Nothing Special   »   [go: up one dir, main page]

WO2016157503A1 - 風車および風車の疲労劣化診断方法、風車の運転制御方法 - Google Patents

風車および風車の疲労劣化診断方法、風車の運転制御方法 Download PDF

Info

Publication number
WO2016157503A1
WO2016157503A1 PCT/JP2015/060491 JP2015060491W WO2016157503A1 WO 2016157503 A1 WO2016157503 A1 WO 2016157503A1 JP 2015060491 W JP2015060491 W JP 2015060491W WO 2016157503 A1 WO2016157503 A1 WO 2016157503A1
Authority
WO
WIPO (PCT)
Prior art keywords
fatigue
windmill
stress value
wind turbine
fatigue deterioration
Prior art date
Application number
PCT/JP2015/060491
Other languages
English (en)
French (fr)
Inventor
崇 佐伯
鵜沼 宗利
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2015/060491 priority Critical patent/WO2016157503A1/ja
Priority to TW105108813A priority patent/TWI647575B/zh
Publication of WO2016157503A1 publication Critical patent/WO2016157503A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a windmill that receives a wind to generate power, and particularly relates to a structural strength diagnosis of the windmill.
  • Patent Document 1 As a background art in this technical field, for example, there is a technique such as Patent Document 1. According to Patent Document 1, in the wind turbine operation control apparatus, method and program thereof, the fatigue degradation schedule in which the accumulated operation time of the wind turbine and the fatigue degradation level of the wind turbine are associated with each other and the current fatigue degradation level is determined. A windmill operation control device comprising an operation control means for controlling the operation of the windmill is disclosed.
  • Patent Document 2 discloses load time series data at a predetermined load observation point set in a wind turbine structure based on a parameter related to an operating environment in a wind turbine structure stress analysis device, a stress analysis program, and a wind power generation system.
  • a wind turbine structure comprising: load data creating means for creating a stress time series data for at least one analysis target location set in the wind turbine structure based on the load time series data
  • a body stress analyzer is disclosed.
  • a wind turbine load design requires a fatigue design that can withstand load fluctuations acting on blades and towers during normal operation.
  • load fluctuations vary according to the magnitude of wind fluctuations.
  • Turbulence intensity of wind speed exists as a main parameter representing the magnitude of wind fluctuation. This turbulence intensity varies greatly depending on the weather conditions and topographic conditions of the construction site of the wind turbine generator.
  • there are various factors other than the wind speed turbulence intensity in the factors of the fatigue degradation of the wind power generator and there is a problem that the fatigue degradation estimation based only on the wind speed turbulence intensity is inaccurate.
  • Patent Document 1 the operation of the windmill is controlled according to the relationship between the fatigue deterioration schedule in which the accumulated operation time of the windmill and the fatigue deterioration degree of the windmill are associated with the current fatigue deterioration degree. Can do.
  • load data creation means for creating load time series data at a predetermined load observation point set in the wind turbine structure, and the wind turbine structure is set based on the load time series data. It is possible to control the operation by creating stress time series data at at least one analysis target location and comparing the maximum load of the stress time series data with a preset threshold value.
  • an object of the present invention is to estimate the fatigue degradation status of each wind turbine by estimating the fatigue degradation status of the wind turbine from a comparison between the measured strain value of the wind turbine and the normal stress value in a state where the wind turbine is not fatigue degradation.
  • An object of the present invention is to provide a windmill that can be accurately estimated.
  • Another object of the present invention is to estimate the fatigue degradation status of each wind turbine by estimating the fatigue degradation status of the wind turbine from a comparison between the measured strain value of the wind turbine and the normal stress value of the wind turbine without fatigue degradation. It is an object of the present invention to provide a method for diagnosing fatigue deterioration of a wind turbine that can accurately estimate the situation.
  • Another object of the present invention is to estimate a wind turbine fatigue deterioration state from a comparison between an actual measured strain value of the wind turbine and a normal stress value of the wind turbine without fatigue deterioration, and based on the estimated fatigue deterioration state,
  • An object of the present invention is to provide a windmill operation control method for controlling the operation of the wind turbine.
  • the present invention is a windmill that receives wind to generate power and includes a strain measuring device that measures strain generated in the windmill, and the first stress of the windmill based on the measured strain.
  • a second stress value of the wind turbine is calculated based on wind condition information in the wind turbine, the first stress value and the second stress value are compared, and the wind turbine is calculated based on the comparison result. It is characterized by calculating a fatigue deterioration state.
  • the present invention is a method for diagnosing fatigue deterioration of a wind turbine that generates electricity by receiving wind, and calculates a first stress value of the wind turbine based on the strain measured by the strain measuring means, and wind condition information on the wind turbine.
  • the second stress value of the wind turbine is calculated based on the first stress value, the first stress value is compared with the second stress value, and the first stress value is compared with the second stress value based on the comparison result. It is characterized by diagnosing the state of fatigue deterioration of the wind turbine.
  • the present invention is an operation control method for a windmill that receives a wind to generate power, calculates a first stress value of the windmill based on the strain measured by the strain measuring means, and obtains the wind condition information in the windmill.
  • a second stress value of the wind turbine is calculated based on the first stress value, the second stress value is compared with the second stress value, and the first stress value is compared with the second stress value. It is characterized by diagnosing the state of fatigue degradation of the windmill and controlling the operation of the windmill based on the state of fatigue degradation.
  • the fatigue deterioration state of each windmill is accurately estimated by estimating the fatigue deterioration state of the windmill from a comparison between the measured strain value of the windmill and the normal stress value of the windmill without fatigue deterioration.
  • a windmill that can be estimated can be realized.
  • the fatigue degradation status of each wind turbine can be determined by estimating the fatigue degradation status of the wind turbine from a comparison between the measured strain value of the wind turbine and the normal stress value of the wind turbine without fatigue degradation. It is possible to provide a method for diagnosing fatigue deterioration of a windmill that can be estimated with high accuracy.
  • the fatigue degradation state of the wind turbine is estimated from a comparison between the measured strain value of the wind turbine and the normal stress value of the wind turbine without fatigue degradation, and the wind turbine is operated based on the estimated fatigue degradation status. It is possible to provide a windmill operation control method for controlling the wind turbine.
  • FIG. 1 is a schematic configuration diagram of a windmill having a strain measurement device and a fatigue deterioration diagnosis device according to an embodiment of the present invention. It is a block diagram which shows the outline
  • FIG. 1 is a block diagram showing an overview of a method for diagnosing fatigue deterioration of a wind turbine according to an embodiment of the present invention.
  • a windmill 100 shown in FIG. 1 receives, for example, sensor data that is an output value from a strain measuring device 10 installed in a windmill subject to fatigue deterioration diagnosis, and calculates an actual stress value of the windmill. 30. Further, a normal stress calculator 40 is provided which receives a wind direction value / wind speed value, which is an output value from the wind direction anemometer 20 installed in a specific part of the windmill, and calculates a normal stress value of the windmill.
  • the wind turbine 100 receives the actual stress value output from the actual stress calculator 30 and the normal stress value output from the normal stress calculator 40 as input, and calculates a fatigue acceleration coefficient by comparing the actual stress value with the normal stress value.
  • the sensor data measured by the strain measuring device 10 is data obtained by measuring the strain value of the windmill, and here, the strain measuring device 10 is a strain gauge, a semiconductor strain sensor, an acceleration sensor, or the like.
  • the specific part in the anemometer 20 may be, for example, an anemometer at the top of the nacelle installed for wind turbine control.
  • Measured stress calculator 30 receives strain data, which is output from the strain measuring device 10, and calculates and outputs a measured stress value using, for example, a rainflow method.
