Nothing Special   »   [go: up one dir, main page]

WO2016158046A1 - ヒートシンク付パワーモジュール用基板の製造方法 - Google Patents

ヒートシンク付パワーモジュール用基板の製造方法 Download PDF

Info

Publication number
WO2016158046A1
WO2016158046A1 PCT/JP2016/054435 JP2016054435W WO2016158046A1 WO 2016158046 A1 WO2016158046 A1 WO 2016158046A1 JP 2016054435 W JP2016054435 W JP 2016054435W WO 2016158046 A1 WO2016158046 A1 WO 2016158046A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat sink
metal layer
aluminum
aluminum material
purity
Prior art date
Application number
PCT/JP2016/054435
Other languages
English (en)
French (fr)
Inventor
航 岩崎
雅人 駒崎
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to CN201680018019.6A priority Critical patent/CN107431051B/zh
Priority to KR1020177026957A priority patent/KR102425880B1/ko
Priority to EP16771930.1A priority patent/EP3279936B1/en
Priority to US15/562,120 priority patent/US10420223B2/en
Publication of WO2016158046A1 publication Critical patent/WO2016158046A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • H05K3/361Assembling flexible printed circuits with other printed circuits
    • H05K3/363Assembling flexible printed circuits with other printed circuits by soldering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/142Metallic substrates having insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of semiconductor or other solid state devices
    • H01L25/03Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group subclass H10D
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of semiconductor or other solid state devices
    • H01L25/18Assemblies consisting of a plurality of semiconductor or other solid state devices the devices being of the types provided for in two or more different main groups of the same subclass of H10B, H10D, H10F, H10H, H10K or H10N
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/121Metallic interlayers based on aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/126Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • C04B2237/128The active component for bonding being silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/366Aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/368Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/704Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the ceramic layers or articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/706Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the metallic layers or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Definitions

  • the present invention includes an insulating layer, a circuit layer formed on one surface of the insulating layer, a metal layer formed on the other surface of the insulating layer, and an opposite side of the metal layer to the insulating layer.
  • the present invention relates to a method for manufacturing a power module substrate with a heat sink including a heat sink disposed on a surface.
  • a substrate on which such a power semiconductor element is mounted for example, a ceramic substrate made of AlN (aluminum nitride), Al 2 O 3 (alumina), etc., and a circuit layer formed on one surface of the ceramic substrate, A power module substrate including a metal layer formed on the other surface of the ceramic substrate has been widely used.
  • a power module substrate with a heat sink in which a heat sink is bonded to the metal layer side in order to efficiently dissipate heat generated from a mounted semiconductor element or the like.
  • a circuit layer and a metal layer of a power module substrate are made of aluminum or an aluminum alloy
  • a heat sink is made of aluminum or an aluminum alloy
  • the metal layer and the heat sink are soldered or brazed.
  • a substrate for a power module with a heat sink bonded by attaching is disclosed.
  • Patent Document 2 a circuit layer and a metal layer made of aluminum are formed on one surface and the other surface of a ceramic substrate, and a copper plate is disposed between the metal layer and the heat sink.
  • the metal layer, the copper plate, and the copper plate And a heat module substrate with a heat sink in which the heat sink and the heat sink are respectively soldered.
  • Patent Document 3 discloses a power module substrate with a heat sink in which the circuit layer and the metal layer of the power module substrate are made of aluminum or an aluminum alloy, and the heat sink is made of aluminum or an aluminum alloy. There is disclosed a technique in which a bonding material composed of copper or a copper alloy is interposed between a heat sink and a metal layer and the bonding material, and the bonding material and the heat sink are respectively solid phase diffusion bonded.
  • a bonding material composed of copper or a copper alloy is interposed between the metal layer and the heat sink, and the metal layer, the bonding material, the bonding material, and the heat sink Are solid phase diffusion bonded, and an intermetallic compound is formed at the bonding interface between the metal layer and the heat sink. Since this intermetallic compound is hard and brittle, there is a possibility that cracks or the like may occur during heat cycle loading.
  • the present invention has been made in view of the above-described circumstances, and is a heat sink capable of manufacturing a power module substrate with a heat sink that can prevent cracks and the like from being generated at the bonding interface even when a heat cycle is applied. It aims at providing the manufacturing method of the board
  • a method for manufacturing a power module substrate with a heat sink is formed on an insulating layer and one surface of the insulating layer.
  • Production of a power module substrate with a heat sink comprising: a circuit layer; a metal layer formed on the other surface of the insulating layer; and a heat sink disposed on a surface of the metal layer opposite to the insulating layer.
  • a joining surface of the metal layer with the heat sink, and a joining surface of the heat sink with the metal layer are made of an aluminum material made of aluminum or an aluminum alloy, and One of the aluminum material constituting the joining surface and the aluminum material constituting the joining surface of the heat sink is a high-purity alloy having a high aluminum purity.
  • the other is a low-purity aluminum material having a low aluminum purity, and the concentration difference of contained elements other than Al between the high-purity aluminum material and the low-purity aluminum material is 1 atomic% or more,
  • the metal layer and the heat sink are characterized by solid phase diffusion bonding.
  • the joining surface of the metal layer with the heat sink and the joining surface of the heat sink with the metal layer are made of aluminum or aluminum alloy. These metal layers and a heat sink are solid-phase diffusion bonded. Usually, when solid-phase diffusion of aluminum materials is performed, since the self-diffusion rate of aluminum is slow, it takes a long time to obtain a strong solid-phase diffusion bonding, which cannot be realized industrially.
  • one of the aluminum material constituting the joining surface of the metal layer and the aluminum material constituting the joining surface of the heat sink is a high-purity aluminum material having high aluminum purity
  • the other is The aluminum purity is a low-purity aluminum material
  • the concentration difference between the high-purity aluminum material and the low-purity aluminum material other than Al is 1 atomic% or more.
  • the high-purity aluminum material and the low-purity aluminum material include Si, Cu, Mn, Fe, Mg, Zn as contained elements other than Al. , Containing one or more elements selected from Ti and Cr, and the total amount of elements other than Al in the high-purity aluminum material and the total of elements other than Al in the low-purity aluminum material It is preferable that the difference in amount is 1 atomic% or more.
  • the low-purity aluminum material is one or more selected from Si, Cu, Mn, Fe, Mg, Zn, Ti, and Cr. It contains 2 or more elements in total at least 1 atomic%, Si content is 15 atomic% or less, Cu content is 10 atomic% or less, Mn content is 2 atomic% or less, Fe content 1 atom% or less, Mg content 5 atom% or less, Zn content 10 atom% or less, Ti content 1 atom% or less, and Cr content 1 atom% or less. It is preferable.
  • the low-purity aluminum material with low purity contains one or more elements selected from Si, Cu, Mn, Fe, Mg, Zn, Ti, and Cr in total at least 1 atomic%. Therefore, by diffusing these elements to the high-purity aluminum material side, the self-diffusion of aluminum is promoted, and the metal layer and the heat sink can be reliably solid-phase diffusion bonded in a relatively short time.
  • the Si content is 15 atomic% or less
  • the Cu content is 10 atomic% or less
  • the Mn content is 2 atomic% or less
  • the Fe content is 1 atomic% or less
  • the Mg content is 5 atomic%.
  • the Zn content is limited to 10 atomic% or less
  • the Ti content is limited to 1 atomic% or less
  • the Cr content is limited to 1 atomic% or less
  • the metal layer and the heat sink are stacked, and a load of 0.3 MPa to 3.0 MPa is applied in the stacking direction.
  • the solid phase temperature (K) of the low-purity aluminum material is maintained at 90% or higher and lower than the solidus temperature of the low-purity aluminum material for 1 hour or longer, whereby the metal layer and the heat sink are solid-phased.
  • a structure in which diffusion bonding is performed is preferable.
  • FIG. 1 the board
  • the power module 1 includes a power module substrate 30 with a heat sink, and a semiconductor element 3 bonded to one surface (the upper surface in FIG. 1) of the power module substrate 30 with a heat sink via a solder layer 2.
  • the solder layer 2 is made of, for example, a Sn—Ag, Sn—In, or Sn—Ag—Cu solder material.
  • the power module substrate with heat sink 30 according to the present embodiment includes a power module substrate 10 and a heat sink 31 bonded to the power module substrate 10.
  • the power module substrate 10 has a ceramic substrate 11, a circuit layer 12 disposed on one surface (the upper surface in FIG. 1) of the ceramic substrate 11, and the other surface (lower surface in FIG. 1) of the ceramic substrate 11. And a disposed metal layer 13.
  • the ceramic substrate 11 prevents electrical connection between the circuit layer 12 and the metal layer 13, and is composed of AlN (aluminum nitride) having high insulation in this embodiment.
  • the thickness of the ceramic substrate 11 is set within a range of 0.2 mm or more and 1.5 mm or less, and is set to 0.635 mm in the present embodiment.
  • the circuit layer 12 is formed by joining an aluminum plate 22 made of aluminum or an aluminum alloy to one surface of the ceramic substrate 11.
  • a 2N aluminum rolled plate having a purity of 99 mass% or more is used as the aluminum plate 22 constituting the circuit layer 12.
  • a circuit pattern is formed on the circuit layer 12, and one surface (the upper surface in FIG. 1) is a mounting surface on which the semiconductor element 3 is mounted.
  • the thickness of the circuit layer 12 (aluminum plate 22) is set within a range of 0.1 mm or more and 1.0 mm or less, and is set to 0.6 mm in the present embodiment.
  • the metal layer 13 is formed by bonding an aluminum plate 23 made of aluminum or an aluminum alloy to the other surface of the ceramic substrate 11.
  • a 4N aluminum rolled plate having a purity of 99.99 mass% or more is used as the aluminum plate 23 constituting the metal layer 13.
  • the thickness of the metal layer 13 is set within a range of 0.1 mm to 6.0 mm, and is set to 2.0 mm in the present embodiment.
  • the heat sink 31 is for dissipating heat on the power module substrate 10 side, and in this embodiment, as shown in FIG. 1, a flow path 32 through which a cooling medium flows is provided.
  • This heat sink 31 has a concentration difference of 1 atomic% or more between aluminum constituting the metal layer 13 (in this embodiment, 4N aluminum having a purity of 99.99 mass% or more) and an aluminum alloy constituting the heat sink 31 other than Al. It is composed of materials that More preferably, the contained element other than Al may be one or more elements selected from Si, Cu, Mn, Fe, Mg, Zn, Ti and Cr.
  • the contained element other than Al one or more elements selected from Si, Cu, Mn, Fe, Mg, Zn, Ti and Cr are contained in total of 1 atomic% or more, and Si Content of 15 atomic% or less, Cu content of 10 atomic% or less, Mn content of 2 atomic% or less, Fe content of 1 atomic% or less, Mg content of 5 atomic% or less, Zn
  • the content of Cu is preferably 10 atomic% or less
  • the Ti content is 1 atomic% or less
  • the Cr content is 1 atomic% or less.
  • the heat sink 31 is composed of an ADC 12 that is an aluminum alloy for die casting defined in JIS H 2118: 2006.
  • the ADC 12 is an aluminum alloy containing Cu in a range of 1.5 mass% to 3.5 mass% and Si in a range of 9.6 mass% to 12.0 mass%.
  • the metal layer 13 and the heat sink 31 are bonded by solid phase diffusion bonding. That is, in the present embodiment, the metal layer 13 is made of 4N aluminum having a purity of 99.99 mass% or more, and the heat sink 31 is made of ADC 12 that is an aluminum alloy for die casting. The purity of aluminum is different from that of the heat sink 31, the metal layer 13 is made of a high purity aluminum material, and the heat sink 31 is made of a low purity aluminum material.
  • JXA-8530F manufactured by JEOL Ltd. is used for the bonding interface between the metal layer 13 and the heat sink 31, and the observation results of mapping by SEM and EPMA are shown in FIGS. 2 (a) to 2 (c). 2A to 2C, it is confirmed that the additive element (Cu, Si) contained in the heat sink 31 is diffused to the metal layer 13 side.
  • the diffusion depth from the bonding interface to the metal layer 13 side is set to 10 ⁇ m or more for Cu and 45 ⁇ m or more for Si. Note that Cu may be 25 ⁇ m or more, and Si may be 45 ⁇ m or more.
  • Al plate joining step S01 First, as shown in FIG. 4, the aluminum plate 22 to be the circuit layer 12 and the aluminum plate 23 to be the metal layer 13 are bonded to the ceramic substrate 11.
  • an aluminum plate 22 made of a 2N aluminum rolled plate, an aluminum plate 23 made of a 4N aluminum rolled plate, and a ceramic substrate 11 made of AlN are joined together by an Al—Si brazing material 24.
  • an aluminum plate 22 and an aluminum plate 23 are laminated on one surface and the other surface of the ceramic substrate 11 via an Al—Si brazing material 24, respectively (aluminum plate laminating step). S11).
  • the laminated ceramic substrate 11, the aluminum plate 22, and the aluminum plate 23 are loaded in a heating furnace in a vacuum or argon atmosphere with a load of 0.1 MPa or more and 3.5 MPa or less loaded in the lamination direction, By maintaining the temperature at 600 ° C. or higher and 650 ° C. or lower and 0.5 hour or longer and 3 hours or shorter, a molten metal region is formed between the ceramic substrate 11 and the aluminum plate 22 or aluminum plate 23 (heating step S12).
  • the molten metal region is solidified by cooling (solidification step S13).
  • the aluminum plate 22, the ceramic substrate 11, and the aluminum plate 23 are joined to form the circuit layer 12 and the metal layer 13.
  • substrate 10 for power modules in this embodiment is manufactured.
  • Heat sink joining step S02 Next, the heat sink 31 is bonded to the other surface of the metal layer 13 of the power module substrate 10 (the surface opposite to the bonding surface with the ceramic substrate 11).
  • the heat sink bonding step S02 first, as shown in FIG. 4, the heat sink 31 is laminated on the other surface side of the power module substrate 10 (heat sink lamination step S21).
  • the laminate of the power module substrate 10 and the heat sink 31 is loaded into a vacuum heating furnace in a state where a load of 0.3 Pa or more and 3.0 MPa or less is applied in the lamination direction. Then, solid phase diffusion bonding is performed by maintaining at least 90% of the solidus temperature (K) of the low-purity aluminum material and lower than the solidus temperature of the low-purity aluminum material for 1 hour or longer (solid phase diffusion bonding). Step S22).
  • 90% of the solidus temperature (K) of the low-purity aluminum material is a temperature of 90% when the solidus temperature of the low-purity aluminum material is expressed in absolute temperature.
  • the ADC 12 is a low-purity aluminum material, and its solidus temperature is 788 K (515 ° C.). Therefore, the heating temperature is 90% of the solidus temperature, that is, 709.2 K (436.2 ° C.) or more and less than the solidus temperature, that is, less than 788 K (515 ° C.).
  • the joint surface between the metal layer 13 and the heat sink 31 is solid-phase diffusion bonded after the scratches on the surface have been removed and smoothed in advance.
  • the surface roughness in each joining surface of the metal layer 13 and the heat sink 31 at this time is set in the range of 0.5 micrometer or less by arithmetic mean roughness Ra (JISB0601 (1994)).
  • the power module substrate 30 with a heat sink according to the present embodiment is manufactured.
  • semiconductor element bonding step S03 Next, the semiconductor element 3 is joined to one surface of the circuit layer 12 of the power module substrate 10 by soldering. Through the above steps, the power module 1 shown in FIG. 1 is produced.
  • the aluminum material forming the metal layer 13 is 4N aluminum having a purity of 99.99 mass% or more
  • the heat sink 31 Is composed of ADC12 (Cu: 1.5 mass% or more and 3.5 mass% or less, Si: 9.6 mass% or more and 12.0 mass% or less).
  • ADC12 Cu: 1.5 mass% or more and 3.5 mass% or less
  • Si 9.6 mass% or more and 12.0 mass% or less.
  • Cu and Si diffuse to the metal layer 13 side, and self-diffusion of aluminum is promoted. This makes it possible to reliably perform solid phase diffusion bonding between the metal layer and the heat sink in a relatively short time.
  • the metal layer 13 and the heat sink 31 both made of an aluminum material are solid phase diffusion bonded, as shown in FIG. 2, at the bonding interface between the heat sink 31 and the metal layer 13. No heterogeneous phase is formed. Therefore, even when a heat cycle is applied, there is no possibility that a crack or the like is generated at the bonding interface, and the power module substrate 30 with a heat sink excellent in bonding reliability with respect to the heat cycle can be manufactured.
  • the aluminum material which comprises the heat sink 31 is comprised with ADC12 (Cu: 1.5 mass% or more and 3.5 mass% or less, Si: 9.6 mass% or more and 12.0 mass% or less), Since these Cu and Si are excellent in the effect of promoting self-diffusion of aluminum, both the metal layer 13 made of an aluminum material and the heat sink 31 can be reliably solid-phase diffusion bonded in a short time. It becomes possible.
  • the Si content is 12.0 mass% or less (11.6 atomic% or less (converted value)), and the Cu content is 3.5 mass% or less (1.5 atomic%). (Conversion value)), it is possible to suppress the bonding interface from becoming harder than necessary due to these elements, and to reliably manufacture a power module substrate with a heat sink excellent in bonding reliability with respect to the heat cycle. Can do.
  • the metal layer 13 and the heat sink 31 are laminated, and a low purity of 90% or more of the solidus temperature (K) of the low-purity aluminum material in a state where a load of 0.3 MPa or more and 3.0 MPa or less is applied in the lamination direction. Since the metal layer 13 and the heat sink 31 are solid-phase diffusion bonded by holding at a holding temperature lower than the solidus temperature of the aluminum material for 1 hour or more, the diffusion movement of aluminum can be promoted, and the metal layer 13 and the heat sink 31 can be reliably joined. When the load is 0.3 MPa or more, the metal layer 13 and the heat sink 31 can be satisfactorily bonded by ensuring a sufficient contact area at the initial stage of bonding.
  • a load when a load is 3.0 Mpa or less, it can suppress that a metal layer 13 and the heat sink 31 deform
  • the holding temperature is 90% or more of the solidus temperature (K) of the low-purity aluminum material, a sufficient diffusion rate can be secured, and the metal layer 13 and the heat sink 31 can be bonded well.
  • the holding temperature is lower than the solidus temperature of the low-purity aluminum material, no liquid phase is generated, and deformation of the metal layer 13 and the heat sink 31 can be suppressed. Can be reliably solid-phase diffusion bonded.
  • the holding time is 1 hour or longer, the solid phase diffusion can be sufficiently advanced, and the metal layer 13 and the heat sink 31 can be favorably bonded.
  • the surface roughness is 0.5 ⁇ m in terms of arithmetic average roughness Ra (JIS B 0601 (1994)). Since it is set within the following range, the metal layer 13 and the heat sink 31 can be reliably brought into contact with each other, and the diffusion movement of aluminum atoms and additive elements (Cu, Si) of the heat sink 31 can be promoted. The metal layer 13 and the heat sink 31 can be reliably bonded.
  • the material of the metal layer and the heat sink is not limited to this embodiment, and one of the aluminum material constituting the joining surface of the metal layer and the aluminum material constituting the joining surface of the heat sink is made of aluminum.
  • High purity aluminum material with high purity, the other is low purity aluminum material with low aluminum purity, and the concentration difference of contained elements other than Al between high purity aluminum material and low purity aluminum material is 1 atomic% or more It only has to be.
  • the metal layer has been described as being composed of 4N aluminum having a purity of 99.99 mass%.
  • the present invention is not limited to this and is composed of other pure aluminum or aluminum alloy. It may be.
  • 2N aluminum having a purity of 99 mass% or more such as A1050 and A1085 may be used.
  • the initial impurity concentration of the metal layer is high, crystal grain growth at the junction temperature is suppressed, and grain boundary diffusion can be expected. Therefore, it becomes possible to promote the diffusion movement of the contained element from the heat sink side. .
  • the heat sink is described as being configured by the ADC 12, but the heat sink is not limited to this, and may be configured by other pure aluminum or an aluminum alloy such as A3003 or A6063.
  • the heat sink side may be made of a high purity aluminum material, and the metal layer side may be made of a low purity aluminum material.
  • the entire metal layer has been described as being made of aluminum or an aluminum alloy.
  • the present invention is not limited to this.
  • the surface should just be comprised with aluminum or aluminum alloy.
  • the metal layer 113 has a structure in which a copper layer 113A and an aluminum layer 113B are laminated, and the ceramic substrate 11 and the copper layer 113A.
  • the aluminum layer 113B and the heat sink 131 are bonded by solid phase diffusion bonding.
  • the circuit layer 112 also has a structure in which a copper layer 112 ⁇ / b> A and an aluminum layer 112 ⁇ / b> B are laminated, and the semiconductor element 3 is joined to the aluminum layer 112 ⁇ / b> B via the solder layer 2.
  • the entire heat sink has been described as being made of aluminum or an aluminum alloy.
  • the present invention is not limited to this.
  • the heat sink 231 has a structure in which an aluminum layer 231B made of aluminum or aluminum alloy and a heat sink body 231A made of copper or copper alloy are laminated.
  • the metal layer 213 and the aluminum layer 231B (heat sink 231) are solid-phase diffusion bonded.
  • the aluminum plate which comprises a circuit layer was demonstrated as what was comprised with 2N aluminum whose purity is 99 mass% or more, it is not limited to this, Purity is 99.99 mass% or more. It may be composed of pure aluminum, other pure aluminum, or an aluminum alloy.
  • the structure of the circuit layer is not limited, and the design can be changed as appropriate.
  • the circuit layer 112 may be made of copper or a copper alloy, and the circuit layer 112 has a laminated structure of a copper layer 112A and an aluminum layer 112B, as in the power module substrate 130 with heat sink and the power module 101 shown in FIG. May be.
  • the aluminum plate serving as the circuit layer and the metal layer and the ceramic substrate are described as being joined using the Al—Si brazing material, but the present invention is not limited to this, and the transient You may join using a liquid phase joining method (Transient Liquid Phase Bonding), a casting method, a metal paste method, etc.
  • a liquid phase joining method Transient Liquid Phase Bonding
  • a casting method a metal paste method, etc.
  • the insulating layer is described as being composed of a ceramic substrate made of AlN.
  • the present invention is not limited to this, and other ceramic substrates such as Si 3 N 4 and Al 2 O 3 are used. It may be used.
  • the thicknesses of the insulating layer, the circuit layer, the metal layer, and the heat sink are not limited to the present embodiment, and the design may be changed as appropriate.
  • the ceramic substrate was made of AlN, and had a size of 40 mm ⁇ 40 mm and a thickness of 0.635 mm.
  • the circuit layer was formed by bonding a 2N aluminum rolled plate (37 mm ⁇ 37 mm, thickness 0.6 mm) having a purity of 99 mass% or more to a ceramic substrate using an Al-7.5 mass% Si brazing material.
  • the metal layer was formed by bonding a rolled plate (37 mm ⁇ 37 mm, thickness 0.6 mm) made of an aluminum material shown in Table 1 to a ceramic substrate using an Al-7.5 mass% Si brazing material.
  • the heat sink was made of the materials shown in Table 2, and was 50 mm ⁇ 50 mm and 5 mm thick. Solid phase diffusion bonding between the metal layer and the heat sink was performed under the conditions shown in Table 3.
  • Example 1 the power module substrate and the Ni-plated heat sink (A6063 rolled plate, 50 mm ⁇ 50 mm, thickness 5 mm) were joined via Sn—Ag—Cu solder.
  • Conventional Example 2 the power module substrate and the heat sink (A6063 rolled plate, 50 mm ⁇ 50 mm, thickness 5 mm) were joined via an Al-10 mass% Si brazing material.
  • Conventional Example 3 a power module substrate and a heat sink (A6063 rolled plate, 50 mm ⁇ 50 mm, thickness 5 mm) were solid phase diffusion bonded via Cu foil (thickness: 200 ⁇ m).
  • the diffusion distance of contained elements is determined by conducting a line analysis using EPMA (JXA-8530F, manufactured by JEOL Ltd.) from the bonding interface between the low purity aluminum material and the high purity aluminum material toward the high purity aluminum material side. The concentration was measured, and the distance at which the concentration of the contained element was half the concentration of the contained element contained in the low-purity aluminum material was defined as the diffusion distance.
  • Heat cycle test The heat cycle test uses a thermal shock tester TSPE-51 manufactured by Espec, and the test piece (power module with heat sink) is in the liquid phase (Fluorinert) at ⁇ 40 ° C. for 5 minutes and 150 ° C. A 5-minute heat cycle was performed 4000 times. And the joining rate before and behind the heat cycle test was evaluated as follows. Moreover, the presence or absence of the ceramic crack after a heat cycle test was evaluated visually. The evaluation results are shown in Table 4.
  • the joining rate between the metal layer and the heat sink was determined using the following formula using an ultrasonic flaw detector (FineSAT 200 manufactured by Hitachi Power Solutions).
  • the initial bonding area was an area (37 mm square) to be bonded before bonding.
  • the peeling is indicated by the white portion in the joint portion. Therefore, the area of the white portion is defined as the peeling area.
  • (Bonding rate (%)) ⁇ (initial bonding area) ⁇ (peeling area) ⁇ / (initial bonding area) ⁇ 100
  • the bonding rate did not increase significantly after the heat cycle, and no ceramic cracks were confirmed, and the bonding reliability was excellent. From the above, it was confirmed that according to the present invention, it is possible to manufacture a power module substrate with a heat sink that can suppress the occurrence of cracks and the like at the joint interface even when a heat cycle is applied.
  • the metal layer and the heat sink can be reliably solid-phase diffusion bonded in a relatively short time.
  • the heat sink and the metal layer are bonded by solid phase diffusion, there is no risk of cracking at the bonding interface even when a heat cycle is applied, and a heat sink with excellent bonding reliability to the heat cycle is provided.
  • a power module substrate can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

 金属層の接合面を構成するアルミニウム材料及びヒートシンクの接合面を構成するアルミニウム材料のうちいずれか一方がアルミニウムの純度の高い高純度アルミニウム材料とされ、他方がアルミニウムの純度の低い低純度アルミニウム材料とされており、前記高純度アルミニウム材料と前記低純度アルミニウム材料とのAl以外の含有元素の濃度差を1原子%以上とし、金属層とヒートシンクとを、固相拡散接合する。

Description

ヒートシンク付パワーモジュール用基板の製造方法
 この発明は、絶縁層と、この絶縁層の一方の面に形成された回路層と、前記絶縁層の他方の面に形成された金属層と、この金属層の前記絶縁層とは反対側の面に配置されたヒートシンクと、を備えたヒートシンク付パワーモジュール用基板の製造方法に関する。
 本願は、2015年3月30日に、日本に出願された特願2015-069860号に基づき優先権を主張し、その内容をここに援用する。
 一般に、風力発電、電気自動車、ハイブリッド自動車等を制御するために用いられる大電力制御用のパワー半導体素子は、発熱量が多い。そのため、このようなパワー半導体素子を搭載する基板としては、例えばAlN(窒化アルミニウム)、Al(アルミナ)などからなるセラミックス基板と、このセラミックス基板の一方の面に形成された回路層と、セラミックス基板の他方の面に形成された金属層と、を備えたパワーモジュール用基板が、従来から広く用いられている。
 また、搭載した半導体素子等から発生した熱を効率的に放散させるために、金属層側にヒートシンクを接合したヒートシンク付パワーモジュール用基板が提供されている。
 例えば、特許文献1には、パワーモジュール用基板の回路層及び金属層がアルミニウム又はアルミニウム合金で構成されるとともに、ヒートシンクがアルミニウム又はアルミニウム合金で構成され、金属層とヒートシンクとを、はんだ付けまたはろう付けにより接合したヒートシンク付パワーモジュール用基板が開示されている。
 また、特許文献2には、セラミックス基板の一方の面及び他方の面にアルミニウムからなる回路層及び金属層が形成され、金属層とヒートシンクとの間に銅板が配置され、金属層と銅板、銅板とヒートシンクがそれぞれはんだ付けされたヒートシンク付パワーモジュール用基板が開示されている。
 さらに、特許文献3には、パワーモジュール用基板の回路層及び金属層がアルミニウム又はアルミニウム合金で構成されるとともに、ヒートシンクがアルミニウム又はアルミニウム合金で構成されたヒートシンク付パワーモジュール用基板において、金属層とヒートシンクとの間に、銅又は銅合金で構成された接合材を介在させ、金属層と接合材及び接合材とヒートシンクとをそれぞれ固相拡散接合したものが開示されている。
特開2008-016813号公報 特開2007-250638号公報 特開2014-060215号公報
 ところで、最近では、パワー半導体素子等の高出力化が進められており、これを搭載するヒートシンク付パワーモジュール用基板に対して厳しいヒートサイクルが負荷されることになり、従来にも増して、ヒートサイクルに対する接合信頼性に優れたヒートシンク付パワーモジュール用基板が要求されている。
 ここで、特許文献1に記載されたヒートシンク付パワーモジュール用基板において、金属層とヒートシンクとをはんだ付けした場合には、ヒートサイクル負荷時に、はんだにクラックが生じて接合率が低下するといった問題があった。
 また、金属層とヒートシンクとをろう付けした場合には、ヒートサイクル負荷時に、セラミックス基板に割れが生じるおそれがあった。
 さらに、内部に冷却媒体の流路等が形成された複雑な構造のヒートシンクにおいては、比較的固相線温度が低いアルミニウム鋳物合金によって製造されることがあるが、このようなヒートシンクにおいては、ろう材を用いて接合することは困難であった。
 また、特許文献2に記載されたヒートシンク付パワーモジュール用基板においては、金属層と銅板、銅板とヒートシンクがそれぞれはんだ付けされているので、やはり、ヒートサイクル負荷時に、はんだにクラックが生じて接合率が低下するといった問題があった。
 さらに、特許文献3に示すヒートシンク付パワーモジュール用基板においては、金属層とヒートシンクとの間に、銅又は銅合金で構成された接合材を介在させ、金属層と接合材及び接合材とヒートシンクとをそれぞれ固相拡散接合しており、金属層とヒートシンクとの接合界面に金属間化合物が形成される。この金属間化合物は、硬く脆いため、ヒートサイクル負荷時に亀裂等が発生するおそれがあった。
 この発明は、前述した事情に鑑みてなされたものであって、ヒートサイクルが負荷された場合であっても接合界面においてクラック等が生じることを抑制できるヒートシンク付パワーモジュール用基板を製造可能なヒートシンク付パワーモジュール用基板の製造方法を提供することを目的とする。
 このような課題を解決して、前記目的を達成するために、本発明の一態様であるヒートシンク付パワーモジュール用基板の製造方法は、絶縁層と、この絶縁層の一方の面に形成された回路層と、前記絶縁層の他方の面に形成された金属層と、この金属層の前記絶縁層とは反対側の面に配置されたヒートシンクと、を備えたヒートシンク付パワーモジュール用基板の製造方法であって、前記金属層のうち前記ヒートシンクとの接合面、及び、前記ヒートシンクのうち前記金属層との接合面は、アルミニウム又はアルミニウム合金からなるアルミニウム材料で構成されており、前記金属層の接合面を構成するアルミニウム材料及び前記ヒートシンクの接合面を構成するアルミニウム材料のうちいずれか一方がアルミニウムの純度の高い高純度アルミニウム材料とされ、他方がアルミニウムの純度の低い低純度アルミニウム材料とされており、前記高純度アルミニウム材料と前記低純度アルミニウム材料とのAl以外の含有元素の濃度差を1原子%以上とし、前記金属層と前記ヒートシンクとを、固相拡散接合することを特徴としている。
 この構成のヒートシンク付パワーモジュール用基板の製造方法においては、前記金属層のうち前記ヒートシンクとの接合面、及び、前記ヒートシンクのうち前記金属層との接合面は、アルミニウム又はアルミニウム合金からなるアルミニウム材料で構成されており、これら金属層とヒートシンクとを固相拡散接合している。通常、アルミニウム材料同士を固相拡散させる場合、アルミニウムの自己拡散速度が遅いため、強固な固相拡散接合を得るには長い時間を要し、工業的には実現できなかった。
 ここで、本発明においては、前記金属層の接合面を構成するアルミニウム材料及び前記ヒートシンクの接合面を構成するアルミニウム材料のうちいずれか一方がアルミニウムの純度の高い高純度アルミニウム材料とされ、他方がアルミニウムの純度の低い低純度アルミニウム材料とされており、前記高純度アルミニウム材料と前記低純度アルミニウム材料とのAl以外の含有元素の濃度差を1原子%以上としているので、Al以外の含有元素が前記低純度アルミニウム材料側から前記高純度アルミニウム材料側へと拡散することにより、アルミニウムの自己拡散が促進され、比較的短時間で金属層とヒートシンクとを確実に固相拡散接合することが可能となる。
 そして、このようにヒートシンクと金属層とが固相拡散接合されているので、ヒートサイクルを負荷した場合であっても、接合界面に亀裂等が生じるおそれがなく、ヒートサイクルに対する接合信頼性に優れたヒートシンク付パワーモジュール用基板を得ることができる。
 本発明の一態様であるヒートシンク付パワーモジュール用基板の製造方法においては、前記高純度アルミニウム材料と前記低純度アルミニウム材料は、Al以外の含有元素として、Si,Cu,Mn,Fe,Mg,Zn,Ti及びCrから選択される1種又は2種以上の元素を含有し、前記高純度アルミニウム材料における前記Al以外の含有元素の合計量と前記低純度アルミニウム材料における前記Al以外の含有元素の合計量の差が1原子%以上とされていることが好ましい。
 この場合、Si,Cu,Mn,Fe,Mg,Zn,Ti及びCrといった元素は、アルミニウムの自己拡散を促進させる作用効果に優れていることから、ともにアルミニウム材料で構成された金属層とヒートシンクとを短時間で確実に固相拡散接合することが可能となる。
 また、本発明の一態様であるヒートシンク付パワーモジュール用基板の製造方法においては、前記低純度アルミニウム材料は、Si,Cu,Mn,Fe,Mg,Zn,Ti及びCrから選択される1種又は2種以上の元素を合計で1原子%以上含有するとともに、Siの含有量が15原子%以下、Cuの含有量が10原子%以下、Mnの含有量が2原子%以下、Feの含有量が1原子%以下、Mgの含有量が5原子%以下、Znの含有量が10原子%以下、Tiの含有量が1原子%以下及びCrの含有量が1原子%以下、とされていることが好ましい。
 この場合、純度の低い低純度アルミニウム材料が、Si,Cu,Mn,Fe,Mg,Zn,Ti及びCrから選択される1種又は2種以上の元素を合計で1原子%以上含有しているので、これらの元素を高純度アルミニウム材料側へ拡散させることで、アルミニウムの自己拡散を促進させ、比較的短時間で金属層とヒートシンクとを確実に固相拡散接合することが可能となる。
 一方、Siの含有量が15原子%以下、Cuの含有量が10原子%以下、Mnの含有量が2原子%以下、Feの含有量が1原子%以下、Mgの含有量が5原子%以下、Znの含有量が10原子%以下、Tiの含有量が1原子%以下及びCrの含有量が1原子%以下に制限されているので、これらの元素によって接合界面が必要以上に硬くなることを抑制でき、ヒートサイクルに対する接合信頼性に優れたヒートシンク付パワーモジュール用基板を確実に製造することができる。
 さらに、本発明の一態様であるヒートシンク付パワーモジュール用基板の製造方法においては、前記金属層と前記ヒートシンクとを積層し、積層方向に0.3MPa以上3.0MPa以下の荷重を負荷した状態で、低純度アルミニウム材料の固相線温度(K)の90%以上、低純度アルミニウム材料の固相線温度未満の保持温度で1時間以上保持することにより、前記金属層と前記ヒートシンクとを固相拡散接合する構成とすることが好ましい。
 この場合、積層方向に0.3MPa以上3.0MPa以下の荷重を負荷した状態で、低純度アルミニウム材料の固相線温度(K)の90%以上、低純度アルミニウム材料の固相線温度未満の保持温度で1時間以上保持するとした固相拡散接合条件を採用しているので、アルミニウムの拡散移動を促進することができ、前記金属層と前記ヒートシンクとを確実に接合することができる。
 本発明によれば、ヒートサイクルが負荷された場合であっても接合界面においてクラック等が生じることを抑制できるヒートシンク付パワーモジュール用基板を製造可能なヒートシンク付パワーモジュール用基板の製造方法を提供することが可能となる。
本発明の実施形態に係るヒートシンク付パワーモジュール用基板及びパワーモジュールの概略説明図である。 ヒートシンク付パワーモジュール用基板の金属層とヒートシンクとの接合界面の観察結果及び分析結果を示す図である。 本発明の実施形態であるヒートシンク付パワーモジュール用基板及びパワーモジュールの製造方法を示すフロー図である。 本発明の実施形態であるヒートシンク付パワーモジュール用基板の製造方法を示す説明図である。 本発明の他の実施形態であるヒートシンク付パワーモジュール用基板及びパワーモジュールの概略説明図である。 本発明の他の実施形態であるヒートシンク付パワーモジュール用基板及びパワーモジュールの概略説明図である。
 以下に、本発明の実施形態について、添付した図面を参照して説明する。
 図1に、本発明の一実施形態であるヒートシンク付パワーモジュール用基板30及びパワーモジュール1を示す。
 このパワーモジュール1は、ヒートシンク付パワーモジュール用基板30と、このヒートシンク付パワーモジュール用基板30の一方の面(図1において上面)にはんだ層2を介して接合された半導体素子3と、を備えている。
 ここで、はんだ層2は、例えばSn-Ag系、Sn-In系、若しくはSn-Ag-Cu系のはんだ材とされている。
 また、本実施形態であるヒートシンク付パワーモジュール用基板30は、パワーモジュール用基板10と、パワーモジュール用基板10に接合されたヒートシンク31と、を備えている。
 パワーモジュール用基板10は、セラミックス基板11と、このセラミックス基板11の一方の面(図1において上面)に配設された回路層12と、セラミックス基板11の他方の面(図1において下面)に配設された金属層13とを備えている。
 セラミックス基板11は、回路層12と金属層13との間の電気的接続を防止するものであって、本実施形態では、絶縁性の高いAlN(窒化アルミニウム)で構成されている。ここで、セラミックス基板11の厚さは、0.2mm以上1.5mm以下の範囲内に設定されており、本実施形態では、0.635mmに設定されている。
 回路層12は、図4に示すように、セラミックス基板11の一方の面にアルミニウム又はアルミニウム合金からなるアルミニウム板22が接合されることにより形成されている。本実施形態においては、回路層12を構成するアルミニウム板22として、純度99mass%以上の2Nアルミニウムの圧延板が用いられている。この回路層12には、回路パターンが形成されており、その一方の面(図1において上面)が、半導体素子3が搭載される搭載面とされている。ここで、回路層12(アルミニウム板22)の厚さは0.1mm以上1.0mm以下の範囲内に設定されており、本実施形態では0.6mmに設定されている。
 金属層13は、図4に示すように、セラミックス基板11の他方の面にアルミニウム又はアルミニウム合金からなるアルミニウム板23が接合されることにより形成されている。本実施形態においては、金属層13を構成するアルミニウム板23として、純度99.99mass%以上の4Nアルミニウムの圧延板が用いられている。ここで、金属層13(アルミニウム板23)の厚さは0.1mm以上6.0mm以下の範囲内に設定されており、本実施形態では2.0mmに設定されている。
 ヒートシンク31は、パワーモジュール用基板10側の熱を放散するためのものであり、本実施形態では、図1に示すように、冷却媒体が流通する流路32が設けられている。
 このヒートシンク31は、金属層13を構成するアルミニウム(本実施形態では純度99.99mass%以上の4Nアルミニウム)と、ヒートシンク31を構成するアルミニウム合金のAl以外の含有元素の濃度差が1原子%以上となるような材料で構成される。
 より好ましくは、Al以外の含有元素として、Si,Cu,Mn,Fe,Mg,Zn,Ti及びCrから選択される1種又は2種以上の元素とされているとよい。
 さらに好ましくは、Al以外の含有元素として、Si,Cu,Mn,Fe,Mg,Zn,Ti及びCrから選択される1種又は2種以上の元素を合計で1原子%以上含有するとともに、Siの含有量が15原子%以下、Cuの含有量が10原子%以下、Mnの含有量が2原子%以下、Feの含有量が1原子%以下、Mgの含有量が5原子%以下、Znの含有量が10原子%以下、Tiの含有量が1原子%以下及びCrの含有量が1原子%以下とするとよい。
 本実施形態において、ヒートシンク31は、JIS H 2118:2006で規定されたダイカスト用アルミニウム合金であるADC12で構成されている。なお、このADC12は、Cuを1.5mass%以上3.5mass%以下、Siを9.6mass%以上12.0mass%以下の範囲で含むアルミニウム合金である。
 そして、本実施形態であるヒートシンク付パワーモジュール用基板30においては、金属層13とヒートシンク31とが固相拡散接合によって接合されている。すなわち、本実施形態においては、金属層13が純度99.99mass%以上の4Nアルミニウムで構成されるとともに、ヒートシンク31がダイカスト用アルミニウム合金であるADC12で構成されていることから、これら金属層13とヒートシンク31とでアルミニウムの純度が異なり、金属層13が高純度アルミニウム材料で構成され、ヒートシンク31が低純度アルミニウム材料で構成されている。
 ここで、金属層13とヒートシンク31との接合界面を日本電子株式会社製JXA-8530Fを用い、SEM、EPMAによるマッピングの観察結果を、図2(a)~(c)に示す。図2(a)~(c)より、ヒートシンク31に含まれる添加元素(Cu,Si)が金属層13側に拡散していることが確認される。なお、接合界面から金属層13側への拡散深さは、Cuが10μm以上、Siが45μm以上とされている。なお、Cuが25μm以上、Siが45μm以上とされていてもよい。
 次に、上述した本実施形態であるヒートシンク付パワーモジュール用基板30の製造方法について、図3及び図4を参照して説明する。
(アルミニウム板接合工程S01)
 まず、図4に示すように、回路層12となるアルミニウム板22及び金属層13となるアルミニウム板23と、セラミックス基板11とを接合する。本実施形態では、2Nアルミニウムの圧延板からなるアルミニウム板22及び4Nアルミニウムの圧延板からなるアルミニウム板23とAlNからなるセラミックス基板11とを、それぞれAl-Si系ろう材24によって接合する。
 このアルミニウム板接合工程S01においては、まず、セラミックス基板11の一方の面及び他方の面に、それぞれAl-Si系ろう材24を介してアルミニウム板22、アルミニウム板23を積層する(アルミニウム板積層工程S11)。
 次に、積層したセラミックス基板11、アルミニウム板22、アルミニウム板23を積層方向に0.1MPa以上3.5MPa以下の荷重を負荷した状態で、真空またはアルゴン雰囲気の加熱炉内に装入して、600℃以上650℃以下、0.5時間以上3時間以下保持することにより、セラミックス基板11とアルミニウム板22,アルミニウム板23との間に溶融金属領域を形成する(加熱工程S12)。
 その後、冷却することによって溶融金属領域を凝固させる(凝固工程S13)。このようにして、アルミニウム板22とセラミックス基板11とアルミニウム板23とを接合し、回路層12及び金属層13を形成する。これにより、本実施形態におけるパワーモジュール用基板10が製造される。
(ヒートシンク接合工程S02)
 次に、パワーモジュール用基板10の金属層13の他方の面(セラミックス基板11との接合面とは反対側の面)にヒートシンク31を接合する。
 このヒートシンク接合工程S02においては、まず、図4に示すように、パワーモジュール用基板10の他方の面側にヒートシンク31を積層する(ヒートシンク積層工程S21)。
 このパワーモジュール用基板10とヒートシンク31の積層体を、積層方向に0.3Pa以上3.0MPa以下の荷重を負荷した状態で、真空加熱炉の中に装入する。
 そして、低純度アルミニウム材料の固相線温度(K)の90%以上、低純度アルミニウム材料の固相線温度未満の温度で、1時間以上保持して固相拡散接合を行う(固相拡散接合工程S22)。なお、低純度アルミニウム材料の固相線温度(K)の90%とは、低純度アルミニウム材料の固相線温度を絶対温度で表した時の90%の温度のことである。本実施形態では、ADC12が低純度アルミニウム材料とされ、その固相線温度は788K(515℃)である。よって、加熱温度は固相線温度の90%、すなわち、709.2K(436.2℃)以上、固相線温度未満、すなわち、788K(515℃)未満とされる。
 本実施形態においては、金属層13とヒートシンク31の接合面は、予め当該面の傷が除去されて平滑にされた後に、固相拡散接合されている。なお、このときの金属層13及びヒートシンク31のそれぞれの接合面における表面粗さは、算術平均粗さRa(JIS B 0601(1994))で0.5μm以下の範囲内に設定されている。
 このようにして、本実施形態であるヒートシンク付パワーモジュール用基板30が製造される。
(半導体素子接合工程S03)
 次に、パワーモジュール用基板10の回路層12の一方の面に、半導体素子3をはんだ付けにより接合する。
 以上の工程により、図1に示すパワーモジュール1が製出される。
 以上のような構成とされた本実施形態に係るヒートシンク付パワーモジュール用基板30の製造方法によれば、金属層13を構成するアルミニウム材料が純度99.99mass%以上の4Nアルミニウムとされ、ヒートシンク31を構成するアルミニウム材料がADC12(Cu:1.5mass%以上3.5mass%以下、Si:9.6mass%以上12.0mass%以下)で構成されているので、固相拡散接合時において、ヒートシンク31のCu及びSiが金属層13側へと拡散し、アルミニウムの自己拡散が促進される。これにより、比較的短時間で金属層とヒートシンクとを確実に固相拡散接合することが可能となる。
 そして、本実施形態においては、ともにアルミニウム材料で構成された金属層13とヒートシンク31とが固相拡散接合されているので、図2に示すように、ヒートシンク31と金属層13との接合界面には、異相が形成されていない。
 よって、ヒートサイクルを負荷した場合であっても、接合界面に亀裂等が生じるおそれがなく、ヒートサイクルに対する接合信頼性に優れたヒートシンク付パワーモジュール用基板30を製造することができる。
 また、本実施形態においては、ヒートシンク31を構成するアルミニウム材料がADC12(Cu:1.5mass%以上3.5mass%以下、Si:9.6mass%以上12.0mass%以下)で構成されており、これらCu及びSiは、アルミニウムの自己拡散を促進させる作用効果に優れていることから、ともにアルミニウム材料で構成された金属層13とヒートシンク31とを、短時間で確実に固相拡散接合することが可能となる。
 さらに、ヒートシンク31を構成するアルミニウム材料において、Siの含有量が12.0mass%以下(11.6原子%以下(換算値))、Cuの含有量が3.5mass%以下(1.5原子%以下(換算値))とされているので、これらの元素によって接合界面が必要以上に硬くなることを抑制でき、ヒートサイクルに対する接合信頼性に優れたヒートシンク付パワーモジュール用基板を確実に製造することができる。
 また、金属層13とヒートシンク31とを積層し、積層方向に0.3MPa以上3.0MPa以下の荷重を負荷した状態で、低純度アルミニウム材料の固相線温度(K)の90%以上低純度アルミニウム材料の固相線温度未満の保持温度で1時間以上保持することにより、金属層13とヒートシンク31とを固相拡散接合しているので、アルミニウムの拡散移動を促進することができ、金属層13とヒートシンク31とを確実に接合することができる。
 荷重が0.3MPa以上の場合、接合初期の接触面積が十分に確保されることで金属層13とヒートシンク31とを良好に接合することができる。また、荷重が3.0MPa以下の場合、金属層13やヒートシンク31に変形が生じることを抑制できる。
 保持温度が低純度アルミニウム材料の固相線温度(K)の90%以上の場合、十分な拡散速度を確保でき、金属層13とヒートシンク31とを良好に接合することができる。保持温度が低純度アルミニウム材料の固相線温度未満の場合、液相が発生することが無く、また、金属層13やヒートシンク31に変形が生じることを抑制できるため、金属層13とヒートシンク31とを確実に固相拡散接合することができる。
 保持時間が1時間以上の場合、固相拡散を十分に進行させることができ、金属層13とヒートシンク31とを良好に接合することができる。
 さらに、本実施形態においては、接合前の金属層13及びヒートシンク31の接合面の傷を除去するとともに、その表面粗さを、算術平均粗さRa(JIS B 0601(1994))で0.5μm以下の範囲内に設定しているので、金属層13とヒートシンク31とを確実に接触させて、アルミニウム原子、及び、ヒートシンク31の添加元素(Cu,Si)の拡散移動を促進させることができ、金属層13とヒートシンク31とを確実に接合することができる。
 以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 例えば、金属層及びヒートシンクの材質は、本実施形態に限定されることはなく、金属層の接合面を構成するアルミニウム材料及びヒートシンクの接合面を構成するアルミニウム材料のうち、いずれか一方がアルミニウムの純度の高い高純度アルミニウム材料とされ、他方がアルミニウムの純度の低い低純度アルミニウム材料とされ、高純度アルミニウム材料と低純度アルミニウム材料とのAl以外の含有元素の濃度差を1原子%以上とされていればよい。
 具体的には、本実施形態では、金属層を純度99.99mass%の4Nアルミニウムで構成されたものとして説明したが、これに限定されることはなく、他の純アルミニウム又はアルミニウム合金で構成されたものであってもよい。例えば、A1050やA1085等の純度99mass%以上の2Nアルミニウムを用いてもよい。この場合、金属層の初期の不純物濃度が高いことから、接合温度における結晶粒成長が抑制され、粒界拡散が期待できるため、ヒートシンク側からの含有元素の拡散移動を促進することが可能となる。
 さらに、本実施形態では、ヒートシンクをADC12で構成したものとして説明したが、これに限定されることはなく、他の純アルミニウム又はA3003やA6063等のアルミニウム合金で構成されたものであってもよい。
 また、ヒートシンク側が高純度アルミニウム材料とされ、金属層側が低純度アルミニウム材料で構成されていてもよい。
 また、本実施形態では、金属層全体がアルミニウム又はアルミニウム合金で構成されたものとして説明したが、これに限定されることはなく、例えば図5に示すように、金属層のうちヒートシンクとの接合面がアルミニウム又はアルミニウム合金で構成されていればよい。この図5に示すヒートシンク付パワーモジュール用基板130及びパワーモジュール101においては、金属層113が、銅層113Aとアルミニウム層113Bとが積層された構造とされており、セラミックス基板11と銅層113Aとが接合され、アルミニウム層113Bとヒートシンク131とが固相拡散接合されている。なお、図5においては、回路層112も銅層112Aとアルミニウム層112Bとが積層された構造とされており、アルミニウム層112Bに半導体素子3がはんだ層2を介して接合されている。
 同様に、本実施形態では、ヒートシンク全体がアルミニウム又はアルミニウム合金で構成されたものとして説明したが、これに限定されることはなく、例えば図6に示すように、ヒートシンクのうち金属層との接合面がアルミニウム又はアルミニウム合金で構成されていればよい。この図6に示すヒートシンク付パワーモジュール用基板230及びパワーモジュール201においては、ヒートシンク231が、アルミニウム又はアルミニウム合金からなるアルミニウム層231Bと銅又は銅合金からなるヒートシンク本体231Aとが積層された構造とされており、金属層213とアルミニウム層231B(ヒートシンク231)とが固相拡散接合されている。
 また、本実施形態では、回路層を構成するアルミニウム板を、純度が99mass%以上の2Nアルミニウムで構成されたものとして説明したが、これに限定されることはなく、純度99.99mass%以上の純アルミニウムや、他の純アルミニウム又はアルミニウム合金で構成されたものであってもよい。
 さらに、本発明においては回路層の構造に限定はなく、適宜設計変更することができる。例えば、銅又は銅合金で構成されていてもよいし、図5に示すヒートシンク付パワーモジュール用基板130及びパワーモジュール101のように、回路層112が銅層112Aとアルミニウム層112Bとの積層構造とされていてもよい。
 さらに、本実施形態においては、回路層及び金属層となるアルミニウム板とセラミックス基板とを、Al-Si系ろう材を用いて接合するものとして説明したが、これに限定されることはなく、過渡液相接合法(Transient Liquid Phase Bonding)、鋳造法、金属ペースト法等を用いて接合してもよい。
 また、本実施形態においては、絶縁層をAlNからなるセラミックス基板で構成したものとして説明したが、これに限定されることはなく、SiやAl等の他のセラミックス基板を用いてもよい。
 さらに、絶縁層、回路層、金属層、ヒートシンクの厚さは、本実施形態に限定されることはなく、適宜設計変更してもよい。
 本発明の有効性を確認するために行った確認実験について説明する。
 図3のフロー図に記載した手順に従って、本発明例及び比較例のヒートシンク付パワーモジュール用基板を作製した。
 なお、セラミックス基板は、AlNで構成され、40mm×40mm、厚さ0.635mmのものを使用した。
 回路層は、純度99mass%以上の2Nアルミニウムの圧延板(37mm×37mm、厚さ0.6mm)をAl-7.5mass%Siろう材を用いてセラミックス基板に接合することによって形成した。
 金属層は、表1に示すアルミニウム材料からなる圧延板(37mm×37mm、厚さ0.6mm)をAl-7.5mass%Siろう材を用いてセラミックス基板に接合することによって形成した。
 ヒートシンクは、表2記載の材質で構成され、50mm×50mm、厚さ5mmのものを使用した。
 金属層とヒートシンクとの固相拡散接合は、表3に示す条件で実施した。
 また、従来例1から3として次のヒートシンク付パワーモジュール用基板を作製した。
 回路層となる2Nアルミニウムの圧延板(37mm×37mm、厚さ0.6mm)とAlNで構成されたセラミックス基板(40mm×40mm、厚さ0.635mm)と金属層となる4Nアルミニウムの圧延板(37mm×37mm、厚さ0.6mm)とを、Al-7.5mass%Siろう材を介して積層し、積層方向に5kgf/cmで加圧した状態で、真空加熱炉内に装入し、650℃で30分加熱することによって接合し、パワーモジュール用基板を作製した。
 そして、従来例1では、パワーモジュール用基板とNiめっきを施したヒートシンク(A6063の圧延板、50mm×50mm、厚さ5mm)とをSn-Ag-Cuはんだを介して接合した。
 従来例2では、パワーモジュール用基板とヒートシンク(A6063の圧延板、50mm×50mm、厚さ5mm)とをAl-10mass%Siろう材を介して接合した。
 従来例3では、パワーモジュール用基板とヒートシンク(A6063の圧延板、50mm×50mm、厚さ5mm)とをCu箔(厚さ:200μm)を介して固相拡散接合した。
(含有元素の拡散距離)
 得られた本発明例のヒートシンクと金属層との接合界面近傍の断面観察を行い、低純度アルミニウム材料側から高純度アルミニウム材料側へのAl以外の含有元素の拡散距離を測定した。評価結果を表4に示す。
 含有元素の拡散距離は、低純度アルミニウム材料と高純度アルミニウム材料の接合界面から高純度アルミニウム材料側に向かってEPMA(日本電子株式会社社製JXA-8530F)によるライン分析を行い、距離と含有元素濃度を測定し、含有元素濃度が低純度アルミニウム材料に含まれている含有元素の濃度の半分となる距離を拡散距離とした。
(ヒートサイクル試験)
 ヒートサイクル試験は、冷熱衝撃試験機エスペック社製TSB-51を使用し、試験片(ヒートシンク付パワーモジュール)に対して、液相(フロリナート)で、-40℃にて5分と150℃にて5分のヒートサイクルを4000回実施した。
 そして、ヒートサイクル試験前後の接合率を以下のようにして評価した。また、ヒートサイクル試験後のセラミックス割れの有無を目視で評価した。評価結果を表4に示す。
(接合率)
 金属層とヒートシンクとの接合率は、超音波探傷装置(日立パワーソリューションズ社製FineSAT200)を用いて以下の式を用いて求めた。ここで、初期接合面積とは、接合前における接合すべき面積(37mm角)とした。超音波探傷像を二値化処理した画像において剥離は接合部内の白色部で示されることから、この白色部の面積を剥離面積とした。
  (接合率(%))={(初期接合面積)-(剥離面積)}/(初期接合面積)×100
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 従来例1では、ヒートサイクル試験後に接合率が大きく低下した。ヒートサイクルによってはんだ層にクラックが発生したためと推測される。
 従来例2では、ヒートサイクル試験後に接合率が低下し、セラミックス基板に割れが確認された。
 また、金属層とヒートシンクとを同じ純度のアルミニウム材料で構成した比較例1-3においては、上述の固相拡散条件では、金属層とヒートシンクとを接合することができなかった。
 これに対して、本発明例では、いずれもヒートサイクル後に接合率が大きく上昇しておらず、また、セラミックス割れも確認されておらず、接合信頼性に優れていた。
 以上のことから、本発明によれば、ヒートサイクルが負荷された場合であっても接合界面においてクラック等が生じることを抑制できるヒートシンク付パワーモジュール用基板を製造可能であることが確認された。
 本発明のヒートシンク付パワーモジュール用基板の製造方法によれば、比較的短時間で金属層とヒートシンクとを確実に固相拡散接合することが可能となる。また、ヒートシンクと金属層とが固相拡散接合されているので、ヒートサイクルを負荷した場合であっても、接合界面に亀裂等が生じるおそれがなく、ヒートサイクルに対する接合信頼性に優れたヒートシンク付パワーモジュール用基板を得ることができる。
1、101、201 パワーモジュール
10、110、210 パワーモジュール用基板
11 セラミックス基板
12、112、212 回路層
13、113、213 金属層
30、130、230 ヒートシンク付パワーモジュール用基板
31、131、231 ヒートシンク

Claims (4)

  1.  絶縁層と、この絶縁層の一方の面に形成された回路層と、前記絶縁層の他方の面に形成された金属層と、この金属層の前記絶縁層とは反対側の面に配置されたヒートシンクと、を備えたヒートシンク付パワーモジュール用基板の製造方法であって、
     前記金属層のうち前記ヒートシンクとの接合面、及び、前記ヒートシンクのうち前記金属層との接合面は、アルミニウム又はアルミニウム合金からなるアルミニウム材料で構成されており、
     前記金属層の接合面を構成するアルミニウム材料及び前記ヒートシンクの接合面を構成するアルミニウム材料のうちいずれか一方がアルミニウムの純度の高い高純度アルミニウム材料とされ、他方がアルミニウムの純度の低い低純度アルミニウム材料とされており、
     前記高純度アルミニウム材料と前記低純度アルミニウム材料とのAl以外の含有元素の濃度差を1原子%以上とし、
     前記金属層と前記ヒートシンクとを、固相拡散接合するヒートシンク付パワーモジュール用基板の製造方法。
  2.  前記高純度アルミニウム材料と前記低純度アルミニウム材料は、Al以外の含有元素として、Si,Cu,Mn,Fe,Mg,Zn,Ti及びCrから選択される1種又は2種以上の元素を含有し、前記高純度アルミニウム材料における前記Al以外の含有元素の合計量と前記低純度アルミニウム材料における前記Al以外の含有元素の合計量の差が1原子%以上とされている請求項1に記載のヒートシンク付パワーモジュール用基板の製造方法。
  3.  前記低純度アルミニウム材料は、Si,Cu,Mn,Fe,Mg,Zn,Ti及びCrから選択される1種又は2種以上の元素を合計で1原子%以上含有するとともに、Siの含有量が15原子%以下、Cuの含有量が10原子%以下、Mnの含有量が2原子%以下、Feの含有量が1原子%以下、Mgの含有量が5原子%以下、Znの含有量が10原子%以下、Tiの含有量が1原子%以下及びCrの含有量が1原子%以下、とされている請求項1又は請求項2に記載のヒートシンク付パワーモジュール用基板の製造方法。
  4.  前記金属層と前記ヒートシンクとを積層し、積層方向に0.3MPa以上3.0MPa以下の荷重を負荷した状態で、前記低純度アルミニウム材料の固相線温度(K)の90%以上、前記低純度アルミニウム材料の固相線温度未満の保持温度で1時間以上保持することにより、前記金属層と前記ヒートシンクとを固相拡散接合する請求項1から請求項3のいずれか一項に記載のヒートシンク付パワーモジュール用基板の製造方法。
PCT/JP2016/054435 2015-03-30 2016-02-16 ヒートシンク付パワーモジュール用基板の製造方法 WO2016158046A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680018019.6A CN107431051B (zh) 2015-03-30 2016-02-16 带有散热片的功率模块用基板的制造方法
KR1020177026957A KR102425880B1 (ko) 2015-03-30 2016-02-16 히트 싱크가 형성된 파워 모듈용 기판의 제조 방법
EP16771930.1A EP3279936B1 (en) 2015-03-30 2016-02-16 Method for manufacturing substrate for power module with heat sink
US15/562,120 US10420223B2 (en) 2015-03-30 2016-02-16 Method for manufacturing substrate for power module with heat sink

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-069860 2015-03-30
JP2015069860A JP6332108B2 (ja) 2015-03-30 2015-03-30 ヒートシンク付パワーモジュール用基板の製造方法

Publications (1)

Publication Number Publication Date
WO2016158046A1 true WO2016158046A1 (ja) 2016-10-06

Family

ID=57004520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054435 WO2016158046A1 (ja) 2015-03-30 2016-02-16 ヒートシンク付パワーモジュール用基板の製造方法

Country Status (7)

Country Link
US (1) US10420223B2 (ja)
EP (1) EP3279936B1 (ja)
JP (1) JP6332108B2 (ja)
KR (1) KR102425880B1 (ja)
CN (1) CN107431051B (ja)
TW (1) TWI683403B (ja)
WO (1) WO2016158046A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018180159A1 (ja) 2017-03-29 2018-10-04 三菱マテリアル株式会社 ヒートシンク付き絶縁回路基板の製造方法
JP6918311B2 (ja) * 2017-05-11 2021-08-11 富士電機株式会社 金属接合体、金属接合体の製造方法、半導体装置および半導体装置の製造方法
CN107645827B (zh) * 2017-09-20 2019-12-10 苏州三一冷暖工程有限公司 一种高散热层次递进金属层结构
US20220009022A1 (en) * 2018-12-21 2022-01-13 Nhk Spring Co., Ltd. Joining method and joined body
TW202326057A (zh) * 2019-09-12 2023-07-01 美商瓦特洛威電子製造公司 陶瓷加熱器及使用暫態液相接合之形成方法
EP4071128B1 (en) * 2019-12-02 2024-03-27 Mitsubishi Materials Corporation Copper/ceramic bonded body, insulating circuit board, method for producing copper/ceramic bonded body, and method for producing insulating circuit board

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1065075A (ja) * 1996-08-22 1998-03-06 Mitsubishi Materials Corp ヒートシンク付セラミック回路基板
JP2014099596A (ja) * 2012-10-16 2014-05-29 Mitsubishi Materials Corp ヒートシンク付パワーモジュール用基板、ヒートシンク付パワーモジュール、及びヒートシンク付パワーモジュール用基板の製造方法
JP2014160799A (ja) * 2013-01-22 2014-09-04 Mitsubishi Materials Corp パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、ヒートシンク付パワーモジュール

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6033787A (en) 1996-08-22 2000-03-07 Mitsubishi Materials Corporation Ceramic circuit board with heat sink
AT7522U1 (de) * 2004-04-29 2005-04-25 Plansee Ag Wärmesenke aus borhaltigem diamant-kupfer-verbundwerkstoff
US7776452B2 (en) * 2004-08-10 2010-08-17 Neomax Materials Co. Ltd. Heat sink member and method of manufacturing the same
TWI270187B (en) * 2005-12-19 2007-01-01 Polytronics Technology Corp Thermal conductive apparatus and manufacturing method thereof
JP4916737B2 (ja) 2006-03-14 2012-04-18 三菱マテリアル株式会社 冷却器
JP5011587B2 (ja) * 2006-03-31 2012-08-29 Dowaメタルテック株式会社 放熱板の製造法
JP4910789B2 (ja) 2006-06-06 2012-04-04 三菱マテリアル株式会社 パワー素子搭載用基板およびパワー素子搭載用基板の製造方法並びにパワーモジュール
TWI521651B (zh) * 2009-09-09 2016-02-11 三菱綜合材料股份有限公司 附散熱器之電力模組用基板之製造方法、附散熱器之電力模組用基板及電力模組
WO2011049067A1 (ja) * 2009-10-22 2011-04-28 三菱マテリアル株式会社 パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール、パワーモジュール用基板の製造方法及びヒートシンク付パワーモジュール用基板の製造方法
JP4564586B1 (ja) * 2010-01-26 2010-10-20 有限会社アイレックス 放熱シート及び放熱シートの製造方法
CN102651348B (zh) * 2011-02-25 2016-08-03 三菱综合材料株式会社 功率模块用基板及制法、自带散热器的该基板及功率模块
JP6127540B2 (ja) * 2012-03-30 2017-05-17 三菱マテリアル株式会社 パワーモジュール用基板の製造方法
JP2014112732A (ja) * 2012-03-30 2014-06-19 Mitsubishi Materials Corp ヒートシンク付パワーモジュール用基板及びパワーモジュール
CN102922815B (zh) * 2012-07-26 2015-02-04 中国科学院等离子体物理研究所 水冷却平板层状CuCrZr/OFHC-Cu/CVD-W面向等离子体部件及其制作方法
JP5991102B2 (ja) 2012-09-14 2016-09-14 三菱マテリアル株式会社 ヒートシンク付パワーモジュール用基板、ヒートシンク付パワーモジュール、及びヒートシンク付パワーモジュール用基板の製造方法
JP6100501B2 (ja) * 2012-10-31 2017-03-22 デンカ株式会社 セラミック回路基板および製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1065075A (ja) * 1996-08-22 1998-03-06 Mitsubishi Materials Corp ヒートシンク付セラミック回路基板
JP2014099596A (ja) * 2012-10-16 2014-05-29 Mitsubishi Materials Corp ヒートシンク付パワーモジュール用基板、ヒートシンク付パワーモジュール、及びヒートシンク付パワーモジュール用基板の製造方法
JP2014160799A (ja) * 2013-01-22 2014-09-04 Mitsubishi Materials Corp パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、ヒートシンク付パワーモジュール

Also Published As

Publication number Publication date
US10420223B2 (en) 2019-09-17
JP2016189448A (ja) 2016-11-04
TW201644017A (zh) 2016-12-16
US20180084650A1 (en) 2018-03-22
EP3279936B1 (en) 2020-06-03
CN107431051A (zh) 2017-12-01
KR20170130433A (ko) 2017-11-28
TWI683403B (zh) 2020-01-21
KR102425880B1 (ko) 2022-07-26
EP3279936A4 (en) 2018-11-21
JP6332108B2 (ja) 2018-05-30
CN107431051B (zh) 2019-12-06
EP3279936A1 (en) 2018-02-07

Similar Documents

Publication Publication Date Title
JP6696215B2 (ja) 接合体、ヒートシンク付パワーモジュール用基板、ヒートシンク、及び、接合体の製造方法、ヒートシンク付パワーモジュール用基板の製造方法、ヒートシンクの製造方法
WO2016158046A1 (ja) ヒートシンク付パワーモジュール用基板の製造方法
TWI695778B (zh) 接合體、附散熱器之電力模組用基板、散熱器、接合體之製造方法、附散熱器之電力模組用基板之製造方法、及散熱器之製造方法
WO2016031754A1 (ja) 接合体、ヒートシンク付パワーモジュール用基板、ヒートシンク、接合体の製造方法、ヒートシンク付パワーモジュール用基板の製造方法、及び、ヒートシンクの製造方法
JP2013098387A (ja) パワーモジュール用基板の製造方法、ヒートシンク付パワーモジュール用基板の製造方法、パワーモジュール用基板及びヒートシンク付パワーモジュール用基板
JP5423076B2 (ja) パワーモジュール用基板、パワーモジュール及びパワーモジュール用基板の製造方法
WO2018180159A1 (ja) ヒートシンク付き絶縁回路基板の製造方法
JP6432373B2 (ja) ヒートシンク付パワーモジュール用基板、パワーモジュール、及び、ヒートシンク付パワーモジュール用基板の製造方法
JP6780561B2 (ja) 接合体の製造方法、絶縁回路基板の製造方法、及び、接合体、絶縁回路基板
JP2022023954A (ja) セラミックス/アルミニウム接合体、絶縁回路基板、ledモジュール、セラミックス部材
JP6750422B2 (ja) 絶縁回路基板の製造方法、及び、絶縁回路基板、パワーモジュール、ledモジュール、熱電モジュール
JP6645368B2 (ja) 接合体、パワーモジュール用基板、接合体の製造方法、及び、パワーモジュール用基板の製造方法
CN110191869A (zh) 陶瓷-铝接合体、绝缘电路基板、led模块、陶瓷部件、陶瓷-铝接合体的制造方法、绝缘电路基板的制造方法
JP6428327B2 (ja) ヒートシンク付パワーモジュール用基板、パワーモジュール、及び、ヒートシンク付パワーモジュール用基板の製造方法
TWI780113B (zh) 陶瓷/鋁-碳化矽複合材料接合體之製造方法、及附散熱塊之功率模組用基板之製造方法
JP2011082502A (ja) パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール及びパワーモジュール用基板の製造方法
WO2019159257A1 (ja) セラミックス/Al-SiC複合材料接合体の製造方法、及びヒートシンク付パワーモジュール用基板の製造方法
JP6561886B2 (ja) ヒートシンク付パワーモジュール用基板の製造方法
WO2016167217A1 (ja) 接合体、ヒートシンク付パワーモジュール用基板、ヒートシンク、及び、接合体の製造方法、ヒートシンク付パワーモジュール用基板の製造方法、ヒートシンクの製造方法
JP2011119653A (ja) ヒートシンク付パワーモジュール用基板の製造方法、ヒートシンク付パワーモジュール用基板及びパワーモジュール
JP5699882B2 (ja) パワーモジュール用基板、パワーモジュール用基板の製造方法、ヒートシンク付パワーモジュール用基板及びパワーモジュール
JP7363027B2 (ja) 接合体の製造方法、及び、絶縁回路基板の製造方法
WO2019159219A1 (ja) 銅/チタン/アルミニウム接合体、絶縁回路基板、ヒートシンク付き絶縁回路基板、パワーモジュール、ledモジュール、熱電モジュール
JP2018030755A (ja) セラミックス/Al−SiC複合材料接合体の製造方法、及びヒートシンク付パワーモジュール用基板の製造方法
JP2011082504A (ja) パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール及びパワーモジュール用基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16771930

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177026957

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016771930

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15562120

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE