Nothing Special   »   [go: up one dir, main page]

WO2016181898A1 - Electric motor device and electric linear motion actuator - Google Patents

Electric motor device and electric linear motion actuator Download PDF

Info

Publication number
WO2016181898A1
WO2016181898A1 PCT/JP2016/063649 JP2016063649W WO2016181898A1 WO 2016181898 A1 WO2016181898 A1 WO 2016181898A1 JP 2016063649 W JP2016063649 W JP 2016063649W WO 2016181898 A1 WO2016181898 A1 WO 2016181898A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
coil
electric motor
estimated
electric
Prior art date
Application number
PCT/JP2016/063649
Other languages
French (fr)
Japanese (ja)
Inventor
唯 増田
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2016181898A1 publication Critical patent/WO2016181898A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/25Devices for sensing temperature, or actuated thereby
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/102Structural association with clutches, brakes, gears, pulleys or mechanical starters with friction brakes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/64Controlling or determining the temperature of the winding

Definitions

  • the present invention relates to an electric motor device and an electric linear actuator, and relates to a technique in which a temperature sensor is provided in some coils and a temperature estimation result of another coil is corrected from a detection result of the temperature sensor.
  • An electric actuator that converts a rotational motion of an electric motor into a linear motion through a linear motion mechanism by depressing a brake pedal, and presses a brake pad against a brake disk to apply a braking force
  • Patent Document 1 An electric linear actuator using a planetary roller screw mechanism
  • Patent Document 2 An electric linear actuator using a planetary roller screw mechanism
  • Patent Document 3 A technique in which a thermistor is provided at the neutral point terminal of each phase coil in the electric motor, and the average temperature of each phase coil is measured by this thermistor (Patent Document 3). 4).
  • a technique for estimating a coil temperature from voltage, current, and temperature characteristics of copper resistance when the electric motor is in a stopped state Patent Document 4).
  • JP-A-6-327190 JP 2006-194356 A Japanese Patent Laid-Open No. 11-234964 JP 2004-208453 A
  • a countermeasure for disposing a temperature sensitive element such as a thermistor on a motor coil as shown in Patent Document 3 is generally used.
  • a servo motor of a system such as an electric actuator used for a brake
  • current may concentrate on a predetermined coil, and heat generation may be biased.
  • the measure for measuring the average temperature of each coil as in Patent Document 3 there is a possibility that the system may be stopped in a state where there is still a sufficient heat load.
  • providing thermistors for all the coils may cause problems in terms of cost, wiring and assembly man-hours, and mounting space.
  • An object of the present invention is to provide an electric motor device and an electric linear actuator that can reduce costs and man-hours, and can accurately obtain all motor coil temperatures from some motor coil temperatures and the like. .
  • the electric motor device of the present invention is an electric motor device DB comprising an electric motor 4 having a plurality of exciting coils 4a and a control device 2 for controlling the electric motor 4, At least one excitation coil 4a among the plurality of excitation coils 4a in the electric motor 4 is provided with a temperature detection element 26 for detecting the temperature of the excitation coil 4a.
  • the control device 2 Current detection means 22 for respectively obtaining currents flowing through the plurality of exciting coils 4a; A coil temperature estimating means 19 for calculating an estimated temperature of the plurality of exciting coils 4a from the current of the exciting coil 4a obtained by the current detecting means 22 and information including heat generation and heat dissipation characteristics in the exciting coil 4a; Based on the comparison result between the temperature of the excitation coil 4 a detected by the temperature detection element 26 and the estimated temperature estimated by the coil temperature estimation means 19 for the excitation coil 4 a provided with the temperature detection element 26. And an estimation error correcting means 20 for correcting the estimated temperatures of all the exciting coils 4a estimated by the coil temperature estimating means 19.
  • the excitation coil 4 a is a coil that constitutes a magnetic pole for rotation in the electric motor 4.
  • the current detection means 22 obtains the currents flowing through the plurality of exciting coils 4a, respectively.
  • the current detection means 22 detects the current of only two phases, and the remaining one phase is subtracted from zero because the sum of the three-phase currents is zero. You may ask.
  • the coil temperature estimating means 19 calculates estimated temperatures of the plurality of exciting coils 4a from the obtained current of the exciting coil 4a and information including heat generation and heat dissipation characteristics in the exciting coil 4a.
  • the estimation error correction means 20 compares the temperature of the excitation coil 4 a detected by the temperature detection element 26 with the estimated temperature estimated by the coil temperature estimation means 19 for the excitation coil 4 a provided with the temperature detection element 26. To do.
  • the estimation error correction unit 20 corrects the estimated temperatures of all the excitation coils 4a estimated by the coil temperature estimation unit 19 based on the comparison result. Even for the estimated temperature of the exciting coil 4a that is not detected by the temperature detecting element 26, the coil temperature can be obtained more accurately than in the prior art by performing correction based on the comparison result.
  • the coil temperature can be obtained accurately and indirectly from the coil temperature and current at other points.
  • this configuration only requires the temperature detection element 26 to be provided in at least one excitation coil 4a.
  • by estimating the temperatures of all the excitation coils 4a it is possible to improve the temperature detection accuracy when the load is concentrated on the predetermined excitation coil 4a.
  • the coil temperature estimation means 19 uses a value proportional to the square of the current of the excitation coil 4a obtained by the current detection means 22 as an operation amount, and uses a state quantity and an observation quantity as an estimated temperature of the excitation coil 4a of each phase,
  • the state transition matrix 27 is used as the heat capacity and thermal conductivity of the excitation coil 4a of each phase, and the estimation error correction means 20 determines the deviation between the temperature of the excitation coil 4a detected by the temperature detection element 26 and the observed amount.
  • the control device 2 may include a state estimation observer including the coil temperature estimation unit 19 and the estimation error correction unit 20.
  • the determined gain L is determined by, for example, a result of a test or simulation.
  • the gain L may be a fixed value or a variable value.
  • the state estimation observer may have a function of changing the gain of the feedback with a correlation determined with respect to a change in the manipulated variable.
  • the determined correlation is determined by a result of a test or a simulation, for example.
  • processing may be performed to increase the gain L when applying a large current at which the coil temperature is likely to change sharply. By changing the gain L in this way, the estimated temperature of the exciting coil 4a can be corrected finely and quickly.
  • the control device 2 uses at least one of the maximum value of the estimated temperatures of all the excitation coils 4a corrected by the estimation error correction means 20 and the differential value of the estimated temperature of all the excitation coils 4a.
  • this value is equal to or greater than a predetermined value
  • the phase current limiting means 24 for limiting the phase current of the exciting coil 4a where the maximum value of the estimated temperature is estimated may be provided.
  • the determined value is determined by a result of a test or a simulation, for example.
  • the phase current limiting unit 24 determines whether or not a value using at least one of the maximum value of the estimated temperature and the differential value of the estimated temperature is equal to or greater than a predetermined value. judge. When it is determined that the value is equal to or greater than the predetermined value, the phase current limiting unit 24 limits the phase current of the exciting coil 4a where the estimated maximum temperature is estimated. Therefore, by limiting the phase current of the exciting coil 4a when the load is concentrated on the predetermined exciting coil 4a, it is possible to reliably prevent thermal deterioration of the exciting coil 4a.
  • the electric linear actuator 1 includes any one of the electric motor devices DB according to the present invention and a linear motion mechanism 6 that converts the rotational motion of the electric motor 4 of the electric motor device DB into a linear motion.
  • the device 2 has an axial force control function for controlling the axial force of the linear motion mechanism 6.
  • the control device 2 performs control so that the axial force of the linear motion mechanism 6 is kept constant, for example, the motor phase current is constantly applied constantly. For this reason, the loss of each exciting coil 4a varies, and each exciting coil 4a has a temperature difference.
  • measures to reliably prevent thermal degradation of the excitation coil 4a should be taken by improving the temperature detection accuracy of all the excitation coils 4a. Can do.
  • the electric linear actuator 1 includes a brake rotor 8, a friction member 9 that makes contact with the brake rotor 8, the linear movement mechanism 6 that makes the friction member 9 contact the brake rotor 8, and the linear movement mechanism 6.
  • the control device 2 may control a braking force that is an axial force of the linear motion mechanism 6 by controlling the electric motor 4. In this case, the redundancy can be improved and the cost can be reduced as compared with the conventional electric brake actuator.
  • FIG. 1 It is a block diagram of a control system of the electric servo system according to the embodiment of the present invention. It is a figure which shows schematically the electric brake device of the same electric servo system. It is a figure which shows the example of mounting of the coil temperature estimation means and estimation error correction means in the same electric motor device. It is a figure which shows the operation example of the same electric motor apparatus.
  • the present invention is not limited to this example.
  • this electric servo system includes a plurality of electric motor devices DB (only one is shown in FIG. 1), a power supply device 3, and a host ECU 17.
  • Each electric motor device DB includes an electric actuator (electric linear actuator) 1 and a control device 2. First, the electric actuator 1 will be described.
  • the electric actuator 1 applicable to the electric brake device includes an electric motor 4, a speed reduction mechanism 5 that decelerates the rotation of the electric motor 4, a linear motion mechanism 6, and a parking brake that is a parking brake.
  • a mechanism 7, a brake rotor 8, and a friction member 9 are included.
  • the electric motor 4, the speed reduction mechanism 5, and the linear motion mechanism 6 are incorporated in, for example, a housing not shown.
  • the electric motor 4 is composed of a three-phase synchronous motor or the like.
  • the speed reduction mechanism 5 is a mechanism that transmits the rotation of the electric motor 4 to the rotation shaft 10 of the linear motion mechanism 6 while reducing the transmission, and includes a primary gear 12 and an intermediate gear (secondary gear) attached to the rotor shaft 4 a of the electric motor 4. Gear) 13 and a tertiary gear 11 fixed to the end of the rotary shaft 10.
  • the speed reduction mechanism 5 can reduce the rotation of the primary gear 12 by the intermediate gear 13 and transmit it to the tertiary gear 11.
  • the linear motion mechanism 6 is a mechanism that converts the rotational motion output from the speed reduction mechanism 5 into a linear motion of the linear motion portion 14 by a feed screw mechanism and causes the friction member 9 to contact and separate from the brake rotor 8.
  • the linear motion part 14 is supported so as to be free of rotation and movable in the axial direction indicated by the arrow A1.
  • a friction member 9 is provided at the outboard side end of the linear motion portion 14.
  • a linear solenoid is applied as the actuator 16 of the parking brake mechanism 7.
  • the parking brake mechanism 7 is locked by causing a lock member (solenoid pin) 15 to be advanced by an actuator 16 and fitted in a locking hole (not shown) formed in the intermediate gear 13. By prohibiting the rotation of 13, the parking lock state is established.
  • the parking brake mechanism 7 allows the rotation of the intermediate gear 13 by releasing the lock member 15 from the locking hole, thereby bringing the lock member 15 into an unlocked state.
  • a power supply device 3 and a host ECU 17 which is a host control means of each controller 2 are connected to the controller 2 of each electric motor device DB.
  • the control device 2 and the electric actuator 1 in one electric motor device DB are shown, and the other electric brake devices are not shown.
  • an electric control unit that controls the entire vehicle is applied as the host ECU 17.
  • the host ECU 17 has an integrated control function for each electric motor device DB.
  • a target value command such as a motor angular velocity, a motor angle, and other predetermined loads is input from the host ECU 17 to the control calculator 18 of the control device 2.
  • the power supply device 3 supplies electric power to the electric motor 4 and the control device 2 in each electric motor device DB.
  • the control device 2 includes a control arithmetic unit 18, a coil temperature estimation unit 19, an estimation error correction unit 20, a motor driver 21, a current sensor 22 that is a current detection unit, and the like.
  • the control computing unit 18, the coil temperature estimation means 19, and the estimation error correction means 20 may be implemented by a processor such as a microcomputer or a hardware module such as an ASIC, FPGA, DSP, for example.
  • the control arithmetic unit 18 includes a control arithmetic function unit 23 and phase current limiting means 24.
  • the control calculation function unit 23 stores a LUT (Look Up Table) implemented in software or hardware or a software library (Library) so as to achieve the control target from the host ECU 17 from the values of various sensors.
  • a control signal for the motor driver 21 is generated using a predetermined conversion function and hardware equivalent thereto (hereinafter referred to as “realization model”).
  • the phase current limiting unit 24 refers to the estimation result of the coil temperature estimation unit 19 and executes a process of protecting the exciting coil 4a from heat generation according to the estimation result (described later).
  • the motor driver 21 converts the DC power of the power supply device 3 into three-phase AC power used for driving the electric motor 4.
  • the motor driver 21 may constitute a half bridge circuit or a full bridge circuit using a switch element such as a MOSFET (metal-oxide-semiconductor field-effect transistor) or an IGBT (insulated gate bipolar transistor). .
  • the motor driver 21 may include a pre-driver that instantaneously drives the switch element.
  • the current sensor 22 is a current detection means for obtaining currents flowing through the three-phase excitation coils 4a.
  • the current sensor 22 is one of the various sensors described above. For example, a current sensor that detects a current value by detecting a magnetic field generated around the power transmission path may be used, and a shunt resistor and an operational amplifier are used. A current sensor that detects the current value by detecting the voltage drop amount may be used. When the current sensor for detecting the magnetic field is used, it can be mounted with high efficiency and high accuracy, and when the current sensor for detecting the voltage drop amount is used, it can be mounted at low cost. Also, when measuring the three-phase current, for example, measure the current of only two of the three phases, and calculate the remaining one phase by subtracting from zero because the sum of the three-phase current is zero. May be.
  • a brushless DC motor including a plurality of exciting coils 4a, a rotor angle sensor 25, a temperature sensor 26, and a rotor (not shown) having permanent magnets is an electric motor that achieves both high speed, small size, and high accuracy. Since it is suitable for a servo system, it can be adopted. However, a functional DC motor with a brush or a stepping motor can be used as the electric motor 4.
  • the exciting coil 4a may be concentrated winding wound around one tooth or distributed winding extending over a plurality of teeth. Comparing the two, the concentrated winding can be reduced in size, and the distributed winding can have high efficiency and low torque ripple.
  • a sensor such as a resolver or a magnetic encoder may be mounted on the electric motor 4, and the rotor angle may be estimated without using a rotating coil voltage.
  • a sensor such as a magnetic encoder
  • the rotor angle can be detected with high accuracy from a low speed to a stopped state, and estimating the rotor angle without a sensor is advantageous for space saving.
  • the temperature sensor 26 which is a temperature detection element, detects the temperature of the exciting coil 4a.
  • a temperature sensor 26 for detecting the temperature of the excitation coil 4a is provided in at least one of the three-phase excitation coils 4a in the electric motor 4 or in any one of the excitation coils 4a.
  • a thermistor using a temperature-sensitive resistor and a voltage dividing circuit are suitable for simplicity and low cost.
  • the temperature sensor 26 may be disposed so as to be in contact with the single excitation coil 4a. For example, in the case of being in the middle of adjacent coils of the concentrated winding coil, the temperature sensor 26 is disposed so as to be in contact with the plurality of excitation coils 4a and 4a. You may do it.
  • the control device 2 is provided with a coil temperature estimation means 19 and an estimation error correction means 20.
  • the control calculator 18 is provided with phase current limiting means 24. More specifically, the coil temperature estimating means 19 uses the current of the exciting coil 4a obtained by the current sensor 22 and the information including the heat generation and heat dissipation characteristics in the exciting coil 4a, and more specifically, the above implementation model, multiplication or integration. Or a hardware function that can calculate and output the estimated temperature of the three-phase exciting coil 4a using a function equivalent to the above or a hardware equivalent thereto, or a software function on a processor (not shown).
  • FIG. 3 is a diagram showing an implementation example of the coil temperature estimation means 19 and the estimation error correction means 20.
  • the control device 2 (FIG.
  • the coil temperature estimating means 19 is given based on the following heat generation and heat dissipation characteristics, for example, as a general heat transfer characteristic equation.
  • the heat capacity consists of the specific heat and volume of the substance.
  • the heat transfer coefficient consists of the thermal conductivity of the substance, the heat transfer coefficient of the contact portion, the heat transfer area, and the heat transfer distance.
  • the heat generation basically consists of coil copper loss.
  • the state quantity is set to the estimated temperature ⁇ x (t) of the excitation coil 4a of each phase, and the input operation quantity is proportional to the square of the current.
  • the state transition matrix 27 is the heat capacity and heat transfer coefficient of the excitation coil 4a of each phase.
  • the estimated coil temperature x of u, v, and w phases obtained via the integrator 28 is output to the outside and input to the phase current limiting means 24.
  • the estimation error correction means 20 is based on the comparison result between the temperature of the excitation coil 4 a detected by the temperature sensor 26 and the estimated temperature estimated by the coil temperature estimation means 19 for the excitation coil 4 a provided with the temperature sensor 26.
  • the temperature of the coil 4a of the phase provided with the temperature sensor 26 is directly detected by the temperature sensor 26. Need not be estimated.
  • the temperature sensor 26 may be easily affected by noise, for example, when a simple measurement system including a temperature sensitive resistor and a voltage dividing circuit is constructed.
  • the coil temperature estimating means 19 serves as a filter, the coil temperature is estimated also in the exciting coil 4a provided with the temperature sensor 26, as in the other exciting coils 4a not provided with the temperature sensor 26. It is preferable.
  • the observer gain L may be a fixed value or may be a variable value that changes with a predetermined correlation with respect to the change in the manipulated variable q (t).
  • processing may be performed to increase the gain L when a large current is applied, in which the coil temperature is likely to change sharply.
  • the estimated temperature of the exciting coil 4a can be corrected finely and quickly.
  • the estimated temperature of each excitation coil 4a can be corrected by using the deviation between the temperature of the excitation coil 4a detected by the temperature sensor 26 and the observed quantity column vector (that is, the estimated temperature).
  • the phase current limiting unit 24 includes a determination unit 24a and a limiting unit 24b.
  • the determination unit 24a uses at least one of the maximum values of the estimated temperatures of all the excitation coils 4a corrected by the estimation error correction means 20 and the differential values of the estimated temperatures of all the excitation coils 4a.
  • a hardware circuit capable of determining and outputting whether or not this value is equal to or greater than a predetermined value using the above-described implementation model, or a comparison function or hardware equivalent thereto. Alternatively, it is composed of software functions on a processor (not shown).
  • the limit unit 24b When it is determined that the limit unit 24b is equal to or greater than the value determined by the determination unit 24a, the limit unit 24b receives the input of the determination result, and more specifically, the implementation model, the comparison function, or equivalent hardware It is constituted by a hardware function or a software function on a processor (not shown) that can output a command for limiting the phase current of the exciting coil 4a whose estimated temperature maximum value is estimated using the wear.
  • the limiter 24b may limit the estimated phase current so as to reduce several percent to several tens of percent, or depending on one or both of the motor rotational speed and the estimated coil temperature.
  • the phase current may be limited to a predetermined value.
  • the determined phase current is determined by a result of a test or a simulation, for example. Therefore, by limiting the phase current of the exciting coil 4a by the phase current limiting means 24 when the load is concentrated on the predetermined exciting coil 4a, the thermal deterioration of the exciting coil 4a can be surely prevented.
  • FIG. 4 is a diagram illustrating an operation example of the electric motor device.
  • an operation example of an electric servo motor system that controls an actuator axial force (brake force) represented by an electric brake will be described.
  • FIG. 4A shows the actuator axial force
  • FIG. 4B shows the motor phase current when the actuator axial force is applied.
  • the control device 2 is provided with a coil temperature estimation means 19 and an estimation error correction means 20.
  • the control calculator 18 is provided with phase current limiting means 24.
  • the coil temperature estimation means 19 calculates the estimated temperature of the three-phase excitation coil 4a from the required current of the excitation coil 4a and information including heat generation and heat dissipation characteristics in the excitation coil 4a. Is calculated.
  • the estimation error correction means 20 compares the temperature of the excitation coil 4 a detected by the temperature sensor 26 with the estimated temperature estimated by the coil temperature estimation means 19 for the excitation coil 4 a provided with the temperature sensor 26.
  • the estimation error correction unit 20 corrects the estimated temperatures of all the excitation coils 4a estimated by the coil temperature estimation unit 19 based on the comparison result. Even for the estimated temperature of the exciting coil 4a that is not detected by the temperature sensor 26, the coil temperature can be obtained more accurately than in the prior art by performing correction based on the comparison result.
  • the phase current limiting means 24 is provided to limit the motor phase current.
  • the phase current limiting means 24 may be a process of limiting the current upper limit value according to the estimated temperature of the exciting coil 4a, or may be a process of stopping the operation when the estimated temperature exceeds a predetermined value.
  • the process of limiting the current upper limit value can prevent the electric motor 4 from stopping undesirably, although the control calculator 18 needs to execute the calculation process.
  • the process of stopping the operation can be performed simply and reliably.
  • a process for limiting the current upper limit value and a process for stopping the operation may be used in combination.
  • FIG. 3 shows a simple configuration of a linear observer, but for example, a non-linear observer represented by a VSS observer may be used. By using such a nonlinear observer, the accuracy of removing error factors is increased.
  • the electric brake device of this embodiment may be applied to an electric press.
  • the control device includes at least a coil temperature estimation means, an estimation error correction means, It is possible to obtain the coil temperature of each excitation coil with high accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

Provided are an electric motor device and electric linear motion actuator that make it possible to reduce costs and reduce workload, and to precisely find all motor coil temperatures from some motor coil temperatures or the like. A temperature sensor (26) is provided to at least one of a plurality of excitation coils (4a). A control device (2) has a current sensor (22), a coil temperature estimating means (19), and an estimation error correcting means (20). The coil temperature estimating means (19) calculates an estimated temperature of a plurality of excitation coils (4a) from a coil current found by the current sensor (22) and from information including the heat generation and heat dissipation characteristics of the excitation coils (4a). The estimation error correcting means (20) corrects the estimated temperature of all of the excitation coils (4a) estimated by the coil temperature estimating means (19) on the basis of a result of comparison between the coil temperature detected by the temperature sensor (26) for the excitation coil(s) (4a) to which the temperature sensor (26) is provided and the estimated temperature.

Description

電動モータ装置および電動式直動アクチュエータElectric motor device and electric linear actuator 関連出願Related applications
 本出願は、2015年5月14日出願の特願2015-098813の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。 This application claims the priority of Japanese Patent Application No. 2015-09883 filed on May 14, 2015, and is incorporated herein by reference in its entirety.
 この発明は、電動モータ装置および電動式直動アクチュエータに関し、一部のコイルに温度センサを設け、この温度センサの検出結果等から他のコイルの温度推定結果を補正する技術に関する。 The present invention relates to an electric motor device and an electric linear actuator, and relates to a technique in which a temperature sensor is provided in some coils and a temperature estimation result of another coil is corrected from a detection result of the temperature sensor.
 電動モータを用いた電動アクチュエータとして、以下の技術が提案されている。
 1.ブレーキペダルを踏み込むことで、直動機構を介して電動モータの回転運動を直線運動に変換して、ブレーキパッドをブレーキディスクに押圧接触させて制動力を付加する電動アクチュエータ(特許文献1)。
 2.遊星ローラねじ機構を使用した電動式直動アクチュエータ(特許文献2)。
 3.電動モータにおける各相コイルの中性点ターミナルにサーミスタを設け、このサーミスタにより、各相コイルの平均温度を測定する技術(特許文献3)。
 4.電動モータが停止状態にある際の、電圧と電流および銅抵抗の温度特性から、コイル温度を推定する技術(特許文献4)。
The following techniques have been proposed as an electric actuator using an electric motor.
1. An electric actuator that converts a rotational motion of an electric motor into a linear motion through a linear motion mechanism by depressing a brake pedal, and presses a brake pad against a brake disk to apply a braking force (Patent Document 1).
2. An electric linear actuator using a planetary roller screw mechanism (Patent Document 2).
3. A technique in which a thermistor is provided at the neutral point terminal of each phase coil in the electric motor, and the average temperature of each phase coil is measured by this thermistor (Patent Document 3).
4). A technique for estimating a coil temperature from voltage, current, and temperature characteristics of copper resistance when the electric motor is in a stopped state (Patent Document 4).
特開平6-327190号公報JP-A-6-327190 特開2006-194356号公報JP 2006-194356 A 特開平11-234964号公報Japanese Patent Laid-Open No. 11-234964 特開2004-208453号公報JP 2004-208453 A
 特許文献1,2のような電動アクチュエータにおいて、発熱等により、電動モータのコイルに異常が発生するとブレーキ機能が低下する等の恐れがある。この電動モータの車両に対する搭載スペースが非常に限られており、また電動モータのサイズが増加することによる車両のバネ下重量の増加が、乗員の乗り心地の悪化を招く問題がある。このため、コイルの線径を太くするなどしてモータコイルの銅損を下げて発熱量を下げる設計は困難となる場合がある。 In the electric actuators as disclosed in Patent Documents 1 and 2, if an abnormality occurs in the coil of the electric motor due to heat generation or the like, the brake function may be degraded. The space for mounting the electric motor on the vehicle is very limited, and an increase in the unsprung weight of the vehicle due to an increase in the size of the electric motor causes a problem that the ride comfort of the occupant is deteriorated. For this reason, it may be difficult to reduce the heat generation by reducing the copper loss of the motor coil by increasing the wire diameter of the coil.
 上記の事態を回避するために、モータコイルの温度管理が求められ、そのためにモータコイル温度を精度良く推定する必要がある。例えば、特許文献4に示されるような、銅の抵抗値の温度依存特性を用いてモータコイル温度を推定する手法がある。しかしながら、上記の場合において、抵抗値はコイルだけでなく接点抵抗やFET等の制御素子を含むため、温度依存性の厳密なモデル化は困難な場合がある。また、例えば、電動ブレーキのように、任意の入力に対しての追従動作が求められるとき、インダクタンス等の過渡応答に影響を受けない静的な条件を確実に設けられる保証が困難な場合がある。 In order to avoid the above situation, it is necessary to control the temperature of the motor coil, and therefore it is necessary to accurately estimate the motor coil temperature. For example, there is a method of estimating the motor coil temperature using the temperature dependence characteristic of the resistance value of copper as shown in Patent Document 4. However, in the above case, since the resistance value includes not only the coil but also a control element such as a contact resistance or an FET, it may be difficult to strictly model temperature dependence. Further, for example, when a follow-up operation for an arbitrary input is required, such as an electric brake, it may be difficult to ensure that a static condition that is not affected by a transient response such as an inductance is reliably provided. .
 上記の過渡応答に影響を受けない手法として、例えば、特許文献3に示すような、モータコイルにサーミスタ等の感温素子を配置する対策が一般的に用いられる。しかしながら、例えば、ブレーキに用いる電動式アクチュエータのようなシステムのサーボモータにおいては、電流が所定のコイルに集中して発熱に偏りが生じる場合がある。このとき、特許文献3のように各コイルの平均温度を測定する対策では、未だ熱負荷に余裕のある状態でシステムが停止してしまう可能性がある。前記の対策として、全てのコイルにそれぞれサーミスタを設けることは、コスト、配線や組立の工数、および実装スペースの面で問題が発生する可能性がある。 As a technique that is not affected by the above transient response, for example, a countermeasure for disposing a temperature sensitive element such as a thermistor on a motor coil as shown in Patent Document 3 is generally used. However, for example, in a servo motor of a system such as an electric actuator used for a brake, current may concentrate on a predetermined coil, and heat generation may be biased. At this time, with the measure for measuring the average temperature of each coil as in Patent Document 3, there is a possibility that the system may be stopped in a state where there is still a sufficient heat load. As the above-mentioned measures, providing thermistors for all the coils may cause problems in terms of cost, wiring and assembly man-hours, and mounting space.
 この発明の目的は、コスト低減および工数低減を図ると共に、一部のモータコイル温度等から全てのモータコイル温度を精度良く求めることができる電動モータ装置および電動式直動アクチュエータを提供することである。 An object of the present invention is to provide an electric motor device and an electric linear actuator that can reduce costs and man-hours, and can accurately obtain all motor coil temperatures from some motor coil temperatures and the like. .
 以下、この発明について、理解を容易にするために、便宜上実施形態の符号を参照して説明する。 Hereinafter, in order to facilitate understanding, the present invention will be described with reference to the reference numerals of the embodiments for convenience.
 この発明の電動モータ装置は、複数の励磁コイル4aを有する電動モータ4と、この電動モータ4を制御する制御装置2とを備える電動モータ装置DBであって、
 前記電動モータ4における複数の励磁コイル4aのうち少なくとも一つの励磁コイル4aに、この励磁コイル4aの温度を検出する温度検出素子26を設け、
 前記制御装置2は、
 前記複数の励磁コイル4aに流す電流をそれぞれ求める電流検出手段22と、
 この電流検出手段22で求められる前記励磁コイル4aの電流と、この励磁コイル4aにおける発熱および放熱特性を含む情報とから、前記複数の励磁コイル4aの推定温度を算出するコイル温度推定手段19と、
 前記温度検出素子26が設けられた前記励磁コイル4aについて、前記温度検出素子26で検出される励磁コイル4aの温度と、前記コイル温度推定手段19で推定された前記推定温度との比較結果に基づいて、前記コイル温度推定手段19で推定される全ての励磁コイル4aの推定温度を補正する推定誤差補正手段20とを有する。
 前記励磁コイル4aは、電動モータ4において回転のための磁極を構成するコイルである。
The electric motor device of the present invention is an electric motor device DB comprising an electric motor 4 having a plurality of exciting coils 4a and a control device 2 for controlling the electric motor 4,
At least one excitation coil 4a among the plurality of excitation coils 4a in the electric motor 4 is provided with a temperature detection element 26 for detecting the temperature of the excitation coil 4a.
The control device 2
Current detection means 22 for respectively obtaining currents flowing through the plurality of exciting coils 4a;
A coil temperature estimating means 19 for calculating an estimated temperature of the plurality of exciting coils 4a from the current of the exciting coil 4a obtained by the current detecting means 22 and information including heat generation and heat dissipation characteristics in the exciting coil 4a;
Based on the comparison result between the temperature of the excitation coil 4 a detected by the temperature detection element 26 and the estimated temperature estimated by the coil temperature estimation means 19 for the excitation coil 4 a provided with the temperature detection element 26. And an estimation error correcting means 20 for correcting the estimated temperatures of all the exciting coils 4a estimated by the coil temperature estimating means 19.
The excitation coil 4 a is a coil that constitutes a magnetic pole for rotation in the electric motor 4.
 この構成によると、電流検出手段22は、複数の励磁コイル4aに流す電流をそれぞれ求める。この場合に電流検出手段22は、三相電流を検出する上で、例えば、二相のみ電流を検出し、残り一相は、三相電流の総和が零となることから零から引算して求めても良い。コイル温度推定手段19は、求められる励磁コイル4aの電流と、この励磁コイル4aにおける発熱および放熱特性を含む情報とから、複数の励磁コイル4aの推定温度を算出する。 According to this configuration, the current detection means 22 obtains the currents flowing through the plurality of exciting coils 4a, respectively. In this case, when detecting the three-phase current, for example, the current detection means 22 detects the current of only two phases, and the remaining one phase is subtracted from zero because the sum of the three-phase currents is zero. You may ask. The coil temperature estimating means 19 calculates estimated temperatures of the plurality of exciting coils 4a from the obtained current of the exciting coil 4a and information including heat generation and heat dissipation characteristics in the exciting coil 4a.
 推定誤差補正手段20は、温度検出素子26が設けられた励磁コイル4aについて、温度検出素子26で検出される励磁コイル4aの温度と、コイル温度推定手段19で推定された前記推定温度とを比較する。推定誤差補正手段20は、この比較結果に基づいて、コイル温度推定手段19で推定される全ての励磁コイル4aの推定温度を補正する。温度検出素子26で検出されない励磁コイル4aの推定温度についても、前記比較結果に基づく補正を行うことで、従来技術よりもコイル温度を精度良く求めることができる。 The estimation error correction means 20 compares the temperature of the excitation coil 4 a detected by the temperature detection element 26 with the estimated temperature estimated by the coil temperature estimation means 19 for the excitation coil 4 a provided with the temperature detection element 26. To do. The estimation error correction unit 20 corrects the estimated temperatures of all the excitation coils 4a estimated by the coil temperature estimation unit 19 based on the comparison result. Even for the estimated temperature of the exciting coil 4a that is not detected by the temperature detecting element 26, the coil temperature can be obtained more accurately than in the prior art by performing correction based on the comparison result.
 このように各コイルの温度を直接測定しなくても、他点のコイル温度と電流等から間接的にコイル温度を精度良く求め得る。また、例えば全てのコイルに温度検出素子を設けた従来技術に対し、この構成は温度検出素子26を少なくとも一つの励磁コイル4aに設ければ足りるため、電動モータ自体のコスト低減および組立工数の低減を図ることができるうえ、温度検出素子26の電動モータ4への実装スペースの面で問題が発生することを回避することができる。また全ての励磁コイル4aの温度を推定することで、所定の励磁コイル4aに負荷が集中した際の温度検出精度を向上することができる。 Thus, even if the temperature of each coil is not directly measured, the coil temperature can be obtained accurately and indirectly from the coil temperature and current at other points. Further, for example, in contrast to the conventional technique in which temperature detection elements are provided in all coils, this configuration only requires the temperature detection element 26 to be provided in at least one excitation coil 4a. In addition, it is possible to avoid the occurrence of a problem in terms of the space for mounting the temperature detection element 26 on the electric motor 4. Further, by estimating the temperatures of all the excitation coils 4a, it is possible to improve the temperature detection accuracy when the load is concentrated on the predetermined excitation coil 4a.
 前記コイル温度推定手段19は、前記電流検出手段22で求められる前記励磁コイル4aの電流の二乗に比例する値を操作量とし、状態量及び観測量を各相の励磁コイル4aの推定温度とし、状態遷移行列27を各相の励磁コイル4aの熱容量および熱伝導率とし、前記推定誤差補正手段20は、前記温度検出素子26で検出された励磁コイル4aの温度と前記観測量との偏差に定められたゲインLを乗じた値のフィードバックを有し、前記制御装置2は、これらコイル温度推定手段19および推定誤差補正手段20を含む状態推定オブザーバを含むものとしても良い。前記定められたゲインLは、例えば、試験やシミュレーション等の結果により定められる。このゲインLは、固定の値としても良く可変の値としても良い。 The coil temperature estimation means 19 uses a value proportional to the square of the current of the excitation coil 4a obtained by the current detection means 22 as an operation amount, and uses a state quantity and an observation quantity as an estimated temperature of the excitation coil 4a of each phase, The state transition matrix 27 is used as the heat capacity and thermal conductivity of the excitation coil 4a of each phase, and the estimation error correction means 20 determines the deviation between the temperature of the excitation coil 4a detected by the temperature detection element 26 and the observed amount. The control device 2 may include a state estimation observer including the coil temperature estimation unit 19 and the estimation error correction unit 20. The determined gain L is determined by, for example, a result of a test or simulation. The gain L may be a fixed value or a variable value.
 前記状態推定オブザーバは、前記操作量における変化に対して定められた相関をもって前記フィードバックの前記ゲインが変化する機能を有するものとしても良い。前記定められた相関は、例えば、試験やシミュレーション等の結果により定められる。一般にゲインLが大きい方が収束速度に優れるため、例えば、コイル温度が急峻に変化しやすい大電流印加時にゲインLを大きくするような処理を行っても良い。このようにゲインLを変化させることで、励磁コイル4aの推定温度を木目細かく早期に補正することができる。 The state estimation observer may have a function of changing the gain of the feedback with a correlation determined with respect to a change in the manipulated variable. The determined correlation is determined by a result of a test or a simulation, for example. In general, since the larger gain L is excellent in the convergence speed, for example, processing may be performed to increase the gain L when applying a large current at which the coil temperature is likely to change sharply. By changing the gain L in this way, the estimated temperature of the exciting coil 4a can be corrected finely and quickly.
 前記制御装置2は、前記推定誤差補正手段20で補正された全ての励磁コイル4aの推定温度の最大値、および、前記全ての励磁コイル4aの推定温度の微分値のうち少なくとも一つ以上を用いた値に対し、この値が定められた値以上となったとき、前記推定温度の最大値が推定された励磁コイル4aの相電流を制限する相電流制限手段24を有するものとしても良い。前記定められた値は、例えば、試験やシミュレーション等の結果により定められる。 The control device 2 uses at least one of the maximum value of the estimated temperatures of all the excitation coils 4a corrected by the estimation error correction means 20 and the differential value of the estimated temperature of all the excitation coils 4a. When this value is equal to or greater than a predetermined value, the phase current limiting means 24 for limiting the phase current of the exciting coil 4a where the maximum value of the estimated temperature is estimated may be provided. The determined value is determined by a result of a test or a simulation, for example.
 この構成によると、相電流制限手段24は、前記推定温度の最大値、および、前記推定温度の微分値のうち少なくとも一つ以上を用いた値が、定められた値以上となったか否かを判定する。定められた値以上となったとの判定で、相電流制限手段24は、推定温度の最大値が推定された励磁コイル4aの相電流を制限する。したがって、所定の励磁コイル4aに負荷が集中した際にこの励磁コイル4aの相電流を制限することで、励磁コイル4aの熱劣化を確実に防止することができる。 According to this configuration, the phase current limiting unit 24 determines whether or not a value using at least one of the maximum value of the estimated temperature and the differential value of the estimated temperature is equal to or greater than a predetermined value. judge. When it is determined that the value is equal to or greater than the predetermined value, the phase current limiting unit 24 limits the phase current of the exciting coil 4a where the estimated maximum temperature is estimated. Therefore, by limiting the phase current of the exciting coil 4a when the load is concentrated on the predetermined exciting coil 4a, it is possible to reliably prevent thermal deterioration of the exciting coil 4a.
 この発明の電動式直動アクチュエータ1は、この発明のいずれかの電動モータ装置DBと、電動モータ装置DBの電動モータ4の回転運動を直進運動に変換する直動機構6とを備え、前記制御装置2が、前記直動機構6の軸力を制御する軸力制御機能を有する。制御装置2が、直動機構6の軸力を例えば一定に保持するように制御するとき、モータ相電流は常に一定に印加され続ける。このため各励磁コイル4aの損失がばらつき、各励磁コイル4aは互いに温度差が生じる。このように各励磁コイル4aに温度差が生じる場合であっても、全ての励磁コイル4aの温度検出精度を向上していることで、励磁コイル4aの熱劣化を確実に防止する対策を講じることができる。 The electric linear actuator 1 according to the present invention includes any one of the electric motor devices DB according to the present invention and a linear motion mechanism 6 that converts the rotational motion of the electric motor 4 of the electric motor device DB into a linear motion. The device 2 has an axial force control function for controlling the axial force of the linear motion mechanism 6. When the control device 2 performs control so that the axial force of the linear motion mechanism 6 is kept constant, for example, the motor phase current is constantly applied constantly. For this reason, the loss of each exciting coil 4a varies, and each exciting coil 4a has a temperature difference. Thus, even when a temperature difference occurs in each excitation coil 4a, measures to reliably prevent thermal degradation of the excitation coil 4a should be taken by improving the temperature detection accuracy of all the excitation coils 4a. Can do.
 前記電動式直動アクチュエータ1は、ブレーキロータ8と、このブレーキロータ8に接触させる摩擦部材9と、この摩擦部材9を前記ブレーキロータ8に接触させる前記直動機構6と、この直動機構6を駆動する前記電動モータ4とを備え、前記制御装置2は、前記電動モータ4を制御することにより前記直動機構6の軸力であるブレーキ力を制御するものであっても良い。この場合、従来技術の電動ブレーキ用アクチュエータよりも冗長性の向上を図れると共にコスト低減を図ることができる。 The electric linear actuator 1 includes a brake rotor 8, a friction member 9 that makes contact with the brake rotor 8, the linear movement mechanism 6 that makes the friction member 9 contact the brake rotor 8, and the linear movement mechanism 6. The control device 2 may control a braking force that is an axial force of the linear motion mechanism 6 by controlling the electric motor 4. In this case, the redundancy can be improved and the cost can be reduced as compared with the conventional electric brake actuator.
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、この発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、この発明に含まれる。 Any combination of at least two configurations disclosed in the claims and / or the specification and / or the drawings is included in the present invention. In particular, any combination of two or more of each claim in the claims is included in the invention.
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。 The present invention will be understood more clearly from the following description of preferred embodiments with reference to the accompanying drawings. However, the embodiments and drawings are for illustration and description only and should not be used to define the scope of the present invention. The scope of the invention is defined by the appended claims. In the accompanying drawings, the same reference numerals in a plurality of drawings indicate the same or corresponding parts.
この発明の実施形態に係る電動サーボシステムの制御系のブロック図である。It is a block diagram of a control system of the electric servo system according to the embodiment of the present invention. 同電動サーボシステムの電動ブレーキ装置を概略示す図である。It is a figure which shows schematically the electric brake device of the same electric servo system. 同電動モータ装置におけるコイル温度推定手段及び推定誤差補正手段の実装例を示す図である。It is a figure which shows the example of mounting of the coil temperature estimation means and estimation error correction means in the same electric motor device. 同電動モータ装置の動作例を示す図である。It is a figure which shows the operation example of the same electric motor apparatus.
 この発明の実施形態に係る電動サーボシステムの電動ブレーキ装置を図1ないし図4と共に説明する。この実施形態では、電動モータ装置を、車両用の電動ブレーキシステムである電動サーボシステムに適用し、各車輪に配した例を示すが、この例に限定されるものではない。 An electric brake device for an electric servo system according to an embodiment of the present invention will be described with reference to FIGS. In this embodiment, an example in which the electric motor device is applied to an electric servo system that is an electric brake system for a vehicle and arranged on each wheel is shown, but the present invention is not limited to this example.
 図1に示すように、この電動サーボシステムは、複数の電動モータ装置DBと(図1中には一つのみ示す)、電源装置3と、上位ECU17とを有する。各電動モータ装置DBは、電動アクチュエータ(電動式直動アクチュエータ)1と、制御装置2とを有する。先ず、電動アクチュエータ1について説明する。 As shown in FIG. 1, this electric servo system includes a plurality of electric motor devices DB (only one is shown in FIG. 1), a power supply device 3, and a host ECU 17. Each electric motor device DB includes an electric actuator (electric linear actuator) 1 and a control device 2. First, the electric actuator 1 will be described.
 図2に示すように、電動ブレーキ装置に適用可能な電動アクチュエータ1は、電動モータ4と、この電動モータ4の回転を減速する減速機構5と、直動機構6と、駐車ブレーキであるパーキングブレーキ機構7と、ブレーキロータ8と、摩擦部材9とを有する。電動モータ4、減速機構5、および直動機構6は、例えば、図示外のハウジング等に組み込まれる。電動モータ4は3相の同期モータ等からなる。 As shown in FIG. 2, the electric actuator 1 applicable to the electric brake device includes an electric motor 4, a speed reduction mechanism 5 that decelerates the rotation of the electric motor 4, a linear motion mechanism 6, and a parking brake that is a parking brake. A mechanism 7, a brake rotor 8, and a friction member 9 are included. The electric motor 4, the speed reduction mechanism 5, and the linear motion mechanism 6 are incorporated in, for example, a housing not shown. The electric motor 4 is composed of a three-phase synchronous motor or the like.
 減速機構5は、電動モータ4の回転を、直動機構6の回転軸10に減速して伝える機構であり、電動モータ4のロータ軸4aに取り付けられた1次歯車12、中間歯車(2次歯車)13、および回転軸10の端部に固定された3次歯車11を含む。この例では、減速機構5は、1次歯車12の回転を、中間歯車13により減速して、3次歯車11に伝達可能としている。 The speed reduction mechanism 5 is a mechanism that transmits the rotation of the electric motor 4 to the rotation shaft 10 of the linear motion mechanism 6 while reducing the transmission, and includes a primary gear 12 and an intermediate gear (secondary gear) attached to the rotor shaft 4 a of the electric motor 4. Gear) 13 and a tertiary gear 11 fixed to the end of the rotary shaft 10. In this example, the speed reduction mechanism 5 can reduce the rotation of the primary gear 12 by the intermediate gear 13 and transmit it to the tertiary gear 11.
 直動機構6は、減速機構5から出力される回転運動を送りねじ機構により直動部14の直線運動に変換して、ブレーキロータ8に対して摩擦部材9を当接離隔させる機構である。直動部14は、回り止めされ且つ矢符A1にて表記する軸方向に移動自在に支持されている。直動部14のアウトボード側端に摩擦部材9が設けられる。減速機構5を介して電動モータ4の回転を直動機構6に伝達することで、回転運動が直線運動に変換され、それが摩擦部材9の押圧力に変換されることにより、直動機構6の軸力であるブレーキ力を発生させる。なお複数の電動モータ装置DB(図1)を車両の各車輪に搭載した状態で、車両の外側をアウトボード側といい、車両の中央側をインボード側という。 The linear motion mechanism 6 is a mechanism that converts the rotational motion output from the speed reduction mechanism 5 into a linear motion of the linear motion portion 14 by a feed screw mechanism and causes the friction member 9 to contact and separate from the brake rotor 8. The linear motion part 14 is supported so as to be free of rotation and movable in the axial direction indicated by the arrow A1. A friction member 9 is provided at the outboard side end of the linear motion portion 14. By transmitting the rotation of the electric motor 4 to the linear motion mechanism 6 via the speed reduction mechanism 5, the rotational motion is converted into a linear motion, which is converted into the pressing force of the friction member 9. The brake force that is the axial force of the is generated. In addition, in the state which mounted several electric motor apparatus DB (FIG. 1) in each wheel of a vehicle, the outer side of a vehicle is called the outboard side, and the center side of a vehicle is called the inboard side.
 パーキングブレーキ機構7のアクチュエータ16として、例えば、リニアソレノイドが適用される。パーキングブレーキ機構7は、ロック部材(ソレノイドピン)15を、アクチュエータ16により進出させて、中間歯車13に形成された係止孔(図示せず)に嵌まり込ませることで係止し、中間歯車13の回転を禁止することで、パーキングロック状態にする。パーキングブレーキ機構7は、ロック部材15を前記係止孔から離脱させることで中間歯車13の回転を許容し、アンロック状態にする。 For example, a linear solenoid is applied as the actuator 16 of the parking brake mechanism 7. The parking brake mechanism 7 is locked by causing a lock member (solenoid pin) 15 to be advanced by an actuator 16 and fitted in a locking hole (not shown) formed in the intermediate gear 13. By prohibiting the rotation of 13, the parking lock state is established. The parking brake mechanism 7 allows the rotation of the intermediate gear 13 by releasing the lock member 15 from the locking hole, thereby bringing the lock member 15 into an unlocked state.
 図1に示すように、各電動モータ装置DBの制御装置2に、電源装置3と、各制御装置2の上位制御手段である上位ECU17とが接続されている。なお図1では、一つの電動モータ装置DBにおける制御装置2および電動アクチュエータ1のみ示し、その他の電動ブレーキ装置については図示を省略している。上位ECU17として、例えば、車両全般を制御する電気制御ユニットが適用される。また上位ECU17は、各電動モータ装置DBの統合制御機能を有する。上位ECU17から例えばモータ角速度、モータ角度、その他所定負荷、等の目標値指令が、制御装置2の制御演算器18に入力される。 As shown in FIG. 1, a power supply device 3 and a host ECU 17 which is a host control means of each controller 2 are connected to the controller 2 of each electric motor device DB. In FIG. 1, only the control device 2 and the electric actuator 1 in one electric motor device DB are shown, and the other electric brake devices are not shown. For example, an electric control unit that controls the entire vehicle is applied as the host ECU 17. The host ECU 17 has an integrated control function for each electric motor device DB. A target value command such as a motor angular velocity, a motor angle, and other predetermined loads is input from the host ECU 17 to the control calculator 18 of the control device 2.
 電源装置3は、各電動モータ装置DBにおける電動モータ4および制御装置2にそれぞれ電力を供給する。制御装置2は、制御演算器18、コイル温度推定手段19、推定誤差補正手段20、モータドライバ21、および、電流検出手段である電流センサ22等を有する。制御演算器18、コイル温度推定手段19、推定誤差補正手段20は、例えば、マイクロコンピュータ等のプロセッサ、またはASIC,FPGA,DSP等のハードウェアモジュールで実装しても良い。 The power supply device 3 supplies electric power to the electric motor 4 and the control device 2 in each electric motor device DB. The control device 2 includes a control arithmetic unit 18, a coil temperature estimation unit 19, an estimation error correction unit 20, a motor driver 21, a current sensor 22 that is a current detection unit, and the like. The control computing unit 18, the coil temperature estimation means 19, and the estimation error correction means 20 may be implemented by a processor such as a microcomputer or a hardware module such as an ASIC, FPGA, DSP, for example.
 制御演算器18は、制御演算機能部23と、相電流制限手段24とを有する。制御演算機能部23は、各種センサの値から、上位ECU17からの制御目標を達成するよう、ソフトウエアやハードウエアで実現されたLUT(Look Up Table)、またはソフトウエアのライブラリ(Library)に収められた所定の変換関数やそれに等価のハードウエア等(以下、「具現化モデル」という。)を用いて、モータドライバ21の制御信号を生成する。このとき、相電流制限手段24は、コイル温度推定手段19の推定結果を参照し、この推定結果に応じて励磁コイル4aを発熱から保護する処理を実行する(後述する)。 The control arithmetic unit 18 includes a control arithmetic function unit 23 and phase current limiting means 24. The control calculation function unit 23 stores a LUT (Look Up Table) implemented in software or hardware or a software library (Library) so as to achieve the control target from the host ECU 17 from the values of various sensors. A control signal for the motor driver 21 is generated using a predetermined conversion function and hardware equivalent thereto (hereinafter referred to as “realization model”). At this time, the phase current limiting unit 24 refers to the estimation result of the coil temperature estimation unit 19 and executes a process of protecting the exciting coil 4a from heat generation according to the estimation result (described later).
 モータドライバ21は、電源装置3の直流電力を電動モータ4の駆動に用いる三相の交流電力に変換する。このモータドライバ21は、例えば、MOSFET(metal-oxide-semiconductor field-effect transistor)やIGBT(insulated gate bipolar transistor)のようなスイッチ素子を用いたハーフブリッジ回路またはフルブリッジ回路等を構成しても良い。またモータドライバ21は、前記スイッチ素子を瞬時に駆動するようなプリドライバを含んでも良い。 The motor driver 21 converts the DC power of the power supply device 3 into three-phase AC power used for driving the electric motor 4. The motor driver 21 may constitute a half bridge circuit or a full bridge circuit using a switch element such as a MOSFET (metal-oxide-semiconductor field-effect transistor) or an IGBT (insulated gate bipolar transistor). . The motor driver 21 may include a pre-driver that instantaneously drives the switch element.
 電流センサ22は、三相の各励磁コイル4aに流す電流をそれぞれ求める電流検出手段である。電流センサ22は、前記各種センサの一つであって、例えば、送電経路の周囲に発生する磁界を検出することで電流値を検出する電流センサを用いても良く、シャント抵抗と作動アンプを用いて電圧降下量を検出することで電流値を検出する電流センサを用いても良い。前記磁界を検出する電流センサを用いた場合、高効率・高精度で実装でき、前記電圧降下量を検出する電流センサを用いた場合、低コストで実装できる。また、三相電流を測定するうえで、例えば、三相のうちいずれか二相のみ電流を計測し、残り一相は、三相電流の総和が零となることから零から引算して求めても良い。 The current sensor 22 is a current detection means for obtaining currents flowing through the three-phase excitation coils 4a. The current sensor 22 is one of the various sensors described above. For example, a current sensor that detects a current value by detecting a magnetic field generated around the power transmission path may be used, and a shunt resistor and an operational amplifier are used. A current sensor that detects the current value by detecting the voltage drop amount may be used. When the current sensor for detecting the magnetic field is used, it can be mounted with high efficiency and high accuracy, and when the current sensor for detecting the voltage drop amount is used, it can be mounted at low cost. Also, when measuring the three-phase current, for example, measure the current of only two of the three phases, and calculate the remaining one phase by subtracting from zero because the sum of the three-phase current is zero. May be.
 電動モータ4には、複数の励磁コイル4a、ロータ角度センサ25、温度センサ26、永久磁石を有するロータ(図示せず)を備えたブラシレスDCモータが、高速、小型、および高精度を両立する電動サーボシステムには好適であることから採用しうる。但し、電動モータ4として、機能的にはブラシ付DCモータやステッピングモータを用いることもできる。励磁コイル4aは、一つのティースに集中して巻く集中巻でも良く、複数のティースにまたがる分布巻でも良い。両者を比較すると、集中巻は小型化が可能で、分布巻は高効率および低トルクリプルとすることが可能である。 In the electric motor 4, a brushless DC motor including a plurality of exciting coils 4a, a rotor angle sensor 25, a temperature sensor 26, and a rotor (not shown) having permanent magnets is an electric motor that achieves both high speed, small size, and high accuracy. Since it is suitable for a servo system, it can be adopted. However, a functional DC motor with a brush or a stepping motor can be used as the electric motor 4. The exciting coil 4a may be concentrated winding wound around one tooth or distributed winding extending over a plurality of teeth. Comparing the two, the concentrated winding can be reduced in size, and the distributed winding can have high efficiency and low torque ripple.
 ロータ角度センサ25として、例えば、レゾルバや磁気エンコーダ等のようなセンサを電動モータ4に搭載しても良く、また、ロータ角度を回転中のコイル電圧を用いていわゆるセンサレスで推定しても良い。磁気エンコーダ等のセンサを用いる場合、低速~停止状態まで高精度にロータ角度を検出することが可能であり、ロータ角度をセンサレスで推定する場合、省スペース化を図るうえで有利となる。 As the rotor angle sensor 25, for example, a sensor such as a resolver or a magnetic encoder may be mounted on the electric motor 4, and the rotor angle may be estimated without using a rotating coil voltage. When a sensor such as a magnetic encoder is used, the rotor angle can be detected with high accuracy from a low speed to a stopped state, and estimating the rotor angle without a sensor is advantageous for space saving.
 温度検出素子である温度センサ26は、励磁コイル4aの温度を検出する。本実施形態では、電動モータ4における三相の励磁コイル4aのうちの少なくとも一つに、またはいずれか一つの励磁コイル4aに、この励磁コイル4aの温度を検出する温度センサ26を設けている。温度センサ26としては、感温抵抗を用いたサーミスタ、および分圧回路を用いるとシンプルかつ低コストで好適である。温度センサ26は、単一の励磁コイル4aに接するように配置しても良く、例えば、集中巻コイルの隣り合うコイルの中間のような場合には、複数の励磁コイル4a,4aに接するよう設置しても良い。 The temperature sensor 26, which is a temperature detection element, detects the temperature of the exciting coil 4a. In the present embodiment, a temperature sensor 26 for detecting the temperature of the excitation coil 4a is provided in at least one of the three-phase excitation coils 4a in the electric motor 4 or in any one of the excitation coils 4a. As the temperature sensor 26, a thermistor using a temperature-sensitive resistor and a voltage dividing circuit are suitable for simplicity and low cost. The temperature sensor 26 may be disposed so as to be in contact with the single excitation coil 4a. For example, in the case of being in the middle of adjacent coils of the concentrated winding coil, the temperature sensor 26 is disposed so as to be in contact with the plurality of excitation coils 4a and 4a. You may do it.
 この実施形態では、特に、制御装置2に、コイル温度推定手段19と、推定誤差補正手段20とを設けている。また制御演算器18に相電流制限手段24を設けている。コイル温度推定手段19は、電流センサ22で求められる励磁コイル4aの電流と、この励磁コイル4aにおける発熱および放熱特性を含む情報とから、具体的には、上記の具現化モデル、または乗算や積分等の関数やそれに等価のハードウエアを用いて、三相の励磁コイル4aの推定温度を算出して出力しうるハードウエア回路またはプロセッサ(不図示)上のソフトウエア関数で構成されている。ここで図3はコイル温度推定手段19及び推定誤差補正手段20の実装例を示す図である。制御装置2(図1)は、これらコイル温度推定手段19及び推定誤差補正手段20を含む線形の状態推定オブザーバを含む。同図3中の下付文字u,v,wはそれぞれ励磁コイル4a(図1)のu,v,w相のパラメータを示す。 In this embodiment, in particular, the control device 2 is provided with a coil temperature estimation means 19 and an estimation error correction means 20. The control calculator 18 is provided with phase current limiting means 24. More specifically, the coil temperature estimating means 19 uses the current of the exciting coil 4a obtained by the current sensor 22 and the information including the heat generation and heat dissipation characteristics in the exciting coil 4a, and more specifically, the above implementation model, multiplication or integration. Or a hardware function that can calculate and output the estimated temperature of the three-phase exciting coil 4a using a function equivalent to the above or a hardware equivalent thereto, or a software function on a processor (not shown). Here, FIG. 3 is a diagram showing an implementation example of the coil temperature estimation means 19 and the estimation error correction means 20. The control device 2 (FIG. 1) includes a linear state estimation observer including these coil temperature estimation means 19 and estimation error correction means 20. The subscripts u, v, and w in FIG. 3 indicate the u, v, and w phase parameters of the exciting coil 4a (FIG. 1), respectively.
 コイル温度推定手段19は、例えば、一般的な伝熱特性式として、次の発熱および放熱特性に基づいて与えられる。
 [温度変化量]=[熱量]÷[熱容量]
       =([周辺部との温度差]×[伝熱係数]+[発熱])÷[熱容量]
 上記式において、熱容量は物質の比熱および体積からなる。伝熱係数は、物質の熱伝導率、接触部の熱伝達率、伝熱面積、および伝熱距離からなる。発熱は基本的にコイル銅損からなる。
The coil temperature estimating means 19 is given based on the following heat generation and heat dissipation characteristics, for example, as a general heat transfer characteristic equation.
[Temperature change] = [Heat amount] ÷ [Heat capacity]
= ([Temperature difference from surrounding area] x [Heat transfer coefficient] + [Heat generation]) ÷ [Heat capacity]
In the above formula, the heat capacity consists of the specific heat and volume of the substance. The heat transfer coefficient consists of the thermal conductivity of the substance, the heat transfer coefficient of the contact portion, the heat transfer area, and the heat transfer distance. The heat generation basically consists of coil copper loss.
 以上により、図1、図3に示すように、コイル温度推定手段19において、状態量を各相の励磁コイル4aの推定温度^x(t)とし、入力である操作量を電流の二乗に比例する発熱q(t)とし、状態遷移行列27を各相の励磁コイル4aの熱容量および伝熱係数としている。このコイル温度推定手段19において、積分器28を介して得られたu,v,w相のコイル推定温度^xが外部に出力され、相電流制限手段24に入力される。推定誤差補正手段20は、温度センサ26が設けられた励磁コイル4aについて、温度センサ26で検出される励磁コイル4aの温度と、コイル温度推定手段19で推定された推定温度との比較結果に基づいて、具体的には、上記の具現化モデル、または乗算関数やそれに等価のハードウエアを用いて、コイル温度推定手段19で推定された全ての励磁コイル4aの推定温度を補正して出力しうるハードウエア回路またはプロセッサ(不図示)上のソフトウエア関数で構成されている。具体的には、推定誤差補正手段20は、温度センサ26で検出された励磁コイル4aの温度y(=[yu yv yw]。但し、温度センサ26が存在しない相の要素は零とする)と、コイル温度推定手段19で推定された推定温度に行列Cを乗じた観測量列ベクトル^yとの偏差に、定められたゲインLを乗じた値のフィードバックを有する。 As described above, as shown in FIGS. 1 and 3, in the coil temperature estimation means 19, the state quantity is set to the estimated temperature ^ x (t) of the excitation coil 4a of each phase, and the input operation quantity is proportional to the square of the current. The state transition matrix 27 is the heat capacity and heat transfer coefficient of the excitation coil 4a of each phase. In this coil temperature estimation means 19, the estimated coil temperature x of u, v, and w phases obtained via the integrator 28 is output to the outside and input to the phase current limiting means 24. The estimation error correction means 20 is based on the comparison result between the temperature of the excitation coil 4 a detected by the temperature sensor 26 and the estimated temperature estimated by the coil temperature estimation means 19 for the excitation coil 4 a provided with the temperature sensor 26. Specifically, the estimated temperature of all the excitation coils 4a estimated by the coil temperature estimating means 19 can be corrected and output using the above-described realization model, the multiplication function, or hardware equivalent thereto. It is composed of software functions on a hardware circuit or a processor (not shown). More specifically, the estimation error correction means 20 detects the temperature y of the exciting coil 4a detected by the temperature sensor 26 (= [yu yuv yw] T, where the phase element in which the temperature sensor 26 does not exist is zero). When, the deviation between the observed quantity column vector ^ y multiplied by the matrix C 0 to the estimated temperature estimated by the coil temperature estimating unit 19, a feedback value obtained by multiplying the stipulated gain L.
 行列Cは温度センサ26を設けたコイル相に合わせて所定のベクトル長となるよう設定する行列を示す。例えば、u相の励磁コイル4aに温度センサ26を設ける場合はC=[1 0 0]、v相の励磁コイル4aに温度センサ26を設ける場合はC=[0 1 0]、u,v相の励磁コイル4aの中間に温度センサ26を設ける場合はC=[0.5 0.5 0]とすることができる。 The matrix C 0 is a matrix that is set to have a predetermined vector length in accordance with the coil phase in which the temperature sensor 26 is provided. For example, when the temperature sensor 26 is provided in the u-phase excitation coil 4a, C 0 = [1 0 0], and when the temperature sensor 26 is provided in the v-phase excitation coil 4a, C 0 = [0 1 0], u, When the temperature sensor 26 is provided in the middle of the v-phase exciting coil 4a, C 0 = [0.5 0.5 0] can be obtained.
 このとき、上記のうち単一のコイル温度を温度センサ26にて検出している場合、温度センサ26を設けた相のコイル4aの温度は前記温度センサ26で直接検出しているため、コイル温度を推定する必要がない。しかしながら、温度センサ26は、例えば、感温抵抗と分圧回路からなる簡素な測定系を構築する場合など、ノイズの影響を受けやすい場合がある。その際にコイル温度推定手段19がフィルタの役割を果たすため、温度センサ26が設けられていない他の励磁コイル4aと同様に、温度センサ26が設けられている励磁コイル4aでもコイル温度を推定することが好ましい。 At this time, when the single coil temperature is detected by the temperature sensor 26 among the above, the temperature of the coil 4a of the phase provided with the temperature sensor 26 is directly detected by the temperature sensor 26. Need not be estimated. However, the temperature sensor 26 may be easily affected by noise, for example, when a simple measurement system including a temperature sensitive resistor and a voltage dividing circuit is constructed. At this time, since the coil temperature estimating means 19 serves as a filter, the coil temperature is estimated also in the exciting coil 4a provided with the temperature sensor 26, as in the other exciting coils 4a not provided with the temperature sensor 26. It is preferable.
 オブザーバゲインLについて、固定の値としても良く、前記操作量q(t)における変化に対して定められた相関をもって変化する可変の値としても良い。一般にゲインが大きい方が収束速度に優れるため、例えば、コイル温度が急峻に変化しやすい大電流印加時にゲインLを大きくするような処理を行っても良い。このようにゲインLを変化させることで、励磁コイル4aの推定温度を木目細かく早期に補正し得る。以上のように、温度センサ26で検出された励磁コイル4aの温度と、観測量列ベクトル(すなわち推定温度)との偏差を使用することで、各励磁コイル4aの推定温度を補正しうる。 The observer gain L may be a fixed value or may be a variable value that changes with a predetermined correlation with respect to the change in the manipulated variable q (t). In general, since a larger gain is superior in convergence speed, for example, processing may be performed to increase the gain L when a large current is applied, in which the coil temperature is likely to change sharply. By changing the gain L in this way, the estimated temperature of the exciting coil 4a can be corrected finely and quickly. As described above, the estimated temperature of each excitation coil 4a can be corrected by using the deviation between the temperature of the excitation coil 4a detected by the temperature sensor 26 and the observed quantity column vector (that is, the estimated temperature).
 相電流制限手段24は、判定部24aと、制限部24bとを有する。判定部24aは、推定誤差補正手段20で補正された全ての励磁コイル4aの推定温度の最大値、および、前記全ての励磁コイル4aの推定温度の微分値のうち少なくとも一つ以上を用いた値に対し、具体的には、上記の具現化モデル、または比較関数やそれに等価のハードウエアを用いて、この値が定められた値以上となったか否かを判定して出力しうるハードウエア回路またはプロセッサ(不図示)上のソフトウエア関数で構成されている。制限部24bは、判定部24aで定められた値以上となったと判定されると、当該判定結果の入力を受けて、具体的には、上記の具現化モデル、または比較関数やそれに等価のハードウエアを用いて、推定温度の最大値が推定された励磁コイル4aの相電流を制限する指令を出力しうるハードウエア回路またはプロセッサ(不図示)上のソフトウエア関数で構成されている。 The phase current limiting unit 24 includes a determination unit 24a and a limiting unit 24b. The determination unit 24a uses at least one of the maximum values of the estimated temperatures of all the excitation coils 4a corrected by the estimation error correction means 20 and the differential values of the estimated temperatures of all the excitation coils 4a. On the other hand, specifically, a hardware circuit capable of determining and outputting whether or not this value is equal to or greater than a predetermined value using the above-described implementation model, or a comparison function or hardware equivalent thereto. Alternatively, it is composed of software functions on a processor (not shown). When it is determined that the limit unit 24b is equal to or greater than the value determined by the determination unit 24a, the limit unit 24b receives the input of the determination result, and more specifically, the implementation model, the comparison function, or equivalent hardware It is constituted by a hardware function or a software function on a processor (not shown) that can output a command for limiting the phase current of the exciting coil 4a whose estimated temperature maximum value is estimated using the wear.
 この場合において、制限部24bは、例えば、推定された相電流の数%~数十%を低減するように制限しても良いし、モータ回転速度およびコイル推定温度のいずれか一方または両方に応じて、定められた相電流となるように制限しても良い。前記定められた相電流は、例えば、試験やシミュレーション等の結果により定められる。したがって、所定の励磁コイル4aに負荷が集中した際に前記相電流制限手段24により前記励磁コイル4aの相電流を制限することで、励磁コイル4aの熱劣化を確実に防止し得る。 In this case, for example, the limiter 24b may limit the estimated phase current so as to reduce several percent to several tens of percent, or depending on one or both of the motor rotational speed and the estimated coil temperature. The phase current may be limited to a predetermined value. The determined phase current is determined by a result of a test or a simulation, for example. Therefore, by limiting the phase current of the exciting coil 4a by the phase current limiting means 24 when the load is concentrated on the predetermined exciting coil 4a, the thermal deterioration of the exciting coil 4a can be surely prevented.
 図4は、この電動モータ装置の動作例を示す図である。この動作例として、電動ブレーキに代表される、アクチュエータ軸力(ブレーキ力)を制御する電動サーボモータシステムの動作例を示す。図4(a)はアクチュエータ軸力、図4(b)は、そのアクチュエータ軸力を与えたときのモータ相電流を示す。アクチュエータ軸力を図4(a)の期間t1において一定値に保持する場合、モータ相電流は図4(b)のように常に一定に印加され続ける。このため、各励磁コイルの損失がばらつき、各励磁コイルに温度差が生じる。そこで図1に示すように、本実施形態では、制御装置2に、コイル温度推定手段19と、推定誤差補正手段20とを設けている。また制御演算器18に相電流制限手段24を設けている。 FIG. 4 is a diagram illustrating an operation example of the electric motor device. As this operation example, an operation example of an electric servo motor system that controls an actuator axial force (brake force) represented by an electric brake will be described. FIG. 4A shows the actuator axial force, and FIG. 4B shows the motor phase current when the actuator axial force is applied. When the actuator axial force is held at a constant value during the period t1 in FIG. 4A, the motor phase current is constantly applied constantly as shown in FIG. 4B. For this reason, the loss of each excitation coil varies and a temperature difference arises in each excitation coil. Therefore, as shown in FIG. 1, in the present embodiment, the control device 2 is provided with a coil temperature estimation means 19 and an estimation error correction means 20. The control calculator 18 is provided with phase current limiting means 24.
 以上説明した電動モータ装置DBによると、コイル温度推定手段19は、求められる励磁コイル4aの電流と、この励磁コイル4aにおける発熱および放熱特性を含む情報とから、三相の励磁コイル4aの推定温度を算出する。推定誤差補正手段20は、温度センサ26が設けられた励磁コイル4aについて、温度センサ26で検出される励磁コイル4aの温度と、コイル温度推定手段19で推定された推定温度とを比較する。推定誤差補正手段20は、この比較結果に基づいて、コイル温度推定手段19で推定される全ての励磁コイル4aの推定温度を補正する。温度センサ26で検出されない励磁コイル4aの推定温度についても、前記比較結果に基づく補正を行うことで、従来技術よりもコイル温度を精度良く求めることができる。 According to the electric motor apparatus DB described above, the coil temperature estimation means 19 calculates the estimated temperature of the three-phase excitation coil 4a from the required current of the excitation coil 4a and information including heat generation and heat dissipation characteristics in the excitation coil 4a. Is calculated. The estimation error correction means 20 compares the temperature of the excitation coil 4 a detected by the temperature sensor 26 with the estimated temperature estimated by the coil temperature estimation means 19 for the excitation coil 4 a provided with the temperature sensor 26. The estimation error correction unit 20 corrects the estimated temperatures of all the excitation coils 4a estimated by the coil temperature estimation unit 19 based on the comparison result. Even for the estimated temperature of the exciting coil 4a that is not detected by the temperature sensor 26, the coil temperature can be obtained more accurately than in the prior art by performing correction based on the comparison result.
 このように全コイルの温度を直接測定しなくても、他点のコイル温度と電流等から間接的にコイル温度を精度良く求め得る。また、例えば全ての励磁コイルに温度センサを設けた従来技術に対し、この構成は温度センサ26を少なくとも一つの励磁コイル4aに設ければ足りるため、電動モータ自体のコスト低減および組立工数の低減を図ることができるうえ、温度センサ26の電動モータ4への実装スペースの面で問題が発生することを回避することができる。また全ての励磁コイル4aの温度を推定することで、所定の励磁コイル4aに負荷が集中した際の温度検出精度を向上することができる。 Even if the temperature of all coils is not directly measured in this way, the coil temperature can be obtained accurately and indirectly from the coil temperature and current of other points. Further, for example, in contrast to the prior art in which temperature sensors are provided in all the excitation coils, this configuration only requires the temperature sensor 26 to be provided in at least one excitation coil 4a. Therefore, the cost of the electric motor itself and the number of assembly steps can be reduced. In addition, it is possible to avoid the occurrence of a problem in terms of the space for mounting the temperature sensor 26 on the electric motor 4. Further, by estimating the temperatures of all the excitation coils 4a, it is possible to improve the temperature detection accuracy when the load is concentrated on the predetermined excitation coil 4a.
 制御装置2が、直動機構6の軸力を例えば一定に保持するように制御するとき、モータ相電流は常に一定に印加され続ける。このため各励磁コイル4aの損失がばらつき、各励磁コイル4aは互いに温度差が生じる。このように各励磁コイル4aに温度差が生じる場合であっても、全ての励磁コイル4aの温度検出精度を向上していることで、励磁コイル4aの熱劣化を確実に防止する対策を講じることができる。すなわち、本実施形態では、相電流制限手段24を設けてモータ相電流を制限する。 When the control device 2 performs control so that the axial force of the linear motion mechanism 6 is kept constant, for example, the motor phase current is constantly applied constantly. For this reason, the loss of each exciting coil 4a varies, and each exciting coil 4a has a temperature difference. Thus, even when a temperature difference occurs in each excitation coil 4a, measures to reliably prevent thermal degradation of the excitation coil 4a should be taken by improving the temperature detection accuracy of all the excitation coils 4a. Can do. That is, in this embodiment, the phase current limiting means 24 is provided to limit the motor phase current.
 相電流制限手段24は、励磁コイル4aの推定温度に応じて電流上限値を制限する処理としても良く、また推定温度が所定値を超えたら動作を停止する処理としても良い。前記電流上限値を制限する処理は、制御演算器18が演算処理を実行する必要があるが電動モータ4が不所望に駆動停止することを回避できる。前記動作を停止する処理は、この処理を簡潔かつ確実に行うことができる。なお前記電流上限値を制限する処理と、前記動作を停止する処理とを併用しても良い。 The phase current limiting means 24 may be a process of limiting the current upper limit value according to the estimated temperature of the exciting coil 4a, or may be a process of stopping the operation when the estimated temperature exceeds a predetermined value. The process of limiting the current upper limit value can prevent the electric motor 4 from stopping undesirably, although the control calculator 18 needs to execute the calculation process. The process of stopping the operation can be performed simply and reliably. A process for limiting the current upper limit value and a process for stopping the operation may be used in combination.
 図3では簡潔な線形オブザーバの構成を示したが、例えば、VSSオブザーバに代表される非線形オブザーバを用いても良い。このような非線形オブザーバを用いることで、誤差要因の除去精度が高まる。 FIG. 3 shows a simple configuration of a linear observer, but for example, a non-linear observer represented by a VSS observer may be used. By using such a nonlinear observer, the accuracy of removing error factors is increased.
 本実施形態の電動ブレーキ装置を電動プレスに適用しても良い。この電動プレスの押圧力を一定値に保持する場合、モータ相電流は一定に印加され続けるため、各励磁コイルに温度差が生じるが、制御装置に、少なくともコイル温度推定手段と推定誤差補正手段とを設けることで、各励磁コイルのコイル温度を精度良く求めることが可能となる。 The electric brake device of this embodiment may be applied to an electric press. When the pressing force of the electric press is held at a constant value, the motor phase current continues to be applied at a constant value, so that a temperature difference occurs between the excitation coils. However, the control device includes at least a coil temperature estimation means, an estimation error correction means, It is possible to obtain the coil temperature of each excitation coil with high accuracy.
 以上、図面を参照しながら実施形態に基づいてこの発明を実施するための好適な形態を説明したが、今回開示された実施の形態はすべての点で例示であって制限的なものではない。この発明の範囲は上記した説明ではなくて請求の範囲によって示される。当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、請求の範囲から定まる発明の範囲内またはこれと均等の範囲内のものと解釈される。 As mentioned above, although the suitable form for implementing this invention based on embodiment was demonstrated referring drawings, embodiment disclosed this time is an illustration and restrictive at no points. The scope of the present invention is shown not by the above description but by the claims. Those skilled in the art will readily appreciate various changes and modifications within the obvious scope upon reviewing this specification. Therefore, such changes and modifications should be construed as being within the scope of the invention defined by the claims or within the scope equivalent thereto.
1…電動アクチュエータ(電動式直動アクチュエータ)
2…制御装置
4…電動モータ
4a…励磁コイル
6…直動機構
8…ブレーキロータ
9…摩擦部材
19…コイル温度推定手段
20…推定誤差補正手段
22…電流センサ(電流検出手段)
24…相電流制限手段
26…温度センサ(温度検出素子)
1 ... Electric actuator (Electric linear actuator)
DESCRIPTION OF SYMBOLS 2 ... Control apparatus 4 ... Electric motor 4a ... Excitation coil 6 ... Linear motion mechanism 8 ... Brake rotor 9 ... Friction member 19 ... Coil temperature estimation means 20 ... Estimation error correction means 22 ... Current sensor (current detection means)
24: Phase current limiting means 26 ... Temperature sensor (temperature detection element)

Claims (6)

  1.  複数の励磁コイルを有する電動モータと、この電動モータを制御する制御装置とを備える電動モータ装置であって、
     前記電動モータにおける複数の励磁コイルのうち少なくとも一つの励磁コイルに、この励磁コイルの温度を検出する温度検出素子を設け、
     前記制御装置は、
     前記複数の励磁コイルに流す電流をそれぞれ求める電流検出手段と、
     この電流検出手段で求められる前記励磁コイルの電流と、この励磁コイルにおける発熱および放熱特性を含む情報とから、前記複数の励磁コイルの推定温度を算出するコイル温度推定手段と、
     前記温度検出素子が設けられた前記励磁コイルについて、前記温度検出素子で検出される励磁コイルの温度と、前記コイル温度推定手段で推定された前記推定温度との比較結果に基づいて、前記コイル温度推定手段で推定される全ての励磁コイルの推定温度を補正する推定誤差補正手段と、
    を有する電動モータ装置。
    An electric motor device comprising an electric motor having a plurality of excitation coils and a control device for controlling the electric motor,
    A temperature detection element for detecting the temperature of the excitation coil is provided in at least one of the plurality of excitation coils in the electric motor,
    The controller is
    Current detection means for respectively obtaining currents flowing through the plurality of exciting coils;
    A coil temperature estimating means for calculating an estimated temperature of the plurality of exciting coils from the current of the exciting coil determined by the current detecting means and information including heat generation and heat dissipation characteristics in the exciting coil;
    For the excitation coil provided with the temperature detection element, based on the comparison result between the temperature of the excitation coil detected by the temperature detection element and the estimated temperature estimated by the coil temperature estimation means, the coil temperature Estimation error correction means for correcting the estimated temperature of all exciting coils estimated by the estimation means;
    An electric motor device.
  2.  請求項1に記載の電動モータ装置において、前記コイル温度推定手段は、前記電流検出手段で求められる前記励磁コイルの電流の二乗に比例する値を操作量とし、状態量及び観測量を各相の励磁コイルの推定温度とし、状態遷移行列を各相の励磁コイルの熱容量および熱伝導率とし、前記推定誤差補正手段は、前記温度検出素子で検出された励磁コイルの温度と前記観測量との偏差に定められたゲインを乗じた値のフィードバックを有し、前記制御装置は、これらコイル温度推定手段および推定誤差補正手段を含む状態推定オブザーバを含む電動モータ装置。 2. The electric motor device according to claim 1, wherein the coil temperature estimating means uses a value proportional to the square of the current of the exciting coil obtained by the current detecting means as an operation amount, and sets a state quantity and an observation quantity for each phase. The estimated temperature of the exciting coil is used, the state transition matrix is the heat capacity and thermal conductivity of the exciting coil of each phase, and the estimated error correcting means is a deviation between the temperature of the exciting coil detected by the temperature detecting element and the observed amount. An electric motor apparatus including a state estimation observer including a coil temperature estimation means and an estimation error correction means.
  3.  請求項2に記載の電動モータ装置において、前記状態推定オブザーバは、前記操作量における変化に対して定められた相関をもって前記フィードバックの前記ゲインが変化する機能を有する電動モータ装置。 3. The electric motor device according to claim 2, wherein the state estimation observer has a function of changing the gain of the feedback with a correlation determined with respect to a change in the operation amount.
  4.  請求項1ないし請求項3のいずれか1項に記載の電動モータ装置において、前記制御装置は、前記推定誤差補正手段で補正された全ての励磁コイルの推定温度の最大値、および、前記全ての励磁コイルの推定温度の微分値のうち少なくとも一つ以上を用いた値に対し、この値が定められた値以上となったとき、前記推定温度の最大値が推定された励磁コイルの相電流を制限する相電流制限手段をさらに有する電動モータ装置。 4. The electric motor device according to claim 1, wherein the control device includes a maximum value of estimated temperatures of all excitation coils corrected by the estimation error correction unit, and When this value is equal to or greater than a predetermined value relative to the value using at least one of the differential values of the estimated temperature of the exciting coil, the phase current of the exciting coil in which the maximum value of the estimated temperature is estimated An electric motor device further comprising phase current limiting means for limiting.
  5.  請求項1ないし請求項4のいずれか1項に記載の電動モータ装置と、電動モータ装置の電動モータの回転運動を直進運動に変換する直動機構とを備え、前記制御装置が、前記直動機構の軸力を制御する軸力制御機能を有する電動式直動アクチュエータ。 5. An electric motor device according to claim 1, and a linear motion mechanism that converts a rotational motion of the electric motor of the electric motor device into a linear motion, wherein the control device includes the linear motion An electric linear actuator having an axial force control function for controlling the axial force of the mechanism.
  6.  請求項5に記載の電動式直動アクチュエータにおいて、前記電動式直動アクチュエータは、ブレーキロータと、このブレーキロータに接触させる摩擦部材と、この摩擦部材を前記ブレーキロータに接触させる前記直動機構と、この直動機構を駆動する前記電動モータとを備え、前記制御装置は、前記電動モータを制御することにより前記直動機構の軸力であるブレーキ力を制御する電動式直動アクチュエータ。 6. The electric linear actuator according to claim 5, wherein the electric linear actuator includes a brake rotor, a friction member that makes contact with the brake rotor, and the linear movement mechanism that makes the friction member contact the brake rotor. And an electric linear actuator that controls the braking force, which is an axial force of the linear motion mechanism, by controlling the electric motor.
PCT/JP2016/063649 2015-05-14 2016-05-06 Electric motor device and electric linear motion actuator WO2016181898A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-098813 2015-05-14
JP2015098813A JP6080894B2 (en) 2015-05-14 2015-05-14 Electric motor device and electric linear actuator

Publications (1)

Publication Number Publication Date
WO2016181898A1 true WO2016181898A1 (en) 2016-11-17

Family

ID=57247969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063649 WO2016181898A1 (en) 2015-05-14 2016-05-06 Electric motor device and electric linear motion actuator

Country Status (2)

Country Link
JP (1) JP6080894B2 (en)
WO (1) WO2016181898A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018209655A1 (en) * 2017-05-18 2018-11-22 General Electric Company System and method for estimating motor temperature of a pitch system of a wind turbine
CN114270698A (en) * 2019-09-03 2022-04-01 舍弗勒技术股份两合公司 Electric drive unit, method for operating an electric drive unit and method for calculating a temperature

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102343296B1 (en) 2019-11-28 2021-12-24 현대모비스 주식회사 Motor drive system with correction function of temperature deviation of igbt module
US20230238911A1 (en) * 2020-07-06 2023-07-27 Hitachi Astemo, Ltd. Motor control system and motor control method
US20240069507A1 (en) * 2022-08-31 2024-02-29 Exlar Corporation Systems and methods for dynamic current limit adjustment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001268989A (en) * 2000-03-21 2001-09-28 Hitachi Ltd Synchronous motor and motor vehicle comprising it and its controlling method
JP2006050746A (en) * 2004-08-03 2006-02-16 Nissan Motor Co Ltd Temperature prediction device for rotary electric machine
JP2009089531A (en) * 2007-10-01 2009-04-23 Nsk Ltd Motor temperature estimation unit and electric power steering device mounting it
JP2015033995A (en) * 2013-08-09 2015-02-19 トヨタ自動車株式会社 Vehicular rotary electrical machinery temperature estimation system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001268989A (en) * 2000-03-21 2001-09-28 Hitachi Ltd Synchronous motor and motor vehicle comprising it and its controlling method
JP2006050746A (en) * 2004-08-03 2006-02-16 Nissan Motor Co Ltd Temperature prediction device for rotary electric machine
JP2009089531A (en) * 2007-10-01 2009-04-23 Nsk Ltd Motor temperature estimation unit and electric power steering device mounting it
JP2015033995A (en) * 2013-08-09 2015-02-19 トヨタ自動車株式会社 Vehicular rotary electrical machinery temperature estimation system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018209655A1 (en) * 2017-05-18 2018-11-22 General Electric Company System and method for estimating motor temperature of a pitch system of a wind turbine
US11629701B2 (en) 2017-05-18 2023-04-18 General Electric Company System and method for estimating motor temperature of a pitch system of a wind turbine
CN114270698A (en) * 2019-09-03 2022-04-01 舍弗勒技术股份两合公司 Electric drive unit, method for operating an electric drive unit and method for calculating a temperature

Also Published As

Publication number Publication date
JP2016220270A (en) 2016-12-22
JP6080894B2 (en) 2017-02-15

Similar Documents

Publication Publication Date Title
WO2016181898A1 (en) Electric motor device and electric linear motion actuator
JP6040963B2 (en) Rotating machine control device
JP6570877B2 (en) Electric brake device
JP4455248B2 (en) Vector control device for induction motor
JP5495018B2 (en) Motor control device
US10384659B2 (en) Electric brake device
US20160043671A1 (en) Motor Drive Circuit and Method of Driving a Motor
US10654455B2 (en) Electric brake device
JP6664903B2 (en) Electric brake device
WO2018062086A1 (en) Electric brake device
JP6758998B2 (en) Electric motor device
JP6502172B2 (en) Electric brake device
KR20200101972A (en) Control device and brake device of electric motor
WO2019131659A1 (en) Electric motor device and electric brake device in which same is used
US10243489B2 (en) Rotary electric machine control apparatus and electric power steering apparatus using the same
WO2018139387A1 (en) Electric linear actuator and electric brake device
JP6629017B2 (en) Electric motor device and electric linear actuator
JP3899489B2 (en) Electric disc brake device
WO2018062087A1 (en) Electric brake device
JP6466261B2 (en) Electric brake device
JP2008014323A (en) Electric brake system
JP2018043674A (en) Electric brake device
US11063542B2 (en) Motor drive apparatus and electric power steering apparatus
WO2019049971A1 (en) Electric actuator and electric motor device
JP2020043665A (en) Electric actuator and electric brake device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16792623

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16792623

Country of ref document: EP

Kind code of ref document: A1