Nothing Special   »   [go: up one dir, main page]

WO2016179773A1 - 信号传输方法、基站及用户设备 - Google Patents

信号传输方法、基站及用户设备 Download PDF

Info

Publication number
WO2016179773A1
WO2016179773A1 PCT/CN2015/078647 CN2015078647W WO2016179773A1 WO 2016179773 A1 WO2016179773 A1 WO 2016179773A1 CN 2015078647 W CN2015078647 W CN 2015078647W WO 2016179773 A1 WO2016179773 A1 WO 2016179773A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource pool
user equipment
signal
base station
target
Prior art date
Application number
PCT/CN2015/078647
Other languages
English (en)
French (fr)
Inventor
王键
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP15891476.2A priority Critical patent/EP3270649B1/en
Priority to PCT/CN2015/078647 priority patent/WO2016179773A1/zh
Priority to CN201580079471.9A priority patent/CN107534958B/zh
Publication of WO2016179773A1 publication Critical patent/WO2016179773A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management

Definitions

  • the embodiments of the present invention relate to the field of communications, and in particular, to a signal transmission method, a base station, and a user equipment.
  • the Device to Device Proximity Service can directly communicate with the user equipment (UE, User Equipment) in the network, and the data of the communication does not need to be transited by the base station.
  • Some cluster systems currently in use, as well as some portable wireless calling devices, are already using the function of UE direct communication. Due to the success of the commercialization of Long Term Evolution (LTE) systems, the use of D2D ProSe in the physical layer of the LTE system enriches the service range of the LTE system, and enables applications such as D2D ProSe to be used by more users. Used.
  • LTE Long Term Evolution
  • the UE In the ProSe service of the LTE network, in order to implement the farthest distance from the device to the device to the device (D2D), the UE is generally required to use the maximum transmission power, but when the UE transmits the signal using the maximum transmission power, the UE is in-band. Interference, when the signal sent by the UE arrives at the base station receiver, there is a great interference to the uplink signal of the base station, and even the uplink signal received by the base station is flooded in the in-band interference of the UE.
  • the power control method is adopted for the UE, so that the transmission power of the UE is affected by the open loop power.
  • the UE cannot use the maximum transmit power, and the UE is inbanded with the decrease of the transmit power of the UE.
  • the interference transmitted by the UE to the uplink signal of the base station is also reduced.
  • the coverage of the signal is reduced as the transmission power is reduced. Therefore, the power control method is adopted for the UE in the prior art, and the transmission power of the UE is reduced, which causes the coverage of the signal transmitted by the UE to be reduced, which makes the D2D.
  • the receiving range of the signal is reduced.
  • the embodiments of the present invention provide a signal transmission method, a base station, and a user equipment, which can control the transmission power of the UE, reduce interference, and expand the receiving range of the D2D signal.
  • the first aspect of the present invention provides a signal transmission method, including:
  • the base station configures the first resource pool on the uplink frequency
  • the base station configures a second resource pool on a downlink frequency
  • a device-to-device D2D signal sent by the first user equipment UE receives, by the base station, a device-to-device D2D signal sent by the first user equipment UE, where the D2D signal includes one or any combination of a scheduling assignment SA signal, a D2D data signal, and a D2D discovery signal;
  • the base station sends the D2D signal to the second user equipment UE in the second resource pool.
  • the first resource pool includes a first target resource pool
  • the second resource pool includes a second target resource pool
  • Receiving the D2D signal sent by the first user equipment UE in the first resource pool including:
  • the base station sends the D2D signal to the second user equipment UE in the second target resource pool of the second resource pool.
  • the first target resource pool is a first scheduling assignment SA resource pool, a first D2D data signal resource pool or a a D2D discovery signal resource pool;
  • the second target resource pool is configured to allocate an SA resource pool, a second D2D data signal resource pool, or a second D2D discovery signal resource pool for the second scheduling.
  • a second aspect of the present invention provides a signal transmission method, including:
  • the second user equipment UE receives, in the second resource pool, a D2D signal sent by the first user equipment UE that is forwarded by the base station in the first resource pool, where the D2D signal includes one of a scheduling assignment SA signal, a D2D data signal, and a D2D discovery signal.
  • the first resource pool is a resource pool configured by the base station on an uplink frequency
  • the second resource pool is a resource pool configured by the base station on a downlink frequency.
  • the method further includes:
  • the second user equipment UE receives the D2D signal sent by the first user equipment UE in the first resource pool.
  • the first resource pool includes a first target resource pool
  • the second resource pool includes a second target resource pool
  • the second user equipment UE receives the The D2D signal sent by the first user equipment UE in the first resource pool, which is forwarded by the base station, includes:
  • the first target resource pool is the first scheduling assignment SA resource pool, the first D2D data signal resource pool or the first A D2D discovery signal resource pool
  • the second target resource pool is a second scheduling assignment SA resource pool, a second D2D data signal resource pool or a second D2D discovery signal resource pool.
  • a third aspect of the present invention provides a signal transmission method, including:
  • the second user equipment UE receives the D2D signal sent by the first user equipment UE in the first resource pool, where the D2D signal includes one or any combination of a scheduling assignment SA signal, a D2D data signal, and a D2D discovery signal, where the first
  • the resource pool is a resource pool configured by the base station on the uplink frequency;
  • the second user equipment UE When the second user equipment UE does not receive the D2D signal sent by the first user equipment UE in the first resource pool, the second user equipment UE receives the base station forwarding in the second resource pool.
  • the D2D signal sent by the first user equipment UE in the first resource pool, and the second resource pool is a resource pool configured by the base station on a downlink frequency.
  • the first resource pool includes a first target resource pool
  • the second resource pool includes a second target resource pool
  • the receiving, by the second user equipment UE, the D2D signal sent by the first user equipment UE in the first resource pool includes:
  • the first target resource pool is the first scheduling assignment SA resource pool, the first D2D data signal resource pool or the first A D2D discovery signal resource pool
  • the second target resource pool is a second scheduling assignment SA resource pool, a second D2D data signal resource pool or a second D2D discovery signal resource pool.
  • a fourth aspect of the present invention provides a base station, including:
  • a first configuration module configured to configure a first resource pool on an uplink frequency
  • a second configuration module configured to configure a second resource pool on the downlink frequency
  • a receiving module configured to receive, in a first resource pool configured by the first configuration module, a device-to-device D2D signal sent by the first user equipment UE, where the D2D signal includes a scheduling assignment SA signal, a D2D data signal, and a D2D discovery signal
  • the D2D signal includes a scheduling assignment SA signal, a D2D data signal, and a D2D discovery signal
  • a sending module configured to send, in the second resource pool configured by the second configuration module, the D2D signal received by the receiving module to the second user equipment UE.
  • the first resource pool includes a first target resource pool
  • the second resource pool includes a second target resource pool
  • the receiving module includes:
  • a receiving unit configured to receive, in the first target resource pool of the first resource pool, the D2D signal sent by the first user equipment UE;
  • the sending module includes:
  • a sending unit configured to send the D2D signal to the second user equipment UE in the second target resource pool of the second resource pool.
  • a fifth aspect of the present invention provides a base station, including: a base transceiver station BTS and a base station controller BSC;
  • the base station controller station BSC performs the following processes:
  • the first resource pool is configured on the uplink frequency
  • the second resource pool is configured on the downlink frequency
  • the base transceiver station BTS performs the following processes:
  • a device-to-device D2D signal sent by the first user equipment UE receives, in the first resource pool, a device-to-device D2D signal sent by the first user equipment UE, where the D2D signal includes one or any combination of a scheduling assignment SA signal, a D2D data signal, and a D2D discovery signal;
  • the first resource pool includes a first target resource pool
  • the second resource pool includes a second target resource pool
  • the base transceiver station BTS specifically performs the following processes:
  • a sixth aspect of the present invention provides a user equipment UE, including:
  • a first receiving module configured to receive, in the second resource pool, a D2D signal sent by the first user equipment UE that is forwarded by the base station in the first resource pool, where the D2D signal includes a scheduling assignment SA signal, a D2D data signal, and a D2D discovery signal.
  • the first resource pool is a resource pool configured by the base station on an uplink frequency
  • the second resource pool is a resource pool configured by the base station on a downlink frequency.
  • the user equipment UE further includes:
  • a second receiving module configured to receive, in the first resource pool, the D2D signal sent by the first user equipment UE.
  • the first resource pool includes a first target resource pool
  • the second resource pool includes Two target resource pools
  • the first receiving module includes:
  • a receiving unit configured to receive, in the second target resource pool of the second resource pool, the first user equipment UE that is forwarded by the base station, and sent by the first target resource pool in the first resource pool D2D signal.
  • the radio frequency circuit performs the following process:
  • the first resource pool is the resource configured by the base station on the uplink frequency.
  • the source pool, where the second resource pool is a resource pool configured by the base station on a downlink frequency.
  • the radio frequency circuit further performs the following process:
  • the first resource pool includes a first target resource pool
  • the second resource pool includes Second target resource pool
  • the radio frequency circuit specifically performs the following processes:
  • An eighth aspect of the present invention provides a user equipment UE, including:
  • a first receiving module configured to receive, in the first resource pool, a D2D signal sent by the first user equipment UE, where the D2D signal includes one or any combination of a scheduling assignment SA signal, a D2D data signal, and a D2D discovery signal,
  • the first resource pool is a resource pool configured by the base station on the uplink frequency;
  • a second receiving module configured to: when the first receiving module does not receive the D2D signal sent by the first user equipment UE in the first resource pool, receive, in a second resource pool, the base station forwards The D2D signal sent by the first user equipment UE in the first resource pool, where the second resource pool is a resource pool configured by the base station on a downlink frequency.
  • the first resource pool includes a first target resource pool
  • the second resource pool includes a second target resource pool
  • the first receiving module includes:
  • a first receiving unit configured to receive, in the first target resource pool of the first resource pool, the D2D signal sent by the first user equipment UE;
  • the second receiving module includes:
  • a second receiving unit configured to receive, in the second target resource pool of the second resource pool, the first user equipment UE that is forwarded by the base station, and sent by the first target resource pool in the first resource pool The D2D signal.
  • a ninth aspect of the present invention provides a user equipment UE, including: a radio frequency circuit, a memory, and a processor;
  • the radio frequency circuit performs the following process:
  • a D2D signal sent by the first user equipment UE receives, in the first resource pool, a D2D signal sent by the first user equipment UE, where the D2D signal includes one or any combination of a scheduling assignment SA signal, a D2D data signal, and a D2D discovery signal, where the first resource pool is a base station a resource pool configured on the uplink frequency;
  • the first user equipment UE that is forwarded by the base station in the second resource pool is in the first The D2D signal sent in a resource pool, where the second resource pool is a resource pool configured by the base station on a downlink frequency.
  • the first resource pool includes a first target resource pool
  • the second resource pool includes a second target resource pool
  • the radio frequency circuit specifically performs the following processes:
  • the D2D signal sent by the first user equipment UE receives, in the first target resource pool of the first resource pool, the D2D signal sent by the first user equipment UE, when the D2D signal is not received in the first target resource pool, in the second resource Receiving, in the second target resource pool of the pool, the D2D signal sent by the first user equipment UE that is sent by the base station in the first target resource pool of the first resource pool.
  • the base station configures the first resource pool on the uplink frequency, configures the second resource pool in the downlink frequency, receives the D2D signal sent by the first user equipment in the first resource pool, and sends the D2D signal to the second user in the second resource pool.
  • the device transmits the D2D signal.
  • the base station relays and forwards the D2D signal, so that the UE in the coverage of the base station signal can receive the D2D signal in the second resource pool. Since the transmission power of the base station is larger than the transmission power of the UE, the base station can make a larger range.
  • the UE receives the D2D signal, that is, even if the UE does not use the maximum transmission power, other UEs can receive the D2D signal through the base station.
  • This method can control the transmission power of the UE, reduce interference, and expand the receiving range of the D2D signal.
  • FIG. 1 is a schematic diagram of an embodiment of a signal transmission method in an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of another embodiment of a signal transmission method according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of another embodiment of a signal transmission method according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of another embodiment of a signal transmission method according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of another embodiment of a signal transmission method according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of another embodiment of a signal transmission method according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of an embodiment of a base station according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of another embodiment of a base station according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of another embodiment of a base station according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of an embodiment of a user equipment according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of another embodiment of a user equipment according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of another embodiment of a user equipment according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of another embodiment of a user equipment according to an embodiment of the present invention.
  • FIG. 14 is a schematic diagram of another embodiment of a user equipment according to an embodiment of the present invention.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the first user equipment or the second user equipment includes but is not limited to User equipment (English name: User Equipment, English abbreviation: UE), mobile station (English full name: Mobile Station, English abbreviation: MS), mobile terminal (Mobile Terminal), mobile phone (Mobile Telephone), mobile phone (handset) and portable
  • the user equipment can communicate with one or more core networks via a radio access network (English name: Radio Access Network, English abbreviation: RAN).
  • RAN Radio Access Network
  • the user equipment can be a mobile phone (or For "cellular" phones, computers with wireless communication capabilities, etc., the user devices can also be portable, pocket-sized, handheld, computer-integrated or in-vehicle mobile devices.
  • the base station may be a base station in GSM or CDMA (English full name: Base Transceiver Station, English abbreviation: BTS), or may be a base station (NodeB) in WCDMA, or may be an evolved base station in LTE ( The English full name: evolved Node B, English abbreviation: eNB or e-NodeB), the embodiment of the present invention is not limited.
  • the embodiments of the present invention provide a signal transmission method, a base station, and a user equipment, which can control the transmission power of the UE, reduce interference, and expand the receiving range of the D2D signal.
  • an embodiment of the signal transmission method in the embodiment of the present invention includes:
  • the base station configures a first resource pool on an uplink frequency.
  • the base station configures the first resource pool on the uplink frequency.
  • the uplink frequency refers to the frequency that the user equipment sends the signal to the base station.
  • the resource pool is an access point provided to the user when the air interface channel communicates.
  • the base station configures a second resource pool on the downlink frequency.
  • the base station configures the second resource pool on the downlink frequency.
  • the downlink frequency refers to the base station.
  • the base station receives, in the first resource pool, a D2D signal sent by the first user equipment.
  • the first user equipment After the base station is configured with the first resource pool, the first user equipment sends a D2D signal in the first resource pool, and the base station receives the D2D signal sent by the first user equipment in the first resource pool.
  • the D2D signal is a communication signal between the user equipment and the user equipment, and is used as a direct communication between the user equipment and the user equipment.
  • the D2D signal includes one or any combination of a Scheduling Assignment (SA) signal, a D2D data signal, and a D2D discovery signal.
  • SA Scheduling Assignment
  • the base station sends the D2D signal to the second user equipment in the second resource pool.
  • the base station After receiving the D2D signal in the first resource pool, the base station sends the D2D signal to the second user equipment in the second resource pool, so that the second user equipment can receive the D2D signal in the second resource pool.
  • the base station configures the first resource pool on the uplink frequency, configures the second resource pool in the downlink frequency, receives the D2D signal sent by the first user equipment in the first resource pool, and sends the D2D signal to the second user in the second resource pool.
  • the device transmits the D2D signal.
  • the base station relays and forwards the D2D signal, so that the UE in the coverage of the base station signal can receive the D2D signal in the second resource pool. Since the transmission power of the base station is larger than the transmission power of the UE, the base station can make a larger range.
  • the UE receives the D2D signal, that is, even if the UE does not use the maximum transmission power, other UEs can acquire the D2D signal through the base station.
  • This method can control the transmission power of the UE, reduce interference, and expand the receiving range of the D2D signal.
  • FIG. 2 another embodiment of the signal transmission method in the embodiment of the present invention includes:
  • the base station configures a first resource pool on an uplink frequency.
  • the base station configures the first resource pool on the uplink frequency.
  • the uplink frequency refers to the frequency that the user equipment sends the signal to the base station.
  • the resource pool is an access point provided to the user when the air interface channel communicates.
  • the first resource pool includes the first target resource pool, and may also include other resource pools, which is not limited herein.
  • the base station configures a second resource pool on the downlink frequency.
  • the base station configures the second resource pool on the downlink frequency.
  • the downlink frequency refers to the frequency used by the base station to send signals to the user equipment.
  • the second resource pool includes the second target resource pool, and may also include other resource pools, which are not limited herein.
  • the base station receives the D2D signal sent by the first user equipment in the first target resource pool of the first resource pool.
  • the first user equipment After the base station is configured with the first resource pool, the first user equipment sends a D2D signal in the first target resource pool of the first resource pool, and the base station receives the D2D signal sent by the first user equipment in the first target resource pool of the first resource pool.
  • the D2D signal is a communication signal between the user equipment and the user equipment, and is used as a direct communication between the user equipment and the user equipment.
  • the D2D signal includes one or any combination of a scheduling assignment SA signal, a D2D data signal, and a D2D discovery signal.
  • the first target resource pool is a first SA resource pool, a first D2D data signal resource pool or a first D2D discovery signal resource pool.
  • the base station receives the SA signal in the first SA resource pool of the first resource pool, or receives the D2D data signal in the first D2D data signal resource pool of the first resource pool, or the first D2D discovery signal in the first resource pool.
  • the D2D discovery signal is received in the resource pool.
  • the base station sends the D2D signal to the second user equipment in the second target resource pool of the second resource pool.
  • the base station After receiving the D2D signal in the first target resource pool, the base station sends the D2D signal to the second user equipment in the second target resource pool of the second resource pool, so that the second user equipment can receive the D2D signal in the second resource pool.
  • the second target resource pool is a second SA resource pool, a second D2D data signal resource pool, or a second D2D discovery signal resource pool.
  • the base station sends an SA signal to the second user equipment in the second SA resource pool of the second resource pool, or sends a D2D data signal to the second user equipment in the second D2D data signal resource pool of the second resource pool, or
  • the second D2D discovery signal resource pool of the second resource pool sends a D2D discovery signal to the second user equipment.
  • the resource pool in the first resource pool and the resource pool in the second resource pool may have a corresponding relationship, and the corresponding relationship may be a one-to-one mapping relationship, or may be a mapping relationship between multiple This is not a limitation.
  • the first target resource pool corresponds to the second target resource pool, and the D2D signal received by the base station in the first target resource pool is sent in the second target resource pool.
  • the base station configures the first resource pool on the uplink frequency, configures the second resource pool in the downlink frequency, and receives the D2D message sent by the first user equipment in the first target resource pool of the first resource pool. No. sending the D2D signal to the second user equipment in the second target resource pool of the second resource pool.
  • the first target resource pool is corresponding to the second target resource pool, and the D2D signal received by the base station in the first target resource pool is sent to the second user equipment in the second target resource pool, so that when the second user equipment can be based on the first target
  • the correspondence between the resource pool and the second target resource pool is purposeful to receive the D2D signal in the first resource pool or the second resource pool, thereby reducing the receiving power of the second user equipment.
  • Another embodiment of the signal transmission method in the embodiment of the present invention includes:
  • the second user equipment receives, in the second resource pool, the D2D signal sent by the first user equipment that is forwarded by the base station in the first resource pool.
  • the base station configures the first resource pool on the uplink frequency, and configures the second resource pool on the downlink frequency.
  • the first user equipment sends the D2D signal in the first resource pool, and the base station receives the D2D signal sent by the first user equipment in the first resource pool.
  • the D2D signal is sent to the second user equipment in the second resource pool, and the second user equipment receives the D2D signal sent by the first user equipment that is forwarded by the base station in the first resource pool in the second resource pool.
  • the uplink frequency refers to the frequency used by the user equipment to send signals to the base station
  • the downlink frequency refers to the frequency used by the base station to send signals to the user equipment.
  • the resource pool is an access point provided to the user when the air interface channel communicates.
  • the D2D signal is a communication signal from the user equipment to the user equipment and is used as direct communication between the user equipment and the user equipment.
  • the D2D signal includes one or any combination of a scheduling assignment SA signal, a D2D data signal, and a D2D discovery signal.
  • the second user equipment may receive the D2D signal sent by the first user equipment in the first resource pool that is forwarded by the base station in the second resource pool, because the sending power of the base station is larger than the sending power of the first user equipment, Even if the transmission power of the first user equipment is small, the D2D signal sent in the first resource pool cannot reach the second user equipment, and the second user equipment can receive the D2D signal forwarded by the base station in the second resource pool.
  • the solution can control the transmission power of the first user equipment, reduce the interference of the first user equipment to the base station, and expand the range of the second user equipment to receive the D2D signal.
  • FIG. 4 another embodiment of the signal transmission method in the embodiment of the present invention includes:
  • the second user equipment receives, in the second resource pool, the D2D signal sent by the first user equipment that is forwarded by the base station in the first resource pool.
  • the base station configures the first resource pool on the uplink frequency, and configures the second resource pool on the downlink frequency.
  • the first user equipment sends the D2D signal in the first resource, and the base station receives the D2D signal sent by the first user equipment in the first resource pool.
  • the D2D signal is sent to the second user equipment in the second resource pool, and the second user equipment can receive the D2D signal sent by the first user equipment in the first resource pool forwarded by the base station in the second resource pool.
  • the uplink frequency refers to the frequency used by the user equipment to send signals to the base station
  • the downlink frequency refers to the frequency used by the base station to send signals to the user equipment.
  • the resource pool is an access point provided to the user when the air interface channel communicates.
  • the D2D signal is a communication signal from the user equipment to the user equipment and is used as direct communication between the user equipment and the user equipment.
  • the D2D signal includes one or any combination of an SA signal, a D2D data signal, and a D2D discovery signal.
  • the second resource pool may include a second target resource pool, where the first resource pool may include a first target resource pool, and the first target resource pool corresponds to the second target resource pool.
  • the first target resource pool is a first SA resource pool, a first D2D data signal resource pool, or a second D2D discovery signal resource pool
  • the second target resource pool may be a second SA resource pool, a second D2D data signal resource pool, or a second Two D2D discovery signal resource pools.
  • the base station receives the SA signal sent by the first user equipment in the first SA resource pool of the first resource pool, and sends the SA signal in the second SA resource pool of the second resource pool, where the second user equipment is in the second Receiving the SA signal in the SA resource pool;
  • the base station receives the D2D data signal sent by the first user equipment in the first D2D data signal resource pool of the first resource pool, and sends the D2D data signal in the second D2D data signal resource pool of the second resource pool, where the second user equipment is Receiving the D2D data signal in the second D2D data signal resource pool;
  • the base station receives the D2D discovery signal sent by the first user equipment in the first D2D discovery signal resource pool of the first resource pool, and sends the D2D discovery signal in the second D2D discovery signal resource pool of the second resource pool, where the second user equipment is The D2D discovery signal is received in the second D2D discovery signal resource pool.
  • first resource pool and the second resource pool may further include other resource pools, and the resource pools in the first resource pool and the resource pools in the second resource pool may have corresponding relationships, and the corresponding relationship may be For a mapping relationship of one to one, it may also be a mapping relationship between multiples, which is not limited herein.
  • the second user equipment may further receive the D2D signal sent by the first user equipment in the first resource pool in the second resource pool by using the method, which is not limited herein.
  • the second user equipment receives the D2D signal sent by the first user equipment in the first resource pool.
  • the second user equipment After receiving the D2D signal sent by the first user equipment in the first target resource pool, the second user equipment receives the D2D signal sent by the first user equipment in the first resource pool. Specifically, when the first user equipment sends the D2D signal in the first target resource pool of the first resource pool, the second user equipment receives the D2D signal sent by the first user equipment in the first target resource pool of the first resource pool. .
  • the second user equipment may receive the D2D signal sent by the first user equipment in the first resource pool by using other methods, which is not limited herein.
  • the second user equipment receives the D2D signal sent by the first user equipment in the first resource pool, and receives the D2D signal sent by the first user equipment in the first resource pool.
  • Another embodiment of the signal transmission method in the embodiment of the present invention includes:
  • the second user equipment receives the D2D signal sent by the first user equipment in the first resource pool.
  • the base station configures the first resource pool on the uplink frequency, and configures the second resource pool on the downlink frequency.
  • the first user equipment sends the D2D signal in the first resource pool, and the base station receives the D2D signal sent by the first user equipment in the first resource pool. And transmitting the D2D signal to the second user equipment in the second resource pool.
  • the second user equipment receives the D2D signal sent by the first user equipment in the first resource pool.
  • the D2D signal is a communication signal between the user equipment and the user equipment, and is used as a direct communication between the user equipment and the user equipment.
  • the D2D signal includes one or any combination of a scheduling assignment SA signal, a D2D data signal, and a D2D discovery signal.
  • the second user equipment determines whether the D2D signal sent by the first user equipment is received in the first resource pool, and if not, step 503 is performed;
  • the second user equipment determines whether the D2D signal sent by the first user equipment is received in the first resource pool. If not, step 503 is performed.
  • the second user equipment receives, in the second resource pool, the D2D signal sent by the first user equipment that is forwarded by the base station in the first resource pool.
  • the second user equipment When the second user equipment does not receive the D2D signal sent by the first user equipment in the first resource pool, the second user equipment receives, in the second resource pool, the D2D signal sent by the first user equipment that is forwarded by the base station in the first resource pool.
  • the reason that the second user equipment does not receive the D2D signal sent by the first user equipment in the first resource pool may be that the second user equipment is far away from the first user equipment, and the signal sent by the first user equipment is The second user equipment is not covered, and may be other reasons, which are not limited herein.
  • the second user equipment first receives the D2D signal sent by the first user equipment in the first resource pool, and when the D2D signal sent by the first user equipment is not received in the first resource pool, the second resource is used.
  • the D2D signal sent by the first user equipment forwarded by the base station in the first resource pool is received in the pool. That is to say, even if the transmission power of the first user equipment is small, the D2D signal sent in the first resource pool cannot reach the second user equipment, and the second user equipment can receive the D2D signal forwarded by the base station in the second resource pool.
  • the solution can control the transmission power of the first user equipment, reduce the interference of the first user equipment to the base station, and expand the range of the second user equipment to receive the D2D signal.
  • FIG. 6 another embodiment of the signal transmission method in the embodiment of the present invention includes:
  • the second user equipment receives the D2D signal sent by the first user equipment in the first target resource pool of the first resource pool.
  • the base station configures the first resource pool on the uplink frequency, and configures the second resource pool on the downlink frequency.
  • the first user equipment sends the D2D signal in the first target resource pool of the first resource pool, and the base station is in the first target of the first resource pool.
  • the D2D signal sent by the first user equipment is received in the resource pool, and the D2D signal is sent to the second user equipment in the second target resource pool of the second resource pool.
  • the second user equipment receives the D2D signal sent by the first user equipment in the first target resource pool of the first resource pool.
  • the D2D signal is a communication signal between the user equipment and the user equipment, and is used as a direct communication between the user equipment and the user equipment.
  • the D2D signal includes one or any combination of a scheduling assignment SA signal, a D2D data signal, and a D2D discovery signal.
  • the first resource pool includes the first target The resource pool may also include other resource pools, which are not limited herein.
  • the first target resource pool is a first SA resource pool, a first D2D data signal resource pool, or a first D2D discovery signal resource pool.
  • the second user equipment receives the SA signal sent by the first user equipment in the first SA resource pool of the first resource pool, or receives the D2D sent by the first user equipment in the first D2D data signal resource pool of the first resource pool.
  • the data signal, or the D2D discovery signal sent by the first user equipment is received in the first D2D discovery signal resource pool of the first resource pool.
  • the second user equipment determines whether the D2D signal sent by the first user equipment is received in the first target resource pool of the first resource pool, if not, step 603 is performed, and if yes, step 604 is performed;
  • the second user equipment determines whether the D2D signal sent by the first user equipment is received in the first target resource pool of the first resource pool. If not, step 603 is performed, and if yes, step 604 is performed.
  • the second user equipment receives, in the second target resource pool of the second resource pool, the D2D signal sent by the first user equipment that is forwarded by the base station in the first target resource pool of the first resource pool.
  • the second user equipment When the second user equipment does not receive the D2D signal sent by the first user equipment in the first target resource pool, the second user equipment receives the first user equipment forwarded by the base station in the second target resource pool of the second resource pool.
  • the D2D signal sent in the target resource pool may include other resource pools in addition to the second target resource pool, which is not limited herein.
  • the second target resource pool is a second SA resource pool, a second D2D data signal resource pool, or a second D2D discovery signal resource pool.
  • the resource pool in the first resource pool and the resource pool in the second resource pool may have a corresponding relationship, and the corresponding relationship may be a one-to-one mapping relationship, or may be a mapping relationship between multiple This is not a limitation.
  • the first target resource pool corresponds to the second target resource pool, and then the D2D signal received by the base station in the first target resource pool is sent in the second target resource pool, and the second user equipment is in the first target resource pool. When the D2D signal is not received, the D2D signal can be directly received into the second target resource pool.
  • the second user equipment when the second user equipment does not receive the SA signal sent by the first user equipment in the first SA resource of the first resource pool, the second user equipment receives the base station forwarding in the second SA resource pool of the second resource pool.
  • the second user equipment When the second user equipment does not receive the D2D data signal sent by the first user equipment in the first D2D data signal resource pool of the first resource pool, the second user equipment is in the second D2D of the second resource pool. Receiving, in the data signal resource pool, the D2D data signal sent by the first user equipment that is forwarded by the base station in the first D2D data signal resource pool of the first resource pool;
  • the second user equipment When the second user equipment does not receive the D2D discovery signal sent by the first user equipment in the first D2D discovery signal resource pool of the first resource pool, the second user equipment receives the second D2D discovery signal resource pool in the second resource pool.
  • the D2D discovery signal sent by the first user equipment forwarded by the base station in the first D2D discovery signal resource pool of the first resource pool.
  • the second user equipment performs other processes.
  • the second user equipment When the second user receives the D2D signal sent by the first user equipment in the first target resource pool, the second user equipment performs other processes.
  • the second user equipment receives the D2D signal sent by the first user equipment in the first target resource pool of the first resource pool, when the second user equipment does not receive the D2D signal in the first target resource pool. And receiving the D2D signal in the second target resource pool of the second resource pool.
  • the first target resource pool has a corresponding relationship with the second target resource pool.
  • the first target resource pool has no received D2D signal, and the second user equipment can receive the D2D signal in the second target resource pool of the second resource pool. It does not need to be received in each resource pool of the second resource pool, which saves the received power of the second user equipment.
  • the base station configures the SA resource pool W and the D2D data signal resource pool X on the uplink frequency, and configures the SA resource pool Y and the D2D data signal resource pool Z in the downlink frequency, and binds the resource pool W to the resource pool Y, and the resource pool X and The resource pool Z is bound, that is, the SA signal received by the base station in W can only be sent through Y, and the data received in X can only be sent through Z.
  • User A is ready to send the file "teaching video" to user B.
  • User A searches for the uplink frequency of communication with the base station through mobile phone a, and then sends the SA signal of the "teaching video” file in the SA resource pool W, in the D2D data signal resource pool X.
  • the "teaching video” file is sent, the base station receives the SA signal in the SA resource pool W, receives the "teaching video” file in the D2D data signal resource pool X, and sends the SA signal to the second user equipment in the SA resource pool Y. Sending a "teaching video” file to the second user equipment in the D2D data signal resource pool Z.
  • the user B searches for the downlink frequency through the mobile phone b, and then receives the SA signal in the SA resource pool Y, and the D2D data signal resource according to the SA signal.
  • the "teaching video" file corresponding to the SA signal is received in the pool Z.
  • an embodiment of the base station in the embodiment of the present invention includes:
  • the first configuration module 701 is configured to configure a first resource pool on an uplink frequency.
  • the second configuration module 702 is configured to configure a second resource pool on the downlink frequency.
  • the receiving module 703 is configured to receive, in the first resource pool configured by the first configuration module 701, the D2D signal sent by the first user equipment, where the D2D signal includes one or any combination of a scheduling assignment SA signal, a D2D data signal, and a D2D discovery signal. ;
  • the sending module 704 sends the D2D signal received by the receiving module 703 to the second user equipment in the second resource pool configured by the second configuration module 702.
  • the first configuration module 701 configures the first resource pool in the uplink frequency
  • the second configuration module 702 configures the second resource pool in the downlink frequency
  • the receiving module 703 receives the D2D sent by the first user equipment in the first resource pool.
  • the signal, the sending module 704 sends the D2D signal to the second user equipment in the second resource pool.
  • the base station relays and forwards the D2D signal, so that the UE in the coverage of the base station signal can receive the D2D signal in the second resource pool. Since the transmission power of the base station is larger than the transmission power of the UE, the base station can make a larger range.
  • the UE receives the D2D signal, that is, even if the UE does not use the maximum transmission power, other UEs can acquire the D2D signal through the base station.
  • This method can control the transmission power of the UE, reduce interference, and expand the receiving range of the D2D signal.
  • FIG. 8 another embodiment of the base station in the embodiment of the present invention includes:
  • the first configuration module 801 is configured to configure a first resource pool on an uplink frequency, where the first resource pool includes a first target resource pool;
  • a second configuration module 802 configured to configure a second resource pool on a downlink frequency, where the second resource pool includes a second target resource pool;
  • the receiving module 803 is configured to receive, in the first resource pool configured by the first configuration module 801, the D2D signal sent by the first user equipment, where the D2D signal includes one or any combination of a scheduling assignment SA signal, a D2D data signal, and a D2D discovery signal. ;
  • the sending module 804 sends the D2D signal received by the receiving module 803 to the second user equipment in the second resource pool configured by the second configuration module 802.
  • the receiving module 803 includes:
  • the receiving unit 8031 is configured to receive, in the first target resource pool of the first resource pool, the D2D signal sent by the first user equipment;
  • the sending module 804 includes:
  • the sending unit 8041 is configured to send a D2D signal to the second user equipment in the second target resource pool of the second resource pool.
  • the first configuration module 801 configures the first resource pool in the uplink frequency
  • the second configuration module 802 configures the second resource pool in the downlink frequency
  • the receiving module 803 receives the D2D sent by the first user equipment in the first resource pool.
  • the signal, the sending module 804 sends the D2D signal to the second user equipment in the second resource pool.
  • the base station relays and forwards the D2D signal, so that the UE in the coverage of the base station signal can receive the D2D signal in the second resource pool. Since the transmission power of the base station is larger than the transmission power of the UE, the base station can make a larger range.
  • the UE receives the D2D signal, that is, even if the UE does not use the maximum transmission power, other UEs can acquire the D2D signal through the base station.
  • This method can control the transmission power of the UE, reduce interference, and expand the receiving range of the D2D signal.
  • the embodiment of the present invention provides a specific manner for the base station receiving module 802 and the sending module 803 to forward the D2D signal, thereby improving the achievability of the solution.
  • the first configuration module 801 configures the first resource pool on the uplink frequency.
  • the uplink frequency refers to the frequency that the user equipment sends the signal to the base station.
  • the resource pool is an access point provided to the user when the air interface channel communicates.
  • the first resource pool includes the first target resource pool, and may also include other resource pools, which is not limited herein.
  • the second configuration module 802 configures the second resource pool on the downlink frequency.
  • the downlink frequency refers to the frequency used by the base station to send signals to the user equipment.
  • the second resource pool includes the second target resource pool, and may also include other resource pools, which are not limited herein.
  • the first user equipment After the first configuration module 801 and the second configuration module 802 are configured with the first resource pool, the first user equipment sends a D2D signal in the first target resource pool of the first resource pool, and the receiving unit 8031 of the receiving module 803 is in the first resource pool.
  • the D2D signal sent by the first user equipment is received in the first target resource pool.
  • the D2D signal is a communication signal between the user equipment and the user equipment, and is used as a direct communication between the user equipment and the user equipment.
  • the D2D signal includes one or any combination of a scheduling assignment SA signal, a D2D data signal, and a D2D discovery signal.
  • the first target resource pool is a first SA resource pool, a first D2D data signal resource pool or a first D2D discovery signal resource pool.
  • the base station receives the SA signal in the first SA resource pool of the first resource pool, or receives the D2D data signal in the first D2D data signal resource pool of the first resource pool, or the first D2D discovery signal in the first resource pool.
  • the D2D discovery signal is received in the resource pool.
  • the sending unit 8041 of the sending module 804 sends the D2D signal to the second user equipment in the second target resource pool of the second resource pool, so that the second The user equipment can receive the D2D signal in the second resource pool.
  • the second target resource pool is a second SA resource pool, a second D2D data signal resource pool, or a second D2D discovery signal resource pool.
  • the second target resource pool and the first target resource pool may have a corresponding relationship, and the corresponding relationship may be a one-to-one mapping relationship, or may be a multiple-to-multiple mapping relationship, which is not limited herein.
  • the receiving unit 8031 sends an SA signal to the second user equipment in the second SA resource pool of the second resource pool, or sends a D2D data signal to the second user equipment in the second D2D data signal resource pool of the second resource pool. Or sending a D2D discovery signal to the second user equipment in the second D2D discovery signal resource pool of the second resource pool.
  • the base station in the embodiment of the present invention is described above from the perspective of a modular functional entity.
  • the base station in the embodiment of the present invention is described from the perspective of hardware processing.
  • FIG. 9 another implementation of the base station 900 in the embodiment of the present invention is described. Examples include a Base Transceiver Station (BTS) 901 and a Base Station Controller (BSC) 902.
  • BTS Base Transceiver Station
  • BSC Base Station Controller
  • the BSC is the connection point between the BTS and the mobile switching center and also provides an interface for exchanging information between the BTS and the mobile switching center.
  • a base station controller typically controls several base transceiver stations. Its main functions are to perform wireless channel management, implement call and communication link establishment and teardown, and control the handoff of mobile stations in the control area.
  • the BTS is controlled by the BSC, serves the wireless transceiver device of a certain cell, completes the conversion between the BSC and the wireless channel, realizes the wireless transmission and related control functions between the BTS and the mobile station through the air interface, and specifically completes the wireless and wired Conversion, wireless diversity, wireless channel encryption, frequency hopping and other functions.
  • a complete BTS includes wireless transmit/receive equipment, antennas, and signal processing sections specific to all wireless interfaces.
  • the BSC performs the following processes: configuring a first resource pool on an uplink frequency and a second resource pool on a downlink frequency.
  • the BTS performs the following process: receiving a D2D signal sent by the first user equipment in the first resource pool, and sending the D2D signal to the second user equipment in the second resource pool, where the D2D signal includes a scheduling assignment SA signal, a D2D data signal, and One or any combination of D2D discovery signals.
  • the first resource pool includes a first target resource pool
  • the second resource pool includes a second target resource pool
  • the BTS specifically performs the following process: the first target in the first resource pool
  • the D2D signal sent by the first user equipment is received in the resource pool, and the D2D signal is sent to the second user equipment in the second target resource pool of the second resource pool.
  • an embodiment of the user equipment in the embodiment of the present invention includes:
  • the first receiving module 1001 is configured to receive, in the second resource pool, a D2D signal sent by the first user equipment that is forwarded by the base station in the first resource pool, where the D2D signal includes a scheduling assignment SA signal, a D2D data signal, and a D2D discovery signal.
  • the first resource pool is a resource pool configured by the base station on the uplink frequency
  • the second resource pool is a resource pool configured by the base station on the downlink frequency.
  • the first receiving module 1001 may receive, in the second resource pool, the D2D signal that is sent by the first user equipment in the first resource pool, and the sending power of the base station is larger than the sending power of the first user equipment. Therefore, even if the transmission power of the first user equipment is small, the D2D signal sent in the first resource pool cannot reach the second user equipment, and the second user equipment can receive the D2D signal forwarded by the base station in the second resource pool.
  • the solution can control the transmission power of the first user equipment, reduce the interference of the first user equipment to the base station, and expand the range of the second user equipment to receive the D2D signal.
  • FIG. 11 another embodiment of the user equipment in the embodiment of the present invention includes:
  • the first receiving module 1101 is configured to receive, in the second resource pool, a D2D signal sent by the first user equipment that is forwarded by the base station in the first resource pool, where the D2D signal includes a scheduling assignment SA signal, a D2D data signal, and a D2D discovery signal.
  • the first resource pool is the base station on the uplink a resource pool configured on the frequency
  • the second resource pool is a resource pool configured by the base station on the downlink frequency
  • the second receiving module 1102 is configured to receive the D2D signal sent by the first user equipment in the first resource pool.
  • the first receiving module 1101 includes:
  • the receiving unit 11011 is configured to receive, in the second target resource pool of the second resource pool, the D2D signal sent by the first user equipment that is forwarded by the base station in the first target resource pool of the first resource pool.
  • the first receiving module 1101 may receive, in the second resource pool, the D2D signal that is sent by the first user equipment in the first resource pool, and the sending power of the base station is larger than the sending power of the first user equipment. Therefore, even if the transmission power of the first user equipment is small, the signal sent in the first resource pool cannot directly reach the second user equipment, and the second user equipment can receive the D2D signal forwarded by the base station in the second resource pool.
  • the solution can control the transmission power of the first user equipment, reduce the interference of the first user equipment to the base station, and expand the range of the second user equipment to receive the D2D signal.
  • the second receiving module 1102 of the second user equipment can receive the D2D signal sent by the first user equipment in the first resource pool, thereby avoiding
  • the flexibility of the solution is improved because the base station fails to forward and the second user equipment cannot receive the D2D signal.
  • FIG. 12 Another user equipment in the embodiment of the present invention is described below.
  • another embodiment of the user equipment in the embodiment of the present invention includes:
  • the first receiving module 1201 is configured to receive, in the first resource pool, a D2D signal sent by the first user equipment, where the D2D signal includes one or any combination of a scheduling assignment SA signal, a D2D data signal, and a D2D discovery signal, where the first
  • the resource pool is a resource pool configured by the base station on the uplink frequency;
  • the second receiving module 1202 is configured to: when the first receiving module 1201 does not receive the D2D signal sent by the first user equipment in the first resource pool, receive the first user equipment that is forwarded by the base station in the second resource pool in the first resource pool.
  • the transmitted D2D signal, the second resource pool is a resource pool configured by the base station on the downlink frequency.
  • the first receiving module 1201 receives the D2D signal sent by the first user equipment in the first resource pool, and when the first receiving module 1201 does not receive the D2D signal sent by the first user equipment in the first resource pool, The second receiving module 1202 then forwards the base station to the second resource pool.
  • the D2D signal sent by the first user equipment in the first resource pool that is to say, even if the transmission power of the first user equipment is small, the D2D signal sent in the first resource pool cannot reach the second user equipment, and the second user equipment can receive the D2D signal forwarded by the base station in the second resource pool.
  • the solution can control the transmission power of the first user equipment, reduce the interference of the first user equipment to the base station, and expand the range of the second user equipment to receive the D2D signal.
  • FIG. 13 another embodiment of the user equipment in the embodiment of the present invention includes:
  • the first receiving module 1301 is configured to receive, in the first resource pool, a D2D signal sent by the first user equipment, where the D2D signal includes one or any combination of a scheduling assignment SA signal, a D2D data signal, and a D2D discovery signal, where the first
  • the resource pool is a resource pool configured by the base station on the uplink frequency;
  • the second receiving module 1302 is configured to: when the first receiving module 1301 receives the D2D signal sent by the first user equipment in the first resource pool, the first user equipment that is sent by the base station in the second resource pool is in the first resource pool.
  • the D2D signal sent, the second resource pool is a resource pool configured by the base station on the downlink frequency, and the second resource pool includes the second target resource pool;
  • the first receiving module 1301 includes:
  • the first receiving unit 13001 is configured to receive, in the first target resource pool of the first resource pool, the D2D signal sent by the first user equipment;
  • the second receiving module 1302 includes
  • the second receiving unit 13021 is configured to: when the first receiving unit 1301 does not receive the D2D signal sent by the first user equipment in the first target resource pool, receive the first forwarded by the base station in the second target resource pool of the second resource pool.
  • the D2D signal sent by the user equipment in the first target resource pool of the first resource pool is configured to: when the first receiving unit 1301 does not receive the D2D signal sent by the first user equipment in the first target resource pool, receive the first forwarded by the base station in the second target resource pool of the second resource pool.
  • the first receiving module 1301 receives the D2D signal sent by the first user equipment in the first resource pool, and when the first receiving module 1301 does not receive the D2D signal sent by the first user equipment in the first resource pool, The second receiving module 1302 then receives the D2D signal sent by the first user equipment that is forwarded by the base station in the first resource pool to the second resource pool. That is, for the D2D signal that the first user equipment cannot send to the second user equipment in the first resource pool, the second user equipment may receive the signal forwarded by the base station in the second resource pool, and expand the second user equipment to receive the D2D. The range of the signal.
  • the first target resource pool has a corresponding relationship with the second target resource pool.
  • the first receiving unit 13011 does not receive the received D2D signal in the first target resource pool, and the second receiving unit 13021 can go to the second resource.
  • the D2D signal is received in the second target resource pool of the pool, and does not need to be received in each resource pool of the second resource pool, which saves the received power of the second user equipment.
  • the two user equipments in the embodiment of the present invention are described above from the perspective of a modular functional entity.
  • the two user equipments may be user equipments such as a mobile phone, a tablet computer, a PDA (Personal Digital Assistant), and the like
  • the mobile phone includes: a radio frequency (RF) circuit 1410, a memory 1420, an input unit 1430, a display unit 1440, a sensor 1450, an audio circuit 1460, and a wireless fidelity (WiFi) module 1470. , processor 1480, and power supply 1490 and other components.
  • RF radio frequency
  • memory 1420 includes: a radio frequency (RF) circuit 1410, a memory 1420, an input unit 1430, a display unit 1440, a sensor 1450, an audio circuit 1460, and a wireless fidelity (WiFi) module 1470.
  • WiFi wireless fidelity
  • processor 1480 and power supply 1490 and other components.
  • the RF circuit 1410 can be used for receiving and transmitting signals during the transmission or reception of information or during a call. Specifically, after receiving the downlink information of the base station, the processor 1480 processes the data. In addition, the uplink data is designed to be sent to the base station. Generally, RF circuit 1410 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a Low Noise Amplifier (LNA), a duplexer, and the like. In addition, RF circuitry 1410 can also communicate with the network and other devices via wireless communication. The above wireless communication may use any communication standard or protocol, including but not limited to Global System of Mobile communication (GSM), General Packet Radio Service (GPRS), Code Division Multiple Access (Code Division). Multiple Access (CDMA), Wideband Code Division Multiple Access (WCDMA), Long Term Evolution (LTE), E-mail, Short Messaging Service (SMS), and the like.
  • GSM Global System of Mobile communication
  • GPRS General Packet Radio Service
  • the memory 1420 can be used to store software programs and modules, and the processor 1480 executes various functional applications and data processing of the mobile phone by running software programs and modules stored in the memory 1420.
  • the memory 1420 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function (such as a sound playing function, an image playing function, etc.), and the like; the storage data area may be stored according to Data created by the use of mobile phones (such as audio data, Phone book, etc.).
  • memory 1420 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • the input unit 1430 can be configured to receive input numeric or character information and to generate key signal inputs related to user settings and function controls of the handset.
  • the input unit 1430 may include a touch panel 1431 and other input devices 1432.
  • the touch panel 1431 also referred to as a touch screen, can collect touch operations on or near the user (such as the user using a finger, a stylus, or the like on the touch panel 1431 or near the touch panel 1431. Operation), and drive the corresponding connecting device according to a preset program.
  • the touch panel 1431 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the touch orientation of the user, and detects a signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts the touch information into contact coordinates, and sends the touch information.
  • the processor 1480 is provided and can receive commands from the processor 1480 and execute them.
  • the touch panel 1431 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the input unit 1430 may also include other input devices 1432.
  • other input devices 1432 may include, but are not limited to, one or more of a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, joysticks, and the like.
  • the display unit 1440 can be used to display information input by the user or information provided to the user as well as various menus of the mobile phone.
  • the display unit 1440 can include a display panel 1441.
  • the display panel 1441 can be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • the touch panel 1431 may cover the display panel 1441. After the touch panel 1431 detects a touch operation on or near the touch panel 1431, the touch panel 1431 transmits to the processor 1480 to determine the type of the touch event, and then the processor 1480 according to the touch event. The type provides a corresponding visual output on display panel 1441.
  • touch panel 1431 and the display panel 1441 are used as two independent components to implement the input and input functions of the mobile phone in FIG. 14 , in some embodiments, the touch panel 1431 and the display panel 1441 may be integrated. Realize the input and output functions of the phone.
  • the handset can also include at least one type of sensor 1450, such as a light sensor, motion sensor, and other sensors.
  • the light sensor may include an ambient light sensor and a proximity sensor, wherein the environment The light sensor can adjust the brightness of the display panel 1441 according to the brightness of the ambient light, and the proximity sensor can close the display panel 1441 and/or the backlight when the mobile phone moves to the ear.
  • the accelerometer sensor can detect the magnitude of acceleration in all directions (usually three axes). When it is stationary, it can detect the magnitude and direction of gravity.
  • the mobile phone can be used to identify the gesture of the mobile phone (such as horizontal and vertical screen switching, related Game, magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tapping), etc.; as for the mobile phone can also be configured with gyroscopes, barometers, hygrometers, thermometers, infrared sensors and other sensors, no longer Narration.
  • the gesture of the mobile phone such as horizontal and vertical screen switching, related Game, magnetometer attitude calibration
  • vibration recognition related functions such as pedometer, tapping
  • the mobile phone can also be configured with gyroscopes, barometers, hygrometers, thermometers, infrared sensors and other sensors, no longer Narration.
  • An audio circuit 1460, a speaker 1461, and a microphone 1462 can provide an audio interface between the user and the handset.
  • the audio circuit 1460 can transmit the converted electrical data of the received audio data to the speaker 1461, and convert it into a sound signal output by the speaker 1461.
  • the microphone 1462 converts the collected sound signal into an electrical signal, and the audio circuit 1460 After receiving, it is converted into audio data, and then processed by the audio data output processor 1480, transmitted to the other mobile phone via the RF circuit 1410, or outputted to the memory 1420 for further processing.
  • WiFi is a short-range wireless transmission technology.
  • the mobile phone can help users to send and receive emails, browse web pages and access streaming media through the WiFi module 1470. It provides users with wireless broadband Internet access.
  • FIG. 14 shows the WiFi module 1470, it can be understood that it does not belong to the essential configuration of the mobile phone, and may be omitted as needed within the scope of not changing the essence of the invention.
  • the processor 1480 is the control center of the handset, which connects various portions of the entire handset using various interfaces and lines, by executing or executing software programs and/or modules stored in the memory 1420, and invoking data stored in the memory 1420, The phone's various functions and processing data, so that the overall monitoring of the phone.
  • the processor 1480 may include one or more processing units; preferably, the processor 1480 may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, an application, and the like.
  • the modem processor primarily handles wireless communications. It will be appreciated that the above described modem processor may also not be integrated into the processor 1480.
  • the handset also includes a power source 1490 (such as a battery) that supplies power to the various components.
  • a power source 1490 such as a battery
  • the power source can be logically coupled to the processor 1480 through a power management system to manage functions such as charging, discharging, and power management through the power management system.
  • the mobile phone may further include a camera, a Bluetooth module, and the like, and details are not described herein again.
  • the RF circuit 1410 included in the user equipment performs the following processes:
  • the D2D signal sent by the first user equipment that is forwarded by the base station in the first resource pool, where the D2D signal includes one or any combination of a scheduling assignment SA signal, a D2D data signal, and a D2D discovery signal, the first resource
  • the pool is a resource pool configured by the base station on the uplink frequency
  • the second resource pool is a resource pool configured by the base station at the downlink frequency.
  • the RF circuit 1410 specifically performs the following process: receiving, in the second resource pool, a D2D signal sent by the first user equipment that is forwarded by the base station in the first resource pool, and is in the first The D2D signal sent by the first user equipment is received in the resource pool.
  • the first resource pool may include a first target resource pool
  • the second resource pool may include a second target resource pool
  • the RF circuit 1140 specifically performs the following process:
  • the D2D signal sent by the first user equipment that is forwarded by the first user equipment in the first target resource pool of the first resource pool is received in the second target resource pool of the resource pool, and is received by the first user equipment in the first target resource pool of the first resource pool. D2D signal.
  • the RF circuit 1410 performs the following process: receiving, in the first resource pool, a D2D signal sent by the first user equipment, where the D2D signal includes a scheduling assignment SA signal, a D2D data signal, and a D2D One or any combination of the discovery signals, the first resource pool is a resource pool configured by the base station at an uplink frequency.
  • the D2D signal sent by the first user equipment is not received in the first resource pool, the D2D signal sent by the first user equipment that is forwarded by the base station in the first resource pool is received in the second resource pool, where the second resource pool is the base station.
  • Resource pool configured for downlink frequency.
  • the first resource pool includes a first target resource pool
  • the second resource pool includes a second target resource pool
  • the RF circuit specifically performs the following process: Receiving, by the target resource pool, the D2D signal sent by the first user equipment, when receiving the D2D signal in the first target resource pool, receiving the first user equipment forwarded by the base station in the second target resource pool of the second resource pool is first The D2D signal sent in the first target resource pool of the resource pool.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit. It can be electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

信号传输方法、基站及用户设备。该方法包括:基站在上行频率上配置第一资源池;基站在下行频率上配置第二资源池;基站在第一资源池内接收第一用户设备发送的设备到设备D2D信号,该D2D信号包括调度指配SA信号、D2D数据信号和D2D发现信号中的一个或任意组合;基站在第二资源池内向第二用户设备UE发送D2D信号。此外,本方案还提供了基站及用户设备。

Description

信号传输方法、基站及用户设备 技术领域
本发明实施例涉及通信领域,尤其涉及信号传输方法、基站及用户设备。
背景技术
设备到设备的临近服务(D2D ProSe,Device to Device Proximity Service)能够使网络中的用户设备(UE,User Equipment)直接通信,通信的数据不需要通过基站的中转。目前在用的一些集群系统,还有一些便携式无线通话设备已经在使用UE直连通信的功能。由于长期演进(LTE,Long Term Evolution)系统商业化的成功,因此使用LTE系统的物理层提供用D2D ProSe既丰富了LTE系统的业务范围,也使得用D2D ProSe这种应用可以被更多的用户所使用。
在LTE网络的ProSe业务中,为了实现设备到设备D2D(Device to Device)通信的最远距离,一般要求UE使用最大发送功率,但是当UE使用最大发送功率发送信号的时候,由于UE的带内干扰,使得UE发送的信号到达基站接收机的时候,对基站的上行信号存在很大的干扰,甚至将基站接收的上行信号淹没在UE的带内干扰中。
现有技术对UE采用功率控制的方法,使UE的发送功率受到开环功率的影响,当距离基站较近时,UE不能够使用最大发送功率,随着UE发送功率的降低,UE的带内干扰降低,UE发送的信号对基站上行信号的干扰也随之降低。
信号的覆盖范围会随着发送功率减小而减小,所以现有技术中对UE采用功率控制的方法,降低UE的发送功率,会导致UE发送的信号的覆盖范围减小,这就使得D2D信号的接收范围减小了。
发明内容
本发明实施例提供了信号传输方法、基站及用户设备,可以控制UE的发送功率,减少干扰,及扩大D2D信号的接收范围。
有鉴于此,本发明第一方面提供一种信号传输方法,包括:
基站在上行频率上配置第一资源池;
所述基站在下行频率上配置第二资源池;
所述基站在所述第一资源池内接收第一用户设备UE发送的设备到设备D2D信号,所述D2D信号包括调度指配SA信号、D2D数据信号和D2D发现信号中的一个或任意组合;
所述基站在所述第二资源池内向第二用户设备UE发送所述D2D信号。
结合本发明第一方面,本发明第一方面的第一实施方式中,所述第一资源池包括第一目标资源池,所述第二资源池包括第二目标资源池,所述基站在所述第一资源池内接收所述第一用户设备UE发送的所述D2D信号,包括:
所述基站在所述第一资源池的所述第一目标资源池内接收所述第一用户设备UE发送的所述D2D信号;
所述基站在所述第二资源池内向所述第二用户设备UE发送所述D2D信号,包括:
所述基站在所述第二资源池的所述第二目标资源池内向所述第二用户设备UE发送所述D2D信号。
结合本发明第一方面的第一实施方式,本发明第一方面的第二实施方式中,所述第一目标资源池为第一调度指配SA资源池、第一D2D数据信号资源池或第一D2D发现信号资源池;
所述第二目标资源池为第二调度指配SA资源池、第二D2D数据信号资源池或第二D2D发现信号资源池。
本发明第二方面提供一种信号传输方法,包括:
第二用户设备UE在第二资源池内接收基站转发的第一用户设备UE在第一资源池内发送的D2D信号,所述D2D信号包括调度指配SA信号、D2D数据信号和D2D发现信号中的一个或任意组合,所述第一资源池是所述基站在上行频率上配置的资源池,所述第二资源池是所述基站在下行频率上配置的资源池。
结合本发明第二方面,本发明第二方面的第一实施方式中,所述方法还包括:
所述第二用户设备UE在所述第一资源池内接收所述第一用户设备UE发送的所述D2D信号。
结合本发明第二方面或本发明第二方面的第一实施方式,本发明第二方面 的第二实施方式中,所述第一资源池包括第一目标资源池,所述第二资源池包括第二目标资源池,所述第二用户设备UE在所述第二资源池内接收所述基站转发的所述第一用户设备UE在所述第一资源池内发送的所述D2D信号,包括:
所述第二用户设备UE在所述第二资源池的所述第二目标资源池内接收所述基站转发的所述第一用户设备UE在所述第一资源池的所述第一目标资源池内发送的所述D2D信号。
结合本发明第二方面的第二实施方式,本发明第二方面的第三实施方式中,所述第一目标资源池为第一调度指配SA资源池、第一D2D数据信号资源池或第一D2D发现信号资源池,所述第二目标资源池为第二调度指配SA资源池、第二D2D数据信号资源池或第二D2D发现信号资源池。
本发明第三方面提供一种信号传输方法,包括:
第二用户设备UE在第一资源池内接收第一用户设备UE发送的D2D信号,所述D2D信号包括调度指配SA信号、D2D数据信号和D2D发现信号中的一个或任意组合,所述第一资源池是基站在上行频率上配置的资源池;
当所述第二用户设备UE在所述第一资源池内接收不到所述第一用户设备UE发送的所述D2D信号时,所述第二用户设备UE在第二资源池内接收所述基站转发的所述第一用户设备UE在所述第一资源池内发送的所述D2D信号,所述第二资源池是所述基站在下行频率上配置的资源池。
结合本发明第三方面,本发明第三方面的第一实施方式中,所述第一资源池包括第一目标资源池,所述第二资源池包括第二目标资源池,
所述第二用户设备UE在第一资源池内接收第一用户设备UE发送的D2D信号包括:
所述第二用户设备UE在所述第一资源池的所述第一目标资源池内接收所述第一用户设备UE发送的所述D2D信号;
所述第二用户设备UE在第二资源池内接收所述基站转发的所述第一用户设备UE在所述第一资源池内发送的所述D2D信号,包括:
所述第二用户设备UE在所述第二资源池的第二目标资源池内接收所述基站转发的所述第一用户设备UE在所述第一资源池的第一目标资源池内发送的 所述D2D信号。
结合本发明第三方面的第一实施方式,本发明第三方面的第二实施方式中,所述第一目标资源池为第一调度指配SA资源池、第一D2D数据信号资源池或第一D2D发现信号资源池,所述第二目标资源池为第二调度指配SA资源池、第二D2D数据信号资源池或第二D2D发现信号资源池。
本发明第四方面提供一种基站,包括:
第一配置模块,用于在上行频率上配置第一资源池;
第二配置模块,用于在下行频率上配置第二资源池;
接收模块,用于在所述第一配置模块配置的第一资源池内接收第一用户设备UE发送的设备到设备D2D信号,所述D2D信号包括调度指配SA信号、D2D数据信号和D2D发现信号中的一个或任意组合;
发送模块,用于在所述第二配置模块配置的第二资源池内向第二用户设备UE发送所述接收模块接收的所述D2D信号。
结合本发明第四方面,本发明第四方面的第一实施方式中,所述第一资源池包括第一目标资源池,所述第二资源池包括第二目标资源池;
所述接收模块包括:
接收单元,用于在所述第一资源池的所述第一目标资源池内接收所述第一用户设备UE发送的所述D2D信号;
所述发送模块包括:
发送单元,用于在所述第二资源池的所述第二目标资源池内向所述第二用户设备UE发送所述D2D信号。
本发明第五方面提供一种基站,包括:基站收发台BTS及基站控制器BSC;
所述基站控制器台BSC执行以下流程:
在上行频率配置上第一资源池;
在下行频率配置上第二资源池;
所述基站收发台BTS执行以下流程:
在所述第一资源池内接收第一用户设备UE发送的设备到设备D2D信号,所述D2D信号包括调度指配SA信号、D2D数据信号和D2D发现信号中的一个或任意组合;
在所述第二资源池内向第二用户设备UE发送所述D2D信号。
结合本发明第五方面,本发明第五方面的第一实施方式中,所述第一资源池包括第一目标资源池,所述第二资源池包括第二目标资源池;
所述基站收发台BTS具体执行以下流程:
在所述第一资源池的所述第一目标资源池内接收所述第一用户设备UE发送的所述D2D信号;
在所述第二资源池的所述第二目标资源池内向所述第二用户设备UE发送所述D2D信号。
本发明第六方面提供一种用户设备UE,包括:
第一接收模块,用于在第二资源池内接收基站转发的第一用户设备UE在第一资源池内发送的D2D信号,所述D2D信号包括调度指配SA信号、D2D数据信号和D2D发现信号中的一个或任意组合,所述第一资源池是所述基站在上行频率上配置的资源池,所述第二资源池是所述基站在下行频率上配置的资源池。
结合本发明第六方面,本发明第六方面的第一实施方式中,所述用户设备UE还包括:
第二接收模块,用于在所述第一资源池内接收所述第一用户设备UE发送的所述D2D信号。
结合本发明第六方面或第六方面的第一实施方式中,本发明第六方面的第二实施方式中,所述第一资源池包括第一目标资源池,所述第二资源池包括第二目标资源池;
所述第一接收模块包括:
接收单元,用于在所述第二资源池的所述第二目标资源池内接收所述基站转发的所述第一用户设备UE在所述第一资源池的第一目标资源池内发送的所述D2D信号。
所述射频电路执行以下流程:
在第二资源池内接收基站转发的第一用户设备UE在第一资源池内发送的D2D信号,所述D2D信号包括调度指配SA信号、D2D数据信号和D2D发现信号中的一个或任意组合,所述第一资源池是所述基站在上行频率上配置的资 源池,所述第二资源池是所述基站在下行频率上配置的资源池。
结合本发明第七方面,本发明第七方面的第一实施方式中,所述射频电路还执行以下流程:
在所述第一资源池内接收所述第一用户设备UE发送的所述D2D信号。
结合本发明第七方面或本发明第七方面的第一实施方式,本发明第七方面的第二实施方式中,所述第一资源池包括第一目标资源池,所述第二资源池包括第二目标资源池;
所述射频电路具体执行以下流程:
在所述第二资源池的所述第二目标资源池内接收所述基站转发的所述第一用户设备UE在所述第一资源池的第一目标资源池内发送的所述D2D信号。
本发明第八方面提供一种用户设备UE,包括:
第一接收模块,用于在第一资源池内接收第一用户设备UE发送的D2D信号,所述D2D信号包括调度指配SA信号、D2D数据信号和D2D发现信号中的一个或任意组合,所述第一资源池是基站在上行频率上配置的资源池;
第二接收模块,用于当所述第一接收模块在所述第一资源池内接收不到所述第一用户设备UE发送的所述D2D信号时,在第二资源池内接收所述基站转发的所述第一用户设备UE在所述第一资源池内发送的所述D2D信号,所述第二资源池是所述基站在下行频率上配置的资源池。
结合本发明第八方面,本发明第八方面的第一实施方式中,所述第一资源池包括第一目标资源池,所述第二资源池包括第二目标资源池;
所述第一接收模块包括:
第一接收单元,用于在所述第一资源池的所述第一目标资源池内接收所述第一用户设备UE发送的所述D2D信号;
所述第二接收模块包括:
第二接收单元,用于在所述第二资源池的第二目标资源池内接收所述基站转发的所述第一用户设备UE在所述第一资源池的所述第一目标资源池内发送的所述D2D信号。
本发明第九方面提供一种用户设备UE,包括:射频电路、存储器及处理器;
所述射频电路执行以下流程:
在第一资源池内接收第一用户设备UE发送的D2D信号,所述D2D信号包括调度指配SA信号、D2D数据信号和D2D发现信号中的一个或任意组合,所述第一资源池是基站在上行频率上配置的资源池;
当所述在所述第一资源池内接收不到所述第一用户设备UE发送的所述D2D信号时,在第二资源池内接收所述基站转发的所述第一用户设备UE在所述第一资源池内发送的所述D2D信号,所述第二资源池是所述基站在下行频率上配置的资源池。
结合本发明第九方面,本发明第九方面的第一实施方式中,所述第一资源池包括第一目标资源池,所述第二资源池包括第二目标资源池;
所述射频电路具体执行以下流程:
在第一资源池的第一目标资源池内接收所述第一用户设备UE发送的所述D2D信号,当在所述第一目标资源池内接收不到所述D2D信号时,在所述第二资源池的第二目标资源池内接收所述基站转发的所述第一用户设备UE在所述第一资源池的所述第一目标资源池内发送的所述D2D信号。
从以上技术方案可以看出,本发明实施例具有以下优点:
本发明实施例中,基站在上行频率配置第一资源池,在下行频率配置第二资源池,在第一资源池内接收第一用户设备发送的D2D信号,并在第二资源池内向第二用户设备发送该D2D信号。通过基站中继转发D2D信号,使得基站信号覆盖范围内的UE都能在第二资源池中接收该D2D信号,由于基站的发送功率比UE的发送功率大,所以基站能让更大范围内的UE接收到D2D信号,也就是说即使UE不使用最大发送功率,其他UE也能通过基站接收到D2D信号。这种方法既能控制UE的发送功率,减少干扰,又扩大了D2D信号的接收范围。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例中信号传输方法的一个实施例示意图;
图2是本发明实施例中信号传输方法的另一实施例示意图;
图3是本发明实施例中信号传输方法的另一实施例示意图;
图4是本发明实施例中信号传输方法的另一实施例示意图;
图5是本发明实施例中信号传输方法的另一实施例示意图;
图6是本发明实施例中信号传输方法的另一实施例示意图;
图7是本发明实施例中基站的一个实施例示意图;
图8是本发明实施例中基站的另一实施例示意图;
图9是本发明实施例中基站的另一实施例示意图;
图10是本发明实施例中用户设备的一个实施例示意图;
图11是本发明实施例中用户设备的另一实施例示意图;
图12是本发明实施例中用户设备的另一实施例示意图;
图13是本发明实施例中用户设备的另一实施例示意图;
图14是本发明实施例中用户设备的另一实施例示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应理解,本发明实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)或全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统等。
应理解,在本发明实施例中,第一用户设备或第二用户设备包括但不限于 用户设备(英文全称:User Equipment,英文简称:UE)、移动台(英文全称:Mobile Station,英文简称:MS)、移动终端(Mobile Terminal)、移动电话(Mobile Telephone)、手机(handset)及便携设备(portable equipment)等,该用户设备可以经无线接入网(英文全称:Radio Access Network,英文简称:RAN)与一个或多个核心网进行通信,例如,用户设备可以是移动电话(或称为“蜂窝”电话)、具有无线通信功能的计算机等,用户设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
本发明实施例中,基站可以是GSM或CDMA中的基站(英文全称:Base Transceiver Station,英文缩写:BTS),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(英文全称:evolved Node B,英文缩写:eNB或e-NodeB),本发明实施例并不限定。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本发明实施例提供了信号传输方法、基站及用户设备,可以控制UE的发送功率,减少干扰,及扩大D2D信号的接收范围。
下面先从基站的角度对本发明是实施例中的信号传输方法进行描述,请参考图1,本发明实施例中信号传输方法的一个实施例包括:
101、基站在上行频率上配置第一资源池;
基站在上行频率上配置第一资源池,需要说明的是,上行频率指的是用户设备把信号发送到基站使用的频率。资源池是空口信道通信时,为用户提供的接入点。
102、基站在下行频率上配置第二资源池;
基站在下行频率上配置第二资源池,需要说明的是,下行频率指的是基站 向用户设备发送信号使用的频率。
103、基站在第一资源池内接收第一用户设备发送的D2D信号;
基站配置完第一资源池后,第一用户设备在第一资源池内发送D2D信号,基站在第一资源池内接收第一用户设备发送的D2D信号。需要说明的是,D2D信号为用户设备到用户设备的通信信号,用作用户设备与用户设备之间的直接通信。D2D信号包括调度指配(SA,Scheduling Assignment)信号、D2D数据信号和D2D发现信号中的一个或任意组合。
104、基站在第二资源池内向第二用户设备发送该D2D信号。
基站在第一资源池内接收到D2D信号后,在第二资源池内向第二用户设备发送该D2D信号,使得第二用户设备可以在第二资源池内接收该D2D信号。
本发明实施例中,基站在上行频率配置第一资源池,在下行频率配置第二资源池,在第一资源池内接收第一用户设备发送的D2D信号,并在第二资源池内向第二用户设备发送该D2D信号。通过基站中继转发D2D信号,使得基站信号覆盖范围内的UE都能在第二资源池中接收该D2D信号,由于基站的发送功率比UE的发送功率大,所以基站能让更大范围内的UE接收到D2D信号,也就是说即使UE不使用最大发送功率,其他UE也能通过基站获取到D2D信号。这种方法既能控制UE的发送功率,减少干扰,又扩大了D2D信号的接收范围。
为了便于理解,下面对发明实施例中的信号传输方法进行详细描述,请参阅图2,本发明是实施例中信号传输方法的另一实施例包括:
201、基站在上行频率上配置第一资源池;
基站在上行频率上配置上第一资源池,需要说明的是,上行频率指的是用户设备把信号发送到基站使用的频率。资源池是空口信道通信时,为用户提供的接入点。第一资源池包括第一目标资源池,还可以包括其他资源池,具体此处不作限定。
202、基站在下行频率上配置第二资源池;
基站在下行频率配置第上二资源池,需要说明的是,下行频率指的是基站向用户设备发送信号使用的频率。还需说明的是,第二资源池包括第二目标资源池,还可以包括其他资源池,具体此处不作限定。
203、基站在第一资源池的第一目标资源池内接收第一用户设备发送的D2D信号;
基站配置完第一资源池后,第一用户设备在第一资源池的第一目标资源池内发送D2D信号,基站在第一资源池的第一目标资源池内接收第一用户设备发送的D2D信号。
需要说明的是,D2D信号为用户设备到用户设备的通信信号,用作用户设备与用户设备之间的直接通信。D2D信号包括调度指配SA信号、D2D数据信号和D2D发现信号中的一个或任意组合。第一目标资源池为第一SA资源池,第一D2D数据信号资源池或第一D2D发现信号资源池。具体地,基站在第一资源池的第一SA资源池内接收SA信号,或在第一资源池的第一D2D数据信号资源池内接收D2D数据信号,或在第一资源池的第一D2D发现信号资源池内接收D2D发现信号。
204、基站在第二资源池的第二目标资源池内向第二用户设备发送该D2D信号。
基站在第一目标资源池内接收到D2D信号后,在第二资源池的第二目标资源池内向第二用户设备发送该D2D信号,使得第二用户设备可以在第二资源池内接收该D2D信号。
需要说明的是,第二目标资源池为第二SA资源池、第二D2D数据信号资源池或第二D2D发现信号资源池。具体地,基站在第二资源池的第二SA资源池内向第二用户设备发送SA信号,或在第二资源池的第二D2D数据信号资源池内向第二用户设备发送D2D数据信号,或在第二资源池的第二D2D发现信号资源池内向第二用户设备发送D2D发现信号。
还需要说明的是,第一资源池内的资源池与第二资源池内的资源池可以具有对应关系,该对应关系可以为一个对一个的映射关系,也可以是一个对多个的映射关系,具体此处不作限定。例如,第一目标资源池与第二目标资源池对应,那么基站在第一目标资源池接收到的D2D信号,会在第二目标资源池中发送。
本发明实施例中,基站在上行频率配置第一资源池,在下行频率配置第二资源池,在第一资源池的第一目标资源池内接收第一用户设备发送的D2D信 号,在第二资源池的第二目标资源池内向第二用户设备发送该D2D信号。第一目标资源池与第二目标资源池对应,基站在第一目标资源池内接收到的D2D信号,在第二目标资源池内向第二用户设备发送,使得当第二用户设备可以根据第一目标资源池与第二目标资源池的对应关系有目的性的到第一资源池或第二资源池中接收D2D信号,由此可以减小第二用户设备的接收功率。
上面从基站的角度对本发明实施例中的信号传输方法进行了描述,下面从第二用户设备的角度进行描述,请参阅图3,本发明是实施例中信号传输方法的另一实施例包括:
301、第二用户设备在第二资源池内接收基站转发的第一用户设备在第一资源池内发送的D2D信号。
基站在上行频率上配置第一资源池,在下行频率上配置第二资源池,第一用户设备在第一资源池内发送D2D信号,基站在第一资源池内接收第一用户设备发送的D2D信号,并在第二资源池内向第二用户设备发送该D2D信号,第二用户设备在第二资源池内接收基站转发的第一用户设备在第一资源池内发送的D2D信号。
需要说明的是,上行频率指的是用户设备把信号发送到基站使用的频率,下行频率指的是基站向用户设备发送信号使用的频率。资源池是空口信道通信时,为用户提供的接入点。D2D信号为用户设备到用户设备的通信信号,用作用户设备与用户设备之间的直接通信。D2D信号包括调度指配SA信号、D2D数据信号和D2D发现信号中的一个或任意组合。
本发明实施例中,第二用户设备可以在第二资源池内接收基站转发的第一用户设备在第一资源池内发送的D2D信号,由于基站的发送功率比第一用户设备的发送功率大,所以即使第一用户设备的发送功率较小,在第一资源池内发送的D2D信号不能到达第二用户设备,第二用户设备也能在第二资源池内接收基站转发的该D2D信号。该方案既能控制了第一用户设备的发送功率,减少了第一用户设备对基站的干扰,又能扩大第二用户设备接收D2D信号的范围。
为了便于理解,下面对本发明实施例中的信号传输方法进行详细描述,请参阅图4,本发明实施例中信号传输方法的另一实施例包括:
401、第二用户设备在第二资源池内接收基站转发的第一用户设备在第一资源池内发送的D2D信号;
基站在上行频率上配置第一资源池,在下行频率上配置第二资源池,第一用户设备在第一资源内发送D2D信号,基站在第一资源池接收第一用户设备发送的D2D信号,并在第二资源池内向第二用户设备发送该D2D信号,第二用户设备就可以在第二资源池内接收基站转发的第一用户设备在第一资源池内发送的D2D信号。
需要说明的是,上行频率指的是用户设备把信号发送到基站使用的频率,下行频率指的是基站向用户设备发送信号使用的频率。资源池是空口信道通信时,为用户提供的接入点。D2D信号为用户设备到用户设备的通信信号,用作用户设备与用户设备之间的直接通信。D2D信号包括SA信号、D2D数据信号和D2D发现信号中的一个或任意组合。第二资源池可以包括第二目标资源池,第一资源池可以包括第一目标资源池,第一目标资源池与第二目标资源池对应。第一目标资源池为第一SA资源池、第一D2D数据信号资源池或第二D2D发现信号资源池,第二目标资源池可以为第二SA资源池、第二D2D数据信号资源池或第二D2D发现信号资源池。
具体地,基站在第一资源池的第一SA资源池内接收第一用户设备发送的SA信号,并在第二资源池的第二SA资源池内发送该SA信号,第二用户设备在该第二SA资源池内接收该SA信号;
基站在第一资源池的第一D2D数据信号资源池内接收第一用户设备发送的D2D数据信号,并在第二资源池的第二D2D数据信号资源池内发送该D2D数据信号,第二用户设备在该第二D2D数据信号资源池内接收该D2D数据信号;
基站在第一资源池的第一D2D发现信号资源池内接收第一用户设备发送的D2D发现信号,并在第二资源池的第二D2D发现信号资源池内发送该D2D发现信号,第二用户设备在该第二D2D发现信号资源池内接收该D2D发现信号。
可以理解的是,第一资源池及第二资源池还可以包括其他资源池,第一资源池内的资源池与第二资源池内的资源池可以具有对应关系,该对应关系可以 为一个对一个的映射关系,也可以是一个对多个的映射关系,具体此处不作限定。第二用户设备还可以通过其他方式在第二资源池内接收基站转发第一用户设备在第一资源池内发送的D2D信号,具体此处不作限定。
402、第二用户设备在第一资源池内接收第一用户设备发送的该D2D信号。
第二用户设备在第二资源池内接收基站转发的第一用户设备在第一目标资源池内发送的D2D信号后,在第一资源池内接收第一用户设备发送的该D2D信号。具体地,当第一用户设备在第一资源池的第一目标资源池内发送该D2D信号时,第二用户设备在第一资源池的第一目标资源池内接收第一用户设备发送的该D2D信号。
需要说明的是,第二用户设备还可以通过其他方式在第一资源池内接收第一用户设备发送的D2D信号,具体此处不作限定。
本发明实施例中,第二用户设备除了在第二资源内接收基站转发的第一用户设备在第一资源池内发送的D2D信号,还在第一资源池内接收第一用户设备发送的D2D信号。由此,可以避免由于基站转发失败而导致第二用户设备无法接收D2D信号的状况,确保了第二用户设备能够接收到D2D信号。
上面从用户设备的角度描述了本发明实施例中的信号传输方法,下面从用户设备的另一角度进行描述,请参阅图5,本发明实施例中信号传输方法的另一实施例包括:
501、第二用户设备在第一资源池内接收第一用户设备发送的D2D信号;
基站在上行频率上配置第一资源池,在下行频率上配置第二资源池,第一用户设备在第一资源池内发送D2D信号,基站在第一资源池内接收第一用户设备发送的D2D信号,并在第二资源池内向第二用户设备发送该D2D信号。第二用户设备在第一资源池内接收第一用户设备发送的D2D信号。
需要说明的是,D2D信号为用户设备到用户设备的通信信号,用作用户设备与用户设备之间的直接通信。D2D信号包括调度指配SA信号、D2D数据信号和D2D发现信号中的一个或任意组合。
502、第二用户设备判断在第一资源池内是否接收到第一用户设备发送的D2D信号,若否,则执行步骤503;
第二用户设备判断在第一资源池内是否接收到第一用户设备发送的D2D信号,若否,则执行步骤503。
503、第二用户设备在第二资源池内接收基站转发的第一用户设备在第一资源池内发送的D2D信号。
当第二用户设备在第一资源池内接收不到第一用户设备发送的D2D信号时,第二用户设备在第二资源池内接收基站转发的第一用户设备在第一资源池内发送的D2D信号。需要说明的是,第二用户设备在第一资源池内接收不到第一用户设备发送的D2D信号的原因,可以是第二用户设备与第一用户设备距离较远,第一用户设备发送的信号没有覆盖到第二用户设备,也可以是其他原因,具体此处不作限定。
本发明实施例中,第二用户设备先在第一资源池内接收第一用户设备发送的D2D信号,当在第一资源池内没有接收到第一用户设备发送的D2D信号时,再到第二资源池内接收基站转发的第一用户设备在第一资源池内发送的D2D信号。也就是说即使第一用户设备的发送功率较小,在第一资源池内发送的D2D信号不能到达第二用户设备,第二用户设备也能在第二资源池内接收到基站转发的该D2D信号。该方案即能控制第一用户设备的发送功率,减少了第一用户设备对基站的干扰,又能扩大第二用户设备接收D2D信号的范围。
为了便于理解,下面对本发明实施例中的信号传输方法进行详细描述,请参阅图6,本发明实施例中信号传输方法的另一实施例包括:
601、第二用户设备在第一资源池的第一目标资源池内接收第一用户设备发送的D2D信号;
基站在上行频率上配置第一资源池,在下行频率上配置第二资源池,第一用户设备在第一资源池的第一目标资源池内发送D2D信号,基站在第一资源池的第一目标资源池内接收第一用户设备发送的D2D信号,并在第二资源池的第二目标资源池内向第二用户设备发送该D2D信号。第二用户设备在第一资源池的第一目标资源池内接收第一用户设备发送的D2D信号。
需要说明的是,D2D信号为用户设备到用户设备的通信信号,用作用户设备与用户设备之间的直接通信。D2D信号包括调度指配SA信号、D2D数据信号和D2D发现信号中的一个或任意组合。第一资源池除了包括第一目标 资源池,还可以包括其他资源池,具体此处不作限定。第一目标资源池为第一SA资源池、第一D2D数据信号资源池或第一D2D发现信号资源池。
具体地,第二用户设备在第一资源池的第一SA资源池内接收第一用户设备发送的SA信号,或在第一资源池的第一D2D数据信号资源池内接收第一用户设备发送的D2D数据信号,或在第一资源池的第一D2D发现信号资源池内接收第一用户设备发送的D2D发现信号。
602、第二用户设备判断在第一资源池的第一目标资源池内是否接收到第一用户设备发送的D2D信号,若否,则执行步骤603,若是,则执行步骤604;
第二用户设备判断第一资源池的第一目标资源池内是否接收到第一用户设备发送的D2D信号,若否,则执行步骤603,若是,则执行步骤604。
603、第二用户设备在第二资源池的第二目标资源池内接收基站转发的第一用户设备在第一资源池的第一目标资源池内发送的D2D信号;
当第二用户设备在第一目标资源池内接收不到第一用户设备发送的D2D信号时,第二用户设备在第二资源池的第二目标资源池内接收基站转发的第一用户设备在第一目标资源池内发送的D2D信号。需要说明的是,第二资源池除了包括第二目标资源池外,还可以包括其他资源池,具体此处不作限定。第二目标资源池为第二SA资源池、第二D2D数据信号资源池或第二D2D发现信号资源池。
还需要说明的是,第一资源池内的资源池与第二资源池内的资源池可以具有对应关系,该对应关系可以为一个对一个的映射关系,也可以是一个对多个的映射关系,具体此处不作限定。例如,第一目标资源池与第二目标资源池对应,那么基站在第一目标资源池接收到的D2D信号,会在第二目标资源池中发送,则第二用户设备在第一目标资源池接收不到D2D信号时,就可以直接到第二目标资源池中接收该D2D信号。
具体地,当第二用户设备在第一资源池的第一SA资源内接收不到第一用户设备发送的SA信号时,第二用户设备在第二资源池的第二SA资源池内接收基站转发的第一用户设备在第一资源池的第一SA资源池内发送的SA信号;
当第二用户设备在第一资源池的第一D2D数据信号资源池内接收不到第一用户设备发送的D2D数据信号时,第二用户设备在第二资源池的第二D2D 数据信号资源池内接收基站转发的第一用户设备在第一资源池的第一D2D数据信号资源池内发送的D2D数据信号;
当第二用户设备在第一资源池的第一D2D发现信号资源池内接收不到第一用户设备发送的D2D发现信号时,第二用户设备在第二资源池的第二D2D发现信号资源池内接收基站转发的第一用户设备在第一资源池的第一D2D发现信号资源池内发送的D2D发现信号。
604、第二用户设备执行其他流程。
当第二用户在第一目标资源池内接收到第一用户设备发送的D2D信号时,第二用户设备执行其他流程。
本发明实施例中,第二用户设备在第一资源池的第一目标资源池中接收第一用户设备发送的D2D信号,当第二用户设备在第一目标资源池中接收不到D2D信号时,则在第二资源池的第二目标资源池中接收该D2D信号。第一目标资源池与第二目标资源池具有对应关系,在第一目标资源池中没有接收的D2D信号,第二用户设备可以到第二资源池的第二目标资源池中接收该D2D信号,而不需要在第二资源池的每一个资源池内都接收,节约了第二用户设备的接收功率。
为了便于理解,下面以一实际应用场景对本发明实施例中的信号传输方法进行描述:
基站在上行频率配置SA资源池W和D2D数据信号资源池X,并在下行频率配置SA资源池Y和D2D数据信号资源池Z,并将资源池W与资源池Y绑定,资源池X与资源池Z绑定,即基站在W接收到的SA信号,只能通过Y发送,在X接收到的数据,只能通过Z发送。
用户A准备向用户B发送文件“教学视频”,用户A通过手机a搜索与基站通信的上行频率,然后在SA资源池W内发送“教学视频”文件的SA信号,在D2D数据信号资源池X内发送“教学视频”文件,基站在SA资源池W内接收该SA信号,在D2D数据信号资源池X内接收“教学视频”文件,并在SA资源池Y内向第二用户设备发送该SA信号,在D2D数据信号资源池Z内向第二用户设备发送“教学视频”文件,用户B通过手机b搜索下行频率,然后在SA资源池Y内接收该SA信号,并根据SA信号在D2D数据信号资源 池Z中接收该SA信号对应的“教学视频”文件。
上面介绍了本发明实施例中的信号传输方法,下面介绍本发明实施例中的基站,请参阅图7,本发明实施例中基站的一个实施例包括:
第一配置模块701,用于在上行频率上配置第一资源池;
第二配置模块702,用于在下行频率上配置第二资源池;
接收模块703,用于在第一配置模块701配置的第一资源池内接收第一用户设备发送的D2D信号,D2D信号包括调度指配SA信号、D2D数据信号和D2D发现信号中的一个或任意组合;
发送模块704,在第二配置模块702配置的第二资源池内向第二用户设备发送接收模块703接收的D2D信号。
本发明实施例中,第一配置模块701在上行频率配置第一资源池,第二配置模块702在下行频率配置第二资源池,接收模块703在第一资源池内接收第一用户设备发送的D2D信号,发送模块704在第二资源池内向第二用户设备发送该D2D信号。通过基站中继转发D2D信号,使得基站信号覆盖范围内的UE都能在第二资源池中接收该D2D信号,由于基站的发送功率比UE的发送功率大,所以基站能让更大范围内的UE接收到D2D信号,也就是说即使UE不使用最大发送功率,其他UE也能通过基站获取到D2D信号。这种方法既能控制UE的发送功率,减少干扰,又扩大了D2D信号的接收范围。
为了便于理解,下面对本发明实施例中的基站进行详细描述,请参阅图8,本发明实施例中基站的另一实施例包括:
第一配置模块801,用于在上行频率上配置第一资源池,第一资源池包括第一目标资源池;
第二配置模块802,用于在下行频率上配置第二资源池,第二资源池包括第二目标资源池;
接收模块803,用于在第一配置模块801配置的第一资源池内接收第一用户设备发送的D2D信号,D2D信号包括调度指配SA信号、D2D数据信号和D2D发现信号中的一个或任意组合;
发送模块804,在第二配置模块802配置的第二资源池内向第二用户设备发送接收模块803接收的D2D信号;
其中,接收模块803包括:
接收单元8031,用于在第一资源池的第一目标资源池内接收第一用户设备发送的D2D信号;
发送模块804包括:
发送单元8041,用于在第二资源池的第二目标资源池内向第二用户设备发送D2D信号。
本发明实施例中,第一配置模块801在上行频率配置第一资源池,第二配置模块802在下行频率配置第二资源池,接收模块803在第一资源池内接收第一用户设备发送的D2D信号,发送模块804在第二资源池内向第二用户设备发送该D2D信号。通过基站中继转发D2D信号,使得基站信号覆盖范围内的UE都能在第二资源池中接收该D2D信号,由于基站的发送功率比UE的发送功率大,所以基站能让更大范围内的UE接收到D2D信号,也就是说即使UE不使用最大发送功率,其他UE也能通过基站获取到D2D信号。这种方法既能控制UE的发送功率,减少干扰,又扩大了D2D信号的接收范围。
其次,本发明实施例提供了基站接收模块802及发送模块803转发D2D信号的具体方式,提高了方案的可实现性。
为了便于理解,下面以一具体的应用场景对本发明实施例中基站各模块之间的交互进行描述:
第一配置模块801在上行频率上配置第一资源池,需要说明的是,上行频率指的是用户设备把信号发送到基站使用的频率。资源池是空口信道通信时,为用户提供的接入点。第一资源池包括第一目标资源池,还可以包括其他资源池,具体此处不作限定。
第二配置模块802在下行频率配置第二资源池,需要说明的是,下行频率指的是基站向用户设备发送信号使用的频率。还需说明的是,第二资源池包括第二目标资源池,还可以包括其他资源池,具体此处不作限定。
第一配置模块801及第二配置模块802配置完第一资源池后,第一用户设备在第一资源池的第一目标资源池内发送D2D信号,接收模块803的接收单元8031在第一资源池的第一目标资源池内接收第一用户设备发送的D2D信号。
需要说明的是,D2D信号为用户设备到用户设备的通信信号,用作用户设备与用户设备之间的直接通信。D2D信号包括调度指配SA信号、D2D数据信号和D2D发现信号中的一个或任意组合。第一目标资源池为第一SA资源池,第一D2D数据信号资源池或第一D2D发现信号资源池。具体地,基站在第一资源池的第一SA资源池内接收SA信号,或在第一资源池的第一D2D数据信号资源池内接收D2D数据信号,或在第一资源池的第一D2D发现信号资源池内接收D2D发现信号。
接收模块803的接收单元8031在第一目标资源池内接收到D2D信号后,发送模块804的发送单元8041在第二资源池的第二目标资源池内向第二用户设备发送该D2D信号,使得第二用户设备可以在第二资源池内接收该D2D信号。
需要说明的是,第二目标资源池为第二SA资源池、第二D2D数据信号资源池或第二D2D发现信号资源池。第二目标资源池与第一目标资源池可以具有对应关系,该对应关系可以为一个对一个的映射关系,也可以是一个对多个的映射关系具体此处不作限定。具体地,接收单元8031在第二资源池的第二SA资源池内向第二用户设备发送SA信号,或在第二资源池的第二D2D数据信号资源池内向第二用户设备发送D2D数据信号,或在第二资源池的第二D2D发现信号资源池内向第二用户设备发送D2D发现信号。
上面从模块化功能实体的角度对本发明实施例中的基站进行描述,下面从硬件处理的角度对本发明实施例中的基站进行描述,请参阅图9,本发明实施例中基站900的另一个实施例包括:基站收发台(BTS,Base Transceiver Station)901及基站控制器(BSC,Base Station Controller)902。
BSC是BTS和移动交换中心之间的连接点,也为BTS和移动交换中心之间交换信息提供接口。一个基站控制器通常控制几个基站收发台,其主要功能是进行无线信道管理、实施呼叫和通信链路的建立和拆除,并为本控制区内移动台的过区切换进行控制。
BTS受控于BSC,服务于某小区的无线收发信设备,完成BSC与无线信道之间的转换,实现BTS与移动台之间通过空中接口的无线传输及相关的控制功能,具体完成无线与有线的转换、无线分集、无线信道加密、跳频等功能。 一个完整的BTS包括无线发射/接收设备、天线和所有无线接口特有的信号处理部分。
本发明实施例中,BSC执行以下流程:在上行频率配置第一资源池,在下行频率配置第二资源池。
BTS执行以下流程:在第一资源池内接收第一用户设备发送的D2D信号,并在第二资源池内向第二用户设备发送该D2D信号,该D2D信号包括调度指配SA信号、D2D数据信号和D2D发现信号中的一个或任意组合。
在本发明实施例基站的另一实施例中,第一资源池包括第一目标资源池,第二资源池包括第二目标资源池,BTS具体执行以下流程:在第一资源池的第一目标资源池内接收第一用户设备发送的D2D信号,在第二资源池的第二目标资源池内向第二用户设备发送D2D信号。
上面介绍了本发明实施例中的基站,下面介绍本发明实施例中的用户设备,请参阅图10,本发明实施例中用户设备的一个实施例包括:
第一接收模块1001,用于在第二资源池内接收基站转发的第一用户设备在第一资源池内发送的D2D信号,该D2D信号包括调度指配SA信号、D2D数据信号和D2D发现信号中的一个或任意组合,该第一资源池是基站在上行频率上配置的资源池,该第二资源池是基站在下行频率上配置的资源池。
本发明实施例中,第一接收模块1001可以在第二资源池内接收基站转发的第一用户设备在第一资源池内发送的D2D信号,由于基站的发送功率比第一用户设备的发送功率大,所以即使第一用户设备的发送功率较小,在第一资源池内发送的D2D信号不能到达第二用户设备,第二用户设备也能在第二资源池内接收基站转发的该D2D信号。该方案既能控制了第一用户设备的发送功率,减少了第一用户设备对基站的干扰,又能扩大第二用户设备接收D2D信号的范围。
为了便于理解,下面对本发明实施例中的用户设备进行详细描述,请参阅图11,本发明实施例中用户设备的另一实施例包括:
第一接收模块1101,用于在第二资源池内接收基站转发的第一用户设备在第一资源池内发送的D2D信号,该D2D信号包括调度指配SA信号、D2D数据信号和D2D发现信号中的一个或任意组合,该第一资源池是基站在上行 频率上配置的资源池,该第二资源池是基站在下行频率上配置的资源池;
第二接收模块1102,用于在第一资源池内接收第一用户设备发送的D2D信号。
可选地,第一接收模块1101包括:
接收单元11011,用于在第二资源池的第二目标资源池内接收基站转发的第一用户设备在第一资源池的第一目标资源池内发送的D2D信号。
本发明实施例中,第一接收模块1101可以在第二资源池内接收基站转发的第一用户设备在第一资源池内发送的D2D信号,由于基站的发送功率比第一用户设备的发送功率大,所以即使第一用户设备的发送功率较小,在第一资源池内发送的信号不能够直接到达第二用户设备,第二用户设备也能在第二资源池内接收基站转发的该D2D信号。该方案既能控制了第一用户设备的发送功率,减少了第一用户设备对基站的干扰,又能扩大第二用户设备接收D2D信号的范围。
其次,本发明实施例中,为了确保第二用户设备能够接收到D2D信号,第二用户设备的第二接收模块1102可以在第一资源池内接收第一用户设备发送的D2D信号,由此可以避免由于基站转发失败而导致第二用户设备无法接收D2D信号的可能,提高了方案的灵活性。
下面介绍本发明实施例中的另一种用户设备,请参阅图12,本发明实施例中用户设备的另一实施例包括:
第一接收模块1201,用于在第一资源池内接收第一用户设备发送的D2D信号,该D2D信号包括调度指配SA信号、D2D数据信号和D2D发现信号中的一个或任意组合,该第一资源池是基站在上行频率上配置的资源池;
第二接收模块1202,用于当第一接收模块1201在第一资源池内接收不到第一用户设备发送的D2D信号时,在第二资源池内接收基站转发的第一用户设备在第一资源池内发送的D2D信号,第二资源池是基站在下行频率上配置的资源池。
本发明实施例中,第一接收模块1201在第一资源池内接收第一用户设备发送的D2D信号,当第一接收模块1201在第一资源池内没有接收到第一用户设备发送的D2D信号时,第二接收模块1202再到第二资源池内接收基站转发 的第一用户设备在第一资源池内发送的D2D信号。也就是说即使第一用户设备的发送功率较小,在第一资源池内发送的D2D信号不能到达第二用户设备,第二用户设备也能在第二资源池内接收到基站转发的该D2D信号。该方案即能控制第一用户设备的发送功率,减少了第一用户设备对基站的干扰,又能扩大第二用户设备接收D2D信号的范围。
为了便于理解,下面对本发明实施例中的另一种用户设备进行详细描述,请参阅图13,本发明实施例中用户设备的另一实施例包括:
第一接收模块1301,用于在第一资源池内接收第一用户设备发送的D2D信号,该D2D信号包括调度指配SA信号、D2D数据信号和D2D发现信号中的一个或任意组合,该第一资源池是基站在上行频率上配置的资源池;
第二接收模块1302,用于当第一接收模块1301在第一资源池内接收不到第一用户设备发送的D2D信号时,在第二资源池内接收基站转发的第一用户设备在第一资源池内发送的D2D信号,第二资源池是基站在下行频率上配置的资源池,第二资源池包括第二目标资源池;
其中,第一接收模块1301包括:
第一接收单元13001,用于在第一资源池的第一目标资源池内接收第一用户设备发送的D2D信号;
第二接收模块1302包括
第二接收单元13021,用于当第一接收单元1301在第一目标资源池内接收不到第一用户设备发送的D2D信号时,在第二资源池的第二目标资源池内接收基站转发的第一用户设备在第一资源池的第一目标资源池内发送的D2D信号。
本发明实施例中,第一接收模块1301在第一资源池内接收第一用户设备发送的D2D信号,当第一接收模块1301在第一资源池内没有接收到第一用户设备发送的D2D信号时,第二接收模块1302再到第二资源池内接收基站转发的第一用户设备在第一资源池内发送的D2D信号。也就是说对于第一用户设备无法在第一资源池内发送到第二用户设备的D2D信号,第二用户设备可以在第二资源池内接收到基站转发的该信号,扩大了第二用户设备接收D2D信号的范围。
其次,本发明实施例中第一目标资源池与第二目标资源池具有对应关系,第一接收单元13011在第一目标资源池中没有接收的D2D信号,第二接收单元13021可以到第二资源池的第二目标资源池中接收该D2D信号,而不需要在第二资源池的每一个资源池内都接收,节约了第二用户设备的接收功率。
上面从模块化功能实体的角度对本发明实施例中的两种用户设备进行描述,这两种用户设备可以是手机、平板电脑、PDA(Personal Digital Assistant,个人数字助理)等用户设备,下面以手机为例,请参阅图14,手机包括:射频(Radio Frequency,RF)电路1410、存储器1420、输入单元1430、显示单元1440、传感器1450、音频电路1460、无线保真(wireless fidelity,WiFi)模块1470、处理器1480、以及电源1490等部件。本领域技术人员可以理解,图14中示出的手机结构并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面结合图14对手机的各个构成部件进行具体的介绍:
RF电路1410可用于收发信息或通话过程中,信号的接收和发送,特别地,将基站的下行信息接收后,给处理器1480处理;另外,将设计上行的数据发送给基站。通常,RF电路1410包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(Low Noise Amplifier,LNA)、双工器等。此外,RF电路1410还可以通过无线通信与网络和其他设备通信。上述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统(Global System of Mobile communication,GSM)、通用分组无线服务(General Packet Radio Service,GPRS)、码分多址(Code Division Multiple Access,CDMA)、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)、长期演进(Long Term Evolution,LTE)、电子邮件、短消息服务(Short Messaging Service,SMS)等。
存储器1420可用于存储软件程序以及模块,处理器1480通过运行存储在存储器1420的软件程序以及模块,从而执行手机的各种功能应用以及数据处理。存储器1420可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、 电话本等)等。此外,存储器1420可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
输入单元1430可用于接收输入的数字或字符信息,以及产生与手机的用户设置以及功能控制有关的键信号输入。具体地,输入单元1430可包括触控面板1431以及其他输入设备1432。触控面板1431,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板1431上或在触控面板1431附近的操作),并根据预先设定的程式驱动相应的连接装置。可选的,触控面板1431可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器1480,并能接收处理器1480发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板1431。除了触控面板1431,输入单元1430还可以包括其他输入设备1432。具体地,其他输入设备1432可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
显示单元1440可用于显示由用户输入的信息或提供给用户的信息以及手机的各种菜单。显示单元1440可包括显示面板1441,可选的,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板1441。进一步的,触控面板1431可覆盖显示面板1441,当触控面板1431检测到在其上或附近的触摸操作后,传送给处理器1480以确定触摸事件的类型,随后处理器1480根据触摸事件的类型在显示面板1441上提供相应的视觉输出。虽然在图14中,触控面板1431与显示面板1441是作为两个独立的部件来实现手机的输入和输入功能,但是在某些实施例中,可以将触控面板1431与显示面板1441集成而实现手机的输入和输出功能。
手机还可包括至少一种传感器1450,比如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境 光传感器可根据环境光线的明暗来调节显示面板1441的亮度,接近传感器可在手机移动到耳边时,关闭显示面板1441和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于手机还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
音频电路1460、扬声器1461,传声器1462可提供用户与手机之间的音频接口。音频电路1460可将接收到的音频数据转换后的电信号,传输到扬声器1461,由扬声器1461转换为声音信号输出;另一方面,传声器1462将收集的声音信号转换为电信号,由音频电路1460接收后转换为音频数据,再将音频数据输出处理器1480处理后,经RF电路1410以发送给比如另一手机,或者将音频数据输出至存储器1420以便进一步处理。
WiFi属于短距离无线传输技术,手机通过WiFi模块1470可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。虽然图14示出了WiFi模块1470,但是可以理解的是,其并不属于手机的必须构成,完全可以根据需要在不改变发明的本质的范围内而省略。
处理器1480是手机的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器1420内的软件程序和/或模块,以及调用存储在存储器1420内的数据,执行手机的各种功能和处理数据,从而对手机进行整体监控。可选的,处理器1480可包括一个或多个处理单元;优选的,处理器1480可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器1480中。
手机还包括给各个部件供电的电源1490(比如电池),优选的,电源可以通过电源管理系统与处理器1480逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
尽管未示出,手机还可以包括摄像头、蓝牙模块等,在此不再赘述。
在本发明实施例中,用户设备所包括的RF电路1410执行以下流程:
在第二资源池内接收基站转发的第一用户设备在第一资源池内发送的D2D信号,D2D信号包括调度指配SA信号、D2D数据信号和D2D发现信号中的一个或任意组合,该第一资源池是基站在上行频率上配置的资源池,该第二资源池是基站在下行频率配置的资源池。
在本发明实施例中用户设备的另一实施例中,RF电路1410具体执行以下流程:在第二资源池内接收基站转发的第一用户设备在第一资源池内发送的D2D信号,并在第一资源池内接收第一用户设备发送的D2D信号。
在本发明实施例中用户设备的另一实施例中,第一资源池可以包括第一目标资源池,第二资源池可以包括第二目标资源池,RF电路1140具体执行以下流程:在第二资源池的第二目标资源池内接收基站转发的第一用户设备在第一资源池的第一目标资源池内发送的D2D信号,并在第一资源池的第一目标资源池内接收第一用户设备发送的D2D信号。
本发明实施例用户设备的另一实施例中,RF电路1410执行以下流程:在第一资源池内接收第一用户设备发送的D2D信号,该D2D信号包括调度指配SA信号、D2D数据信号和D2D发现信号中的一个或任意组合,该第一资源池是基站在上行频率配置的资源池。当在第一资源池内接收不到第一用户设备发送的D2D信号时,在第二资源池内接收基站转发的第一用户设备在第一资源池内发送的D2D信号,该第二资源池是基站在下行频率配置的资源池。
本发明实施例中用户设备的另一实施例中,第一资源池包括第一目标资源池,第二资源池包括第二目标资源池,RF电路具体执行以下流程:在第一资源池的第一目标资源池内接收第一用户设备发送的D2D信号,当在第一目标资源池内接收不到D2D信号时,在第二资源池的第二目标资源池内接收基站转发的第一用户设备在第一资源池的第一目标资源池内发送的D2D信号。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接, 可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上对本发明所提供的一种……进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的技术人员,依据本发明实施例的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (24)

  1. 一种信号传输方法,其特征在于,包括:
    基站在上行频率上配置第一资源池;
    所述基站在下行频率上配置第二资源池;
    所述基站在所述第一资源池内接收第一用户设备UE发送的设备到设备D2D信号,所述D2D信号包括调度指配SA信号、D2D数据信号和D2D发现信号中的一个或任意组合;
    所述基站在所述第二资源池内向第二用户设备UE发送所述D2D信号。
  2. 根据权利要求1所述的方法,其特征在于,所述第一资源池包括第一目标资源池,所述第二资源池包括第二目标资源池,所述基站在所述第一资源池内接收所述第一用户设备UE发送的所述D2D信号,包括:
    所述基站在所述第一资源池的所述第一目标资源池内接收所述第一用户设备UE发送的所述D2D信号;
    所述基站在所述第二资源池内向所述第二用户设备UE发送所述D2D信号,包括:
    所述基站在所述第二资源池的所述第二目标资源池内向所述第二用户设备UE发送所述D2D信号。
  3. 根据权利要求2所述的方法,其特征在于,所述第一目标资源池为第一调度指配SA资源池、第一D2D数据信号资源池或第一D2D发现信号资源池;
    所述第二目标资源池为第二调度指配SA资源池、第二D2D数据信号资源池或第二D2D发现信号资源池。
  4. 一种信号传输方法,其特征在于,包括:
    第二用户设备UE在第二资源池内接收基站转发的第一用户设备UE在第一资源池内发送的D2D信号,所述D2D信号包括调度指配SA信号、D2D数据信号和D2D发现信号中的一个或任意组合,所述第一资源池是所述基站在上行频率上配置的资源池,所述第二资源池是所述基站在下行频率上配置的资源池。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    所述第二用户设备UE在所述第一资源池内接收所述第一用户设备UE发送的所述D2D信号。
  6. 根据权利要求4或5所述的方法,其特征在于,所述第一资源池包括第一目标资源池,所述第二资源池包括第二目标资源池,所述第二用户设备UE在所述第二资源池内接收所述基站转发的所述第一用户设备UE在所述第一资源池内发送的所述D2D信号,包括:
    所述第二用户设备UE在所述第二资源池的所述第二目标资源池内接收所述基站转发的所述第一用户设备UE在所述第一资源池的所述第一目标资源池内发送的所述D2D信号。
  7. 根据权利要求6所述的方法,其特征在于,所述第一目标资源池为第一调度指配SA资源池、第一D2D数据信号资源池或第一D2D发现信号资源池,所述第二目标资源池为第二调度指配SA资源池、第二D2D数据信号资源池或第二D2D发现信号资源池。
  8. 一种信号传输方法,其特征在于,包括:
    第二用户设备UE在第一资源池内接收第一用户设备UE发送的D2D信号,所述D2D信号包括调度指配SA信号、D2D数据信号和D2D发现信号中的一个或任意组合,所述第一资源池是基站在上行频率上配置的资源池;
    当所述第二用户设备UE在所述第一资源池内接收不到所述第一用户设备UE发送的所述D2D信号时,所述第二用户设备UE在第二资源池内接收所述基站转发的所述第一用户设备UE在所述第一资源池内发送的所述D2D信号,所述第二资源池是所述基站在下行频率上配置的资源池。
  9. 根据权利要求8所述的方法,其特征在于,所述第一资源池包括第一目标资源池,所述第二资源池包括第二目标资源池,所述第二用户设备UE在第一资源池内接收第一用户设备UE发送的D2D信号包括:
    所述第二用户设备UE在所述第一资源池的所述第一目标资源池内接收所述第一用户设备UE发送的所述D2D信号;
    所述第二用户设备UE在第二资源池内接收所述基站转发的所述第一用户设备UE在所述第一资源池内发送的所述D2D信号,包括:
    所述第二用户设备UE在所述第二资源池的第二目标资源池内接收所述基 站转发的所述第一用户设备UE在所述第一资源池的第一目标资源池内发送的所述D2D信号。
  10. 根据权利要求9所述的方法,其特征在于,所述第一目标资源池为第一调度指配SA资源池、第一D2D数据信号资源池或第一D2D发现信号资源池,所述第二目标资源池为第二调度指配SA资源池、第二D2D数据信号资源池或第二D2D发现信号资源池。
  11. 一种基站,其特征在于,包括:
    第一配置模块,用于在上行频率上配置第一资源池;
    第二配置模块,用于在下行频率上配置第二资源池;
    接收模块,用于在所述第一配置模块配置的第一资源池内接收第一用户设备UE发送的设备到设备D2D信号,所述D2D信号包括调度指配SA信号、D2D数据信号和D2D发现信号中的一个或任意组合;
    发送模块,用于在所述第二配置模块配置的第二资源池内向第二用户设备UE发送所述接收模块接收的所述D2D信号。
  12. 根据权利要求11所述的基站,其特征在于,所述第一资源池包括第一目标资源池,所述第二资源池包括第二目标资源池;
    所述接收模块包括:
    接收单元,用于在所述第一资源池的所述第一目标资源池内接收所述第一用户设备UE发送的所述D2D信号;
    所述发送模块包括:
    发送单元,用于在所述第二资源池的所述第二目标资源池内向所述第二用户设备UE发送所述D2D信号。
  13. 一种基站,其特征在于,包括:基站收发台BTS及基站控制器BSC;
    所述基站控制器台BSC执行以下流程:
    在上行频率配置上第一资源池;
    在下行频率配置上第二资源池;
    所述基站收发台BTS执行以下流程:
    在所述第一资源池内接收第一用户设备UE发送的设备到设备D2D信号,所述D2D信号包括调度指配SA信号、D2D数据信号和D2D发现信号中的一 个或任意组合;
    在所述第二资源池内向第二用户设备UE发送所述D2D信号。
  14. 根据权利要求13所述的基站,其特征在于,所述第一资源池包括第一目标资源池,所述第二资源池包括第二目标资源池;
    所述基站收发台BTS具体执行以下流程:
    在所述第一资源池的所述第一目标资源池内接收所述第一用户设备UE发送的所述D2D信号;
    在所述第二资源池的所述第二目标资源池内向所述第二用户设备UE发送所述D2D信号。
  15. 一种用户设备UE,其特征在于,包括:
    第一接收模块,用于在第二资源池内接收基站转发的第一用户设备UE在第一资源池内发送的D2D信号,所述D2D信号包括调度指配SA信号、D2D数据信号和D2D发现信号中的一个或任意组合,所述第一资源池是所述基站在上行频率上配置的资源池,所述第二资源池是所述基站在下行频率上配置的资源池。
  16. 根据权利要求15所述的用户设备UE,其特征在于,所述用户设备UE还包括:
    第二接收模块,用于在所述第一资源池内接收所述第一用户设备UE发送的所述D2D信号。
  17. 根据权利要求15或16所述的用户设备UE,其特征在于,所述第一资源池包括第一目标资源池,所述第二资源池包括第二目标资源池;
    所述第一接收模块包括:
    接收单元,用于在所述第二资源池的所述第二目标资源池内接收所述基站转发的所述第一用户设备UE在所述第一资源池的第一目标资源池内发送的所述D2D信号。
  18. 一种用户设备UE,其特征在于,包括:射频电路、存储器及处理器;
    所述射频电路执行以下流程:
    在第二资源池内接收基站转发的第一用户设备UE在第一资源池内发送的D2D信号,所述D2D信号包括调度指配SA信号、D2D数据信号和D2D发现 信号中的一个或任意组合,所述第一资源池是所述基站在上行频率上配置的资源池,所述第二资源池是所述基站在下行频率上配置的资源池。
  19. 根据权利要求18所述的用户设备UE,其特征在于,所述射频电路还执行以下流程:
    在所述第一资源池内接收所述第一用户设备UE发送的所述D2D信号。
  20. 根据权利要求18或19所述的用户设备UE,其特征在于,所述第一资源池包括第一目标资源池,所述第二资源池包括第二目标资源池;
    所述射频电路具体执行以下流程:
    在所述第二资源池的所述第二目标资源池内接收所述基站转发的所述第一用户设备UE在所述第一资源池的第一目标资源池内发送的所述D2D信号。
  21. 一种用户设备UE,其特征在于,包括:
    第一接收模块,用于在第一资源池内接收第一用户设备UE发送的D2D信号,所述D2D信号包括调度指配SA信号、D2D数据信号和D2D发现信号中的一个或任意组合,所述第一资源池是基站在上行频率上配置的资源池;
    第二接收模块,用于当所述第一接收模块在所述第一资源池内接收不到所述第一用户设备UE发送的所述D2D信号时,在第二资源池内接收所述基站转发的所述第一用户设备UE在所述第一资源池内发送的所述D2D信号,所述第二资源池是所述基站在下行频率上配置的资源池。
  22. 根据权利要求21所述的用户设备UE,其特征在于,所述第一资源池包括第一目标资源池,所述第二资源池包括第二目标资源池;
    所述第一接收模块包括:
    第一接收单元,用于在所述第一资源池的所述第一目标资源池内接收所述第一用户设备UE发送的所述D2D信号;
    所述第二接收模块包括:
    第二接收单元,用于在所述第一接收单元在所述第一目标资源池内接收不到所述第一用户设备UE发送的所述D2D信号时,在所述第二资源池的第二目标资源池内接收所述基站转发的所述第一用户设备UE在所述第一资源池的所述第一目标资源池内发送的所述D2D信号。
  23. 一种用户设备UE,其特征在于,包括:射频电路、存储器及处理器;
    所述射频电路执行以下流程:
    在第一资源池内接收第一用户设备UE发送的D2D信号,所述D2D信号包括调度指配SA信号、D2D数据信号和D2D发现信号中的一个或任意组合,所述第一资源池是基站在上行频率上配置的资源池;
    当所述在所述第一资源池内接收不到所述第一用户设备UE发送的所述D2D信号时,在第二资源池内接收所述基站转发的所述第一用户设备UE在所述第一资源池内发送的所述D2D信号,所述第二资源池是所述基站在下行频率上配置的资源池。
  24. 根据权利要求23所述的用户设备UE,其特征在于,所述第一资源池包括第一目标资源池,所述第二资源池包括第二目标资源池;
    所述射频电路具体执行以下流程:
    在第一资源池的第一目标资源池内接收所述第一用户设备UE发送的所述D2D信号,当在所述第一目标资源池内接收不到所述D2D信号时,在所述第二资源池的第二目标资源池内接收所述基站转发的所述第一用户设备UE在所述第一资源池的所述第一目标资源池内发送的所述D2D信号。
PCT/CN2015/078647 2015-05-11 2015-05-11 信号传输方法、基站及用户设备 WO2016179773A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15891476.2A EP3270649B1 (en) 2015-05-11 2015-05-11 Signal transmission methods, base station and user equipment
PCT/CN2015/078647 WO2016179773A1 (zh) 2015-05-11 2015-05-11 信号传输方法、基站及用户设备
CN201580079471.9A CN107534958B (zh) 2015-05-11 2015-05-11 信号传输方法、基站及用户设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/078647 WO2016179773A1 (zh) 2015-05-11 2015-05-11 信号传输方法、基站及用户设备

Publications (1)

Publication Number Publication Date
WO2016179773A1 true WO2016179773A1 (zh) 2016-11-17

Family

ID=57248480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/078647 WO2016179773A1 (zh) 2015-05-11 2015-05-11 信号传输方法、基站及用户设备

Country Status (3)

Country Link
EP (1) EP3270649B1 (zh)
CN (1) CN107534958B (zh)
WO (1) WO2016179773A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112311511B (zh) * 2019-07-26 2023-06-06 华为技术有限公司 数据传输方法和装置
CN110996348A (zh) * 2019-11-05 2020-04-10 南方科技大学 一种移动通信下行传输速率调节方法及相关设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103379651A (zh) * 2012-04-13 2013-10-30 华为技术有限公司 传输信号的方法和装置
CN104113832A (zh) * 2014-07-30 2014-10-22 宇龙计算机通信科技(深圳)有限公司 用于终端直连通信的功率控制方法、控制系统和基站
CN104284445A (zh) * 2013-07-09 2015-01-14 上海朗帛通信技术有限公司 一种d2d系统中的多载波调度方法和装置
CN104541563A (zh) * 2012-08-14 2015-04-22 高通股份有限公司 与设备到设备数据信号同时传达上行链路数据信号

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103249095B (zh) * 2012-02-08 2017-02-08 华为技术有限公司 数据发送、接收方法、用户设备、基站及网关
WO2014169438A1 (zh) * 2013-04-16 2014-10-23 富士通株式会社 通信模式转换方法、装置和系统
KR102237199B1 (ko) * 2013-06-28 2021-04-07 삼성전자주식회사 디바이스-투-디바이스 통신 방법 및 장치
WO2015002468A1 (en) * 2013-07-02 2015-01-08 Samsung Electronics Co., Ltd. Apparatus and method for allocating resources in device-to-device communication in wireless network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103379651A (zh) * 2012-04-13 2013-10-30 华为技术有限公司 传输信号的方法和装置
CN104541563A (zh) * 2012-08-14 2015-04-22 高通股份有限公司 与设备到设备数据信号同时传达上行链路数据信号
CN104284445A (zh) * 2013-07-09 2015-01-14 上海朗帛通信技术有限公司 一种d2d系统中的多载波调度方法和装置
CN104113832A (zh) * 2014-07-30 2014-10-22 宇龙计算机通信科技(深圳)有限公司 用于终端直连通信的功率控制方法、控制系统和基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3270649A4 *

Also Published As

Publication number Publication date
EP3270649B1 (en) 2020-01-01
EP3270649A1 (en) 2018-01-17
CN107534958B (zh) 2020-10-27
EP3270649A4 (en) 2018-04-25
CN107534958A (zh) 2018-01-02

Similar Documents

Publication Publication Date Title
WO2018121148A1 (zh) 一种通信资源选择方法,手持智能终端及接入设备
CN112448734A (zh) 射频模块、终端设备及信号发射方法
US12120541B2 (en) Method for processing communication range information and terminal
WO2018103439A1 (zh) 一种信息处理方法及终端设备
EP3614742A1 (en) Data transmission method and terminal
WO2019000411A1 (zh) 一种无线通信连接建立的方法及设备
WO2019095088A1 (zh) 一种切换的方法以及设备
US11864173B2 (en) Resource scheduling method and apparatus
JP7345062B2 (ja) 中継接続確立方法及び機器
WO2019001188A1 (zh) 一种数据处理方法、终端以及基站
WO2019144768A1 (zh) 一种网络注册模式切换的方法及终端
KR102596801B1 (ko) Pc5 링크 확립 방법, 장비 및 시스템
CN111800794B (zh) 解调参考信号位置的确定方法及设备
WO2017049933A1 (zh) 一种直通呼叫通信方法及终端
JP7352560B2 (ja) Csiリソースタイプの決定方法、端末及びネットワーク側装置
CN109120507B (zh) 移动终端和实现与固定终端即时通讯的方法、装置
WO2016179773A1 (zh) 信号传输方法、基站及用户设备
WO2017049930A1 (zh) 一种资源使用方法及终端
CN107484225B (zh) 一种网络接入控制方法、装置及用户终端
US10194412B2 (en) Uplink synchronization method and terminal
CN112333839B (zh) 一种通信处理方法、装置及网络设备
CN111132331B (zh) 模式切换方法及设备
WO2016119227A1 (zh) 随机接入竞争解决方法、用户设备以及基站
CN110430554B (zh) 业务传输方法及终端设备
WO2018068319A1 (zh) 多宿主场景下进行路由的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15891476

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015891476

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE