Nothing Special   »   [go: up one dir, main page]

WO2016161657A1 - 小区测量方法、信号接收和测量方法及用户设备 - Google Patents

小区测量方法、信号接收和测量方法及用户设备 Download PDF

Info

Publication number
WO2016161657A1
WO2016161657A1 PCT/CN2015/076373 CN2015076373W WO2016161657A1 WO 2016161657 A1 WO2016161657 A1 WO 2016161657A1 CN 2015076373 W CN2015076373 W CN 2015076373W WO 2016161657 A1 WO2016161657 A1 WO 2016161657A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
cell
subframe
unit
frequency point
Prior art date
Application number
PCT/CN2015/076373
Other languages
English (en)
French (fr)
Inventor
杨晓东
李秉肇
权威
苗金华
韩静
张戬
胡振兴
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/076373 priority Critical patent/WO2016161657A1/zh
Priority to CN201580071568.5A priority patent/CN107113638B/zh
Publication of WO2016161657A1 publication Critical patent/WO2016161657A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a cell measurement method, a signal receiving and measuring method, and a user equipment.
  • LTE-A Long Term Evolution Advanced
  • Carrier aggregation is the aggregation of two or more component carriers in one frequency band or across frequency bands to support a larger transmission bandwidth.
  • UE User Equipment
  • 3GPP 3rd Generation Partnership Project
  • RAN Radio Access Network
  • carrier aggregation of a large number of component carriers is proposed, and the UE is expected to be the most. It is possible to aggregate 32 component carriers to work together.
  • the UE needs to measure more cells to add a cell whose measurement result meets the requirements as a secondary cell, thereby implementing data transmission in cooperation with the primary cell.
  • the UE will take a considerable time to fill up 32 cells.
  • the base station cannot quickly configure the cell on the appropriate frequency due to the delay of the measurement result.
  • Embodiments of the present invention provide a cell measurement method, a signal receiving and measuring method, and a user
  • the device can reduce the measurement time and realize fast measurement, which provides a solution for carrier aggregation of a large number of component carriers.
  • a cell measurement method comprising:
  • the user equipment UE acquires a measurement requirement
  • the UE measures M cells on the N1 frequency points to be tested according to the measurement requirement, where N1 ⁇ N, M ⁇ 4*N, N is the total number of frequency points to be tested, and N is an integer.
  • the measurement requirement includes a measurement time
  • the UE performs measurement on the M cells on the N1 frequency points to be tested according to the measurement requirement, including:
  • the UE performs measurement on at least one cell in each of the N1 frequency points to be measured during the measurement time.
  • the measurement requirement includes a set number
  • the UE performs measurement on the M cells on the N1 frequency points to be tested according to the measurement requirement, including:
  • the UE performs measurement on not less than the set number of cells on each of the N1 frequency points to be tested.
  • the measurement requirement includes a physical cell identifier PCI of the M cells
  • the UE performs measurement on the M cells on the N1 frequency points to be tested according to the measurement requirement, including:
  • the UE performs measurement on the M cells on the N1 frequency points to be tested according to the PCI of the M cells.
  • the measurement requirement is pre-stored, or sent by the base station to the UE, in combination with any one of the first aspect to the third possible implementation manner of the first aspect of.
  • a UE includes: an acquiring unit and a measuring unit;
  • the acquiring unit is configured to acquire a measurement requirement
  • the measuring unit is configured to measure M cells on the N1 frequency points to be tested according to the measurement requirement, where N1 ⁇ N, M ⁇ 4*N, where N is the total number of frequency points to be tested, N Is an integer.
  • the measurement requirement includes a measurement time
  • the measuring unit is specifically used for:
  • At least one cell at each of the N1 frequency points to be measured is measured.
  • the measurement requirement includes a set number
  • the measuring unit is specifically used for:
  • the measurement requirement includes a physical cell identifier PCI of the M cells
  • the measuring unit is specifically used for:
  • the measurement requirement is pre-stored, or sent by the base station to the UE of.
  • the UE in order to meet the measurement needs, the UE needs to measure multiple cells on the frequency to be tested within a specified time, and each frequency to be tested needs to include at least 4 cells. At present, the UE can only aggregate 5 component carriers for data transmission. Therefore, the existing measurement methods can meet the requirements of carrier aggregation. If the existing measurement method is introduced into the carrier aggregation of a large number of component carriers, the UE needs to add a large number of cells (up to 32), so that the UE spends a considerable amount of time to fill up the required number. Community. In addition, when the UE needs to replace a certain cell, the delay caused by the measurement result may also make the base station unable to quickly configure the cell on the appropriate frequency for the UE.
  • the UE is no longer Measuring at least 4 cells on each frequency to be measured, and measuring M cells on N1 frequency points to be measured according to measurement requirements, where N1 ⁇ N, M ⁇ 4*N, ie, treating The cell at the frequency measurement point performs a simplified measurement. Therefore, the cell measurement method and the UE provided by the embodiments of the present invention can reduce the measurement time and implement fast measurement, thereby providing a solution for carrier aggregation of a large number of component carriers.
  • a signal receiving method comprising:
  • the user equipment UE receives and stores, in units of n subframes or n orthogonal frequency division multiplexing OFDM symbol subframes, a signal transmitted by the first frequency point cell in the first subframe, where the first frequency point cell is non-
  • the scheduling instruction is used to indicate a preamble that is sent by the first frequency cell in the first subframe, where the first subframe is the first m subframes or the first m of the second subframe.
  • the m is preset, or the base station is configured by using radio resource control RRC signaling or media access control MAC signaling.
  • the scheduling instruction is physical downlink control channel PDCCH signaling, or enhanced physical downlink control channel ePDCCH Order, or MAC signaling, or RRC signaling.
  • a UE includes: a receiving unit, a storage unit, a determining unit, and an acquiring unit;
  • the storage unit is configured to store a signal sent by the first frequency point cell in the first subframe
  • the receiving unit is further configured to receive a scheduling instruction sent by the second frequency point cell, where the scheduling instruction is used to indicate a preamble that is sent by the first frequency point cell in the first subframe;
  • the acquiring unit is configured to: if the determining unit determines that the scheduling instruction sent by the second frequency point cell is received in the second subframe, according to the scheduling instruction, from the first frequency point cell in the The preamble is obtained from a signal transmitted in the first subframe.
  • the m is preset, or the base station is configured by using radio resource control RRC signaling or media access control MAC signaling.
  • the scheduling instruction is a physical downlink control channel PDCCH signaling, or an enhanced physical downlink control channel ePDCCH Order, or MAC signaling, or RRC signaling.
  • the system can obtain a larger transmission bandwidth by aggregating a plurality of authorized carriers to transmit data to the UE. If the unlicensed carrier is introduced into the carrier aggregation technology, so that the system can also use the unlicensed carrier to send data to the UE, the channel needs to be monitored before the data is sent, because the channel of the unlicensed carrier may already be occupied. If the channel is already occupied, the data cannot be sent temporarily; if the channel is idle, the preamble needs to be sent first, and then the corresponding data is sent. In the prior art, there is no corresponding solution for how the UE receives data transmitted by the system through the unlicensed carrier.
  • the UE receives and stores, in units of n subframes or n OFDM symbol subframes, a signal that the base station transmits through the unlicensed carrier in the first subframe, if the UE determines to receive the base station in the second subframe.
  • Sending a scheduling instruction for indicating a preamble transmitted in the first subframe and the UE acquires a preamble from a signal sent by the pre-stored base station in the first subframe through the unlicensed carrier according to the scheduling instruction, and further according to the The preamble receives data transmitted by a base station through an unlicensed carrier. That is, the signal receiving method and the UE provided by the embodiment of the present invention provide a corresponding solution for the base station to transmit data to the UE through the unlicensed carrier.
  • a signal measurement method comprising:
  • the UE determines that the preamble is received, determining a signal transmission after the preamble Whether the receiving window of the DRS is included in the time period;
  • the UE measures the DRS if a reception window of the DRS is included in a signal transmission period subsequent to the preamble.
  • a UE in a sixth aspect, includes: a receiving unit, a determining unit, a determining unit, and a measuring unit;
  • the receiving unit is configured to receive a receiving window of the discovery reference signal DRS configured by the base station;
  • the receiving unit is further configured to receive a preamble
  • the determining unit is configured to determine whether the receiving unit receives the preamble
  • the determining unit is configured to determine, if the determining unit determines that the preamble is received, whether a receiving window of the DRS is included in a signal sending period after the preamble;
  • the measuring unit is configured to measure the DRS if a receiving window of the DRS is included in a signal sending period after the preamble.
  • the UE does not blindly detect each DRS receiving window on the unlicensed carrier, but first receives the DRS receiving window configured by the base station, and determines to receive the preamble on the unlicensed carrier.
  • the code, and the receiving window of the DRS is included in the signal transmission period after the preamble, to trigger the measurement of the DRS. In this way, the UE can be prevented from performing unnecessary detection and measurement, thereby reducing the power loss of the UE.
  • a signal measurement method comprising:
  • the user equipment UE receives the indication signaling sent by the first frequency point cell, and acquires the measurement time according to the indication of the indication signaling, where the measurement time is a time at which a measurement needs to be performed in a pre-configured measurement time;
  • the UE measures the reference signal sent by the second frequency point cell at the measurement time according to the pre-configured measurement period, where the second frequency point cell is a cell on the unlicensed carrier.
  • a UE in an eighth aspect, includes: a receiving unit, an acquiring unit, and a measuring unit;
  • the receiving unit is configured to receive indication signaling sent by the first frequency point cell
  • the acquiring unit is configured to acquire a measurement moment according to the indication of the indication signaling, where The measurement moment is a time at which a measurement needs to be performed in a pre-configured measurement time;
  • the measuring unit is configured to measure, according to a pre-configured measurement period, a reference signal sent by the second frequency point cell at the measurement time, where the second frequency point cell is a cell on an unlicensed carrier.
  • the UE does not perform blind detection on each DRS on the unlicensed carrier in a certain period, but acquires the time at which the measurement needs to be performed in the pre-configured measurement time according to the indication signaling sent by the cell at the first frequency point. And measuring the reference signal transmitted by the cell on the unlicensed carrier at the measurement moment. Therefore, compared with the prior art, the signal measurement method and the UE provided by the embodiments of the present invention enable the UE to avoid unnecessary measurement, thereby reducing the power loss of the UE.
  • FIG. 1 is a schematic flowchart of a cell measurement method according to an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of still another cell measurement method according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of another cell measurement method according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic flowchart of another cell measurement method according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic flowchart of a signal receiving method according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a principle of a signal receiving method according to an embodiment of the present invention.
  • FIG. 7 is a schematic flowchart of a signal measurement method according to an embodiment of the present invention.
  • FIG. 8 is a schematic flowchart of still another signal measurement method according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a UE according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of another UE according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of still another UE according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of still another UE according to an embodiment of the present invention.
  • the words “first”, “second” and the like are used to distinguish the same or similar items whose functions and functions are substantially the same, in the field.
  • the skilled person will understand that the words “first”, “second” and the like do not limit the number and order of execution.
  • the embodiment of the invention provides a cell measurement method, as shown in FIG. 1 , the method includes:
  • S101 A user equipment (User Equipment, UE) acquires a measurement requirement.
  • UE User Equipment
  • the UE performs measurement on M cells on the N1 frequency points to be tested according to the measurement requirement, where N1 ⁇ N, M ⁇ 4*N, N is the total number of frequency points to be tested, and N is an integer. .
  • N1 may take an integer equal to N, that is, the UE needs to perform simplified measurement on the cells at each of the N frequency points to be tested according to the measurement requirement; N1 may also take an integer smaller than N, that is, the UE. Simplified measurement of the cells at some of the N frequency points to be measured is performed according to the measurement requirements. This embodiment of the present invention does not specifically limit this.
  • the UE does not measure at least four cells on each frequency to be measured, but pairs (partially or completely) the frequency points to be tested according to measurement requirements.
  • the upper part of the cell performs measurement, and therefore, compared with the prior art, the measurement time can be reduced, and the fast measurement can be realized, thereby providing a solution for carrier aggregation of a large number of component carriers.
  • the power loss of the UE will also be reduced.
  • the measurement requirement is pre-stored, or is sent by the base station to the UE, and the embodiment of the present invention does not Specifically limited.
  • the measurement requirement may include a measurement time, and as shown in FIG. 2, the UE performs measurement on M cells on the N1 frequency points to be tested according to the measurement requirement (ie, S102), specifically, the method may include:
  • S102a The UE performs measurement on at least one cell in each of the N1 frequency points to be measured during the measurement time.
  • the measurement requirement may include a set number, and as shown in FIG. 3, the UE performs measurement on M cells on the N1 frequency points to be tested according to the measurement requirement. That is, S201), specifically, the method may include:
  • S102b The UE performs measurement on not less than the set number of cells on each of the N1 frequency points to be tested.
  • the measurement requirement may include a physical cell identifier (PCI) of the M cells, and as shown in FIG. 3, the UE performs N1 according to the measurement requirement.
  • the M cells on the frequency to be measured are measured, that is, S102.
  • the method may include:
  • S102c The UE performs measurement on the M cells on the N1 frequency points to be tested according to the PCI of the M cells.
  • the UE performs measurement only on a part of the designated cell.
  • the UE needs to measure multiple cells on the frequency to be tested within a specified time, and each frequency to be tested needs to include at least 4 cells.
  • the UE can only aggregate 5 component carriers for data transmission. Therefore, the existing measurement methods can meet the requirements of carrier aggregation. If the existing measurement method is introduced into the carrier aggregation of a large number of component carriers, the UE needs to add a large number of cells (up to 32), so that the UE spends a considerable amount of time to fill up the required number. Community.
  • the delay caused by the measurement result may also make the base station unable to quickly configure the cell on the appropriate frequency for the UE.
  • the cell measurement method provided by the embodiment of the present invention the UE No longer measuring at least 4 cells on each frequency to be measured, but measuring M cells on N1 frequency points to be tested according to measurement requirements, where N1 ⁇ N, M ⁇ 4*N, ie Simplified measurement is performed on the cells on the frequency measurement point. Therefore, the cell measurement method provided by the embodiment of the present invention can reduce the measurement time and implement fast measurement, thereby providing a solution for carrier aggregation of a large number of component carriers.
  • the system can obtain a larger transmission bandwidth by aggregating a plurality of authorized carriers to transmit data to the UE. If the unlicensed carrier is introduced into the carrier aggregation technology, so that the system can also use the unlicensed carrier to send data to the UE, the channel needs to be monitored before the data is sent, because the channel of the unlicensed carrier may already be occupied. If the channel is already occupied, the data cannot be sent temporarily; if the channel is idle, the preamble needs to be sent first, and then the corresponding data is sent. In the prior art, there is no corresponding solution for how the UE receives data transmitted by the system through the unlicensed carrier. To this end, an embodiment of the present invention provides a signal receiving method. As shown in FIG. 5, the method includes:
  • OFDM Orthogonal Frequency Division Multiplexing
  • the UE determines that the scheduling instruction sent by the second frequency point cell is received in the second subframe, obtain, according to the scheduling instruction, the signal sent by the first frequency point cell in the first subframe. Preamble.
  • the m is configured by the base station by using Radio Resource Control (RRC) signaling or Media Access Control (MAC) signaling, or pre-agreed by the base station and the UE.
  • RRC Radio Resource Control
  • MAC Media Access Control
  • the first frequency point cell and the second frequency point cell in the embodiment of the present invention are different transmission frequency bands of the base station, and the first frequency point cell/second is The data/instruction sent by the frequency cell indicates that the base station is different. Data/instructions sent in the transmission band.
  • the UE may acquire related information of the data according to the preamble, and further receive the base station.
  • the data sent such as a receiving mode, a modulation mode, and the like.
  • the scheduling instruction may be physical downlink control channel (PDCCH) signaling, or MAC signaling, or RRC signaling.
  • PDCCH physical downlink control channel
  • MAC media access control control
  • RRC Radio Resource Control
  • a UE receives and stores, in units of n subframes or n OFDM symbol subframes, a signal that a base station transmits through an unlicensed carrier in a first subframe, if the UE determines that The second subframe receives a scheduling instruction sent by the base station to indicate a preamble transmitted in the first subframe, and the UE sends a signal that is sent by the base station in the first subframe through the unlicensed carrier according to the scheduling instruction according to the scheduling instruction.
  • RRM Radio Resource Management
  • the system needs to periodically send a reference signal to the UE, and the UE measures the reference signal and reports the measurement report, so that the base station implements the RRM according to the measurement report.
  • RRS Discover Reference Signal
  • the UE is also required to periodically detect the reference signal sent by the base station through the unlicensed carrier, and measure the reference signal, and report the measurement report to the base station. Since the resources on the unlicensed carrier need to compete, and the UE cannot know the specific time when the base station competes to obtain the unlicensed carrier resource, the UE cannot receive and measure the parameter at the time when the base station sends the reference signal as in the case of the authorized carrier. Test signal. In order to overcome this problem, the prior art allows the UE to blindly detect the DRS on the unlicensed carrier within a certain period, and then measure the DRS signal after detecting it.
  • the base station does not compete for resources in a certain period of the unlicensed carrier, and thus does not transmit the DRS, if the UE still performs blind detection, the DRS will undoubtedly bring unnecessary power loss to the UE.
  • the examples provide related signal measurement methods, which are described in detail below.
  • the embodiment of the invention provides a signal measurement method, as shown in FIG. 7, the method includes:
  • the UE receives a receiving window of a DRS configured by the base station.
  • the UE determines to receive the preamble, determine whether the receiving window of the DRS is included in a signal sending period after the preamble.
  • the UE measures the DRS.
  • the DRS may include, for example, a Primary Synchronization Signal (PSS), a Secondary Synchronization Signal (SSS), a Channel State Information Refrence Signals (CSI-RS), and a cell-specific Signals such as Cell-specific Reference Signals (CRS).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • CSI-RS Channel State Information Refrence Signals
  • CRS Cell-specific Reference Signals
  • the UE does not blindly detect each DRS on the unlicensed carrier, but first receives the DRS receiving window configured by the base station, and determines to receive the preamble on the unlicensed carrier. And the receiving window of the DRS is included in the signal transmission period after the preamble to trigger the measurement of the DRS. In this way, the UE can be prevented from performing unnecessary detection and measurement, thereby reducing the power loss of the UE.
  • an embodiment of the present invention provides another method for measuring a signal. As shown in FIG. 8 , the method includes:
  • the UE receives the indication signaling sent by the first frequency point cell, and acquires the measurement time according to the indication of the indication signaling, where the measurement time is a time at which a measurement needs to be performed in a pre-configured measurement time.
  • the indication signaling may specifically be RRC signaling or MAC signaling, and the sending The embodiment does not specifically limit this.
  • the first frequency point cell may specifically indicate the time at which the measurement needs to be performed according to whether the base station competes for resources.
  • the UE measures, according to a pre-configured measurement period, a reference signal sent by the second frequency point cell at the measurement time, where the second frequency point cell is a cell on an unlicensed carrier.
  • the reference signal includes a DRS, which is not specifically limited in this embodiment of the present invention.
  • the UE does not perform blind detection on the DRS on the unlicensed carrier in a certain period, but acquires the time at which the measurement needs to be performed in the pre-configured measurement time according to the indication signaling sent by the cell at the first frequency point, and further A reference signal transmitted by a cell on an unlicensed carrier is measured at the measurement time. Therefore, compared with the prior art, the signal measurement method provided by the embodiment of the present invention enables the UE to avoid unnecessary measurement, thereby reducing the power loss of the UE.
  • the embodiment of the present invention provides a UE 90, as shown in FIG. 9, which includes an acquiring unit 901 and a measuring unit 902.
  • the obtaining unit 901 is configured to acquire a measurement requirement.
  • the measuring unit 902 is configured to measure M cells on the N1 frequency points to be tested according to the measurement requirement, where N1 ⁇ N, M ⁇ 4*N, and N is the total number of frequency points to be tested. N is an integer.
  • the measurement requirement includes a measurement time
  • the measurement unit 902 is specifically configured to:
  • At least one cell at each of the N1 frequency points to be measured is measured.
  • the measurement requirement includes a set number
  • the measurement unit 902 is specifically configured to:
  • the measuring unit includes the PCI of the M cells, and the measuring unit 902 is specifically configured to:
  • the measurement requirement is pre-stored or sent by the base station to the UE 90.
  • the method for measuring a cell by using the UE 90 according to the embodiment of the present invention may be referred to the description of the first embodiment, which is not specifically limited in this embodiment of the present invention.
  • the obtaining unit 901 and the measuring unit 902 may be implemented by using a processor, which is not specifically limited in this embodiment of the present invention.
  • the UE needs to measure multiple cells on the frequency to be tested within a specified time, and each frequency to be tested needs to include at least 4 cells.
  • the UE can only aggregate 5 component carriers for data transmission. Therefore, the existing measurement methods can meet the requirements of carrier aggregation. If the existing measurement method is introduced into the carrier aggregation of a large number of component carriers, the UE needs to add a large number of cells (up to 32), so that the UE spends a considerable amount of time to fill up the required number. Community.
  • the delay caused by the measurement result may also make the base station unable to quickly configure the cell on the appropriate frequency for the UE.
  • the UE provided by the embodiment of the present invention does not measure at least four cells on each frequency to be measured, but measures M cells on the N1 frequency points to be tested according to measurement requirements, where N1 ⁇ N, M ⁇ 4 * N, that is, a simplified measurement is performed on the cell to be measured. Therefore, the UE provided by the embodiment of the present invention can reduce the measurement time and implement fast measurement, thereby providing a solution for carrier aggregation of a large number of component carriers.
  • the embodiment of the present invention provides a UE 100.
  • the UE 100 includes: a receiving unit 1001, a storage unit 1002, a determining unit 1003, and an obtaining unit 1004.
  • the receiving unit 1001 is configured to receive, in units of n subframes or n OFDM symbol subframes, signals sent by the first frequency point cell in the first subframe, where the first frequency point cell is unauthorized.
  • the storage unit 1002 is configured to send the first frequency point cell to be sent in the first subframe. signal of.
  • the receiving unit 1001 is further configured to receive a scheduling instruction sent by the second frequency point cell, where the scheduling instruction is used to indicate a preamble that is sent by the first frequency point cell in the first subframe.
  • the determining unit 1003 is configured to determine whether the receiving unit 1001 receives the scheduling instruction sent by the second frequency point cell in the second subframe, where the first subframe is the second subframe.
  • the obtaining unit 1004 is configured to: if the determining unit 1003 determines that the scheduling instruction sent by the second frequency point cell is received in the second subframe, according to the scheduling instruction, from the first frequency point cell And acquiring the preamble in a signal sent by the first subframe.
  • the m is preset, or the base station is configured by using RRC signaling or MAC signaling.
  • the scheduling instruction may be PDCCH signaling, or ePDCCH signaling, or MAC signaling, or RRC signaling, which is not specifically limited in this embodiment of the present invention.
  • the method for receiving the signal by the UE 100 according to the embodiment of the present invention may be referred to the description of the second embodiment, which is not specifically limited in the embodiment of the present invention.
  • the receiving unit 1001 may be specifically implemented by a receiver; the storage unit 1002, the determining unit 1003, and the obtaining unit 1004 may be specifically implemented by using a processor.
  • the processor and the receiver can communicate with each other, which is not specifically limited in this embodiment of the present invention.
  • the UE receives and stores, in units of n subframes or n OFDM symbol subframes, a signal that the base station transmits through the unlicensed carrier in the first subframe, and if it is determined to receive the base station in the second subframe. And a scheduling instruction for indicating a preamble transmitted in the first subframe, according to the scheduling instruction, acquiring a preamble from a signal sent by the pre-stored base station in the first subframe by using an unlicensed carrier, and further according to the The preamble receives data transmitted by the base station through the unlicensed carrier. That is, the UE provided by the embodiment of the present invention provides a corresponding solution for the base station to transmit data to the UE through the unlicensed carrier.
  • the embodiment of the present invention provides a UE.
  • the UE 110 includes: a receiving unit 1101, a determining unit 1102, a determining unit 1103, and a measuring unit 1104.
  • the receiving unit 1101 is configured to receive a receiving window of a DRS configured by a base station.
  • the receiving unit 1101 is further configured to receive a preamble.
  • the determining unit 1102 is configured to determine whether the receiving unit 1101 receives the preamble.
  • the determining unit 1103 is configured to determine, if the determining unit 1102 determines that the preamble is received, whether a receiving window of the DRS is included in a signal sending period after the preamble.
  • the measuring unit 1104 is configured to measure the DRS if a receiving window of the DRS is included in a signal sending period after the preamble.
  • the UE does not blindly detect each DRS on the unlicensed carrier, but first receives the DRS receiving window configured by the base station, and determines to receive the unlicensed carrier.
  • the preamble on the above, and the receiving window of the DRS is included in the signal transmission period after the preamble to trigger the measurement of the DRS. In this way, the UE can be prevented from performing unnecessary detection and measurement, thereby reducing the power loss of the UE.
  • the embodiment of the present invention provides another UE 120.
  • the UE includes: a receiving unit 1201, an obtaining unit 1202, and a measuring unit 1203.
  • the receiving unit 1201 is configured to receive indication signaling sent by the first frequency point cell.
  • the acquiring unit 1202 is configured to acquire a measurement time according to the indication of the indication signaling, where the measurement time is a time at which a measurement needs to be performed in a pre-configured measurement time.
  • the measuring unit 1203 is configured to measure, according to a pre-configured measurement period, a reference signal sent by the second frequency point cell at the measurement time, where the second frequency point cell is a cell on an unlicensed carrier.
  • the method for measuring the signal of the UE provided by the embodiment of the present invention may refer to the related description of the third embodiment, which is not specifically limited in this embodiment of the present invention.
  • the receiving unit may be specifically implemented by a receiver; the measuring unit, the acquiring unit, the determining unit, and the determining unit may be specifically implemented by using a processor, where The processor and the receiver can communicate with each other, which is not specifically limited in the embodiment of the present invention.
  • the UE provided by the embodiment of the present invention does not perform blind detection on the DRS on the unlicensed carrier in a certain period, but obtains the measurement that needs to be performed in the pre-configured measurement time according to the indication signaling sent by the cell at the first frequency point. At the moment, the reference signal transmitted by the cell on the unlicensed carrier is measured at the measurement time. Therefore, compared with the prior art, the signal measurement method provided by the embodiment of the present invention enables the UE to avoid unnecessary measurement, thereby reducing the power loss of the UE.
  • the above described device is only illustrated by the division of the above functional modules. In practical applications, the above functions may be assigned differently according to needs.
  • the function module is completed, that is, the internal structure of the device is divided into different functional modules to complete all or part of the functions described above.
  • the device and the unit described above refer to the corresponding process in the foregoing method embodiment, and details are not described herein again.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combinations can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) or a processor to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供的小区测量方法、信号接收和测量方法及用户设备,能够减少测量时间,实现快速测量,为大数量成员载波的载波聚合提供了解决方案。所述小区的测量方法包括:用户设备UE获取测量需求;所述UE根据所述测量需求,对N1个待测频点上的M个小区进行测量,其中,N1≤N,M<4*N,N为待测频点的总数,N为整数。本发明适用于无线通信技术领域。

Description

小区测量方法、信号接收和测量方法及用户设备 技术领域
本发明涉及通信技术领域,尤其涉及小区测量方法、信号接收和测量方法及用户设备。
背景技术
通常,为了满足长期演进升级版(Long Term Evolution Advanced,LTE-A)下行峰速1Gbps、上行峰速500Mbps的要求,需要提供最大100MHz的传输带宽,但由于如此大的带宽的连续频谱的稀缺,LTE-A提出了载波聚合的解决方案。所谓载波聚合,是将一个频段或跨频段的两个或更多的成员载波聚合在一起以支持更大的传输带宽。
具体可以聚合几个载波进行数据传输,依赖于用户设备(User Equipment,UE)的能力大小。目前,UE最多可以聚合5个成员载波进行数据传输。为进一步提高用户速率,在第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)无线接入网(Radio Access Network,RAN)66次会议上,提出了大数量成员载波的载波聚合,希望UE最多可以聚合32个成员载波一起工作。然而,在引入大数量成员载波的载波聚和时,UE就需要对更多的小区进行测量,以将测量结果满足要求的小区添加为辅小区,从而与主小区协同实现数据传输。此时,若采用现有的测量方法,就会使得UE花费相当长的时间加满32个小区。另外,即使UE加满了32个小区,在UE需要更换某个小区时,由于测量结果得到的延后,也会使得基站不能快速地为UE配置合适频率上的小区。
因此,现有的测量方法已不再适用于大数量成员载波的载波聚合。
发明内容
本发明实施例提供小区测量方法、信号接收和测量方法及用户 设备,能够减少测量时间,实现快速测量,为大数量成员载波的载波聚合提供了解决方案。
为达到上述目的,本发明的实施例采用如下技术方案:
第一方面,提供一种小区测量方法,所述方法包括:
用户设备UE获取测量需求;
所述UE根据所述测量需求,对N1个待测频点上的M个小区进行测量,其中,N1≤N,M<4*N,N为待测频点的总数,N为整数。
在第一方面第一种可能的实现方式中,结合第一方面,所述测量需求中包含测量时间;
所述UE根据所述测量需求,对N1个待测频点上的M个小区进行测量,包括:
所述UE在所述测量时间内,对所述N1个待测频点中每个频点上的至少一个小区进行测量。
在第一方面第二种可能的实现方式中,结合第一方面,所述测量需求中包含设定数目;
所述UE根据所述测量需求,对N1个待测频点上的M个小区进行测量,包括:
所述UE对所述N1个待测频点中每个频点上的不少于所述设定数目个小区进行测量。
在第一方面第三种可能的实现方式中,结合第一方面,所述测量需求中包含所述M个小区的物理小区标识PCI;
所述UE根据所述测量需求,对N1个待测频点上的M个小区进行测量,包括:
所述UE根据所述M个小区的PCI,对所述N1个待测频点上的所述M个小区进行测量。
在第一方面第四种可能的实现方式中,结合第一方面至第一方面第三种可能的实现方式中的任一种,所述测量需求为预先存储的,或基站发送给所述UE的。
第二方面,提供一种UE,所述UE包括:获取单元、测量单元;
所述获取单元,用于获取测量需求;
所述测量单元,用于根据所述测量需求,对N1个待测频点上的M个小区进行测量,其中,N1≤N,M<4*N,N为待测频点的总数,N为整数。
在第二方面第一种可能的实现方式中,结合第二方面,所述测量需求中包含测量时间;
所述测量单元具体用于:
在所述测量时间内,对所述N1个待测频点中每个频点上的至少一个小区进行测量。
在第二方面第二种可能的实现方式中,结合第二方面,所述测量需求中包含设定数目;
所述测量单元具体用于:
对所述N1个待测频点中每个频点上的不少于所述设定数目个小区进行测量。
在第二方面第三种可能的实现方式中,结合第二方面,所述测量需求中包含所述M个小区的物理小区标识PCI;
所述测量单元具体用于:
根据所述M个小区的PCI,对所述N1个待测频点上的所述M个小区进行测量。
在第二方面第四种可能的实现方式中,结合第二方面至第二方面第三种可能的实现方式中的任一种,所述测量需求为预先存储的,或基站发送给所述UE的。
现有技术中,为了满足测量需要,UE需要在规定的时间内测量多个待测频点上的小区,并且每个待测频点至少需要包括4个小区。目前UE最多只能聚合5个成员载波进行数据传输,因此现有的测量方法尚能满足载波聚合的要求。而若将现有的测量方法引入到大数量成员载波的载波聚合中,由于UE需要添加的小区数量较多(最多为32个),因此会使得UE花费相当长的时间加满所需数量的小区。另外,在UE需要更换某个小区时,由于测量结果得到的延后,也会使得基站不能快速地为UE配置合适频率上的小区。而基于上述方案,UE不再 测量每个待测频点上的至少4个小区,而是根据测量需求,对N1个待测频点上的M个小区进行测量,其中,N1≤N,M<4*N,即,对待测频点上的小区进行简化测量。因此,本发明实施例提供的小区测量方法及UE能够减少测量时间,实现快速测量,从而为大数量成员载波的载波聚合提供解决方案。
第三方面,提供一种信号接收方法,所述方法包括:
用户设备UE以n个子帧或n个正交频分复用OFDM符号子帧为单位接收并存储第一频点小区在第一子帧发送的信号,其中,所述第一频点小区为非授权载波上的小区,n为整数,n>=1;
若所述UE确定在第二子帧接收到第二频点小区发送的调度指令,根据所述调度指令,从所述第一频点小区在所述第一子帧发送的信号中获取前导码;其中,所述调度指令用于指示所述第一频点小区在所述第一子帧发送的前导码,所述第一子帧为所述第二子帧的前m个子帧或前m个OFDM符号子帧,m为整数,m>=0。
在第三方面第一种可能的实现方式中,结合第三方面,所述m为预先设置的,或,基站通过无线资源控制RRC信令或媒体访问控制MAC信令配置的。
在第三方面第二种可能的实现方式中,结合第三方面或第三方面第一种可能的实现方式,所述调度指令为物理下行控制信道PDCCH信令、或增强物理下行控制信道ePDCCH信令、或MAC信令、或RRC信令。
第四方面,提供一种UE,所述UE包括:接收单元、存储单元、确定单元、获取单元;
所述接收单元,用于以n个子帧或n个正交频分复用OFDM符号子帧为单位接收第一频点小区在第一子帧发送的信号,其中,所述第一频点小区为非授权载波上的小区,n为整数,n>=1;
所述存储单元,用于存储所述第一频点小区在所述第一子帧发送的信号;
所述接收单元,还用于接收第二频点小区发送的调度指令,其中,所述调度指令用于指示所述第一频点小区在所述第一子帧发送的前导码;
所述确定单元,用于确定所述接收单元在第二子帧是否接收到所述第二频点小区发送的调度指令,其中,所述第一子帧为所述第二子帧的前m个子帧或前m个OFDM符号子帧,m为整数,m>=0;
所述获取单元,用于若所述确定单元确定在所述第二子帧接收到所述第二频点小区发送的调度指令,根据所述调度指令,从所述第一频点小区在所述第一子帧发送的信号中获取所述前导码。
在第四方面第一种可能的实现方式中,结合第四方面,所述m为预先设置的,或,基站通过无线资源控制RRC信令或媒体访问控制MAC信令配置的。
在第四方面第二种可能的实现方式中,结合第四方面或第四方面第一种可能的实现方式,所述调度指令为物理下行控制信道PDCCH信令、或增强物理下行控制信道ePDCCH信令、或MAC信令、或RRC信令。
现有技术中,系统可通过聚合多个授权载波来获得更大的传输带宽以向UE传输数据。若将非授权载波引入到载波聚合技术中,使系统也可利用非授权载波向UE发送数据,则需要在发送数据前先对信道进行监听,因为非授权载波的信道可能已被占用。若信道已被占用,则暂不能发送数据;若信道空闲,则需要先发送前导码,再发送相应的数据。而现有技术中,对于UE如何接收系统通过非授权载波发送的数据并没有相应的方案。基于本发明实施例上述方案,UE以n个子帧或n个OFDM符号子帧为单位接收并存储基站在第一子帧通过非授权载波发送的信号,若UE确定在第二子帧接收到基站发送的用于指示在第一子帧发送的前导码的调度指令,UE则根据所述调度指令,从预先存储的基站在第一子帧通过非授权载波发送的信号中获取前导码,进而根据所述前导码接收基站通过非授权载波发送的数据。即,本发明实施例提供的信号接收方法及UE,为基站通过非授权载波向UE传输数据提供了相应的解决方案。
第五方面,提供一种信号测量方法,所述方法包括:
用户设备UE接收基站配置的发现参考信号DRS的接收窗;
若所述UE确定接收到前导码,判断所述前导码之后的信号发送 时间段中是否包含所述DRS的接收窗;
若所述前导码之后的信号发送时间段中包含所述DRS的接收窗,所述UE测量所述DRS。
第六方面,提供一种UE,所述UE包括:接收单元、确定单元、判断单元、测量单元;
所述接收单元,用于接收基站配置的发现参考信号DRS的接收窗;
所述接收单元,还用于接收前导码;
所述确定单元,用于确定所述接收单元是否接收到所述前导码;
所述判断单元,用于若所述确定单元确定接收到所述前导码,判断所述前导码之后的信号发送时间段中是否包含所述DRS的接收窗;
所述测量单元,用于若所述前导码之后的信号发送时间段中包含所述DRS的接收窗,测量所述DRS。
基于上述方案,不同与现有技术,UE不再对非授权载波上的每个DRS接收窗进行盲检测,而是先接收基站配置的DRS接收窗,并在确定接收到非授权载波上的前导码,且在所述前导码之后的信号发送时间段中包含有所述DRS的接收窗,才触发对该DRS的测量。这样,可避免UE进行不必要的检测与测量,从而降低UE的功率损耗。
第七方面,提供一种信号测量方法,所述方法包括:
用户设备UE接收第一频点小区发送的指示信令,并根据所述指示信令的指示获取测量时刻,其中,所述测量时刻为预先配置的测量时刻中需要执行测量的时刻;
所述UE按照预先配置的测量周期,在所述测量时刻对第二频点小区发送的参考信号进行测量,其中,所述第二频点小区为非授权载波上的小区。
第八方面,提供一种UE,所述UE包括:接收单元、获取单元、测量单元;
所述接收单元,用于接收第一频点小区发送的指示信令;
所述获取单元,用于根据所述指示信令的指示获取测量时刻,其中, 所述测量时刻为预先配置的测量时刻中需要执行测量的时刻;
所述测量单元,用于按照预先配置的测量周期,在所述测量时刻对第二频点小区发送的参考信号进行测量,其中,所述第二频点小区为非授权载波上的小区。
基于上述方案,UE不再以一定的周期对非授权载波上的每个DRS进行盲检测,而是根据第一频点小区发送的指示信令,获取预先配置的测量时刻中需要执行测量的时刻,进而在所述测量时刻对非授权载波上的小区发送的参考信号进行测量。因此,与现有技术相比,本发明实施例提供的信号测量方法及UE,能使UE避免不必要测量,从而降低UE的功率损耗。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种小区测量方法流程示意图;
图2为本发明实施例提供的又一种小区测量方法流程示意图;
图3为本发明实施例提供的另一种小区测量方法流程示意图;
图4为本发明实施例提供的另一种小区测量方法流程示意图;
图5为本发明实施例提供的一种信号接收方法流程示意图;
图6为本发明实施例提供的信号接收方法的原理示意图;
图7为本发明实施例提供的一种信号测量方法流程示意图;
图8为本发明实施例提供的又一种信号测量方法流程示意图;
图9为本发明实施例提供的一种UE的结构示意图;
图10为本发明实施例提供的另一种UE的结构示意图;
图11为本发明实施例提供的又一种UE的结构示意图;
图12为本发明实施例提供的又一种UE的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了便于清楚描述本发明实施例的技术方案,在本发明的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分,本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定。
实施例一、
本发明实施例提供一种小区测量方法,具体如图1所示,所述方法包括:
S101、用户设备(User Equipment,UE)获取测量需求。
S102、所述UE根据所述测量需求,对N1个待测频点上的M个小区进行测量,其中,N1≤N,M<4*N,N为待测频点的总数,N为整数。
其中,需要说明的是,N1可取等于N的整数,即UE需根据测量需求,对N个待测频点中每个频点上的小区进行简化测量;N1也可取小于N的整数,即UE需根据测量需求,对N个待测频点中部分频点上的小区进行简化测量。本发明实施例对此不作具体限定。
不同于现有技术,本发明实施例提供的小区测量方法中,UE不再测量每个待测频点上的至少4个小区,而是根据测量需求,对(部分或全部)待测频点上的部分小区进行测量,因此,与现有技术相比,能够减少测量时间,实现快速测量,从而为大数量成员载波的载波聚合提供解决方案。同时,由于测量时间的缩短,UE的功率损耗也将会减少。
具体的,本发明实施例提供的小区测量方法中,所述测量需求为预先存储的,或基站发送给所述UE的,本发明实施例对此不作 具体限定。
一种可能的实现方式中,所述测量需求中可以包含测量时间,则如图2所示,所述UE根据所述测量需求,对N1个待测频点上的M个小区进行测量(即S102),具体可以包括:
S102a、所述UE在所述测量时间内,对所述N1个待测频点中每个频点上的至少一个小区进行测量。
即,在指定的测量时间内,在UE处理能力允许的情况下,尽可能测量每个待测频点上的多个小区。这样,在实现快速测量的同时,也可保证测量效果。
一种可能的实现方式中,所述测量需求中可以包含设定数目,则如图3所示,所述UE根据所述测量需求,对N1个待测频点上的M个小区进行测量(即S201),具体可以包括:
S102b、所述UE对所述N1个待测频点中每个频点上的不少于所述设定数目个小区进行测量。
一种可能的实现方式中,所述测量需求可以包含所述M个小区的物理小区标识(Physical Cell ID,PCI),则如图3所示,所述UE根据所述测量需求,对N1个待测频点上的M个小区进行测量(即S102),具体可以包括:
S102c、所述UE根据所述M个小区的PCI,对所述N1个待测频点上的所述M个小区进行测量。
即,UE只对部分指定的小区进行测量。
现有技术中,UE需要在规定的时间内测量多个待测频点上的小区,并且每个待测频点至少需要包括4个小区。目前UE最多只能聚合5个成员载波进行数据传输,因此现有的测量方法尚能满足载波聚合的要求。而若将现有的测量方法引入到大数量成员载波的载波聚合中,由于UE需要添加的小区数量较多(最多为32个),因此会使得UE花费相当长的时间加满所需数量的小区。另外,在UE需要更换某个小区时,由于测量结果得到的延后,也会使得基站不能快速地为UE配置合适频率上的小区。而基于本发明实施例提供的小区测量方法,UE 不再测量每个待测频点上的至少4个小区,而是根据测量需求,对N1个待测频点上的M个小区进行测量,其中,N1≤N,M<4*N,即,对待测频点上的小区进行简化测量。因此,本发明实施例提供的小区测量方法能够减少测量时间,实现快速测量,从而为大数量成员载波的载波聚合提供解决方案。
实施例二、
现有技术中,系统可通过聚合多个授权载波来获得更大的传输带宽以向UE传输数据。若将非授权载波引入到载波聚合技术中,使系统也可利用非授权载波向UE发送数据,则需要在发送数据前先对信道进行监听,因为非授权载波的信道可能已被占用。若信道已被占用,则暂不能发送数据;若信道空闲,则需要先发送前导码,再发送相应的数据。而现有技术中,对于UE如何接收系统通过非授权载波发送的数据并没有相应的方案。为此,本发明实施例提供一种信号接收方法,具体如图5所示,所述方法包括:
S501、UE以n个子帧或n个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号子帧为单位接收并存储第一频点小区在第一子帧发送的信号,其中,所述第一频点小区为非授权载波上的小区,n为整数,n>=1。
S502、若所述UE确定在第二子帧接收到第二频点小区发送的调度指令,根据所述调度指令,从所述第一频点小区在所述第一子帧发送的信号中获取前导码。其中,所述调度指令用于指示所述第一频点小区在所述第一子帧发送的前导码,所述第一子帧为所述第二子帧的前m个子帧或前m个OFDM符号子帧,m为整数,m>=0。
其中,所述m为基站通过无线资源控制(Radio Resource Control,RRC)信令或媒体访问控制(Media Access Control,MAC)信令配置的,或基站和UE预先约定的。
其中,需要说明的是,本领域普通技术人员可以理解,本发明实施例所述的第一频点小区、第二频点小区为基站的不同传输频段,所述第一频点小区/第二频点小区发送的数据/指令,指基站在不同的 传输频段发送的数据/指令。
进一步的,若所述UE获取到的所述前导码中包含有基站发送的数据的相关信息,如接收方式、调制方式等,则UE可根据该前导码获取到数据的相关信息,进而接收基站发送的数据。
具体的,本发明实施例提供的信号接收方法中,所述调度指令可以为物理下行控制信道(Physical Downlink Control Channel,PDCCH)信令、或MAC信令、或RRC信令。
参见图6,本发明实施例提供的信号接收方法中,UE以n个子帧或n个OFDM符号子帧为单位接收并存储基站在第一子帧通过非授权载波发送的信号,若UE确定在第二子帧接收到基站发送的用于指示在第一子帧发送的前导码的调度指令,UE则根据所述调度指令,从预先存储的基站在第一子帧通过非授权载波发送的信号中获取前导码,进而根据所述前导码接收基站通过非授权载波发送的数据。即,本发明实施例提供的信号接收方法,为基站通过非授权载波向UE传输数据提供了相应的解决方案。
实施例三、
通常,在网络话务量分布不均匀、信道特性因信道衰弱和干扰而起伏变化等情况下,系统需灵活分配和动态调整网络的可用资源,最大程度地提高无线频谱利用率,以为网络内的用户提供义务保障,这称为无线资源管理(Radio Resource Management,RRM)。为此,系统需定期地向UE发送参考信号,由UE对参考信号进行测量并上报测量报告,进而使基站根据测量报告实现RRM。在R12的规范中,为使UE能快速发现邻小区,进而使基站实现合理开启或关闭,引入了发现参考信号(Discover Reference Signal,DRS)。
现若将非授权载波引入到载波聚合技术中,同样要求UE定期地检测基站通过非授权载波发送的参考信号,并对参考信号进行测量,向基站上报测量报告。由于非授权载波上的资源需要竞争,而UE无法获知基站竞争获得非授权载波资源的具体时间,因此UE无法如授权载波的情况那样在基站发送参考信号的时刻接收并测量参 考信号。现有技术为克服这一难题,让UE在一定的周期内对非授权载波上的DRS进行盲检测,在检测到DRS信号后对其进行测量。但如果基站在非授权载波的某个周期没有竞争到资源,进而也没有发送DRS,而此时若UE仍进行盲检测DRS无疑会为UE带来不必要的功率损耗,为此,本发明实施例提供了相关的信号测量方法,具体描述如下。
本发明实施例提供一种信号测量方法,具体如图7所示,所述方法包括:
S701、UE接收基站配置的DRS的接收窗。
S702、若所述UE确定接收到前导码,判断所述前导码之后的信号发送时间段中是否包含所述DRS的接收窗。
S703、若所述前导码之后的信号发送时间段中包含所述DRS的接收窗,所述UE测量所述DRS。
其中,所述DRS可以包括诸如主同步信号(Primary Synchronization Signal,PSS)、辅同步信号(Secondary Synchronization Signal,SSS)、信道状态信息参考信号(Channel State Information Refrence Signals,CSI-RS)、小区特定的参考信号(Cell-specific Reference Signals,CRS)等信号。
基于上述方案,不同与现有技术,UE不再对非授权载波上的每个DRS进行盲检测,而是先接收基站配置的DRS接收窗,并在确定接收到非授权载波上的前导码,且在所述前导码之后的信号发送时间段中包含有所述DRS的接收窗,才触发对该DRS的测量。这样,可避免UE进行不必要的检测与测量,从而降低UE的功率损耗。
可选的,本发明实施例提供了另外一种信号测量方法,具体如图8所示,所述方法包括:
S801、UE接收第一频点小区发送的指示信令,并根据所述指示信令的指示获取测量时刻,其中,所述测量时刻为预先配置的测量时刻中需要执行测量的时刻。
其中,所述指示信令具体可以为RRC信令或MAC信令,本发 明实施例对此不作具体限定。
需要说明的是,第一频点小区具体可根据基站是否竞争到资源来指示需要执行测量的时刻。
S802、所述UE按照预先配置的测量周期,在所述测量时刻对第二频点小区发送的参考信号进行测量,其中,所述第二频点小区为非授权载波上的小区。
其中,需要说明的是,所述参考信号包括DRS,本发明实施例对此不作具体限定。
基于上述方案,UE不再以一定的周期对非授权载波上的DRS进行盲检测,而是根据第一频点小区发送的指示信令,获取预先配置的测量时刻中需要执行测量的时刻,进而在所述测量时刻对非授权载波上的小区发送的参考信号进行测量。因此,与现有技术相比,本发明实施例提供的信号测量方法能使UE避免不必要测量,从而降低UE的功率损耗。
实施例四、
本发明实施例提供一种UE90,具体如图9所示,包括:获取单元901、测量单元902。
其中,所述获取单元901,用于获取测量需求。
所述测量单元902,用于根据所述测量需求,对N1个待测频点上的M个小区进行测量,其中,N1≤N,M<4*N,N为待测频点的总数,N为整数。
一种可能的实现方式中,所述测量需求中包含测量时间,则所述测量单元902具体用于:
在所述测量时间内,对所述N1个待测频点中每个频点上的至少一个小区进行测量。
一种可能的实现方式中,所述测量需求中包含设定数目,则所述测量单元902具体用于:
对所述N1个待测频点中每个频点上的不少于所述设定数目个小区进行测量。
一种可能的实现方式中,所述测量需求中包含所述M个小区的PCI,则所述测量单元902具体用于:
根据所述M个小区的PCI,对所述N1个待测频点上的所述M个小区进行测量。
优选的,所述测量需求为预先存储的,或基站发送给所述UE90的。
具体的,使用本发明实施例提供的UE90测量小区的方法可参考实施例一的描述,本发明实施例对此不作具体限定。
需要说明的是,在本发明实施例提供的UE90的单元模块中,获取单元901和测量单元902具体可以通过处理器来实现,本发明实施例对此不作具体限定。
现有技术中,UE需要在规定的时间内测量多个待测频点上的小区,并且每个待测频点至少需要包括4个小区。目前UE最多只能聚合5个成员载波进行数据传输,因此现有的测量方法尚能满足载波聚合的要求。而若将现有的测量方法引入到大数量成员载波的载波聚合中,由于UE需要添加的小区数量较多(最多为32个),因此会使得UE花费相当长的时间加满所需数量的小区。另外,在UE需要更换某个小区时,由于测量结果得到的延后,也会使得基站不能快速地为UE配置合适频率上的小区。而基于本发明实施例提供的UE,不再测量每个待测频点上的至少4个小区,而是根据测量需求,对N1个待测频点上的M个小区进行测量,其中,N1≤N,M<4*N,即,对待测频点上的小区进行简化测量。因此,本发明实施例提供的UE能够减少测量时间,实现快速测量,从而为大数量成员载波的载波聚合提供解决方案。
实施例五、
本发明实施例提供一种UE100,具体如图10所示,所述UE100包括:接收单元1001、存储单元1002、确定单元1003、获取单元1004。
其中,所述接收单元1001,用于以n个子帧或n个OFDM符号子帧为单位接收第一频点小区在第一子帧发送的信号,其中,所述第一频点小区为非授权载波上的小区,n为整数,n>=1。
所述存储单元1002,用于存储所述第一频点小区在所述第一子帧发送 的信号。
所述接收单元1001,还用于接收第二频点小区发送的调度指令,其中,所述调度指令用于指示所述第一频点小区在所述第一子帧发送的前导码。
所述确定单元1003,用于确定所述接收单元1001在第二子帧是否接收到所述第二频点小区发送的调度指令,其中,所述第一子帧为所述第二子帧的前m个子帧或前m个OFDM符号子帧,m为整数,m>=0。
所述获取单元1004,用于若所述确定单元1003确定在所述第二子帧接收到所述第二频点小区发送的调度指令,根据所述调度指令,从所述第一频点小区在所述第一子帧发送的信号中获取所述前导码。
优选的,所述m为预先设置的,或,基站通过RRC信令或MAC信令配置的。
具体的,所述调度指令可以为PDCCH信令、或ePDCCH信令、或MAC信令、或RRC信令,本发明实施例对此不作具体限定。
具体的,使用本发明实施例提供的UE100接收信号的方法可参考实施例二的描述,本发明实施例对此不作具体限定。
需要说明的是,在本发明实施例提供的UE100的单元模块中,接收单元1001具体可以通过接收器来实现;存储单元1002、确定单元1003、以及获取单元1004,具体可以通过处理器来实现,其中,所述处理器、所述接收器之间可以相互通信,本发明实施例对此不作具体限定。
基于本发明实施例提供的UE,以n个子帧或n个OFDM符号子帧为单位接收并存储基站在第一子帧通过非授权载波发送的信号,若确定在第二子帧接收到基站发送的用于指示在第一子帧发送的前导码的调度指令,则根据所述调度指令,从预先存储的基站在第一子帧通过非授权载波发送的信号中获取前导码,进而根据所述前导码接收基站通过非授权载波发送的数据。即,本发明实施例提供的UE,为基站通过非授权载波向UE传输数据提供了相应的解决方案。
实施例六、
本发明实施例提供一种UE,具体如图11所示,所述UE110包括:接收单元1101、确定单元1102、判断单元1103、测量单元1104。
其中,所述接收单元1101,用于接收基站配置的DRS的接收窗。
所述接收单元1101,还用于接收前导码。
所述确定单元1102,用于确定所述接收单元1101是否接收到所述前导码。
所述判断单元1103,用于若所述确定单元1102确定接收到所述前导码,判断所述前导码之后的信号发送时间段中是否包含所述DRS的接收窗。
所述测量单元1104,用于若所述前导码之后的信号发送时间段中包含所述DRS的接收窗,测量所述DRS。
基于本发明实施例提供的UE,不同与现有技术,UE不再对非授权载波上的每个DRS进行盲检测,而是先接收基站配置的DRS接收窗,并在确定接收到非授权载波上的前导码,且在所述前导码之后的信号发送时间段中包含有所述DRS的接收窗,才触发对该DRS的测量。这样,可避免UE进行不必要的检测与测量,从而降低UE的功率损耗。
可选的,本发明实施例提供了另一种UE120,具体如图12所示,所述UE包括:接收单元1201、获取单元1202、测量单元1203。
其中,所述接收单元1201,用于接收第一频点小区发送的指示信令。
所述获取单元1202,用于根据所述指示信令的指示获取测量时刻,其中,所述测量时刻为预先配置的测量时刻中需要执行测量的时刻。
所述测量单元1203,用于按照预先配置的测量周期,在所述测量时刻对第二频点小区发送的参考信号进行测量,其中,所述第二频点小区为非授权载波上的小区。
具体的,使用本发明实施例提供的UE测量信号的方法可参考实施例三的相关描述,本发明实施例对此不作具体限定。
需要说明的是,在本发明实施例提供的UE的单元模块中,接收单元具体可以通过接收器来实现;测量单元、获取单元、确定单元、判断单元具体可以通过处理器来实现,其中,所述处理器、所述接收器之间可以相互通信,本发明实施例对此不作具体限定。
本发明实施例提供的UE,不再以一定的周期对非授权载波上的DRS进行盲检测,而是根据第一频点小区发送的指示信令,获取预先配置的测量时刻中需要执行测量的时刻,进而在所述测量时刻对非授权载波上的小区发送的参考信号进行测量。因此,与现有技术相比,本发明实施例提供的信号测量方法能使UE避免不必要测量,从而降低UE的功率损耗。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的装置,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种小区测量方法,其特征在于,所述方法包括:
    用户设备UE获取测量需求;
    所述UE根据所述测量需求,对N1个待测频点上的M个小区进行测量,其中,N1≤N,M<4*N,N为待测频点的总数,N为整数。
  2. 根据权利要求1所述的方法,其特征在于,所述测量需求中包含测量时间;
    所述UE根据所述测量需求,对N1个待测频点上的M个小区进行测量,包括:
    所述UE在所述测量时间内,对所述N1个待测频点中每个频点上的至少一个小区进行测量。
  3. 根据利要求1所述的方法,其特征在于,所述测量需求中包含设定数目;
    所述UE根据所述测量需求,对N1个待测频点上的M个小区进行测量,包括:
    所述UE对所述N1个待测频点中每个频点上的不少于所述设定数目个小区进行测量。
  4. 根据权利要求1所述的方法,其特征在于,所述测量需求中包含所述M个小区的物理小区标识PCI;
    所述UE根据所述测量需求,对N1个待测频点上的M个小区进行测量,包括:
    所述UE根据所述M个小区的PCI,对所述N1个待测频点上的所述M个小区进行测量。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述测量需求为预先存储的,或基站发送给所述UE的。
  6. 一种信号接收方法,其特征在于,所述方法包括:
    用户设备UE以n个子帧或n个正交频分复用OFDM符号子帧为单位接收并存储第一频点小区在第一子帧发送的信号,其中,所述第一频点小 区为非授权载波上的小区,n为整数,n>=1;
    若所述UE确定在第二子帧接收到第二频点小区发送的调度指令,根据所述调度指令,从所述第一频点小区在所述第一子帧发送的信号中获取前导码;其中,所述调度指令用于指示所述第一频点小区在所述第一子帧发送的前导码,所述第一子帧为所述第二子帧的前m个子帧或前m个OFDM符号子帧,m为整数,m>=0。
  7. 根据权利要求6所述的方法,其特征在于,所述m为预先设置的,或,基站通过无线资源控制RRC信令或媒体访问控制MAC信令配置的。
  8. 根据权利要求6或7所述的方法,其特征在于,所述调度指令为物理下行控制信道PDCCH信令、或增强物理下行控制信道ePDCCH信令、或MAC信令、或RRC信令。
  9. 一种信号测量方法,其特征在于,所述方法包括:
    用户设备UE接收基站配置的发现参考信号DRS的接收窗;
    若所述UE确定接收到前导码,判断所述前导码之后的信号发送时间段中是否包含所述DRS的接收窗;
    若所述前导码之后的信号发送时间段中包含所述DRS的接收窗,所述UE测量所述DRS。
  10. 一种信号测量方法,其特征在于,所述方法还包括:
    用户设备UE接收第一频点小区发送的指示信令,并根据所述指示信令的指示获取测量时刻,其中,所述测量时刻为预先配置的测量时刻中需要执行测量的时刻;
    所述UE按照预先配置的测量周期,在所述测量时刻对第二频点小区发送的参考信号进行测量,其中,所述第二频点小区为非授权载波上的小区。
  11. 一种用户设备UE,其特征在于,所述UE包括:获取单元、测量单元;
    所述获取单元,用于获取测量需求;
    所述测量单元,用于根据所述测量需求,对N1个待测频点上的M个 小区进行测量,其中,N1≤N,M<4*N,N为待测频点的总数,N为整数。
  12. 根据权利要求11所述的UE,其特征在于,所述测量需求中包含测量时间;
    所述测量单元具体用于:
    在所述测量时间内,对所述N1个待测频点中每个频点上的至少一个小区进行测量。
  13. 根据权利要求11所述的UE,其特征在于,所述测量需求中包含设定数目;
    所述测量单元具体用于:
    对所述N1个待测频点中每个频点上的不少于所述设定数目个小区进行测量。
  14. 根据权利要求11所述的UE,其特征在于,所述测量需求中包含所述M个小区的物理小区标识PCI;
    所述测量单元具体用于:
    根据所述M个小区的PCI,对所述N1个待测频点上的所述M个小区进行测量。
  15. 根据权利要求11-14任一项所述的UE,其特征在于,所述测量需求为预先存储的,或基站发送给所述UE的。
  16. 一种用户设备UE,其特征在于,所述UE包括:接收单元、存储单元、确定单元、获取单元;
    所述接收单元,用于以n个子帧或n个正交频分复用OFDM符号子帧为单位接收第一频点小区在第一子帧发送的信号,其中,所述第一频点小区为非授权载波上的小区,n为整数,n>=1;
    所述存储单元,用于存储所述第一频点小区在所述第一子帧发送的信号;
    所述接收单元,还用于接收第二频点小区发送的调度指令,其中,所述调度指令用于指示所述第一频点小区在所述第一子帧发送的前导码;
    所述确定单元,用于确定所述接收单元在第二子帧是否接收到所述第二频点小区发送的调度指令,其中,所述第一子帧为所述第二子帧的前m 个子帧或前m个OFDM符号子帧,m为整数,m>=0;
    所述获取单元,用于若所述确定单元确定在所述第二子帧接收到所述第二频点小区发送的调度指令,根据所述调度指令,从所述第一频点小区在所述第一子帧发送的信号中获取所述前导码。
  17. 根据权利要求16所述的UE,其特征在于,所述m为预先设置的,或,基站通过无线资源控制RRC信令或媒体访问控制MAC信令配置的。
  18. 根据权利要求16或17所述的UE,其特征在于,所述调度指令为物理下行控制信道PDCCH信令、或增强物理下行控制信道ePDCCH信令、或MAC信令、或RRC信令。
  19. 一种用户设备UE,其特征在于,所述UE包括:接收单元、确定单元、判断单元、测量单元;
    所述接收单元,用于接收基站配置的发现参考信号DRS的接收窗;
    所述接收单元,还用于接收前导码;
    所述确定单元,用于确定所述接收单元是否接收到所述前导码;
    所述判断单元,用于若所述确定单元确定接收到所述前导码,判断所述前导码之后的信号发送时间段中是否包含所述DRS的接收窗;
    所述测量单元,用于若所述前导码之后的信号发送时间段中包含所述DRS的接收窗,测量所述DRS。
  20. 一种用户设备UE,其特征在于,所述UE包括:接收单元、获取单元、测量单元;
    所述接收单元,用于接收第一频点小区发送的指示信令;
    所述获取单元,用于根据所述指示信令的指示获取测量时刻,其中,所述测量时刻为预先配置的测量时刻中需要执行测量的时刻;
    所述测量单元,用于按照预先配置的测量周期,在所述测量时刻对第二频点小区发送的参考信号进行测量,其中,所述第二频点小区为非授权载波上的小区。
PCT/CN2015/076373 2015-04-10 2015-04-10 小区测量方法、信号接收和测量方法及用户设备 WO2016161657A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2015/076373 WO2016161657A1 (zh) 2015-04-10 2015-04-10 小区测量方法、信号接收和测量方法及用户设备
CN201580071568.5A CN107113638B (zh) 2015-04-10 2015-04-10 小区测量方法、信号接收和测量方法及用户设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/076373 WO2016161657A1 (zh) 2015-04-10 2015-04-10 小区测量方法、信号接收和测量方法及用户设备

Publications (1)

Publication Number Publication Date
WO2016161657A1 true WO2016161657A1 (zh) 2016-10-13

Family

ID=57071776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/076373 WO2016161657A1 (zh) 2015-04-10 2015-04-10 小区测量方法、信号接收和测量方法及用户设备

Country Status (2)

Country Link
CN (1) CN107113638B (zh)
WO (1) WO2016161657A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019196940A1 (zh) * 2018-04-13 2019-10-17 华为技术有限公司 载波测量的方法、终端设备和网络设备
CN111328113A (zh) * 2018-12-14 2020-06-23 深圳市中兴微电子技术有限公司 一种工作频点的确定方法、无人机、遥控器、无人机系统和计算机存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020033914A1 (en) 2018-08-09 2020-02-13 Intel Corporation User equipment capability indication of receive beamforming for cell identification

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101370226A (zh) * 2007-08-17 2009-02-18 华为技术有限公司 小区测量和读取控制信道的方法和用户设备
CN101478739A (zh) * 2008-01-04 2009-07-08 上海华为技术有限公司 优化相邻小区关系列表的方法、系统及相关设备
EP2654338A1 (en) * 2010-12-17 2013-10-23 Datang Mobile Communications Equipment Co., Ltd. Method and system for reporting terminal measurement and inter-operating between systems
WO2013168966A1 (en) * 2012-05-09 2013-11-14 Samsung Electronics Co., Ltd. Method and apparatus for measuring inter-frequency neighboring cell and user equipment thereof
CN103581991A (zh) * 2012-08-09 2014-02-12 中兴通讯股份有限公司 测量参数的指示方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101370226A (zh) * 2007-08-17 2009-02-18 华为技术有限公司 小区测量和读取控制信道的方法和用户设备
CN101478739A (zh) * 2008-01-04 2009-07-08 上海华为技术有限公司 优化相邻小区关系列表的方法、系统及相关设备
EP2654338A1 (en) * 2010-12-17 2013-10-23 Datang Mobile Communications Equipment Co., Ltd. Method and system for reporting terminal measurement and inter-operating between systems
WO2013168966A1 (en) * 2012-05-09 2013-11-14 Samsung Electronics Co., Ltd. Method and apparatus for measuring inter-frequency neighboring cell and user equipment thereof
CN103581991A (zh) * 2012-08-09 2014-02-12 中兴通讯股份有限公司 测量参数的指示方法及装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019196940A1 (zh) * 2018-04-13 2019-10-17 华为技术有限公司 载波测量的方法、终端设备和网络设备
CN111328113A (zh) * 2018-12-14 2020-06-23 深圳市中兴微电子技术有限公司 一种工作频点的确定方法、无人机、遥控器、无人机系统和计算机存储介质
CN111328113B (zh) * 2018-12-14 2022-03-25 深圳市中兴微电子技术有限公司 一种工作频点的确定方法、无人机、遥控器、无人机系统和计算机存储介质

Also Published As

Publication number Publication date
CN107113638B (zh) 2020-12-18
CN107113638A (zh) 2017-08-29

Similar Documents

Publication Publication Date Title
US11246068B2 (en) Communication method between a terminal and base stations for cell handover
CN110913422B (zh) 用于小区测量的方法和装置
US9325485B2 (en) Apparatus and method to enable device-to-device (D2D) discovery in cellular networks
US9661562B2 (en) Access method and apparatus in heterogeneous network
EP3096481B1 (en) Signal transmission method and apparatus
US11856608B2 (en) Random access procedure for determining uplink transmission capability
AU2014258048B2 (en) Method and apparatus for indicating discovery signal resources in device-to-device wireless communications
EP3562083B1 (en) Wireless communication method, terminal device and network device
EP3228118B1 (en) Hidden node detection in lte licensed assisted access
JP7299882B2 (ja) サブキャリア間隔ヌメロロジの指示
KR101616236B1 (ko) 채널 측정을 위한 방법, 채널 측정을 구성하기 위한 방법 및 그것을 위한 장치
US10284314B2 (en) Measurements in a wireless system
EP2826285B1 (en) Methods and devices of interference channel measurement in radio network
US12022495B2 (en) Method and apparatus for adaptive bandwidth operation
US10285088B2 (en) Methods and apparatus for minimization of drive testing
JP2021519016A (ja) 時間領域リソース割り当ての指示情報を使用するための方法および装置
KR20150082451A (ko) 머신-타입 통신의 자원을 구성하는 방법 및 장치
US20170188294A1 (en) Method and apparatus of transmitting discovery signal, method and apparatus of discovering cell
WO2014008771A1 (zh) 传输信号的发送、接收方法及终端、基站
WO2017000263A1 (zh) 一种参考信号发送方法及装置
WO2016161657A1 (zh) 小区测量方法、信号接收和测量方法及用户设备
WO2016106563A1 (zh) 一种测量方法和设备
CN102281570A (zh) 一种测量控制的方法和设备
WO2015143690A1 (zh) 测量信道质量的方法、用户设备和发送端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15888213

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15888213

Country of ref document: EP

Kind code of ref document: A1