  • the normal stress calculator 40 receives the wind direction value / wind speed value output from the wind direction anemometer 20 as input, selects a stress value accumulated in advance, and outputs it as a normal stress value.
  • the normal stress calculator 40 stores the wind speed / wind direction in a predetermined period after installation of the wind turbine and the measured stress value output from the measured stress calculator 30 at that time as a set.
  • the predetermined period after the installation of the windmill represents a period during which the windmill is operating in a normal state, for example, one year.
  • a method for accumulating the wind speed / wind direction and the actually measured stress value for example, a method using a normal stress conversion table as shown in FIG. 2 can be considered.
  • an actual fatigue deterioration schedule is created from the actual stress values accumulated in a predetermined period after the wind turbine is installed.
  • the actual fatigue deterioration schedule is based on the assumption that the actual stress value accumulated in a predetermined period (for example, 1 year) after the installation of the wind turbine is repeatedly input during the design life (for example, 20 years) of the wind turbine. The progress of the degree of fatigue deterioration is shown.
  • the horizontal axis indicates the operating time of the wind turbine, and the horizontal axis indicates the degree of fatigue deterioration.
  • a value obtained by dividing the actually measured stress value for a predetermined period after the wind turbine installation by the maximum load stress value at the time of design is plotted on the vertical axis, and the slope of the fatigue deterioration degree for the predetermined period after the wind turbine installation is obtained. Assuming that the fatigue deterioration of the wind turbine reaches its design life with the inclination, the actual fatigue deterioration line is extended.
  • the fatigue deterioration calculator 60 holds the actual fatigue deterioration schedule.
  • the fatigue deterioration comparator (fatigue acceleration coefficient calculator) 50 receives the actual stress value output from the actual stress calculator 30 and the normal stress value output from the normal stress calculator 40 as inputs, and the actual stress value and normal stress value are calculated. Calculate and output the fatigue acceleration coefficient representing the correlation.
  • the fatigue acceleration coefficient is calculated by the following equation, for example.
  • Fatigue acceleration coefficient actual stress value / normal stress value
  • the fatigue deterioration calculator 60 receives the fatigue acceleration coefficient output from the fatigue deterioration comparator (fatigue acceleration coefficient calculator) 50 as an input, and compares it with the actual fatigue deterioration schedule calculated by the normal stress calculator 40, for example. S10 is calculated. Specifically, the inclination of the actual fatigue deterioration line is corrected (corrected) according to the fatigue acceleration coefficient, and the point at which the corrected (corrected) actual fatigue deterioration line intersects with the design life of the wind turbine is calculated as the fatigue deterioration degree.
  • FIG. 2 is a table showing an example of a method for calculating a normal stress value in the normal stress calculator 40 of FIG. Basically, since it has already been repeated, repeated description is omitted, but as shown in FIG. 2, the actual working stress value at that time is recorded with the wind speed and direction as axes.
  • This table is created for each corresponding part where the strain measuring device 10 is installed.
  • a table is prepared in which the corresponding part where the strain measuring device 10 is installed and the wind speed are taken as axes, and the actual stress values at that time are recorded.
  • a method of preparing this table for each wind direction is also conceivable.
  • FIG. 3 is a conceptual diagram showing an example of an actual fatigue deterioration schedule calculated by the normal stress calculator 40 of FIG. Basically, since it is a repetition of what has already been described, overlapping description is omitted, but as shown in FIG. 3, the actual fatigue deterioration line is a straight line, but it may be an exponential function. In FIG. 3, the actual fatigue degradation line is extended based on the slope of the actual degradation line for a predetermined period after the wind turbine is installed, but a method of redrawing the actual degradation line for a certain period (for example, every 5 years) is also conceivable.
  • FIG. 4 is a flowchart illustrating an example of a method for diagnosing fatigue deterioration of a windmill. Basically, since it has already been described, repeated description is omitted. However, as shown in FIG. 4, when the fatigue deterioration diagnosis is started, the strain measurement step F1 receives the strain of the wind turbine as an input. The value D10 is output and the process proceeds to the actually measured stress calculation step F2.
  • the strain value D10 output in step F1 is input, for example, the measured stress value D20 is output using the rain flow method, and the process proceeds to the fatigue acceleration coefficient calculation step F5.
  • the wind direction value and the wind speed value D30 are output using the anemometer existing in the wind turbine, and the process proceeds to the normal stress calculation step F4.
  • the normal stress calculation step F4 the wind direction value and the wind speed value D30 output in step F3 are input, the normal stress value D40 is output using a normal stress conversion table prepared in advance, and the process proceeds to the fatigue acceleration coefficient calculation step F5. .
  • the fatigue acceleration coefficient D50 representing the correlation between the actual stress value and the normal stress value is calculated using the actual stress value D20 calculated in step F2 and the normal stress value D40 calculated in step F4 as inputs. Then, the process proceeds to the fatigue deterioration calculation step F6.
  • the fatigue acceleration coefficient D50 calculated in step 5 is input and compared with the actual fatigue deterioration schedule.
  • the fatigue deterioration degree S10 is calculated by the method shown in FIG.
  • the degree of fatigue deterioration of the wind turbine is accurately estimated by the wind direction / wind speed from the anemometer and the strain sensor installed in the portion that is subject to fatigue deterioration detection in the wind turbine. can do.
  • the degree of fatigue deterioration in this embodiment is not limited to the degree of fatigue deterioration in this specification as long as the state of fatigue deterioration of the wind turbine can be grasped.
  • wind condition information such as the wind direction and wind speed in the windmill
  • measured data of the windmill installed on the windward side of the windmill The case where it uses is also considered.
  • FIG. 5 is a block diagram showing an outline of a method for diagnosing fatigue deterioration of a wind turbine according to the second embodiment of the present invention.
  • the windmill 200 having the fatigue deterioration diagnosis device shown in FIG. 5 receives, for example, sensor data that is an output value from the strain measurement device 10 installed in the windmill subject to fatigue deterioration diagnosis, and uses the measured stress value of the windmill.
  • An actual measurement stress calculator 30 for calculating is provided.
  • a normal stress calculator 40 is provided which receives a wind direction value / wind speed value, which is an output value from the wind direction anemometer 20 installed in a specific part of the windmill, and calculates a normal stress value of the windmill.
  • the wind turbine 200 having the fatigue deterioration diagnosis device receives the actual stress value output from the actual stress calculator 30 and the normal stress value output from the normal stress calculator 40 as input, and calculates the actual stress value and the normal stress value.
  • Fatigue degradation comparator (fatigue acceleration factor calculator) 50 for calculating the fatigue acceleration factor compared, and fatigue acceleration factor output from fatigue degradation comparator (fatigue acceleration factor calculator) 50 are input, and fatigue degradation degree S10 is calculated. It has a fatigue deterioration calculator 60 for calculating.
  • the measured stress calculator 30, the normal stress calculator 40, the fatigue deterioration comparator (fatigue acceleration coefficient calculator) 50, and the fatigue deterioration calculator 60 output a fatigue deterioration degree S10 indicating the degree of aged tire fatigue deterioration.
  • the diagnostic apparatus 300 is comprised and the fatigue deterioration degree S10 is output.
  • the wind turbine 200 having the fatigue degradation diagnosis device has substantially the same configuration as the wind turbine 100 described in the first embodiment, but the actual stress calculator 30, the normal stress calculator 40, and the fatigue degradation comparator (fatigue acceleration coefficient calculation). ) 50 and the fatigue deterioration calculator 60 are combined into a fatigue deterioration diagnosis device 300. Since the strain measuring device 10, the anemometer 20, the actually measured stress calculator 30, the normal stress calculator 40, the fatigue acceleration coefficient calculator 50, and the fatigue deterioration calculator 60 are repeated, the detailed description will be given. Is omitted.
  • the fatigue deterioration degree can be accurately estimated in the same manner as the windmill 100 described in the first embodiment. it can.
  • FIG. 6 is a block diagram showing an overview of a method for diagnosing windmill fatigue deterioration according to the third embodiment of the present invention.
  • the windmill 400 having the strain measurement device shown in FIG. 6 receives, for example, sensor data that is an output value from the strain measurement device 10 installed in the windmill subject to fatigue degradation diagnosis, and calculates an actual stress value of the windmill.
  • An actually measured stress calculator 30 is provided.
  • a normal stress calculator 40 is provided which receives a wind direction value / wind speed value, which is an output value from the wind direction anemometer 20 installed in a specific part of the windmill, and calculates a normal stress value of the windmill.
  • the windmill monitoring building 500 receives the measured stress value and the normal stress value of the windmill output from the windmill 400 having the strain measuring device, and calculates a fatigue acceleration coefficient by comparing the measured stress value and the normal stress value.
  • a fatigue deterioration calculator (fatigue acceleration coefficient calculator) 50 and a fatigue deterioration calculator 60 that calculates the fatigue deterioration degree S10 using the fatigue acceleration coefficient output from the fatigue deterioration comparator (fatigue acceleration coefficient calculator) 50 as input. And output the fatigue degradation degree S10 in the wind turbine.
  • the wind turbine 400 including the strain measuring device 10, the wind direction anemometer 20, the actually measured stress calculator 30, and the normal stress calculator 40, the fatigue deterioration comparator (fatigue acceleration coefficient calculator) 50, the fatigue deterioration.
  • the wind turbine monitoring building 500 including the calculator 60 is configured.
  • the configuration is basically the same as that of the windmill 100 or the windmill 200 described in the first embodiment or the second embodiment, and the strain measuring device 10, the wind direction anemometer 20, the actually measured stress calculator 30, the normal stress calculator 40, and the fatigue deterioration. Since the comparator (fatigue acceleration coefficient calculator) 50 and the fatigue deterioration calculator 60 are the same as those already described, detailed description thereof will be omitted.
  • the fatigue deterioration comparator (fatigue acceleration coefficient calculator) 50 and the fatigue deterioration calculator 60 are installed in the windmill monitoring building, but the measured stress calculator 30 and the normal stress calculator 40 are similarly monitored by the windmill. A configuration installed in the building is also possible. Further, the measured stress calculator 30, the normal stress calculator 40, the fatigue deterioration comparator (fatigue acceleration coefficient calculator) 50, and the fatigue deterioration calculator 60 are connected to the windmill and the windmill via a network line such as wireless communication or wired communication. A configuration other than the monitoring building is also possible.
  • the fatigue deterioration degree S10 calculated by the fatigue deterioration calculator 60 in each embodiment is provided, for example, outside from the windmill 100, the windmill 200, and the windmill monitoring building 500 via a network line such as wireless communication or wired communication. Transmission to a centralized monitoring system is also possible. In this case, it is necessary to install transmission means such as a wireless transmitter in the windmill 100, the windmill 200, and the windmill monitoring building 500.
  • FIG. 7 is a schematic configuration diagram of a windmill having a strain measurement device and a fatigue deterioration diagnosis device according to the fourth embodiment of the present invention.
  • the wind turbine 1000 having the strain measuring device and the fatigue deterioration diagnosis device shown in FIG. 7 includes, for example, a wind turbine tower E10 or blade E20 that is a fatigue deterioration diagnosis target, and the strain measuring device 10 installed in the wind turbine tower E10 or blade E20.
  • Fatigue degradation which outputs SCADA70 (Supervision-Control-And-Data-Acquisition: supervisory control system) which accumulates environmental data and control data of the windmill, and a fatigue degradation degree S10 indicating the degree of aged fatigue degradation of the windmill It has a diagnostic device 300 and outputs a fatigue degradation degree S10.
  • the windmill 1000 having the strain measurement device and the fatigue deterioration diagnosis device has substantially the same configuration as the windmill 200 having the fatigue deterioration diagnosis device described in the second embodiment, and the strain measurement device 10 and the fatigue deterioration diagnosis device 300 have already been described. Since this is repeated, detailed description is omitted.
  • the fatigue degradation degree S10 may be output in the form of a report, output on a monitoring screen in a wind turbine monitoring building, or stored in the SCADA 70 as a data storage device as part of wind turbine environmental data. Conceivable.
  • the fatigue deterioration diagnosis device 300 is included in a wind turbine 1000 having a strain measurement device and a fatigue deterioration diagnosis device.
  • a configuration in which the fatigue deterioration diagnosis device 300 is incorporated into the SCADA 70 and functions as the SCADA 70 is also conceivable.
  • FIG. 8 is a block diagram showing an overview of a windmill operation control apparatus according to the fifth embodiment of the present invention.
  • the measured stress calculator 30, the normal stress calculator 40, the fatigue deterioration comparator (fatigue acceleration coefficient calculator) 50, and the fatigue deterioration calculator 60 described in each of the above embodiments are included so that the configuration can be easily understood.
  • a fatigue deterioration diagnosis apparatus 300 is shown.
  • the wind turbine operation control device 2000 shown in FIG. 8 has an actual stress value calculated based on sensor data that is an output value from the strain measurement device 10 installed in the wind turbine subject to fatigue deterioration diagnosis, and a specific portion of the wind turbine.
  • a fatigue deterioration diagnosis device 300 that outputs a fatigue deterioration degree S10 indicating the degree of deterioration of the wind turbine over time by using a normal stress value calculated based on an output value from the installed anemometer 20 and a fatigue deterioration diagnosis device 300
  • the operation controller 80 outputs the operation control signal S20.
  • the operation controller 80 outputs the operation control signal S20.
  • the operation controller 80 outputs the operation control signal S20.
  • the wind turbine operation control device 2000 has a configuration in which an operation controller 80 is added to the wind turbine 200 having the fatigue deterioration diagnosis device described in the second embodiment, and the strain measurement device 10 and the fatigue deterioration diagnosis device 300 have already been described. Therefore, detailed description is omitted.
  • the operation controller 80 receives the fatigue deterioration degree as an input.
  • the fatigue deterioration degree 90 is set as an operation reference value in consideration of the safety factor, and when the fatigue deterioration degree is equal to or less than the operation reference value, the normal operation or the operation rate is increased.
  • an operation control signal S20 for performing a suppression operation is output.
  • the next maintenance work is performed in consideration of the interval until the next maintenance work day by predicting the time when the windmill will be held until the next maintenance, or when the failure will occur.
  • the operation mode such as operation that maximizes the amount of power generation until the day, it is possible to provide an operation service that is optimal for customer needs.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit.
  • each of the above-described configurations and functions may be realized by software by interpreting and executing a program that realizes each function by the processor.
  • Information such as programs, tables, and files that realize each function can be stored in a recording device such as a memory, a hard disk, or an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
  • control lines and information lines indicate what is considered necessary for the explanation, and not all control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.
  • SYMBOLS 10 Strain measuring device, 20 ... Wind direction anemometer, 30 ... Actual stress calculator, 40 ... Normal stress calculator, 50 ... Fatigue deterioration comparator (fatigue acceleration coefficient calculator), 60 ... Fatigue deterioration calculator, 70 ... SCADA DESCRIPTION OF SYMBOLS 80 ... Operation controller, 100 ... Windmill, 200 ... Windmill having fatigue deterioration diagnosis device, 300 ... Fatigue deterioration diagnosis device, 400 ... Windmill having strain measurement device, 500 ... Windmill monitoring building, 1000 ... Strain measurement device and fatigue Wind turbine having a deterioration diagnosis device, 2000 ... wind turbine operation control device, D10 ... strain value, D20 ... measured stress value, D30 ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

 風車の疲労劣化状況を精度良く推定する。風を受けて発電運転する風車であって、前記風車に生じるひずみを計測するひずみ計測装置を備え、計測したひずみに基づき当該風車の第1の応力値を算出し、前記風車における風況情報に基づき当該風車の第2の応力値を算出し、前記第1の応力値および前記第2の応力値を比較し、前記比較結果に基づき当該風車の疲労劣化状況を算出することを特徴とする。

Description

風車および風車の疲労劣化診断方法、風車の運転制御方法
 本発明は、風を受けて発電運転する風車に関し、特に、風車の構造強度診断に関する。
 本技術分野の背景技術として、例えば、特許文献1のような技術がある。特許文献1には、風車の運転制御装置及びその方法並びにプログラムにおいて、風車の運転累計時間と風車の疲労劣化度とが対応付けられた疲労劣化スケジュールと、現在の疲労劣化度との関係に応じて、前記風車の運転を制御する運転制御手段とを具備する風車の運転制御装置が開示されている。
 また、特許文献2には、風車構造体の応力解析装置及び応力解析プログラム並びに風力発電システムにおいて、運転環境に関するパラメータに基づいて、風車構造体に設定された所定の荷重観測箇所における荷重時系列データを作成する荷重データ作成手段と、前記荷重時系列データに基づいて、前記風車構造体に設定されている少なくとも1つの解析対象箇所における応力時系列データを作成する応力解析手段とを具備する風車構造体の応力解析装置が開示されている。
特許第4241644号公報 特開2010-79685号公報
 機械の構造強度において、設計における試験データと顧客先である現場の実測データで乖離が大きく、想定より早く損傷が発生する場合がある。例えば、風力発電に用いられる風車では、その原因として、設計時に想定していた、主に風速と風向で表される風況と実際の風況が大きく異なることが考えられる。
 風車の荷重設計では台風のような一時的な最大荷重に耐える設計のほかに、通常運転時におけるブレードやタワーに作用する荷重変動に耐える疲労設計が必要である。一般に荷重変動は風の変動の大小に対応して変動する。風の変動の大小を表す主要なパラメータとして、風速の乱れ強度が存在する。この乱れ強度は、風力発電装置の建設地の気象条件と地形条件により大きく変動する。しかしながら、風力発電装置の疲労劣化の要因においては、風速乱れ強度以外にも様々な要因があり、風速の乱れ強度のみに基づいての疲労劣化推定は精度が低いなどの問題があった。
 ここで、特許文献1では、風車の運転累計時間と風車の疲労劣化度とが対応付けられた疲労劣化スケジュールと、現在の疲労劣化度との関係に応じて、前記風車の運転を制御することができる。
 しかしながら、風車における疲労劣化による応力値の増大は風車の稼働状態(運転時間、風況、設置場所など)に依存するため、あらかじめ個々の風車に最適な疲労劣化を推定し、高精度な疲労劣化スケジュールを用意することは難しい。
 また、特許文献2では、風車構造体に設定された所定の荷重観測箇所における荷重時系列データを作成する荷重データ作成手段と、前記荷重時系列データに基づいて、前記風車構造体に設定されている少なくとも1つの解析対象箇所における応力時系列データを作成し、応力時系列データの最大荷重とあらかじめ設定された閾値とを比較することで運転を制御することができる。
 しかしながら、この方法では特許文献1と同様に、あらかじめ最大荷重の閾値を設定する必要があり、個々の風車に最適な閾値を設定することが難しく、過剰に運転制御し発電量を抑制してしまう可能性がある。
 そこで、本発明の目的は、風車の実測ひずみ値と当該風車の疲労劣化のない状態での正常応力値との比較から風車の疲労劣化状況を推定することで、個々の風車の疲労劣化状況を精度良く推定することができる風車を提供することにある。
 また、本発明の別の目的は、風車の実測ひずみ値と当該風車の疲労劣化のない状態での正常応力値との比較から風車の疲労劣化状況を推定することで、個々の風車の疲労劣化状況を精度良く推定することができる風車の疲労劣化診断方法を提供することにある。
 また、本発明の他の目的は、風車の実測ひずみ値と当該風車の疲労劣化のない状態での正常応力値との比較から風車の疲労劣化状況を推定し、推定した疲労劣化状況に基づき風車の運転を制御する風車の運転制御方法を提供することにある。
 上記課題を解決するために、本発明は、風を受けて発電運転する風車であって、前記風車に生じるひずみを計測するひずみ計測装置を備え、計測したひずみに基づき当該風車の第1の応力値を算出し、前記風車における風況情報に基づき当該風車の第2の応力値を算出し、前記第1の応力値および前記第2の応力値を比較し、前記比較結果に基づき当該風車の疲労劣化状況を算出することを特徴とする。
 また、本発明は、風を受けて発電運転する風車の疲労劣化診断方法であって、ひずみ計測手段により計測したひずみに基づき当該風車の第1の応力値を算出し、前記風車における風況情報に基づき当該風車の第2の応力値を算出し、前記第1の応力値と前記第2の応力値とを比較し、前記第1の応力値と前記第2の応力値の比較結果に基づき当該風車の疲労劣化状況を診断することを特徴とする。
 また、本発明は、風を受けて発電運転する風車の運転制御方法であって、ひずみ計測手段により計測したひずみに基づき当該風車の第1の応力値を算出し、前記風車における風況情報に基づき当該風車の第2の応力値を算出し、前記第1の応力値と前記第2の応力値とを比較し、前記第1の応力値と前記第2の応力値の比較結果に基づき当該風車の疲労劣化状況を診断し、前記疲労劣化状況に基づき当該風車の運転を制御することを特徴とする。
 本発明によれば、風車の実測ひずみ値と当該風車の疲労劣化のない状態での正常応力値との比較から風車の疲労劣化状況を推定することで、個々の風車の疲労劣化状況を精度良く推定することができる風車を実現できる。
 また、本発明によれば、風車の実測ひずみ値と当該風車の疲労劣化のない状態での正常応力値との比較から風車の疲労劣化状況を推定することで、個々の風車の疲労劣化状況を精度良く推定することができる風車の疲労劣化診断方法を提供できる。
 また、本発明によれば、風車の実測ひずみ値と当該風車の疲労劣化のない状態での正常応力値との比較から風車の疲労劣化状況を推定し、推定した疲労劣化状況に基づき風車の運転を制御する風車の運転制御方法を提供できる。
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明の一実施形態における風車の疲労劣化診断方法の概要を示すブロック図である。 図1の正常応力算出器における正常応力値を算出する方法の一例を示すテーブルである。 図1の正常応力算出器における実働疲労劣化スケジュールの一例を概念的に示す図である。 本発明の一実施形態における風車の疲労劣化診断方法の一例を示すフローチャートである。 本発明の一実施形態における風車の疲労劣化診断方法の概要を示すブロック図である。 本発明の一実施形態における風車の疲労劣化診断方法の概要を示すブロック図である。 本発明の一実施形態におけるひずみ計測装置および疲労劣化診断装置を有する風車の概略構成図である。 本発明の一実施形態における風車の運転制御装置の概要を示すブロック図である。
 本発明の実施例について図面を参照しながら説明する。尚、各図面および各実施例において同一又は類似の構成要素については同じ符号を付し、重複する部分についてはその詳細な説明を省略する。
 図1は、本発明の一実施例である風車の疲労劣化診断方法の概要を示すブロック図である。
 図1に示す風車100は、例えば、疲労劣化診断の対象の風車に設置されたひずみ計測装置10からの出力値であるセンサデータを入力とし、当該風車の実測応力値を算出する実測応力算出器30を備えている。また、風車の特定の部位に設置された風向風速計20からの出力値である風向値・風速値を入力とし、当該風車の正常応力値を算出する正常応力算出器40を備えている。
 また、風車100は、実測応力算出器30から出力された実測応力値と正常応力算出器40から出力された正常応力値を入力とし、実測応力値と正常応力値とを比較した疲労加速係数を算出する疲労劣化比較器(疲労加速係数算出器)50と、疲労劣化比較器(疲労加速係数算出器)50から出力された疲労加速係数を入力とし、疲労劣化度S10を演算する疲労劣化演算器60を有し、当該風車における疲労劣化度S10を出力する。
 ひずみ計測装置10で測定されるセンサデータは風車のひずみ値を測定したデータであり、ここでひずみ計測装置10とはひずみゲージや半導体ひずみセンサ、加速度センサなどである。
 風向風速計20における特定の部位とは、例えば、風車の制御向けに設置されたナセル上部の風向風速計が考えられる。
 実測応力算出器30はひずみ計測装置10からの出力であるひずみデータを入力とし、例えばレインフロー法などを用いて、実測応力値を算出し、出力する。
 正常応力算出器40は風向風速計20からの出力である風向値・風速値を入力とし、予め蓄積された応力値を選択し、正常応力値として出力する。正常応力算出器40には、当該風車設置後の所定期間における風速・風向と、そのときの実測応力算出器30から出力された実測応力値とをセットにして蓄えられている。当該風車設置後所定期間とは風車が正常状態として稼働している期間を表し、例えば、1年間などが考えられる。風速・風向と実測応力値の蓄積方法として、例えば、図2に示すように正常応力変換テーブルを用いる方法が考えられる。
 また、当該風車設置後所定期間に蓄積された実働応力値から実働疲労劣化スケジュールを作成する。実働疲労劣化スケジュールとは該風車設置後所定期間(例えば1年)に蓄積された実働応力値が風車の設計寿命(例えば20年)の間に繰り返し入力されたと仮定して、設計寿命までの風車の疲労劣化度の進捗を示す。
 実働疲労劣化スケジュールは例えば、図3に示すように横軸は風車の稼働時間をとり、横軸は疲労劣化度を示す。当該風車設置後所定期間の実測応力値を設計時の最大負荷応力値で割った値を縦軸にプロットし、当該風車設置後所定期間の疲労劣化度の傾きを求める。その傾きで風車の設計寿命までの疲労劣化が進行すると仮定して、実働疲労劣化線を延長する。実働疲労劣化スケジュールは疲労劣化演算器60が保持する。
 疲労劣化比較器(疲労加速係数算出器)50は実測応力算出器30から出力された実測応力値と正常応力算出器40から出力された正常応力値を入力とし、実測応力値と正常応力値との相関を表す疲労加速係数を算出し、出力する。疲労加速係数は例えば次式で計算する。
 疲労加速係数=実測応力値/正常応力値
 ここで、疲労加速係数は1以下の場合は疲労劣化なしであり、1より大きい場合は疲労劣化が進行していることを示す。
 疲労劣化演算器60は疲労劣化比較器(疲労加速係数算出器)50から出力された疲労加速係数を入力とし、例えば、正常応力算出器40で算出した実働疲労劣化スケジュールと比較し、疲労劣化度S10を演算する。具体的には疲労加速係数に応じて実働疲労劣化線の傾きを修正(補正)し、修正(補正)した実働疲労劣化線が風車の設計寿命と交わる点を疲労劣化度として算出する。
 図2は、図1の正常応力算出器40における正常応力値を算出する方法の一例を示すテーブルである。基本的には既に説明したことの繰り返しとなるので、重複する説明は省略するが、図2に示すように、風速と風向を軸に取り、そのときの実働応力値が記録されている。このテーブルをひずみ計測装置10が設置された該当部位ごとに作成する。または、ひずみ計測装置10が設置された該当部位と風速を軸に取り、そのときの実働応力値が記録されているテーブルを用意する。このテーブルを風向ごとに用意する方法も考えられる。
 図3は、図1の正常応力算出器40で算出する実働疲労劣化スケジュールの一例を示す概念図である。基本的には既に説明したことの繰り返しとなるので、重複する説明は省略するが、図3に示すように、実働疲労劣化線が直線であるが、指数関数である場合も考えられる。また図3では該風車設置後所定期間の実働劣化線の傾きを元に実働疲労劣化線を延長しているが、一定期間(例えば5年ごと)に実働劣化線を引きなおす方法も考えられる。
 図4は、風車の疲労劣化診断方法の一例を示すフローチャートである。基本的には既に説明したことの繰り返しとなるので、重複する説明は省略するが、図4に示すように、疲労劣化診断を開始すると、ひずみ計測ステップF1では当該風車のひずみを入力とし、ひずみ値D10を出力して実測応力算出ステップF2へ進む。
 実測応力算出ステップF2ではステップF1で出力されたひずみ値D10を入力として、例えばレインフロー法を用いて実測応力値D20を出力して、疲労加速係数算出ステップF5へ進む。
 風向・風速計測ステップF3では当該風車に既設の風向風速計を用いて、風向値と風速値D30を出力して正常応力算出ステップF4へ進む。
 正常応力算出ステップF4ではステップF3で出力された風向値と風速値D30を入力として、あらかじめ用意された正常応力変換テーブルを用いて正常応力値D40を出力して、疲労加速係数算出ステップF5へ進む。
 疲労加速係数算出ステップF5ではステップF2で算出された実測応力値D20とステップF4で算出された正常応力値D40を入力として、実測応力値と正常応力値との相関を表す疲労加速係数D50を算出して疲労劣化演算ステップF6へ進む。
 疲労劣化演算ステップF6ではステップ5で算出された疲労加速係数D50を入力として、実働疲労劣化スケジュールと比較し、例えば、図3に示す方法により疲労劣化度S10を算出して終了となる。
 以上説明したように、本実施例によれば、風向風速計からの風向・風速と当該風車における疲労劣化の検知対象となる部位に設置したひずみセンサにより、当該風車の疲労劣化度を精度良く推定することができる。
 なお、本実施例における疲労劣化度は、当該風車の疲労劣化状況が把握できれば、本明細書における疲労劣化度自体に限定されるものではない。
 また、当該風車における風向・風速などの風況情報には、当該風車自体に設けられる風向風速計により計測されるもの以外にも、例えば、当該風車の風上側に設置された風車の実測データを用いる場合も考えられる。
 図5は、本発明の第二の実施形態による風車の疲労劣化診断方法の概要を示すブロック図である。
 図5に示す疲労劣化診断装置を有する風車200は、例えば、疲労劣化診断の対象の風車に設置されたひずみ計測装置10からの出力値であるセンサデータを入力とし、当該風車の実測応力値を算出する実測応力算出器30を備えている。また、風車の特定の部位に設置された風向風速計20からの出力値である風向値・風速値を入力とし、当該風車の正常応力値を算出する正常応力算出器40を備えている。
 また、疲労劣化診断装置を有する風車200は、実測応力算出器30から出力された実測応力値と正常応力算出器40から出力された正常応力値を入力とし、実測応力値と正常応力値とを比較した疲労加速係数を算出する疲労劣化比較器(疲労加速係数算出器)50と、疲労劣化比較器(疲労加速係数算出器)50から出力された疲労加速係数を入力とし、疲労劣化度S10を演算する疲労劣化演算器60を有している。
 実測応力算出器30、正常応力算出器40、疲労劣化比較器(疲労加速係数算出器)50、疲労劣化演算器60は、風車の経年疲労劣化の度合いを示す疲労劣化度S10を出力する疲労劣化診断装置300を構成しており、疲労劣化度S10を出力する。
 上記のように、疲労劣化診断装置を有する風車200は、実施例1において説明した風車100とほぼ同じ構成だが、実測応力算出器30と正常応力算出器40と疲労劣化比較器(疲労加速係数算出器)50と疲労劣化演算器60とを纏めて疲労劣化診断装置300としている。ひずみ計測装置10、風向風速計20、実測応力算出器30、正常応力算出器40、疲労加速係数算出器50、および疲労劣化演算器60については既に説明したことの繰り返しとなるので、詳細な説明は省略する。
 本実施例によれば、既設の風車に対してひずみ計測装置10と疲労劣化診断装置300を追加することで、実施例1で説明した風車100と同様に疲労劣化度を精度よく推定することができる。
 図6は、本発明の第三の実施形態による風車の疲労劣化診断方法の概要を示すブロック図である。
 図6に示すひずみ計測装置を有する風車400は、例えば、疲労劣化診断の対象の風車に設置されたひずみ計測装置10からの出力値であるセンサデータを入力とし、当該風車の実測応力値を算出する実測応力算出器30を備えている。また、風車の特定の部位に設置された風向風速計20からの出力値である風向値・風速値を入力とし、当該風車の正常応力値を算出する正常応力算出器40を備えている。
 また、風車監視棟500は、ひずみ計測装置を有する風車400から出力された当該風車の実測応力値と正常応力値を入力とし、実測応力値と正常応力値とを比較した疲労加速係数を算出する疲労劣化比較器(疲労加速係数算出器)50と、疲労劣化比較器(疲労加速係数算出器)50から出力された疲労加速係数を入力とし、疲労劣化度S10を演算する疲労劣化演算器60を有し、当該風車における疲労劣化度S10を出力する。
 つまり、本実施例においては、ひずみ計測装置10、風向風速計20、実測応力算出器30、正常応力算出器40を備える風車400と、疲労劣化比較器(疲労加速係数算出器)50、疲労劣化演算器60を備える風車監視棟500により構成されている。
 基本的には実施例1或いは実施例2で説明した風車100や風車200とほぼ同じ構成であり、ひずみ計測装置10、風向風速計20、実測応力算出器30、正常応力算出器40、疲労劣化比較器(疲労加速係数算出器)50、および疲労劣化演算器60については既に説明したことの繰り返しとなるので、詳細な説明は省略する。
 図6では疲労劣化比較器(疲労加速係数算出器)50、および疲労劣化演算器60を風車監視棟に設置した構成であるが、実測応力算出器30、正常応力算出器40を同様に風車監視棟に設置した構成も可能である。また無線通信或いは有線通信などのネットワーク回線等を介して、実測応力算出器30、正常応力算出器40、疲労劣化比較器(疲労加速係数算出器)50、および疲労劣化演算器60を風車および風車監視棟以外に設置する構成も可能である。
 同様に、各実施例において疲労劣化演算器60により算出した疲労劣化度S10を風車100や風車200、風車監視棟500から無線通信或いは有線通信などのネットワーク回線等を介して、例えば、外部に設けられた中央監視システムへ伝送することも考えられる。この場合、風車100や風車200、風車監視棟500に無線発信装置などの伝送手段を設置する必要がある。
 図7は、本発明の第四の実施形態によるひずみ計測装置および疲労劣化診断装置を有する風車の概略構成図である。
 図7に示すひずみ計測装置および疲労劣化診断装置を有する風車1000は、例えば、疲労劣化診断対象である風車のタワーE10またはブレードE20と、風車のタワーE10またはブレードE20に設置されたひずみ計測装置10と、風車の環境データおよび制御データを蓄積しているSCADA70(Supervisory-Control-And-Data-Acquisition:監視制御システム)と、風車の経年疲労劣化の度合いを示す疲労劣化度S10を出力する疲労劣化診断装置300を有し、疲労劣化度S10を出力する。
 ひずみ計測装置および疲労劣化診断装置を有する風車1000は、実施例2で説明した疲労劣化診断装置を有する風車200とほぼ同じ構成であり、ひずみ計測装置10および疲労劣化診断装置300については既に説明したことの繰り返しとなるので、詳細な説明は省略する。
 疲労劣化度S10はレポートの形で出力される形態や風車の監視棟などにおけるモニタリング画面に出力される形態、または、風車の環境データの一部としてデータ蓄積装置であるSCADA70に記憶される形態が考えられる。図7では疲労劣化診断装置300はひずみ計測装置および疲労劣化診断装置を有する風車1000に含まれているが、SCADA70に組み込まれて、SCADA70の一機能とする形態も考えられる。
 図8は、本発明の第五の実施形態による風車の運転制御装置の概要を示すブロック図である。なお、図8では構成が判り易いよう、上記の各実施例で説明した実測応力算出器30や正常応力算出器40、疲労劣化比較器(疲労加速係数算出器)50、疲労劣化演算器60を疲労劣化診断装置300として示している。
 図8に示す風車の運転制御装置2000は、疲労劣化診断の対象の風車に設置されたひずみ計測装置10からの出力値であるセンサデータに基づき算出した実測応力値、および風車の特定の部位に設置された風向風速計20からの出力値に基づき算出した正常応力値を入力とし、風車の経年疲労劣化の度合いを示す疲労劣化度S10を出力する疲労劣化診断装置300と、疲労劣化診断装置300から出力された疲労劣化度を入力とし、疲労劣化度と運転基準値を比較し、運転制御信号S20を出力する運転制御器80を有し、運転制御信号S20を出力する。
 風車の運転制御装置2000は、実施例2で説明した疲労劣化診断装置を有する風車200に運転制御器80を追加した構成であり、ひずみ計測装置10および疲労劣化診断装置300については既に説明したことの繰り返しとなるので、詳細な説明は省略する。
 運転制御器80は疲労劣化度を入力とし、例えば、安全率を考慮して疲労劣化度90を運転基準値として、疲労劣化度が運転基準値以下のときは通常運転または稼働率を上げる、疲労劣化度が運転基準値より大きい場合は抑制運転をおこなう等の運転制御信号S20を出力する。
 当該風車の疲労劣化度を把握することで、次回のメンテナンスまで風車を持たせるために抑制運転をおこなう、もしくは故障する時期を予測し、次回のメンテナンス作業日までの間隔を鑑みて、次回メンテナンス作業日まで発電量が最大になるような運転をおこなうなど、疲労劣化度に応じて運転モードを変更することで、顧客のニーズに最適なオペレーションサービスを提供することができる。
 また、直ちに部品を発注し、次回の点検日を予定より早める、もしくは疲労劣化度の進行経過を鑑みて、メンテナンス周期を見直すなど、メンテナンス調整サービスを提供することもできる。
 さらに、疲労劣化度を顧客、特に風車オーナーに提示することで、風車のメンテナンスレポートとすることができる。また、部品交換が必要な場合、費用負担を請求する際の証拠となる。
 上記の各実施例によれば、風向風速計からの風向・風速と当該風車における疲労劣化の検知対象となる部位に設置したひずみセンサにより、風車の疲労劣化を推定することができる。また、風車の疲労劣化度を考慮することで、次回のメンテナンスまで損傷部位を持たせるために、抑制運転をおこなうなど、最適なO&Mサービス(Operation-And-Maintenance)を提供することができる。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 また、上記の各構成、機能、処理部、処理手段などは、それらの一部または全部を、例えば集積回路で設計するなどによりハードウェアで実現してもよい。また、上記の各構成や機能などは、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイルなどの情報は、メモリやハードディスク、SSD(Solid State Drive)などの記録装置、またはICカード、SDカード、DVDなどの記録媒体に置くことができる。
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしもすべての制御線や情報線を示しているとは限らない。実際にはほとんどすべての構成が相互に接続されていると考えてもよい。
 10…ひずみ計測装置、20…風向風速計、30…実測応力算出器、40…正常応力算出器、50…疲労劣化比較器(疲労加速係数算出器)、60…疲労劣化演算器、70…SCADA、80…運転制御器、100…風車、200…疲労劣化診断装置を有する風車、300…疲労劣化診断装置、400…ひずみ計測装置を有する風車、500…風車監視棟、1000…ひずみ計測装置および疲労劣化診断装置を有する風車、2000…風車の運転制御装置、D10…ひずみ値、D20…実測応力値、D30…風向値と風速値、D40…正常応力値、D50…疲労加速係数、E10…タワー、E20…ブレード、F1…ひずみ計測ステップ、F2…実測応力算出ステップ、F3…風向・風速計測ステップ、F4…正常応力算出ステップ、F5…疲労加速係数算出ステップ、F6…疲労劣化演算ステップ、S10…疲労劣化度、S20…運転制御信号。

Claims (16)

  1.  風を受けて発電運転する風車であって、
     前記風車に生じるひずみを計測するひずみ計測装置を備え、
     計測したひずみに基づき当該風車の第1の応力値を算出し、
     前記風車における風況情報に基づき当該風車の第2の応力値を算出し、
     前記第1の応力値および前記第2の応力値を比較し、
     前記比較結果に基づき当該風車の疲労劣化状況を算出することを特徴とする風車。
  2.  請求項1に記載の風車であって、
     前記第1の応力値を算出する実測応力算出器と、
     前記第2の応力値を算出する正常応力算出器と、
     前記第1の応力値および前記第2の応力値を比較する比較器と、
     前記比較結果に基づき疲労劣化状況を算出する疲労劣化演算器と、
     を備えることを特徴とする風車。
  3.  請求項2に記載の風車であって、
     前記正常応力算出器は、所定の期間蓄積した当該風車の風況情報および実測応力値に基づき予め設定された正常応力変換テーブルを用いて前記第2の応力値を算出することを特徴とする風車。
  4.  請求項2に記載の風車であって、
     前記比較器は、前記第2の応力値に対する前記第1の応力値の比である疲労加速係数を算出することを特徴とする風車。
  5.  請求項4に記載の風車であって、
     前記疲労劣化演算器は、前記第2の応力値に基づき前記風車の疲労劣化スケジュールを作成し、
     前記疲労加速係数に基づき前記疲労劣化スケジュールを補正し、
     前記補正した疲労劣化スケジュール、および前記風車の設計寿命から当該風車の疲労劣化状況を算出することを特徴とする風車。
  6.  請求項1から5のいずれか一項に記載の風車であって、
     算出した当該風車の疲労劣化状況を無線通信或いは有線通信により外部へ伝送する伝送手段を備えることを特徴とする風車。
  7.  風を受けて発電運転する風車の疲労劣化診断方法であって、
     ひずみ計測手段により計測したひずみに基づき当該風車の第1の応力値を算出し、
     前記風車における風況情報に基づき当該風車の第2の応力値を算出し、
     前記第1の応力値と前記第2の応力値とを比較し、
     前記第1の応力値と前記第2の応力値の比較結果に基づき当該風車の疲労劣化状況を診断することを特徴とする風車の疲労劣化診断方法。
  8.  請求項7に記載の風車の疲労劣化診断方法であって、
     前記第1の応力値は、前記ひずみ計測手段により計測したひずみ値に基づき算出される実測応力値であることを特徴とする風車の疲労劣化診断方法。
  9.  請求項8に記載の風車の疲労劣化診断方法であって、
     前記第2の応力値は、所定の期間蓄積した当該風車の風況情報および実測応力値に基づき予め設定された正常応力変換テーブルを用いて算出される正常応力値であることを特徴とする風車の疲労劣化診断方法。
  10.  請求項7に記載の風車の疲労劣化診断方法であって、
     前記第1の応力値と前記第2の応力値との比較により、前記第2の応力値に対する前記第1の応力値の比である疲労加速係数を算出することを特徴とする風車の疲労劣化診断方法。
  11.  請求項10に記載の風車の疲労劣化診断方法であって、
     前記第2の応力値に基づき前記風車の疲労劣化スケジュールを作成し、
     前記疲労加速係数に基づき前記疲労劣化スケジュールを補正し、
     前記補正した疲労劣化スケジュール、および前記風車の設計寿命から当該風車の疲労劣化状況を算出することを特徴とする風車の疲労劣化診断方法。
  12.  風を受けて発電運転する風車の運転制御方法であって、
     ひずみ計測手段により計測したひずみに基づき当該風車の第1の応力値を算出し、
     前記風車における風況情報に基づき当該風車の第2の応力値を算出し、
     前記第1の応力値と前記第2の応力値とを比較し、
     前記第1の応力値と前記第2の応力値の比較結果に基づき当該風車の疲労劣化状況を診断し、
     前記疲労劣化状況に基づき当該風車の運転を制御することを特徴とする風車の運転制御方法。
  13.  請求項12に記載の風車の運転制御方法であって、
     前記第1の応力値は、前記ひずみ計測手段により計測したひずみに基づき算出される実測応力値であることを特徴とする風車の運転制御方法。
  14.  請求項13に記載の風車の運転制御方法であって、
     前記第2の応力値は、所定の期間蓄積した当該風車の風況情報および実測応力値に基づき予め設定された正常応力変換テーブルを用いて算出される正常応力値であることを特徴とする風車の運転制御方法。
  15.  請求項12に記載の風車の運転制御方法であって、
     前記第1の応力値と前記第2の応力値との比較により、前記第2の応力値に対する前記第1の応力値の比である疲労加速係数を算出することを特徴とする風車の運転制御方法。
  16.  請求項15に記載の風車の運転制御方法であって、
     前記第2の応力値に基づき前記風車の疲労劣化スケジュールを作成し、
     前記疲労劣化スケジュール、および前記風車の設計寿命から当該風車の第1の疲労劣化状況を算出し、
     前記疲労加速係数に基づき前記疲労劣化スケジュールを補正し、
     前記補正した疲労劣化スケジュール、および前記風車の設計寿命から当該風車の第2の疲労劣化状況を算出し、
     前記第1の疲労劣化状況と前記第2の疲労劣化状況を比較し、
     前記第1の疲労劣化状況および前記第2の疲労劣化状況のうち、疲労劣化度の低い方の疲労劣化スケジュールに基づき当該風車の運転を制御する風車の運転制御方法。
PCT/JP2015/060491 2015-04-02 2015-04-02 風車および風車の疲労劣化診断方法、風車の運転制御方法 WO2016157503A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/060491 WO2016157503A1 (ja) 2015-04-02 2015-04-02 風車および風車の疲労劣化診断方法、風車の運転制御方法
TW105108813A TWI647575B (zh) 2015-04-02 2016-03-22 Fatigue deterioration diagnosis method of windmill and windmill, operation control method of windmill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/060491 WO2016157503A1 (ja) 2015-04-02 2015-04-02 風車および風車の疲労劣化診断方法、風車の運転制御方法

Publications (1)

Publication Number Publication Date
WO2016157503A1 true WO2016157503A1 (ja) 2016-10-06

Family

ID=57006597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060491 WO2016157503A1 (ja) 2015-04-02 2015-04-02 風車および風車の疲労劣化診断方法、風車の運転制御方法

Country Status (2)

Country Link
TW (1) TWI647575B (ja)
WO (1) WO2016157503A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10794362B2 (en) 2017-08-29 2020-10-06 Mitsubishi Heavy Industries, Ltd. Method and system for diagnosing wind turbine power generating apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6881420B2 (ja) * 2018-11-07 2021-06-02 新東工業株式会社 劣化評価方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004101417A (ja) * 2002-09-11 2004-04-02 Mitsubishi Heavy Ind Ltd 監視装置
JP2004301030A (ja) * 2003-03-31 2004-10-28 Ebara Corp 風車用ブレード及び風車
JP4939508B2 (ja) * 2008-09-26 2012-05-30 三菱重工業株式会社 風車構造体の応力解析装置及び応力解析プログラム並びに風力発電システム
WO2013104930A1 (en) * 2012-01-12 2013-07-18 Romax Technology Limited Method for operating a wind turbine generator
JP5244502B2 (ja) * 2008-08-25 2013-07-24 三菱重工業株式会社 風車の運転制限調整装置及び方法並びにプログラム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI417746B (zh) * 2010-12-03 2013-12-01 Ind Tech Res Inst 裝置的效能預測及故障檢測之方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004101417A (ja) * 2002-09-11 2004-04-02 Mitsubishi Heavy Ind Ltd 監視装置
JP2004301030A (ja) * 2003-03-31 2004-10-28 Ebara Corp 風車用ブレード及び風車
JP5244502B2 (ja) * 2008-08-25 2013-07-24 三菱重工業株式会社 風車の運転制限調整装置及び方法並びにプログラム
JP4939508B2 (ja) * 2008-09-26 2012-05-30 三菱重工業株式会社 風車構造体の応力解析装置及び応力解析プログラム並びに風力発電システム
WO2013104930A1 (en) * 2012-01-12 2013-07-18 Romax Technology Limited Method for operating a wind turbine generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10794362B2 (en) 2017-08-29 2020-10-06 Mitsubishi Heavy Industries, Ltd. Method and system for diagnosing wind turbine power generating apparatus

Also Published As

Publication number Publication date
TW201706876A (zh) 2017-02-16
TWI647575B (zh) 2019-01-11

Similar Documents

Publication Publication Date Title
JP5984791B2 (ja) 風力発電装置のモニタリングシステム及びモニタリング方法
EP3638900B1 (en) Independent monitoring system for a wind turbine
US10072635B2 (en) Wind turbine and method for evaluating health state of blade thereof
JP5244502B2 (ja) 風車の運転制限調整装置及び方法並びにプログラム
JP6906354B2 (ja) 風車発電機の疲労損傷量算出装置、風力発電システム、及び風車発電機の疲労損傷量算出方法
US9822762B2 (en) System and method for operating a wind turbine
EP2609326B1 (en) Method of operating a wind turbine and wind turbine
JP5033033B2 (ja) 水平軸風車の乱流強度計測方法
EP2585716B1 (en) A method for performing condition monitoring in a wind farm
CN102840096B (zh) 用于运行风力涡轮机的方法和系统
CN108431404B (zh) 用于控制多个风力涡轮机的方法和系统
CN105604806B (zh) 风力发电机的塔架状态监测方法和系统
KR20160017681A (ko) 풍력플랜트 관리 시스템 및 그 방법
US10119521B2 (en) Estimating and controlling loading experienced in a structure
CN108291527A (zh) 一种监测和评估风力涡轮机功率性能变化的方法
EP3642481B1 (en) A method for determining wind turbine blade edgewise load recurrence
WO2016042652A1 (ja) 風力発電設備および風力発電設備の損傷度診断装置
WO2016157503A1 (ja) 風車および風車の疲労劣化診断方法、風車の運転制御方法
CN115929569B (zh) 一种风电机组变桨系统故障诊断方法
DK178505B1 (en) Model based wind turbine component monitoring
JP2017101596A (ja) 風力発電装置の診断車両及びそれを備えた診断システム
KR20140054529A (ko) 풍력발전단지 네트워크망을 활용한 풍향 및 풍속 예측 시스템 및 예측 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15887649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15887649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP