Nothing Special   »   [go: up one dir, main page]

WO2016155390A1 - 一种数据传输方法及装置 - Google Patents

一种数据传输方法及装置 Download PDF

Info

Publication number
WO2016155390A1
WO2016155390A1 PCT/CN2015/099832 CN2015099832W WO2016155390A1 WO 2016155390 A1 WO2016155390 A1 WO 2016155390A1 CN 2015099832 W CN2015099832 W CN 2015099832W WO 2016155390 A1 WO2016155390 A1 WO 2016155390A1
Authority
WO
WIPO (PCT)
Prior art keywords
complex
sequence
complex sequence
probability
preset
Prior art date
Application number
PCT/CN2015/099832
Other languages
English (en)
French (fr)
Inventor
李卫敏
袁志锋
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016155390A1 publication Critical patent/WO2016155390A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/7103Interference-related aspects the interference being multiple access interference

Definitions

  • This application relates to, but is not limited to, wireless communication technologies.
  • Uplink multi-user access communication can be implemented by different multiple access technologies, for example, Time Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA), and code division. Code Division Multiple Access (CDMA) and Space Division Multiple Access (SDMA). Among them, the use of code division multiple access CDMA technology to achieve uplink multi-user access communication can provide excellent access performance, has been adopted by multiple wireless communication standards.
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • CDMA Code Division Multiple Access
  • SDMA Space Division Multiple Access
  • multiple access terminals respectively use a certain length of extended sequence (for example, an extended sequence of L elements composed of L elements, wherein the elements can be digital symbols) to send data through
  • the data symbols after the amplitude and phase modulation for example, Quadrature Amplitude Modulation (QAM)
  • the expansion processing means that each modulated data symbol is multiplied by each element of the extended sequence to form and
  • the process of using a sequence of data symbols of the same length of the extended sequence in the process, each modulated data symbol (for example, the corresponding constellation point symbol after the QAM modulation of the data to be transmitted) and each element of the extended sequence of length L Multiplication causes each modulated data symbol to be expanded into a sequence of data symbols of the same length as the extended sequence employed, ie each modulated data symbol is expanded into L symbols, which is equivalent to each modulated
  • the data symbols are respectively carried by the extended sequence of length L; then, the data obtained by the extended processing of the plurality of access terminal
  • CDMA belongs to the category of spread spectrum communication, because the data symbols after the terminal modulation are extended to L symbols by using the extended sequence of length L, and the transmission time of the L symbols after the extension processing is equal to that before the expansion.
  • the transmission time of the data symbol, then after the transmission extension processing The bandwidth required for the L symbols needs to be extended by a factor of L, so the spreading sequence is often referred to as a spreading sequence.
  • the symbols obtained by the extended processing of the access terminal may be through multi-carrier technology (for example, Orthogonal Frequency Division Multiplexing (OFDM) and Filter-Bank Multi-Carrier (FBMC)). Transmission, code division multiple access and multi-carrier technology, that is, Multi Carrier-Code Division Multiple Access (MC-CDMA).
  • OFDM Orthogonal Frequency Division Multiplexing
  • FBMC Filter-Bank Multi-Carrier
  • MC-CDMA Multi Carrier-Code Division Multiple Access
  • the extension processing of the transmitter is relatively simple: multiplying each modulated data symbol by each element of the extended sequence of length L to obtain the extended L symbols, and then by single carrier technology or Multi-carrier technology is transmitted; the receiving process of the base station receiver is relatively complicated.
  • How to accurately separate the useful data information of each terminal from the superimposed signal to ensure the multiple access performance of the CDMA system is the key to the CDMA system, which involves two aspects, namely, the extended sequence and the receiver. Among them, the selection of the extended sequence is the performance basis, and the design of the receiver is the performance guarantee.
  • the extended sequence used by the terminal In order to obtain excellent multiple access performance, good cross-correlation characteristics are required between the extended sequences used by different terminals. If single-carrier code division multiplexing is used, the extended sequence used by the terminal also needs to have good autocorrelation characteristics to counter the influence of multipath delay spread; multi-carrier code division multiplexing technology can rely on multi-carrier technology. Against the influence of multipath delay spread, the design of the extended sequence can focus on the cross-correlation properties that facilitate the separation of multi-user information from the receiver.
  • the base station can use high-performance multi-user reception detection technology to separate multi-user information and obtain excellent multiple access performance, such as Serial Interference Cancellation (SIC) reception detection technology.
  • SIC Serial Interference Cancellation
  • its complexity is relatively high.
  • DS-CDMA Direct Sequence-Code Division Multiple Access
  • PN binary pseudo-random
  • DS-CDMA based on binary pseudo-random real sequence is also applied to MC-CDMA technology.
  • a binary pseudo-random real number sequence may also be referred to as a binary pseudo-random sequence, and the value of each element or symbol is usually expressed as 0 or 1, and may be further expressed as a bipolar sequence. That is, 0 is represented as +1, 1 is represented as -1, or 0 is represented as -1, and 1 is represented as +1.
  • the design of the extended sequence also needs to consider the length of the extended sequence.
  • the longer the extended sequence the easier the cross-correlation between the extended sequences used by different access terminals is, and the easier it is to select more low cross-correlation.
  • the sequence can thus support more terminals to access at the same time. If the number of terminals simultaneously accessed is greater than the length of the extended sequence, the system is considered to be in an overload state.
  • the non-orthogonal multiple access method can achieve greater system capacity or edge throughput than the orthogonal multiple access method. Therefore, in order to provide flexible system design, support more Users are simultaneously accessed, and different access terminals may use non-orthogonal spreading sequences. Since the spreading sequences of different access terminals are not orthogonal to each other, the receiving and detecting performance of each access terminal may be degraded as the number of terminals simultaneously accessed increases, and interference between multiple users may become excessive when the system is overloaded. more serious.
  • the code division multiple access CDMA technology uses an extended sequence based on a binary pseudo-random real number sequence, which is relatively long in length, when a large number of user terminals access the system, or when the system is overloaded, a conventional receiver is used (for example, the performance of the RAKE receiver may be degraded, and the interference detection receiver (for example, the receiver using the SIC technology) has high detection detection complexity and large delay; if a binary pseudo-random with a short length is used Real sequence, the low cross-correlation between sequences is not easy to guarantee, when a large number of user terminals access the system, or when the system is overloaded, it will cause serious multi-user interference, which will affect the multi-user reception detection performance and User access communication performance.
  • the embodiment of the invention provides a data transmission method and device, which are used to solve the related art
  • the problem of serious interference between multiple users and high complexity of reception detection affects the performance of multi-user reception detection and multi-user access communication performance.
  • An embodiment of the present invention provides a data transmission method, where the method includes:
  • each element of the complex sequence being from a complex set comprising N complex values, and one of the N complex values having a complex value of 0,
  • the probability that each element of the complex sequence is 0 is P and 0 ⁇ P ⁇ 1 or the ratio of 0 elements in the complex sequence is R and 0 ⁇ R ⁇ (L-1)/L, where L is greater than An integer of 1, N is an integer greater than or equal to 2;
  • a probability P that each element of the complex sequence is 0 is greater than or equal to 1/N; or, a probability P that each element of the complex sequence is 0 is greater than or equal to each element being the N The probability of other non-zero values in the complex value.
  • the complex set includes N complex values to form a plurality of subsets, each subset includes one or more complex values, and each element of the complex sequence has a different probability of taking values from different subsets.
  • the ratio R of the 0 elements in the complex sequence satisfies 1/L ⁇ R ⁇ (L-1)/L.
  • a probability P of each element of the complex sequence being 0 or a ratio R of 0 elements in the complex sequence is determined according to a fixed configuration of the system;
  • a probability P of each element of the complex sequence being 0 or a ratio R of 0 elements in the complex sequence is determined according to configuration signaling sent by the system;
  • a probability P of each element of the complex sequence being 0 or a ratio R of 0 elements in the complex sequence is determined by the system according to a first preset rule
  • the probability P of each element of the complex sequence being 0 or the ratio R of the 0 elements in the complex sequence is determined by the transmitter according to a second predetermined rule.
  • the elements in the complex sequence are not all 0s.
  • the values of the real and imaginary parts of the N complex values included in the complex set are from The M-ary real number set; or the value of the real part and the imaginary part of the non-zero value among the N complex values included in the complex set are all from the M-ary real number set; wherein M is an integer greater than or equal to 2.
  • the set of real numbers of the M-ary includes:
  • M is an odd number greater than 2, a set of M integers in the range [-(M-1)/2, (M-1)/2]; or,
  • M integers in the range [-(M-1)/2, (M-1)/2] are respectively multiplied by a set of M real numbers obtained by the first preset coefficient;
  • M is an even number greater than or equal to 2
  • the M odd numbers in the range of [-(M-1), (M-1)] are respectively multiplied by the set of M real numbers obtained by the second predetermined coefficient.
  • the determining the complex sequence to be used includes:
  • the transmitter identity information includes at least one of: the transmitter number, the transmitter identity code, the transmitter location information, and the transmitter network address.
  • the preset complex sequence set is determined according to the fixed configuration of the system.
  • the preset complex sequence set is determined according to signaling sent by the system.
  • the preset complex sequence set is determined from the Q complex sequence sets according to the system fixed configuration; or
  • the preset complex sequence set is determined from the set of Q complex sequences according to signaling sent by the system; or
  • the preset complex sequence set is determined from the set of Q complex sequences according to the transmitter identity information; or
  • the preset complex sequence set is determined from the set of Q complex sequences according to the data transmission resource; or
  • the preset complex sequence set is determined from a set of Q complex sequences according to a ratio R of 0 elements in the complex sequence;
  • Q is an integer not less than 1.
  • the number of cross-correlations between any two complex sequences in the preset complex sequence set is less than or equal to a preset cross-correlation coefficient.
  • the processing, by using the complex sequence, the data symbols to be sent includes:
  • the sending the sequence of data symbols includes:
  • the sequence of data symbols is formed on a data transmission resource and transmitted.
  • An embodiment of the present invention further provides another data transmission method, where the method includes:
  • K transmitters Receiving signals transmitted by K transmitters, where K is an integer greater than or equal to 1;
  • the signals transmitted by the K transmitters are signals formed and transmitted by the K transmitters on the same data transmission resource.
  • the determining, according to the complex sequence used by the K transmitters, the receiving detector that needs to be used includes:
  • the desired receive detector is determined from a receiver-supported receive detector based on a ratio of zeros in the complex sequence used by the K transmitters.
  • the receiver supported by the receiver includes at least one of the following:
  • a messaging algorithm receives the detector
  • An embodiment of the present invention provides a data transmission apparatus, where the apparatus includes:
  • a first determining module configured to: determine a complex sequence to be used, the length of the complex sequence is L, each element of the complex sequence is from a complex set comprising N complex values, and the N complex values There is a complex value of 0, the probability that each element of the complex sequence is 0 is P and 0 ⁇ P ⁇ 1 or the ratio of 0 elements in the complex sequence is R and 0 ⁇ R ⁇ (L-1) /L, where L is an integer greater than 1, and N is an integer greater than or equal to 2;
  • the processing module is configured to: process the data symbols to be sent by using the complex sequence determined by the first determining module to generate a data symbol sequence;
  • the sending module is configured to: send a sequence of data symbols generated by the processing module.
  • a probability P that each element of the complex sequence is 0 is greater than or equal to 1/N; or, a probability P that each element of the complex sequence is 0 is greater than or equal to each element being the N The probability of other non-zero values in the complex value.
  • the complex set includes N complex values to form a plurality of subsets, each subset includes one or more complex values, and each element of the complex sequence has a different probability of taking values from different subsets.
  • the ratio R of the 0 elements in the complex sequence satisfies 1/L ⁇ R ⁇ (L-1)/L.
  • a probability P of each element of the complex sequence being 0 or a ratio R of 0 elements in the complex sequence is determined according to a fixed configuration of the system;
  • a probability P of each element of the complex sequence being 0 or a ratio R of 0 elements in the complex sequence is determined according to configuration signaling sent by the system;
  • a probability P of each element of the complex sequence being 0 or a ratio R of 0 elements in the complex sequence is determined by the system according to a first preset rule
  • the probability P of each element of the complex sequence being 0 or the ratio R of the 0 elements in the complex sequence is determined by the transmitter according to a second predetermined rule.
  • the elements in the complex sequence are not all 0s.
  • the values of the real and imaginary parts of the N complex values included in the complex set are all from the M-ary real number set; or the non-zero value of the N complex values included in the complex set
  • the values of the part and the imaginary part are all from the M-ary real number set; wherein M is an integer greater than or equal to 2.
  • the set of real numbers of the M-ary includes:
  • M is an odd number greater than 2, a set of M integers in the range [-(M-1)/2, (M-1)/2]; or,
  • M integers in the range [-(M-1)/2, (M-1)/2] are respectively multiplied by a set of M real numbers obtained by the first preset coefficient;
  • M is an even number greater than or equal to 2
  • the M odd numbers in the range of [-(M-1), (M-1)] are respectively multiplied by the set of M real numbers obtained by the second predetermined coefficient.
  • the first determining module is configured to:
  • the transmitter identity information includes at least one of: the transmitter number, the transmitter identity code, the transmitter location information, and the transmitter network address.
  • the preset complex sequence set is determined according to the fixed configuration of the system.
  • the preset complex sequence set is determined according to signaling sent by the system.
  • the preset complex sequence set is determined from the Q complex sequence sets according to the system fixed configuration; or
  • the preset complex sequence set is determined from the set of Q complex sequences according to signaling sent by the system; or
  • the preset complex sequence set is determined from the set of Q complex sequences according to the transmitter identity information; or
  • the preset complex sequence set is determined from the set of Q complex sequences according to the data transmission resource; or
  • the preset complex sequence set is determined from a set of Q complex sequences according to a ratio R of 0 elements in the complex sequence;
  • Q is an integer not less than 1.
  • the relationship between any two complex sequences in the preset complex sequence set is less than or equal to the preset cross-correlation coefficient.
  • processing module is configured to:
  • the sending module is configured to:
  • the sequence of data symbols generated by the processing module forms a transmit signal on the data transmission resource and transmits.
  • An embodiment of the present invention provides another data transmission apparatus, where the apparatus includes:
  • a receiving module configured to: receive signals transmitted by K transmitters, where K is an integer greater than or equal to 1;
  • a second determining module configured to: determine, according to the complex sequence used by the K transmitters, a receiving detector that needs to be used;
  • the detecting module is configured to: perform receiving detection on the received signal by using a receiving detector determined by the second determining module, and acquire data sent by the K transmitters.
  • the signals transmitted by the K transmitters are signals formed and transmitted by the K transmitters on the same data transmission resource.
  • the second determining module is configured to:
  • the desired receive detector is determined from a receiver-supported receive detector based on a ratio of zeros in the complex sequence used by the K transmitters.
  • the receiver supported by the receiver includes at least one of the following:
  • a messaging algorithm receives the detector
  • a computer readable storage medium storing computer executable instructions for performing the method of any of the above.
  • a data transmission method and apparatus provided by an embodiment of the present invention first determines a complex sequence to be used, the length of the complex sequence is L, and each element of the complex sequence is from a complex set including N complex values. And one of the N complex values has a complex value of 0, a probability that each element of the complex sequence is 0 is P and 0 ⁇ P ⁇ 1 or a ratio of 0 elements in the complex sequence is R and 0 ⁇ R ⁇ (L-1) / L, where L is an integer greater than 1, and N is an integer greater than or equal to 2; then the data symbols to be transmitted are processed using the complex sequence to generate a sequence of data symbols; A sequence of data symbols.
  • each element of the complex sequence used by the transmitter in the embodiment of the present invention is derived from a complex set including N complex values and one of which has a complex value of 0, which can effectively ensure that each of the same data transmission resources is used.
  • the transmitter selects a complex sequence of low cross-correlation to process and transmit the data symbols to be transmitted, thereby effectively controlling inter-user interference and supporting a higher number of access users; and by controlling each element in the complex sequence to be 0.
  • the probability P or the ratio R of the 0 elements in the complex sequence can effectively control the receiver detection complexity of the receiver.
  • FIG. 1 is a schematic flowchart of a data transmission method according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a data transmission apparatus according to an embodiment of the present invention.
  • Embodiment 3 is a schematic diagram of a complex set for generating a complex sequence in Embodiment 1, Embodiment 3, and Embodiment 6 according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a complex set for generating a complex sequence in Embodiment 2 according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a complex set for generating a complex sequence in Embodiment 4 according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of a complex set for generating a complex sequence in Embodiment 5 according to an embodiment of the present invention. schematic diagram;
  • FIG. 7 is a schematic flowchart diagram of another data transmission method according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another data transmission apparatus according to an embodiment of the present invention.
  • the system described in the embodiment of the present invention is a data transmission transceiver system, including a transmitter, a receiver, and an associated function node, wherein the transmitter can be a terminal transmitter, a base station transmitter, or other type of transmitter, and receives
  • the device may be a base station receiver, a terminal receiver or other type of receiver, and the related function node may be a network management unit, an operation and maintenance unit, etc.; the description or operation related to the system in the embodiment of the present invention may be implemented by the terminal, or It may be implemented by a base station, or may be implemented by other types of transmitters or receivers, or may be implemented by related functional nodes; this embodiment of the present invention does not limit this.
  • “comprising” in the embodiments of the present invention should be understood as meaning including but not limited to.
  • a data transmission method provided by an embodiment of the present invention is applied to a transmitter. As shown in FIG. 1, the method includes:
  • Step 101 Determine a complex sequence to be used, the length of the complex sequence is L, each element of the complex sequence is from a complex set containing N complex values, and one of the N complex values has a complex value of 0.
  • the probability that each element of the complex sequence is 0 is P and 0 ⁇ P ⁇ 1 or the ratio of 0 elements in the complex sequence is R and 0 ⁇ R ⁇ (L - 1) / L, where L is an integer greater than 1. , N is an integer greater than or equal to 2.
  • Step 102 Process the data symbols to be sent by using the complex sequence to generate a sequence of data symbols.
  • Step 103 Send the sequence of data symbols.
  • the probability P that each element of the complex sequence in step 101 is 0 is greater than or equal to 1/N; or, the probability P of each element of the complex sequence being 0 is greater than or equal to N for each element.
  • the probability of other non-zero values in the complex value is greater than or equal to 1/N; or, the probability P of each element of the complex sequence being 0 is greater than or equal to N for each element. The probability of other non-zero values in the complex value.
  • the plurality of complex values included in the complex set in step 101 constitute a plurality of subsets, and each subset includes one or more complex values, and each element of the complex sequence has different probability of taking values from different subsets.
  • the ratio R of the 0 elements in the complex sequence in the above step 101 satisfies 1/L ⁇ R ⁇ (L-1)/L.
  • the probability P of 0 for each element of the complex sequence in the above step 101 or the ratio R of 0 elements in the complex sequence may be determined by using any one of the following manners:
  • first preset rule and the second preset rule are only used to distinguish different rules, and may actually be preset rules, which are respectively used by the system and the transmitter.
  • the elements in the complex sequence in step 101 above are not all 0s.
  • the values of the real part and the imaginary part of the N complex values included in the complex set in the foregoing step 101 are all from the M-ary real number set; or the non-zero value of the N complex values included in the complex set
  • the values of the real part and the imaginary part are all derived from the M-ary real number set; wherein M is an integer greater than or equal to 2.
  • the foregoing set of M-ary real numbers may include:
  • M is an odd number greater than 2, a set of M integers in the range [-(M-1)/2, (M-1)/2]; or,
  • M integers in the range [-(M-1)/2, (M-1)/2] are respectively multiplied by a set of M real numbers obtained by the first preset coefficient;
  • M is an even number greater than or equal to 2
  • the M odd numbers in the range of [-(M-1), (M-1)] are respectively multiplied by the set of M real numbers obtained by the second predetermined coefficient.
  • first and second statements are only for convenience of description, and there is no limitation in order, and the first preset coefficient and the second preset coefficient may be the same or different, and the first pre- Both the set coefficient and the second preset coefficient can be used to achieve the energy normalization effect of the complex sequence.
  • step 101 determining a complex sequence to be used, which may include:
  • the foregoing transmitter identity information may include at least one of the following: a transmitter number, a transmitter identity code, a transmitter location information, and a transmitter network address.
  • the transmitter location information may be geographic coordinate information of the transmitter, such as longitude and latitude coordinates
  • the transmitter network address may be a network protocol (IP) address or media connection of the transmitter in the network.
  • IP network protocol
  • MAC Medium Access Control
  • the foregoing preset multiple sequence set may be determined by using any one of the following manners:
  • Q is an integer not less than 1.
  • the number of cross-correlation between any two complex sequences in the preset plurality of sequence sets is less than or equal to a preset cross-correlation number, wherein the preset cross-correlation coefficient may be fixedly configured by the system, or The signaling sent by the system is determined.
  • step 102 processing the data symbols to be sent by using the complex sequence, which may include:
  • the data symbols to be transmitted are mapped to the complex sequence.
  • the extension processing refers to multiplying a data symbol to be transmitted by each element (complex symbol) of the complex sequence to form a sequence of data symbols having the same length as the complex sequence.
  • step 103 sending the data symbol sequence
  • the method may include:
  • the sequence of data symbols forms a transmit signal on a data transmission resource and is transmitted.
  • the data transmission method provided by the embodiment of the present invention when applied or implemented in the system, it may be implemented according to the probability P that each element of the complex sequence is 0, or may be according to the complex order.
  • the ratio R of the 0 elements in the column is implemented.
  • the probability P of each element of the complex sequence is 0 and the ratio R of the 0 elements in the complex sequence can be represented by the same parameter, and can Use the same or different range of values.
  • the transmitter determines that the complex sequence that needs to be used, that is, step 101 can be performed at the transmitter. It is only executed once during the data transfer.
  • a data transmission method provided by an embodiment of the present invention first determines a complex sequence to be used, the length of the complex sequence is L, each element of the complex sequence is from a complex set containing N complex values, and N complexes There is a complex value of 0 in the value, the probability that each element of the complex sequence is 0 is P and 0 ⁇ P ⁇ 1 or the ratio of 0 elements in the complex sequence is R and 0 ⁇ R ⁇ (L-1) / L, wherein L is an integer greater than 1, and N is an integer greater than or equal to 2; then the data symbols to be transmitted are processed using the complex sequence to generate a sequence of data symbols; and finally the sequence of data symbols is transmitted.
  • each element of the complex sequence used by the transmitter in the embodiment of the present invention is derived from a complex set including N complex values and one of which has a complex value of 0, which can effectively ensure that each of the same data transmission resources is used.
  • the transmitter selects a complex sequence of low cross-correlation to process and transmit the data symbols to be transmitted, thereby effectively controlling inter-user interference and supporting a higher number of access users; and by controlling each element in the complex sequence to be 0.
  • the probability P or the ratio R of the 0 elements in the complex sequence can effectively control the receiver detection complexity of the receiver.
  • the embodiment of the present invention further provides a data transmission device 10, which is disposed in a transmitter according to an embodiment of the present invention.
  • the transmitter in the embodiment of the present invention may be a terminal transmitter or a base station.
  • the embodiment of the present invention does not limit this.
  • the data transmission device 10 includes:
  • the first determining module 11 is configured to: determine a complex sequence to be used, the length of the complex sequence is L, each element of the complex sequence is from a complex set comprising N complex values, and one of the N complex values
  • the complex value is 0, the probability that each element of the complex sequence is 0 is P and 0 ⁇ P ⁇ 1 or the ratio of 0 elements in the complex sequence is R and 0 ⁇ R ⁇ (L-1)/L, wherein L is an integer greater than 1, and N is an integer greater than or equal to 2.
  • the processing module 12 is configured to process the data symbols to be transmitted using the complex sequence determined by the first determining module 11 to generate a sequence of data symbols.
  • the sending module 13 is configured to: send a sequence of data symbols generated by the processing module 12.
  • the probability P of each element of the complex sequence being 0 is greater than or equal to 1/N; or the probability P of each element of the complex sequence being 0 is greater than or equal to each element being the N complex values. The probability of other non-zero values.
  • the complex set includes N complex values to form a plurality of subsets, and each subset includes one or more complex values, and each element of the complex sequence has different probability of taking values from different subsets.
  • the ratio R of the 0 elements in the complex sequence satisfies 1/L ⁇ R ⁇ (L-1)/L.
  • the probability P that each element of the complex sequence is 0 or the ratio R of the 0 elements in the complex sequence may be determined by any of the following methods:
  • the elements in the complex sequence are not all 0s.
  • the values of the real part and the imaginary part of the N complex values included in the complex set are all from the M-ary real number set; or the real part of the non-zero value in the N complex values included in the complex set
  • the value of the imaginary part comes from the M-ary real number set; where M is an integer greater than or equal to 2.
  • the set of real numbers of the M-ary includes:
  • M is an odd number greater than 2, a set of M integers in the range [-(M-1)/2, (M-1)/2]; or,
  • M integers in the range [-(M-1)/2, (M-1)/2] are respectively multiplied by a set of M real numbers obtained by the first preset coefficient;
  • M is an even number greater than or equal to 2
  • the M odd numbers in the range of [-(M-1), (M-1)] are respectively multiplied by the set of M real numbers obtained by the second predetermined coefficient.
  • the first determining module 11 is configured to:
  • the complex sequence to be used is determined from the preset complex sequence set according to the configuration signaling sent by the system.
  • the transmitter identity information includes at least one of the following: a transmitter number, a transmitter identity code, a transmitter location information, and a transmitter network address.
  • the foregoing preset multiple sequence set may be determined by using any one of the following manners:
  • Q is an integer not less than 1.
  • the number of cross-correlation between any two complex sequences in the preset plurality of sequence sets is less than or equal to a preset cross-correlation number, wherein the preset cross-correlation coefficient may be fixedly configured by the system, or The signaling sent by the system is determined.
  • processing module 12 is configured to:
  • the data symbols to be transmitted are mapped to a complex sequence determined by the first determining module 11, and a sequence of data symbols is generated.
  • the sending module 13 is configured to:
  • the sequence of data symbols generated by processing module 12 forms a transmit signal on the data transmission resource and transmits.
  • a data transmission apparatus first determines a complex sequence to be used, the length of the complex sequence is L, each element of the complex sequence is from a complex set including N complex values, and N complexes There is a complex value of 0 in the value, the probability that each element of the complex sequence is 0 is P and 0 ⁇ P ⁇ 1 or the ratio of 0 elements in the complex sequence is R and 0 ⁇ R ⁇ (L-1) / L, wherein L is an integer greater than 1, and N is an integer greater than or equal to 2; then the data symbols to be transmitted are processed using the complex sequence to generate a sequence of data symbols; and finally the sequence of data symbols is transmitted.
  • each element of the complex sequence used by the transmitter in the embodiment of the present invention is derived from a complex set including N complex values and one of which has a complex value of 0, which can effectively ensure that each of the same data transmission resources is used.
  • the transmitter selects a complex sequence of low cross-correlation to process and transmit the data symbols to be transmitted, thereby effectively controlling inter-user interference and supporting a higher number of access users; and by controlling each element in the complex sequence to be 0.
  • the probability P or the ratio R of the 0 elements in the complex sequence can effectively control the receiver detection complexity of the receiver.
  • a data transmission method provided by the embodiment of the present invention is described in detail in the following embodiments.
  • the data transmission device 10 provided in the foregoing embodiment of the present invention is provided in the transmitter in each of the following embodiments. It will be appreciated that the transmitter of each of the embodiments described below can implement the functionality of the data transmission device 10.
  • the transmitter determines a complex sequence to be used when performing data transmission, and the length of the complex sequence is L, where L is an integer greater than 1.
  • Each element of the complex sequence is from a complex set ⁇ 9,1,1+j,j,-1+j,-1,-1-j,-j,1-j ⁇ containing 9 complex values.
  • One of the nine complex values has a complex value of 0, and the probability that each element of the complex sequence takes a value of zero is P, where 0 ⁇ P ⁇ 1.
  • the values of the real part and the imaginary part of the nine complex values contained in the complex set are all from the ternary real number set ⁇ -1, 0, 1 ⁇ , then the complex set can be represented as containing 9 constellations
  • the two-dimensional complex constellation of points, as shown in Figure 3, shows the complex value corresponding to each constellation point.
  • the probability P of each element of the complex sequence taking a value of 0 may be fixedly configured by the system, or configured by the signaling sent by the system, or determined by the system according to the first preset rule (for example, the system adjusts the probability P according to the number of access users). Or determined by the transmitter according to a second preset rule (eg, the transmitter randomly generates a probability P).
  • the probability P of each element of the complex sequence taking a value of 0 is greater than or equal to 1/9; when the probability P is equal to 1/9, if each element of the complex sequence takes the other 8 The probability of the value is evenly distributed. Then, the probability that each element of the complex sequence takes a value of 0 and takes the other eight values is the same, both being 1/9; when the probability P is greater than 1/9, for example, the probability P is equal to 1/3. If the probability that each element of the complex sequence takes the other 8 values is evenly distributed, then the probability that each element of the complex sequence takes a value of 0 is 1/3, and the probability of taking the other 8 values is 1/12, or, let the probability P be equal to 1/2. If the probability that each element of the complex sequence takes the other 8 values is evenly distributed, then the probability that each element of the complex sequence takes a value of 0 is 1/2. The probability of taking the other 8 values is 1/16.
  • the transmitter determines the complex sequence to be used, and the determination includes:
  • each element of the column takes a probability P of zero value
  • the transmitter generates, by its random sequence generator, an index of each element of the complex sequence it needs to use in the above complex set, and determines which need to use according to the index and the above complex set
  • the probability that each element of the complex sequence takes a value of 0 is 1/2
  • the probability of taking the other eight values is 1/16
  • the range of values (0, 1) is divided into nine value intervals.
  • the first value interval is 1/2 of the value range (0, 1), and the other value ranges are 1/16 of the value range (0, 1), and then occur through random numbers.
  • the device generates L random numbers in the range of (0, 1), wherein if the random number is within the value interval (0, 0.5), the corresponding element index is 0, and if the random number is in the value interval (0.5, Within 0.5625), the corresponding element index is 1. For the same reason, if the random number is located in other value intervals, the corresponding element index can be determined, then, according to the index of the L elements and the above Sequence number set to determine the need to use a complex sequence. or,
  • the transmitter determines the initial sequence of the random sequence generator according to the system preset rule according to the identification information such as the number, the identification code, the location information, and the network address.
  • the transmitter determines the initial state of the random sequence generator according to the system preset rule according to the used data transmission resource, and takes a value of 0 according to each element of the complex sequence.
  • the probability P randomly generates an index of each element of the complex sequence to be used in the above complex set, and determines a complex sequence to be used according to the index and the above complex set.
  • determining a complex sequence to be used according to configuration signaling sent by the system for example, the system semi-statically or dynamically configuring a complex sequence that the transmitter needs to use by signaling; in this manner, the system can determine the complex number according to a preset rule.
  • Each element of the sequence takes a probability P of 0 value, and generates a complex sequence according to the probability, and sends it to the transmitter, for example, when the number of terminal transmitters of the access system is small or the position, distance, etc. are more dispersed, the setting is higher.
  • the probability P is set to a lower probability P when the number of terminal transmitters of the access system is large or when the positions, distances, and the like are relatively concentrated.
  • the data transmission resource is a data transmission resource used by the transmitter for data transmission.
  • the source may include a carrier, a time slot, a time-frequency resource, a spatial resource, and the like, and may be a definition or a form of a transmission resource unit, a transmission resource block, or a transmission resource set.
  • the elements in the complex sequence determined by the transmitter are not all 0, and the transmitter can also perform energy normalization by multiplying the determined complex sequence by a preset coefficient.
  • the transmitter processes the data symbols to be sent using the determined complex sequence to generate a sequence of data symbols;
  • the processing method may include:
  • the transmitter performs a spreading process on the data symbols to be transmitted using the determined complex sequence to generate a sequence of data symbols; wherein the spreading process refers to performing a complex number of data symbols to be transmitted and each element of the determined complex sequence. Multiply, forming a sequence of data symbols of the same length as the complex sequence. or,
  • the transmitter maps the data symbols to be transmitted into the determined complex sequence to generate a sequence of data symbols.
  • the transmitter transmits the generated sequence of data symbols; the sending method may include, but is not limited to, the transmitter forming the generated data symbol sequence on the data transmission resource (eg, carrier, time-frequency resources, etc.) and transmitting the signal. .
  • the data transmission resource eg, carrier, time-frequency resources, etc.
  • the transmitter determines a complex sequence to be used when performing data transmission, and the length of the complex sequence is L, where L is an integer greater than 1.
  • Each element of the complex sequence is from a complex set ⁇ 9,1,1+j,j,-1+j,-1,-1-j,-j,1-j ⁇ containing 9 complex values.
  • One of the nine complex values has a complex value of 0, and the probability that each element of the complex sequence takes a value of zero is P, where 0 ⁇ P ⁇ 1.
  • the values of the real part and the imaginary part of the nine complex values contained in the complex set are all from the ternary real number set ⁇ -1, 0, 1 ⁇ , then the complex set can be represented as containing 9 constellations
  • the two-dimensional complex constellation diagram of the point is shown in Figure 4, where (1,1)->1+j is taken as an example, which means that the real part takes the value 1, the imaginary part takes the value 1, and the corresponding complex value Is 1+j.
  • the transmitter or the system may determine the complex sequence to be used according to the probability that the real part of each element of the complex sequence takes different values and the probability that the imaginary part of each element takes a different value. .
  • the values of the real part and the imaginary part of each element of the complex sequence are derived from the ternary real number set ⁇ -1, 0, 1 ⁇ , so that the probability that the real part of each element of the complex sequence takes different values is ⁇ 1/4, 1/2, 1/4 ⁇ , the probability that the imaginary part of each element of the complex sequence takes different values is ⁇ 1/4, 1/2, 1/4 ⁇ , then, the complex sequence
  • the probability P of each element taking 0 value is 1/4, and the probability of taking 1, j, -1, -j is 1/8, and the values are 1+j, -1+j, -1-j
  • the probability of 1-j is 1/16.
  • the probability that the real and imaginary parts of each element of the complex sequence take different values may be determined according to a fixed configuration of the system, or determined according to configuration signaling sent by the system, or by the system.
  • the first preset rule is determined, or determined by the transmitter according to the second preset rule, which is equivalent to the probability P of each element of the complex sequence taking a value of 0, may be determined according to a fixed configuration of the system, or determined according to configuration signaling sent by the system. Or determined by the system according to the first preset rule, or determined by the transmitter according to the second preset rule.
  • the transmitter determines the complex sequence to be used, and the determination may include:
  • the probability that the real part of each element of the complex sequence takes different values is ⁇ 1 /4, 1/2, 1/4 ⁇
  • the probability that the imaginary part takes different values is ⁇ 1/4, 1/2, 1/4 ⁇
  • the value range (0, 1) is divided into three values.
  • the interval is 1/2 of the range of values (0, 1).
  • L random numbers in the range of (0, 1) are generated by the random number generator, where The random number is within the value range (0, 0.25), corresponding to The real part of the prime is -1.
  • the real part of the corresponding element is 0. If the random number is within the value interval (0.75, 1), the corresponding element is true. The part is 1, for the same reason, for the imaginary part of each element of the complex sequence, L random numbers in the range of (0, 1) are generated by the random number generator, wherein if the random number is in the value interval (0, 0.25) Inside, the imaginary part of the corresponding element is -1. If the random number is within the value interval (0.5, 0.75), the imaginary part of the corresponding element is 0. If the random number is within the value interval (0.75, 1), Then, the imaginary part of the corresponding element is 1, then the complex sequence to be used can be determined according to the real part and the imaginary part of the L elements. or,
  • the machine determines the initial state of the random sequence generator according to the system preset rule according to its number, identification code, location, network address and other identification information, and takes different values according to the real part and the imaginary part of each element of the complex sequence.
  • determining a complex sequence to be used according to configuration signaling sent by the system for example, the system semi-statically or dynamically configuring a complex sequence that the transmitter needs to use by signaling; in this manner, the system can determine the complex number according to a preset rule.
  • the probability that the real part and the imaginary part of each element of the complex sequence take a value of 0 can be set relatively high, when the terminal of the access system transmits When the number of machines is large or the distribution of positions, distances, etc. is concentrated, the probability that the real part and the imaginary part of each element of the complex sequence take a value of 0 can be set relatively low.
  • the transmitter processes the data symbols to be sent by using the determined complex sequence to generate a sequence of data symbols.
  • the processing method is similar to that in Embodiment 1, and details are not described herein again.
  • the transmitter transmits the generated sequence of data symbols; the method of transmitting is similar to that of Embodiment 1, and will not be described again.
  • the transmitter determines a complex sequence to be used when performing data transmission, and the length of the complex sequence is L, where L is an integer greater than 1.
  • Each element of the complex sequence is from a complex set ⁇ 9,1,1+j,j,-1+j,-1,-1-j,-j,1-j ⁇ containing 9 complex values.
  • One of the nine complex values has a complex value of 0, and the probability that each element of the complex sequence takes a value of zero is P, where 0 ⁇ P ⁇ 1.
  • the values of the real part and the imaginary part of the nine complex values contained in the complex set are all from the ternary real number set ⁇ -1, 0, 1 ⁇ , then the complex set can be represented as containing 9 constellations
  • the two-dimensional complex constellation of points, as shown in Figure 3, shows the complex value corresponding to each constellation point.
  • the complex set may further comprise a plurality of subsets, each subset containing one or more complex values, and each element of the complex sequence has different probability of taking values from different subsets; for example,
  • the above complex set constitutes three subsets, respectively ⁇ 0 ⁇ , ⁇ 1, j, -1, -j ⁇ , ⁇ 1+j, -1+j, -1-j, 1-j ⁇ , each of the complex sequences
  • the probability that the elements take values from the first subset is 1/4
  • the probability of taking values from the second subset is 1/2
  • the probability of taking values from the third subset is 1/4
  • each of the complex sequences The probability that the elements take the value of 0 in the first subset is 1/4, and the probability of taking 1, j, -1, -j in the second subset is 1/8, taking 1+j in the third subset,
  • the probability of -1+j, -1-j, and 1-j is 1/16.
  • the probability that each element of the complex sequence takes values from different subsets may be fixedly configured by the system, or configured by the signaling sent by the system, or determined by the system according to the first preset rule, or Determined by the transmitter according to a second preset rule.
  • the complex sequence to be used can be determined based on the probability that each element of the complex sequence takes values from different subsets.
  • One implementation is to determine the subset to which each element of the complex sequence belongs and the value of each element according to the probability that each element of the complex sequence takes values from different subsets; for example, each element of the complex sequence from the first The probability of taking values in one subset is 1/4, the probability of taking values from the second subset is 1/2, and the probability of taking values from the third subset is 1/4.
  • determine Every The value of the element if the element takes the value from the first subset, the element takes a value of 0. If the element is uniformly valued from the second subset, the probability of taking the values 1, j, -1, -j is It is 1/4.
  • Yet another implementation is to determine the probability that each element of the complex sequence takes a different value from the real part and the imaginary part according to the probability that each element of the complex sequence takes values from different subsets, and determines each element of the complex sequence.
  • the real part and the imaginary part further determine each element of the complex sequence; for example, the probability that each element of the complex sequence takes a value of 0 is 1/4, and the values of 1, j, -1, and -j are all 1 /8, the probability of taking 1+j, -1+j, -1-j, 1-j is 1/16, then the real and imaginary parts of each element of the complex sequence take the value -1
  • the probability of 0, 1 is 1/4, 1/2, and 1/4, respectively, and the real part and the imaginary part of each element of the complex sequence can be determined according to the probability, thereby obtaining each element of the complex sequence.
  • each element of the complex sequence takes a value of 0 and takes other values or the elements of the complex sequence from different children according to the probability that the real and imaginary parts of each element of the complex sequence take different values.
  • the probability of concentrating the values and used to determine each element of the complex sequence as described in Example 2.
  • the transmitter determines the complex sequence to be used, and the determination may include:
  • the transmitter determines the initial sequence of the random sequence generator according to the system preset rule according to the identification information such as the number, the identification code, the location information, and the network address.
  • the identification information such as the number, the identification code, the location information, and the network address.
  • the transmitter determines the initial state of the random sequence generator according to the system preset rule according to the used data transmission resource, and According to the probability that each element of the complex sequence takes values from different subsets, the index or real part and imaginary part of each element of the complex sequence to be used are randomly generated, thereby obtaining a complex sequence to be used. or,
  • determining a complex sequence to be used according to configuration signaling sent by the system for example, the system semi-statically or dynamically configuring a complex sequence that the transmitter needs to use by signaling; in this manner, the system can determine the complex number according to a preset rule.
  • the probability that each element of the sequence takes values from different subsets, and generates an index or real part, imaginary part of each element of the complex sequence according to the probability, thereby obtaining a complex sequence and transmitting to the transmitter; and, when accessing the system When the number of terminal transmitters is small or the position, distance, etc.
  • the probability that each element of the complex sequence is taken from the subset containing 0 is set relatively higher, when the number of terminal transmitters in the access system is
  • the probability that each element of the complex sequence takes a value from a subset containing 0 can be set relatively low when there are more times or when the distribution of positions, distances, etc. is more concentrated.
  • the transmitter processes the data symbols to be sent by using the determined complex sequence to generate a sequence of data symbols.
  • the processing method is similar to that in Embodiment 1, and details are not described herein again.
  • the transmitter transmits the generated sequence of data symbols; the method of transmitting is similar to that of Embodiment 1, and will not be described again.
  • the transmitter determines a complex sequence to be used when performing data transmission, and the length of the complex sequence is L, where L is an integer greater than 1.
  • Each element of the complex sequence is from a complex set of 5 complex values ⁇ 0, 1+j, -1+j, -1-j, 1-j ⁇ , and one of the five complex values has a complex value of 0, and the probability that each element of the complex sequence takes a value of 0 is P, where 0 ⁇ P ⁇ 1.
  • the values of the real part and the imaginary part of the non-zero values (ie, 1+j, -1+j, -1-j, 1-j) of the five complex values included in the above complex set are derived from The set of binary real numbers ⁇ -1, 1 ⁇ , then the set of complex numbers can be represented as a two-dimensional complex constellation diagram containing five constellation points, as shown in Figure 5, which shows the complex value corresponding to each constellation point.
  • the probability P of each element of the complex sequence taking a value of 0 may be fixedly configured by the system, or configured by the signaling sent by the system, or determined by the system according to the first preset rule, or by the transmitter according to the The second preset rule is determined.
  • the probability P of each element of the complex sequence taking a value of 0 is greater than or equal to 1/5; when the probability P is equal to 1/5, if each element of the complex sequence takes the other 4 The probability of the value is evenly distributed. Then, the probability that each element of the complex sequence takes a value of 0 and takes the other four values is the same, both being 1/5; when the probability P is greater than 1/5, for example, the probability P is equal to 1/3. If the probability that each element of the complex sequence takes the other four values is evenly distributed, then the probability that each element of the complex sequence takes a value of 0 is 1/3, and the probability of taking the other four values is 1/6, or, let the probability P be equal to 1/2. If the probability that each element of the complex sequence takes the other 4 values is evenly distributed, then the probability that each element of the complex sequence takes a value of 0 is 1/2. The probability of taking the other four values is 1/8.
  • the transmitter determines the complex sequence to be used, and the determination method is similar to that of Embodiment 1, and will not be described again.
  • the transmitter processes the data symbols to be sent by using the determined complex sequence to generate a sequence of data symbols.
  • the processing method is similar to that in Embodiment 1, and details are not described herein again.
  • the transmitter transmits the generated sequence of data symbols; the method of transmitting is similar to that of Embodiment 1, and will not be described again.
  • the transmitter determines a complex sequence to be used when performing data transmission, and the length of the complex sequence is L, where L is an integer greater than 1.
  • Each element of the complex sequence is derived from a complex set ⁇ 0,1,j,-1,-j ⁇ containing five complex values, one of the five complex values being a complex value of 0, and the complex sequence
  • the probability that each element takes a value of zero is P, where 0 ⁇ P ⁇ 1.
  • the values of the real part and the imaginary part of the five complex values included in the above complex set are all derived from the ternary real number set ⁇ -1, 0, 1 ⁇ , and at least the real part and the imaginary part are at least There is a 0: the real part and the imaginary part are all 0, that is, the 0th constellation point represents 0; the real part and the imaginary part have a value of 0, that is, the other four constellation points represent 1, j, -1 , -j.
  • the complex set can be represented as a two-dimensional complex constellation comprising five constellation points, as shown in Figure 6, which shows the complex value corresponding to each constellation point.
  • the probability P of each element of the complex sequence taking a value of 0 can be fixedly configured by the system, or by the system
  • the signaling configuration sent is determined by the system according to the first preset rule or determined by the transmitter according to the second preset rule.
  • the probability P of each element of the complex sequence taking a value of 0 is greater than or equal to 1/5; when the probability P is equal to 1/5, if each element of the complex sequence takes the other 4 The probability of the value is evenly distributed. Then, the probability that each element of the complex sequence takes a value of 0 and takes the other four values is the same, both being 1/5; when the probability P is greater than 1/5, for example, the probability P is equal to 1/3. If the probability that each element of the complex sequence takes the other four values is evenly distributed, then the probability that each element of the complex sequence takes a value of 0 is 1/3, and the probability of taking the other four values is 1/6, or, let the probability P be equal to 1/2. If the probability that each element of the complex sequence takes the other 4 values is evenly distributed, then the probability that each element of the complex sequence takes a value of 0 is 1/2. The probability of taking the other four values is 1/8.
  • the transmitter determines the complex sequence to be used, and the determination method is similar to that of Embodiment 1, and will not be described again.
  • the transmitter processes the data symbols to be sent by using the determined complex sequence to generate a sequence of data symbols.
  • the processing method is similar to that in Embodiment 1, and details are not described herein again.
  • the transmitter transmits the generated sequence of data symbols; the method of transmitting is similar to that of Embodiment 1, and will not be described again.
  • the transmitter determines a complex sequence to be used when performing data transmission, and the length of the complex sequence is L, where L is an integer greater than 1.
  • Each element of the complex sequence is from a complex set ⁇ 9,1,1+j,j,-1+j,-1,-1-j,-j,1-j ⁇ containing 9 complex values.
  • One of the nine complex values has a complex value of 0, and the ratio of the 0 elements in the complex sequence is R, where 0 ⁇ R ⁇ (L-1)/L.
  • the values of the real part and the imaginary part of the nine complex values contained in the complex set are all from the ternary real number set ⁇ -1, 0, 1 ⁇ , then the complex set can be represented as containing 9 constellations
  • the two-dimensional complex constellation of points, as shown in Figure 3, shows the complex value corresponding to each constellation point.
  • the ratio R of the 0 elements in the complex sequence may be fixedly configured by the system, or configured by the signaling sent by the system, or determined by the system according to the first preset rule (for example, the system adjusts according to the number of access users)
  • the whole ratio R) is determined by the transmitter according to a second preset rule (for example, the transmitter randomly generates a ratio R).
  • the ratio R of the element satisfies 1/4 ⁇ R ⁇ 3/4, that is, there are at least one 0 in the complex sequence, and at most 3 zeros.
  • the transmitter determines the complex sequence to be used, and the determination may include:
  • the transmitter uses a randomly generated method to determine the need to use a complex sequence; for example, according to the ratio R of the 0 elements in the complex sequence, the transmitter generates its complex sequence through its random sequence generator, for example, randomly selecting L*R Elements, let these elements have a value of 0, and then randomly generate other non-zero elements. or,
  • the transmitter determines the initial sequence of the random sequence generator according to the system preset rule according to the identification information such as the number, the identification code, the location information, and the network address. State, and randomly generate the complex sequence to be used according to the ratio R of the 0 elements in the complex sequence. or,
  • the transmitter determines the initial state of the random sequence generator according to the system preset rule according to the used data transmission resource, and according to the ratio R of the 0 element in the complex sequence, Randomly generate the complex sequence that needs to be used.
  • the system fixedly configures the complex sequence used by the transmitter, and the transmitter determines the complex sequence to be used according to the configuration; in this manner, the 0 element of the complex sequence
  • the ratio R is fixed in the system. or,
  • the ratio R of the 0 elements in the complex sequence may be determined according to a preset rule, and the complex sequence is configured according to the ratio, and sent to the transmitter, for example, when the number of terminal transmitters of the access system is small or the position, distance, etc. are more dispersed A relatively high ratio R is used, and a relatively low ratio R is used when the number of terminal transmitters of the access system is large or when the positions, distances, and the like are relatively concentrated. or,
  • (6) determining, by a random selection method, a complex sequence to be used from a preset complex sequence set; for example, the ratio of the 0 elements of each complex sequence in the preset complex sequence set is R, and the transmitter passes the random number thereof.
  • the generator generates an index from which the complex sequence to be used is determined from the preset set of complex sequences. or,
  • the identification information such as the identification code, the location information, the network address, and the like determine the index of the complex sequence used by the index, and determine the complex sequence to be used from the preset complex sequence set according to the index. or,
  • determining, according to the data transmission resource, a complex sequence to be used from the preset complex sequence set for example, the transmitter determines a preset complex sequence set according to an association relationship between the data transmission resource and the complex sequence set, the preset complex sequence The ratio of the 0 elements of each complex sequence in the set is R, and then the transmitter determines the complex sequence to be used from the preset complex sequence set, wherein the relationship between the data transmission resource and the complex sequence set can be
  • the system is fixedly configured, or configured by the system through signaling, or implicitly indicated by the system. or,
  • (9) determining, according to the data symbol to be transmitted, a complex sequence to be used from the preset complex sequence set; for example, the ratio of the 0 elements of each complex sequence in the preset complex sequence set is R, and the transmitter according to the data symbol and Corresponding relationship between the complex sequences in the preset complex sequence set, the complex sequence corresponding to the data symbol to be transmitted is determined from the preset complex sequence set as a complex sequence to be used, wherein the data symbol and the preset complex sequence set
  • the correspondence between the complex sequences in the system may be preset by the system, or configured by the system through signaling, or implicitly indicated by the system. or,
  • (11) determining, from the preset complex sequence set, a complex sequence to be used according to configuration signaling sent by the system; for example, the system semi-statically or dynamically configuring an index of a complex sequence used by the transmitter by using a signal according to the index Determining a complex sequence to be used from the preset complex sequence set; in this manner, the proportion of the 0 elements of the complex sequence indicated by the system may be R, or each of the preset complex sequence sets The ratio of the 0 elements of the complex sequence is R.
  • the foregoing preset complex sequence set may be determined by any one of the following methods:
  • the transmitter is determined according to a fixed configuration of the system; for example, the system preset or the system is fixedly configured with a complex sequence set used by the transmitter; or
  • the transmitter is determined according to signaling sent by the system; for example, the system semi-statically or dynamically configures a complex sequence set used by the transmitter through signaling; or
  • the transmitter is determined from the set of Q complex sequences according to a fixed configuration of the system; for example, the system is fixedly configured with an index of a set of complex sequences used by the transmitter; or
  • the transmitter determines from the set of Q complex sequences according to the signaling sent by the system; for example, the system semi-statically or dynamically configures the index of the complex sequence set used by the transmitter by signaling; or
  • the transmitter determines from the set of Q complex sequences according to the transmitter identification information; for example, the transmitter determines the index of the complex sequence set used by the transmitter according to its identification number, identity code, location information, network address, and the like. ;or,
  • the transmitter determines from the Q complex sequence sets according to the data transmission resource; for example, the transmitter determines the preset complex sequence set associated with the used data transmission resource according to the association relationship between the data transmission resource and the complex sequence set. ;or,
  • the ratio R of the 0 elements of the complex sequence used by the transmitter is determined from the Q complex sequence sets; for example, the system predetermines the Q complex sequence sets, and the 0 elements of the complex sequence in each complex sequence set Different ratios, the transmitter selects a set of complex sequence sequences with the closest ratio or the same ratio from the Q complex sequence sets as the preset complex sequence set according to the ratio R of the 0 elements of the complex sequence used;
  • the Q complex sequence set may be preset by the system or configured by the system, and Q is an integer greater than 1.
  • the number of cross-correlation between any two complex sequences in the preset complex sequence set is less than or equal to a preset cross-correlation number, wherein the preset cross-correlation coefficient It may be preset by the system or configured by the system; according to the optional situation, the system may preset or set a complex sequence set satisfying the condition by signaling, or the transmitter may be configured according to the system preset or the system is configured by signaling.
  • the preset cross-correlation coefficient determines a set of complex sequence that satisfies the condition, or the set of Q complex sequences preset by the system or configured by the system satisfies the condition for the transmitter to select for use.
  • the transmitter processes the data symbols to be sent by using the determined complex sequence to generate a sequence of data symbols.
  • the processing method is as described in the first embodiment, and details are not described herein.
  • the transmitter sends the generated sequence of data symbols; the sending method is as described in the first embodiment, and details are not described herein.
  • Another data transmission method provided by the embodiment of the present invention is applied to a receiver. As shown in FIG. 7, the method includes:
  • Step 201 Receive signals transmitted by K transmitters, where K is an integer greater than or equal to 1.
  • the signals transmitted by the K transmitters are signals that the K transmitters form and transmit on the same data transmission resource.
  • Step 202 Determine a receiving detector to be used according to the complex sequence used by the K transmitters.
  • a receive detector to be used is determined from a receiver-supported receive detector based on a ratio of zeros in the complex sequence used by the K transmitters.
  • the receiver detector supported by the receiver includes at least one of the following:
  • PIC Parallel Interference Cancellation
  • MPA Message Passing Algorithm
  • Step 203 Perform receiving detection on the received signal by using the determined receiving detector, and acquire data sent by the K transmitters.
  • Another data transmission method provided by an embodiment of the present invention first receives signals transmitted by K transmitters, where K is an integer greater than or equal to 1; then, determining, according to the complex sequence used by the K transmitters, Receiving a detector; finally receiving detection of the received signal using the determined receiving detector, and acquiring data transmitted by the K transmitters.
  • the receiver uses a fixed receiving detector to detect the signal transmitted by the transmitter, and the receiver in the embodiment of the present invention can select the appropriate receiving detector according to the complex sequence used by the transmitter, and can effectively control the receiving detection of the receiver. the complexity.
  • the embodiment of the present invention further provides another data transmission device 20, where the data transmission device 20 is disposed in a receiver, and the receiver in the embodiment of the present invention may be a base station receiver, a terminal receiver or other type of receiver. This embodiment of the present invention does not limit this.
  • the data transmission device 20 includes:
  • the receiving module 21 is configured to: receive signals transmitted by the K transmitters, where K is an integer greater than or equal to 1.
  • the second determining module 22 is configured to: determine, according to the complex sequence used by the K transmitters, a receiving detector that needs to be used;
  • the detecting module 23 is configured to: receive and detect the received signal by using the receiving detector determined by the second determining module 22, and acquire data sent by the K transmitters.
  • the signals transmitted by the K transmitters are signals that are formed and transmitted by the K transmitters on the same data transmission resource.
  • the second determining module 22 is configured to:
  • a receive detector to be used is determined from a receiver-supported receive detector based on a ratio of zeros in the complex sequence used by the K transmitters.
  • the receiver supported by the receiver includes at least one of the following:
  • a messaging algorithm receives the detector
  • Another data transmission apparatus provided by an embodiment of the present invention first receives signals transmitted by K transmitters, where K is an integer greater than or equal to 1; and then determines a reception detection to be used according to a complex sequence used by K transmitters. Finally, the received signal is received and detected using the determined receiving detector, and the data transmitted by the K transmitters is acquired.
  • the receiver uses a fixed receiving detector to detect the signal transmitted by the transmitter, and the receiver in the embodiment of the present invention can select the appropriate receiving detector according to the complex sequence used by the transmitter, and can effectively control the receiving detection of the receiver. the complexity.
  • K transmitters simultaneously perform data transmission on the same data transmission resource.
  • each transmitter determines a complex sequence to be used, including: the complex sequence has a length L, and each element of the complex sequence is from a complex set containing N complex values (eg, , a complex set containing 9 complex values ⁇ 0,1,1+j,j,-1+j,-1,-1-j,-j,1-j ⁇ , or a complex number containing 5 complex values
  • one of the N complex values has a complex value of 0, and the probability that each element of the complex sequence is 0 Is P, wherein L is an integer greater than 1, and N is an integer greater than or equal to 2, 1/N ⁇ P ⁇ 1.
  • each transmitter determines a complex sequence to be used, including: the complex sequence has a length L, and each element of the complex sequence is from a complex set containing N complex values ( For example, a complex set of 9 complex values ⁇ 0,1,1+j,j,-1+j,-1, -1-j, -j, 1-j ⁇ , or a complex set containing 5 complex values ⁇ 0, 1+j, -1+j, -1-j, 1-j ⁇ ), these N complexes
  • the value has a complex value of 0, and the ratio of the 0 elements in the complex sequence is R, where L is an integer greater than 1, N is an integer greater than or equal to 2, 1/L ⁇ R ⁇ (L-1 ) / L.
  • Each transmitter then processes the data symbols to be transmitted using the determined complex sequence, generates a sequence of data symbols and transmits.
  • the complex sequences used by the K transmitters are non-orthogonal, but do not preclude the orthogonal sequences used by a particular two transmitters.
  • the K transmitters use the same data transmission resources (such as time-frequency resources) to simultaneously transmit data. After being propagated through the wireless channel, the receiver receives the superposition signal of the signals transmitted by the K transmitters.
  • the receiver When the receiver performs the reception detection, since the K transmitters transmit data on the same data transmission resource, the receiver can use an effective reception detector (for example, serial interference cancellation SIC) according to the complex sequence used by each transmitter. To detect the data sent by each transmitter.
  • an effective reception detector for example, serial interference cancellation SIC
  • the receiver can also Determining a receive detector to be used from a receiver-supported receive detector based on a complex sequence used by the K transmitters, i.e., determining from a receiver-supported receive detector based on a ratio of zeros in the complex sequence used by the K transmitters Receive detectors to be used, for example, when the ratio of 0 in the complex sequence used by K transmitters is less than a preset value, using a serial interference cancellation SIC receive detector or a parallel interference cancellation PIC receive detector when K transmit When the ratio of 0 in the complex sequence used by the machine is greater than the preset value, the message passing algorithm MPA receiving detector or maximum likelihood ML receiving detector is used, or when the serial interference canceling SIC receiving detector is combined with the minimum mean square error (Minimum When the Mean Square Error (MMSE) algorithm performs
  • MMSE Minimum Mean Square Error
  • each element of the complex sequence used is from a complex set containing N complex values and one of which has a complex value of 0, it can be effectively ensured that K transmitters using the same data transmission resource select a complex sequence of low cross-correlation
  • the data symbols to be transmitted are processed and transmitted, so that interference between multiple users can be effectively controlled, and a higher number of access users can be supported.
  • the probability P of each element in the complex sequence is 0 or the proportion of 0 elements in the complex sequence is controlled.
  • R can effectively control the receiver detection complexity of the receiver. Therefore, the embodiment of the present invention can effectively control inter-user interference and effectively control the receiver detection complexity, thereby effectively improving multi-user access communication performance, realizing multi-user overload access communication and/or multi-user unscheduled connection. Incoming communication.
  • the MC-CDMA system can effectively control the inter-user interference and the reception detection complexity, thereby effectively improving the multi-user access communication performance and realizing multi-user overload access communication; Even a large number of user terminals can request access to the system at the same time, which can effectively improve system access efficiency; when applied to a schedule-free access scenario, the user terminal can transmit data when transmitting data, and multiple user terminals can simultaneously use the same data transmission. Data transmission for data can reduce system scheduling signaling, reduce terminal access delay, and achieve non-scheduled access and communication for multiple user terminals.
  • the division of modules is only a logical function division, and there may be another division manner in actual implementation.
  • the modules shown or discussed may be connected to each other through some interface, and may be in electrical, mechanical or other form.
  • the modules may or may not be physically separate and may or may not be physical units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • the functional modules in the embodiments of the present invention may be integrated into one processing module, or each module may be physically included, or two or more modules may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of hardware plus software function modules.
  • the above-described integrated modules implemented in the form of software functional units can be stored in a computer readable storage medium.
  • the above software function modules are stored in a storage medium, including several fingers
  • the steps used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform the methods of the embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store a program code.
  • the technical solution provided by the embodiment of the present invention can effectively control inter-user interference and effectively control the receiver detection complexity of the receiver, thereby effectively improving multi-user access communication performance, realizing multi-user overload access communication and/or scheduling-free. Access to communications.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本文公布一种数据传输方法及装置,首先确定需要使用的复数序列,该复数序列的长度为L,该复数序列的每个元素来自于包含N个复数值的复数集合,且N个复数值中有一个复数值为0,该复数序列的每个元素为0的概率为P且0<P<1或该复数序列中0元素的比例为R且0≤R≤(L-1)/L,其中,L为大于1的整数,N为大于或等于2的整数;然后使用该复数序列对待发送的数据符号进行处理,生成数据符号序列;最后发送该数据符号序列。

Description

一种数据传输方法及装置 技术领域
本申请涉及但不限于无线通信技术。
背景技术
上行多用户接入通信可以通过不同的多址接入技术实现,例如,时分多址接入(Time Division Multiple Access,TDMA)、频分多址接入(Frequency Division Multiple Access,FDMA)、码分多址接入(Code Division Multiple Access,CDMA)和空分多址接入(Space Division Multiple Access,SDMA)。其中,利用码分多址接入CDMA技术实现上行多用户接入通信可以提供优良的接入性能,已被多个无线通信标准采纳。
对于采用CDMA技术的接入过程,首先,多个接入终端分别采用一定长度的扩展序列(例如由L个元素构成的长度为L的扩展序列,其中,元素可以是数字符号)对待发送数据经过幅相调制(例如正交幅度调制(Quadrature Amplitude Modulation,QAM))后的数据符号进行扩展处理;其中,扩展处理是指每个调制后的数据符号与扩展序列的每个元素相乘形成与所采用的扩展序列长度相同的数据符号序列的过程;该过程中,每个调制后的数据符号(例如待发送数据经过QAM调制后对应的星座点符号)与长度为L的扩展序列的每个元素相乘使得每个调制后的数据符号被扩展为与所采用的扩展序列长度相同的数据符号序列,即每个调制后的数据符号会被扩展为L个符号,这相当于每个调制后的数据符号分别通过该长度为L的扩展序列承载;然后,多个接入终端的经过扩展处理得到的数据符号序列可以在相同的时频资源上发送;最后,基站接收到多个接入终端的扩展信号经过无线传播后叠加在一起的信号,通过多用户接收检测技术从接收到的叠加信号中分离出每个终端的有用信息。
CDMA属于扩频通信的范畴,因为终端调制后的数据符号采用长度为L的扩展序列进行扩展处理后会被扩展为L个符号,如果要求扩展处理后的L个符号的传输时间等于扩展前的数据符号的传输时间,那么传输扩展处理后 的L个符号所需的带宽需要扩展L倍,所以扩展序列常被称为扩频序列。
接入终端的经过扩展处理后得到的符号可以通过多载波技术(例如正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)以及滤波器组多载波(Filter-Bank Multi-Carrier,FBMC))来传输,码分多址接入与多载波技术的结合即多载波码分多址接入技术(Multi Carrier-Code Division Multiple Access,MC-CDMA)。
在CDMA技术中,发射机的扩展处理过程比较简单:把每个调制后的数据符号与长度为L的扩展序列的每个元素相乘得到扩展处理后的L个符号,然后通过单载波技术或多载波技术发射出去;而基站接收机的接收过程则相对比较复杂。基站接收机如何准确的从叠加信号中分离出每个终端的有用数据信息,来保证CDMA系统的多址接入性能,是CDMA系统的关键,这涉及到两个方面,即扩展序列和接收机,其中,扩展序列的选取是性能基础,接收机的设计是性能保障。
为了获取优良的多址接入性能,不同终端采用的扩展序列之间需要有良好的互相关特性。如果采用单载波码分复用技术,则终端采用的扩展序列还需要具有良好的自相关特性,来对抗多径时延扩展的影响;而多载波码分复用技术则可以依靠多载波技术来对抗多径时延扩展的影响,其扩展序列的设计可以着重考虑有利于接收机分离多用户信息的互相关特性。
在扩展序列的设计基础上,基站可以采用高性能的多用户接收检测技术来分离多用户信息,获取优良的多址接入性能,例如串行干扰消除(Successive Interference Cancellation,SIC)接收检测技术,不过其复杂度也相对比较高。
扩展序列的选取和设计是CDMA技术的重要方面。直接序列扩频码分多址接入(Direct Sequence-Code Division Multiple Access,DS-CDMA)技术是CDMA技术中一种常用的技术,已被作为多个无线通信标准与系统的上行多用户接入技术,其扩展序列采用的是简单的二元伪随机(Pseudo-Noise,PN)实数序列。并且,基于二元伪随机实数序列的DS-CDMA也被应用于MC-CDMA技术。二元伪随机实数序列也可以称为二进制伪随机序列,其每个元素或符号的取值通常表示为0或1,也可以进一步表示为双极性序列, 即0表示为+1,1表示为-1,或者,0表示为-1,1表示为+1。
扩展序列的设计还需要考虑扩展序列的长度,扩展序列越长,不同接入终端采用的扩展序列之间的低互相关性越容易保证,并且,越容易选取出更多的具有低互相关性的序列,从而可以支持更多的终端同时接入。如果同时接入的终端数量大于扩展序列的长度,则认为系统处于过载状态。
支持大量用户同时接入系统进行通信是未来无线通信的一个重要需求,其可以考虑通过设计基于码分多址接入的具备较好过载能力的多用户接入通信系统来实现。降低通信时延是未来无线通信的另一个重要需求,其可以通过设计基于码分多址接入的具备免调度接入特点的多用户接入通信系统来实现。
从多用户信息论角度来看,上行采用非正交多址接入方式可以取得比正交多址接入方式更大的系统容量或边缘吞吐量,因此,为了提供灵活的系统设计,支持更多的用户同时接入,不同接入终端可以采用非正交的扩展序列。由于不同接入终端的扩展序列不是互相正交,每个接入终端的接收检测性能会随着同时接入的终端数量的增加而变差,当系统过载时多用户之间的干扰会变得更加严重。
目前,在码分多址接入CDMA技术采用的是基于二元伪随机实数序列的扩展序列,长度相对较长,当大量用户终端接入系统时,或者当系统过载时,采用传统接收机(例如RAKE接收机)的性能会变差,而采用干扰消除接收机(例如采用SIC技术的接收机)的接收检测复杂度很高、时延也很大;如果采用长度较短的二元伪随机实数序列,则序列之间的低互相关性不容易保证,当大量用户终端接入系统时,或者当系统过载时,会产生严重的多用户间干扰,进而会影响多用户接收检测性能和多用户接入通信性能。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供了一种数据传输方法及装置,用以解决相关技术中存 在的多用户间干扰严重、接收检测复杂度高从而影响多用户接收检测性能和多用户接入通信性能的问题。
本发明实施例提供了一种数据传输方法,该方法包括:
确定需要使用的复数序列,所述复数序列的长度为L,所述复数序列的每个元素来自于包含N个复数值的复数集合,且所述N个复数值中有一个复数值为0,所述复数序列的每个元素为0的概率为P且0<P<1或所述复数序列中0元素的比例为R且0≤R≤(L-1)/L,其中,L为大于1的整数,N为大于或等于2的整数;
使用所述复数序列对待发送的数据符号进行处理,生成数据符号序列;
发送所述数据符号序列。
可选的,所述复数序列的每个元素为0的概率P大于或等于1/N;或者,所述复数序列的每个元素为0的概率P大于或等于每个元素为所述N个复数值中其他非零值的概率。
可选的,所述复数集合包含的N个复数值构成多个子集,每个子集中包含一个或多个复数值,所述复数序列的每个元素从不同子集中取值的概率不同。
可选的,所述复数序列中0元素的比例R满足1/L≤R≤(L-1)/L。
可选的,所述复数序列的每个元素为0的概率P或所述复数序列中0元素的比例R是根据系统固定配置确定的;或,
所述复数序列的每个元素为0的概率P或所述复数序列中0元素的比例R是根据所述系统发送的配置信令确定的;或,
所述复数序列的每个元素为0的概率P或所述复数序列中0元素的比例R是由所述系统根据第一预设规则确定的;或,
所述复数序列的每个元素为0的概率P或所述复数序列中0元素的比例R是由发射机根据第二预设规则确定的。
可选的,所述复数序列中的元素不全为0。
可选的,所述复数集合包含的N个复数值的实部与虚部的取值均来自于 M元实数集合;或者,所述复数集合包含的N个复数值中的非零值的实部与虚部的取值均来自于M元实数集合;其中,M为大于或等于2的整数。
可选的,所述M元实数集合包括:
当M为大于2的奇数时,[-(M-1)/2,(M-1)/2]范围内的M个整数组成的集合;或,
当M为大于或等于2的偶数时,[-(M-1),(M-1)]范围内的M个奇数组成的集合;或,
当M为大于2的奇数时,[-(M-1)/2,(M-1)/2]范围内的M个整数分别乘以第一预设系数得到的M个实数组成的集合;或,
当M为大于或等于2的偶数时,[-(M-1),(M-1)]范围内的M个奇数分别乘以第二预设系数得到的M个实数组成的集合。
可选的,所述确定需要使用的复数序列包括:
采用随机生成的方式确定所述复数序列;或,
根据发射机身份识别信息确定所述复数序列;或,
根据数据传输资源确定所述复数序列;或,
根据系统固定配置确定所述复数序列;或,
根据系统发送的配置信令确定所述复数序列;或,
采用随机选择的方式从预设复数序列集合中确定所述复数序列;或,
根据所述发射机身份识别信息从所述预设复数序列集合中确定所述复数序列;或,
根据数据传输资源从所述预设复数序列集合中确定所述复数序列;或,
根据待发送数据符号从所述预设复数序列集合中确定所述复数序列;或,
根据所述系统固定配置从所述预设复数序列集合中确定所述复数序列;或,
根据所述系统发送的配置信令从所述预设复数序列集合中确定所述复数序列。
可选的,所述发射机身份识别信息包括以下至少一个:所述发射机编号、所述发射机身份识别码、所述发射机位置信息、所述发射机网络地址。
可选的,所述预设复数序列集合是根据所述系统固定配置确定的;或,
所述预设复数序列集合是根据所述系统发送的信令确定的;或,
所述预设复数序列集合是根据所述系统固定配置从Q个复数序列集合中确定的;或,
所述预设复数序列集合是根据所述系统发送的信令从所述Q个复数序列集合中确定的;或,
所述预设复数序列集合是根据所述发射机身份识别信息从所述Q个复数序列集合中确定的;或,
所述预设复数序列集合是根据所述数据传输资源从所述Q个复数序列集合中确定的;或,
所述预设复数序列集合是根据所述复数序列中0元素的比例R从Q个复数序列集合中确定的;
其中,Q为不小于1的整数。
可选的,所述预设复数序列集合中的任意两个复数序列之间的互相关系数小于或等于预设互相关系数。
可选的,所述使用所述复数序列对待发送的数据符号进行处理包括:
使用所述复数序列对所述待发送的数据符号进行扩展处理;或,
将所述待发送的数据符号映射为所述复数序列。
可选的,所述发送所述数据符号序列包括:
将所述数据符号序列在数据传输资源上形成发射信号并发送。
本发明实施例还提供另一种数据传输方法,该方法包括:
接收K个发射机发射的信号,其中,K为大于或等于1的整数;
根据所述K个发射机使用的复数序列确定需要使用的接收检测器;
使用所述接收检测器对所述接收到的信号进行接收检测,获取所述K个 发射机发送的数据。
可选的,所述K个发射机发射的信号是所述K个发射机分别在相同的数据传输资源上形成并发射的信号。
可选的,所述根据所述K个发射机使用的复数序列确定需要使用的接收检测器包括:
根据所述K个发射机使用的复数序列中的0的比例从接收机支持的接收检测器中确定所述需要使用的接收检测器。
可选的,所述接收机支持的接收检测器包括以下至少一种:
串行干扰消除接收检测器;
并行干扰消除接收检测器;
消息传递算法接收检测器;
最大似然接收检测器。
本发明实施例提供一种数据传输装置,该装置包括:
第一确定模块,设置为:确定需要使用的复数序列,所述复数序列的长度为L,所述复数序列的每个元素来自于包含N个复数值的复数集合,且所述N个复数值中有一个复数值为0,所述复数序列的每个元素为0的概率为P且0<P<1或所述复数序列中0元素的比例为R且0≤R≤(L-1)/L,其中,L为大于1的整数,N为大于或等于2的整数;
处理模块,设置为:使用所述第一确定模块确定的复数序列对待发送的数据符号进行处理,生成数据符号序列;
发送模块,设置为:发送所述处理模块生成的数据符号序列。
可选的,所述复数序列的每个元素为0的概率P大于或等于1/N;或者,所述复数序列的每个元素为0的概率P大于或等于每个元素为所述N个复数值中其他非零值的概率。
可选的,所述复数集合包含的N个复数值构成多个子集,每个子集中包含一个或多个复数值,所述复数序列的每个元素从不同子集中取值的概率不同。
可选的,所述复数序列中0元素的比例R满足1/L≤R≤(L-1)/L。
可选的,所述复数序列的每个元素为0的概率P或所述复数序列中0元素的比例R是根据系统固定配置确定的;或,
所述复数序列的每个元素为0的概率P或所述复数序列中0元素的比例R是根据所述系统发送的配置信令确定的;或,
所述复数序列的每个元素为0的概率P或所述复数序列中0元素的比例R是由所述系统根据第一预设规则确定的;或,
所述复数序列的每个元素为0的概率P或所述复数序列中0元素的比例R是由发射机根据第二预设规则确定的。
可选的,所述复数序列中的元素不全为0。
可选的,所述复数集合包含的N个复数值的实部与虚部的取值均来自于M元实数集合;或者,所述复数集合包含的N个复数值中的非零值的实部与虚部的取值均来自于M元实数集合;其中,M为大于或等于2的整数。
可选的,所述M元实数集合包括:
当M为大于2的奇数时,[-(M-1)/2,(M-1)/2]范围内的M个整数组成的集合;或,
当M为大于或等于2的偶数时,[-(M-1),(M-1)]范围内的M个奇数组成的集合;或,
当M为大于2的奇数时,[-(M-1)/2,(M-1)/2]范围内的M个整数分别乘以第一预设系数得到的M个实数组成的集合;或,
当M为大于或等于2的偶数时,[-(M-1),(M-1)]范围内的M个奇数分别乘以第二预设系数得到的M个实数组成的集合。
可选的,所述第一确定模块是设置为:
采用随机生成的方式确定所述复数序列;或,
根据发射机身份识别信息确定所述复数序列;或,
根据数据传输资源确定所述复数序列;或,
根据系统固定配置确定所述复数序列;或,
根据系统发送的配置信令确定所述复数序列;或,
采用随机选择的方式从预设复数序列集合中确定所述复数序列;或,
根据所述发射机身份识别信息从所述预设复数序列集合中确定所述复数序列;或,
根据数据传输资源从所述预设复数序列集合中确定所述复数序列;或,
根据待发送数据符号从所述预设复数序列集合中确定所述复数序列;或,
根据所述系统固定配置从所述预设复数序列集合中确定所述复数序列;或,
根据所述系统发送的配置信令从所述预设复数序列集合中确定所述复数序列。
可选的,所述发射机身份识别信息包括以下至少一个:所述发射机编号、所述发射机身份识别码、所述发射机位置信息、所述发射机网络地址。
可选的,所述预设复数序列集合是根据所述系统固定配置确定的;或,
所述预设复数序列集合是根据所述系统发送的信令确定的;或,
所述预设复数序列集合是根据所述系统固定配置从Q个复数序列集合中确定的;或,
所述预设复数序列集合是根据所述系统发送的信令从所述Q个复数序列集合中确定的;或,
所述预设复数序列集合是根据所述发射机身份识别信息从所述Q个复数序列集合中确定的;或,
所述预设复数序列集合是根据所述数据传输资源从所述Q个复数序列集合中确定的;或,
所述预设复数序列集合是根据所述复数序列中0元素的比例R从Q个复数序列集合中确定的;
其中,Q为不小于1的整数。
可选的,所述预设复数序列集合中的任意两个复数序列之间的互相关系 数小于或等于预设互相关系数。
可选的,所述处理模块是设置为:
使用所述第一确定模块确定的复数序列对所述待发送的数据符号进行扩展处理,生成所述数据符号序列;或,
将所述待发送的数据符号映射为所述第一确定模块确定的复数序列,生成所述数据符号序列。
可选的,所述发送模块是设置为:
将所述处理模块生成的数据符号序列在数据传输资源上形成发射信号并发送。
本发明实施例提供另一种数据传输装置,该装置包括:
接收模块,设置为:接收K个发射机发射的信号,其中,K为大于或等于1的整数;
第二确定模块,设置为:根据所述K个发射机使用的复数序列确定需要使用的接收检测器;
检测模块,设置为:使用所述第二确定模块确定的接收检测器对所述接收到的信号进行接收检测,获取所述K个发射机发送的数据。
可选的,所述K个发射机发射的信号是所述K个发射机分别在相同的数据传输资源上形成并发射的信号。
可选的,所述第二确定模块是设置为:
根据所述K个发射机使用的复数序列中的0的比例从接收机支持的接收检测器中确定所述需要使用的接收检测器。
可选的,所述接收机支持的接收检测器包括以下至少一种:
串行干扰消除接收检测器;
并行干扰消除接收检测器;
消息传递算法接收检测器;
最大似然接收检测器。
一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述任一项的方法。
本发明实施例提供的一种数据传输方法及装置,首先确定需要使用的复数序列,所述复数序列的长度为L,所述复数序列的每个元素来自于包含N个复数值的复数集合,且所述N个复数值中有一个复数值为0,所述复数序列的每个元素为0的概率为P且0<P<1或所述复数序列中0元素的比例为R且0≤R≤(L-1)/L,其中,L为大于1的整数,N为大于或等于2的整数;然后使用所述复数序列对待发送的数据符号进行处理,生成数据符号序列;最后发送所述数据符号序列。相对于相关技术,本发明实施例中的发射机所采用的复数序列的每个元素来自于包含N个复数值且其中一个复数值为0的复数集合,可以有效保证使用相同数据传输资源的各个发射机选取低互相关的复数序列对其待发送数据符号进行处理并发送,从而可以有效控制多用户间干扰,支持更高的接入用户数量;并且,通过控制复数序列中每个元素为0的概率P或者复数序列中0元素的比例R,可以有效控制接收机的接收检测复杂度。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为本发明实施例提供的一种数据传输方法的流程示意图;
图2为本发明实施例还提供的一种数据传输装置的结构示意图;
图3为本发明实施例提供的实施例一、实施例三以及实施例六中用于生成复数序列的复数集合的示意图;
图4为本发明实施例提供的实施例二中用于生成复数序列的复数集合的示意图;
图5为本发明实施例提供的实施例四中用于生成复数序列的复数集合的示意图;
图6为本发明实施例提供的实施例五中用于生成复数序列的复数集合的 示意图;
图7为本发明实施例提供的另一种数据传输方法的流程示意图;
图8为本发明实施例提供的另一种数据传输装置的结构示意图。
本发明的实施方式
下文中将结合附图对本发明的实施方式进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
本发明实施例中所述的系统为数据传输收发系统,包括发射机、接收机、以及相关的功能节点等,其中,发射机可以为终端发射机、基站发射机或其他类型的发射机,接收机可以为基站接收机、终端接收机或其他类型的接收机,相关的功能节点可以为网络管理单元、操作维护单元等;本发明实施例中与系统相关的描述或操作可以由终端实施,或者可以由基站实施,或者可以由其他类型的发射机或接收机实施,或者可以由相关的功能节点实施;本发明实施例对此不做限定。另外,本发明实施例中的“包括”均应当理解为包括但不限于的含义。
本发明实施例提供的一种数据传输方法,应用于发射机中,如图1所示,该方法包括:
步骤101、确定需要使用的复数序列,该复数序列的长度为L,该复数序列的每个元素来自于包含N个复数值的复数集合,且N个复数值中有一个复数值为0,该复数序列的每个元素为0的概率为P且0<P<1或该复数序列中0元素的比例为R且0≤R≤(L-1)/L,其中,L为大于1的整数,N为大于或等于2的整数。
步骤102、使用该复数序列对待发送的数据符号进行处理,生成数据符号序列。
步骤103、发送该数据符号序列。
可选的,上述步骤101中的复数序列的每个元素为0的概率P大于或等于1/N;或者,该复数序列的每个元素为0的概率P大于或等于每个元素为N个复数值中其他非零值的概率。
可选的,上述步骤101中的复数集合包含的N个复数值构成多个子集,每个子集中包含一个或多个复数值,该复数序列的每个元素从不同子集中取值的概率不同。
可选的,上述步骤101中的复数序列中0元素的比例R满足1/L≤R≤(L-1)/L。
可选的,对于上述步骤101中的复数序列的每个元素为0的概率P或复数序列中0元素的比例R,可以采用以下包括的方式中的任一种方式确定:
(1)根据系统固定配置确定;或,
(2)根据系统发送的配置信令确定;或,
(3)由系统根据第一预设规则确定;或,
(4)由发射机根据第二预设规则确定。
需要说明的是,上述第一预设规则和第二预设规则只是为了区分不同的规则,实际上均可以是预先设定好的规则,分别由系统和发射机来使用。
可选的,上述步骤101中的复数序列的中的元素不全为0。
可选的,上述步骤101中的复数集合包含的N个复数值的实部与虚部的取值均来自于M元实数集合;或者,该复数集合包含的N个复数值中的非零值的实部与虚部的取值均来自于M元实数集合;其中,M为大于或等于2的整数。
可选的,上述M元实数集合可以包括:
当M为大于2的奇数时,[-(M-1)/2,(M-1)/2]范围内的M个整数组成的集合;或,
当M为大于或等于2的偶数时,[-(M-1),(M-1)]范围内的M个奇数组成的集合;或,
当M为大于2的奇数时,[-(M-1)/2,(M-1)/2]范围内的M个整数分别乘以第一预设系数得到的M个实数组成的集合;或,
当M为大于或等于2的偶数时,[-(M-1),(M-1)]范围内的M个奇数分别乘以第二预设系数得到的M个实数组成的集合。
需要说明的是,上述第一、第二的说法仅是为了表述方便,并不存在顺序上的限定,并且,第一预设系数与第二预设系数可以相同,也可以不同,第一预设系数与第二预设系数均可以用于实现复数序列的能量归一化效果。
可选的,对于步骤101:确定需要使用的复数序列,可以包括:
(1)采用随机生成的方式确定需要使用的复数序列;或,
(2)根据发射机身份识别信息确定需要使用的复数序列;或,
(3)根据数据传输资源确定需要使用的复数序列;或,
(4)根据系统固定配置确定需要使用的复数序列;或,
(5)根据系统发送的配置信令确定需要使用的复数序列;或,
(6)采用随机选择的方式从预设复数序列集合中确定需要使用的复数序列;或,
(7)根据发射机身份识别信息从预设复数序列集合中确定需要使用的复数序列;或,
(8)根据数据传输资源从预设复数序列集合中确定需要使用的复数序列;或,
(9)根据待发送数据符号从预设复数序列集合中确定需要使用的复数序列;或,
(10)根据系统固定配置从预设复数序列集合中确定需要使用的复数序列;或,
(11)根据系统发送的配置信令从预设复数序列集合中确定需要使用的复数序列。
可选的,上述发射机身份识别信息可以包括以下至少一个:发射机编号、发射机身份识别码、发射机位置信息、发射机网络地址。
需要说明的是,发射机位置信息可以是发射机所处的地理坐标信息,例如经度和纬度坐标,发射机网络地址可以是发射机在网络中的网络协议(Internet Protocol,IP)地址或媒体接入控制(Medium Access Control,MAC)地址。
可选的,上述预设复数序列集合可以采用以下包括的方式中的任一种方式确定:
(1)根据系统固定配置确定;
(2)根据系统发送的信令确定;
(3)根据系统固定配置从Q个复数序列集合中确定;
(4)根据系统发送的信令从Q个复数序列集合中确定;
(5)根据发射机身份识别信息从Q个复数序列集合中确定;
(6)根据数据传输资源从Q个复数序列集合中确定;
(7)根据复数序列中0元素的比例R从Q个复数序列集合中确定;
其中,Q为不小于1的整数。
可选的,上述预设复数序列集合中的任意两个复数序列之间的互相关系数小于或等于预设互相关系数,其中,该预设互相关系数可以是系统固定配置的,或者是根据系统发送的信令确定的。
可选的,对于步骤102:使用该复数序列对待发送的数据符号进行处理,可以包括:
使用该复数序列对待发送的数据符号进行扩展处理;或者,
将待发送的数据符号映射为该复数序列。
其中,扩展处理是指将一个待发送的数据符号与该复数序列的每个元素(复数符号)进行复数相乘,形成与该复数序列长度相同的数据符号序列。
可选的,对于步骤103:发送该数据符号序列,可以包括:
将该数据符号序列在数据传输资源上形成发射信号并发送。
需要说明的是,本发明实施例提供的数据传输方法在系统中应用或实施时,可以根据复数序列的每个元素为0的概率P实施,或者可以根据复数序 列中0元素的比例R实施,当系统对这两种实施方式都支持时,复数序列的每个元素为0的概率P和复数序列中0元素的比例R可以由同一个参数表示,并且可以采用相同或不同的取值范围。
最后还需说明的是,本发明实施例提供的数据传输方法的步骤并不一定具有严格的顺序关系,一种可能的情况下:发射机确定需要使用的复数序列即步骤101可以在发射机进行数据传输的过程中仅执行一次。
本发明实施例提供的一种数据传输方法,首先确定需要使用的复数序列,该复数序列的长度为L,该复数序列的每个元素来自于包含N个复数值的复数集合,且N个复数值中有一个复数值为0,该复数序列的每个元素为0的概率为P且0<P<1或该复数序列中0元素的比例为R且0≤R≤(L-1)/L,其中,L为大于1的整数,N为大于或等于2的整数;然后使用该复数序列对待发送的数据符号进行处理,生成数据符号序列;最后发送该数据符号序列。相对于相关技术,本发明实施例中的发射机所采用的复数序列的每个元素来自于包含N个复数值且其中一个复数值为0的复数集合,可以有效保证使用相同数据传输资源的各个发射机选取低互相关的复数序列对其待发送数据符号进行处理并发送,从而可以有效控制多用户间干扰,支持更高的接入用户数量;并且,通过控制复数序列中每个元素为0的概率P或者复数序列中0元素的比例R,可以有效控制接收机的接收检测复杂度。
本发明实施例还提供一种数据传输装置10,该数据传输装置10设置于本发明实施例中所述的发射机中,本发明实施例中所述的发射机可以为终端发射机、基站发射机或其他类型的发射机,本发明实施例对此不作限定。
如图2所示,该数据传输装置10包括:
第一确定模块11,设置为:确定需要使用的复数序列,该复数序列的长度为L,该复数序列的每个元素来自于包含N个复数值的复数集合,且N个复数值中有一个复数值为0,该复数序列的每个元素为0的概率为P且0<P<1或该复数序列中0元素的比例为R且0≤R≤(L-1)/L,其中,L为大于1的整数,N为大于或等于2的整数。
处理模块12,设置为:使用第一确定模块11确定的复数序列对待发送的数据符号进行处理,生成数据符号序列。
发送模块13,设置为:发送处理模块12生成的数据符号序列。
可选的,该复数序列的每个元素为0的概率P大于或等于1/N;或者,该复数序列的每个元素为0的概率P大于或等于每个元素为该N个复数值中其他非零值的概率。
可选的,该复数集合包含的N个复数值构成多个子集,每个子集中包含一个或多个复数值,该复数序列的每个元素从不同子集中取值的概率不同。
可选的,该复数序列中0元素的比例R满足1/L≤R≤(L-1)/L。
可选的,该复数序列的每个元素为0的概率P或该复数序列中0元素的比例R可以采用以下包括的方式中的任一种方式确定:
根据系统固定配置确定;
根据系统发送的配置信令确定;
由系统根据第一预设规则确定;
由发射机根据第二预设规则确定。
可选的,该复数序列的中的元素不全为0。
可选的,该复数集合包含的N个复数值的实部与虚部的取值均来自于M元实数集合;或者,该复数集合包含的N个复数值中的非零值的实部与虚部的取值均来自于M元实数集合;其中,M为大于或等于2的整数。
可选的,该M元实数集合包括:
当M为大于2的奇数时,[-(M-1)/2,(M-1)/2]范围内的M个整数组成的集合;或,
当M为大于或等于2的偶数时,[-(M-1),(M-1)]范围内的M个奇数组成的集合;或,
当M为大于2的奇数时,[-(M-1)/2,(M-1)/2]范围内的M个整数分别乘以第一预设系数得到的M个实数组成的集合;或,
当M为大于或等于2的偶数时,[-(M-1),(M-1)]范围内的M个奇数分别乘以第二预设系数得到的M个实数组成的集合。
可选的,第一确定模块11是设置为:
采用随机生成的方式确定需要使用的复数序列;或,
根据发射机身份识别信息确定需要使用的复数序列;或,
根据数据传输资源确定需要使用的复数序列;或,
根据系统固定配置确定需要使用的复数序列;或,
根据系统发送的配置信令确定需要使用的复数序列;或,
采用随机选择的方式从预设复数序列集合中确定需要使用的复数序列;或,
根据发射机身份识别信息从预设复数序列集合中确定需要使用的复数序列;或,
根据数据传输资源从预设复数序列集合中确定需要使用的复数序列;或,
根据待发送数据符号从预设复数序列集合中确定需要使用的复数序列;或,
根据系统固定配置从预设复数序列集合中确定需要使用的复数序列;或,
根据系统发送的配置信令从预设复数序列集合中确定需要使用的复数序列。
可选的,发射机身份识别信息包括以下至少一个:发射机编号、发射机身份识别码、发射机位置信息、发射机网络地址。
可选的,上述预设复数序列集合可以采用以下包括的方式中的任一种方式确定:
根据系统固定配置确定;
根据系统发送的信令确定;
根据系统固定配置从Q个复数序列集合中确定;
根据系统发送的信令从Q个复数序列集合中确定;
根据发射机身份识别信息从Q个复数序列集合中确定;
根据数据传输资源从Q个复数序列集合中确定;
根据复数序列中0元素的比例R从Q个复数序列集合中确定;
其中,Q为不小于1的整数。
可选的,上述预设复数序列集合中的任意两个复数序列之间的互相关系数小于或等于预设互相关系数,其中,该预设互相关系数可以是系统固定配置的,或者是根据系统发送的信令确定的。
可选的,处理模块12是设置为:
使用第一确定模块11确定的复数序列对待发送的数据符号进行扩展处理,生成数据符号序列;或,
将待发送的数据符号映射为第一确定模块11确定的复数序列,生成数据符号序列。
可选的,发送模块13是设置为:
将处理模块12生成的数据符号序列在数据传输资源上形成发射信号并发送。
本实施例用于实现上述方法实施例,本实施例中每个模块的工作流程和工作原理参见上述方法实施例中的描述,在此不再赘述。
本发明实施例提供的一种数据传输装置,首先确定需要使用的复数序列,该复数序列的长度为L,该复数序列的每个元素来自于包含N个复数值的复数集合,且N个复数值中有一个复数值为0,该复数序列的每个元素为0的概率为P且0<P<1或该复数序列中0元素的比例为R且0≤R≤(L-1)/L,其中,L为大于1的整数,N为大于或等于2的整数;然后使用该复数序列对待发送的数据符号进行处理,生成数据符号序列;最后发送该数据符号序列。相对于相关技术,本发明实施例中的发射机所采用的复数序列的每个元素来自于包含N个复数值且其中一个复数值为0的复数集合,可以有效保证使用相同数据传输资源的各个发射机选取低互相关的复数序列对其待发送数据符号进行处理并发送,从而可以有效控制多用户间干扰,支持更高的接入用户数量;并且,通过控制复数序列中每个元素为0的概率P或者复数序列中0元素的比例R,可以有效控制接收机的接收检测复杂度。
下面通过实施例,对本发明实施例提供的一种数据传输方法进行详细说明,其中,下述每个实施例中的发射机中均设置有上述本发明实施例提供的一种数据传输装置10,可以理解的是:下述每个实施例中的发射机均可实现该数据传输装置10的功能。
实施例一
本实施例中,首先,发射机确定进行数据传输时需要使用的复数序列,该复数序列的长度为L,其中,L为大于1的整数;
该复数序列的每个元素来自于包含9个复数值的复数集合{0,1,1+j,j,-1+j,-1,-1-j,-j,1-j},这9个复数值中有一个复数值为0,并且,该复数序列的每个元素取0值的概率为P,其中,0<P<1。
可以看出,上述复数集合包含的9个复数值的实部与虚部的取值均来自于三元实数集合{-1,0,1},那么,该复数集合可以表示为包含9个星座点的二维复数星座图,如图3所示,图中标出了每个星座点对应的复数值。
复数序列的每个元素取0值的概率P可以由系统固定配置,或者由系统发送的信令配置,或者由系统根据第一预设规则确定(例如系统根据接入用户数量调整概率P),或者由发射机根据第二预设规则确定(例如发射机随机生成概率P)。
作为本实施例的一种可选情况,复数序列的每个元素取0值的概率P大于或等于1/9;当概率P等于1/9时,如果复数序列的每个元素取其他8个值的概率是均匀分布的,那么,复数序列的每个元素取0值和取其他8个值的概率是相同的,均为1/9;当概率P大于1/9时,例如,令概率P等于1/3,如果复数序列的每个元素取其他8个值的概率是均匀分布的,那么,复数序列每个元素取0值的概率为1/3,取其他8个值的概率均为1/12,或者,令概率P等于1/2,如果复数序列的每个元素取其他8个值的概率是均匀分布的,那么,复数序列每个元素取0值的概率为1/2,取其他8个值的概率均为1/16。
发射机确定需要使用的复数序列,确定方式包括:
(1)采用随机生成的方式确定需要使用的复数序列;例如,根据复数序 列的每个元素取0值的概率P,发射机通过其随机序列生成器生成其需要使用的复数序列的每个元素在上述复数集合中的索引,根据该索引和上述复数集合确定需要使用的复数序列,比如,复数序列的每个元素取0值的概率为1/2,取其他8个值的概率均为1/16,将取值范围(0,1)划分为9个取值区间:(0,0.5)、(0.5,0.5625)、(0.5625,0.625)、(0.625,0.6875)、(0.6875,0.75)、(0.75,0.8125)、(0.8125,0.875)、(0.875,0.9375)、(0.9375,1),即第1个取值区间为取值范围(0,1)的1/2,其他取值区间为取值范围(0,1)的1/16,然后,通过随机数发生器生成L个位于(0,1)范围内的随机数,其中,如果随机数位于取值区间(0,0.5)内,则对应的元素索引为0,如果随机数位于取值区间(0.5,0.5625)内,则对应的元素索引为1,同理,如果随机数位于其他取值区间,则可以确定相应的元素索引,那么,根据L个元素的索引和上述复数序列集合即可确定需要使用的复数序列。或,
(2)根据发射机身份识别信息确定需要使用的复数序列;例如,发射机根据其编号、身份识别码、位置信息、网络地址等身份识别信息按照系统预设规则确定其随机序列生成器的初始状态,并根据复数序列的每个元素取0值的概率P,随机生成需要使用的复数序列的每个元素在上述复数集合中的索引,根据该索引和上述复数集合确定需要使用的复数序列。或,
(3)根据数据传输资源确定需要使用的复数序列;例如,发射机根据使用的数据传输资源按照系统预设规则确定其随机序列发生器的初始状态,并根据复数序列的每个元素取0值的概率P,随机生成需要使用的复数序列的每个元素在上述复数集合中的索引,根据该索引和上述复数集合确定需要使用的复数序列。或,
(4)根据系统发送的配置信令确定需要使用的复数序列;例如,系统通过信令半静态或动态配置了发射机需要使用的复数序列;这种方式中,系统可以根据预设规则确定复数序列每个元素取0值的概率P,并根据该概率生成复数序列,发送给发射机,比如,当接入系统的终端发射机数量较少时或位置、距离等分布较分散时设置较高的概率P,当接入系统的终端发射机数量较多时或位置、距离等分布较集中时设置较低的概率P。
其中,上述数据传输资源是发射机进行数据传输时使用的数据传输资 源,可以包括载波、时隙、时频资源、空域资源等类型,可以为传输资源单元、传输资源块或者传输资源集合的定义或形式。
另外,发射机所确定的复数序列中的元素不全为0,而且,发射机还可以对其确定的复数序列乘以预设系数进行能量归一化处理。
然后,发射机使用所确定的复数序列对待发送的数据符号进行处理,生成数据符号序列;处理方法可以包括:
(1)发射机使用所确定的复数序列对待发送的数据符号进行扩展处理,生成数据符号序列;其中,扩展处理是指将一个待发送的数据符号与所确定的复数序列的每个元素进行复数相乘,形成与该复数序列长度相同的数据符号序列。或,
(2)发射机将待发送的数据符号映射为所确定的复数序列,生成数据符号序列。
最后,发射机发送所生成的数据符号序列;发送方法可以包括但不限于:发射机将所生成的数据符号序列在数据传输资源(例如载波、时频资源等)上形成发射信号,并发送出去。
实施例二
本实施例中,首先,发射机确定进行数据传输时需要使用的复数序列,该复数序列的长度为L,其中,L为大于1的整数;
该复数序列的每个元素来自于包含9个复数值的复数集合{0,1,1+j,j,-1+j,-1,-1-j,-j,1-j},这9个复数值中有一个复数值为0,并且,该复数序列的每个元素取0值的概率为P,其中,0<P<1。
可以看出,上述复数集合包含的9个复数值的实部与虚部的取值均来自于三元实数集合{-1,0,1},那么,该复数集合可以表示为包含9个星座点的二维复数星座图,如图4所示,其中,以(1,1)->1+j为例,其表示实部取值为1、虚部取值为1,相应的复数值为1+j。
作为本实施例的一种可选情况,发射机或系统可以根据复数序列的每个元素的实部取不同值的概率和每个元素的虚部取不同值的概率来确定需要使用的复数序列。
如果复数序列的每个元素的实部取0值的概率为Pr=0,每个元素的虚部取0值的概率为Pi=0,其中,0<Pr=0<1,0<Pi=0<1,那么,该复数序列的每个元素取0值的概率P=Pr=0*Pi=0。如此,就可以通过复数序列的每个元素的实部取0值的概率Pr=0和每个元素的虚部取0值的概率Pi=0来满足复数序列的每个元素取0值的概率P。
例如,复数序列的每个元素的实部与虚部的取值均来自于三元实数集合{-1,0,1},令复数序列的每个元素的实部取不同值的概率分别为{1/4,1/2,1/4},令复数序列的每个元素的虚部取不同值的概率分别为{1/4,1/2,1/4},那么,复数序列的每个元素取0值的概率P为1/4,取值为1、j、-1、-j的概率均为1/8,取值为1+j、-1+j、-1-j、1-j的概率均为1/16。
复数序列的每个元素的实部与虚部取不同值的概率(包括Pr=0、Pi=0)可以根据系统固定配置确定、或者根据系统发送的配置信令确定、或者由系统根据第一预设规则确定、或者由发射机根据第二预设规则确定,这相当于复数序列的每个元素取0值的概率P可以根据系统固定配置确定、或者根据系统发送的配置信令确定、或者由系统根据第一预设规则确定、或者由发射机根据第二预设规则确定。
发射机确定需要使用的复数序列,确定方式可以包括:
(1)采用随机生成的方式确定需要使用复数序列;例如,复数序列的每个元素的实部与虚部的取值均来自于三元实数集合{-1,0,1},根据复数序列的每个元素的实部与虚部取不同值的概率(其中,实部取0值的概率为Pr=0,虚部取0值的概率为Pi=0),发射机通过其随机序列生成器来生成其需要使用的复数序列的每个元素的实部和虚部,从而得到需要使用的复数序列,比如,复数序列的每个元素的实部取不同值的概率分别为{1/4,1/2,1/4}、虚部取不同值的概率分别为{1/4,1/2,1/4},将取值范围(0,1)划分为3个取值区间:(0,0.25)、(0.5,0.75)、(0.75,1),即第1个和第3个取值区间为取值范围(0,1)的1/4,第2个取值区间为取值范围(0,1)的1/2,然后,对于复数序列每个元素的实部,通过随机数发生器生成L个位于(0,1)范围内的随机数,其中,如果随机数位于取值区间(0,0.25)内,则对应元素的实部为-1,如果随机数位于取值区间(0.5,0.75)内,则对应元素的实部为0,如果随机数位于 取值区间(0.75,1)内,则对应元素的实部为1,同理,对于复数序列每个元素的虚部,通过随机数发生器生成L个位于(0,1)范围内的随机数,其中,如果随机数位于取值区间(0,0.25)内,则对应元素的虚部为-1,如果随机数位于取值区间(0.5,0.75)内,则对应元素的虚部为0,如果随机数位于取值区间(0.75,1)内,则对应元素的虚部为1,那么,根据L个元素的实部和虚部即可确定需要使用的复数序列。或,
(2)根据发射机身份识别信息确定需要使用的复数序列;例如,复数序列的每个元素的实部与虚部的取值均来自于三元实数集合{-1,0,1},发射机根据其编号、身份识别码、位置、网络地址等身份识别信息按照系统预设规则确定其随机序列生成器的初始状态,并根据复数序列的每个元素的实部与虚部取不同值的概率(其中,实部取0值的概率为Pr=0,虚部取0值的概率为Pi=0)随机生成需要使用的复数序列的每个元素的实部和虚部,从而得到需要使用的复数序列。或,
(3)根据数据传输资源确定需要使用的复数序列;例如,复数序列的每个元素的实部与虚部的取值均来自于三元实数集合{-1,0,1},发射机根据使用的数据传输资源按照系统预设规则确定其随机序列发生器的初始状态,并根据复数序列的每个元素的实部与虚部取不同值的概率(其中,实部取0值的概率为Pr=0,虚部取0值的概率为Pi=0)随机生成需要使用的复数序列的每个元素的实部和虚部,从而得到需要使用的复数序列。或,
(4)根据系统发送的配置信令确定需要使用的复数序列;例如,系统通过信令半静态或动态配置了发射机需要使用的复数序列;这种方式中,系统可以根据预设规则确定复数序列的每个元素的实部与虚部取不同值的概率,并根据该概率生成复数序列的每个元素的实部与虚部,从而得到复数序列并发送给发射机;而且,当接入系统的终端发射机数量较少时或位置、距离等分布较分散时可以把复数序列的每个元素的实部与虚部取0值的概率设置的相对较高,当接入系统的终端发射机数量较多时或位置、距离等分布较集中时可以把复数序列的每个元素的实部与虚部取0值的概率设置的相对较低。
然后,发射机使用所确定的复数序列对待发送的数据符号进行处理,生成数据符号序列;处理方法与实施例一类似,不再赘述。
最后,发射机发送所生成的数据符号序列;发送方法与实施例一类似,不再赘述。
实施例三
本实施例中,首先,发射机确定进行数据传输时需要使用的复数序列,该复数序列的长度为L,其中,L为大于1的整数;
该复数序列的每个元素来自于包含9个复数值的复数集合{0,1,1+j,j,-1+j,-1,-1-j,-j,1-j},这9个复数值中有一个复数值为0,并且,该复数序列的每个元素取0值的概率为P,其中,0<P<1。
可以看出,上述复数集合包含的9个复数值的实部与虚部的取值均来自于三元实数集合{-1,0,1},那么,该复数集合可以表示为包含9个星座点的二维复数星座图,如图3所示,图中标出了每个星座点对应的复数值。
作为本实施例的一种可选情况,上述复数集合可以进一步构成多个子集,每个子集中包含一个或多个复数值,复数序列的每个元素从不同子集中取值的概率不同;例如,上述复数集合构成3个子集,分别为{0}、{1,j,-1,-j}、{1+j,-1+j,-1-j,1-j},复数序列的每个元素从第1个子集中取值的概率为1/4,从第2个子集中取值的概率为1/2,从第3个子集中取值的概率为1/4,或者,复数序列的每个元素取第1个子集中的0值的概率为1/4,取第2个子集中的1、j、-1、-j的概率均为1/8,取第3个子集中的1+j、-1+j、-1-j、1-j的概率均为1/16。
复数序列的每个元素从不同子集中取值的概率(包括取0值的概率P)可以由系统固定配置,或者由系统发送的信令配置,或者由系统根据第一预设规则确定,或者由发射机根据第二预设规则确定。
那么,发射机或系统确定需要使用的复数序列时,可以根据复数序列的每个元素从不同子集中取值的概率来确定需要使用的复数序列。
一种实现方式为,根据复数序列的每个元素从不同子集中取值的概率确定复数序列的每个元素所属的子集以及每个元素的取值;例如,复数序列的每个元素从第1个子集中取值的概率为1/4,从第2个子集中取值的概率为1/2,从第3个子集中取值的概率为1/4,确定元素所属的子集后,再确定每 个元素的取值,如果元素从第1个子集中取值,则元素取值为0,如果元素从第2个子集中均匀取值,则取值为1、j、-1、-j的概率均为1/4,同样,如果元素从第3个子集中均匀取值,则取值为1+j、-1+j、-1-j、1-j的概率均为1/4,这相当于,复数序列的每个元素取0值的概率为1/4,取值为1、j、-1、-j的概率的均为(1/2)*(1/4)=1/8,取值为1+j、-1+j、-1-j、1-j的概率均为(1/4)*(1/4)=1/16。
还有一种实现方式为,根据复数序列的每个元素从不同子集中取值的概率确定复数序列的每个元素的实部与虚部取不同值的概率,并确定复数序列的每个元素的实部与虚部,进而确定复数序列的每个元素;例如,复数序列的每个元素取值为0的概率为1/4,取值为1、j、-1、-j概率均为1/8,取值为1+j、-1+j、-1-j、1-j的概率均为1/16,那么,复数序列的每个元素的实部与虚部取值为-1、0、1的概率分别为1/4、1/2、1/4,可以根据该概率确定复数序列的每个元素的实部与虚部,从而得到复数序列的每个元素。
当然,也可以根据复数序列的每个元素的实部与虚部取不同值的概率,来确定复数序列的每个元素取0值和取其他值的概率或者复数序列的每个元素从不同子集中取值的概率,并用于确定复数序列的每个元素,如实施例二所述。
发射机确定需要使用的复数序列,确定方式可以包括:
(1)采用随机生成的方式确定需要使用复数序列;例如,根据复数序列的每个元素从不同子集中取值的概率,发射机通过其随机序列生成器来生成其需要使用的复数序列的每个元素的索引或实部、虚部,从而得到需要使用的复数序列。或,
(2)根据发射机身份识别信息确定需要使用的复数序列;例如,发射机根据其编号、身份识别码、位置信息、网络地址等身份识别信息按照系统预设规则确定其随机序列生成器的初始状态,并根据复数序列的每个元素从不同子集中取值的概率,随机生成需要使用的复数序列的每个元素的索引或实部、虚部,从而得到需要使用的复数序列。或,
(3)根据数据传输资源确定需要使用的复数序列;例如,发射机根据使用的数据传输资源按照系统预设规则确定其随机序列发生器的初始状态,并 根据复数序列的每个元素从不同子集中取值的概率,随机生成需要使用的复数序列的每个元素的索引或实部、虚部,从而得到需要使用的复数序列。或,
(4)根据系统发送的配置信令确定需要使用的复数序列;例如,系统通过信令半静态或动态配置了发射机需要使用的复数序列;这种方式中,系统可以根据预设规则确定复数序列的每个元素从不同子集中取值的概率,并根据该概率生成复数序列的每个元素的索引或实部、虚部,从而得到复数序列并发送给发射机;而且,当接入系统的终端发射机数量较少时或位置、距离等分布较分散时可以把复数序列的每个元素从包含0的子集中取值的概率设置的相对较高,当接入系统的终端发射机数量较多时或位置、距离等分布较集中时可以把复数序列的每个元素从包含0的子集中取值的概率设置的相对较低。
然后,发射机使用所确定的复数序列对待发送的数据符号进行处理,生成数据符号序列;处理方法与实施例一类似,不再赘述。
最后,发射机发送所生成的数据符号序列;发送方法与实施例一类似,不再赘述。
实施例四
本实施例中,首先,发射机确定进行数据传输时需要使用的复数序列,该复数序列的长度为L,其中,L为大于1的整数;
该复数序列的每个元素来自于包含5个复数值的复数集合{0,1+j,-1+j,-1-j,1-j},这5个复数值中有一个复数值为0,并且,该复数序列的每个元素取0值的概率为P,其中,0<P<1。
可以看出,上述复数集合包含的5个复数值中的非零值(即1+j、-1+j、-1-j、1-j)的实部与虚部的取值均来自于二元实数集合{-1,1},那么,该复数集合可以表示为包含5个星座点的二维复数星座图,如图5所示,图中标出了每个星座点对应的复数值。
复数序列的每个元素取0值的概率P可以由系统固定配置,或者由系统发送的信令配置,或者由系统根据第一预设规则确定,或者由发射机根据第 二预设规则确定。
作为本实施例的一种可选情况,复数序列的每个元素取0值的概率P大于或等于1/5;当概率P等于1/5时,如果复数序列的每个元素取其他4个值的概率是均匀分布的,那么,复数序列的每个元素取0值和取其他4个值的概率是相同的,均为1/5;当概率P大于1/5时,例如,令概率P等于1/3,如果复数序列的每个元素取其他4个值的概率是均匀分布的,那么,复数序列每个元素取0值的概率为1/3,取其他4个值的概率均为1/6,或者,令概率P等于1/2,如果复数序列的每个元素取其他4个值的概率是均匀分布的,那么,复数序列每个元素取0值的概率为1/2,取其他4个值的概率均为1/8。
发射机确定需要使用的复数序列,确定方法与实施例一类似,不再赘述。
然后,发射机使用所确定的复数序列对待发送的数据符号进行处理,生成数据符号序列;处理方法与实施例一类似,不再赘述。
最后,发射机发送所生成的数据符号序列;发送方法与实施例一类似,不再赘述。
实施例五
本实施例中,首先,发射机确定进行数据传输时需要使用的复数序列,该复数序列的长度为L,其中,L为大于1的整数;
该复数序列的每个元素来自于包含5个复数值的复数集合{0,1,j,-1,-j},这5个复数值中有一个复数值为0,并且,该复数序列的每个元素取0值的概率为P,其中,0<P<1。
可以看出,上述复数集合包含的5个复数值的实部、虚部的取值均来自于三元实数集合{-1,0,1},并且,实部、虚部的取值中至少有一个为0:实部、虚部的取值均为0即第0个星座点表示0;实部、虚部的取值有一个为0即其他四个星座点表示1、j、-1、-j。该复数集合可以表示为包含5个星座点的二维复数星座图,如图6所示,图中标出了每个星座点对应的复数值。
复数序列的每个元素取0值的概率P可以由系统固定配置,或者由系统 发送的信令配置,或者由系统根据第一预设规则确定,或者由发射机根据第二预设规则确定。
作为本实施例的一种可选情况,复数序列的每个元素取0值的概率P大于或等于1/5;当概率P等于1/5时,如果复数序列的每个元素取其他4个值的概率是均匀分布的,那么,复数序列的每个元素取0值和取其他4个值的概率是相同的,均为1/5;当概率P大于1/5时,例如,令概率P等于1/3,如果复数序列的每个元素取其他4个值的概率是均匀分布的,那么,复数序列每个元素取0值的概率为1/3,取其他4个值的概率均为1/6,或者,令概率P等于1/2,如果复数序列的每个元素取其他4个值的概率是均匀分布的,那么,复数序列每个元素取0值的概率为1/2,取其他4个值的概率均为1/8。
发射机确定需要使用的复数序列,确定方法与实施例一类似,不再赘述。
然后,发射机使用所确定的复数序列对待发送的数据符号进行处理,生成数据符号序列;处理方法与实施例一类似,不再赘述。
最后,发射机发送所生成的数据符号序列;发送方法与实施例一类似,不再赘述。
实施例六
本实施例中,首先,发射机确定进行数据传输时需要使用的复数序列,该复数序列的长度为L,其中,L为大于1的整数;
该复数序列的每个元素来自于包含9个复数值的复数集合{0,1,1+j,j,-1+j,-1,-1-j,-j,1-j},这9个复数值中有一个复数值为0,并且,该复数序列中0元素的比例为R,其中,0≤R≤(L-1)/L。
可以看出,上述复数集合包含的9个复数值的实部与虚部的取值均来自于三元实数集合{-1,0,1},那么,该复数集合可以表示为包含9个星座点的二维复数星座图,如图3所示,图中标出了每个星座点对应的复数值。
复数序列中0元素的比例R可以由系统固定配置,或者由系统发送的信令配置,或者由系统根据第一预设规则确定(例如系统根据接入用户数量调 整比例R),或者由发射机根据第二预设规则确定(例如发射机随机生成比例R)。
作为本实施例的一种可选情况,复数序列中0元素的比例R满足1/L≤R≤(L-1)/L;例如,假设复数序列的长度L=4,则复数序列中0元素的比例R满足1/4≤R≤3/4,即复数序列中最少有1个0,最多有3个0,那么,复数序列中0元素的比例R可以取值为1/4、1/2或3/4;或者,假设复数序列的长度L=8,则复数序列中0元素的比例R满足1/8≤P≤7/8,即复数序列中最少有1个0,最多有7个0,那么,复数序列中0元素的比例R可以取值为1/8、1/4、3/8、1/2、5/8、3/4或7/8。
需要说明的是,上述描述为本发明实施例的可选情况,本发明实施例并不排除复数序列中0元素的比例R取值为0的情况。
发射机确定需要使用的复数序列,确定方式可以包括:
(1)采用随机生成的方式确定需要使用复数序列;例如,根据复数序列中0元素的比例R,发射机通过其随机序列生成器来生成其需要使用的复数序列,比如,随机选择L*R个元素,令这些元素的取值为0,再随机产生其他非零元素。或,
(2)根据发射机身份识别信息确定需要使用的复数序列;例如,发射机根据其编号、身份识别码、位置信息、网络地址等身份识别信息按照系统预设规则确定其随机序列生成器的初始状态,并根据复数序列中0元素的比例R,随机生成需要使用的复数序列。或,
(3)根据数据传输资源确定需要使用的复数序列;例如,发射机根据使用的数据传输资源按照系统预设规则确定其随机序列发生器的初始状态,并根据复数序列中0元素的比例R,随机生成需要使用的复数序列。
(4)根据系统固定配置确定需要使用的复数序列;例如,系统固定配置了发射机使用的复数序列,发射机根据该配置确定需要使用的复数序列;这种方式中,复数序列中0元素的比例R是系统固定配置的。或,
(5)根据系统发送的配置信令确定需要使用的复数序列;例如,系统通过信令半静态或动态配置了发射机需要使用的复数序列,这种方式中,系统 可以根据预设规则确定复数序列中0元素的比例R,并根据该比例配置复数序列,发送给发射机,比如,当接入系统的终端发射机数量较少时或位置、距离等分布较分散时采用相对较高的比例R,当接入系统的终端发射机数量较多时或位置、距离等分布较集中时采用相对较低的比例R。或,
(6)采用随机选择的方式从预设复数序列集合中确定需要使用的复数序列;例如,预设复数序列集合中的每个复数序列的0元素的比例均为R,发射机通过其随机数发生器生成索引,根据该索引从预设复数序列集合中确定其需要使用的复数序列。或,
(7)根据发射机身份识别信息从预设复数序列集合中确定需要使用的复数序列;例如,预设复数序列集合中的每个复数序列的0元素的比例均为R,发射机根据其编号、身份识别码、位置信息、网络地址等身份识别信息确定其使用的复数序列的索引,根据该索引从预设复数序列集合中确定其需要使用的复数序列。或,
(8)根据数据传输资源从预设复数序列集合中确定需要使用的复数序列;例如,发射机根据数据传输资源与复数序列集合之间的关联关系确定预设复数序列集合,该预设复数序列集合中的每个复数序列的0元素的比例均为R,然后发射机从该预设复数序列集合中确定需要使用的复数序列,其中,数据传输资源与复数序列集合之间的关联关系可以由系统固定配置、或者由系统通过信令配置、或者由系统隐含指示。或,
(9)根据待发送数据符号从预设复数序列集合中确定需要使用的复数序列;例如,预设复数序列集合中的每个复数序列的0元素的比例均为R,发射机根据数据符号与预设复数序列集合中的复数序列之间的对应关系从该预设复数序列集合中确定与待发送数据符号对应的复数序列,作为需要使用的复数序列,其中,数据符号与预设复数序列集合中的复数序列之间的对应关系可以是系统预设的、或者是系统通过信令配置的、或者是系统隐含指示的。或,
(10)根据系统固定配置从预设复数序列集合中确定需要使用的复数序列;例如,系统固定配置了发射机使用的复数序列的索引,发射机根据该索引从预设复数序列集合中确定其需要使用的复数序列;这种方式中,可以是 系统固定配置的序列索引对应的复数序列的0元素的比例为R,也可以是预设复数序列集合中的每个复数序列的0元素的比例均为R。或,
(11)根据系统发送的配置信令从预设复数序列集合中确定需要使用的复数序列;例如,系统通过信令半静态或动态配置了发射机使用的复数序列的索引,发射机根据该索引从预设复数序列集合中确定其需要使用的复数序列;这种方式中,可以是系统通过信令指示的复数序列的0元素的比例为R,也可以是预设复数序列集合中的每个复数序列的0元素的比例均为R。
上述预设复数序列集合可以采用以下包括的方式中的任意一种方式确定:
(1)发射机根据系统固定配置确定;例如,系统预设或系统固定配置了发射机使用的复数序列集合;或,
(2)发射机根据系统发送的信令确定;例如,系统通过信令半静态或动态配置了发射机使用的复数序列集合;或,
(3)发射机根据系统固定配置从Q个复数序列集合中确定;例如,系统固定配置了发射机使用的复数序列集合的索引;或,
(4)发射机根据系统发送的信令从Q个复数序列集合中确定;例如,系统通过信令半静态或动态配置了发射机使用的复数序列集合的索引;或,
(5)发射机根据发射机身份识别信息从Q个复数序列集合中确定;例如,发射机根据其编号、身份识别码、位置信息、网络地址等身份识别信息确定其使用的复数序列集合的索引;或,
(6)发射机根据数据传输资源从Q个复数序列集合中确定;例如,发射机根据数据传输资源与复数序列集合之间的关联关系确定与所使用的数据传输资源关联的预设复数序列集合;或,
(7)发射机根据需要使用的复数序列的0元素的比例R从Q个复数序列集合中确定;例如,系统预先确定Q个复数序列集合,每个复数序列集合中的复数序列的0元素的比例不同,发射机根据需要使用的复数序列的0元素的比例R从Q个复数序列集合中选择比例最接近或相同的复数序列集合作为预设复数序列集合;
其中,Q个复数序列集合可以是系统预设的或系统通过信令配置的,Q为大于1的整数。
另外,作为本实施例中的一种可选情况,上述预设复数序列集合中的任意两个复数序列之间的互相关系数小于或等于预设互相关系数,其中,该预设互相关系数可以是系统预设的或系统通过信令配置的;根据该可选情况,系统可以预设或通过信令配置满足条件的复数序列集合,或者发射机根据系统预设的或系统通过信令配置的预设互相关系数确定满足条件的复数序列集合,或者,系统预设的或系统通过信令配置的Q个复数序列集合均满足条件用于供发射机选择使用。
然后,发射机使用所确定的复数序列对待发送的数据符号进行处理,生成数据符号序列;处理方法如实施例一所述,不再赘述。
最后,发射机发送所生成的数据符号序列;发送方法如实施例一所述,不再赘述。
本发明实施例提供的另一种数据传输方法,应用于接收机中,如图7所示,该方法包括:
步骤201、接收K个发射机发射的信号,其中,K为大于或等于1的整数。
K个发射机发射的信号是K个发射机分别在相同的数据传输资源上形成并发射的信号。
步骤202、根据K个发射机使用的复数序列确定需要使用的接收检测器。
根据K个发射机使用的复数序列中的0的比例从接收机支持的接收检测器中确定需要使用的接收检测器。
接收机支持的接收检测器包括以下至少一种:
串行干扰消除SIC接收检测器;
并行干扰消除(Parallel Interference Cancellation,PIC)接收检测器;
消息传递算法(Message Passing Algorithm,MPA)接收检测器;
最大似然(Maximum Likelihood,ML)接收检测器。
步骤203、使用确定的接收检测器对接收到的信号进行接收检测,获取K个发射机发送的数据。
本发明实施例提供的另一种数据传输方法,首先接收K个发射机发射的信号,其中,K为大于或等于1的整数;然后根据所述K个发射机使用的复数序列确定需要使用的接收检测器;最后使用确定的接收检测器对接收到的信号进行接收检测,获取K个发射机发送的数据。相对于相关技术中接收机使用固定的接收检测器检测发射机发送的信号,本发明实施例中的接收机根据发射机使用的复数序列选择合适的接收检测器,可以有效控制接收机的接收检测复杂度。
本发明实施例还提供另一种数据传输装置20,该数据传输装置20设置于接收机中,本发明实施例中所述的接收机可以为基站接收机、终端接收机或其他类型的接收机,本发明实施例对此不作限定。
如图8所示,该数据传输装置20包括:
接收模块21,设置为:接收K个发射机发射的信号,其中,K为大于或等于1的整数。
第二确定模块22,设置为:根据K个发射机使用的复数序列确定需要使用的接收检测器;
检测模块23,设置为:使用第二确定模块22确定的接收检测器对接收到的信号进行接收检测,获取K个发射机发送的数据。
可选的,K个发射机发射的信号是K个发射机分别在相同的数据传输资源上形成并发射的信号。
可选的,第二确定模块22是设置为:
根据K个发射机使用的复数序列中的0的比例从接收机支持的接收检测器中确定需要使用的接收检测器。
可选的,接收机支持的接收检测器包括以下至少一种:
串行干扰消除接收检测器;
并行干扰消除接收检测器;
消息传递算法接收检测器;
最大似然接收检测器。
本实施例用于实现上述方法实施例,本实施例中每个模块的工作流程和工作原理参见上述方法实施例中的描述,在此不再赘述。
本发明实施例提供的另一种数据传输装置,首先接收K个发射机发射的信号,其中,K为大于或等于1的整数;然后根据K个发射机使用的复数序列确定需要使用的接收检测器;最后使用确定的接收检测器对接收到的信号进行接收检测,获取K个发射机发送的数据。相对于相关技术中接收机使用固定的接收检测器检测发射机发送的信号,本发明实施例中的接收机根据发射机使用的复数序列选择合适的接收检测器,可以有效控制接收机的接收检测复杂度。
为了使本领域技术人员能够更清楚地理解上述本发明实施例提供的技术方案,下面通过实施例,对本发明实施例提供的另一种数据传输方法进行详细说明,其中,下述实施例中的接收机中均设置有上述本发明实施例提供的另一种数据传输装置20,可以理解的是:下述每个实施例中的发射机均可实现该数据传输装置20的功能。
实施例七
本实施例中,K个发射机在相同的数据传输资源上同时进行数据传输。
作为本实施例的一个可选情况,每个发射机确定需要使用的复数序列,包括:该复数序列的长度为L,该复数序列的每个元素来自于包含N个复数值的复数集合(例如,包含9个复数值的复数集合{0,1,1+j,j,-1+j,-1,-1-j,-j,1-j},或者,包含5个复数值的复数集合{0,1+j,-1+j,-1-j,1-j}),这N个复数值中有一个复数值为0,并且,该复数序列的每个元素为0的概率为P,其中,L为大于1的整数,N为大于或等于2的整数,1/N<P<1。
作为本实施例的另一个可选情况,每个发射机确定需要使用的复数序列,包括:该复数序列的长度为L,该复数序列的每个元素来自于包含N个复数值的复数集合(例如,包含9个复数值的复数集合{0,1,1+j,j,-1+j,-1, -1-j,-j,1-j},或者,包含5个复数值的复数集合{0,1+j,-1+j,-1-j,1-j}),这N个复数值中有一个复数值为0,并且,该复数序列中0元素的比例为R,其中,L为大于1的整数,N为大于或等于2的整数,1/L≤R≤(L-1)/L。需要说明的是,上述描述为本发明实施例的可选情况,本发明实施例并不排除复数序列中0元素的比例R取值为0的情况。
然后,每个发射机使用所确定的复数序列对其待发送的数据符号进行处理,生成数据符号序列并发送。
K个发射机使用的复数序列具有非正交的特点,但并不排除某两个发射机使用的复数序列之间是正交的。
K个发射机使用相同的数据传输资源(例如时频资源)同时进行数据传输,经过无线信道传播后,接收机会接收到K个发射机发射的信号的叠加信号。
接收机在进行接收检测时,由于K个发射机在相同的数据传输资源上进行数据传输,接收机可以根据每个发射机使用的复数序列采用有效的接收检测器(例如串行干扰消除SIC)来检测出每个发射机发送的数据。
而且,当接收机支持串行干扰消除SIC接收检测器、并行干扰消除PIC接收检测器、消息传递算法MPA接收检测器、最大似然ML接收检测器等多种接收检测器时,接收机还可以根据K个发射机使用的复数序列从接收机支持的接收检测器中确定需要使用的接收检测器,即根据K个发射机使用的复数序列中0的比例从接收机支持的接收检测器中确定需要使用的接收检测器,例如,当K个发射机使用的复数序列中0的比例小于预设值时,使用串行干扰消除SIC接收检测器或并行干扰消除PIC接收检测器,当K个发射机使用的复数序列中0的比例大于预设值时,使用消息传递算法MPA接收检测器或最大似然ML接收检测器,或者,当串行干扰消除SIC接收检测器结合最小均方误差(Minimum Mean Square Error,MMSE)算法进行接收检测时,当K个发射机使用的复数序列中0的比例小于预设值时,其复杂度会相对较高,当K个发射机使用的复数序列中0的比例大于预设值时,其复杂度会降低;然后,接收机使用所确定的接收检测器对接收到的信号进行接收检测,获取每个发射机发送的数据。
由于所采用的复数序列的每个元素来自于包含N个复数值且其中一个复数值为0的复数集合,可以有效保证使用相同数据传输资源的K个发射机选取低互相关的复数序列对其待发送数据符号进行处理并发送,从而可以有效控制多用户间干扰,支持更高的接入用户数量;同时,通过控制复数序列中每个元素为0的概率P或者复数序列中0元素的比例R,可以有效控制接收机的接收检测复杂度。因此,本发明实施例可以有效控制多用户间干扰,有效控制接收机的接收检测复杂度,从而可以有效改善多用户接入通信性能,实现多用户过载接入通信和/或多用户免调度接入通信。
最后,值得一提的是,基于上述所有的实施例,在应用本发明实施例提供的方案时,可以应用于MC-CDMA系统、竞争接入场景或免调度接入场景等。其中,应用于MC-CDMA系统,可以有效控制多用户间干扰和接收检测复杂度,从而可以有效改善多用户接入通信性能,实现多用户过载接入通信;应用于竞争接入场景,多个甚至大量用户终端可以同时请求接入系统,可以有效改善系统接入效率;应用于免调度接入场景,用户终端需要发送数据时即可进行数据传输,多个用户终端可以同时使用相同的数据传输资源进行数据传输,可以减少系统调度信令、降低终端接入时延,实现多个用户终端免调度接入与通信。
以上所描述的装置实施例仅仅是示意性的,例如,模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另一点,所显示或讨论的模块相互之间的连接可以是通过一些接口,可以是电性,机械或其它的形式。所述模块可以是或者也可以不是物理上分开的,可以是或者也可以不是物理单元。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
另外,在本发明实施例中的功能模块可以集成在一个处理模块中,也可以是每个模块单独物理包括,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用硬件加软件功能模块的形式实现。
上述以软件功能单元的形式实现的集成的模块,可以存储在一个计算机可读取存储介质中。上述软件功能模块存储在一个存储介质中,包括若干指 令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等可以存储程序代码的介质。
工业实用性
通过本发明实施例提供的技术方案可以有效控制多用户间干扰,有效控制接收机的接收检测复杂度,从而可以有效改善多用户接入通信性能,实现多用户过载接入通信和/或免调度接入通信。

Claims (21)

  1. 一种数据传输方法,包括:
    确定需要使用的复数序列,所述复数序列的长度为L,所述复数序列的每个元素来自于包含N个复数值的复数集合且所述N个复数值中有一个复数值为0,所述复数序列的每个元素为0的概率为P且0<P<1或所述复数序列中0元素的比例为R且0≤R≤(L-1)/L,其中,L为大于1的整数,N为大于或等于2的整数;
    使用所述复数序列对待发送的数据符号进行处理,生成数据符号序列;
    发送所述数据符号序列。
  2. 根据权利要求1所述的方法,其中,所述复数序列的每个元素为0的概率P大于或等于1/N;或者,所述复数序列的每个元素为0的概率P大于或等于每个元素为所述N个复数值中其他非零值的概率。
  3. 根据权利要求1所述的方法,其中,所述复数集合包含的N个复数值构成多个子集,每个子集中包含一个或多个复数值,所述复数序列的每个元素从不同子集中取值的概率不同。
  4. 根据权利要求1所述的方法,其中,所述复数序列中0元素的比例R满足1/L≤R≤(L-1)/L。
  5. 根据权利要求1所述的方法,其中,
    所述复数序列的每个元素为0的概率P或所述复数序列中0元素的比例R是根据系统固定配置确定的;或,
    所述复数序列的每个元素为0的概率P或所述复数序列中0元素的比例R是根据所述系统发送的配置信令确定的;或,
    所述复数序列的每个元素为0的概率P或所述复数序列中0元素的比例R是由所述系统根据第一预设规则确定的;或,
    所述复数序列的每个元素为0的概率P或所述复数序列中0元素的比例R是由发射机根据第二预设规则确定的。
  6. 根据权利要求1所述的方法,其中,所述复数序列中的元素不全为 0。
  7. 根据权利要求1所述的方法,其中,所述复数集合包含的N个复数值的实部与虚部的取值均来自于M元实数集合;或者,所述复数集合包含的N个复数值中的非零值的实部与虚部的取值均来自于M元实数集合;其中,M为大于或等于2的整数。
  8. 根据权利要求7所述的方法,其中,所述M元实数集合包括:
    当M为大于2的奇数时,[-(M-1)/2,(M-1)/2]范围内的M个整数组成的集合;或,
    当M为大于或等于2的偶数时,[-(M-1),(M-1)]范围内的M个奇数组成的集合;或,
    当M为大于2的奇数时,[-(M-1)/2,(M-1)/2]范围内的M个整数分别乘以第一预设系数得到的M个实数组成的集合;或,
    当M为大于或等于2的偶数时,[-(M-1),(M-1)]范围内的M个奇数分别乘以第二预设系数得到的M个实数组成的集合。
  9. 根据权利要求1所述的方法,其中,所述确定需要使用的复数序列包括:
    采用随机生成的方式确定所述复数序列;或,
    根据发射机身份识别信息确定所述复数序列;或,
    根据数据传输资源确定所述复数序列;或,
    根据系统固定配置确定所述复数序列;或,
    根据系统发送的配置信令确定所述复数序列;或,
    采用随机选择的方式从预设复数序列集合中确定所述复数序列;或,
    根据所述发射机身份识别信息从所述预设复数序列集合中确定所述复数序列;或,
    根据数据传输资源从所述预设复数序列集合中确定所述复数序列;或,
    根据待发送数据符号从所述预设复数序列集合中确定所述复数序列;或,
    根据所述系统固定配置从所述预设复数序列集合中确定所述复数序列;或,
    根据所述系统发送的配置信令从所述预设复数序列集合中确定所述复数序列。
  10. 根据权利要求9所述的方法,其中,所述发射机身份识别信息包括以下至少一个:所述发射机编号、所述发射机身份识别码、所述发射机位置信息、所述发射机网络地址。
  11. 根据权利要求9所述的方法,其中,
    所述预设复数序列集合是根据所述系统固定配置确定的;或,
    所述预设复数序列集合是根据所述系统发送的信令确定的;或,
    所述预设复数序列集合是根据所述系统固定配置从Q个复数序列集合中确定的;或,
    所述预设复数序列集合是根据所述系统发送的信令从所述Q个复数序列集合中确定的;或,
    所述预设复数序列集合是根据所述发射机身份识别信息从所述Q个复数序列集合中确定的;或,
    所述预设复数序列集合是根据所述数据传输资源从所述Q个复数序列集合中确定的;或,
    所述预设复数序列集合是根据所述复数序列中0元素的比例R从Q个复数序列集合中确定的;
    其中,Q为不小于1的整数。
  12. 根据权利要求9所述的方法,其中,所述预设复数序列集合中的任意两个复数序列之间的互相关系数小于或等于预设互相关系数。
  13. 根据权利要求1所述的方法,其中,所述使用所述复数序列对待发送的数据符号进行处理包括:
    使用所述复数序列对所述待发送的数据符号进行扩展处理;或,
    将所述待发送的数据符号映射为所述复数序列。
  14. 根据权利要求1所述的方法,其中,所述发送所述数据符号序列包括:
    将所述数据符号序列在数据传输资源上形成发射信号并发送。
  15. 一种数据传输方法,包括:
    接收K个发射机发射的信号,其中,K为大于或等于1的整数;
    根据所述K个发射机使用的复数序列确定需要使用的接收检测器;
    使用所述接收检测器对所述接收到的信号进行接收检测,获取所述K个发射机发送的数据。
  16. 根据权利要求15所述的方法,其中,所述K个发射机发射的信号是所述K个发射机分别在相同的数据传输资源上形成并发射的信号。
  17. 根据权利要求15所述的方法,其中,所述根据所述K个发射机使用的复数序列确定需要使用的接收检测器包括:
    根据所述K个发射机使用的复数序列中的0的比例从接收机支持的接收检测器中确定所述需要使用的接收检测器。
  18. 根据权利要求17所述的方法,其中,所述接收机支持的接收检测器包括以下至少一种:
    串行干扰消除接收检测器;
    并行干扰消除接收检测器;
    消息传递算法接收检测器;
    最大似然接收检测器。
  19. 一种数据传输装置,包括:
    第一确定模块,设置为:确定需要使用的复数序列,所述复数序列的长度为L,所述复数序列的每个元素来自于包含N个复数值的复数集合,且所述N个复数值中有一个复数值为0,所述复数序列的每个元素为0的概率为P且0<P<1或所述复数序列中0元素的比例为R且0≤R≤(L-1)/L,其中,L为大于1的整数,N为大于或等于2的整数;
    处理模块,设置为:使用所述第一确定模块确定的复数序列对待发送的 数据符号进行处理,生成数据符号序列;
    发送模块,设置为:发送所述处理模块生成的数据符号序列。
  20. 一种数据传输装置,包括:
    接收模块,设置为:接收K个发射机发射的信号,其中,K为大于或等于1的整数;
    第二确定模块,设置为:根据所述K个发射机使用的复数序列确定需要使用的接收检测器;
    检测模块,设置为:使用所述第二确定模块确定的接收检测器对所述接收到的信号进行接收检测,获取所述K个发射机发送的数据。
  21. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1-18任一项的方法。
PCT/CN2015/099832 2015-04-02 2015-12-30 一种数据传输方法及装置 WO2016155390A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510154557.5 2015-04-02
CN201510154557.5A CN106160787B (zh) 2015-04-02 2015-04-02 一种数据传输方法及装置

Publications (1)

Publication Number Publication Date
WO2016155390A1 true WO2016155390A1 (zh) 2016-10-06

Family

ID=57003880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/099832 WO2016155390A1 (zh) 2015-04-02 2015-12-30 一种数据传输方法及装置

Country Status (2)

Country Link
CN (1) CN106160787B (zh)
WO (1) WO2016155390A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107592676B (zh) * 2016-07-08 2023-05-02 中兴通讯股份有限公司 一种数据生成方法及装置、发射机、终端
CN108207028B (zh) * 2016-12-16 2023-07-14 中兴通讯股份有限公司 一种数据生成方法及装置、设备
CN108207020B (zh) * 2016-12-19 2021-03-02 中国电信股份有限公司 上行免调度传输方法、终端和基站
MX2019008161A (es) 2017-01-06 2019-09-13 Guangdong Oppo Mobile Telecommunications Corp Ltd Metodo y dispositivo de transmision de datos.
CN109245796B (zh) * 2017-07-03 2021-06-15 中兴通讯股份有限公司 一种生成数据的方法及装置
WO2019028911A1 (zh) * 2017-08-11 2019-02-14 华为技术有限公司 信号发送方法、接收方法及装置
CN112532368B (zh) * 2017-11-16 2021-08-20 华为技术有限公司 基于序列的信号处理方法及信号处理装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1253429A (zh) * 1998-11-05 2000-05-17 日本电气株式会社 能避免呼叫中断和用户容量下降的码分多址发射功率控制
US20030039301A1 (en) * 2001-06-15 2003-02-27 Bradley Wayne H. Multicode receiver
CN1968029A (zh) * 2005-11-16 2007-05-23 弥亚微电子(上海)有限公司 一种采用特殊扩频序列的扩频调制解调方法及装置
CN102811189A (zh) * 2012-08-28 2012-12-05 北京航空航天大学 一种基于概率控制的认知cdma通信系统抗干扰方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102655420B (zh) * 2011-03-02 2014-11-05 中兴通讯股份有限公司 一种实现多径搜索的分段频域方法及装置
EP2701323B1 (en) * 2012-08-24 2015-03-25 Airbus DS GmbH Generating and processing of CDMA signals

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1253429A (zh) * 1998-11-05 2000-05-17 日本电气株式会社 能避免呼叫中断和用户容量下降的码分多址发射功率控制
US20030039301A1 (en) * 2001-06-15 2003-02-27 Bradley Wayne H. Multicode receiver
CN1968029A (zh) * 2005-11-16 2007-05-23 弥亚微电子(上海)有限公司 一种采用特殊扩频序列的扩频调制解调方法及装置
CN102811189A (zh) * 2012-08-28 2012-12-05 北京航空航天大学 一种基于概率控制的认知cdma通信系统抗干扰方法

Also Published As

Publication number Publication date
CN106160787B (zh) 2019-02-15
CN106160787A (zh) 2016-11-23

Similar Documents

Publication Publication Date Title
AU2019200710B2 (en) Multi-user code division multiple access communication method, and corresponding transmitter and receiver
WO2016155390A1 (zh) 一种数据传输方法及装置
JP6598857B2 (ja) 符号分割多元接続によるマルチユーザ通信方法及び装置
WO2016150241A1 (zh) 一种数据传输方法及装置
WO2016078303A1 (zh) 数据传输方法及装置
US10171128B2 (en) Data transmission method and apparatus
CN108123903B (zh) 通信系统中的信号处理方法和设备
WO2021254683A1 (en) Generation and reception of signals comprising cyclically shifted orthogonal basis functions
US10999108B2 (en) Wireless communication method, apparatus, and system
CN113632557A (zh) 生成用于参考信号的序列

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15887339

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15887339

Country of ref document: EP

Kind code of ref document: A1