of a desired transmission output may be able to be output with higher accuracy.
 (第4の実施形態)
 以下、第4の実施形態について説明する。ここでは、第3の実施形態との相違点を中心に説明し、第3の実施形態と共通する機能等についての説明は省略する。第4の実施形態のインバータユニット20の構成図については、図7を参照し説明する。第4の実施形態では、CPU40は、第1の温度センサ42により入力された信号と、第2の温度センサ44により入力された信号とのうち双方を参照して、温度を示す信号をMCU36に送信する。
(Fourth embodiment)
Hereinafter, a fourth embodiment will be described. Here, the description will focus on differences from the third embodiment, and descriptions of functions and the like common to the third embodiment will be omitted. A configuration diagram of the inverter unit 20 according to the fourth embodiment will be described with reference to FIG. In the fourth embodiment, the CPU 40 refers to both the signal input by the first temperature sensor 42 and the signal input by the second temperature sensor 44, and sends a signal indicating the temperature to the MCU 36. Send.
 CPU40は、第1の温度センサ42により入力された温度を示す信号から得られる温度と、第2の温度センサ44により入力された温度を示す信号から得られる温度とのうち、低い温度を示す信号をMCU36に送信する。これによりCPU40の発熱等によって生じる温度変化の影響を受けにくい第2の温度センサ44により検出される温度に基づいて、MCU36はRF-IC34を制御することができる。この結果、更に精度よく所望の送信出力の電波をアンテナ32に放射させることができる。 The CPU 40 is a signal indicating a lower temperature among the temperature obtained from the signal indicating the temperature input by the first temperature sensor 42 and the temperature acquired from the signal indicating the temperature input by the second temperature sensor 44. Is transmitted to the MCU 36. Thereby, the MCU 36 can control the RF-IC 34 based on the temperature detected by the second temperature sensor 44 that is not easily affected by the temperature change caused by the heat generation of the CPU 40. As a result, a radio wave having a desired transmission output can be radiated to the antenna 32 with higher accuracy.
 以上説明した第4の実施形態の制御装置によれば、CPU40は、第1の温度センサ42により入力された温度を示す信号から得られる温度と、第2の温度センサ44により入力された温度を示す信号から得られる温度とのうち、低い温度を示す信号をMCU36に送信し、MCU36は、受信した信号に基づいてRF-IC34に生成させる電波の送信出力を制御する。これにより、更に精度よく所望の送信出力の電波を出力させることができる。 According to the control device of the fourth embodiment described above, the CPU 40 calculates the temperature obtained from the signal indicating the temperature input by the first temperature sensor 42 and the temperature input by the second temperature sensor 44. Of the temperatures obtained from the indicated signal, a signal indicating a lower temperature is transmitted to the MCU 36, and the MCU 36 controls the transmission output of the radio wave generated by the RF-IC 34 based on the received signal. Thereby, it is possible to output a radio wave having a desired transmission output with higher accuracy.
 (第5の実施形態)
 以下、第5の実施形態について説明する。ここでは、第3の実施形態との相違点を中心に説明し、第3の実施形態と共通する機能等についての説明は省略する。第5の実施形態のインバータユニット20の構成図については、図7を参照し説明する。第5の実施形態では、CPU40は、第1の温度センサ42により入力された信号と、第2の温度センサ44により入力された信号との双方をMCU36に送信する。MCU36は、これらの信号の双方を参照して、RF-IC34によって生成される電波の送信出力を制御する。
(Fifth embodiment)
The fifth embodiment will be described below. Here, the description will focus on differences from the third embodiment, and descriptions of functions and the like common to the third embodiment will be omitted. A configuration diagram of the inverter unit 20 of the fifth embodiment will be described with reference to FIG. In the fifth embodiment, the CPU 40 transmits both the signal input by the first temperature sensor 42 and the signal input by the second temperature sensor 44 to the MCU 36. The MCU 36 refers to both of these signals and controls the transmission output of the radio wave generated by the RF-IC 34.
 MCU36は、CPU40から第1の温度センサ42により検出された温度を示す信号と、第2の温度センサ44により検出された温度を示す信号とを受信する。MCU36は、受信した第1の温度センサ42により検出された温度を示す信号から得られる温度と、受信した第2の温度センサ44により検出された温度を示す信号から得られる温度とのうちから低い温度を選択する。これによりCPU40の発熱等によって生じる温度変化の影響を受けにくい温度センサにより検出される温度を示す信号に基づいて、MCU36はRF-IC34を制御することができる。この結果、第4実施形態と同様に、更に精度よく所望の送信出力の電波を出力させることができる。 The MCU 36 receives a signal indicating the temperature detected by the first temperature sensor 42 and a signal indicating the temperature detected by the second temperature sensor 44 from the CPU 40. The MCU 36 has a lower temperature between the temperature obtained from the received signal indicating the temperature detected by the first temperature sensor 42 and the temperature obtained from the received signal indicating the temperature detected by the second temperature sensor 44. Select the temperature. As a result, the MCU 36 can control the RF-IC 34 based on a signal indicating the temperature detected by the temperature sensor that is not easily affected by the temperature change caused by the heat generation of the CPU 40. As a result, similarly to the fourth embodiment, it is possible to output a radio wave having a desired transmission output with higher accuracy.
 以上説明した第5の実施形態の制御装置によれば、CPU40は、第1の温度センサ42により入力された温度を示す信号と、第2の温度センサ44により入力された温度を示す信号とをMCU36に送信し、MCU36は、受信した信号から得られる温度のうち低い温度に基づいてRF-IC34に生成させる電波の送信出力を制御する。これにより、更に精度よく所望の送信出力の電波を出力させることができる。 According to the control device of the fifth embodiment described above, the CPU 40 outputs a signal indicating the temperature input by the first temperature sensor 42 and a signal indicating the temperature input by the second temperature sensor 44. The MCU 36 controls the transmission output of radio waves generated by the RF-IC 34 based on the lower temperature obtained from the received signal. Thereby, it is possible to output a radio wave having a desired transmission output with higher accuracy.
 また、CPU40は、第1の温度センサ42により検出された温度と、第2の温度センサ44により検出された温度との平均値、または重み付け平均値等をMCU36に送信し、MCU36は、受信した値に基づいてRF-IC34を制御してもよい。 Further, the CPU 40 transmits an average value or a weighted average value of the temperature detected by the first temperature sensor 42 and the temperature detected by the second temperature sensor 44 to the MCU 36, and the MCU 36 has received it. The RF-IC 34 may be controlled based on the value.
 また、CPU40は、第1の温度センサ42により検出された温度と、第2の温度センサ44により検出された温度との双方をMCU36に送信し、MCU36は、CPU40から受信した第1の温度センサ42により検出された温度と、第2の温度センサ44により検出された温度との平均値、または重み付け平均値等に基づいて、RF-IC34を制御してもよい。 Further, the CPU 40 transmits both the temperature detected by the first temperature sensor 42 and the temperature detected by the second temperature sensor 44 to the MCU 36, and the MCU 36 receives the first temperature sensor received from the CPU 40. The RF-IC 34 may be controlled based on the average value of the temperature detected by 42 and the temperature detected by the second temperature sensor 44, or a weighted average value.
 以上説明した少なくともひとつの実施形態によれば、無線通信を行うための電波を生成する電波生成部(34)、および電波生成部を制御する通信制御部(36)を有する無線モジュール(30)と、無線モジュールを制御する制御部(40)付近に配置され、検出した温度を示す信号を制御部に出力する第1の温度センサ(42)と、無線モジュールを介して外部装置と通信し、通信によって得られた情報に基づいて制御対象を制御する制御部であって、第1の温度センサから入力された信号に基づいて、温度を示す信号を無線モジュールの通信制御部に送信する制御部とを持ち、無線モジュールの通信制御部は、制御部から受信した信号に基づいて、電波生成部により生成される電波の強度を制御することにより、より簡易な構成で所望の送信出力の電波を出力することができる。 According to at least one embodiment described above, a radio module (30) having a radio wave generator (34) that generates radio waves for performing wireless communication, and a communication controller (36) that controls the radio wave generators; A first temperature sensor (42) disposed near the control unit (40) for controlling the wireless module and outputting a signal indicating the detected temperature to the control unit, and communicates with the external device via the wireless module A control unit that controls a control target based on the information obtained by the control unit, wherein the control unit transmits a signal indicating the temperature to the communication control unit of the wireless module based on the signal input from the first temperature sensor; The communication control unit of the wireless module controls the intensity of the radio wave generated by the radio wave generation unit based on the signal received from the control unit. Can output a radio wave transmission output.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.

Claims (10)

  1.  無線通信を行うための電波を生成する電波生成部、および前記電波生成部を制御する通信制御部を有する無線モジュールと、
     前記無線モジュールを制御する制御部付近に配置され、検出した温度を示す信号を前記制御部に出力する第1の温度センサと、
     前記無線モジュールを介して外部装置と通信し、通信によって得られた情報に基づいて制御対象を制御する制御部であって、前記第1の温度センサから入力された信号に基づいて、温度を示す信号を前記無線モジュールの通信制御部に送信する制御部と、を備え、
     前記無線モジュールの通信制御部は、前記制御部から受信した信号に基づいて、前記電波生成部により生成される電波の強度を制御する、
     制御装置。
    A radio module having a radio wave generator for generating radio waves for wireless communication, and a communication controller for controlling the radio wave generator;
    A first temperature sensor disposed near a control unit for controlling the wireless module and outputting a signal indicating the detected temperature to the control unit;
    A control unit that communicates with an external device via the wireless module and controls a control target based on information obtained by communication, and indicates a temperature based on a signal input from the first temperature sensor A control unit that transmits a signal to the communication control unit of the wireless module,
    The communication control unit of the wireless module controls the intensity of the radio wave generated by the radio wave generation unit based on the signal received from the control unit.
    Control device.
  2.  前記第1の温度センサは、前記制御部が配置された基板と同一基板上に配置される、
     請求項1記載の制御装置。
    The first temperature sensor is disposed on the same substrate as the substrate on which the control unit is disposed.
    The control device according to claim 1.
  3.  前記制御部が配置された基板と同一基板上であり、且つ前記制御部に対して前記第1の温度センサよりも遠い位置に配置され、検出した温度を示す信号を前記制御部に出力する第2の温度センサを更に備え、
     前記制御部は、前記第1の温度センサから入力された信号と、前記第2の温度センサから入力された信号とのうち一方または双方に基づいて、温度を示す信号を前記無線モジュールの通信制御部に送信する、
     請求項2記載の制御装置。
    A signal is output on the same substrate as the substrate on which the control unit is disposed, and is positioned farther than the first temperature sensor with respect to the control unit, and outputs a signal indicating the detected temperature to the control unit. 2 temperature sensors,
    The controller controls communication of the wireless module based on one or both of a signal input from the first temperature sensor and a signal input from the second temperature sensor. Send to the department,
    The control device according to claim 2.
  4.  前記制御部は、前記第1の温度センサから入力された信号から得られる温度と、前記第2の温度センサから入力された信号から得られる温度とのうち低い温度を示す信号を、前記無線モジュールの通信制御部に送信する、
     請求項3記載の制御装置。
    The control unit outputs a signal indicating a lower temperature out of a temperature obtained from a signal input from the first temperature sensor and a temperature obtained from a signal input from the second temperature sensor, to the wireless module. To the communication controller of
    The control device according to claim 3.
  5.  前記通信制御部は、前記制御部から受信した信号の示す温度が低い程、前記電波生成部により生成される電波の強度を制限する、
     請求項1記載の制御装置。
    The communication control unit limits the intensity of the radio wave generated by the radio wave generation unit as the temperature indicated by the signal received from the control unit is lower.
    The control device according to claim 1.
  6.  前記通信制御部は、前記制御部から受信した信号の示す温度が所定温度以下である場合に、前記電波生成部により生成される電波の強度を制限する、
     請求項1記載の制御装置。
    The communication control unit limits the intensity of the radio wave generated by the radio wave generation unit when the temperature indicated by the signal received from the control unit is equal to or lower than a predetermined temperature.
    The control device according to claim 1.
  7.  前記制御対象は、直流を交流に変換する変換装置を含み、
     前記制御部は、前記無線モジュールを介して外部装置と通信し、通信によって得られた情報に基づいて、前記変換装置の動作を制御する、
     請求項1記載の制御装置。
    The control object includes a conversion device that converts direct current into alternating current,
    The control unit communicates with an external device via the wireless module, and controls the operation of the conversion device based on information obtained by communication.
    The control device according to claim 1.
  8.  無線通信を行うための電波を生成する電波生成部と、
     前記電波生成部を制御する通信制御部であって、自装置と通信する制御部から温度を示す信号を受信し、前記受信した信号の示す温度に基づいて、前記電波生成部により生成される電波の強度を制御する通信制御部と、
     を備える無線モジュール。
    A radio wave generator for generating radio waves for wireless communication;
    A communication control unit that controls the radio wave generation unit, receives a signal indicating temperature from the control unit that communicates with its own device, and generates a radio wave generated by the radio wave generation unit based on the temperature indicated by the received signal A communication control unit for controlling the intensity of
    A wireless module comprising:
  9.  前記通信制御部は、前記制御部から受信した信号の示す温度が低い程、前記電波生成部により生成される電波の強度を制限する、
     請求項8記載の無線モジュール。
    The communication control unit limits the intensity of the radio wave generated by the radio wave generation unit as the temperature indicated by the signal received from the control unit is lower.
    The wireless module according to claim 8.
  10.  前記通信制御部は、前記制御部から受信した信号の示す温度が所定温度以下である場合に、前記電波生成部により生成される電波の強度を制限する、
     請求項8記載の無線モジュール。
    The communication control unit limits the intensity of the radio wave generated by the radio wave generation unit when the temperature indicated by the signal received from the control unit is equal to or lower than a predetermined temperature.
    The wireless module according to claim 8.
PCT/JP2015/064036 2015-05-15 2015-05-15 Control device and wireless module WO2016185515A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/064036 WO2016185515A1 (en) 2015-05-15 2015-05-15 Control device and wireless module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/064036 WO2016185515A1 (en) 2015-05-15 2015-05-15 Control device and wireless module

Publications (1)

Publication Number Publication Date
WO2016185515A1 true WO2016185515A1 (en) 2016-11-24

Family

ID=57319701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064036 WO2016185515A1 (en) 2015-05-15 2015-05-15 Control device and wireless module

Country Status (1)

Country Link
WO (1) WO2016185515A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010154080A (en) * 2008-12-24 2010-07-08 Nippon Telegr & Teleph Corp <Ntt> Temperature compensation circuit and temperature compensation method
US20120146730A1 (en) * 2010-12-13 2012-06-14 Signoff David M Cancelation of Gain Change Due to Amplifier Self-Heating
JP2014052943A (en) * 2012-09-10 2014-03-20 Sharp Corp Display device, management device, display method and program
JP2014155183A (en) * 2013-02-13 2014-08-25 Sharp Corp Transmission circuit control apparatus and corresponding data creation method at the same
JP2014222802A (en) * 2013-05-13 2014-11-27 三菱電機株式会社 Amplification device and method of controlling amplification device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010154080A (en) * 2008-12-24 2010-07-08 Nippon Telegr & Teleph Corp <Ntt> Temperature compensation circuit and temperature compensation method
US20120146730A1 (en) * 2010-12-13 2012-06-14 Signoff David M Cancelation of Gain Change Due to Amplifier Self-Heating
JP2014052943A (en) * 2012-09-10 2014-03-20 Sharp Corp Display device, management device, display method and program
JP2014155183A (en) * 2013-02-13 2014-08-25 Sharp Corp Transmission circuit control apparatus and corresponding data creation method at the same
JP2014222802A (en) * 2013-05-13 2014-11-27 三菱電機株式会社 Amplification device and method of controlling amplification device

Similar Documents

Publication Publication Date Title
US9712068B2 (en) Power supply device, adapter, power receiving device, and power supply method
US9320103B2 (en) Light-emitting diode (LED) driver, LED lighting apparatus, and method of operating LED lighting apparatus
MY179227A (en) Contactless electric power transmission device and electric power transfer system
JP5906401B2 (en) Power line communication device, power line communication system, power line communication method, and power line communication program
JP2016502830A5 (en)
TWI531141B (en) Noise eliminating method and adapter
CN109510466A (en) System and method for starting high density isolation DC/DC electric power converter
JP2014204604A5 (en)
US20150002042A1 (en) Power supply apparatus
US20170338860A1 (en) Wireless Power Transmission Device
US20150130358A1 (en) Led controlling device
JP2018023276A (en) System and method for charging receiver devices
US20170229909A1 (en) Wireless temperature maintenance container
JP6392771B2 (en) Wireless power receiving apparatus, control circuit thereof, electronic device using the same, and method for calculating received power
TWI691844B (en) Transmitting/receiving command method applied between a master controller and a slave controller of a power converter
WO2016185515A1 (en) Control device and wireless module
CN106685101A (en) Wireless power transmitting circuit and wireless power receiving circuit
JP2017215294A (en) Transmitter receiver and transmission/reception method
US20150334797A1 (en) Operation of an illuminant by means of a resonant converter
CN104703302B (en) For the heating system of electronic installation
US8643285B2 (en) Constant temperature light emitting diode lighting system
JP6124957B2 (en) Induction heating cooker
US11169553B2 (en) Voltage booster isolation transformer system and method of operating the same
US20150070141A1 (en) Wireless control system and method of setting the control system
US9373249B2 (en) Wi-Fi/radio frequency converting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15892516

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15892516

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP