Nothing Special   »   [go: up one dir, main page]

WO2016167434A1 - Fdr 방식을 지원하는 무선통신 시스템에서 안정적으로 상기 fdr 방식을 구동하기 위한 방법 및 이를 위한 장치 - Google Patents

Fdr 방식을 지원하는 무선통신 시스템에서 안정적으로 상기 fdr 방식을 구동하기 위한 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2016167434A1
WO2016167434A1 PCT/KR2015/012150 KR2015012150W WO2016167434A1 WO 2016167434 A1 WO2016167434 A1 WO 2016167434A1 KR 2015012150 W KR2015012150 W KR 2015012150W WO 2016167434 A1 WO2016167434 A1 WO 2016167434A1
Authority
WO
WIPO (PCT)
Prior art keywords
interference signal
terminal
residual self
changed
value
Prior art date
Application number
PCT/KR2015/012150
Other languages
English (en)
French (fr)
Inventor
김동규
고현수
노광석
이상림
이호재
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US15/566,683 priority Critical patent/US10333637B2/en
Publication of WO2016167434A1 publication Critical patent/WO2016167434A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/12Neutralising, balancing, or compensation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • H04B1/525Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/54Circuits using the same frequency for two directions of communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/21Monitoring; Testing of receivers for calibration; for correcting measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/24Monitoring; Testing of receivers with feedback of measurements to the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signalling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1461Suppression of signals in the return path, i.e. bidirectional control circuits

Definitions

  • the present invention relates to wireless communications, and more particularly, to a method and apparatus for stably driving the FDR scheme in a wireless communication system supporting the FDR scheme.
  • Full-duplex communication has the capacity of a system compared to the existing half-duplex communication, which divides time resources or frequency resources orthogonally by performing simultaneous transmission and reception at one node. It is a technique that can theoretically improve twice.
  • FIG. 1 is a conceptual diagram of a terminal and a base station supporting FDR.
  • Intra-device self-interference Since the transmission and reception are performed at the same time and frequency resources, not only a desired signal but also a signal transmitted by itself is simultaneously received. At this time, since the signal transmitted by the self is received by its reception antenna with little attenuation, it means that the signal is received with a much larger power than the desired signal to act as interference.
  • UE to UE inter-link interference means that an uplink signal transmitted by a UE is received by an adjacent UE and acts as an interference.
  • BS to BS inter-link interference means that signals transmitted between heterogeneous base stations (Picocell, femtocell, relay node) between base stations or HetNet are received by receiving antennas of other base stations and act as interference.
  • heterogeneous base stations Picocell, femtocell, relay node
  • Intra-device self-interference is an interference that occurs only in the FDR system, which greatly degrades the performance of the FDR system and is the first problem to be solved in order to operate the FDR system. to be.
  • An object of the present invention is to provide a method for a terminal to stably drive the FDR in a wireless communication system supporting a Full-duplex Radio (FDR) method.
  • FDR Full-duplex Radio
  • Another object of the present invention is to provide a terminal for stably driving the FDR in a wireless communication system supporting a Full-duplex Radio (FDR) scheme.
  • FDR Full-duplex Radio
  • Another technical problem to be achieved in the present invention is to provide a method for stably driving the FDR in a base station in a wireless communication system supporting a Full-duplex Radio (FDR) scheme.
  • FDR Full-duplex Radio
  • Another technical problem to be achieved in the present invention is to provide a base station for stably driving the FDR in a wireless communication system supporting a Full-duplex Radio (FDR) scheme.
  • FDR Full-duplex Radio
  • a method for stably driving the FDR in a wireless communication system supporting a Full-duplex Radio (FDR) scheme the residual self-interference signal is changed to more than a predetermined threshold in the terminal If necessary, transmitting information related to the changed residual self-interference signal to the base station; And receiving a downlink signal from the base station based on a modulation and coding scheme (MCS) level corresponding to the information related to the changed residual self-interference signal.
  • MCS modulation and coding scheme
  • the information related to the changed residual self-interference signal may include a value of the strength of the changed residual self-interference signal, and the information related to the changed residual self-interference signal may include a margin value of the MCS level.
  • the method may further include calculating a margin value of an MCS level based on the changed strength value of the residual self-interference signal.
  • the margin value of the MCS level When the intensity of the changed residual self-interference signal is increased than before, the margin value of the MCS level is negative, whereas, when the intensity of the changed residual self-interference signal is decreased, the margin value of the MCS level may be positive.
  • the information related to the changed residual self-interference signal may be transmitted only when the absolute transmit power value of the terminal is greater than or equal to a preset threshold.
  • the method may further include receiving, from the base station, information on an MCS level corresponding to the information related to the changed residual self-interference signal.
  • the margin value of the MCS level may be a value corresponding to a level difference from a value of an MCS level previously used in a preset MCS level table.
  • a terminal for stably driving the FDR scheme in a wireless communication system supporting a Full-duplex Radio (FDR) scheme may be configured such that a residual self-interference signal is changed to a predetermined threshold value or more in the terminal.
  • a transmitter configured to transmit information related to the modified residual self-interference signal to the base station in a case;
  • a receiver configured to receive a downlink signal from the base station based on a modulation and coding scheme (MCS) level corresponding to the information related to the changed residual self-interference signal.
  • MCS modulation and coding scheme
  • the information related to the changed residual self-interference signal may include a value of the strength of the changed residual self-interference signal, and the information related to the changed residual self-interference signal may include a margin value of the MCS level.
  • the terminal may further include a processor configured to calculate a margin value of an MCS level based on the changed strength value of the residual self-interference signal.
  • the transmitter may transmit information related to the changed residual self-interference signal only when the absolute value of the transmit power of the terminal is greater than or equal to a preset threshold.
  • the receiver may be configured to further receive information on the MCS level corresponding to the information related to the modified residual self-interference signal from the base station.
  • the margin value of the MCS level may be a value corresponding to a level difference from a value of an MCS level previously used in a preset MCS level table.
  • stable FDR driving is performed by considering a residual self-interference signal generated by a change in self-IC performance due to a change in transmission power of a terminal and a base station. can do.
  • FIG. 1 is a diagram illustrating a network supporting a full-duplex / half-duplex communication operation scheme of a terminal to be proposed in the present invention.
  • FIG. 2 is a block diagram showing the configuration of the base station 105 and the terminal 110 in the wireless communication system 100.
  • FIG. 3 illustrates a conceptual diagram of a transmit / receive link and self-interference (SI) in an FDR communication situation.
  • FIG. 4 is a diagram illustrating a position at which three interference techniques are applied at an RF transceiver (or RF front end) of a device.
  • FIG. 5 is a block diagram of a device for self-interference cancellation (Self-IC) in the communication device proposed in the communication system environment using OFDM based on FIG.
  • Self-IC self-interference cancellation
  • a terminal collectively refers to a mobile or fixed user terminal device such as a user equipment (UE), a mobile station (MS), an advanced mobile station (AMS), and the like.
  • the base station collectively refers to any node of the network side that communicates with the terminal such as a Node B, an eNode B, a Base Station, and an Access Point (AP).
  • UE user equipment
  • MS mobile station
  • AMS advanced mobile station
  • AP Access Point
  • a terminal or a user equipment may receive information from a base station through downlink, and the terminal may also transmit information through uplink.
  • the information transmitted or received by the terminal includes data and various control information, and various physical channels exist according to the type and purpose of the information transmitted or received by the terminal.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) employs OFDMA in downlink and SC-FDMA in uplink as part of Evolved UMTS (E-UMTS) using E-UTRA.
  • LTE-A Advanced is an evolution of 3GPP LTE.
  • FIG. 2 is a block diagram showing the configuration of the base station 105 and the terminal 110 in the wireless communication system 100.
  • the wireless communication system 100 may include one or more base stations and / or one or more base stations. It may include a terminal.
  • the base station 105 includes a transmit (Tx) data processor 115, a symbol modulator 120, a transmitter 125, a transmit / receive antenna 130, a processor 180, a memory 185, and a receiver ( 190, a symbol demodulator 195, and a receive data processor 197.
  • the terminal 110 transmits (Tx) the data processor 165, the symbol modulator 170, the transmitter 175, the transmit / receive antenna 135, the processor 155, the memory 160, the receiver 140, and the symbol. It may include a demodulator 155 and a receive data processor 150.
  • the base station 105 and the terminal 110 are provided with a plurality of transmit and receive antennas. Accordingly, the base station 105 and the terminal 110 according to the present invention support a multiple input multiple output (MIMO) system. In addition, the base station 105 according to the present invention may support both a single user-MIMO (SU-MIMO) and a multi-user-MIMO (MU-MIMO) scheme.
  • MIMO multiple input multiple output
  • SU-MIMO single user-MIMO
  • MU-MIMO multi-user-MIMO
  • the transmit data processor 115 receives the traffic data, formats the received traffic data, codes it, interleaves and modulates (or symbol maps) the coded traffic data, and modulates the symbols ("data"). Symbols ").
  • the symbol modulator 120 receives and processes these data symbols and pilot symbols to provide a stream of symbols.
  • the symbol modulator 120 multiplexes the data and pilot symbols and sends it to the transmitter 125.
  • each transmission symbol may be a data symbol, a pilot symbol, or a signal value of zero.
  • pilot symbols may be sent continuously.
  • the pilot symbols may be frequency division multiplexed (FDM), orthogonal frequency division multiplexed (OFDM), time division multiplexed (TDM), or code division multiplexed (CDM) symbols.
  • Transmitter 125 receives the stream of symbols and converts it into one or more analog signals, and further adjusts (eg, amplifies, filters, and frequency upconverts) the analog signals to provide a wireless channel. Generates a downlink signal suitable for transmission via the transmission antenna 130, the transmission antenna 130 transmits the generated downlink signal to the terminal.
  • the receiving antenna 135 receives the downlink signal from the base station and provides the received signal to the receiver 140.
  • Receiver 140 adjusts the received signal (eg, filtering, amplifying, and frequency downconverting), and digitizes the adjusted signal to obtain samples.
  • the symbol demodulator 145 demodulates the received pilot symbols and provides them to the processor 155 for channel estimation.
  • the symbol demodulator 145 also receives a frequency response estimate for the downlink from the processor 155 and performs data demodulation on the received data symbols to obtain a data symbol estimate (which is an estimate of the transmitted data symbols). Obtain and provide data symbol estimates to a receive (Rx) data processor 150. Receive data processor 150 demodulates (ie, symbol de-maps), deinterleaves, and decodes the data symbol estimates to recover the transmitted traffic data.
  • the processing by symbol demodulator 145 and receiving data processor 150 is complementary to the processing by symbol modulator 120 and transmitting data processor 115 at base station 105, respectively.
  • the terminal 110 is on the uplink, and the transmit data processor 165 processes the traffic data to provide data symbols.
  • the symbol modulator 170 may receive and multiplex data symbols, perform modulation, and provide a stream of symbols to the transmitter 175.
  • the transmitter 175 receives and processes a stream of symbols to generate an uplink signal.
  • the transmit antenna 135 transmits the generated uplink signal to the base station 105.
  • an uplink signal is received from the terminal 110 through the reception antenna 130, and the receiver 190 processes the received uplink signal to obtain samples.
  • the symbol demodulator 195 then processes these samples to provide received pilot symbols and data symbol estimates for the uplink.
  • the received data processor 197 processes the data symbol estimates to recover the traffic data transmitted from the terminal 110.
  • Processors 155 and 180 of the terminal 110 and the base station 105 respectively instruct (eg, control, coordinate, manage, etc.) operations at the terminal 110 and the base station 105, respectively.
  • Respective processors 155 and 180 may be connected to memory units 160 and 185 that store program codes and data.
  • the memory 160, 185 is coupled to the processor 180 to store the operating system, applications, and general files.
  • the processors 155 and 180 may also be referred to as controllers, microcontrollers, microprocessors, microcomputers, or the like.
  • the processors 155 and 180 may be implemented by hardware or firmware, software, or a combination thereof.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs Field programmable gate arrays
  • the firmware or software may be configured to include a module, a procedure, or a function for performing the functions or operations of the present invention, and to perform the present invention.
  • the firmware or software configured to be may be provided in the processors 155 and 180 or stored in the memory 160 and 185 to be driven by the processors 155 and 180.
  • the layers of the air interface protocol between the terminal and the base station between the wireless communication system (network) are based on the lower three layers of the open system interconnection (OSI) model, which is well known in the communication system. ), And the third layer L3.
  • the physical layer belongs to the first layer and provides an information transmission service through a physical channel.
  • a Radio Resource Control (RRC) layer belongs to the third layer and provides control radio resources between the UE and the network.
  • the terminal and the base station may exchange RRC messages through the wireless communication network and the RRC layer.
  • the processor 155 of the terminal and the processor 180 of the base station process the signals and data, except for the function of receiving or transmitting the signal and the storage function of the terminal 110 and the base station 105, respectively.
  • the following description does not specifically refer to the processors 155 and 180.
  • the processors 155 and 180 it may be said that a series of operations such as a function of receiving or transmitting a signal and a data processing other than a storage function are performed.
  • FIG. 3 illustrates a conceptual diagram of a transmit / receive link and self-interference (SI) in an FDR communication situation.
  • SI self-interference
  • the size may be extremely larger than the desired signal due to the physical distance difference. This extremely high level of interference requires effective cancellation of self-interference to drive the FDR system.
  • the requirements for self-interference cancellation (Self-IC) according to the maximum transmission power of the device can be determined as shown in Table 1 below.
  • the UE needs 119dBm of Self-IC performance in order to effectively drive the FDR system at a bandwidth of 20MHz (BW).
  • the thermal noise value depends on the bandwidth of the mobile communication system. It can be changed as shown in the equation. Table 1 assumes a bandwidth of 20MHz. Regarding Table 1, the Receiver Noise Figure (NF) considered the worst case with reference to the 3GPP specification requirements.
  • the receiver thermal noise level is determined by the sum of the thermal noise at the specific BW and the receiver NF.
  • FIG. 4 is a diagram illustrating a position at which three interference techniques are applied at an RF transceiver (or RF front end) of a device.
  • Figure 4 shows the application location of the three Self-IC technique. The following three self-IC techniques are briefly described.
  • the self-interference cancellation technique that should be performed first is the antenna self-interference cancellation technique.
  • SI cancellation is performed at the antenna stage.
  • the simplest is to physically block the transmission of the SI signal by installing an object that can block the signal between the transmitting and receiving antennas, artificially adjusting the distance between the antennas using multiple antennas, or reversing the phase for a particular transmitting signal. Can be used to remove some of the SI signal.
  • a part of the SI signal may be removed using a multi-polarized antenna or a directional antenna.
  • Analog Self-IC A method of eliminating interference at the analog stage before the received signal passes through the ADC (Analog-to-Digital Convertor). This may be performed in the RF domain or the IF domain.
  • a method of removing the SI signal is described in detail as follows. First, the delayed analog signal is time-delayed, and then the magnitude and phase are adjusted to make a duplicate signal of the SI signal actually received and subtracted from the signal received by the receiving antenna. However, since the analog signal is processed, additional distortion may occur due to implementation complexity and circuit characteristics, and thus, interference cancellation performance may be greatly changed.
  • Digital Self-IC A technique for removing interference after the received signal passes through the ADC, including all interference cancellation techniques in the baseband region. In the simplest case, it can be realized by making a copy signal of SI and subtracting it from the received digital signal by using the transmitted digital signal.
  • techniques for preventing a transmission signal to a terminal or a base station from being received by a reception antenna by performing precoding / postcoding on a baseband using multiple antennas may also be classified as digital self-ICs.
  • digital self-IC can be quantized to recover information about a desired signal, a digitally modulated signal can be interfered using one or more of the above techniques to perform digital self-IC. After elimination, we need a precondition that the difference in signal power between the remaining interfering signal and the desired signal must fall within the ADC range.
  • FIG. 5 is a block diagram of a device for self-interference cancellation (Self-IC) in the communication device proposed in the communication system environment using OFDM based on FIG.
  • Self-IC self-interference cancellation
  • FIG. 5 is a conceptual diagram of removing a magnetic interference signal by separating a transmitting antenna and a receiving antenna, a method of configuring an antenna different from FIG. 5 may be used when an antenna interference cancellation technique using one antenna is used.
  • a function block suitable for the purpose may be added or deleted.
  • the nonlinear components in the RF are greatly affected.
  • nonlinear characteristics of active devices such as power amplifier (PA) and low noise amplifier (LNA) distort the transmission signal, and the distortion causes the transmission signal to generate high-order components.
  • PA power amplifier
  • LNA low noise amplifier
  • even-order components affect around the DC, which can be effectively removed by existing AC coupling or filtering techniques.
  • odd-order components occur near the existing frequency, they cannot be easily removed unlike even-orders, and have a large influence.
  • the received signal after the ADC in the FDR system is expressed using the Parallel Hammerstain (PH) Model as shown in Equation 1 below.
  • x D [n] is the data to be received at the RF terminal of the device
  • h D [n] is the Desired channel experienced by the data to be received
  • x SI [n] is the data transmitted from the RF terminal of the device.
  • h SI, k (n) is a self-interference channel experienced by data transmitted from the RF stage of the device
  • k is 1, a linear component
  • an odd value of k is 3 or more is a non-linear component
  • z [n] is Additive White Gaussian Noise (AWGN).
  • AWGN Additive White Gaussian Noise
  • the terminal When the base station (eNB) or the terminal (UE) is operating in a full-duplex method or mode for downlink transmission and uplink transmission with each other, when the transmission power is changed according to the change of the channel environment and the surrounding environment, the terminal and the base station The downlink data transmission and reception may cause a problem due to a change in the self-interference cancellation performance in the terminal. For example, when the distance between the terminal and the base station is increased due to the movement of the terminal, the terminal may perform an open-loop power control scheme to increase the transmission power, or the closed loop ( In some cases, the transmit power may be increased by a closed-loop power control scheme.
  • the base station is used for the situation and information (for example, the increase in the self-interference signal strength at the RF terminal due to the increase in the transmit power of the terminal, the transmit power of the terminal, and the decrease in the transmit power of the terminal).
  • the base station may transmit information on the value of the instantaneous residual self-interference signal of the terminal.
  • the terminal may signal the information related to the changed residual self-interference signal to the base station to drive a stable FDR scheme.
  • the information related to the changed residual self-interference signal transmitted from the terminal to the base station will be described in detail in each embodiment.
  • Embodiment 1 The terminal transmits value information of the residual self-interference signal to the base station
  • the terminal may signal the changed residual self-interference signal information (for example, the strength or value of the changed residual self-interference signal) to the base station as a physical layer or a higher layer signal.
  • the value of the residual self-interference signal refers to the strength of the self-interference signal remaining even after performing the self-interference cancellation techniques such as antenna self-interference cancellation, analog self-interference cancellation, digital self-interference cancellation in the RF stage.
  • the terminal may transmit the value of the residual self-interference signal to the base station through a physical layer signal, for example, a physical uplink control channel (PUCCH) or a physical uplink shared channel (PUSCH).
  • a physical layer signal for example, a physical uplink control channel (PUCCH) or a physical uplink shared channel (PUSCH).
  • the terminal may transmit a value of the residual self-interference signal to the base station through an upper layer signal, for example, a radio resource control (RRC) signal.
  • RRC radio resource control
  • the terminal may transmit the changed residual self-interference signal information to the base station when the value of the residual self-interference signal is changed to a predetermined threshold or more.
  • the base station may further improve downlink performance by determining the MCS level in consideration of the instantaneous residual self-interference information received through signaling to the terminal during downlink scheduling.
  • residual self-interference cancellation can be tabled and transmitted, or only the difference can be transmitted.
  • MCS Level 0 MCS Level 1
  • MCS Level 2 ⁇ ⁇ ⁇ ⁇ MCS level n
  • the base station After receiving the information on the instantaneous residual self-interference signal from the terminal, the base station determines, as an example, the MCS level corresponding to the received residual self-interference signal value, as shown in Table 2 above, for the determined MCS level Information can be transmitted to the terminal. Thereafter, the base station can apply the determined MCS level in the downlink transmission of the terminal.
  • the terminal calculates the value of the residual self-interference signal and transmits the calculated strength of the residual self-interference signal to the base station. Since it is possible to know the MCS level corresponding to the calculated strength of the residual self-interference signal at, the base station may not separately signal the MCS level to the terminal.
  • Embodiment 2 UE transmits margin value of MCS level to base station
  • the terminal transmits previously transmitted channel quality information (CQI), PMI (Precoding Matrix Indicator), RI (Rank Indicator)
  • CQI channel quality information
  • PMI Precoding Matrix Indicator
  • RI Rank Indicator
  • the margin value of the MCS level may be signaled to the base station as a physical layer signal or a higher layer signal.
  • the terminal may calculate the value of the current residual self-interference signal reduced according to the decrease in the uplink transmission power, and then calculate the margin value of the MCS level.
  • the margin value of the MCS level may indicate a difference value between the MCS level corresponding to the current residual self-interference signal and the MCS level previously used by the base station for downlink transmission as shown in Table 2 above.
  • the margin value of the calculated MCS level of the terminal may be signaled to the base station.
  • the base station determines the MCS level for the terminal to a higher MCS level than the previous one based on the margin value of the MCS level received from the terminal, and can be applied after the downlink transmission to the terminal.
  • the terminal may signal the margin value of the MCS level to a negative value in consideration of the increased residual self-interference signal and transmit the base station to a lower MCS level to increase reliability of downlink transmission. To this end, the terminal may calculate the value of the current residual self-interference signal increased as the uplink transmission power increases, and then calculate the margin value of the MCS level. If the margin value of the MCS level is negative, the difference value between the MCS level corresponding to the current residual self-interference signal value and the MCS level previously used by the base station for downlink transmission may be indicated as shown in Table 2 above. .
  • the margin value of the calculated MCS level of the terminal may be signaled to the base station.
  • the base station determines the MCS level for the terminal to a lower MCS level than the previous one based on the margin value of the MCS level received from the terminal, and can be applied after the downlink transmission to the terminal.
  • CQI is defined as Table 3 (MCS Feedback Table CQI), and the UE feeds back an index corresponding to its CQI to the base station with 4 bit information.
  • the actual MCS level to give the feedback CQI to each UE through the index is determined as shown in Table 4 (example of CQI index and MCS mapping).
  • MCS applied to the DCI of the actual UE is mapped to a total of 5 bits (index 0-31).
  • the UE may calculate the CQI through various methods.
  • CQI derivation using SINR is the most widely known method, and in deriving SINR, existing measurement values RSRP, RSRQ and RSSI can be used.
  • RSRP, RSRQ, and RSSI will be described.
  • Carrier RSSI measures the average received power of OFDM symbols (ie, OFDM symbol indexes 0 and 4 in one slot) including a reference symbol at antenna port 0.
  • RSSI measures N resource blocks (resource block 0).
  • Carrier RSSI includes signal strength, adjacent channel interference, thermal noise, etc. of serving and non-serving cells in the same channel (frequency).
  • RSRP measures received power just like RSSI.
  • RSRP is the received power of the LTE reference signal measured in wideband / narrowband.
  • the SINR of the S-Synch channel must be at least -20dB.
  • RSRQ considers the number of resource blocks used with RSSI.
  • RSRQ represents the quality of the received reference signal as a C / I type of measurement
  • RSRQ provides additional information when RSRP alone is not sufficient for stable handover or cell reselection.
  • RSRP is an average received power of a resource element containing a cell specific reference signal (RS) in the entire bandwidth. Therefore, RSRP only measures for symbols containing RS.
  • RSRP is the average received power of one RS resource element.
  • the UE measures a plurality of RS resource elements and obtains an average thereof.
  • the RSRP range reported by the UE is -44 to -140 dBm.
  • N SC is the number of subcarriers per RB and its value is 12.
  • Equations 3 and 4 below may be used.
  • Equation 5 the final relationship between SINR and RSRQ is expressed by Equation 5.
  • the UE may measure the SINR by using the above-described method, and may determine the MCS level and feed back to the base station as shown in Tables 2 and 3 in consideration of the residual self-interference signal.
  • the base station may determine the CQI based on the feedback MCS level as shown in Table 4.
  • Table 3 and Table 4 are examples, and the mapping value may be changed in consideration of the residual self-interference signal.
  • Embodiment 3 Transmitting the value of the transmit power of the terminal to the base station
  • the value of the transmit power of the terminal is determined in consideration of the performance of the self-interference cancellation at the terminal changing.
  • Signaling eg, PUCCH, PUSCH
  • higher layer signal eg, RRC signal
  • the base station When the terminal transmits the absolute transmission power value of the terminal to the base station periodically or on-demand aperiodically by the request of the base station and the terminal, the base station is based on the received transmission power value of the terminal Residual self-interference signals and residual self-interference cancellation situations can be predicted or estimated.
  • the signaling overhead of the terminal is reduced because the terminal does not need to perform additional signaling for transmitting the absolute value of the transmit power to the base station. Can be.
  • the terminal requests the absolute value of the transmit power physical layer signal (for example, PUCCH, PUSCH) at the request of the terminal ) Or a higher layer signal (eg, RRC signal) can be signaled to the base station.
  • the transmit power physical layer signal for example, PUCCH, PUSCH
  • a higher layer signal eg, RRC signal
  • the physical layer signal for example, PUCCH, PUSCH
  • higher layer signal for example, RRC
  • Embodiment 4 When the terminal transmits statistical information as well as the instantaneous value of the residual self-interference signal of the terminal to the base station
  • the statistical information (for example, statistical information (eg, 2nd order statistics) of a specific order of the residual self-interference signal) is transmitted to the base station. It can be transmitted through a layer signal or a higher layer signal.
  • the base station may determine the downlink MCS level based on the statistical information of the residual self-interference signal received from the terminal.
  • Embodiments 1 to 4 described above may selectively operate only when the absolute value of the transmission power of the terminal is a predetermined threshold. For example, in the case of a terminal transmitting below a predetermined transmission power (for example, 10 dBm or less), even when the transmission power is increased or decreased, when the transmission power is below the predetermined threshold, stable self-interference cancellation scheme is operated. This enables the signaling of the residual self-interference signal, the MCS level margin value, or the absolute value of the transmit power of the terminal to the base station.
  • a predetermined transmission power for example, 10 dBm or less
  • the schemes of Embodiments 1 to 4 may be selectively operated only when there is data to be transmitted by the UE.
  • the base station can predict the duration of the FDR operation of the terminal through a buffer status report (BSR) signal of the terminal, the terminal is a BSR through a physical layer signal or a higher layer signal when necessary Can be signaled to the base station.
  • BSR buffer status report
  • the proposed embodiments are not limited to the application only in the FDR system, it is obvious that it can be applied to the cellular system, for example, in the existing cellular downlink (eg, macro cell, micro cell, or Inter-device interference due to uplink signals coming from other terminals in the same cell as well as interference signals from the same band downlink and uplink coming from a small cell, etc.
  • the terminal operates in HD
  • the liver from the device-to-device (D2D) terminal using the same band is generated and the SINR of the terminal is affected
  • the first to the first embodiments of the terminal The information transmitted in 4 may be selectively transmitted to the base station through a physical layer signal or a higher layer signal.
  • the embodiments described above may be implemented independently, but may also be implemented in a combination (or merge) of the manners of some embodiments.
  • the information on whether the embodiments are applied may be defined by a base station to a terminal with a predefined signal (eg, For example, a rule may be defined to notify through a physical layer signal or a higher layer signal.
  • the residual self-interference signal generated by the change in the self-IC performance due to the change in the transmission power of the terminal and the base station is considered. As a result, stable FDR driving can be performed.
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
  • a method and a device for stably driving the FDR method in a wireless communication system supporting the FDR method can be used industrially in various wireless communication systems such as 3GPP LTE / LTE-A system Do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Full-duplex Radio (FDR) 방식을 지원하는 무선통신 시스템에서 단말이 안정적으로 상기 FDR 방식을 구동하기 위한 방법은 상기 단말에서 잔여 자기간섭 신호가 소정의 임계치 이상으로 변경된 경우에 변경된 잔여 자기간섭 신호와 관련된 정보를 기지국으로 전송하는 단계; 및 상기 변경된 잔여 자기간섭 신호와 관련된 정보에 대응하는 변조 및 코딩 방식(Modulation and Coding Scheme, MCS) 레벨에 기초하여 상기 기지국으로부터 하향링크 신호를 수신하는 단계를 포함할 수 있다.

Description

FDR 방식을 지원하는 무선통신 시스템에서 안정적으로 상기 FDR 방식을 구동하기 위한 방법 및 이를 위한 장치
본 발명은 무선통신에 관한 것으로, 보다 상세하게는 FDR 방식을 지원하는 무선통신 시스템에서 안정적으로 상기 FDR 방식을 구동하기 위한 방법 및 이를 위한 장치에 관한 것이다.
전이중 통신 기술 (Full-duplex communication) 은 한 노드에서 송신과 수신을 동시에 수행함으로써 시간 자원 또는 주파수 자원을 직교하도록 분할하여 사용하는 기존의 반이중 통신 (Half-duplex communication) 에 비해서 시스템의 용량(capacity)를 이론적으로 2배 향상시킬 수 있는 기술이다.
도 1은 FDR 을 지원하는 단말과 기지국의 개념도를 나타낸다.
도 1과 같은 FDR 상황에서는 다음과 같은 총 3종류의 간섭이 존재하게 된다.
Intra-device self-interference: 동일한 시간 및 주파수 자원으로 송수신을 수행하기 때문에, desired signal 뿐만 아니라 자신이 송신한 신호가 동시에 수신된다. 이때, 자신이 송신한 신호는 감쇄가 거의 없이 자신의 수신 안테나로 수신 되므로 desired signal 보다 매우 큰 파워로 수신되어 간섭으로 작용하는 것을 의미한다.
UE to UE inter-link interference: 단말이 송신한 상향링크 신호가 인접하게 위치한 단말에게 수신되어 간섭으로 작용하는 것을 의미한다.
BS to BS inter-link interference: 기지국간 혹은 HetNet 상황에서의 이종 기지국간(Picocell, femtocell, relay node) 송신하는 신호가 다른 기지국의 수신 안테나로 수신되어 간섭으로 작용하는 것을 의미한다.
이와 같은 3가지 간섭 중 Intra-device self-interference (이하 Self-interference (SI))는 FDR시스템에서만 발생 하는 간섭으로 FDR 시스템의 성능을 크게 열화 시키며, FDR 시스템을 운용하기 위해서 가장 먼저 해결해야 할 문제이다.
본 발명에서 이루고자 하는 기술적 과제는 Full-duplex Radio (FDR) 방식을 지원하는 무선통신 시스템에서 단말이 안정적으로 상기 FDR을 구동하는 방법을 제공하는 데 있다.
본 발명에서 이루고자 하는 다른 기술적 과제는 Full-duplex Radio (FDR) 방식을 지원하는 무선통신 시스템에서 안정적으로 상기 FDR을 구동하기 위한 단말을 제공하는 데 있다.
본 발명에서 이루고자 하는 또 다른 기술적 과제는 Full-duplex Radio (FDR) 방식을 지원하는 무선통신 시스템에서 기지국이 안정적으로 상기 FDR을 구동하기 위한 방법을 제공하는 데 있다.
본 발명에서 이루고자 하는 또 다른 기술적 과제는 Full-duplex Radio (FDR) 방식을 지원하는 무선통신 시스템에서 안정적으로 상기 FDR을 구동하기 위한 기지국을 제공하는 데 있다.
본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기의 기술적 과제를 달성하기 위한, Full-duplex Radio (FDR) 방식을 지원하는 무선통신 시스템에서 단말이 안정적으로 상기 FDR을 구동하는 방법은, 상기 단말에서 잔여 자기간섭 신호가 소정의 임계치 이상으로 변경된 경우에 변경된 잔여 자기간섭 신호와 관련된 정보를 기지국으로 전송하는 단계; 및 상기 변경된 잔여 자기간섭 신호와 관련된 정보에 대응하는 변조 및 코딩 방식(Modulation and Coding Scheme, MCS) 레벨에 기초하여 상기 기지국으로부터 하향링크 신호를 수신하는 단계를 포함할 수 있다. 상기 변경된 잔여 자기간섭 신호와 관련된 정보는 변경된 잔여 자기간섭 신호의 세기의 값을 포함할 수 있고, 상기 변경된 잔여 자기간섭 신호와 관련된 정보는 MCS 레벨의 마진 값을 값을 포함할 수 있다. 상기 방법은, 상기 변경된 잔여 자기간섭 신호의 세기 값에 기초하여 MCS 레벨의 마진 값을 산출하는 단계를 더 포함할 수 있다. 상기 변경된 잔여 자기간섭 신호의 세기가 이전 보다 증가된 경우에는 상기 MCS 레벨의 마진 값은 음수이고, 이와 달리, 이전 보다 감소된 경우에는 상기 MCS 레벨의 마진 값은 양수일 수 있다. 상기 변경된 잔여 자기간섭 신호와 관련된 정보는 상기 단말의 송신 전력 절대값이 사전에 설정된 임계치 이상인 경우에만 전송될 수 있다. 상기 방법은, 상기 기지국으로부터 상기 변경된 잔여 자기간섭 신호와 관련된 정보에 대응하는 MCS 레벨에 대한 정보를 수신하는 단계를 더 포함할 수 있다. 상기 MCS 레벨의 마진 값은 사전에 설정된 MCS 레벨 테이블에서 이전에 사용한 MCS 레벨의 값과 레벨 차이에 해당하는 값일 수 있다.
상기의 기술적 과제를 달성하기 위한, Full-duplex Radio (FDR) 방식을 지원하는 무선통신 시스템에서 안정적으로 상기 FDR 방식을 구동하기 위한 단말은, 상기 단말에서 잔여 자기간섭 신호가 소정의 임계치 이상으로 변경된 경우에 변경된 잔여 자기간섭 신호와 관련된 정보를 기지국으로 전송하도록 구성된 송신기; 및 상기 변경된 잔여 자기간섭 신호와 관련된 정보에 대응하는 변조 및 코딩 방식(Modulation and Coding Scheme, MCS) 레벨에 기초하여 상기 기지국으로부터 하향링크 신호를 수신하도록 구성된 수신기 포함할 수 있다. 상기 변경된 잔여 자기간섭 신호와 관련된 정보는 변경된 잔여 자기간섭 신호의 세기의 값을 포함할 수 있고, 상기 변경된 잔여 자기간섭 신호와 관련된 정보는 MCS 레벨의 마진 값을 값을 포함할 수 있다. 상기 단말은, 상기 변경된 잔여 자기간섭 신호의 세기 값에 기초하여 MCS 레벨의 마진 값을 산출하도록 구성된 프로세서를 더 포함할 수 있다. 상기 송신기는 상기 변경된 잔여 자기간섭 신호와 관련된 정보를 상기 단말의 송신 전력 절대값이 사전에 설정된 임계치 이상인 경우에만 전송할 수 있다. 상기 수신기는 상기 기지국으로부터 상기 변경된 잔여 자기간섭 신호와 관련된 정보에 대응하는 MCS 레벨에 대한 정보를 더 수신하도록 구성될 수 있다. 상기 MCS 레벨의 마진 값은 사전에 설정된 MCS 레벨 테이블에서 이전에 사용한 MCS 레벨의 값과 레벨 차이에 해당하는 값 일 수 있다.
본 발명의 일 실시예에 따라, FDR 송?수신 시스템에서 단말 및 기지국의 송신 전력 변경에 따른 자기간섭 제거(self-IC) 성능 변화에 의해 발생하는 잔여 자기간섭 신호를 고려함으로써 안정적인 FDR 구동을 수행할 수 있다.
본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1은 본 발명에서 제안하고자 하는 단말의 전이중/반이중 통신 동작 방식을 지원하는 네트워크를 예시적인 도면이다.
도 2는 무선통신 시스템(100)에서의 기지국(105) 및 단말(110)의 구성을 도시한 블록도이다.
도 3은 FDR 통신 상황에서 송신?수신 링크와 자기간섭 (SI)의 개념도를 예시하고 있다.
도 4는 장치의 RF 송수신단(혹은 RF front end)에서의 세 가지 간섭 기법을 적용하는 위치를 도시한 도면이다.
도 5는 도 4를 바탕으로 하여 OFDM을 이용한 통신 시스템 환경에서 제안하는 통신 장치에서 자기간섭 제거(Self-IC)를 위한 장치의 블럭도를 도식화 한 도면이다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다. 예를 들어, 이하의 상세한 설명은 이동통신 시스템이 3GPP LTE, LTE-A 시스템인 경우를 가정하여 구체적으로 설명하나, 3GPP LTE, LTE-A의 특유한 사항을 제외하고는 다른 임의의 이동통신 시스템에도 적용 가능하다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.
아울러, 이하의 설명에 있어서 단말은 UE(User Equipment), MS(Mobile Station), AMS(Advanced Mobile Station) 등 이동 또는 고정형의 사용자단 기기를 통칭하는 것을 가정한다. 또한, 기지국은 Node B, eNode B, Base Station, AP(Access Point) 등 단말과 통신하는 네트워크 단의 임의의 노드를 통칭하는 것을 가정한다. 본 명세서에서는 IEEE 802.16 시스템에 근거하여 설명하지만, 본 발명의 내용들은 각종 다른 통신 시스템에도 적용가능하다.
이동 통신 시스템에서 단말 혹은 사용자 기기(User Equipment)은 기지국으로부터 하향링크(Downlink)를 통해 정보를 수신할 수 있으며, 단말은 또한 상향링크(Uplink)를 통해 정보를 전송할 수 있다. 단말이 전송 또는 수신하는 정보로는 데이터 및 다양한 제어 정보가 있으며, 단말이 전송 또는 수신하는 정보의 종류 용도에 따라 다양한 물리 채널이 존재한다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced 데이터 Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로서 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced)는 3GPP LTE의 진화된 버전이다.
또한, 이하의 설명에서 사용되는 특정(特定) 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
도 2는 무선통신 시스템(100)에서의 기지국(105) 및 단말(110)의 구성을 도시한 블록도이다.
무선 통신 시스템(100)을 간략화하여 나타내기 위해 하나의 기지국(105)과 하나의 단말(110)(D2D 단말을 포함)을 도시하였지만, 무선 통신 시스템(100)은 하나 이상의 기지국 및/또는 하나 이상의 단말을 포함할 수 있다.
도 2를 참조하면, 기지국(105)은 송신(Tx) 데이터 프로세서(115), 심볼 변조기(120), 송신기(125), 송수신 안테나(130), 프로세서(180), 메모리(185), 수신기(190), 심볼 복조기(195), 수신 데이터 프로세서(197)를 포함할 수 있다. 그리고, 단말(110)은 송신(Tx) 데이터 프로세서(165), 심볼 변조기(170), 송신기(175), 송수신 안테나(135), 프로세서(155), 메모리(160), 수신기(140), 심볼 복조기(155), 수신 데이터 프로세서(150)를 포함할 수 있다. 송수신 안테나(130, 135)가 각각 기지국(105) 및 단말(110)에서 하나로 도시되어 있지만, 기지국(105) 및 단말(110)은 복수 개의 송수신 안테나를 구비하고 있다. 따라서, 본 발명에 따른 기지국(105) 및 단말(110)은 MIMO(Multiple Input Multiple Output) 시스템을 지원한다. 또한, 본 발명에 따른 기지국(105)은 SU-MIMO(Single User-MIMO) MU-MIMO(Multi User-MIMO) 방식 모두를 지원할 수 있다.
하향링크 상에서, 송신 데이터 프로세서(115)는 트래픽 데이터를 수신하고, 수신한 트래픽 데이터를 포맷하여, 코딩하고, 코딩된 트래픽 데이터를 인터리빙하고 변조하여(또는 심볼 매핑하여), 변조 심볼들("데이터 심볼들")을 제공한다. 심볼 변조기(120)는 이 데이터 심볼들과 파일럿 심볼들을 수신 및 처리하여, 심볼들의 스트림을 제공한다.
심볼 변조기(120)는, 데이터 및 파일럿 심볼들을 다중화하여 이를 송신기 (125)로 전송한다. 이때, 각각의 송신 심볼은 데이터 심볼, 파일럿 심볼, 또는 제로의 신호 값일 수도 있다. 각각의 심볼 주기에서, 파일럿 심볼들이 연속적으로 송신될 수도 있다. 파일럿 심볼들은 주파수 분할 다중화(FDM), 직교 주파수 분할 다중화(OFDM), 시분할 다중화(TDM), 또는 코드 분할 다중화(CDM) 심볼일 수 있다.
송신기(125)는 심볼들의 스트림을 수신하여 이를 하나 이상의 아날로그 신호들로 변환하고, 또한, 이 아날로그 신호들을 추가적으로 조절하여(예를 들어, 증폭, 필터링, 및 주파수 업 컨버팅(upconverting) 하여, 무선 채널을 통한 송신에 적합한 하향링크 신호를 발생시킨다. 그러면, 송신 안테나(130)는 발생된 하향링크 신호를 단말로 전송한다.
단말(110)의 구성에서, 수신 안테나(135)는 기지국으로부터의 하향링크 신호를 수신하여 수신된 신호를 수신기(140)로 제공한다. 수신기(140)는 수신된 신호를 조정하고(예를 들어, 필터링, 증폭, 및 주파수 다운컨버팅(downconverting)), 조정된 신호를 디지털화하여 샘플들을 획득한다. 심볼 복조기(145)는 수신된 파일럿 심볼들을 복조하여 채널 추정을 위해 이를 프로세서(155)로 제공한다.
또한, 심볼 복조기(145)는 프로세서(155)로부터 하향링크에 대한 주파수 응답 추정치를 수신하고, 수신된 데이터 심볼들에 대해 데이터 복조를 수행하여, (송신된 데이터 심볼들의 추정치들인) 데이터 심볼 추정치를 획득하고, 데이터 심볼 추정치들을 수신(Rx) 데이터 프로세서(150)로 제공한다. 수신 데이터 프로세서 (150)는 데이터 심볼 추정치들을 복조(즉, 심볼 디-매핑(demapping))하고, 디인터리빙(deinterleaving)하고, 디코딩하여, 전송된 트래픽 데이터를 복구한다.
심볼 복조기(145) 및 수신 데이터 프로세서(150)에 의한 처리는 각각 기지국(105)에서의 심볼 변조기(120) 및 송신 데이터 프로세서(115)에 의한 처리에 대해 상보적이다.
단말(110)은 상향링크 상에서, 송신 데이터 프로세서(165)는 트래픽 데이터를 처리하여, 데이터 심볼들을 제공한다. 심볼 변조기(170)는 데이터 심볼들을 수신하여 다중화하고, 변조를 수행하여, 심볼들의 스트림을 송신기(175)로 제공할 수 있다. 송신기(175)는 심볼들의 스트림을 수신 및 처리하여, 상향링크 신호를 발생시킨다. 그리고 송신 안테나(135)는 발생된 상향링크 신호를 기지국(105)으로 전송한다.
기지국(105)에서, 단말(110)로부터 상향링크 신호가 수신 안테나(130)를 통해 수신되고, 수신기(190)는 수신한 상향링크 신호를 처리되어 샘플들을 획득한다. 이어서, 심볼 복조기(195)는 이 샘플들을 처리하여, 상향링크에 대해 수신된 파일럿 심볼들 및 데이터 심볼 추정치를 제공한다. 수신 데이터 프로세서(197)는 데이터 심볼 추정치를 처리하여, 단말(110)로부터 전송된 트래픽 데이터를 복구한다.
단말(110) 및 기지국(105) 각각의 프로세서(155, 180)는 각각 단말(110) 및 기지국(105)에서의 동작을 지시(예를 들어, 제어, 조정, 관리 등)한다. 각각의 프로세서들(155, 180)은 프로그램 코드들 및 데이터를 저장하는 메모리 유닛(160, 185)들과 연결될 수 있다. 메모리(160, 185)는 프로세서(180)에 연결되어 오퍼레이팅 시스템, 어플리케이션, 및 일반 파일(general files)들을 저장한다.
프로세서(155, 180)는 컨트롤러(controller), 마이크로 컨트롤러(microcontroller), 마이크로 프로세서(microprocessor), 마이크로 컴퓨터(microcomputer) 등으로도 호칭될 수 있다. 한편, 프로세서(155, 180)는 하드웨어(hardware) 또는 펌웨어(firmware), 소프트웨어, 또는 이들의 결합에 의해 구현될 수 있다. 하드웨어를 이용하여 본 발명의 실시예를 구현하는 경우에는, 본 발명을 수행하도록 구성된 ASICs(application specific integrated circuits) 또는 DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays) 등이 프로세서(155, 180)에 구비될 수 있다.
한편, 펌웨어나 소프트웨어를 이용하여 본 발명의 실시예들을 구현하는 경우에는 본 발명의 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등을 포함하도록 펌웨어나 소프트웨어가 구성될 수 있으며, 본 발명을 수행할 수 있도록 구성된 펌웨어 또는 소프트웨어는 프로세서(155, 180) 내에 구비되거나 메모리(160, 185)에 저장되어 프로세서(155, 180)에 의해 구동될 수 있다.
단말과 기지국이 무선 통신 시스템(네트워크) 사이의 무선 인터페이스 프로토콜의 레이어들은 통신 시스템에서 잘 알려진 OSI(open system interconnection) 모델의 하위 3개 레이어를 기초로 제 1 레이어(L1), 제 2 레이어(L2), 및 제 3 레이어(L3)로 분류될 수 있다. 물리 레이어는 상기 제 1 레이어에 속하며, 물리 채널을 통해 정보 전송 서비스를 제공한다. RRC(Radio Resource Control) 레이어는 상기 제 3 레이어에 속하며 UE와 네트워크 사이의 제어 무선 자원들을 제공한다. 단말, 기지국은 무선 통신 네트워크와 RRC 레이어를 통해 RRC 메시지들을 교환할 수 있다.
본 명세서에서 단말의 프로세서(155)와 기지국의 프로세서(180)는 각각 단말(110) 및 기지국(105)이 신호를 수신하거나 송신하는 기능 및 저장 기능 등을 제외하고, 신호 및 데이터를 처리하는 동작을 수행하지만, 설명의 편의를 위하여 이하에서 특별히 프로세서(155, 180)를 언급하지 않는다. 특별히 프로세서(155, 180)의 언급이 없더라도 신호를 수신하거나 송신하는 기능 및 저장 기능이 아닌 데이터 처리 등의 일련의 동작들을 수행한다고 할 수 있다.
도 3은 FDR 통신 상황에서 송신/수신 링크와 자기간섭 (SI)의 개념도를 예시하고 있다.
도 3에서처럼 자기간섭(SI)는 송신 안테나로부터 송신된 신호가 경로 감쇄 없이 자신의 수신 안테나로 바로 들어오는 다이렉트 간섭(direct interference)과 주변의 지형에 의해 반사된 반사된 간섭(reflected interference)로 구분될 수 있으며, 그 크기는 물리적인 거리 차이에 의해 원하는 신호(desired signal) 보다 극단적으로 클 수 밖에 없다. 이렇게 극단적으로 큰 간섭의 세기 때문에 FDR 시스템의 구동을 위해서는 자기간섭의 효과적인 제거가 필요하다.
효과적으로 FDR 시스템이 구동되기 위해서는 장치의 최대 송신 파워에 따른 자기간섭 제거(Self-IC)의 요구 사항을 다음 표 1과 같이 결정할 수 있다
표 1 이동통신 시스템에서의 FDR적용 시 Self-IC 요구사항 (BW=20MHz)
Node Type Max. Tx Power (P A ) Thermal Noise. (BW=20MHz) Receiver NF Receiver Thermal Noise Level Self-IC Target (P A - TN-NF)
Macro eNB 46dBm -101dBm 5dB (for eNB) -96dBm 142 dB
Pico eNB 30dBm 126 dB
Femto eNB, WLAN AP 23dBm 119 dB
UE 23dBm 9dB (for UE) -92dBm 115 dB
상기 표 1을 참조하면, 단말(UE)이 20MHz 의 대역폭(BW)에서 효과적으로 FDR 시스템을 구동시키기 위해서는 119dBm 의 Self-IC 성능이 필요함을 알 수 있다. 이동통신 시스템의 대역폭에 따라서 Thermal noise 값이
Figure PCTKR2015012150-appb-I000001
식과 같이 바뀔 수 있으며, 표 1은 20MHz 의 대역폭을 가정하고 구하였다. 표 1과 관련하여 Receiver Noise Figure (NF) 는 3GPP 표준 요구사항(specification requirement)를 참조하여 worst case를 고려하였다. Receiver thermal noise level 은 특정 BW 에서의 thermal noise 와 receiver NF의 합으로 결정된다.
자기간섭 제거(Self-IC) 기법의 종류 및 적용 방법
도 4는 장치의 RF 송수신단(혹은 RF front end)에서의 세 가지 간섭 기법을 적용하는 위치를 도시한 도면이다. 도 4에서는 3가지 Self-IC 기법의 적용 위치를 도시하고 있다. 이하 3가지 Self-IC 기법에 대해 간략히 설명한다.
Antenna Self-IC: 모든 Self-IC 기법 중 가장 우선적으로 실행되어야 할 자기간섭 제거 기법이 안테나 자기간섭 제거 기법이다. 안테나 단에서 SI 제거가 수행된다. 가장 간단하게는 송신 안테나 및 수신 안테나 사이에 신호를 차단할 수 있는 물체를 설치하여 SI 신호의 전달을 물리적으로 차단하거나, 다중 안테나를 활용하여 안테나 간의 거리를 인위적으로 조절하거나, 특정 송신 신호에 위상 반전을 주어 SI 신호를 일부 제거할 수 있다. 또한, 다중 편파 안테나 또는 지향성 안테나를 활용하여 SI 신호의 일부를 제거할 수 있다.
Analog Self-IC: 수신 신호가 ADC (Analog-to-Digital Convertor) 를 통과하기 이전에 Analog 단에서 간섭을 제거하는 기법으로 복제된 Analog 신호를 이용하여 SI 신호를 제거하는 기법이다. 이는 RF영역 혹은 IF 영역에서 수행될 수 있다. SI 신호를 제거하는 방법은 구체적으로 기술하면 다음과 같다. 우선 송신되는 Analog 신호를 시간지연 시킨 후 크기와 위상을 조절하여 실제로 수신되는 SI 신호의 복제 신호를 만들어 수신 안테나로 수신되는 신호에서 차감하는 방식으로 이루어진다. 그러나, Analog 신호를 이용하여 처리하기 때문에 구현 복잡도와 회로특성으로 인하여 추가적인 왜곡이 발생할 수도 있으며 이로 인하여 간섭제거 성능이 크게 달라질 수 있다는 단점이 있다.
Digital Self-IC: 수신 신호가 ADC를 통과한 이후에 간섭을 제거하는 기법으로 Baseband 영역에서 이루어지는 모든 간섭제거 기법들을 포함한다. 가장 간단하게는 송신되는 Digital 신호를 활용하여 SI 의 복제 신호를 만들어 수신된 Digital 신호에서 차감하는 방법으로 구현 가능하다. 혹은 다중 안테나를 이용하여 Baseband에서의 Precoding/Postcoding을 수행 함으로써 단말 혹은 기지국에의 송신 신호가 수신안테나로 수신되지 않게끔 하기 위한 기법들 또한 Digital Self-IC로 분류 할 수 있다. 그러나 Digital Self-IC는 Digital로 변조된 신호가 원하는 신호에 대한 정보를 복원 할 수 있을 정도로 양자화가 이루어져가 가능하기 때문에 Digital Self-IC를 수행하기 위해서는 상기의 기법들 중 하나 이상의 기법을 활용하여 간섭을 제거하고 난 이후의 남아있는 간섭 신호와 원하는 신호간의 신호 파워의 크기 차가 ADC range안에 들어와야 하는 전제조건이 필요하다.
도 5는 도 4를 바탕으로 하여 OFDM을 이용한 통신 시스템 환경에서 제안하는 통신 장치에서 자기간섭 제거(Self-IC)를 위한 장치의 블럭도를 도식화 한 도면이다.
Digital Self-IC block의 위치는 도 5에서는 DAC 전과 ADC 통과후의 디지털 자기간섭 신호(digital SI) 정보를 바로 이용하여 수행하는 것으로 도시하고 있으나, IFFT 통과 후 및 FFT 통과 전의 디지털 자기간섭 신호를 이용하여 수행될 수도 있다. 또한 도 5는 송신 안테나와 수신 안테나를 분리하여 자기 간섭 신호를 제거하는 개념도이지만, 하나의 안테나를 이용한 안테나 간섭 제거 기법 사용시에는 도 5와는 다른 안테나의 구성법이 될 수 있다. 도 5에 도시된 RF 송신단 및 수신단에서 목적에 맞는 기능 block이 추가되거나 삭제될 수도 있다.
FDR 시스템의 신호 모델링
FDR 시스템은 송신 신호와 수신 신호 간 동일 주파수를 사용하고 있기 때문에 RF 에서의 비선형 성분들이 크게 영향을 끼치게 된다. 특히 Power Amplifier (PA) 와 Low noise Amplifier (LNA)와 같은 능동 소자의 비선형 특성에 의해 송신 신호가 왜곡되며, 이러한 왜곡으로 인한 송신 신호는 고차(high-order)에 해당하는 성분이 발생되는 것으로 모델링 할 수 있다. 그 중에서 짝수 차수(even-order) 의 성분은 DC 주변에 영향을 끼치기 때문에 기존의 AC coupling 또는 Filtering 기법으로 인해 효과적으로 제거가 가능하다. 하지만 홀수 차수(odd-order) 의 성분은 기존 주파수 주변에 인접하여 발생하기 때문에 짝수 차수(even-order) 와는 다르게 쉽게 제거가 불가능 하며, 큰 영향을 끼치게 된다. 이러한 홀수 차수(odd-order)의 비선형 특성을 고려하여 FDR 시스템에서의 ADC 이후의 수신 신호를 Parallel Hammerstain (PH) Model 을 이용하여 표현하면 다음 수학식 1과 같다.
수학식 1
Figure PCTKR2015012150-appb-M000001
여기서 xD[n] 는 장치의 RF 단에서 수신 받고자 하는 데이터 이고, hD[n] 는 수신 받고자 하는 데이터가 겪는 Desired channel 이며, xSI[n] 는 상기 장치의 RF 단에서 송신한 데이터이고, hSI,k(n) 는 상기 장치의 RF 단에서 송신한 데이터가 겪는 자기간섭 채널이며, k가 1이면 선형 성분이고, k 가 3 이상인 홀수 값은 비선형 성분이며, z[n] 는 Additive White Gaussian Noise (AWGN) 이다.
기지국 (eNB) 또는 단말(UE)이 서로 하향링크 전송과 상향링크 전송을 위해 Full-duplex 방식 혹은 모드로 동작하고 있을 때, 채널 환경 및 주변 환경의 변화에 따라 송신 전력이 변경될 경우 단말과 기지국간의 하향링크 데이터 송수신이 단말에서의 자기간섭 제거 성능의 변화에 의해 문제가 발생할 수 있다. 예를 들어, 단말의 이동으로 인해 단말과 기지국 간의 거리가 멀어질 경우, 단말은 개루프 전력 제어(open-loop power control) 방식을 수행하여 송신 전력을 높이는 경우가 생기거나, 기지국의 폐루프(closed-loop power control) 방식에 의해서 송신 전력을 높이는 경우가 생긴다. 이때, 단말에서의 증가된 송신 전력으로 인해 자기 간섭의 전력 양이 증가하게 되어 기존의 자기간섭 제거 기법 또는 증가된 송신 전력에 맞는 자기간섭 제거 기법의 적용에도 불구하고 자기 간섭의 성능이 바뀔 수 있으며, 이로 인해 잔여 자기간섭 신호가 증가할 수 있다. 그러나, 기존의 LTE 시스템에서는 기지국이 이러한 단말에서의 상황 및 정보(예를 들어, 단말의 송신 전력, 단말의 송신 전력 증가에 따른 RF 단에서의 자기간섭 신호 세기의 증가, 단말의 송신 전력 감소에 따른 RF 단에서의 자기간섭 신호 세기의 감소)를 알 수 없으며, 그로 인해 기존에 기지국이 설정한 변조 및 코딩 방식(MCS) 레벨로 하향링크 전송 시 단말에서의 잔여 자기간섭 신호를 고려하지 않아 링크 실패(link failure)이 날 확률이 커지게 되었다. 따라서, 안정적인 FDR 구동을 위해서는 단말의 전력의 증가 또는 감소 시 단말에서의 순시적인 자기간섭 제거 기법의 성능을 고려하여 기지국이 단말의 상황을 알 수 있도록 하는 시그널링이 필요하다. 단말은 주기적 혹은 비주기적으로 잔여 자기간섭 신호의 값의 변화된 정보를 기지국에 시그널링해 줄 필요가 있다. 그리고, 기지국은 FDR 모드 시에 잔여 자기간섭 신호에 대한 정보를 보고하도록 RRC 시그널로 단말에게 설정(configuring)한 경우에, 단말의 순시적인 잔여 자기간섭 신호의 값에 대한 정보의 전송할 수 있다.
단말은 변경된 잔여 자기간섭 신호에 관련된 정보를 기지국에 시그널링하여 안정적인 FDR 방식을 구동할 수 있다. 여기서, 단말이 기지국으로 전송하는 변경된 잔여 자기간섭 신호에 관련된 정보는 이하 각 실시예에서 구체적으로 설명한다.
실시예 1: 단말이 기지국으로 잔여 자기간섭 신호의 값 정보를 전송
단말의 상향링크 전송 전력 증가 또는 감소에 따라(예를 들어, 개루프 전력 제어 또는 폐루프 전력 제어) 단말에서의 자기 간섭 제거의 성능이 바뀌게 되면, 이에 따른 잔여 자기간섭 신호가 순시적으로 변화하게 된다. 따라서, 단말은 변경된 잔여 자기간섭 신호 정보(예를 들어, 변경된 잔여 자기간섭 신호의 세기 혹은 값)를 물리계층 혹은 상위계층 신호로 기지국에게 시그널링해 줄 수 있다. 여기서, 잔여 자기간섭 신호의 값이라고 함은 예를 들어, RF 단에서 안테나 자기간섭 제거, 아날로그 자기간섭 제거, 디지털 자기간섭 제거 등의 자기간섭 제거 기법을 수행한 후에도 남은 자기간섭 신호의 세기을 말한다. 단말은 물리 계층 신호, 예를 들어, Physical Uplink Control CHanel (PUCCH) 또는 Physical Uplink Shared CHannel (PUSCH)을 통해 기지국으로 잔여 자기간섭 신호의 값을 전송할 수 있다. 또는, 단말은 상위계층 신호, 예를 들어, RRC (Radio Resource Control) 시그널을 통해 기지국으로 잔여 자기간섭 신호의 값을 전송할 수 있다.
본 실시예 1에서, 단말은 잔여 자기간섭 신호의 값이 소정의 임계치 이상으로 변경된 경우에 기지국으로 변경된 잔여 자기간섭 신호 정보를 전송하도록 할 수 있다.
기지국은 하향링크 스케줄링 시 단말에게 시그널링을 통해 받은 순시적인 잔여 자기간섭 정보를 고려하여 MCS 레벨을 결정함으로써, 하향링크 성능(DL performance)을 더욱 향상 시킬 수 있다. 오버헤드를 줄이기 위해 잔여 자기간섭 제거의 값을 테이블화 하여 전송하거나 차이 값 만을 전송할 수 있다.
표 2
MCS 레벨 SI 값
MCS 레벨 0
MCS 레벨 1
MCS 레벨 2
· · · ·
MCS 레벨 n
기지국은 단말로부터 순시적인 잔여 자기간섭 신호에 대한 정보를 수신한 후, 일 예로서 상기 표 2에서와 같이, 수신한 해당 잔여 자기간섭 신호 값에 대응하는 MCS 레벨을 결정하고, 결정된 MCS 레벨에 대한 정보를 단말에게 전송해 줄 수 있다. 이후, 기지국은 이후 단말의 하향링크 전송 시에 상기 결정된 MCS레벨을 적용할 수 있다.
한편, 상기 표 2와 같은 테이블을 사전에 단말 및 기지국이 미리 공유하는 경우, 단말은 잔여 자기간섭 신호의 값을 계산하고, 계산한 잔여 자기간섭 신호의 세기를 기지국에 전송해 주면, 상기 표 2에서 상기 계산된 잔여 자기간섭 신호의 세기에 대응하는 MCS 레벨을 알 수 있기 때문에, 기지국이 별도로 단말에게 MCS 레벨을 시그널링해 주지 않을 수도 있다.
실시예 2: 단말이 기지국으로 MCS 레벨의 마진(margin) 값을 전송
단말의 상향링크 전송 전력 증가 또는 감소에 따라 단말에서의 자기 간섭 제거의 성능이 바뀌는 것을 고려하여, 단말은 기존에 전송하던 CQI (Channel Quality Information), PMI (Precoding Matrix Indicator), RI (Rank Indicator) 뿐만 아니라 MCS 레벨의 마진 값을 물리계층 신호 혹은 상위계층 신호로 기지국에게 시그널링 해 줄 수 있다.
(1) 단말의 상향링크 전송 전력이 감소된 경우
단말의 상향링크 전송 전력이 감소하게 되면, RF 단에서의 잔여 자기간섭 신호가 감소하게 되고, 감소된 잔여 자기간섭 신호를 고려하여 MCS 레벨의 마진 값을 양수로 시그널링 하여 기지국이 이 더 높은 MCS 레벨로 전송하여 하향링크 쓰루풋(throughput) 을 높일 수 있다. 이를 위해서는, 단말은 상향링크 전송 전력 감소에 따라 감소된 현재의 잔여 자기간섭 신호의 값을 계산한 후, MCS 레벨의 마진 값을 계산할 수 있다. 여기서 MCS 레벨의 마진 값이라고 하면 상기 표 2에서와 같이 현재의 잔여 자기간섭 신호의 값에 대응하는 MCS 레벨과 이전에 기지국이 하향링크 전송시 사용한 MCS 레벨과의 차이 값을 지시할 수 있다. 단말의 계산된 MCS 레벨의 마진 값을 기지국으로 시그널링해 줄 수 있다.
기지국은 단말로부터 수신한 MCS 레벨의 마진 값에 기초하여 상기 단말을 위한 MCS 레벨을 이전 보다 높은 MCS 레벨로 결정하고, 이후 상기 단말로의 하향링크 전송 시 적용할 수 있다.
(2) 단말의 상향링크 전송 전력이 증가된 경우
단말의 상향링크 전송 전력이 증가하게 되면, RF 단에서의 잔여 자기간섭 신호는 증가하게 된다. 단말은 증가된 잔여 자기간섭 신호를 고려하여 MCS 레벨의 마진 값을 음수로 시그널링 하여 기지국이 더 낮은 MCS 레벨로 전송하여 하향링크 전송의 신뢰도를 높일 수 있다. 이를 위해서는, 단말은 상향링크 전송 전력 증가에 따라 증가된 현재의 잔여 자기간섭 신호의 값을 계산한 후, MCS 레벨의 마진 값을 계산할 수 있다. 여기서 MCS 레벨의 마진 값은 음수이라고 하면 상기 표 2에서와 같이 현재의 잔여 자기간섭 신호의 값에 대응하는 MCS 레벨과 이전에 기지국이 하향링크 전송시 사용한 MCS 레벨과의 차이 값을 지시할 수 있다. 단말의 계산된 MCS 레벨의 마진 값을 기지국으로 시그널링해 줄 수 있다. 기지국은 단말로부터 수신한 MCS 레벨의 마진 값에 기초하여 상기 단말을 위한 MCS 레벨을 이전 보다 낮은 MCS 레벨로 결정하고, 이후 상기 단말로의 하향링크 전송 시 적용할 수 있다.
일 예로서, 3GPP LTE/LTE-A 시스템에서는 CQI를 표 3(MCS Feedback Table CQI)과 같이 정의하고, 단말이 자신의 CQI에 해당하는 인덱스를 4 bit 정보로 기지국에 피드백하게 되어 있으며, 기지국은 피드백 받은 CQI를 인덱스를 통해서 각 단말에게 부여할 실제 MCS 레벨을 표 4(CQI 인덱스와 MCS 맵핑의 예)와 같이 결정하게 된다. 실제 단말의 DCI 에 적용되는 MCS 는 총 5bit (인덱스 0-31)로 맵핑된다.
표 3
Figure PCTKR2015012150-appb-T000001
Figure PCTKR2015012150-appb-I000002
표 4
Figure PCTKR2015012150-appb-T000002
일반적으로 표준 문서에서는 CQI를 도출하는 구체적인 방법에 대해서는 명시하지 않기 때문에, 단말은 다양한 방법을 통해서 CQI를 계산할 수 있다. SINR을 이용한 CQI 도출이 가장 널리 알려진 방법이며, SINR을 도출함에 있어 기존의 측정(measurement) 값인 RSRP, RSRQ, RSSI를 이용할 수 있다. 이하에서 RSRP, RSRQ, RSSI에 대해 설명한다.
RSSI - Received Signal Strength Index
- Carrier RSSI: carrier RSSI는 안테나 포트 0에서 reference 심볼을 포함하는 OFDM 심볼들(즉, 한 슬롯내의 OFDM 심볼 인덱스 0, 4)의 평균 수신 전력을 측정한다.
- RSSI는 N개의 자원 블록(resource block0에 대해서 측정한다.
- Carrier RSSI는 동일 채널(주파수)에 있는 서빙 셀 및 비서빙 셀(serving cell & non-serving cell) 의 신호 세기와 인접 채널 간섭, 열잡음 등을 포함한다.
RSRP ? Reference Signal Received Power
-RSRP는 RSSI 처럼 수신 전력을 측정한다.
-RSRP는 광대역/협대역에서 측정된 LTE Reference Signal의 수신 전력이다.
-RSRP/RSRQ를 측정하기 위해서는 S-Synch 채널의 SINR이 최소 -20dB 이상이어야 한다.
RSRQ - Reference Signal Received Quality
-RSRQ는 RSSI와 사용된 resource block의 수도 고려한다.
-RSRQ = (N * RSRP) / RSSI
-RSRQ는 C/I 형태의 측정으로 수신된 reference signal의 품질을 나타낸다
-RSRQ는 RSRP만으로 안정적인 핸드오버나 cell reselection을 하기에 부족할 경우 추가적인 정보를 제공한다.
RSRP는 전체 대역폭에서 cell specific reference signal(RS)을 담은 자원요소(resource element)의 평균 수신 전력이다. 따라서, RSRP는 RS를 담은 심볼에 대해서만 측정을 한다. RSRP는 하나의 RS resource element의 평균 수신 전력이다. 단말은 다수의 RS resource element에 대해서 측정을 한 후 이의 평균을 구한다. 단말이 보고하는 RSRP 범위는 -44 ~ -140 dBm이다. RSRQ를 이용한 SINR 도출은 여러 가지 방법이 있지만, 크게 아래의 두 가지로 정리할 수 있다.
수학식 2
Figure PCTKR2015012150-appb-M000002
여기에서 NSC 는 RB당 subcarrier 수이며 값은 12이다. 다음으로
Figure PCTKR2015012150-appb-I000003
는TS 36.213의 section 5.2에 정의된 the ratio of RS EPRE to PDSCH EPRE 이다.
다음으로 아래의 수학식 3 및 수학식 4를 이용할 수 있다.
수학식 3
Figure PCTKR2015012150-appb-M000003
수학식 4
Figure PCTKR2015012150-appb-M000004
여기에서 x는 used RE per RB를 의미한다. 만일 full load이면, x=12 가 된다. N은 RB의 수를 의미하며, 일반적으로 대역폭에 상응하는 수가 된다. 최종적으로 SINR과 RSRQ의 최종 관계는 수학식 5가 된다.
수학식 5
Figure PCTKR2015012150-appb-M000005
결과적으로 CQI 측정(measurement)를 위해서는 RSRP, RSRQ, RSSI중 어느 하나를 이용하거나, RS를 직접 이용해야 함을 알 수 있다.
일 예로, 단말은 상기 명시한 방법 등으로 SINR 을 측정하고, 여기에 잔여 자기간섭 신호를 고려하여 상기 표 2, 3에서와 같이 MCS 레벨을 결정하여 기지국에 피드백할 수 있다. 또한 기지국은 표4와 같이 피드백된 MCS 레벨을 기반으로 CQI 를 결정할 수 있다. 상기 표 3과 표 4는 일 예이며, 잔여 자기간섭 신호를 고려하여 맵핑(mapping) 값이 변경 될 수 있다.
실시예 3: 단말의 송신 전력의 값을 기지국으로 전송
단말의 상향링크 전송 전력의 증가 또는 감소에 따라(예를 들어, 개루프 전력 제어 또는 폐루프 전력 제어), 단말에서의 자기 간섭 제거의 성능이 바뀌는 것을 고려하여 단말의 송신 전력의 값을 물리계층 신호 (예를 들어, PUCCH, PUSCH) 혹은 상위계층 신호(예를 들어, RRC 시그널)를 통해 기지국으로 시그널링 할 수 있다.
단말이 단말의 송신 전력 절대값을 기지국에 주기적(periodic)으로 또는 기지국 및 단말의 요청에 의해(on-demand) 비주기적으로 전송하면, 기지국은 수신한 단말의 송신 전력 절대값에 기초하여 단말의 잔여 자기간섭 신호 및 잔여 자기간섭 제거 상황을 예측하거나 추정 할 수 있다.
송신 전력의 절대값을 수신 한 이후에는 단말의 전력이 폐루프 전력 제어 방식으로 동작할 때에는 단말이 기지국으로 송신 전력의 절대값 전송을 위한 추가적인 시그널링을 할 필요가 없기 때문에 단말의 시그널링 오버헤드를 줄일 수 있다.
한편, 단말로부터 송신 전력의 절대값을 수신 한 이후라도 단말이 개루프 전력 제어 방식으로 동작할 경우에는 단말의 요청에 의해 단말은 송신 전력의 절대값을 물리계층 신호 (예를 들어, PUCCH, PUSCH) 혹은 상위계층 신호(예를 들어, RRC 시그널)로 기지국 에게 시그널링을 할 수 있다.
또한, 안정적인 FDR 동작을 위해 주기적으로 또는 기지국의 요청에 의해 비 주기적으로 단말의 송신 전력의 절대값을 기지국으로 물리계층 신호 (예를 들어, PUCCH, PUSCH) 혹은 상위계층 신호(예를 들어, RRC 시그널)을 통해 전송할 수 있다.
실시예 4: 단말이 단말의 잔여 자기간섭 신호의 순시적인 값 뿐만 아니라 통계적인 정보를 기지국으로 전송하는 경우
단말에서의 자기간섭 제거 성능 및 잔여 자기간섭 신호 정보를 순시적인 값뿐만 아니라 통계적인 정보 (예를 들어, 잔여 자기간섭 신호의 특정 차수의 통계적의 정보(ex, 2nd order statistics))를 기지국에게 물리계층 신호 혹은 상위계층 신호를 통해 전송할 수 있다. 기지국에서는 단말로부터 수신한 잔여 자기간섭 신호의 통계적 정보를 기반으로 하여 하향링크의 MCS 레벨을 결정할 수 있다.
이상에서 설명한 실시예 1 내지 실시예 4는 단말의 송신 전력의 절대값이 미리설정된 임계 치인 경우에만 선택적으로 동작할 수도 있다. 일 예로서, 사전에 정해진 송신 전력 이하로 (예를 들어, 10dBm 이하) 전송하는 단말의 경우에는 송신 전력의 증가 및 감소하는 경우에도 송신 전력이 상기 미리설정된 임계치 이하일 때에는 안정적인 자기간섭 제거 기법의 운용이 가능하게 되어 잔여 자기간섭 신호의 값, MCS 레벨 마진 값, 또는 단말의 송신 전력의 절대값을 기지국에게 시그널링할 필요가 없다.
또한, 상기 실시예 1 내지 실시예 4의 방식은 단말의 상향링크 전송할 데이터가 있을 때에만 선택적으로 동작할 수도 있다. 일 예로서, 단말의 버퍼상태보고(buffer status report, BSR) 신호를 통해 기지국은 단말의 FDR 동작에 대한 지속 시간을 예측할 수 있기 때문에, 단말은 필요한 시점에 물리계층 신호 혹은 상위계층 신호를 통해 BSR를 기지국으로 시그널링 해 줄 수 있다.
한편 상기 제안한 실시예들은 FDR 시스템에서만 적용이 제한되는 것은 아니며, 셀룰러 시스템에서도 적용 될 수 있음은 자명하다, 일 예로서, 기존 셀룰러 하향링크에서 인접 셀(예를 들어, 매크로 셀, 마이크로 셀, 또는 스몰 셀(small-cell)등)로부터 들어오는 동일대역 하향링크 및 상향링크로 인한 간섭 신호 뿐만 아니라 동일 셀의 다른 단말로부터 들어오는 상향링크 신호로 인한 단말 간 간섭(Inter-device interference) (기지국은 FDR 로 동작하고 단말이 HD 로 동작하는 경우) 및 동일 대역을 사용하는 device-to-device (D2D) 단말로부터의 간이 발생하여 단말에서의 SINR이 영향을 받게 되는 경우, 단말의 상기 실시예 1 내지 실시예 4에서 전송하는 정보를 선택적으로 물리계층 신호 혹은 상위계층 신호를 통해 기지국으로 전송할 수 있다.
상기 설명한 실시예들은 독립적으로 구현될 수 도 있지만, 일부 실시예들의 방식들의 조합 (또는 병합) 형태로 구현될 수 도 있다. 상기 실시예들의 적용 여부 정보(예를 들어, 상기 실시예들의 제안 방법들의 규칙들에 대한 정보, 어떤 실시예를 적용하는지 여부에 대한 정보 등)는 기지국이 단말에게 사전에 정의된 시그널 (예를 들어, 물리계층 시그널 또는 상위계층 시그널 등)을 통해서 알려주도록 규칙이 정의될 수 있다.
이상에서 살펴본 바와 같이, 본 발명의 일 실시예에 따라, FDR 송/수신 시스템에서 단말 및 기지국의 송신 전력 변경에 따른 자기간섭 제거(self-IC) 성능 변화에 의해 발생하는 잔여 자기간섭 신호를 고려함으로써 안정적인 FDR 구동을 수행할 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명에 따른, FDR 방식을 지원하는 무선통신 시스템에서 안정적으로 FDR 방식을 안정적으로 구동하기 위한 방법 및 이를 위한 장치는 3GPP LTE/LTE-A 시스템 등과 같은 다양한 무선통신 시스템에서 산업상으로 이용이 가능하다.

Claims (15)

  1. Full-duplex Radio (FDR) 방식을 지원하는 무선통신 시스템에서 단말이 안정적으로 상기 FDR 방식을 구동하기 위한 방법에 있어서,
    상기 단말에서 잔여 자기간섭 신호가 소정의 임계치 이상으로 변경된 경우에 변경된 잔여 자기간섭 신호와 관련된 정보를 기지국으로 전송하는 단계; 및
    상기 변경된 잔여 자기간섭 신호와 관련된 정보에 대응하는 변조 및 코딩 방식(Modulation and Coding Scheme, MCS) 레벨에 기초하여 상기 기지국으로부터 하향링크 신호를 수신하는 단계를 포함하는, 안정적인 FDR 구동 방법.
  2. 제 1항에 있어서,
    상기 변경된 잔여 자기간섭 신호와 관련된 정보는 변경된 잔여 자기간섭 신호의 세기의 값을 포함하는, 안정적인 FDR 구동 방법.
  3. 제 1항에 있어서,
    상기 변경된 잔여 자기간섭 신호와 관련된 정보는 MCS 레벨의 마진 값을 값을 포함하는, 안정적인 FDR 구동 방법.
  4. 제 3항에 있어서,
    상기 변경된 잔여 자기간섭 신호의 세기 값에 기초하여 MCS 레벨의 마진 값을 산출하는 단계를 더 포함하는, 안정적인 FDR 구동 방법.
  5. 제 3항에 있어서,
    상기 변경된 잔여 자기간섭 신호의 세기가 이전 보다 증가된 경우에는 상기 MCS 레벨의 마진 값은 음수이고, 이와 달리, 이전 보다 감소된 경우에는 상기 MCS 레벨의 마진 값은 양수인, 안정적인 FDR 구동 방법.
  6. 제 1항에 있어서,
    상기 변경된 잔여 자기간섭 신호와 관련된 정보는 상기 단말의 송신 전력 절대값이 사전에 설정된 임계치 이상인 경우에만 전송되는, 안정적인 FDR 구동 방법.
  7. 제 1항에 있어서,
    상기 기지국으로부터 상기 변경된 잔여 자기간섭 신호와 관련된 정보에 대응하는 MCS 레벨에 대한 정보를 수신하는 단계를 더 포함하는, 안정적인 FDR 구동 방법.
  8. 제 1항에 있어서,
    상기 MCS 레벨의 마진 값은 사전에 설정된 MCS 레벨 테이블에서 이전에 사용한 MCS 레벨의 값과 레벨 차이에 해당하는 값인, 안정적인 FDR 구동 방법.
  9. Full-duplex Radio (FDR) 방식을 지원하는 무선통신 시스템에서 안정적으로 상기 FDR 방식을 구동하기 위한 방식에 있어서,
    상기 단말에서 잔여 자기간섭 신호가 소정의 임계치 이상으로 변경된 경우에 변경된 잔여 자기간섭 신호와 관련된 정보를 기지국으로 전송하도록 구성된 송신기; 및
    상기 변경된 잔여 자기간섭 신호와 관련된 정보에 대응하는 변조 및 코딩 방식(Modulation and Coding Scheme, MCS) 레벨에 기초하여 상기 기지국으로부터 하향링크 신호를 수신하도록 구성된 수신기 포함하는, 단말.
  10. 제 9항에 있어서,
    상기 변경된 잔여 자기간섭 신호와 관련된 정보는 변경된 잔여 자기간섭 신호의 세기의 값을 포함하는, 단말.
  11. 제 9항에 있어서,
    상기 변경된 잔여 자기간섭 신호와 관련된 정보는 MCS 레벨의 마진 값을 값을 포함하는, 단말.
  12. 제 11항에 있어서,
    상기 변경된 잔여 자기간섭 신호의 세기 값에 기초하여 MCS 레벨의 마진 값을 산출하도록 구성된 프로세서를 더 포함하는, 단말.
  13. 제 9항에 있어서,
    상기 송신기는 상기 변경된 잔여 자기간섭 신호와 관련된 정보를 상기 단말의 송신 전력 절대값이 사전에 설정된 임계치 이상인 경우에만 전송하는, 단말.
  14. 제 9항에 있어서,
    상기 수신기는 상기 기지국으로부터 상기 변경된 잔여 자기간섭 신호와 관련된 정보에 대응하는 MCS 레벨에 대한 정보를 더 수신하도록 구성되는, 단말.
  15. 제 9항에 있어서,
    상기 MCS 레벨의 마진 값은 사전에 설정된 MCS 레벨 테이블에서 이전에 사용한 MCS 레벨의 값과 레벨 차이에 해당하는 값인, 단말.
PCT/KR2015/012150 2015-04-17 2015-11-12 Fdr 방식을 지원하는 무선통신 시스템에서 안정적으로 상기 fdr 방식을 구동하기 위한 방법 및 이를 위한 장치 WO2016167434A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/566,683 US10333637B2 (en) 2015-04-17 2015-11-12 Method for stably operating FDR mode in wireless communication system supporting FDR mode, and device for same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562148749P 2015-04-17 2015-04-17
US62/148,749 2015-04-17

Publications (1)

Publication Number Publication Date
WO2016167434A1 true WO2016167434A1 (ko) 2016-10-20

Family

ID=57125978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/012150 WO2016167434A1 (ko) 2015-04-17 2015-11-12 Fdr 방식을 지원하는 무선통신 시스템에서 안정적으로 상기 fdr 방식을 구동하기 위한 방법 및 이를 위한 장치

Country Status (2)

Country Link
US (1) US10333637B2 (ko)
WO (1) WO2016167434A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019124970A1 (ko) * 2017-12-20 2019-06-27 엘지전자 주식회사 무선랜 시스템에서 fdr을 기반으로 프레임을 송신하는 방법 및 장치
WO2019190994A1 (en) * 2018-03-26 2019-10-03 Qualcomm Incorporated Techniques for providing full-duplex communications in wireless radio access technologies

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108028816B (zh) * 2015-09-07 2021-12-10 Lg电子株式会社 用于由使用fdr方案的设备消除自干扰的方法
CN109950690B (zh) * 2017-12-21 2020-11-17 华为技术有限公司 一种天线和终端
WO2021177578A1 (ko) * 2020-03-05 2021-09-10 엘지전자 주식회사 무선통신시스템에서 ue가 전 이중 통신과 관련된 자원을 할당 받는 방법 방법 및 이를 위한 장치
US11770473B2 (en) * 2020-05-01 2023-09-26 Qualcomm Incorporated Avoid and react to sudden possibility of damage to receiver in self-interference measurement
US11463966B2 (en) 2020-05-08 2022-10-04 Qualcomm Incorporated Clutter reflection mitigation in full-duplex communication
US20220110137A1 (en) * 2020-10-05 2022-04-07 Qualcomm Incorporated Transmission configuration determination for grant-free transmissions in full-duplex systems
US20220109553A1 (en) * 2020-10-05 2022-04-07 Qualcomm Incorporated Flow control feedback for full-duplex communications
US20230141998A1 (en) * 2021-11-09 2023-05-11 Qualcomm Incorporated Measuring self-interference for full-duplex communications
US20240283619A1 (en) * 2023-02-17 2024-08-22 Mediatek Singapore Pte. Ltd. Methods For SBFD-UE Reporting On Full-Duplex Hard Constraints

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090213765A1 (en) * 2005-04-07 2009-08-27 Rinne Mika P Terminal having a variable duplex capability
US20110051796A1 (en) * 2009-08-27 2011-03-03 Ali Khayrallah Equalization and residual self-interference suppression using serial localization with indecision
WO2013173250A1 (en) * 2012-05-13 2013-11-21 Invention Mine Llc Full duplex wireless transmission with self-interference cancellation
US20140198688A1 (en) * 2013-01-17 2014-07-17 Broadcom Corporation Method and Apparatus for Reducing Self Interference
KR20140090351A (ko) * 2013-01-08 2014-07-17 삼성전자주식회사 이동통신 시스템에서 상향링크 amc 운용을 위한 방법 및 장치

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9325409B1 (en) * 2012-04-12 2016-04-26 Tarana Wireless, Inc. Non-line of sight wireless communication system and method
US10567147B2 (en) * 2012-08-28 2020-02-18 Idac Holdings, Inc. Full duplex single channel communications

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090213765A1 (en) * 2005-04-07 2009-08-27 Rinne Mika P Terminal having a variable duplex capability
US20110051796A1 (en) * 2009-08-27 2011-03-03 Ali Khayrallah Equalization and residual self-interference suppression using serial localization with indecision
WO2013173250A1 (en) * 2012-05-13 2013-11-21 Invention Mine Llc Full duplex wireless transmission with self-interference cancellation
KR20140090351A (ko) * 2013-01-08 2014-07-17 삼성전자주식회사 이동통신 시스템에서 상향링크 amc 운용을 위한 방법 및 장치
US20140198688A1 (en) * 2013-01-17 2014-07-17 Broadcom Corporation Method and Apparatus for Reducing Self Interference

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019124970A1 (ko) * 2017-12-20 2019-06-27 엘지전자 주식회사 무선랜 시스템에서 fdr을 기반으로 프레임을 송신하는 방법 및 장치
WO2019190994A1 (en) * 2018-03-26 2019-10-03 Qualcomm Incorporated Techniques for providing full-duplex communications in wireless radio access technologies
US11349631B2 (en) 2018-03-26 2022-05-31 Qualcomm Incorporated Techniques for providing full-duplex communications in wireless radio access technologies

Also Published As

Publication number Publication date
US20180123710A1 (en) 2018-05-03
US10333637B2 (en) 2019-06-25

Similar Documents

Publication Publication Date Title
WO2016167434A1 (ko) Fdr 방식을 지원하는 무선통신 시스템에서 안정적으로 상기 fdr 방식을 구동하기 위한 방법 및 이를 위한 장치
WO2018062717A1 (ko) 무선 통신 시스템에서 신호를 송신 또는 수신하기 위한 방법 및 이를 위한 장치
WO2017043731A1 (ko) Fdr 방식을 사용하는 장치가 자기간섭 제거를 수행하기 위한 방법
WO2012021002A2 (en) Apparatus and method of reporting power headroom in wireless communication system
WO2013055126A1 (ko) 복수의 네트워크 노드로 구성된 셀을 포함하는 무선통신 시스템에서 채널품질상태를 측정하는 방법 및 이를 위한 장치
WO2011108889A2 (en) Apparatus and method for controlling inter-cell interference
WO2015170934A1 (ko) 무선통신 시스템에서 전송 파워 제어 방법 및 장치
WO2017034125A1 (ko) 무선통신 시스템에서 flexible fdd 프레임을 이용하여 통신을 수행하는 방법 및 이를 위한 장치
WO2013005904A1 (ko) 셀 측정 방법 및 단말
WO2015065048A1 (en) Method and apparatus of controlling periodic csi reporting
WO2016143966A1 (ko) Fdr 방식을 지원하는 무선통신 시스템에서 hd 모드 또는 fd 모드를 선택하는 방법 및 이를 위한 장치
WO2017034106A1 (ko) Fdr 방식으로 동작하는 환경에서 rs 모드를 변경하는 방법 및 이를 위한 장치
WO2019139195A1 (ko) 분산 안테나 구조의 통신 장치가 자기간섭 제거를 수행하는 방법
WO2016117801A1 (ko) Fdr 방식을 사용하는 환경에서 자기간섭 신호 제거를 수행하는 방법 및 이를 위한 장치
WO2012153962A2 (ko) 복수의 셀을 포함하는 네트워크에서 상향링크 전송 전력을 결정하는 방법 및 이를 위한 장치
WO2019098398A1 (ko) 분산 안테나 기반의 통신 장치가 패널 간 간섭에 기초한 통신을 수행하는 방법
WO2020167094A1 (ko) Nr v2x에서 단말의 상태를 기반으로 sl 통신을 수행하는 방법 및 장치
WO2016171357A1 (ko) Fdr 방식으로 동작하는 환경에서 참조신호 할당을 변경하기 위한 방법 및 이를 위한 장치
WO2021091353A1 (en) Method and apparatus for supporting power backoff report while performing power headroom report in wireless communication system
WO2018030713A1 (ko) 셀 별로 flexible duplex 모드로 동작하는 무선통신 시스템에서 셀 간 간섭을 제어하기 위한 자원 할당 방법 및 이를 위한 장치
WO2017222137A2 (en) Method and apparatus for allocating resources to fdr-mode ue in a wireless communication system
WO2017159932A1 (ko) 무선통신 시스템에서 듀플렉스 모드를 선택적으로 동작하는 방법 및 이를 위한 통신 장치
WO2017183865A2 (ko) FeD2D 환경에서 간섭을 고려하여 신호를 전송하기 위한 방법 및 이를 위한 장치
WO2015147452A1 (ko) 측정 수행 방법 및 단말
WO2016171419A1 (en) Method for allocating cell index for wlan network for lte-wlan aggregation system and a device therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15889314

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15566683

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15889314

Country of ref document: EP

Kind code of ref document: A1