Nothing Special   »   [go: up one dir, main page]

WO2016148047A1 - 液晶性組成物、位相差層の製造方法及び円偏光板 - Google Patents

液晶性組成物、位相差層の製造方法及び円偏光板 Download PDF

Info

Publication number
WO2016148047A1
WO2016148047A1 PCT/JP2016/057717 JP2016057717W WO2016148047A1 WO 2016148047 A1 WO2016148047 A1 WO 2016148047A1 JP 2016057717 W JP2016057717 W JP 2016057717W WO 2016148047 A1 WO2016148047 A1 WO 2016148047A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
liquid crystal
substituent
retardation layer
Prior art date
Application number
PCT/JP2016/057717
Other languages
English (en)
French (fr)
Inventor
池田 顕
宏晃 周
俊平 中島
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2017506514A priority Critical patent/JP6669160B2/ja
Priority to CN201680015703.9A priority patent/CN107406769B/zh
Priority to US15/558,196 priority patent/US10533137B2/en
Priority to KR1020177025938A priority patent/KR102626269B1/ko
Priority to EP16764877.3A priority patent/EP3272836B1/en
Publication of WO2016148047A1 publication Critical patent/WO2016148047A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/02Liquid crystal materials characterised by optical, electrical or physical properties of the components, in general
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • C09K19/2007Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers the chain containing -COO- or -OCO- groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • C09K19/2007Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers the chain containing -COO- or -OCO- groups
    • C09K19/2014Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers the chain containing -COO- or -OCO- groups containing additionally a linking group other than -COO- or -OCO-, e.g. -CH2-CH2-, -CH=CH-, -C=C-; containing at least one additional carbon atom in the chain containing -COO- or -OCO- groups, e.g. -(CH2)m-COO-(CH2)n-
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/24Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing nitrogen-to-nitrogen bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/32Non-steroidal liquid crystal compounds containing condensed ring systems, i.e. fused, bridged or spiro ring systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/32Non-steroidal liquid crystal compounds containing condensed ring systems, i.e. fused, bridged or spiro ring systems
    • C09K19/322Compounds containing a naphthalene ring or a completely or partially hydrogenated naphthalene ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3441Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having nitrogen as hetero atom
    • C09K19/345Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having nitrogen as hetero atom the heterocyclic ring being a six-membered aromatic ring containing two nitrogen atoms
    • C09K19/3458Uncondensed pyrimidines
    • C09K19/3469Pyrimidine with a specific end-group other than alkyl, alkoxy or -C*-
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3441Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having nitrogen as hetero atom
    • C09K19/3483Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having nitrogen as hetero atom the heterocyclic ring being a non-aromatic ring
    • C09K19/3486Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having nitrogen as hetero atom the heterocyclic ring being a non-aromatic ring the heterocyclic ring containing nitrogen and oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3491Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having sulfur as hetero atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3491Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having sulfur as hetero atom
    • C09K19/3497Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having sulfur as hetero atom the heterocyclic ring containing sulfur and nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0448Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the end chain group being a polymerizable end group, e.g. -Sp-P or acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • C09K2019/121Compounds containing phenylene-1,4-diyl (-Ph-)
    • C09K2019/122Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • C09K2019/121Compounds containing phenylene-1,4-diyl (-Ph-)
    • C09K2019/123Ph-Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • C09K19/2007Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers the chain containing -COO- or -OCO- groups
    • C09K2019/2078Ph-COO-Ph-COO-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K2019/525Solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K2019/528Surfactants

Definitions

  • the present invention relates to a liquid crystal composition, a method for producing a retardation layer using the liquid crystal composition, and a circularly polarizing plate.
  • the display device may be provided with a circularly polarizing plate in order to suppress reflection of the screen of the display device.
  • a circularly polarizing plate usually includes a linear polarizer and a retardation layer.
  • a method using a polymerizable liquid crystal compound is known. In this method, a composition containing a polymerizable liquid crystal compound is usually applied to the surface of an appropriate substrate to form a layer, the polymerizable liquid crystal compound in the layer is aligned, and the aligned state is maintained and polymerization is performed. By doing so, a retardation layer is formed (see Patent Documents 1 to 3).
  • Composition a method for producing a retardation layer excellent in both surface state and orientation, using a polymerizable liquid crystal compound capable of developing birefringence with reverse wavelength dispersion; and excellent in both surface state and orientation
  • An object of the present invention is to provide a circularly polarizing plate having a retardation layer.
  • the present inventors diligently studied to solve the above problems. As a result, the present inventors have achieved a surface by using a liquid crystal composition containing a polymerizable liquid crystal compound capable of developing birefringence with reverse wavelength dispersion, a surfactant containing fluorine atoms at a predetermined ratio, and a solvent. It was found that a retardation layer excellent in both state and orientation could be produced, and the present invention was completed. That is, the present invention is as follows.
  • a polymerizable liquid crystal compound capable of expressing birefringence with reverse wavelength dispersion; A surfactant containing a fluorine atom; A solvent, The liquid crystalline composition in which the proportion of fluorine atoms in the surfactant molecule is 30% by weight or less.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • G 1 and G 2 each independently represents a divalent aliphatic group having 1 to 20 carbon atoms, which may have a substituent.
  • the aliphatic group includes one or more —O—, —S—, —O—C ( ⁇ O) —, —C ( ⁇ O) —O—, —O—C per aliphatic group.
  • ( ⁇ O) —O—, —NR 2 —C ( ⁇ O) —, —C ( ⁇ O) —NR 2 —, —NR 2 —, or —C ( ⁇ O) — may be present. Good.
  • R 2 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • Z 1 and Z 2 each independently represents an alkenyl group having 2 to 10 carbon atoms which may be substituted with a halogen atom.
  • a x represents an organic group having 2 to 30 carbon atoms having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring.
  • a y has a hydrogen atom, an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkenyl group having 2 to 20 carbon atoms, and a substituent.
  • a cycloalkyl group having 3 to 12 carbon atoms, an alkynyl group having 2 to 20 carbon atoms which may have a substituent, —C ( ⁇ O) —R 3 , —SO 2 —R 4 , —C ( S) NH-R 9 or an organic group having 2 to 30 carbon atoms having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring.
  • R 3 has an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkenyl group having 2 to 20 carbon atoms, and a substituent.
  • R 4 represents an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, a phenyl group, or a 4-methylphenyl group.
  • R 9 is an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkenyl group having 2 to 20 carbon atoms, and an optionally substituted carbon. It represents a cycloalkyl group having 3 to 12 carbon atoms or an aromatic group having 5 to 20 carbon atoms which may have a substituent. The aromatic ring which said Ax and Ay have may have a substituent.
  • a x and A y may be combined to form a ring.
  • a 1 represents a trivalent aromatic group which may have a substituent.
  • a 2 and A 3 each independently represent a C 3-30 divalent alicyclic hydrocarbon group which may have a substituent.
  • a 4 and A 5 each independently represents a divalent aromatic group having 6 to 30 carbon atoms, which may have a substituent.
  • Q 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms which may have a substituent.
  • m and n each independently represents 0 or 1.
  • [4] A step of applying the liquid crystalline composition according to any one of [1] to [3] to a support surface to form a layer of the liquid crystalline composition; Aligning the polymerizable liquid crystal compound contained in the layer of the liquid crystalline composition; And a step of polymerizing the polymerizable liquid crystal compound to obtain a retardation layer.
  • [5] A circularly polarizing plate comprising a linear polarizer and a retardation layer produced by the production method according to [4].
  • the liquid crystalline composition of the present invention it is possible to produce a retardation layer that is excellent in both surface state and orientation by using a polymerizable liquid crystal compound that can exhibit reverse wavelength dispersive birefringence.
  • the method for producing a retardation layer of the present invention it is possible to produce a retardation layer excellent in both surface state and orientation by using a polymerizable liquid crystal compound capable of expressing reverse wavelength dispersive birefringence.
  • the circularly polarizing plate of the present invention includes a retardation layer that is excellent in both surface state and orientation.
  • FIG. 1 is a diagram showing an image of a retardation layer observed in Example 2 of the present invention.
  • FIG. 2 is a diagram showing an image of the retardation layer observed in Example 5 of the present invention.
  • FIG. 3 is a diagram illustrating an image of the retardation layer observed in Comparative Example 3.
  • FIG. 4 is a diagram illustrating an image of the retardation layer observed in Comparative Example 5.
  • FIG. 5 is a display diagram showing the retardation measured in Example 2 of the present invention in a mapping display.
  • FIG. 6 is a display diagram showing the retardation measured in Example 5 of the present invention in a mapping display.
  • FIG. 7 is a display diagram showing the retardation measured in Comparative Example 3 in a mapping display.
  • FIG. 8 is a display diagram showing the retardation measured in Comparative Example 5 in a mapping display.
  • FIG. 9 is a display diagram showing the retardation at the points on the line segment parallel to the width direction of the retardation layer measured in Example 2 of the present invention in a graph display.
  • FIG. 10 is a display diagram showing the retardation at a point on the line segment parallel to the width direction of the retardation layer measured in Example 5 of the present invention in a graph display.
  • FIG. 11 is a display diagram showing the retardation measured at the point on the line segment parallel to the width direction of the retardation layer measured in Comparative Example 3 in a graph display.
  • FIG. 12 is a display diagram showing the retardation at points on the line segment parallel to the width direction of the retardation layer measured in Comparative Example 5 in a graph display.
  • FIG. 13 is a display diagram showing the thickness measured in Example 2 of the present invention in a mapping display.
  • FIG. 14 is a display diagram showing the thickness measured in Example 5 of the present invention in a mapping display.
  • FIG. 15 is a display diagram showing the thickness measured in Comparative Example 3 in a mapping display.
  • FIG. 16 is a display diagram showing the thickness measured in Comparative Example 5 in a mapping display.
  • FIG. 17 is a display diagram showing the thickness at points on a line segment parallel to the width direction of the retardation layer measured in Example 2 of the present invention in a graph display.
  • FIG. 18 is a display diagram showing the thickness at points on a line segment parallel to the width direction of the retardation layer measured in Example 5 of the present invention in a graph display.
  • FIG. 19 is a display diagram showing the thickness at points on a line segment parallel to the width direction of the retardation layer measured in Comparative Example 3 in a graph display.
  • FIG. 20 is a display diagram showing the thickness at points on the line segment parallel to the width direction of the retardation layer measured in Comparative Example 5 in a graph display.
  • the range is within a range that does not impair the effect of the present invention, for example, ⁇ 5 °, preferably ⁇ 3 °, more preferably ⁇ 1.
  • An error within the range of ° may be included.
  • the retardation of a certain layer represents in-plane retardation Re unless otherwise specified.
  • nx represents a refractive index in a direction (in-plane direction) perpendicular to the thickness direction of the layer and giving the maximum refractive index.
  • ny represents the refractive index in the in-plane direction of the layer and perpendicular to the nx direction.
  • d represents the thickness of the layer.
  • the measurement wavelength of retardation is 550 nm unless otherwise specified.
  • polarizing plate and “wave plate” are used as terms including flexible films and sheets such as resin films, unless otherwise specified.
  • the liquid crystalline composition of the present invention includes a polymerizable liquid crystal compound capable of developing reverse wavelength dispersive birefringence, a surfactant containing a fluorine atom, and a solvent.
  • a polymerizable liquid crystal compound that can exhibit reverse wavelength dispersive birefringence may be referred to as “reverse wavelength polymerizable liquid crystal compound” as appropriate.
  • the liquid crystalline composition of the present invention may be in the form of a powder or liquid at normal temperature, but is usually a fluid composition in the temperature range (usually 50 ° C. to 150 ° C.) in which the alignment treatment is performed. It is.
  • the reverse wavelength polymerizable liquid crystal compound Since the reverse wavelength polymerizable liquid crystal compound has liquid crystallinity, it can exhibit a liquid crystal phase when the reverse wavelength polymerizable liquid crystal compound is aligned. Further, since the reverse wavelength polymerizable liquid crystal compound has polymerizability, it can be polymerized in the state of exhibiting the liquid crystal phase as described above, and can be a polymer while maintaining the molecular orientation in the liquid crystal phase. Since the liquid crystalline composition of the present invention contains the reverse wavelength polymerizable liquid crystal compound as described above, a retardation layer can be produced using the liquid crystalline composition of the present invention.
  • the reverse wavelength polymerizable liquid crystal compound is a compound that can exhibit reverse wavelength dispersive birefringence.
  • the compound capable of exhibiting reverse wavelength dispersive birefringence refers to a compound in which the obtained polymer exhibits reverse wavelength dispersive birefringence when used as a polymer as described above.
  • Reverse wavelength dispersive birefringence refers to birefringence in which birefringence ⁇ n (450) at a wavelength of 450 nm and birefringence ⁇ n (650) at a wavelength of 650 nm satisfy the following formula (1).
  • ⁇ n (550) represents birefringence at a measurement wavelength of 550 nm.
  • ⁇ n (450) ⁇ n (650) (1) ⁇ n (450) ⁇ n (550) ⁇ n (650) (2)
  • the reverse wavelength polymerizable liquid crystal compound for example, a compound containing a main chain mesogen and a side chain mesogen bonded to the main chain mesogen in the molecule of the reverse wavelength polymerizable liquid crystal compound can be used.
  • the reverse wavelength polymerizable liquid crystal compound containing a main chain mesogen and a side chain mesogen the side chain mesogen can be aligned in a direction different from the main chain mesogen in a state where the reverse wavelength polymerizable liquid crystal compound is aligned. Therefore, in the polymer obtained by polymerizing the reverse wavelength polymerizable liquid crystal compound while maintaining such orientation, the main chain mesogen and the side chain mesogen can be oriented in different directions. With this orientation, the polymer can exhibit reverse wavelength dispersive birefringence.
  • the molecular weight of the reverse wavelength polymerizable liquid crystal compound is preferably 300 or more, more preferably 700 or more, particularly preferably 1000 or more, preferably 2000 or less, more preferably 1700 or less, and particularly preferably 1500 or less.
  • the reverse wavelength polymerizable liquid crystal compound having the molecular weight as described above indicates that the reverse wavelength polymerizable liquid crystal compound is a monomer.
  • the coating property of the liquid crystal composition can be made particularly good.
  • Suitable reverse wavelength polymerizable liquid crystal compounds include compounds represented by the following formula (I).
  • the compound represented by the formula (I) may be referred to as “compound (I)” as appropriate.
  • the main chain mesogen 1a and the side chain mesogen 1b cross each other.
  • the main chain mesogen 1a and the side chain mesogen 1b can be combined into one mesogen, in the present invention, they are divided into two mesogens.
  • the refractive index in the major axis direction of the main chain mesogen 1a is n1
  • the refractive index in the major axis direction of the side chain mesogen 1b is n2.
  • the absolute value and the wavelength dispersion of the refractive index n1 usually depend on the molecular structure of the main chain mesogen 1a.
  • the absolute value and wavelength dispersion of the refractive index n2 usually depend on the molecular structure of the side chain mesogen 1b.
  • the reverse wavelength polymerizable liquid crystal compound normally performs a rotational motion with the major axis direction of the main chain mesogen 1a as the rotation axis, and the refractive indexes n1 and n2 referred to here are the refraction as a rotating body. Represents the rate.
  • the absolute value of the refractive index n1 is larger than the absolute value of the refractive index n2 due to the molecular structure of the main chain mesogen 1a and the side chain mesogen 1b. Furthermore, the refractive indexes n1 and n2 usually show forward wavelength dispersion.
  • the forward wavelength dispersive refractive index represents a refractive index in which the absolute value of the refractive index decreases as the measurement wavelength increases. Since the refractive index n1 of the main chain mesogen 1a has a small forward wavelength dispersion, the refractive index measured at a long wavelength is not significantly smaller than the refractive index measured at a short wavelength.
  • the refractive index n2 of the side chain mesogen 1b has a large forward wavelength dispersion, the refractive index measured at the long wavelength is significantly smaller than the refractive index measured at the short wavelength. Therefore, when the measurement wavelength is short, the difference ⁇ n between the refractive index n1 and the refractive index n2 is small, and when the measurement wavelength is long, the difference ⁇ n between the refractive index n1 and the refractive index n2 is large. In this way, the reverse wavelength dispersive birefringence can be expressed from the main chain mesogen 1a and the side chain mesogen 1b.
  • Y 1 to Y 8 are each independently a chemical single bond, —O—, —S—, —O—C ( ⁇ O) —, —C ( ⁇ O) —.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • alkyl group having 1 to 6 carbon atoms of R 1 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, t-butyl group, n-pentyl group, An n-hexyl group may be mentioned.
  • R 1 is preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • Y 1 to Y 8 are each independently a chemical single bond, —O—, —O—C ( ⁇ O) —, —C ( ⁇ O) —O—, or , —O—C ( ⁇ O) —O— is preferable.
  • G 1 and G 2 each independently represent a divalent aliphatic group having 1 to 20 carbon atoms, which may have a substituent.
  • the divalent aliphatic group having 1 to 20 carbon atoms include a divalent aliphatic group having a chain structure such as an alkylene group having 1 to 20 carbon atoms and an alkenylene group having 2 to 20 carbon atoms; And divalent aliphatic groups such as a cycloalkanediyl group having 3 to 20 carbon atoms, a cycloalkenediyl group having 4 to 20 carbon atoms, and a divalent alicyclic fused ring group having 10 to 30 carbon atoms.
  • Examples of the substituent for the divalent aliphatic group represented by G 1 and G 2 include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom; methoxy group, ethoxy group, n-propoxy group, isopropoxy group
  • halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom
  • methoxy group, ethoxy group, n-propoxy group isopropoxy group
  • An alkoxy group having 1 to 6 carbon atoms such as an n-butoxy group, a sec-butoxy group, a t-butoxy group, an n-pentyloxy group and an n-hexyloxy group.
  • a fluorine atom, a methoxy group, and an ethoxy group are preferable.
  • the aliphatic group includes one or more —O—, —S—, —O—C ( ⁇ O) —, —C ( ⁇ O) —O—, —O—C per aliphatic group.
  • ( ⁇ O) —O—, —NR 2 —C ( ⁇ O) —, —C ( ⁇ O) —NR 2 —, —NR 2 —, or —C ( ⁇ O) — may be present. Good. However, the case where two or more of —O— or —S— are adjacent to each other is excluded.
  • R 2 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and is preferably a hydrogen atom or a methyl group.
  • the group intervening in the aliphatic group is preferably —O—, —O—C ( ⁇ O) —, —C ( ⁇ O) —O—, —C ( ⁇ O) —.
  • G 1 and G 2 are each independently an alkylene group having 1 to 20 carbon atoms, an alkenylene group having 2 to 20 carbon atoms, or the like from the viewpoint of better expressing the desired effect of the present invention.
  • a divalent aliphatic group having a chain structure is preferable.
  • Z 1 and Z 2 each independently represents an alkenyl group having 2 to 10 carbon atoms which may be substituted with a halogen atom.
  • the alkenyl group preferably has 2 to 6 carbon atoms.
  • Examples of the halogen atom that is a substituent of the alkenyl group of Z 1 and Z 2 include a fluorine atom, a chlorine atom, a bromine atom, and the like, and a chlorine atom is preferable.
  • alkenyl group having 2 to 10 carbon atoms of Z 1 and Z 2 include CH 2 ⁇ CH—, CH 2 ⁇ C (CH 3 ) —, CH 2 ⁇ CH—CH 2 —, CH 3 —CH ⁇ .
  • Z 1 and Z 2 are each independently CH 2 ⁇ CH—, CH 2 ⁇ C (CH 3 ) —, CH 2 ⁇ C (Cl) —, CH 2 ⁇ CH—CH 2 —, CH 2 ⁇ C (CH 3 ) —CH 2 —, or CH 2 ⁇ C (CH 3 ) —CH 2 —CH 2 — is preferred, and CH 2 ⁇ CH—, CH 2 ⁇ C (CH 3 ) — or CH 2 ⁇ C (Cl) — is more preferred, and CH 2 ⁇ CH— is particularly preferred.
  • a x represents an organic group having 2 to 30 carbon atoms having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring.
  • “Aromatic ring” means a cyclic structure having a broad sense of aromaticity according to the Huckle rule, that is, a cyclic conjugated structure having (4n + 2) ⁇ electrons, and sulfur, oxygen, typified by thiophene, furan, benzothiazole, etc. It means a cyclic structure in which a lone electron pair of a hetero atom such as nitrogen is involved in the ⁇ -electron system and exhibits aromaticity.
  • the organic group having 2 to 30 carbon atoms and having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring of A x may have a plurality of aromatic rings. And having both an aromatic hydrocarbon ring and an aromatic heterocycle.
  • aromatic hydrocarbon ring examples include a benzene ring, a naphthalene ring, and an anthracene ring.
  • aromatic heterocyclic ring examples include monocyclic aromatic heterocyclic rings such as a pyrrole ring, a furan ring, a thiophene ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, a pyrazole ring, an imidazole ring, an oxazole ring, and a thiazole ring; Benzothiazole ring, benzoxazole ring, quinoline ring, phthalazine ring, benzimidazole ring, benzopyrazole ring, benzofuran ring, benzothiophene ring, thiazolopyridine ring, oxazolopyridine ring, thiazolopyrazine ring,
  • the aromatic ring of A x may have a substituent.
  • substituents include halogen atoms such as fluorine atom and chlorine atom; cyano group; alkyl group having 1 to 6 carbon atoms such as methyl group, ethyl group and propyl group; and carbon number 2 such as vinyl group and allyl group.
  • R 5 represents an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or a cycloalkyl group having 3 to 12 carbon atoms
  • R 6 is a carbon atom similar to R 4 described later. It represents an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, a phenyl group, or a 4-methylphenyl group.
  • the aromatic ring within A x may have a plurality of identical or different substituents, bonded two adjacent substituents together may form a ring.
  • the ring formed may be a monocycle, a condensed polycycle, an unsaturated ring, or a saturated ring.
  • the “carbon number” of the organic group having 2 to 30 carbon atoms in A x means the total number of carbon atoms in the whole organic group not including the carbon atom of the substituent (the same applies to A y described later). .
  • Examples of the organic group having 2 to 30 carbon atoms and having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocycle of A x include an aromatic hydrocarbon ring group; A heterocyclic group; an alkyl group having 3 to 30 carbon atoms having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring; a group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring An alkenyl group having 4 to 30 carbon atoms having at least one aromatic ring selected from the group consisting of: 4 to 30 carbon atoms having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring An alkynyl group;
  • Ax is not limited to the following.
  • “-” represents a bond extending from any position of the ring (the same applies hereinafter).
  • E represents NR 6a , an oxygen atom or a sulfur atom.
  • R 6a represents a hydrogen atom; or an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, or a propyl group.
  • X, Y and Z each independently represent NR 7 , oxygen atom, sulfur atom, —SO— or —SO 2 — (provided that oxygen atom, sulfur atom, —SO—, Except where —SO 2 — are adjacent to each other).
  • R 7 represents the same hydrogen atom as R 6a ; or an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, or a propyl group.
  • a x as described above more be an aromatic hydrocarbon ring group having 6 to 30 carbon atoms, or is preferably an aromatic heterocyclic group having 4 to 30 carbon atoms, which is one of the groups shown below preferable.
  • a x is more preferably any of the groups shown below.
  • Ring within A x may have a substituent.
  • substituents include halogen atoms such as fluorine atom and chlorine atom; cyano group; alkyl group having 1 to 6 carbon atoms such as methyl group, ethyl group and propyl group; and carbon number 2 such as vinyl group and allyl group.
  • substituent a halogen atom, a cyano group, an alkyl group having 1 to 6 carbon atoms, and an alkoxy having 1
  • the ring of A x may have a plurality of the same or different substituents, and two adjacent substituents may be bonded together to form a ring.
  • the ring formed may be a single ring or a condensed polycycle.
  • the “carbon number” of the organic group having 2 to 30 carbon atoms in A x means the total number of carbon atoms in the whole organic group not including the carbon atom of the substituent (the same applies to A y described later).
  • a y is a hydrogen atom, an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkenyl group having 2 to 20 carbon atoms, A cycloalkyl group having 3 to 12 carbon atoms which may have a substituent, an alkynyl group having 2 to 20 carbon atoms which may have a substituent, —C ( ⁇ O) —R 3 , —SO 2
  • R 3 has an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkenyl group having 2 to 20 carbon atoms, and a substituent. Or a cycloalkyl group having 3 to 12 carbon atoms or an aromatic hydrocarbon ring group having 5 to 12 carbon atoms.
  • R 4 represents an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, a phenyl group, or a 4-methylphenyl group.
  • R 9 is an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkenyl group having 2 to 20 carbon atoms, and an optionally substituted carbon. It represents a cycloalkyl group having 3 to 12 carbon atoms or an aromatic group having 5 to 20 carbon atoms which may have a substituent.
  • alkyl group having 1 to 20 carbon atoms alkyl group substituents to 1 carbon atoms which may have a 20, for example, a methyl group, an ethyl group, n- propyl group, an isopropyl radical, n -Butyl group, isobutyl group, 1-methylpentyl group, 1-ethylpentyl group, sec-butyl group, t-butyl group, n-pentyl group, isopentyl group, neopentyl group, n-hexyl group, isohexyl group, n -Heptyl, n-octyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl, n-tridecyl, n-tetradecyl, n-pentadecyl, n-hexadecyl
  • the alkenyl group having 2 to 20 carbon atoms alkenyl group substituents to 2 carbon atoms which may have a 20, for example, vinyl group, propenyl group, isopropenyl group, butenyl group, isobutenyl group Pentenyl group, hexenyl group, heptenyl group, octenyl group, decenyl group, undecenyl group, dodecenyl group, tridecenyl group, tetradecenyl group, pentadecenyl group, hexadecenyl group, heptadecenyl group, octadecenyl group, nonadecenyl group, icocenyl group.
  • the carbon number of the alkenyl group having 2 to 20 carbon atoms which may have a substituent is preferably 2 to 12.
  • the cycloalkyl group having 3 to 12 carbon atoms a cycloalkyl group which has 1-3 carbon atoms which may 12 have a substituent, for example, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, A cyclooctyl group is mentioned.
  • alkynyl group having 2 to 20 carbon atoms alkynyl group substituents to 2 carbon atoms which may have a 20, for example, ethynyl group, propynyl group, 2-propynyl group (propargyl group), Butynyl, 2-butynyl, 3-butynyl, pentynyl, 2-pentynyl, hexynyl, 5-hexynyl, heptynyl, octynyl, 2-octynyl, nonanyl, decanyl, 7-decanyl Is mentioned.
  • Examples of the substituent of the alkyl group having 1 to 20 carbon atoms that may have a substituent and the alkenyl group having 2 to 20 carbon atoms that may have a substituent of A y include, for example, a fluorine atom Halogen atom such as chlorine atom; cyano group; substituted amino group such as dimethylamino group; alkoxy group having 1 to 20 carbon atoms such as methoxy group, ethoxy group, isopropoxy group, butoxy group; methoxymethoxy group, methoxyethoxy group An alkoxy group having 1 to 12 carbon atoms substituted by an alkoxy group having 1 to 12 carbon atoms, such as nitro group; an aryl group such as phenyl group or naphthyl group; a carbon number such as cyclopropyl group, cyclopentyl group, cyclohexyl group, etc.
  • a fluorine atom Halogen atom such as chlorine atom
  • a fluoroalkoxy group having 1 to 12 carbon atoms in which at least one is substituted with a fluorine atom, such as a group, —CH 2 CF 3 ; benzofuryl group; benzopyranyl group; benzodioxolyl group; benzodioxanyl group; ( O)
  • R 7a and R 10 are each independently an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, or a 6 to 12 carbon atoms.
  • R 8a represents an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, a phenyl group, or a 4-methylphenyl group, similar to R 4 described above.
  • Examples of the substituent of the cycloalkyl group having 3 to 12 carbon atoms which may have a substituent of A y include, for example, a halogen atom such as a fluorine atom and a chlorine atom; a cyano group; a substituted amino group such as a dimethylamino group Groups: alkyl groups having 1 to 6 carbon atoms such as methyl, ethyl, and propyl groups; alkoxy groups having 1 to 6 carbon atoms such as methoxy, ethoxy, and isopropoxy groups; nitro groups; phenyl groups, naphthyl groups, and the like A cycloalkyl group having 3 to 8 carbon atoms such as a cyclopropyl group, a cyclopentyl group, and a cyclohexyl group; —C ( ⁇ O) —R 7a ; —C ( ⁇ O) —OR 7a ; —SO 2 R 8a A hydroxy
  • Examples of the substituent of the alkynyl group having 2 to 20 carbon atoms that may have a substituent of A y include, for example, an alkyl group having 1 to 20 carbon atoms that may have a substituent, and a substituent. Examples thereof include the same substituents as those of the alkenyl group having 2 to 20 carbon atoms which may have a group.
  • R 3 may have a C 1-20 alkyl group which may have a substituent, or may have a substituent. It represents a good alkenyl group having 2 to 20 carbon atoms, an optionally substituted cycloalkyl group having 3 to 12 carbon atoms, or an aromatic hydrocarbon ring group having 5 to 12 carbon atoms. Specific examples thereof include the alkyl group having 1 to 20 carbon atoms which may have a substituent, the alkenyl group having 2 to 20 carbon atoms which may have a substituent, and a substituent of the above Ay.
  • cycloalkyl group which has carbon atoms 3 be ⁇ 12 have a group; and, the same as the number of carbon atoms of the aromatic hydrocarbon ring group described in the a x is given as an example of from 5 to 12 Things.
  • R 4 is an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, a phenyl group, or a 4-methylphenyl group To express.
  • Specific examples of the alkyl group having 1 to 20 carbon atoms and the alkenyl group having 2 to 20 carbon atoms in R 4 include the alkyl group having 1 to 20 carbon atoms and the alkenyl group having 2 to 20 carbon atoms in the above Ay . The thing similar to what was mentioned as an example is mentioned.
  • R 9 has an optionally substituted alkyl group having 1 to 20 carbon atoms and a substituent.
  • Examples of the organic group having 2 to 30 carbon atoms and having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring for A y are the same as those described for A x above. Is mentioned.
  • a hydrogen atom an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkenyl group having 2 to 20 carbon atoms, and a substituent
  • a y includes a hydrogen atom, an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkenyl group having 2 to 20 carbon atoms, and a substituent.
  • a hydrogen ring group, an aromatic heterocyclic group having 3 to 9 carbon atoms which may have a substituent, and a group represented by —C ( ⁇ O) —R 3 or —SO 2 —R 4 are more preferable.
  • R 3 and R 4 represent the same meaning as described above.
  • an alkyl group having 1 to 20 carbon atoms which may have a substituent an alkenyl group having 2 to 20 carbon atoms which may have a substituent, and an optionally substituted carbon
  • substituent of the alkynyl group having 2 to 20 carbon atoms include a halogen atom, a cyano group, an alkoxy group having 1 to 20 carbon atoms, an alkoxy group having 1 to 12 carbon atoms substituted with an alkoxy group having 1 to 12 carbon atoms, phenyl Group, cyclohexyl group, C2-C12 cyclic ether group, C6-C14 aryloxy group, hydroxyl group, benzodioxanyl group, phenylsulfonyl group, 4-methylphenylsulfonyl group, benzoyl group, -SR 10 Is preferred.
  • R 10 represents the same meaning as described above.
  • a y has a cycloalkyl group having 3 to 12 carbon atoms which may have a substituent, an aromatic hydrocarbon ring group having 6 to 12 carbon atoms which may have a substituent, and a substituent.
  • the substituent of the aromatic heterocyclic group having 3 to 9 carbon atoms a fluorine atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, and a cyano group are preferable.
  • a x and A y may be combined to form a ring.
  • a ring examples include an unsaturated heterocyclic ring having 4 to 30 carbon atoms and an unsaturated carbocyclic ring having 6 to 30 carbon atoms, which may have a substituent.
  • the unsaturated heterocyclic ring having 4 to 30 carbon atoms and the unsaturated carbocyclic ring having 6 to 30 carbon atoms are not particularly limited, and may or may not have aromaticity.
  • Examples of the ring formed by combining A x and A y include the rings shown below.
  • the ring shown below is the one in the formula (I).
  • the total number of ⁇ electrons contained in A x and A y is preferably 4 or more and 24 or less, more preferably 6 or more and 20 or less, from the viewpoint of better expressing the desired effect of the present invention. More preferably, it is 6 or more and 18 or less.
  • a x and A y include the following combination ( ⁇ ) and combination ( ⁇ ).
  • a x is an aromatic hydrocarbon ring group or aromatic heterocyclic group having 4 to 30 carbon atoms
  • a y is a hydrogen atom, a cycloalkyl group having 3 to 8 carbon atoms, (halogen atom, cyano group An alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or a cycloalkyl group having 3 to 8 carbon atoms) as a substituent.
  • An aromatic heterocyclic group having 3 to 9 carbon atoms which may have a cyclic group (a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or a cyano group), An optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkenyl group having 1 to 20 carbon atoms, or an optionally substituted carbon group having 2 carbon atoms.
  • the substituent is a halogen atom, a cyano group, 1 carbon atom
  • a combination that is any one of an oxy group, a hydroxyl group, a benzodioxanyl group, a benzenesulfonyl group, a benzoyl group, and —SR 10 .
  • ( ⁇ ) A combination in which A x and A y together form an unsaturated heterocyclic ring or unsaturated carbocyclic ring.
  • R 10 represents the same meaning as described above.
  • a x and A y include the following combination ( ⁇ ).
  • a x is any of the groups having the following structure, and A y is a hydrogen atom, a cycloalkyl group having 3 to 8 carbon atoms, (a halogen atom, a cyano group, an alkyl group having 1 to 6 carbon atoms, carbon An aromatic hydrocarbon ring group having 6 to 12 carbon atoms which may have a substituent having an alkoxy group having 1 to 6 carbon atoms or a cycloalkyl group having 3 to 8 carbon atoms) (halogen atom, 1 to An alkyl group having 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or a cyano group) as an optionally substituted aromatic heterocyclic group having 3 to 9 carbon atoms or an optionally substituted carbon number.
  • R 10 represents the same meaning as described above.
  • a particularly preferred combination of A x and A y includes the following combination ( ⁇ ).
  • a x is any of the groups having the following structure, and A y is a hydrogen atom, a cycloalkyl group having 3 to 8 carbon atoms, a (halogen atom, a cyano group, an alkyl group having 1 to 6 carbon atoms, carbon An aromatic hydrocarbon ring group having 6 to 12 carbon atoms which may have a substituent having an alkoxy group having 1 to 6 carbon atoms or a cycloalkyl group having 3 to 8 carbon atoms) (halogen atom, 1 to An alkyl group having 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or a cyano group) as an optionally substituted aromatic heterocyclic group having 3 to 9 carbon atoms or an optionally substituted carbon number.
  • X represents the same meaning as described above.
  • R 10 represents the same meaning as described above.
  • a 1 represents a trivalent aromatic group which may have a substituent.
  • the trivalent aromatic group may be a trivalent carbocyclic aromatic group or a trivalent heterocyclic aromatic group. From the viewpoint of better expressing the desired effect of the present invention, a trivalent carbocyclic aromatic group is preferable, a trivalent benzene ring group or a trivalent naphthalene ring group is more preferable, and a trivalent represented by the following formula: The benzene ring group or trivalent naphthalene ring group is more preferable.
  • the substituents Y 1 and Y 2 are described for convenience in order to clarify the bonding state (Y 1 and Y 2 represent the same meaning as described above, and the same applies hereinafter). .
  • a 1 groups represented by the following formulas (A11) to (A25) are more preferable.
  • A13 groups represented by the following formulas (A11), (A13), (A15), (A19), and (A23) are particularly preferred.
  • Examples of the substituent that the trivalent aromatic group of A 1 may have include the same groups as those described as the substituent of the aromatic ring of A x .
  • a 1 preferably has no substituent.
  • a 2 and A 3 each independently represent a C 3-30 divalent alicyclic hydrocarbon group which may have a substituent.
  • Examples of the divalent alicyclic hydrocarbon group having 3 to 30 carbon atoms include a cycloalkanediyl group having 3 to 30 carbon atoms and a divalent alicyclic condensed ring group having 10 to 30 carbon atoms.
  • Examples of the cycloalkanediyl group having 3 to 30 carbon atoms include cyclopropanediyl group; cyclobutanediyl group such as cyclobutane-1,2-diyl group and cyclobutane-1,3-diyl group; cyclopentane-1,2- Cyclopentanediyl groups such as diyl groups, cyclopentane-1,3-diyl groups; cyclohexanediyl groups such as cyclohexane-1,2-diyl groups, cyclohexane-1,3-diyl groups, cyclohexane-1,4-diyl groups Groups: cycloheptane-1,2-diyl group, cycloheptane-1,3-diyl group, cycloheptanediyl group such as cycloheptane-1,4-diyl group; cyclo
  • Tandiyl group cyclodecane-1,2-diyl group, cyclodecane-1,3-diyl group, cyclodecane-1,4-diyl group, cyclodecane-1,5-diyl group, etc .
  • cyclodecane-1 Cyclododecanediyl groups such as 2-diyl, cyclododecane-1,3-diyl, cyclododecane-1,4-diyl, cyclododecane-1,5-diyl
  • Examples of the divalent alicyclic fused ring group having 10 to 30 carbon atoms include a decalindiyl group such as a decalin-2,5-diyl group and a decalin-2,7-diyl group; an adamantane-1,2-diyl group An adamantanediyl group such as an adamantane-1,3-diyl group; a bicyclo [2.2.1] heptane-2,3-diyl group, a bicyclo [2.2.1] heptane-2,5-diyl group And bicyclo [2.2.1] heptanediyl group such as bicyclo [2.2.1] heptane-2,6-diyl group.
  • a decalindiyl group such as a decalin-2,5-diyl group and a decalin-2,7-diyl group
  • These divalent alicyclic hydrocarbon groups may have a substituent at any position.
  • substituents include the same as those described as substituents of the aromatic ring of the A x.
  • a 2 and A 3 a divalent alicyclic hydrocarbon group having 3 to 12 carbon atoms is preferable, a cycloalkanediyl group having 3 to 12 carbon atoms is more preferable, and the following formula (A31) to A group represented by (A34) is more preferred, and a group represented by the following formula (A32) is particularly preferred.
  • the divalent alicyclic hydrocarbon group having 3 to 30 carbon atoms is based on a difference in configuration of carbon atoms bonded to Y 1 and Y 3 (or Y 2 and Y 4 ).
  • Stereoisomers can exist.
  • a cis-type isomer (A32a) and a trans-type isomer (A32b) may exist.
  • the divalent alicyclic hydrocarbon group having 3 to 30 carbon atoms may be cis, trans, or a mixture of cis and trans isomers.
  • the trans-type or cis-type is preferable because the orientation is good, and the trans-type is more preferable.
  • a 4 and A 5 each independently represents a divalent aromatic group having 6 to 30 carbon atoms which may have a substituent.
  • the aromatic groups of A 4 and A 5 may be monocyclic or polycyclic.
  • Preferable specific examples of A 4 and A 5 include the following.
  • the divalent aromatic groups of A 4 and A 5 may have a substituent at any position.
  • the substituent include a halogen atom, a cyano group, a hydroxyl group, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a nitro group, and a —C ( ⁇ O) —OR 8b group; Can be mentioned.
  • R 8b is an alkyl group having 1 to 6 carbon atoms.
  • a halogen atom, an alkyl group having 1 to 6 carbon atoms, and an alkoxy group are preferable.
  • the halogen atom is more preferably a fluorine atom
  • the alkyl group having 1 to 6 carbon atoms is more preferably a methyl group, an ethyl group or a propyl group
  • the alkoxy group is more preferably a methoxy group or an ethoxy group.
  • a 4 and A 5 may each independently have a substituent, and the following formulas (A41) and (A42) Or the group represented by (A43) is more preferable, and the group represented by the formula (A41) which may have a substituent is particularly preferable.
  • Q 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms which may have a substituent.
  • the alkyl group having 1 to 6 carbon atoms which may have a substituent include those having 1 to 20 carbon atoms among the alkyl groups having 1 to 20 carbon atoms which may have a substituent described in the above Ay. ⁇ 6.
  • Q 1 is preferably a hydrogen atom and an alkyl group having 1 to 6 carbon atoms, more preferably a hydrogen atom and a methyl group.
  • n and n each independently represents 0 or 1.
  • m is preferably 1, and n is preferably 1.
  • Compound (I) can be produced, for example, by the reaction shown below.
  • compound (I) can be produced by reacting the hydrazine compound represented by formula (3) with the carbonyl compound represented by formula (4).
  • the hydrazine compound represented by the formula (3) may be referred to as “hydrazine compound (3)” as appropriate.
  • the carbonyl compound represented by the formula (4) may be referred to as “carbonyl compound (4)” as appropriate.
  • the molar ratio of “hydrazine compound (3): carbonyl compound (4)” is preferably 1: 2 to 2: 1, more preferably 1: 1.5 to 1.5: 1.
  • the reaction system may contain an acid catalyst such as an organic acid such as ( ⁇ ) -10-camphorsulfonic acid and paratoluenesulfonic acid; an inorganic acid such as hydrochloric acid and sulfuric acid;
  • an acid catalyst By using an acid catalyst, the reaction time may be shortened and the yield may be improved.
  • the amount of the acid catalyst is usually 0.001 mol to 1 mol with respect to 1 mol of the carbonyl compound (4).
  • an acid catalyst may be mix
  • a solvent inert to the reaction can be used.
  • the solvent include alcohol solvents such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, sec-butyl alcohol, t-butyl alcohol; diethyl ether, tetrahydrofuran, 1, Ether solvents such as 2-dimethoxyethane, 1,4-dioxane and cyclopentyl methyl ether; ester solvents such as ethyl acetate, propyl acetate and methyl propionate; aromatic hydrocarbon solvents such as benzene, toluene and xylene; n -Aliphatic hydrocarbon solvents such as pentane, n-hexane, n-heptane; amide solvents such as N, N-dimethylformamide, N-methylpyrrolidone, hexa
  • the amount of solvent used is not particularly limited, and can be set in consideration of the type of compound used, reaction scale, and the like.
  • the specific amount of the solvent used is usually 1 to 100 g with respect to 1 g of the hydrazine compound (3).
  • the reaction can proceed smoothly in a temperature range of usually ⁇ 10 ° C. or higher and lower than the boiling point of the solvent used.
  • the reaction time for each reaction depends on the reaction scale, but is usually from several minutes to several hours.
  • the hydrazine compound (3) can be produced as follows.
  • a x and A y represent the same meaning as described above.
  • X a represents a leaving group such as a halogen atom, a methanesulfonyloxy group, and a p-toluenesulfonyloxy group.
  • the corresponding hydrazine compound (3a) can be obtained by reacting the compound represented by formula (2a) with hydrazine (1) in an appropriate solvent.
  • the molar ratio of “compound (2a): hydrazine (1)” in this reaction is preferably 1: 1 to 1:20, more preferably 1: 2 to 1:10.
  • the hydrazine compound (3) can be obtained by reacting the hydrazine compound (3a) with the compound represented by the formula (2b).
  • hydrazine (1) a monohydrate can be usually used.
  • hydrazine (1) a commercially available product can be used as it is.
  • a solvent inert to the reaction can be used.
  • the solvent include alcohol solvents such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, sec-butyl alcohol, t-butyl alcohol; diethyl ether, tetrahydrofuran, 1, Ether solvents such as 2-dimethoxyethane, 1,4-dioxane and cyclopentyl methyl ether; aromatic hydrocarbon solvents such as benzene, toluene and xylene; aliphatic carbonization such as n-pentane, n-hexane and n-heptane Hydrogen solvents; amide solvents such as N, N-dimethylformamide, N-methylpyrrolidone and hexamethylphosphoric triamide; sulfur-containing solvents such as dimethyl sulfoxide and sulfolane
  • the amount of solvent used is not particularly limited, and can be set in consideration of the type of compound used, reaction scale, and the like.
  • the specific amount of the solvent used is usually 1 to 100 g with respect to 1 g of hydrazine.
  • the reaction can proceed smoothly in a temperature range of usually ⁇ 10 ° C. or higher and lower than the boiling point of the solvent used.
  • the reaction time for each reaction depends on the reaction scale, but is usually from several minutes to several hours.
  • the hydrazine compound (3) can also be produced by reducing the diazonium salt (5) using a known method as follows.
  • X b ⁇ represents an anion which is a counter ion for diazonium.
  • X b- include inorganic anions such as hexafluorophosphate ion, borofluoride ion, chloride ion, sulfate ion; polyfluoroalkylcarboxylate ion, polyfluoroalkylsulfonate ion, tetraphenylborate Organic anions such as ions, aromatic carboxylate ions, and aromatic sulfonate ions.
  • the reducing agent used in the above reaction examples include a metal salt reducing agent.
  • the metal salt reducing agent is generally a compound containing a low-valent metal, or a compound composed of a metal ion and a hydride source (“Organic Synthesis Experiment Method Handbook”, 1990, published by Maruzen Co., Ltd., edited by the Society of Synthetic Organic Chemistry, Japan) Page).
  • R is a carbon number of 1 to 6
  • iBu represents an isobutyl group.
  • the diazonium salt (5) can be produced from a compound such as aniline by a conventional method.
  • Formation of an ether bond can be performed as follows.
  • D1-hal hal represents a halogen atom; the same shall apply hereinafter
  • D2-OMet Metal represents an alkali metal (mainly sodium). The same) is mixed and condensed (Williamson synthesis).
  • D1 and D2 represent arbitrary organic groups (the same applies hereinafter).
  • a compound represented by the formula: D1-hal and a compound represented by the formula: D2-OH are mixed and condensed in the presence of a base such as sodium hydroxide or potassium hydroxide.
  • a compound represented by the formula: D1-J J represents an epoxy group
  • a compound represented by the formula: D2-OH in the presence of a base such as sodium hydroxide or potassium hydroxide. Mix and condense.
  • a compound represented by the formula: D1-OFN (OFN represents a group having an unsaturated bond) and a compound represented by the formula: D2-OMet, such as sodium hydroxide, potassium hydroxide, etc. In the presence of a base, they are mixed and subjected to an addition reaction.
  • a compound represented by the formula: D1-hal and a compound represented by the formula: D2-OMet are mixed and condensed in the presence of copper or cuprous chloride (Ullman condensation).
  • Formation of an ester bond and an amide bond can be performed as follows.
  • a dehydrating condensing agent N, N-dicyclohexylcarbodiimide, etc.
  • a compound represented by the formula: D1-CO-hal is obtained by allowing a halogenating agent to act on the compound represented by the formula: D1-COOH, and this is combined with the formula: D2-OH or D2-
  • the compound represented by NH 2 is reacted in the presence of a base.
  • the carbonyl compound (4) can be produced by the method shown in the following reaction formula.
  • L 1 and L 2 are Each independently represents a leaving group such as a hydroxyl group, a halogen atom, a methanesulfonyloxy group, a p-toluenesulfonyloxy group, etc.
  • -Y 1a represents a group capable of reacting with -L 1 to become -Y 1- ;
  • —Y 2a represents a group that can react with —L 2 to become —Y 2 —.
  • an ether bond (—O—), an ester bond (—C ( ⁇ O) —O—, —O—C ( ⁇ O) —), or a carbonate bond (—O—)
  • the compound represented by the formula (6d) is converted into the compound represented by the formula (7a) and then the compound represented by the formula (7b).
  • the carbonyl compound (4) can be produced by reaction.
  • Y 1 is a group represented by the formula: Y 11 —C ( ⁇ O) —O—, and the formula: Z 2 —Y 8 —G 2 —Y 6 —A 5 — (Y 4 -A 3) m -Y 2 - is a group represented by the formula: Z 1 -Y 7 -G 1 -Y 5 -A 4 - is represented by - (Y 3 -A 2) n -Y 1
  • the production method of compound (4 ′) which is the same as the group, is shown below.
  • Y 3 , Y 5 , Y 7 , G 1 , Z 1 , A 1 , A 2 , A 4 , Q 1 , n and L 1 represent the same meaning as described above.
  • Y 11 represents Y 11.
  • —C ( ⁇ O) —O— represents a group that becomes Y 1.
  • Y 1 represents the same meaning as described above.
  • the compound by reacting the dihydroxy compound represented by formula (6) (compound (6)) and the compound represented by formula (7) (compound (7)) is obtained.
  • (4 ′) can be produced.
  • the molar ratio of “compound (6): compound (7)” in this reaction is preferably 1: 2 to 1: 4, more preferably 1: 2 to 1: 3.
  • the target compound (4 ') can be obtained with high selectivity and high yield.
  • compound (7) is a compound (carboxylic acid) in which L 1 is a hydroxyl group
  • a dehydrating condensing agent such as 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, dicyclohexylcarbodiimide, etc.
  • the target product can be obtained by reacting with.
  • the amount of the dehydrating condensing agent to be used is generally 1 mol-3 mol per 1 mol of compound (7).
  • the compound (7) is a compound (carboxylic acid) in which L 1 is a hydroxyl group, sulfonyl halides such as methanesulfonyl chloride and p-toluenesulfonyl chloride, and triethylamine, diisopropylethylamine, pyridine, 4-
  • the target product can also be obtained by reacting in the presence of a base such as (dimethylamino) pyridine.
  • the amount of the sulfonyl halide to be used is generally 1 mol-3 mol per 1 mol of compound (7).
  • the amount of the base to be used is generally 1 mol-3 mol per 1 mol of compound (7).
  • a compound (mixed acid anhydride) in which L 1 is a sulfonyloxy group may be isolated and the following reaction may be performed.
  • the desired product can be obtained by reacting in the presence of a base.
  • a base include organic bases such as triethylamine and pyridine; and inorganic bases such as sodium hydroxide, sodium carbonate, and sodium bicarbonate.
  • the amount of the base to be used is generally 1 mol-3 mol per 1 mol of compound (7).
  • Examples of the solvent used in the above reaction include chlorine solvents such as chloroform and methylene chloride; amide solvents such as N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, and hexamethylphosphoric triamide; Ether solvents such as 1,4-dioxane, cyclopentylmethyl ether, tetrahydrofuran, tetrahydropyran, 1,3-dioxolane; sulfur-containing solvents such as dimethyl sulfoxide and sulfolane; aromatic hydrocarbon solvents such as benzene, toluene and xylene; aliphatic hydrocarbon solvents such as n-pentane, n-hexane and n-octane; alicyclic hydrocarbon solvents such as cyclopentane and cyclohexane; and mixed solvents composed of two or more of these solvents; It is done.
  • the compound (6) is a known substance and can be produced by a known method. For example, it can be produced by the method shown in the following reaction formula (see International Publication No. 2009/042544 and The Journal of Organic Chemistry, 2011, 76, 8082-8087, etc.). What is marketed as compound (6) may be purified if desired.
  • a 1 and Q 1 represent the same meaning as described above, A 1a represents a divalent aromatic group that can be converted to A 1 by formylation or acylation, and R ′ represents methyl. And a hydroxyl-protecting group such as an alkyl group having 1 to 6 carbon atoms such as an ethyl group and an alkoxyalkyl group having 2 to 6 carbon atoms such as a methoxymethyl group.
  • the hydroxyl group of the dihydroxy compound represented by the formula (6a) (1,4-dihydroxybenzene, 1,4-dihydroxynaphthalene, etc.) is alkylated to represent the formula (6b).
  • the ortho-position of the OR ′ group is formylated or acylated by a known method to obtain a compound represented by the formula (6c).
  • the target compound (6) can be manufactured by deprotecting (dealkylating) this thing.
  • a commercially available product may be used as it is or after purification as desired.
  • Many of the compounds (7) are known compounds such as an ether bond (—O—), an ester bond (—C ( ⁇ O) —O—, —O—C ( ⁇ O) —), a carbonate bond (—
  • An ether bond (—O—) an ester bond (—C ( ⁇ O) —O—, —O—C ( ⁇ O) —), a carbonate bond (—
  • a plurality of compounds having a desired structure by arbitrarily combining the formation reaction of O—C ( ⁇ O) —O—) and amide bond (—C ( ⁇ O) —NH—, —NH—C ( ⁇ O) —) Can be produced by appropriately binding and modifying the known compounds.
  • Y 12 represents —O—C ( ⁇ O) —Y 12 represents Y .R representing the 3 become group, an alkyl group such as a methyl group, an ethyl group, represents a); phenyl, p- aryl group which may have a substituent such as a methyl phenyl group.
  • the sulfonyl chloride represented by the formula (10) is reacted with the compound (9 ′) in the presence of a base such as triethylamine or 4- (dimethylamino) pyridine.
  • a base such as triethylamine or 4- (dimethylamino) pyridine.
  • the reaction is performed by adding the compound (8) and a base such as triethylamine, 4- (dimethylamino) pyridine to the reaction mixture.
  • the amount of sulfonyl chloride to be used is generally 0.5-0.7 equivalent per 1 equivalent of compound (9 ′).
  • the amount of compound (8) to be used is generally 0.5 equivalent to 0.6 equivalent per 1 equivalent of compound (9 ′).
  • the amount of the base to be used is generally 0.5 equivalents to 0.7 equivalents relative to 1 equivalent of compound (9 ′).
  • the reaction temperature is 20 ° C. to 30 ° C., and the reaction time is several minutes to several hours depending on the reaction scale and the like
  • a solvent used for the said reaction what was illustrated as a solvent which can be used when manufacturing the said compound (4 ') is mentioned. Of these, ether solvents are preferred.
  • the amount of the solvent used is not particularly limited and can be set in consideration of the type of compound used, reaction scale, and the like.
  • the specific amount of the solvent used is usually 1 g to 50 g with respect to 1 g of the compound (9 ′).
  • any reaction after the reaction is completed, normal post-treatment operations in organic synthetic chemistry can be performed.
  • the desired product can be isolated by performing known separation and purification methods such as column chromatography, recrystallization, and distillation.
  • the structure of the target compound can be identified by measurement of NMR spectrum, IR spectrum, mass spectrum, etc., elemental analysis or the like.
  • the liquid crystalline composition of the present invention contains a surfactant containing a fluorine atom in the molecule.
  • the ratio of fluorine atoms in the molecule of the surfactant is usually 30% by weight or less, preferably 25% by weight or less, more preferably 20% by weight or less.
  • the surfactant containing a fluorine atom in the molecule usually contains a fluoroalkyl group.
  • the fluoroalkyl group is preferably a perfluoroalkyl group from the viewpoint of remarkably exhibiting the effects of improving the surface state, improving the orientation, suppressing retardation unevenness, and suppressing thickness unevenness, and in particular, —C 6 F 13 groups are preferred.
  • the lower limit of the proportion of fluorine atoms in the molecule of the surfactant is not particularly limited, but is preferably 5% by weight or more, more preferably 10% by weight or more, and particularly preferably 15% by weight or more.
  • the proportion of fluorine atoms in the molecule of the surfactant can be measured by the following method.
  • the surfactant as a sample is weighed and burned in the combustion tube of the analyzer.
  • the gas generated by the combustion is absorbed in an appropriate solution to obtain an absorption liquid. Thereafter, by analyzing a part of the absorbing solution by ion chromatography, the proportion of fluorine atoms in the molecule of the surfactant can be measured.
  • those having an oligomer structure having a repeating unit contained in two or more units in the molecule of the surfactant may be used, or those having a monomer structure not containing a repeating unit may be used.
  • the surfactant a non-polymerizable one may be used, or a polymerizable one may be used. Since the polymerizable surfactant can be polymerized when the reverse wavelength polymerizable liquid crystal compound is polymerized, in the retardation layer produced from the liquid crystalline composition of the present invention, one molecule of the polymer is usually used. Included in the department.
  • surfactant containing a fluorine atom examples include, for example, Surflon series (S242, S243, S386, S611, S651, etc.) manufactured by AGC Seimi Chemical Co., and MegaFuck series (F251, F554, F556, F562, RS-75, RS-76-E, etc.), Neos Corporation's footgent series (FTX601AD, FTX602A, FTX601ADH2, FTX650A, etc.) and the like.
  • these surfactants may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the amount of the surfactant containing fluorine atoms is preferably 0.05 parts by weight or more, more preferably 0.1 parts by weight or more, particularly preferably 100 parts by weight of the reverse wavelength polymerizable liquid crystal compound. It is 0.3 parts by weight or more, preferably 5.0 parts by weight or less, more preferably 1.0 parts by weight or less, and particularly preferably 0.5 parts by weight or less.
  • solvent a solvent capable of dissolving the reverse wavelength polymerizable liquid crystal compound can be used.
  • an organic solvent is usually used.
  • organic solvents include ketone solvents such as cyclopentanone, cyclohexanone, methyl ethyl ketone, acetone and methyl isobutyl ketone; acetate solvents such as butyl acetate and amyl acetate; halogenated hydrocarbon solvents such as chloroform, dichloromethane and dichloroethane; 1 , 4-dioxane, cyclopentyl methyl ether, tetrahydrofuran, tetrahydropyran, 1,3-dioxolane, ether solvents such as 1,2-dimethoxyethane; and aromatic hydrocarbons such as toluene, xylene and mesitylene.
  • ketone solvents such as cyclopentanone, cyclohexanone, methyl ethyl
  • the solvent may be used alone or as a mixed solvent in which two or more kinds are combined in an arbitrary ratio.
  • a ketone solvent such as cyclopentanone and an ether solvent such as 1,3-dioxolane are preferably used in combination.
  • the weight ratio of the ketone solvent to the ether solvent is preferably 10/90 or more, more preferably 30/70 or more, particularly preferably 40/60 or more, preferably Is 90/10 or less, more preferably 70/30 or less, and particularly preferably 50/50 or less.
  • the boiling point of the solvent is preferably 60 ° C. to 250 ° C., more preferably 60 ° C. to 150 ° C., from the viewpoint of excellent handleability.
  • the amount of the solvent is preferably 300 parts by weight or more, more preferably 350 parts by weight or more, particularly preferably 400 parts by weight or more, preferably 700 parts by weight or less, with respect to 100 parts by weight of the reverse wavelength polymerizable liquid crystal compound. More preferred is 600 parts by weight or less, and particularly preferred is 500 parts by weight or less.
  • liquid crystalline composition of the present invention may further contain an optional component in combination with the aforementioned reverse wavelength polymerizable liquid crystal compound, surfactant and solvent.
  • the liquid crystalline composition of the present invention may contain a polymerization initiator.
  • a polymerization initiator can be selected according to the kind of reverse wavelength polymerizable liquid crystal compound.
  • a radical polymerization initiator can be used.
  • an anionic polymerization initiator can be used.
  • a cationic polymerization initiator can be used.
  • a thermal radical generator that is a compound that generates an active species capable of initiating polymerization of a reverse wavelength polymerizable liquid crystal compound by heating; visible light, ultraviolet light (i-line, etc.), far ultraviolet light, electron beam, Any of photoradical generators that are compounds that generate active species capable of initiating polymerization of a reverse wavelength polymerizable liquid crystal compound by exposure to exposure light such as X-rays can be used.
  • a photo radical generator is preferable.
  • Examples of the photo radical generator include acetophenone compounds, biimidazole compounds, triazine compounds, O-acyloxime compounds, onium salt compounds, benzoin compounds, benzophenone compounds, ⁇ -diketone compounds, polynuclear quinones. Compounds, xanthone compounds, diazo compounds, and imide sulfonate compounds. These compounds can generate an active radical, an active acid, or both an active radical and an active acid upon exposure.
  • acetophenone compounds include 2-hydroxy-2-methyl-1-phenylpropan-1-one, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2,2-dimethoxy-1,2-diphenylethane-1-one, Mention may be made of 1,2-octanedione, 2-benzyl-2-dimethylamino-4′-morpholinobylophenone.
  • biimidazole compound examples include 2,2′-bis (2-chlorophenyl) -4,4 ′, 5,5′-tetrakis (4-ethoxycarbonylphenyl) -1,2′-biimidazole, 2 , 2'-bis (2-bromophenyl) -4,4 ', 5,5'-tetrakis (4-ethoxycarbonylphenyl) -1,2'-biimidazole, 2,2'-bis (2-chlorophenyl) -4,4 ', 5,5'-tetraphenyl-1,2'-biimidazole, 2,2'-bis (2,4-dichlorophenyl) -4,4', 5,5'-tetraphenyl-1 , 2′-biimidazole, 2,2′-bis (2,4,6-trichlorophenyl) -4,4 ′, 5,5′-tetraphenyl-1,2′-biimi
  • the sensitivity can be further improved by using a hydrogen donor in combination with the biimidazole compound.
  • the “hydrogen donor” means a compound that can donate a hydrogen atom to a radical generated from a biimidazole compound by exposure.
  • the hydrogen donor mercaptan compounds and amine compounds exemplified below are preferable.
  • Examples of mercaptan compounds include 2-mercaptobenzothiazole, 2-mercaptobenzoxazole, 2-mercaptobenzimidazole, 2,5-dimercapto-1,3,4-thiadiazole, 2-mercapto-2,5-dimethylamino. Mention may be made of pyridine. Examples of amine compounds include 4,4′-bis (dimethylamino) benzophenone, 4,4′-bis (diethylamino) benzophenone, 4-diethylaminoacetophenone, 4-dimethylaminopropiophenone, ethyl-4-dimethylamino. Mention may be made of benzoate, 4-dimethylaminobenzoic acid, 4-dimethylaminobenzonitrile.
  • triazine compound examples include 2,4,6-tris (trichloromethyl) -s-triazine, 2-methyl-4,6-bis (trichloromethyl) -s-triazine, 2- [2- (5 -Methylfuran-2-yl) ethenyl] -4,6-bis (trichloromethyl) -s-triazine, 2- [2- (furan-2-yl) ethenyl] -4,6-bis (trichloromethyl)- s-triazine, 2- [2- (4-diethylamino-2-methylphenyl) ethenyl] -4,6-bis (trichloromethyl) -s-triazine, 2- [2- (3,4-dimethoxyphenyl) ethenyl -4,6-bis (trichloromethyl) -s-triazine, 2- (4-methoxyphenyl) -4,6-bis (trichloromethyl)
  • O-acyloxime compounds include 1- [4- (phenylthio) phenyl] -heptane-1,2-dione 2- (O-benzoyloxime), 1- [4- (phenylthio) phenyl]- Octane-1,2-dione 2- (O-benzoyloxime), 1- [4- (benzoyl) phenyl] -octane-1,2-dione 2- (O-benzoyloxime), 1- [9-ethyl- 6- (2-Methylbenzoyl) -9H-carbazol-3-yl] -ethanone 1- (O-acetyloxime), 1- [9-ethyl-6- (3-methylbenzoyl) -9H-carbazole-3- Yl] -ethanone 1- (O-acetyloxime), 1- (9-ethyl-6-benzoyl-9H-carbazol-3-yl) -ethanone 1- (O-acetyl)
  • anionic polymerization initiator examples include alkyl lithium compounds; monolithium salts or monosodium salts such as biphenyl, naphthalene, and pyrene; polyfunctional initiators such as dilithium salt and trilithium salt.
  • Examples of the cationic polymerization initiator include proton acids such as sulfuric acid, phosphoric acid, perchloric acid, and trifluoromethanesulfonic acid; Lewis acids such as boron trifluoride, aluminum chloride, titanium tetrachloride, and tin tetrachloride; aromatic A combined system of an onium salt or an aromatic onium salt and a reducing agent.
  • polymerization initiator one type may be used alone, or two or more types may be used in combination at any ratio.
  • the amount of the polymerization initiator is preferably 0.1 parts by weight or more, more preferably 0.5 parts by weight or more, preferably 30 parts by weight or less, more preferably 100 parts by weight of the reverse wavelength polymerizable liquid crystal compound. Is 10 parts by weight or less. When the amount of the polymerization initiator falls within the above range, the polymerization of the reverse wavelength polymerizable liquid crystal compound can be efficiently advanced.
  • examples of optional components that can be included in the liquid crystal composition of the present invention include polymerizable compounds other than reverse wavelength polymerizable liquid crystal compounds; metals; metal complexes; metal oxides such as titanium oxide; dyes, pigments, etc. Coloring agents; Luminescent materials such as fluorescent materials and phosphorescent materials; leveling agents; thixotropic agents; gelling agents; polysaccharides; ultraviolet absorbers; infrared absorbers; One of these may be used alone, or two or more of these may be used in combination at any ratio.
  • the amount of the additive can be arbitrarily set within a range that does not significantly impair the effects of the present invention. Specifically, the amount of the additive may be 0.1 to 20 parts by weight with respect to 100 parts by weight of the reverse wavelength polymerizable liquid crystal compound.
  • a retardation layer can be produced by using the liquid crystalline composition of the present invention.
  • the method for producing such a retardation layer is as follows: (I) applying a liquid crystalline composition of the present invention to a support surface to form a layer of the liquid crystalline composition; (Ii) aligning the reverse wavelength polymerizable liquid crystal compound contained in the layer of the liquid crystalline composition; (Iii) polymerizing a reverse wavelength polymerizable liquid crystal compound to obtain a retardation layer.
  • any surface that can support the layer of the liquid crystalline composition can be used.
  • a flat surface having no concave portions and convex portions is usually used.
  • a long substrate surface is used as the support surface.
  • “long” means a shape having a length of at least 5 times the width, preferably 10 times or more, and specifically wound up in a roll shape. It refers to the shape of a film having a length that can be stored or transported.
  • a substrate made of resin there is no particular restriction on the material of the substrate, but usually a substrate made of resin is used.
  • resin which forms a base material resin containing various polymers is mentioned.
  • the polymer include alicyclic structure-containing polymers such as norbornene-based polymers, cellulose esters, polyvinyl alcohol, polyimides, UV transparent acrylics, polycarbonates, polysulfones, polyether sulfones, epoxy polymers, polystyrene, and These combinations are mentioned.
  • alicyclic structure-containing polymers and cellulose esters are preferable, and alicyclic structure-containing polymers are more preferable.
  • the base material may be subjected to a treatment for imparting an orientation regulating force to the surface of the base material in order to promote the orientation of the reverse wavelength polymerizable liquid crystal compound in the liquid crystal composition layer.
  • Examples of the process for imparting the orientation regulating force include a rubbing process.
  • a rubbing treatment By subjecting the surface of the substrate to a rubbing treatment, an alignment regulating force for uniformly aligning the reverse wavelength polymerizable liquid crystal compound contained in the layer of the liquid crystalline composition can be imparted to the surface.
  • Examples of the rubbing treatment include a method of rubbing the surface of the substrate in a certain direction with a roll wound with a cloth or felt made of synthetic fibers such as nylon or natural fibers such as cotton.
  • a cleaning liquid such as isopropyl alcohol after the rubbing treatment.
  • examples of the process for imparting the alignment regulating force include a process of forming an alignment layer on the surface of the substrate.
  • the alignment layer is a layer capable of aligning the reverse wavelength polymerizable liquid crystal compound in the liquid crystalline composition in one direction in a plane.
  • a liquid crystal composition layer can be formed on the surface of the alignment layer.
  • the alignment layer usually contains a polymer such as polyimide, polyvinyl alcohol, polyester, polyarylate, polyamideimide, polyetherimide or the like.
  • the alignment layer can be produced by applying a solution containing such a polymer in a film form on a substrate, drying, and applying a rubbing treatment in one direction.
  • the alignment regulating force can be imparted to the alignment layer by a method of irradiating the surface of the alignment layer with polarized ultraviolet rays.
  • the thickness of the alignment layer is preferably 0.001 ⁇ m to 5 ⁇ m, more preferably 0.001 ⁇ m to 1 ⁇ m.
  • examples of the process for imparting the orientation regulating force include a stretching process.
  • the polymer molecules contained in the substrate can be oriented.
  • numerator of the polymer contained in a base material can be provided to the surface of a base material.
  • the stretching of the base material is preferably performed so as to impart anisotropy to the base material so that the slow axis is expressed in the base material.
  • an alignment regulating force for aligning the reverse wavelength polymerizable liquid crystal compound in a direction parallel or perpendicular to the slow axis of the substrate is imparted to the surface of the substrate. Therefore, the extending direction of the substrate can be set according to the desired alignment direction in which the reverse wavelength polymerizable liquid crystal compound is to be aligned.
  • the slow axis is preferably expressed so as to form an angle of 45 ° with respect to the winding direction of the substrate.
  • the draw ratio can be set so that the birefringence ⁇ n of the base material after stretching falls within a desired range.
  • the birefringence ⁇ n of the base material after stretching is preferably 0.000050 or more, more preferably 0.000070 or more, preferably 0.007500 or less, more preferably 0.007000 or less.
  • the birefringence ⁇ n of the base material after stretching is equal to or more than the lower limit of the above range, it is possible to impart a good orientation regulating force to the surface of the base material.
  • birefringence (DELTA) n is below the upper limit of the said range, since the retardation of a base material can be made small, even if it does not peel a base material from a retardation layer, it combines a retardation layer and a base material. It can be used for various applications.
  • the stretching can be performed using a stretching machine such as a tenter stretching machine.
  • an alignment regulating force for example, an ion beam alignment process is exemplified.
  • an alignment regulating force can be applied to the surface of the substrate by making an ion beam such as Ar + incident on the substrate.
  • the thickness of the substrate is not particularly limited, but is preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more, particularly preferably 30 ⁇ m or more, and preferably 1000 ⁇ m from the viewpoint of facilitating productivity improvement, thinning, and weight reduction.
  • it is more preferably 300 ⁇ m or less, particularly preferably 100 ⁇ m or less.
  • a step of applying the liquid crystalline composition of the present invention to a support surface such as the surface of the base material to form a layer of the liquid crystalline composition is performed.
  • the method for applying the liquid crystalline composition include curtain coating method, extrusion coating method, roll coating method, spin coating method, dip coating method, bar coating method, spray coating method, slide coating method, print coating method, and gravure. Examples thereof include a coating method, a die coating method, a cap coating method, and a dipping method.
  • the thickness of the layer of the liquid crystal composition to be applied can be appropriately set according to a desired thickness required for the retardation layer.
  • a step of aligning the reverse wavelength polymerizable liquid crystal compound contained in the layer is performed.
  • the reverse wavelength polymerizable liquid crystal compound can be aligned by applying an alignment treatment such as heating to the layer of the liquid crystalline composition.
  • the conditions for the alignment treatment can be appropriately set according to the properties of the liquid crystal composition used. As a specific example of the conditions for the alignment treatment, the treatment may be performed under a temperature condition of 50 ° C. to 160 ° C. for 30 seconds to 5 minutes.
  • the alignment of the reverse wavelength polymerizable liquid crystal compound may be immediately achieved by application of the liquid crystalline composition of the present invention. Therefore, the alignment treatment for aligning the reverse wavelength polymerizable liquid crystal compound is not necessarily performed on the layer of the liquid crystalline composition.
  • a step of polymerizing the reverse wavelength polymerizable liquid crystal compound to obtain a retardation layer is performed.
  • a polymerization method of the reverse wavelength polymerizable liquid crystal compound a method suitable for the properties of the components contained in the liquid crystal composition can be selected.
  • the polymerization method include a method of irradiating active energy rays and a thermal polymerization method. Among them, the method of irradiating with active energy rays is preferable because heating is unnecessary and the polymerization reaction can proceed at room temperature.
  • the irradiated active energy rays can include light such as visible light, ultraviolet light, and infrared light, and arbitrary energy rays such as electron beams.
  • the temperature at the time of ultraviolet irradiation is preferably not higher than the glass transition temperature of the substrate, and is usually 150 ° C. or lower, preferably 100 ° C. or lower, more preferably 80 ° C. or lower.
  • the lower limit of the temperature during ultraviolet irradiation can be 15 ° C. or higher.
  • the irradiation intensity of ultraviolet rays is preferably 0.1 mW / cm 2 or more, more preferably 0.5 mW / cm 2 or more, preferably 1000 mW / cm 2 or less, more preferably 600 mW / cm 2 or less.
  • the method for producing a retardation layer may further include an optional step in addition to the above steps.
  • the method for producing a retardation layer includes a liquid crystalline composition after the step of aligning the reverse wavelength polymerizable liquid crystal compound contained in the layer of the liquid crystalline composition and before the step of polymerizing the reverse wavelength polymerizable liquid crystal compound.
  • the step of drying the layer may be included. Such drying can be achieved by a drying method such as natural drying, heat drying, reduced pressure drying, and reduced pressure heat drying. By such drying, the solvent can be removed from the liquid crystal composition layer.
  • the method for producing a retardation layer may include a step of peeling the produced retardation layer from the support surface.
  • the retardation layer produced as described above contains a polymer obtained by polymerizing a reverse wavelength polymerizable liquid crystal compound.
  • This polymer is obtained by polymerizing a reverse wavelength polymerizable liquid crystal compound while maintaining the molecular orientation in the liquid crystal phase, and thus has a homogeneous alignment regularity.
  • “having homogeneous alignment regularity” means that the major axis direction of the mesogen of the polymer molecule is aligned in one direction horizontal to the surface of the retardation layer.
  • the major axis direction of the mesogen of the polymer molecule is the major axis direction of the mesogen of the reverse wavelength polymerizable liquid crystal compound corresponding to the polymer.
  • the longest type of mesogens is aligned.
  • the direction to perform is the alignment direction.
  • Such a retardation layer usually has a slow axis parallel to the alignment direction of the polymer, corresponding to the orientation regularity of the polymer.
  • a phase difference meter represented by AxoScan manufactured by Axometrics is used as to whether or not the polymer obtained by polymerizing the reverse wavelength polymerizable liquid crystal compound has homogeneous alignment regularity and the alignment direction thereof. This can be confirmed by measuring the slow axis direction and the retardation distribution for each incident angle in the slow axis direction.
  • the retardation layer Since it contains a polymer obtained by polymerizing a reverse wavelength polymerizable liquid crystal compound, the retardation layer has reverse wavelength dispersive birefringence. Therefore, the retardation layer can have a retardation of reverse wavelength dispersion.
  • the retardation of the inverse wavelength dispersion is a retardation Re (450) at a wavelength of 450 nm, a retardation Re (550) at a wavelength of 550 nm, and a retardation Re (650) at a wavelength of 650 nm.
  • a retardation that satisfies the following formula (4) is preferable.
  • the retardation layer can uniformly function in a wide band in optical applications such as a quarter wavelength plate or a half wavelength plate.
  • the specific retardation range of the retardation layer can be arbitrarily set according to the use of the retardation layer.
  • the retardation Re (550) of the retardation layer is preferably 80 nm or more, more preferably 100 nm or more, and particularly preferably 120 nm or more.
  • the thickness is preferably 180 nm or less, more preferably 160 nm or less, and particularly preferably 150 nm or less.
  • the retardation layer is produced using the liquid crystalline composition of the present invention, it is excellent in surface state.
  • the retardation layer having a good surface state refers to a retardation layer that is smooth with few unevenness and defects in the surface shape of the retardation layer.
  • the said phase difference layer is manufactured using the liquid crystalline composition of this invention, it is excellent in orientation.
  • the retardation layer having excellent orientation refers to a retardation layer having few orientation defects of a polymer obtained by polymerizing a reverse wavelength polymerizable liquid crystal compound contained in the retardation layer.
  • the retardation layer can usually suppress retardation unevenness and thickness unevenness. Therefore, normally, the antireflection performance of the circularly polarizing plate provided with this retardation layer can be made more highly uniform in the plane of the circularly polarizing plate.
  • the thickness of the retardation layer can be appropriately set so that characteristics such as retardation can be in a desired range.
  • the thickness of the retardation layer is preferably 0.5 ⁇ m or more, more preferably 1.0 ⁇ m or more, preferably 10 ⁇ m or less, more preferably 7 ⁇ m or less.
  • the retardation layer can be used for optical applications, and is particularly suitable as a wave plate such as a quarter wave plate and a half wave plate.
  • the wave plate may include only a retardation layer.
  • a wave plate having only a retardation layer can be produced, for example, by peeling a retardation layer formed on a substrate from the substrate and cutting it into a desired shape such as a rectangle.
  • the wave plate may further include a base material used for manufacturing the retardation layer.
  • the wave plate provided with the retardation layer and the base material for example, does not peel off the retardation layer formed on the base material from the base material, and the multi-layer film provided with the base material and the retardation layer as it is, It may be used as a wave plate.
  • the wave plate may include an arbitrary layer in addition to the retardation layer and the base material.
  • optional layers include adhesive layers for adhering to other members, mat layers for improving film slipperiness, hard coat layers such as impact-resistant polymethacrylate resin layers, antireflection layers, antifouling layers, etc. Is mentioned.
  • Circular polarizing plate The circularly-polarizing plate of this invention is equipped with a linear polarizer and the said retardation layer manufactured from the liquid crystalline composition of this invention.
  • linear polarizer a known linear polarizer used in an apparatus such as a liquid crystal display device can be used.
  • linear polarizers are those obtained by adsorbing iodine or dichroic dye on a polyvinyl alcohol film and then uniaxially stretching in a boric acid bath; adsorbing iodine or dichroic dye on a polyvinyl alcohol film And obtained by modifying a part of the polyvinyl alcohol unit in the molecular chain into a polyvinylene unit.
  • linear polarizer examples include a polarizer having a function of separating polarized light into reflected light and transmitted light, such as a grid polarizer, a multilayer polarizer, and a cholesteric liquid crystal polarizer. Of these, a polarizer containing polyvinyl alcohol is preferred.
  • the degree of polarization of the linear polarizer is preferably 98% or more, more preferably 99% or more.
  • the average thickness of the linear polarizer is preferably 5 ⁇ m to 80 ⁇ m.
  • the retardation layer preferably has an appropriate retardation so that it can function as a quarter-wave plate.
  • the angle formed by the slow axis of the retardation layer and the transmission axis of the linear polarizer is preferably 45 ° or close to the thickness direction, specifically 40 ° to 50 °. It is preferable.
  • a circularly polarizing plate is an application as an antireflection film of a display device such as an organic electroluminescence display device.
  • a circularly polarizing plate By providing a circularly polarizing plate on the surface of the display device so that the surface on the linear polarizer side faces the viewing side, light incident from the outside of the device is prevented from being reflected inside the device and emitted to the outside of the device. As a result, glare of the display surface of the display device can be suppressed. Specifically, only a part of the linearly polarized light passes through the linear polarizer and then passes through the retardation layer, and becomes circularly polarized light.
  • Circularly polarized light is reflected by a component that reflects light in the device (reflecting electrode, etc.) and passes through the retardation layer again, thereby linearly polarized light having a polarization axis in a direction perpendicular to the polarization axis of the incident linearly polarized light. Thus, it does not pass through the linear polarizer. Thereby, the function of antireflection is achieved.
  • the circularly polarizing plate may further include an arbitrary layer in addition to the linear polarizer and the retardation layer.
  • paranicol represents an aspect in which the polarization transmission axes of the linear polarizers are parallel.
  • the multilayer film produced in the example or the comparative example was cut into a 16 cm square size to obtain a film piece for measurement.
  • This piece of film was placed between linear polarizers placed on a light table as described above.
  • the slow axis of the film piece was set so as to form an angle of about 45 ° with respect to the absorption axis of the polarizer as viewed from the thickness direction. Then, it observed visually.
  • the surface state of the retardation layer was evaluated according to the following criteria. I: The entire surface is almost uniform, and unevenness and defects are not recognized. II: The entire surface is almost uniform, but slight unevenness is observed. III: Unevenness is clearly observed. IV: Strong unevenness is observed on the entire surface.
  • the stretched base material produced in Production Example 1 was placed between a pair of linear polarizers placed on the light table, and visually observed.
  • the entire surface was almost uniform, and unevenness and defects were not recognized. From this result, it was confirmed that the unevenness and defects observed in the evaluation were caused by the surface state of the retardation layer.
  • the retardation layer of the multilayer film produced in the example or the comparative example was transferred to a glass plate to obtain a measurement sample including the glass plate and the retardation layer.
  • the retardation layer of this measurement sample was observed under a crossed Nicol polarization microscope.
  • crossed Nicol represents an aspect in which the polarization transmission axis of a linear polarizer (polarizer and analyzer) provided in the polarizing microscope is vertical as viewed from the thickness direction.
  • the position of the retardation layer was set to a position where the quenching position and the slow axis of the retardation layer were shifted by several degrees from the quenching position.
  • the extinction position represents a position where the observed light is the weakest.
  • the magnification of the polarizing microscope at the time of observation was set to 5 times and 50 times the objective.
  • the orientation of the retardation layer was evaluated according to the following criteria depending on the degree of orientation defects observed and the light leakage state at the extinction position. Excellent: No alignment defect is observed, and almost no leakage light at the extinction position is observed. Good: A structure such as an alignment defect is slightly observed, and there is a slight amount of leakage light at the extinction position. Poor: Orientation defects are clearly seen, and light leaks at the extinction position.
  • the phase difference mapping measurement of the stretched base material produced in Production Example 1 was performed using the above phase difference measurement apparatus.
  • the retardation unevenness was not recognized. From this result, it was confirmed that the retardation unevenness observed in the evaluation was generated in the retardation layer.
  • the multilayer film produced in the example or the comparative example was cut into a 16 cm square size to obtain a film piece for measurement.
  • Film thickness mapping including the stretched base material is performed by scanning with an interference film thickness measuring device ("SI-T80" manufactured by Keyence Corporation) at a pitch of 0.2 mm in the range of 13 cm x 10 cm in the center of this film piece. Measurements were performed. The thickness unevenness of the retardation layer was evaluated from the measurement data.
  • the film thickness mapping measurement of the stretched base material produced in Production Example 1 was performed using the interference-type film thickness measuring machine. As a result, when only the stretched substrate not provided with the retardation layer was measured instead of the film piece, thickness unevenness was not recognized. From this result, it was confirmed that the thickness unevenness observed in the evaluation was generated in the retardation layer.
  • Extension process The base material before stretching was pulled out from the roll and supplied to a tenter stretching machine. Then, using a tenter stretching machine, the film is stretched so that the slow axis of the stretched substrate obtained after stretching is at an angle of 45 ° with respect to the winding direction of the stretched substrate. Trimming and winding were performed to obtain a roll of a long stretched substrate having a width of 1350 mm.
  • the stretched substrate obtained had an in-plane retardation Re of 148 nm and a thickness of 47 ⁇ m at a measurement wavelength of 550 nm.
  • Example 1 Production of retardation layer using liquid crystalline composition containing reverse wavelength polymerizable liquid crystal compound] (1-1. Production of liquid crystal composition) 100.0 parts of reverse wavelength polymerizable liquid crystal compound A, 0.30 parts of surfactant (“Megafac F-251” manufactured by DIC), 3.0 parts of polymerization initiator (“IRGACURE379” manufactured by BASF), and solvent As a mixture, 188.0 parts of cyclopentanone (manufactured by Nippon Zeon Co., Ltd.) and 282.0 parts of 1,3-dioxolane (manufactured by Toho Chemical Co., Ltd.) were mixed to produce a liquid crystalline composition.
  • surfactant Megafac F-251” manufactured by DIC
  • IRGACURE379 polymerization initiator
  • solvent solvent
  • 188.0 parts of cyclopentanone manufactured by Nippon Zeon Co., Ltd.
  • 282.0 parts of 1,3-dioxolane manufactured by Toho Chemical Co., Ltd.
  • the stretched substrate produced in Production Example 1 was pulled out from the roll and conveyed.
  • the liquid crystalline composition produced in the step (1-1) was applied to one surface of the stretched substrate using a die coater to form a liquid crystalline composition layer.
  • the layer of the liquid crystal composition was subjected to an alignment treatment at 110 ° C. for 4 minutes, and cured by irradiating with 400 mJ / cm 2 ultraviolet rays in an N 2 atmosphere to form a retardation layer.
  • the obtained retardation layer contained a polymer obtained by polymerizing a reverse wavelength polymerizable liquid crystal compound with homogeneous alignment regularity. In addition, it was confirmed that the angle of the slow axis of the retardation layer was 45 ° with respect to the winding direction as in the stretched substrate used for coating.
  • Examples 2 to 13 and Comparative Examples 1 to 14 As shown in Table 1, (i) the type of the reverse wavelength polymerizable liquid crystal compound, (ii) the type of the surfactant, and (iii) the amount of the surfactant used for the preparation of the liquid crystal composition were changed. A multilayer film provided with a stretched substrate and a retardation layer was produced in the same manner as in Example 1 except for the above items.
  • the retardation layer contained in the produced multilayer film contained a polymer obtained by polymerizing a reverse wavelength polymerizable liquid crystal compound with homogeneous alignment regularity. Further, it was confirmed that the angle of the slow axis of the retardation layer was 45 ° with respect to the winding direction. Further, the in-plane retardation Re of the retardation layer is measured, and the birefringence ⁇ n of the used reverse wavelength polymerizable liquid crystal compound has a characteristic (reverse wavelength dispersion) that increases as the measurement wavelength increases. It was confirmed.
  • the stretched substrate produced in Production Example 1 was pulled out from the roll and conveyed.
  • the liquid crystalline composition produced in the step (15-1) was applied to one surface of the stretched substrate using a die coater to form a liquid crystalline composition layer.
  • the layer of the liquid crystal composition was subjected to an orientation treatment at 100 ° C. for 2 minutes, and cured by irradiation with ultraviolet rays of 400 mJ / cm 2 or more in an N 2 atmosphere to form a retardation layer.
  • the obtained retardation layer contained a polymer obtained by polymerizing a polymerizable liquid crystal compound with homogeneous alignment regularity.
  • the angle of the slow axis of the retardation layer was 45 ° with respect to the winding direction as in the stretched substrate used for coating.
  • the retardation layer contained in the produced multilayer film contained a polymer obtained by polymerizing a polymerizable liquid crystal compound with homogeneous alignment regularity. Further, it was confirmed that the angle of the slow axis of the retardation layer was 45 ° with respect to the winding direction. Furthermore, the in-plane retardation Re of the retardation layer is measured, and the birefringence ⁇ n of the polymerizable liquid crystal compound used has a characteristic (forward wavelength dispersion) that decreases as the measurement wavelength increases. confirmed.
  • Example 5 Comparative Example 3 and Comparative Example 5
  • the phase difference unevenness was evaluated.
  • Retardation mapping displays measured in Example 2, Example 5, Comparative Example 3 and Comparative Example 5 are shown in FIGS. 5 to 8, respectively.
  • the retardation value at a point on the line segment parallel to the width direction of the retardation layer is extracted.
  • 9 to 12 show graph representations of the extracted retardation, respectively.
  • Example 2 Example 5, Comparative Example 3 and Comparative Example 5
  • the mapping displays of the thicknesses measured in Example 2, Example 5, Comparative Example 3 and Comparative Example 5 are shown in FIGS. 13 to 16, respectively.
  • the thickness value at the point on the line segment parallel to the width direction of the retardation layer is extracted from the thickness values measured in Example 2, Example 5, Comparative Example 3 and Comparative Example 5, and extracted.
  • the graph display of the thickness is shown in FIGS.
  • Polymerizable liquid crystal compound “A” reverse wavelength polymerizable liquid crystal compound represented by the following formula (A).
  • Polymerizable liquid crystal compound “B” reverse wavelength polymerizable liquid crystal compound represented by the following formula (B).
  • Polymerizable liquid crystal compound “C” a reverse wavelength polymerizable liquid crystal compound represented by the following formula (C).
  • Polymerizable liquid crystal compound “D” reverse wavelength polymerizable liquid crystal compound represented by the following formula (D).
  • Polymerizable liquid crystal compound “E” reverse wavelength polymerizable liquid crystal compound represented by the following formula (E).
  • Polymerizable liquid crystal compound “LC242” a polymerizable liquid crystal compound represented by the following formula (F1) that can exhibit forward wavelength dispersion (“LC242” manufactured by BASF).
  • Polymerizable liquid crystal compound “K35” a polymerizable liquid crystal compound that can exhibit forward wavelength dispersion represented by the following formula (F2).
  • Surfactant “S243” “Surflon S243” manufactured by AGC Seimi Chemical Co., Ltd.
  • Surfactant “S611” “Surflon S611” manufactured by AGC Seimi Chemical Co., Ltd.
  • Surfactant “FTX209” “Fargent FTX-209F” manufactured by Neos.
  • FTX218 “Factent FTX-218” manufactured by Neos.
  • Surfactant “601AD” “Fargent FTX-601AD” manufactured by Neos.
  • Surfactant “610FM” “Factent FTX-610FM” manufactured by Neos.
  • Surfactant “F251” “Megafac F-251” manufactured by DIC Corporation.
  • Surfactant “F444” “Megafac F-444” manufactured by DIC.
  • F554 “Megafac F-554” manufactured by DIC.
  • Surfactant “F556” “Megafac F-556” manufactured by DIC Corporation.
  • F amount The proportion of fluorine atoms in the surfactant molecule.
  • Activator amount amount of surfactant.
  • the retardation standard deviation Re ⁇ is used as an evaluation index of the retardation unevenness of the retardation layers according to Example 2, Example 5, Comparative Example 3, and Comparative Example 5.
  • the thickness standard deviation ⁇ d ⁇ was calculated as an evaluation index of the thickness of the retardation layer according to Example 2, Example 5, Comparative Example 3, and Comparative Example 5. The results are shown in Table 3 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Substances (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 逆波長分散性の複屈折を発現しうる重合性液晶化合物と、フッ素原子を含む界面活性剤と、溶媒とを含み、前記界面活性剤の分子中のフッ素原子の割合が、30重量%以下である、液晶性組成物。

Description

液晶性組成物、位相差層の製造方法及び円偏光板
 本発明は、液晶性組成物、並びに、その液晶性組成物を用いた位相差層の製造方法及び円偏光板に関する。
 表示装置には、当該表示装置の画面の反射を抑制するため、円偏光板が設けられることがある。このような円偏光板は、通常、直線偏光子と位相差層とを備える。
 前記のような位相差層を得るための方法の一つとして、重合性液晶化合物を用いる方法が知られている。この方法では、通常、重合性液晶化合物を含む組成物を、適切な基材の表面に塗布して層とし、層内の重合性液晶化合物を配向させ、さらに配向させた状態を維持して重合させることにより、位相差層を形成する(特許文献1~3参照)。
特開2009-242564号公報 特開2013-076851号公報 特開2007-177241号公報
 ところが、特許文献1~3のような従来の技術では、逆波長分散性の複屈折を発現しうる重合性液晶化合物を用いて面状態及び配向性の両方に優れた位相差層を得ることが難しかった。
 本発明は、前記の課題に鑑みて創案されたもので、逆波長分散性の複屈折を発現しうる重合性液晶化合物を用いて面状態及び配向性の両方に優れる位相差層を製造できる液晶性組成物;逆波長分散性の複屈折を発現しうる重合性液晶化合物を用いた、面状態及び配向性の両方に優れる位相差層の製造方法;並びに、面状態及び配向性の両方に優れる位相差層を備えた円偏光板;を提供することを目的とする。
 本発明者らは、前記課題を解決するべく鋭意検討した。その結果、本発明者らは、逆波長分散性の複屈折を発現しうる重合性液晶化合物と、所定の割合でフッ素原子を含む界面活性剤と、溶媒とを含む液晶性組成物により、面状態及び配向性の両方に優れる位相差層を製造できることを見い出し、本発明を完成させた。
 すなわち、本発明は下記の通りである。
 〔1〕 逆波長分散性の複屈折を発現しうる重合性液晶化合物と、
 フッ素原子を含む界面活性剤と、
 溶媒とを含み、
 前記界面活性剤の分子中のフッ素原子の割合が、30重量%以下である、液晶性組成物。
 〔2〕 前記重合性液晶化合物が、前記重合性液晶化合物の分子中に、主鎖メソゲンと、前記主鎖メソゲンに結合した側鎖メソゲンとを含む、〔1〕記載の液晶性組成物。
 〔3〕 前記重合性液晶化合物が、下記式(I)で表される、〔1〕又は〔2〕記載の液晶性組成物。
Figure JPOXMLDOC01-appb-C000002
(前記式(I)において、
 Y~Yは、それぞれ独立して、化学的な単結合、-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR-C(=O)-、-C(=O)-NR-、-O-C(=O)-NR-、-NR-C(=O)-O-、-NR-C(=O)-NR-、-O-NR-、又は、-NR-O-を表す。ここで、Rは、水素原子又は炭素数1~6のアルキル基を表す。
 G、Gは、それぞれ独立して、置換基を有していてもよい、炭素数1~20の二価の脂肪族基を表す。また、前記脂肪族基には、1つの脂肪族基当たり1以上の-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR-C(=O)-、-C(=O)-NR-、-NR-、又は、-C(=O)-が介在していてもよい。ただし、-O-又は-S-がそれぞれ2以上隣接して介在する場合を除く。ここで、Rは、水素原子又は炭素数1~6のアルキル基を表す。
 Z、Zは、それぞれ独立して、ハロゲン原子で置換されていてもよい炭素数2~10のアルケニル基を表す。
 Aは、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基を表す。
 Aは、水素原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、置換基を有していてもよい炭素数2~20のアルキニル基、-C(=O)-R、-SO-R、-C(=S)NH-R、又は、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基を表す。ここで、Rは、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、又は、炭素数5~12の芳香族炭化水素環基を表す。Rは、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、フェニル基、又は、4-メチルフェニル基を表す。Rは、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、又は、置換基を有していてもよい炭素数5~20の芳香族基を表す。前記A及びAが有する芳香環は、置換基を有していてもよい。また、前記AとAは、一緒になって、環を形成していてもよい。
 Aは、置換基を有していてもよい三価の芳香族基を表す。
 A、Aは、それぞれ独立して、置換基を有していてもよい炭素数3~30の二価の脂環式炭化水素基を表す。
 A、Aは、それぞれ独立して、置換基を有していてもよい、炭素数6~30の二価の芳香族基を表す。
 Qは、水素原子、又は、置換基を有していてもよい炭素数1~6のアルキル基を表す。
 m及びnは、それぞれ独立に、0又は1を表す。)
 〔4〕 支持面に、〔1〕~〔3〕のいずれか一項に記載の液晶性組成物を塗布して、前記液晶性組成物の層を形成する工程と、
 前記液晶性組成物の層に含まれる前記重合性液晶化合物を配向させる工程と、
 前記重合性液晶化合物を重合させて、位相差層を得る工程とを含む、位相差層の製造方法。
 〔5〕 直線偏光子と、〔4〕記載の製造方法で製造された位相差層とを備える、円偏光板。
 本発明の液晶性組成物によれば、逆波長分散性の複屈折を発現しうる重合性液晶化合物を用いて、面状態及び配向性の両方に優れる位相差層を製造できる。
 本発明の位相差層の製造方法によれば、逆波長分散性の複屈折を発現しうる重合性液晶化合物を用いて、面状態及び配向性の両方に優れる位相差層を製造できる。
 本発明の円偏光板は、面状態及び配向性の両方に優れる位相差層を備える。
図1は、本発明の実施例2で観察された位相差層の像を表す図である。 図2は、本発明の実施例5で観察された位相差層の像を表す図である。 図3は、比較例3で観察された位相差層の像を表す図である。 図4は、比較例5で観察された位相差層の像を表す図である。 図5は、本発明の実施例2で測定されたレターデーションをマッピング表示にて示す表示図である。 図6は、本発明の実施例5で測定されたレターデーションをマッピング表示にて示す表示図である。 図7は、比較例3で測定されたレターデーションをマッピング表示にて示す表示図である。 図8は、比較例5で測定されたレターデーションをマッピング表示にて示す表示図である。 図9は、本発明の実施例2で測定された、位相差層の幅方向に平行な線分上の点でのレターデーションをグラフ表示にて示す表示図である。 図10は、本発明の実施例5で測定された、位相差層の幅方向に平行な線分上の点でのレターデーションをグラフ表示にて示す表示図である。 図11は、比較例3で測定された、位相差層の幅方向に平行な線分上の点でのレターデーションをグラフ表示にて示す表示図である。 図12は、比較例5で測定された、位相差層の幅方向に平行な線分上の点でのレターデーションをグラフ表示にて示す表示図である。 図13は、本発明の実施例2で測定された厚みをマッピング表示にて示す表示図である。 図14は、本発明の実施例5で測定された厚みをマッピング表示にて示す表示図である。 図15は、比較例3で測定された厚みをマッピング表示にて示す表示図である。 図16は、比較例5で測定された厚みをマッピング表示にて示す表示図である。 図17は、本発明の実施例2で測定された、位相差層の幅方向に平行な線分上の点での厚みをグラフ表示にて示す表示図である。 図18は、本発明の実施例5で測定された、位相差層の幅方向に平行な線分上の点での厚みをグラフ表示にて示す表示図である。 図19は、比較例3で測定された、位相差層の幅方向に平行な線分上の点での厚みをグラフ表示にて示す表示図である。 図20は、比較例5で測定された、位相差層の幅方向に平行な線分上の点での厚みをグラフ表示にて示す表示図である。
 以下、例示物及び実施形態を示して本発明について詳細に説明する。ただし、本発明は以下に示す例示物及び実施形態に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。
 以下の説明において、要素の方向が「平行」及び「垂直」とは、別に断らない限り、本発明の効果を損ねない範囲内、例えば±5°、好ましくは±3°、より好ましくは±1°の範囲内での誤差を含んでいてもよい。
 以下の説明において、ある層のレターデーションとは、別に断らない限り、面内レターデーションReを表す。この面内レターデーションReは、別に断らない限り、Re=(nx-ny)×dで表される値である。ここで、nxは、層の厚み方向に垂直な方向(面内方向)であって最大の屈折率を与える方向の屈折率を表す。nyは、層の前記面内方向であってnxの方向に直交する方向の屈折率を表す。dは、層の厚みを表す。レターデーションの測定波長は、別に断らない限り、550nmである。
 以下の説明において、「偏光板」及び「波長板」は、別に断らない限り、樹脂フィルム等の可撓性を有するフィルム及びシートを含む用語として用いる。
[1.液晶性組成物]
 本発明の液晶性組成物は、逆波長分散性の複屈折を発現しうる重合性液晶化合物、フッ素原子を含む界面活性剤、及び、溶媒を含む。以下の説明において、逆波長分散性の複屈折を発現しうる重合性液晶化合物のことを、適宜「逆波長重合性液晶化合物」ということがある。本発明の液晶性組成物は、常温下においては紛体状、液体状の形態は問わないが、配向処理をされる温度域(通常は50℃~150℃)においては通常、流体状の組成物である。
 [1.1.重合性液晶化合物]
 逆波長重合性液晶化合物は、液晶性を有するので、当該逆波長重合性液晶化合物を配向させたときに、液晶相を呈しうる。また、逆波長重合性液晶化合物は、重合性を有するので、前記のように液晶相を呈した状態で重合し、液晶相における分子の配向を維持したままま重合体となりうる。本発明の液晶性組成物が前記のような逆波長重合性液晶化合物を含むので、本発明の液晶性組成物を用いて位相差層を製造することができる。
 さらに、逆波長重合性液晶化合物は、逆波長分散性の複屈折を発現しうる化合物である。ここで、逆波長分散性の複屈折を発現しうる化合物とは、前記のように重合体とした場合に、得られた重合体が逆波長分散性の複屈折を発現する化合物をいう。
 逆波長分散性の複屈折とは、波長450nmにおける複屈折Δn(450)及び波長650nmにおける複屈折Δn(650)が、下記式(1)を満たす複屈折をいう。このような逆波長分散性の複屈折を発現しうる前記の逆波長重合性液晶化合物は、通常、測定波長が長いほど、大きい複屈折を発現しうる。したがって、通常、逆波長重合性液晶化合物を前述のように重合させた重合体の複屈折は、下記式(2)を満たす。下記式(2)において、Δn(550)は、測定波長550nmにおける複屈折を表す。
 Δn(450)<Δn(650)  (1)
 Δn(450)<Δn(550)<Δn(650)  (2)
 逆波長重合性液晶化合物としては、例えば、当該逆波長重合性液晶化合物の分子中に、主鎖メソゲンと、前記主鎖メソゲンに結合した側鎖メソゲンとを含む化合物を用いうる。主鎖メソゲン及び側鎖メソゲンを含む前記の逆波長重合性液晶化合物は、当該逆波長重合性液晶化合物が配向した状態において、側鎖メソゲンが主鎖メソゲンと異なる方向に配向しうる。したがって、このような配向を維持したまま逆波長重合性液晶化合物を重合させて得た重合体において、主鎖メソゲン及び側鎖メソゲンは異なる方向に配向しうる。この配向により、前記の重合体は逆波長分散性の複屈折を発現できる。
 逆波長重合性液晶化合物の分子量は、好ましくは300以上、より好ましくは700以上、特に好ましくは1000以上であり、好ましくは2000以下、より好ましくは1700以下、特に好ましくは1500以下である。逆波長重合性液晶化合物が前記のような分子量を有することは、逆波長重合性液晶化合物が単量体であることを表す。重合体ではなく単量体としての逆波長重合性液晶化合物を用いることにより、液晶性組成物の塗布性を特に良好にできる。
 逆波長重合性液晶化合物の好適な具体例としては、下記式(I)で表される化合物が挙げられる。以下の説明において、式(I)で表される化合物を、適宜「化合物(I)」ということがある。
Figure JPOXMLDOC01-appb-C000003
 化合物(I)は、通常、下記式で表すように、基-Y-A-(Y-A-Y-A-Y-(A-Y-A-Y-からなる主鎖メソゲン1a、及び、基>A-C(Q)=N-N(A)Aからなる側鎖メソゲン1bの2つのメソゲン骨格を含む。また、これらの主鎖メソゲン1a及び側鎖メソゲン1bは、互いに交差している。上記の主鎖メソゲン1a及び側鎖メソゲン1bをあわせて1つのメソゲンとすることもできるが、本発明では、2つのメソゲンに分けて表記する。
Figure JPOXMLDOC01-appb-C000004
 主鎖メソゲン1aの長軸方向における屈折率をn1、側鎖メソゲン1bの長軸方向における屈折率をn2とする。この際、屈折率n1の絶対値及び波長分散性は、通常、主鎖メソゲン1aの分子構造に依存する。また、屈折率n2の絶対値及び波長分散性は、通常、側鎖メソゲン1bの分子構造に依存する。ここで、液晶相において逆波長重合性液晶化合物は、通常、主鎖メソゲン1aの長軸方向を回転軸として回転運動を行うので、ここでいう屈折率n1及びn2とは、回転体としての屈折率を表している。
 主鎖メソゲン1a及び側鎖メソゲン1bの分子構造に由来して、屈折率n1の絶対値は屈折率n2の絶対値より大きい。さらに、屈折率n1及びn2は、通常、順波長分散性を示す。ここで、順波長分散性の屈折率とは、測定波長が大きいほど当該屈折率の絶対値が小さくなる屈折率を表す。主鎖メソゲン1aの屈折率n1は、順波長分散性が小さいので、短波長で測定した屈折率よりも、長波長で測定した屈折率は、大幅には小さくならない。これに対し、側鎖メソゲン1bの屈折率n2は、順波長分散性が大きいので、短波長で測定した屈折率よりも、長波長で測定した屈折率は、大幅に小さくなる。そのため、測定波長が短いと屈折率n1と屈折率n2との差Δnは小さく、測定波長が長いと屈折率n1と屈折率n2との差Δnが大きくなる。このようにして、主鎖メソゲン1a及び側鎖メソゲン1bに由来して逆波長分散性の複屈折率が発現しうる。
 前記式(I)において、Y~Yは、それぞれ独立して、化学的な単結合、-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR-C(=O)-、-C(=O)-NR-、-O-C(=O)-NR-、-NR-C(=O)-O-、-NR-C(=O)-NR-、-O-NR-、又は、-NR-O-を表す。
 ここで、Rは、水素原子又は炭素数1~6のアルキル基を表す。
 Rの炭素数1~6のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、n-へキシル基が挙げられる。
 Rとしては、水素原子又は炭素数1~4のアルキル基が好ましい。
 化合物(I)においては、Y~Yは、それぞれ独立して、化学的な単結合、-O-、-O-C(=O)-、-C(=O)-O-、又は、-O-C(=O)-O-であることが好ましい。
 前記式(I)において、G及びGは、それぞれ独立して、置換基を有していてもよい、炭素数1~20の二価の脂肪族基を表す。
 炭素数1~20の二価の脂肪族基としては、例えば、炭素数1~20のアルキレン基、炭素数2~20のアルケニレン基等の鎖状構造を有する二価の脂肪族基;炭素数3~20のシクロアルカンジイル基、炭素数4~20のシクロアルケンジイル基、炭素数10~30の二価の脂環式縮合環基等の二価の脂肪族基;が挙げられる。
 G及びGの二価の脂肪族基の置換基としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、t-ブトキシ基、n-ペンチルオキシ基、n-へキシルオキシ基等の炭素数1~6のアルコキシ基;が挙げられる。なかでも、フッ素原子、メトキシ基及びエトキシ基が好ましい。
 また、前記脂肪族基には、1つの脂肪族基当たり1以上の-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR-C(=O)-、-C(=O)-NR-、-NR-、又は、-C(=O)-が介在していてもよい。ただし、-O-又は-S-がそれぞれ2以上隣接して介在する場合を除く。ここで、Rは、水素原子又は炭素数1~6のアルキル基を表し、水素原子又はメチル基であることが好ましい。
 前記脂肪族基に介在する基としては、-O-、-O-C(=O)-、-C(=O)-O-、-C(=O)-が好ましい。
 これらの基が介在する脂肪族基の具体例としては、例えば、-CH-CH-O-CH-CH-、-CH-CH-S-CH-CH-、-CH-CH-O-C(=O)-CH-CH-、-CH-CH-C(=O)-O-CH-CH-、-CH-CH-C(=O)-O-CH-、-CH-O-C(=O)-O-CH-CH-、-CH-CH-NR-C(=O)-CH-CH-、-CH-CH-C(=O)-NR-CH-、-CH-NR-CH-CH-、-CH-C(=O)-CH-が挙げられる。
 これらの中でも、本発明の所望の効果をより良好に発現させる観点から、G及びGは、それぞれ独立して、炭素数1~20のアルキレン基、炭素数2~20のアルケニレン基等の鎖状構造を有する二価の脂肪族基が好ましく、メチレン基、エチレン基、トリメチレン基、プロピレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、オクタメチレン基、デカメチレン基〔-(CH10-〕等の、炭素数1~12のアルキレン基がより好ましく、テトラメチレン基〔-(CH-〕、ヘキサメチレン基〔-(CH-〕、オクタメチレン基〔-(CH-〕、及び、デカメチレン基〔-(CH10-〕が特に好ましい。
 前記式(I)において、Z、Zは、それぞれ独立して、ハロゲン原子で置換されていてもよい炭素数2~10のアルケニル基を表す。
 該アルケニル基の炭素数としては、2~6が好ましい。Z及びZのアルケニル基の置換基であるハロゲン原子としては、フッ素原子、塩素原子、臭素原子等が挙げられ、塩素原子が好ましい。
 Z及びZの炭素数2~10のアルケニル基の具体例としては、CH=CH-、CH=C(CH)-、CH=CH-CH-、CH-CH=CH-、CH=CH-CH-CH-、CH=C(CH)-CH-CH-、(CHC=CH-CH-、(CHC=CH-CH-CH-、CH=C(Cl)-、CH=C(CH)-CH-、CH-CH=CH-CH-が挙げられる。
 なかでも、本発明の所望の効果をより良好に発現させる観点から、Z及びZとしては、それぞれ独立して、CH=CH-、CH=C(CH)-、CH=C(Cl)-、CH=CH-CH-、CH=C(CH)-CH-、又は、CH=C(CH)-CH-CH-が好ましく、CH=CH-、CH=C(CH)-、又は、CH=C(Cl)-がより好ましく、CH=CH-が特に好ましい。
 前記式(I)において、Aは、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基を表す。「芳香環」は、Huckel則に従う広義の芳香族性を有する環状構造、すなわち、π電子を(4n+2)個有する環状共役構造、及びチオフェン、フラン、ベンゾチアゾール等に代表される、硫黄、酸素、窒素等のヘテロ原子の孤立電子対がπ電子系に関与して芳香族性を示す環状構造を意味する。
 Aの、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基は、芳香環を複数個有するものであってもよく、芳香族炭化水素環及び芳香族複素環の両方を有するものであってもよい。
 前記芳香族炭化水素環としては、例えば、ベンゼン環、ナフタレン環、アントラセン環等が挙げられる。前記芳香族複素環としては、ピロール環、フラン環、チオフェン環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、ピラゾール環、イミダゾール環、オキサゾール環、チアゾール環等の単環の芳香族複素環;ベンゾチアゾール環、ベンゾオキサゾール環、キノリン環、フタラジン環、ベンゾイミダゾール環、ベンゾピラゾール環、ベンゾフラン環、ベンゾチオフェン環、チアゾロピリジン環、オキサゾロピリジン環、チアゾロピラジン環、オキサゾロピラジン環、チアゾロピリダジン環、オキサゾロピリダジン環、チアゾロピリミジン環、オキサゾロピリミジン環等の縮合環の芳香族複素環;が挙げられる。
 Aが有する芳香環は置換基を有していてもよい。かかる置換基としては、例えば、フッ素原子、塩素原子等のハロゲン原子;シアノ基;メチル基、エチル基、プロピル基等の炭素数1~6のアルキル基;ビニル基、アリル基等の炭素数2~6のアルケニル基;トリフルオロメチル基等の炭素数1~6のハロゲン化アルキル基;ジメチルアミノ基等の置換アミノ基;メトキシ基、エトキシ基、イソプロポキシ基等の炭素数1~6のアルコキシ基;ニトロ基;フェニル基、ナフチル基等のアリール基;-C(=O)-R;-C(=O)-OR;-SO;等が挙げられる。ここで、Rは炭素数1~20のアルキル基、炭素数2~20のアルケニル基、又は、炭素数3~12のシクロアルキル基を表し、Rは後述するRと同様の、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、フェニル基、又は、4-メチルフェニル基を表す。
 また、Aが有する芳香環は、同一又は相異なる置換基を複数有していてもよく、隣り合った二つの置換基が一緒になって結合して環を形成していてもよい。形成される環は単環であってもよく、縮合多環であってもよく、不飽和環であってもよく、飽和環であってもよい。
 さらに、Aの炭素数2~30の有機基の「炭素数」は、置換基の炭素原子を含まない有機基全体の総炭素数を意味する(後述するAにて同じである。)。
 Aの、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基としては、例えば、芳香族炭化水素環基;芳香族複素環基;芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数3~30のアルキル基;芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数4~30のアルケニル基;芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数4~30のアルキニル基;が挙げられる。
 Aの好ましい具体例を以下に示す。但し、Aは以下に示すものに限定されるものではない。なお、下記式中、「-」は環の任意の位置からのびる結合手を表す(以下にて同じである。)。
 (1)芳香族炭化水素環基
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 (2)芳香族複素環基
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
 上記式中、Eは、NR6a、酸素原子又は硫黄原子を表す。ここで、R6aは、水素原子;又は、メチル基、エチル基、プロピル基等の炭素数1~6のアルキル基を表す。
Figure JPOXMLDOC01-appb-C000009
 上記式中、X、Y及びZは、それぞれ独立して、NR、酸素原子、硫黄原子、-SO-、又は、-SO-を表す(ただし、酸素原子、硫黄原子、-SO-、-SO-が、それぞれ隣接する場合を除く。)。Rは、前記R6aと同様の、水素原子;又は、メチル基、エチル基、プロピル基等の炭素数1~6のアルキル基を表す。
Figure JPOXMLDOC01-appb-C000010
 (上記式中、Xは前記と同じ意味を表す。)
 (3)芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、アルキル基
Figure JPOXMLDOC01-appb-C000011
 (4)芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、アルケニル基
Figure JPOXMLDOC01-appb-C000012
 (5)芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、アルキニル基
Figure JPOXMLDOC01-appb-C000013
 上記したAの中でも、炭素数6~30の芳香族炭化水素環基、又は炭素数4~30の芳香族複素環基であることが好ましく、下記に示すいずれかの基であることがより好ましい。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
 さらに、Aは、下記に示すいずれかの基であることが更に好ましい。
Figure JPOXMLDOC01-appb-C000016
 Aが有する環は、置換基を有していてもよい。かかる置換基としては、例えば、フッ素原子、塩素原子等のハロゲン原子;シアノ基;メチル基、エチル基、プロピル基等の炭素数1~6のアルキル基;ビニル基、アリル基等の炭素数2~6のアルケニル基;トリフルオロメチル基等の炭素数1~6のハロゲン化アルキル基;ジメチルアミノ基等の置換アミノ基;メトキシ基、エトキシ基、イソプロポキシ基等の炭素数1~6のアルコキシ基;ニトロ基;フェニル基、ナフチル基等のアリール基;-C(=O)-R;-C(=O)-OR;-SO;が挙げられる。ここでRは、メチル基、エチル基等の炭素数1~6のアルキル基;又は、フェニル基等の炭素数6~14のアリール基;を表す。なかでも、置換基としては、ハロゲン原子、シアノ基、炭素数1~6のアルキル基、及び炭素数1~6のアルコキシ基が好ましい。
 Aが有する環は、同一又は相異なる置換基を複数有していてもよく、隣り合った二つの置換基が一緒になって結合して環を形成していてもよい。形成される環は、単環であってもよく、縮合多環であってもよい。
 Aの炭素数2~30の有機基の「炭素数」は、置換基の炭素原子を含まない有機基全体の総炭素数を意味する(後述するAにて同じである。)。
 前記式(I)において、Aは、水素原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、置換基を有していてもよい炭素数2~20のアルキニル基、-C(=O)-R、-SO-R、-C(=S)NH-R、又は、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基を表す。ここで、Rは、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、又は、炭素数5~12の芳香族炭化水素環基を表す。Rは、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、フェニル基、又は、4-メチルフェニル基を表す。Rは、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、又は、置換基を有していてもよい炭素数5~20の芳香族基を表す。
 Aの、置換基を有していてもよい炭素数1~20のアルキル基の炭素数1~20のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、1-メチルペンチル基、1-エチルペンチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-へキシル基、イソヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、n-ノナデシル基、n-イコシル基が挙げられる。置換基を有してもよい炭素数1~20のアルキル基の炭素数は、1~12であることが好ましく、4~10であることが更に好ましい。
 Aの、置換基を有していてもよい炭素数2~20のアルケニル基の炭素数2~20のアルケニル基としては、例えば、ビニル基、プロペニル基、イソプロペニル基、ブテニル基、イソブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、デセニル基、ウンデセニル基、ドデセニル基、トリデセニル基、テトラデセニル基、ペンタデセニル基、ヘキサデセニル基、ヘプタデセニル基、オクタデセニル基、ノナデセニル基、イコセニル基が挙げられる。置換基を有していてもよい炭素数2~20のアルケニル基の炭素数は、2~12であることが好ましい。
 Aの、置換基を有していてもよい炭素数3~12のシクロアルキル基の炭素数3~12のシクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基が挙げられる。
 Aの、置換基を有していてもよい炭素数2~20のアルキニル基の炭素数2~20のアルキニル基としては、例えば、エチニル基、プロピニル基、2-プロピニル基(プロパルギル基)、ブチニル基、2-ブチニル基、3-ブチニル基、ペンチニル基、2-ペンチニル基、ヘキシニル基、5-ヘキシニル基、ヘプチニル基、オクチニル基、2-オクチニル基、ノナニル基、デカニル基、7-デカニル基が挙げられる。
 Aの、置換基を有していてもよい炭素数1~20のアルキル基、及び置換基を有していてもよい炭素数2~20のアルケニル基の置換基としては、例えば、フッ素原子、塩素原子等のハロゲン原子;シアノ基;ジメチルアミノ基等の置換アミノ基;メトキシ基、エトキシ基、イソプロポキシ基、ブトキシ基等の炭素数1~20のアルコキシ基;メトキシメトキシ基、メトキシエトキシ基等の、炭素数1~12のアルコキシ基で置換された炭素数1~12のアルコキシ基;ニトロ基;フェニル基、ナフチル基等のアリール基;シクロプロピル基、シクロペンチル基、シクロヘキシル基等の炭素数3~8のシクロアルキル基;シクロペンチルオキシ基、シクロヘキシルオキシ基等の炭素数3~8のシクロアルキルオキシ基;テトラヒドロフラニル基、テトラヒドロピラニル基、ジオキソラニル基、ジオキサニル基等の炭素数2~12の環状エーテル基;フェノキシ基、ナフトキシ基等の炭素数6~14のアリールオキシ基;トリフルオロメチル基、ペンタフルオロエチル基、-CHCF等の、少なくとも1個がフッ素原子で置換された炭素数1~12のフルオロアルコキシ基;ベンゾフリル基;ベンゾピラニル基;ベンゾジオキソリル基;ベンゾジオキサニル基;-C(=O)-R7a;-C(=O)-OR7a;-SO8a;-SR10;-SR10で置換された炭素数1~12のアルコキシ基;水酸基;が挙げられる。ここで、R7a及びR10は、それぞれ独立して、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数3~12のシクロアルキル基、又は、炭素数6~12の芳香族炭化水素環基を表す。R8aは、前記Rと同様の、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、フェニル基、又は、4-メチルフェニル基を表す。
 Aの、置換基を有していてもよい炭素数3~12のシクロアルキル基の置換基としては、例えば、フッ素原子、塩素原子等のハロゲン原子;シアノ基;ジメチルアミノ基等の置換アミノ基;メチル基、エチル基、プロピル基等の炭素数1~6のアルキル基;メトキシ基、エトキシ基、イソプロポキシ基等の炭素数1~6のアルコキシ基;ニトロ基;フェニル基、ナフチル基等のアリール基;シクロプロピル基、シクロペンチル基、シクロヘキシル基等の炭素数3~8のシクロアルキル基;-C(=O)-R7a;-C(=O)-OR7a;-SO8a;水酸基;が挙げられる。ここでR7a及びR8aは、前記と同じ意味を表す。
 Aの、置換基を有していてもよい炭素数2~20のアルキニル基の置換基としては、例えば、置換基を有していてもよい炭素数1~20のアルキル基、及び、置換基を有していてもよい炭素数2~20のアルケニル基の置換基と同様な置換基が挙げられる。
 Aの、-C(=O)-Rで表される基において、Rは、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、又は、炭素数5~12の芳香族炭化水素環基を表す。これらの具体例は、前記Aの、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、及び、置換基を有していてもよい炭素数3~12のシクロアルキル基;並びに、前記Aで説明した芳香族炭化水素環基のうち炭素数が5~12のものの例として挙げたものと同様のものが挙げられる。
 Aの、-SO-Rで表される基において、Rは、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、フェニル基、又は、4-メチルフェニル基を表す。Rの、炭素数1~20のアルキル基、及び炭素数2~20のアルケニル基の具体例は、前記Aの、炭素数1~20のアルキル基、炭素数2~20のアルケニル基の例として挙げたものと同様のものが挙げられる。
 Aの、-C(=S)NH-Rで表される基において、Rは、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、又は、置換基を有していてもよい炭素数5~20の芳香族基を表す。これらの具体例は、前記Aの、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基;並びに、前記Aで説明した芳香族炭化水素環基及び芳香族複素環基のうち炭素数が5~20のものの例として挙げたものと同様のものが挙げられる。
 Aの、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基としては、前記Aで説明したのと同様のものが挙げられる。
 これらの中でも、Aとしては、水素原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、置換基を有していてもよい炭素数2~20のアルキニル基、-C(=O)-R、-SO-R、又は、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基で表される基が好ましい。さらに、Aとしては、水素原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、置換基を有していてもよい炭素数2~20のアルキニル基、置換基を有してもよい炭素数6~12の芳香族炭化水素環基、置換基を有していてもよい炭素数3~9の芳香族複素環基、-C(=O)-R、-SO-Rで表される基が更に好ましい。ここで、R、Rは前記と同じ意味を表す。
 Aの、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数2~20のアルキニル基の置換基としては、ハロゲン原子、シアノ基、炭素数1~20のアルコキシ基、炭素数1~12のアルコキシ基で置換された炭素数1~12のアルコキシ基、フェニル基、シクロヘキシル基、炭素数2~12の環状エーテル基、炭素数6~14のアリールオキシ基、水酸基、ベンゾジオキサニル基、フェニルスルホニル基、4-メチルフェニルスルホニル基、ベンゾイル基、-SR10が好ましい。ここで、R10は前記と同じ意味を表す。
 Aの、置換基を有していてもよい炭素数3~12のシクロアルキル基、置換基を有してもよい炭素数6~12の芳香族炭化水素環基、置換基を有していてもよい炭素数3~9の芳香族複素環基の置換基としては、フッ素原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、シアノ基が好ましい。
 また、AとAは、一緒になって、環を形成していてもよい。かかる環としては、例えば、置換基を有していてもよい、炭素数4~30の不飽和複素環、炭素数6~30の不飽和炭素環が挙げられる。
 前記炭素数4~30の不飽和複素環、及び、炭素数6~30の不飽和炭素環は、特に制約はなく、芳香族性を有していても有していなくてもよい。
 AとAが一緒になって形成される環としては、例えば、下記に示す環が挙げられる。なお、下記に示す環は、式(I)中の
Figure JPOXMLDOC01-appb-C000017
 として表される部分を示すものである。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
 (式中、X、Y、Zは、前記と同じ意味を表す。)
 また、これらの環は置換基を有していてもよい。かかる置換基としては、Aが有する芳香環の置換基として説明したのと同様のものが挙げられる。
 AとAに含まれるπ電子の総数は、本発明の所望の効果をより良好に発現させる観点から、4以上24以下であるのが好ましく、6以上20以下であるのがより好ましく、6以上18以下であるのが更により好ましい。
 AとAの好ましい組み合わせとしては、下記の組み合わせ(α)及び組み合わせ(β)が挙げられる。
 (α)Aが炭素数4~30の、芳香族炭化水素環基又は芳香族複素環基であり、Aが水素原子、炭素数3~8のシクロアルキル基、(ハロゲン原子、シアノ基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、若しくは炭素数3~8のシクロアルキル基)を置換基として有していてもよい炭素数6~12の芳香族炭化水素環基、(ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、シアノ基)を置換基として有していてもよい炭素数3~9の芳香族複素環基、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルケニル基、又は、置換基を有していてもよい炭素数2~20のアルキニル基であり、当該置換基が、ハロゲン原子、シアノ基、炭素数1~20のアルコキシ基、炭素数1~12のアルコキシ基で置換された炭素数1~12のアルコキシ基、フェニル基、シクロヘキシル基、炭素数2~12の環状エーテル基、炭素数6~14のアリールオキシ基、水酸基、ベンゾジオキサニル基、ベンゼンスルホニル基、ベンゾイル基及び-SR10のいずれかである組み合わせ。
 (β)AとAが一緒になって不飽和複素環又は不飽和炭素環を形成している組み合わせ。ここで、R10は前記と同じ意味を表す。
 AとAのより好ましい組み合わせとしては、下記の組み合わせ(γ)が挙げられる。
 (γ)Aが下記構造を有する基のいずれかであり、Aが水素原子、炭素数3~8のシクロアルキル基、(ハロゲン原子、シアノ基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、若しくは炭素数3~8のシクロアルキル基)を置換基として有していてもよい炭素数6~12の芳香族炭化水素環基、(ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、シアノ基)を置換基として有していてもよい炭素数3~9の芳香族複素環基、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルケニル基、又は、置換基を有していてもよい炭素数2~20のアルキニル基であり、当該置換基が、ハロゲン原子、シアノ基、炭素数1~20のアルコキシ基、炭素数1~12のアルコキシ基で置換された炭素数1~12のアルコキシ基、フェニル基、シクロヘキシル基、炭素数2~12の環状エーテル基、炭素数6~14のアリールオキシ基、水酸基、ベンゾジオキサニル基、ベンゼンスルホニル基、ベンゾイル基、-SR10のいずれかである組み合わせ。ここで、R10は前記と同じ意味を表す。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
 (式中、X、Yは、前記と同じ意味を表す。)
 AとAの特に好ましい組み合わせとしては、下記の組み合わせ(δ)が挙げられる。
 (δ)Aが下記構造を有する基のいずれかであり、Aが水素原子、炭素数3~8のシクロアルキル基、(ハロゲン原子、シアノ基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、若しくは炭素数3~8のシクロアルキル基)を置換基として有していてもよい炭素数6~12の芳香族炭化水素環基、(ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、シアノ基)を置換基として有していてもよい炭素数3~9の芳香族複素環基、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルケニル基、又は、置換基を有していてもよい炭素数2~20のアルキニル基であり、当該置換基が、ハロゲン原子、シアノ基、炭素数1~20のアルコキシ基、炭素数1~12のアルコキシ基で置換された炭素数1~12のアルコキシ基、フェニル基、シクロヘキシル基、炭素数2~12の環状エーテル基、炭素数6~14のアリールオキシ基、水酸基、ベンゾジオキサニル基、ベンゼンスルホニル基、ベンゾイル基、及び、-SR10のいずれかである組み合わせ。下記式中、Xは前記と同じ意味を表す。ここで、R10は前記と同じ意味を表す。
Figure JPOXMLDOC01-appb-C000023
 前記式(I)において、Aは、置換基を有していてもよい三価の芳香族基を表す。三価の芳香族基としては、三価の炭素環式芳香族基であってもよく、三価の複素環式芳香族基であってもよい。本発明の所望の効果をより良好に発現させる観点から、三価の炭素環式芳香族基が好ましく、三価のベンゼン環基又は三価のナフタレン環基がより好ましく、下記式に示す三価のベンゼン環基又は三価のナフタレン環基がさらに好ましい。なお、下記式においては、結合状態をより明確にすべく、置換基Y、Yを便宜上記載している(Y、Yは、前記と同じ意味を表す。以下にて同じ。)。
Figure JPOXMLDOC01-appb-C000024
 これらの中でも、Aとしては、下記に示す式(A11)~(A25)で表される基がより好ましく、式(A11)、(A13)、(A15)、(A19)、(A23)で表される基がさらに好ましく、式(A11)、(A23)で表される基が特に好ましい。
Figure JPOXMLDOC01-appb-C000025
 Aの、三価の芳香族基が有していてもよい置換基としては、前記Aの芳香環の置換基として説明したのと同様のものが挙げられる。Aとしては、置換基を有さないものが好ましい。
 前記式(I)において、A及びAは、それぞれ独立して、置換基を有していてもよい炭素数3~30の二価の脂環式炭化水素基を表す。炭素数3~30の二価の脂環式炭化水素基としては、例えば、炭素数3~30のシクロアルカンジイル基、炭素数10~30の二価の脂環式縮合環基が挙げられる。
 炭素数3~30のシクロアルカンジイル基としては、例えば、シクロプロパンジイル基;シクロブタン-1,2-ジイル基、シクロブタン-1,3-ジイル基等のシクロブタンジイル基;シクロペンタン-1,2-ジイル基、シクロペンタン-1,3-ジイル基等のシクロペンタンジイル基;シクロヘキサン-1,2-ジイル基、シクロヘキサン-1,3-ジイル基、シクロヘキサン-1,4-ジイル基等のシクロへキサンジイル基;シクロヘプタン-1,2-ジイル基、シクロヘプタン-1,3-ジイル基、シクロヘプタン-1,4-ジイル基等のシクロへプタンジイル基;シクロオクタン-1,2-ジイル基、シクロオクタン-1,3-ジイル基、シクロオクタン-1,4-ジイル基、シクロオクタン-1,5-ジイル基等のシクロオクタンジイル基;シクロデカン-1,2-ジイル基、シクロデカン-1,3-ジイル基、シクロデカン-1,4-ジイル基、シクロデカン-1,5-ジイル基等のシクロデカンジイル基;シクロドデカン-1,2-ジイル基、シクロドデカン-1,3-ジイル基、シクロドデカン-1,4-ジイル基、シクロドデカン-1,5-ジイル基等のシクロドデカンジイル基;シクロテトラデカン-1,2-ジイル基、シクロテトラデカン-1,3-ジイル基、シクロテトラデカン-1,4-ジイル基、シクロテトラデカン-1,5-ジイル基、シクロテトラデカン-1,7-ジイル基等のシクロテトラデカンジイル基;シクロエイコサン-1,2-ジイル基、シクロエイコサン-1,10-ジイル基等のシクロエイコサンジイル基;が挙げられる。
 炭素数10~30の二価の脂環式縮合環基としては、例えば、デカリン-2,5-ジイル基、デカリン-2,7-ジイル基等のデカリンジイル基;アダマンタン-1,2-ジイル基、アダマンタン-1,3-ジイル基等のアダマンタンジイル基;ビシクロ[2.2.1]へプタン-2,3-ジイル基、ビシクロ[2.2.1]へプタン-2,5-ジイル基、ビシクロ[2.2.1]へプタン-2,6-ジイル基等のビシクロ[2.2.1]へプタンジイル基;が挙げられる。
 これらの二価の脂環式炭化水素基は、任意の位置に置換基を有していてもよい。置換基としては、前記Aの芳香環の置換基として説明したものと同様のものが挙げられる。
 これらの中でも、A及びAとしては、炭素数3~12の二価の脂環式炭化水素基が好ましく、炭素数3~12のシクロアルカンジイル基がより好ましく、下記式(A31)~(A34)で表される基がさらに好ましく、下記式(A32)で表される基が特に好ましい。
Figure JPOXMLDOC01-appb-C000026
 前記炭素数3~30の二価の脂環式炭化水素基は、Y及びY(又はY及びY)と結合する炭素原子の立体配置の相違に基づく、シス型及びトランス型の立体異性体が存在しうる。例えば、シクロヘキサン-1,4-ジイル基の場合には、下記に示すように、シス型の異性体(A32a)とトランス型の異性体(A32b)が存在し得る。
Figure JPOXMLDOC01-appb-C000027
 前記炭素数3~30の二価の脂環式炭化水素基は、シス型であってもよく、トランス型であってもよく、シス型及びトランス型の異性体混合物であってもよい。中でも、配向性が良好であることから、トランス型あるいはシス型であるのが好ましく、トランス型がより好ましい。
 前記式(I)において、A及びAは、それぞれ独立して、置換基を有していてもよい、炭素数6~30の二価の芳香族基を表す。A及びAの芳香族基は、単環のものであっても、多環のものであってもよい。A及びAの好ましい具体例としては、下記のものが挙げられる。
Figure JPOXMLDOC01-appb-C000028
 上記A及びAの二価の芳香族基は、任意の位置に置換基を有していてもよい。当該置換基としては、例えば、ハロゲン原子、シアノ基、ヒドロキシル基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、ニトロ基、-C(=O)-OR8b基;が挙げられる。ここでR8bは、炭素数1~6のアルキル基である。なかでも、置換基としては、ハロゲン原子、炭素数1~6のアルキル基、アルコキシ基が好ましい。また、ハロゲン原子としては、フッ素原子がより好ましく、炭素数1~6のアルキル基としては、メチル基、エチル基、プロピル基がより好ましく、アルコキシ基としては、メトキシ基、エトキシ基がより好ましい。
 これらの中でも、本発明の所望の効果をより良好に発現させる観点から、A及びAは、それぞれ独立して、置換基を有していてもよい、下記式(A41)、(A42)又は(A43)で表される基がより好ましく、置換基を有していてもよい式(A41)で表される基が特に好ましい。
Figure JPOXMLDOC01-appb-C000029
 前記式(I)において、Qは、水素原子、又は、置換基を有していてもよい炭素数1~6のアルキル基を示す。置換基を有していてもよい炭素数1~6のアルキル基としては、前記Aで説明した置換基を有していてもよい炭素数1~20のアルキル基のうち、炭素数が1~6のものが挙げられる。これらの中でも、Qは、水素原子及び炭素数1~6のアルキル基が好ましく、水素原子及びメチル基がより好ましい。
 前記式(I)において、m及びnは、それぞれ独立に、0又は1を表す。中でも、mは好ましくは1であり、また、nは好ましくは1である。
 化合物(I)は、例えば、下記に示す反応により製造しうる。
Figure JPOXMLDOC01-appb-C000030
 (式中、Y~Y、G、G、Z、Z、A、A、A~A、Q、m及びnは、前記と同じ意味を表す。)
 前記の反応式に示したように、式(3)で表されるヒドラジン化合物と式(4)で表されるカルボニル化合物とを反応させることにより、化合物(I)を製造することができる。以下、式(3)で表されるヒドラジン化合物を、適宜「ヒドラジン化合物(3)」ということがある。また、式(4)で表されるカルボニル化合物を、適宜「カルボニル化合物(4)」ということがある。
 前記の反応において、「ヒドラジン化合物(3):カルボニル化合物(4)」のモル比は、好ましくは1:2~2:1、より好ましくは1:1.5~1.5:1である。このようなモル比で反応させることにより、高選択的かつ高収率で、目的とする化合物(I)を製造できる。
 この場合、反応系は、(±)-10-カンファースルホン酸、パラトルエンスルホン酸等の有機酸;塩酸、硫酸等の無機酸;等の酸触媒を含んでいてもよい。酸触媒を用いることで、反応時間が短縮され、収率が向上する場合がある。酸触媒の量は、カルボニル化合物(4)1モルに対して、通常0.001モル~1モルである。また、酸触媒は、反応系にそのまま配合してもよく、適切な溶液に溶解させた溶液として配合してもよい。
 この反応に用いる溶媒としては、反応に不活性なものを用いうる。溶媒としては、例えば、メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール、sec-ブチルアルコール、t-ブチルアルコール等のアルコール系溶媒;ジエチルエーテル、テトラヒドロフラン、1,2-ジメトキシエタン、1,4-ジオキサン、シクロペンチルメチルエーテル等のエーテル系溶媒;酢酸エチル、酢酸プロピル、プロピオン酸メチル等のエステル系溶媒;ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒;n-ペンタン、n-ヘキサン、n-ヘプタン等の脂肪族炭化水素系溶媒;N,N-ジメチルホルムアミド、N-メチルピロリドン、ヘキサメチルリン酸トリアミド等のアミド系溶媒;ジメチルスルホキシド、スルホラン等の含硫黄系溶媒;及びこれらの2種以上からなる混合溶媒;等が挙げられる。これらの中でも、アルコール系溶媒、エーテル系溶媒、及び、アルコール系溶媒とエーテル系溶媒の混合溶媒が好ましい。
 溶媒の使用量は、特に限定されず、用いる化合物の種類及び反応規模等を考慮して設定しうる。溶媒の具体的な使用量は、ヒドラジン化合物(3)1gに対し、通常1g~100gである。
 反応は、通常、-10℃以上、用いる溶媒の沸点以下の温度範囲で、円滑に進行しうる。各反応の反応時間は、反応規模によるが、通常、数分から数時間である。
 ヒドラジン化合物(3)は、次のようにして製造しうる。
Figure JPOXMLDOC01-appb-C000031
 (式中、A及びAは、前記と同じ意味を表す。Xは、ハロゲン原子、メタンスルホニルオキシ基、p-トルエンスルホニルオキシ基等の脱離基を表す。)
 前記の反応式に示したように、式(2a)で表される化合物とヒドラジン(1)とを、適切な溶媒中で反応させることで、対応するヒドラジン化合物(3a)を得ることができる。この反応における「化合物(2a):ヒドラジン(1)」のモル比は、好ましくは1:1~1:20、より好ましくは1:2~1:10である。さらに、ヒドラジン化合物(3a)と式(2b)で表される化合物とを反応させることで、ヒドラジン化合物(3)を得ることができる。
 ヒドラジン(1)としては、通常1水和物のものを用いうる。ヒドラジン(1)は、市販品をそのまま使用することができる。
 この反応に用いる溶媒としては、反応に不活性なものを用いうる。溶媒としては、例えば、メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール、sec-ブチルアルコール、t-ブチルアルコール等のアルコール系溶媒;ジエチルエーテル、テトラヒドロフラン、1,2-ジメトキシエタン、1,4-ジオキサン、シクロペンチルメチルエーテル等のエーテル系溶媒;ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒;n-ペンタン、n-ヘキサン、n-ヘプタン等の脂肪族炭化水素系溶媒;N,N-ジメチルホルムアミド、N-メチルピロリドン、ヘキサメチルリン酸トリアミド等のアミド系溶媒;ジメチルスルホキシド、スルホラン等の含硫黄系溶媒;及びこれらの2種以上からなる混合溶媒;が挙げられる。これらの中でも、アルコール系溶媒、エーテル系溶媒、及び、アルコール系溶媒とエーテル系溶媒の混合溶媒が好ましい。
 溶媒の使用量は、特に限定されず、用いる化合物の種類及び反応規模等を考慮して設定しうる。溶媒の具体的な使用量は、ヒドラジン1gに対し、通常1g~100gである。
 反応は、通常、-10℃以上、用いる溶媒の沸点以下の温度範囲で、円滑に進行しうる。各反応の反応時間は、反応規模によるが、通常、数分から数時間である。
 また、ヒドラジン化合物(3)は、次のように、公知の方法を用いて、ジアゾニウム塩(5)を還元することによっても製造しうる。
Figure JPOXMLDOC01-appb-C000032
 式(5)中、A及びAは、前記と同じ意味を表す。Xb-は、ジアゾニウムに対する対イオンである陰イオンを示す。Xb-としては、例えば、ヘキサフルオロリン酸イオン、ホウフッ化水素酸イオン、塩化物イオン、硫酸イオン等の無機陰イオン;ポリフルオロアルキルカルボン酸イオン、ポリフルオロアルキルスルホン酸イオン、テトラフェニルホウ酸イオン、芳香族カルボン酸イオン、芳香族スルホン酸イオン等の有機陰イオン;が挙げられる。
 上記反応に用いる還元剤としては、例えば金属塩還元剤が挙げられる。金属塩還元剤とは、一般に、低原子価金属を含む化合物、もしくは金属イオンとヒドリド源からなる化合物である(「有機合成実験法ハンドブック」1990年社団法人有機合成化学協会編 丸善株式会社発行810ページを参照)。
 金属塩還元剤としては、例えば、NaAlH、NaAlH(Or)(p及びqは、それぞれ独立して1~3の整数を表し、p+q=4である。rは、炭素数1~6のアルキル基を表す。)、LiAlH、iBuAlH、LiBH、NaBH、SnCl、CrCl、TiClが挙げられる。ここで「iBu」は、イソブチル基を表す。
 還元反応においては公知の反応条件を採用しうる。例えば、特開2005-336103号公報、新実験化学講座 1978年 丸善株式会社発行 14巻、実験化学講座 1992年 丸善株式会社発行 20巻、等の文献に記載の条件で反応を行いうる。
 また、ジアゾニウム塩(5)は、アニリン等の化合物から常法により製造しうる。
 カルボニル化合物(4)は、例えば、エーテル結合(-O-)、エステル結合(-C(=O)-O-、-O-C(=O)-)、カーボネート結合(-O-C(=O)-O-)及びアミド結合(-C(=O)-NH-、-NH-C(=O)-)の形成反応を任意に組み合わせて、所望の構造を有する複数の公知化合物を適切に結合及び修飾することにより、製造しうる。
 エーテル結合の形成は、以下のようにして行いうる。
 (i)式:D1-hal(halはハロゲン原子を表す。以下にて同じ。)で表される化合物と、式:D2-OMet(Metはアルカリ金属(主にナトリウム)を表す。以下にて同じ。)で表される化合物とを、混合して縮合させる(ウイリアムソン合成)。なお、式中、D1及びD2は任意の有機基を表す(以下にて同じ。)。
 (ii)式:D1-halで表される化合物と、式:D2-OHで表される化合物とを、水酸化ナトリウム、水酸化カリウム等の塩基存在下、混合して縮合させる。
 (iii)式:D1-J(Jはエポキシ基を表す。)で表される化合物と、式:D2-OHで表される化合物とを、水酸化ナトリウム、水酸化カリウム等の塩基存在下、混合して縮合させる。
 (iv)式:D1-OFN(OFNは不飽和結合を有する基を表す。)で表される化合物と、式:D2-OMetで表される化合物とを、水酸化ナトリウム、水酸化カリウム等の塩基存在下、混合して付加反応させる。
 (v)式:D1-halで表される化合物と、式:D2-OMetで表される化合物とを、銅あるいは塩化第一銅の存在下、混合して縮合させる(ウルマン縮合)。
 エステル結合及びアミド結合の形成は、以下のようにして行いうる。
 (vi)式:D1-COOHで表される化合物と、式:D2-OH又はD2-NHで表される化合物とを、脱水縮合剤(N,N-ジシクロヘキシルカルボジイミド等)の存在下に脱水縮合させる。
 (vii)式:D1-COOHで表される化合物にハロゲン化剤を作用させることにより、式:D1-CO-halで表される化合物を得て、このものと式:D2-OH又はD2-NHで表される化合物とを、塩基の存在下に反応させる。
 (viii)式:D1-COOHで表される化合物に酸無水物を作用させることにより、混合酸無水物を得た後、このものと式:D2-OH又はD2-NHで表される化合物とを反応させる。
 (ix)式:D1-COOHで表される化合物と、式:D2-OH又はD2-NHで表される化合物とを、酸触媒あるいは塩基触媒の存在下に脱水縮合させる。
 カルボニル化合物(4)は、より具体的には、下記反応式に示す方法により製造しうる。
Figure JPOXMLDOC01-appb-C000033
 (式中、Y~Y、G、G、Z、Z、A~A、Q、m及びnは、前記と同じ意味を表す。L及びLは、それぞれ独立に、水酸基、ハロゲン原子、メタンスルホニルオキシ基、p-トルエンスルホニルオキシ基等の脱離基を表す。-Y1aは、-Lと反応して-Y-となりうる基を表し、-Y2aは、-Lと反応して-Y-となりうる基を表す。)
 前記の反応式に示したように、エーテル結合(-O-)、エステル結合(-C(=O)-O-、-O-C(=O)-)、又は、カーボネート結合(-O-C(=O)-O-)の形成反応を用いることにより、式(6d)で表される化合物に、式(7a)で表される化合物、次いで、式(7b)で表される化合物を反応させて、カルボニル化合物(4)を製造することができる。
 具体例として、Yが、式:Y11-C(=O)-O-で表される基であり、且つ、式:Z-Y-G-Y-A-(Y-A-Y-で表される基が、式:Z-Y-G-Y-A-(Y-A-Y-で表される基と同一である、化合物(4’)の製造方法を以下に示す。
Figure JPOXMLDOC01-appb-C000034
 (式中、Y、Y、Y、G、Z、A、A、A、Q、n及びLは、前記と同じ意味を表す。Y11は、Y11-C(=O)-O-がYとなる基を表す。Yは前記と同じ意味を表す。)
 前記の反応式に示したように、式(6)で表されるジヒドロキシ化合物(化合物(6))と式(7)で表される化合物(化合物(7))とを反応させることにより、化合物(4’)を製造し得る。この反応における「化合物(6):化合物(7)」のモル比は、好ましくは1:2~1:4、より好ましくは1:2~1:3である。このようなモル比で反応させることにより、高選択的かつ高収率で目的とする化合物(4’)を得ることができる。
 化合物(7)が、Lが水酸基である化合物(カルボン酸)である場合には、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、ジシクロヘキシルカルボジイミド等の脱水縮合剤の存在下に反応させることにより、目的物を得ることができる。脱水縮合剤の使用量は、化合物(7)1モルに対し、通常1モル~3モルである。
 また、化合物(7)が、Lが水酸基である化合物(カルボン酸)である場合には、メタンスルホニルクロリド、p-トルエンスルホニルクロリド等のスルホニルハライド、及びトリエチルアミン、ジイソプロピルエチルアミン、ピリジン、4-(ジメチルアミノ)ピリジン等の塩基の存在下に反応させることによっても、目的物を得ることができる。スルホニルハライドの使用量は、化合物(7)1モルに対し、通常1モル~3モルである。また、塩基の使用量は、化合物(7)1モルに対し、通常1モル~3モルである。この場合、前記式(7)中、Lがスルホニルオキシ基の化合物(混合酸無水物)を単離して、次の反応を行ってもよい。
 さらに、化合物(7)が、Lがハロゲン原子である化合物(酸ハライド)である場合には、塩基の存在下に反応させることにより、目的物を得ることができる。塩基としては、例えば、トリエチルアミン、ピリジン等の有機塩基;水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム等の無機塩基が挙げられる。塩基の使用量は、化合物(7)1モルに対し、通常1モル~3モルである。
 上記反応に用いる溶媒としては、例えば、クロロホルム、塩化メチレン等の塩素系溶媒;N-メチルピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ヘキサメチルリン酸トリアミド等のアミド系溶媒;1,4-ジオキサン、シクロペンチルメチルエーテル、テトラヒドロフラン、テトラヒドロピラン、1,3-ジオキソラン等のエーテル溶媒;ジメチルスルホキシド、スルホラン等の含硫黄系溶媒;ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒;n-ペンタン、n-ヘキサン、n-オクタン等の脂肪族炭化水素系溶媒;シクロペンタン、シクロヘキサン等の脂環式炭化水素系溶媒;及びこれらの溶媒の2種以上からなる混合溶媒;等が挙げられる。
 溶媒の使用量は、特に限定されず、用いる化合物の種類及び反応規模等を考慮して設定しうる。溶媒の具体的な使用量は、ヒドロキシ化合物(6)1gに対し、通常1g~50gである。
 化合物(6)の多くは公知物質であり、公知の方法により製造しうる。例えば、下記反応式に示す方法により製造しうる(国際公開第2009/042544号、及び、The Journal of Organic Chemistry,2011,76,8082-8087等参照。)。化合物(6)として市販されているものを、所望により精製して用いてもよい。
Figure JPOXMLDOC01-appb-C000035
 (式中、A及びQは、前記と同じ意味を表し、A1aは、ホルミル化又はアシル化されることによりAになりうる2価の芳香族基を表し、R’は、メチル基、エチル基等の炭素数1~6のアルキル基、メトキシメチル基等の炭素数2~6のアルコキシアルキル基等の、水酸基の保護基を表す。)
 前記の反応式に示したように、式(6a)で表されるジヒドロキシ化合物(1,4-ジヒドロキシベンゼン、1,4-ジヒドロキシナフタレン等)の水酸基をアルキル化して、式(6b)で表される化合物を得る。その後、OR’基のオルト位を、公知の方法により、ホルミル化又はアシル化することにより、式(6c)で表される化合物を得る。そして、このものを脱保護(脱アルキル化)することにより、目的とする化合物(6)を製造しうる。
 また、化合物(6)として、市販されているものをそのまま、又は所望により精製して用いてもよい。
 化合物(7)の多くは公知化合物であり、例えば、エーテル結合(-O-)、エステル結合(-C(=O)-O-、-O-C(=O)-)、カーボネート結合(-O-C(=O)-O-)及びアミド結合(-C(=O)-NH-、-NH-C(=O)-)の形成反応を任意に組み合わせて、所望の構造を有する複数の公知化合物を適切に結合及び修飾することにより、製造しうる。
 例えば、化合物(7)が、下記式(7’)で表される化合物(化合物(7’))である場合には、式(9’)で表されるジカルボン酸(化合物(9’))を用いて、下記のようにして製造することができる。
Figure JPOXMLDOC01-appb-C000036
 (式中、Y、Y、G、Z、A、A及びY11は、前記と同じ意味を表す。Y12は、-O-C(=O)-Y12がYとなる基を表す。Rは、メチル基、エチル基等のアルキル基;フェニル基、p-メチルフェニル基等の置換基を有していてもよいアリール基;を表す。)
 先ず、化合物(9’)に、式(10)で表されるスルホニルクロライドを、トリエチルアミン、4-(ジメチルアミノ)ピリジン等の塩基存在下で反応させる。次いで、反応混合物に、化合物(8)と、トリエチルアミン、4-(ジメチルアミノ)ピリジン等の塩基を加えて反応を行う。
 スルホニルクロライドの使用量は、化合物(9’)1当量に対して、通常0.5当量~0.7当量である。
 また、化合物(8)の使用量は、化合物(9’)1当量に対して、通常0.5当量~0.6当量である。
 塩基の使用量は、化合物(9’)1当量に対して、通常0.5当量~0.7当量である。
 反応温度は、20℃~30℃であり、反応時間は反応規模等にもよるが、数分から数時間である。
 上記反応に用いる溶媒としては、前記化合物(4’)を製造する際に用いうる溶媒として例示したものが挙げられる。なかでも、エーテル溶媒が好ましい。
 溶媒の使用量は、特に限定されず、用いる化合物の種類及び反応規模等を考慮して設定しうる。溶媒の具体的な使用量は、化合物(9’)1gに対し、通常1g~50gである。
 いずれの反応においても、反応終了後は、有機合成化学における通常の後処理操作を行いうる。また、所望により、カラムクロマトグラフィー、再結晶法、蒸留法等の公知の分離精製法を施すことにより、目的物を単離しうる。
 目的とする化合物の構造は、NMRスペクトル、IRスペクトル、マススペクトル等の測定、元素分析等により、同定できる。
 [1.2.界面活性剤]
 本発明の液晶性組成物は、分子中にフッ素原子を含む界面活性剤を含む。この界面活性剤の分子中のフッ素原子の割合は、通常30重量%以下、好ましくは25重量%以下、より好ましくは20重量%以下である。このように所定の割合でフッ素原子を含む界面活性剤を逆波長重合性液晶化合物と組み合わせて用いることにより、本発明の液晶性組成物を用いて製造される位相差層の面状態及び配向性の両方を良好にできる。さらに、通常は、位相差層の位相差ムラ及び厚みムラを抑制することが可能である。
 従来の技術常識からすれば、界面活性剤によって液晶性組成物の表面張力を低くするほど、当該液晶性組成物から得られる位相差層の面状態を改善する効果は大きくなると予想されていた。しかし、本発明者らの検討によれば、本発明においては、界面活性剤が液晶性組成物の表面張力を低くする能力と、位相差層の面状態の改善の程度との間には、必ずしも相関が認められない。これらの事項から考えると、本発明の液晶性組成物によって得られる前記の効果は、従来の技術常識から予測できない意外な効果である。
 分子中にフッ素原子を含む前記の界面活性剤は、通常、フルオロアルキル基を含む。このフルオロアルキル基としては、面状態の改善、配向性の改善、位相差ムラの抑制、及び厚みムラの抑制といった効果を顕著に発揮する観点から、パーフルオロアルキル基が好ましく、特に-C13基が好ましい。
 前記の界面活性剤の分子中のフッ素原子の割合の下限は、特には制限されないが、好ましくは5重量%以上、より好ましくは10重量%以上、特に好ましくは15重量%以上である。界面活性剤の分子中のフッ素原子の割合を前記範囲の下限値以上にすることにより、本発明の液晶性組成物を用いて製造される位相差層の面状態及び配向性の両方を効果的に良好にできる。
 界面活性剤の分子中のフッ素原子の割合は、下記の方法によって測定しうる。
 試料としての界面活性剤を秤量し、分析装置の燃焼管内で燃焼させる。燃焼により発生したガスを、適切な溶液に吸収させて、吸収液を得る。その後、吸収液の一部をイオンクロマトグラフィーにより分析することによって、界面活性剤の分子中のフッ素原子の割合を測定しうる。
 界面活性剤としては、当該界面活性剤の分子中に2単位以上含まれる繰り返し単位を有するオリゴマー構造を有するものを用いてもよく、繰り返し単位を含まないモノマー構造を有するものを用いてもよい。
 また、界面活性剤としては、重合性を有さないものを用いてもよく、重合性を有するものを用いてもよい。重合性を有する界面活性剤は、逆波長重合性液晶化合物を重合させる際に重合しうるので、通常は、本発明の液晶性組成物から製造される位相差層においては重合体の分子の一部に含まれる。
 前記のようにフッ素原子を含む界面活性剤としては、例えば、AGCセイミケミカル社製のサーフロンシリーズ(S242、S243、S386、S611、S651など)、DIC社製のメガファックシリーズ(F251、F554、F556、F562、RS-75、RS-76-Eなど)、ネオス社製のフタージェントシリーズ(FTX601AD、FTX602A、FTX601ADH2、FTX650Aなど)等が挙げられる。また、これらの界面活性剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 前記のようにフッ素原子を含む界面活性剤の量は、逆波長重合性液晶化合物100重量部に対して、好ましくは0.05重量部以上、より好ましくは0.1重量部以上、特に好ましくは0.3重量部以上であり、好ましくは5.0重量部以下、より好ましくは1.0重量部以下、特に好ましくは0.5重量部以下である。界面活性剤の量を、前記範囲の下限値以上にすることにより塗布時の支持面上への液晶性組成物の塗り付き性が良好になり、前記範囲の上限値以下にすることにより配向性を保ちながら面状の改良ができる。
 [1.3.溶媒]
 溶媒としては、逆波長重合性液晶化合物を溶解できるものを用いうる。このような溶媒としては、通常、有機溶媒を用いる。有機溶媒の例としては、シクロペンタノン、シクロヘキサノン、メチルエチルケトン、アセトン、メチルイソブチルケトン等のケトン溶媒;酢酸ブチル、酢酸アミル等の酢酸エステル溶媒;クロロホルム、ジクロロメタン、ジクロロエタン等のハロゲン化炭化水素溶媒;1,4-ジオキサン、シクロペンチルメチルエーテル、テトラヒドロフラン、テトラヒドロピラン、1,3-ジオキソラン、1,2-ジメトキシエタン等のエーテル溶媒;及びトルエン、キシレン、メシチレン等の芳香族炭化水素;が挙げられる。
 溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせた混合溶媒として用いてもよい。例えば、シクロペンタノン等のケトン溶媒と1,3-ジオキソラン等のエーテル溶媒とを組み合わせて用いることが好ましい。このように組み合わせる場合、ケトン溶媒とエーテル溶媒との重量比(ケトン溶媒/エーテル溶媒)は、好ましくは10/90以上、より好ましくは30/70以上、特に好ましくは40/60以上であり、好ましくは90/10以下、より好ましくは70/30以下、特に好ましくは50/50以下である。ケトン溶媒及びエーテル溶媒を前記の重量比で用いることにより、塗布時の欠陥発生の抑制ができる。
 溶媒の沸点は、取り扱い性に優れる観点から、好ましくは60℃~250℃、より好ましくは60℃~150℃である。
 溶媒の量は、逆波長重合性液晶化合物100重量部に対して、好ましくは300重量部以上、より好ましくは350重量部以上、特に好ましくは400重量部以上であり、好ましくは700重量部以下、より好ましくは600重量部以下、特に好ましくは500重量部以下である。溶媒の量を、前記範囲の下限値以上にすることにより異物発生の抑制ができ、前記範囲の上限値以下にすることにより乾燥負荷の低減ができる。
 [1.4.任意の成分]
 本発明の液晶性組成物は、前述した逆波長重合性液晶化合物、界面活性剤及び溶媒に組み合わせて、更に任意の成分を含みうる。
 例えば、本発明の液晶性組成物は、重合開始剤を含みうる。重合開始剤は、逆波長重合性液晶化合物の種類に応じて選択しうる。例えば、逆波長重合性液晶化合物がラジカル重合性であれば、ラジカル重合開始剤を使用しうる。また、逆波長重合性液晶化合物がアニオン重合性であれば、アニオン重合開始剤を使用しうる。さらに、逆波長重合性液晶化合物がカチオン重合性であれば、カチオン重合開始剤を使用しうる。
 ラジカル重合開始剤としては、加熱によって逆波長重合性液晶化合物の重合を開始しうる活性種を発生する化合物である熱ラジカル発生剤;可視光線、紫外線(i線など)、遠紫外線、電子線、X線等の露光光の露光により、逆波長重合性液晶化合物の重合を開始しうる活性種を発生する化合物である光ラジカル発生剤;のいずれも使用可能である。中でも、ラジカル重合開始剤としては、光ラジカル発生剤が好適である。
 光ラジカル発生剤としては、例えば、アセトフェノン系化合物、ビイミダゾール系化合物、トリアジン系化合物、O-アシルオキシム系化合物、オニウム塩系化合物、ベンゾイン系化合物、ベンゾフェノン系化合物、α-ジケトン系化合物、多核キノン系化合物、キサントン系化合物、ジアゾ系化合物、イミドスルホナート系化合物を挙げられる。これらの化合物は、露光によって、活性ラジカル、活性酸、又は、活性ラジカル及び活性酸の両方を発生しうる。
 アセトフェノン系化合物の具体例としては、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、2-メチル-1-〔4-(メチルチオ)フェニル〕-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)ブタン-1-オン、1-ヒドロキシシクロヘキシル・フェニルケトン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1,2-オクタンジオン、2-ベンジル-2-ジメチルアミノ-4’-モルフォリノブチロフェノンを挙げることができる。
 ビイミダゾール系化合物の具体例としては、2,2’-ビス(2-クロロフェニル)-4,4’,5,5’-テトラキス(4-エトキシカルボニルフェニル)-1,2’-ビイミダゾール、2,2’-ビス(2-ブロモフェニル)-4,4’,5,5’-テトラキス(4-エトキシカルボニルフェニル)-1,2’-ビイミダゾール、2,2’-ビス(2-クロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2,4-ジクロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2,4,6-トリクロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2-ブロモフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2,4-ジブロモフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2,4,6-トリブロモフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾールを挙げることができる。
 重合開始剤としてビイミダゾール系化合物を用いる場合、ビイミダゾール系化合物に組み合わせて水素供与体を用いることにより、感度を更に改良することができる。ここで「水素供与体」とは、露光によりビイミダゾール系化合物から発生したラジカルに対して、水素原子を供与することができる化合物を意味する。水素供与体としては、下記で例示するメルカプタン系化合物及びアミン系化合物が好ましい。
 メルカプタン系化合物としては、例えば、2-メルカプトベンゾチアゾール、2-メルカプトベンゾオキサゾール、2-メルカプトベンゾイミダゾール、2,5-ジメルカプト-1,3,4-チアジアゾール、2-メルカプト-2,5-ジメチルアミノピリジンを挙げることができる。アミン系化合物としては、例えば、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、4-ジエチルアミノアセトフェノン、4-ジメチルアミノプロピオフェノン、エチル-4-ジメチルアミノベンゾエート、4-ジメチルアミノ安息香酸、4-ジメチルアミノベンゾニトリルを挙げることができる。
 トリアジン系化合物の具体例としては、2,4,6-トリス(トリクロロメチル)-s-トリアジン、2-メチル-4,6-ビス(トリクロロメチル)-s-トリアジン、2-〔2-(5-メチルフラン-2-イル)エテニル〕-4,6-ビス(トリクロロメチル)-s-トリアジン、2-〔2-(フラン-2-イル)エテニル〕-4,6-ビス(トリクロロメチル)-s-トリアジン、2-〔2-(4-ジエチルアミノ-2-メチルフェニル)エテニル〕-4,6-ビス(トリクロロメチル)-s-トリアジン、2-〔2-(3,4-ジメトキシフェニル)エテニル〕-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-メトキシフェニル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-エトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-n-ブトキシフェニル)-4,6-ビス(トリクロロメチル)-s-トリアジン等の、ハロメチル基を有するトリアジン系化合物を挙げることができる。
 O-アシルオキシム系化合物の具体例としては、1-〔4-(フェニルチオ)フェニル〕-ヘプタン-1,2-ジオン 2-(O-ベンゾイルオキシム)、1-〔4-(フェニルチオ)フェニル〕-オクタン-1,2-ジオン 2-(O-ベンゾイルオキシム)、1-〔4-(ベンゾイル)フェニル〕-オクタン-1,2-ジオン 2-(O-ベンゾイルオキシム)、1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-エタノン 1-(O-アセチルオキシム)、1-[9-エチル-6-(3-メチルベンゾイル)-9H-カルバゾール-3-イル]-エタノン 1-(O-アセチルオキシム)、1-(9-エチル-6-ベンゾイル-9H-カルバゾール-3-イル)-エタノン 1-(O-アセチルオキシム)、エタノン-1-[9-エチル-6-(2-メチル-4-テトラヒドロフラニルベンゾイル)-9.H.-カルバゾール-3-イル]-1-(O-アセチルオキシム)、エタノン-1-〔9-エチル-6-(2-メチル-4-テトラヒドロピラニルベンゾイル)-9.H.-カルバゾール-3-イル〕-1-(O-アセチルオキシム)、エタノン-1-〔9-エチル-6-(2-メチル-5-テトラヒドロフラニルベンゾイル)-9.H.-カルバゾール-3-イル〕-1-(O-アセチルオキシム)、エタノン-1-〔9-エチル-6-(2-メチル-5-テトラヒドロピラニルベンゾイル)-9.H.-カルバゾール-3-イル〕-1-(O-アセチルオキシム)、エタノン-1-〔9-エチル-6-{2-メチル-4-(2,2-ジメチル-1,3-ジオキソラニル)ベンゾイル}-9.H.-カルバゾール-3-イル〕-1-(O-アセチルオキシム)、エタノン-1-[9-エチル-6-(2-メチル-4-テトラヒドロフラニルメトキシベンゾイル)-9.H.-カルバゾール-3-イル]-1-(O-アセチルオキシム)、エタノン-1-〔9-エチル-6-(2-メチル-4-テトラヒドロピラニルメトキシベンゾイル)-9.H.-カルバゾール-3-イル〕-1-(O-アセチルオキシム)、エタノン-1-〔9-エチル-6-(2-メチル-5-テトラヒドロフラニルメトキシベンゾイル)-9.H.-カルバゾール-3-イル〕-1-(O-アセチルオキシム)、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)、エタノン-1-〔9-エチル-6-(2-メチル-5-テトラヒドロピラニルメトキシベンゾイル)-9.H.-カルバゾール-3-イル〕-1-(O-アセチルオキシム)、エタノン-1-〔9-エチル-6-{2-メチル-4-(2,2-ジメチル-1,3-ジオキソラニル)メトキシベンゾイル}-9.H.-カルバゾール-3-イル〕-1-(O-アセチルオキシム)を挙げることができる。
 光ラジカル発生剤としては、市販品をそのまま用いてもよい。具体例としては、BASF社製の、商品名:Irgacure907、商品名:Irgacure184、商品名:Irgacure369、商品名:Irgacure651、商品名:Irgacure819、商品名:Irgacure907、商品名:Irgacure379、及び商品名:Irgacure OXE02、ADEKA社製の、商品名:アデカオプトマーN1919等が挙げられる。
 アニオン重合開始剤としては、例えば、アルキルリチウム化合物;ビフェニル、ナフタレン、ピレン等の、モノリチウム塩又はモノナトリウム塩;ジリチウム塩やトリリチウム塩等の多官能性開始剤;が挙げられる。
 カチオン重合開始剤としては、例えば、硫酸、リン酸、過塩素酸、トリフルオロメタンスルホン酸等のプロトン酸;三フッ化ホウ素、塩化アルミニウム、四塩化チタン、四塩化スズのようなルイス酸;芳香族オニウム塩又は芳香族オニウム塩と、還元剤との併用系;が挙げられる。
 重合開始剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 重合開始剤の量は、逆波長重合性液晶化合物100重量部に対して、好ましくは0.1重量部以上、より好ましくは0.5重量部以上であり、好ましくは30重量部以下、より好ましくは10重量部以下である。重合開始剤の量が前記範囲に収まることにより、逆波長重合性液晶化合物の重合を効率的に進行させることができる。
 さらに、本発明の液晶性組成物が含みうる任意の成分としては、例えば、逆波長重合性液晶化合物以外の重合性化合物;金属;金属錯体;酸化チタン等の金属酸化物;染料、顔料等の着色剤;蛍光材料、燐光材料等の発光材料;レベリング剤;チキソ剤;ゲル化剤;多糖類;紫外線吸収剤;赤外線吸収剤;抗酸化剤;イオン交換樹脂;等の添加剤が挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 前記の添加剤の量は、本発明の効果を著しく損なわない範囲で任意に設定しうる。添加剤の量は、具体的には、逆波長重合性液晶化合物100重量部に対して、各々0.1重量部~20重量部としうる。
[2.位相差層の製造方法]
 本発明の液晶性組成物を用いることにより、位相差層を製造できる。このような位相差層の製造方法は、
 (i)支持面に、本発明の液晶性組成物を塗布して、液晶性組成物の層を形成する工程と、
 (ii)液晶性組成物の層に含まれる逆波長重合性液晶化合物を配向させる工程と、
 (iii)逆波長重合性液晶化合物を重合させて、位相差層を得る工程と
を含む。
 [2.1.液晶性組成物の層の形成]
 支持面としては、液晶性組成物の層を支持できる任意の面を用いうる。この支持面としては、位相差層の面状態を良好にする観点から、通常、凹部及び凸部の無い平坦面を用いる。位相差層の生産性を高める観点から、前記の支持面としては、長尺の基材の表面を用いることが好ましい。ここで「長尺」とは、幅に対して、少なくとも5倍以上の長さを有する形状をいい、好ましくは10倍若しくはそれ以上の長さを有し、具体的にはロール状に巻き取られて保管又は運搬される程度の長さを有するフィルムの形状をいう。
 基材の材質に特に制限は無いが、通常は、樹脂からなる基材を用いる。基材を形成する樹脂としては、各種の重合体を含む樹脂が挙げられる。当該重合体としては、例えば、ノルボルネン系重合体等の脂環式構造含有重合体、セルロースエステル、ポリビニルアルコール、ポリイミド、UV透過アクリル、ポリカーボネート、ポリスルホン、ポリエーテルスルホン、エポキシ重合体、ポリスチレン、及び、これらの組み合わせが挙げられる。これらの中でも、透明性、低吸湿性、寸法安定性及び軽量性の観点から、脂環式構造含有重合体及びセルロースエステルが好ましく、脂環式構造含有重合体がより好ましい。
 基材には、液晶性組成物の層における逆波長重合性液晶化合物の配向を促進するため、基材の表面に配向規制力を付与するための処理が施されていてもよい。
 配向規制力を付与するための処理としては、例えば、ラビング処理が挙げられる。基材の表面にラビング処理を施すことにより、液晶性組成物の層に含まれる逆波長重合性液晶化合物を均一配向させる配向規制力を、かかる面に付与できる。ラビング処理の方法としては、例えば、ナイロン等の合成繊維、木綿等の天然繊維からなる布又はフェルトを巻き付けたロールで、一定方向に基材の表面を擦る方法が挙げられる。ラビング処理した時に発生する微粉末を除去して処理された面を清浄な状態とするために、ラビング処理後に、処理された面をイソプロピルアルコール等の洗浄液によって洗浄することが好ましい。
 また、配向規制力を付与するための処理としては、例えば、基材の表面に配向層を形成する処理が挙げられる。配向層は、液晶性組成物中の逆波長重合性液晶化合物を、面内で一方向に配向させうる層である。配向層を設けた場合、この配向層の表面に液晶性組成物の層を形成しうる。
 配向層は、通常、ポリイミド、ポリビニルアルコール、ポリエステル、ポリアリレート、ポリアミドイミド、ポリエーテルイミド等のポリマーを含有する。配向層は、このようなポリマーを含む溶液を基材上に膜状に塗布し、乾燥させ、そして一方向にラビング処理を施すことで、製造できる。また、ラビング処理以外に、配向層の表面に偏光紫外線を照射する方法によっても、配向層に配向規制力を付与しうる。配向層の厚さは、好ましくは0.001μm~5μm、より好ましくは0.001μm~1μmである。
 さらに、配向規制力を付与するための処理としては、例えば、延伸処理が挙げられる。基材に適切な条件で延伸処理を施すことにより、基材に含まれる重合体の分子を配向させることができる。これにより、基材に含まれる重合体の分子の配向方向に逆波長重合性液晶化合物を配向させる配向規制力を、基材の表面に付与できる。
 基材の延伸は、基材に異方性を付与して、当該基材に遅相軸を発現させられるように行うことが好ましい。これにより、通常は、基材の遅相軸と平行又は垂直な方向に逆波長重合性液晶化合物を配向させる配向規制力が、基材の表面に付与される。したがって、基材の延伸方向は、逆波長重合性液晶化合物を配向させようとする所望の配向方向に応じて設定しうる。特に、遅相軸は、基材の巻取方向に対して45°の角度をなすように発現させることが好ましい。
 延伸倍率は、延伸後の基材の複屈折Δnが所望の範囲となるように設定しうる。延伸後の基材の複屈折Δnは、好ましくは0.000050以上、より好ましくは0.000070以上であり、好ましくは0.007500以下、より好ましくは0.007000以下である。延伸後の基材の複屈折Δnが前記範囲の下限値以上であることにより、当該基材の表面に良好な配向規制力を付与できる。また、複屈折Δnが前記範囲の上限値以下であることにより、基材のレターデーションを小さくできるので、基材を位相差層から剥離しなくても、位相差層と基材とを組み合わせて各種の用途に用いうる。
 前記の延伸は、テンター延伸機などの延伸機を用いて行いうる。
 また、配向規制力を付与するための処理としては、例えば、イオンビーム配向処理が挙げられる。イオンビーム配向処理では、Ar等のイオンビームを基材に対して入射させることにより、基材の表面に配向規制力を付与することができる。
 基材の厚みは、特に制限されないが、生産性の向上、薄型化及び軽量化を容易にする観点から、好ましくは1μm以上、より好ましくは5μm以上、特に好ましくは30μm以上であり、好ましくは1000μm以下、より好ましくは300μm以下、特に好ましくは100μm以下である。
 必要に応じて前記のような基材を用意した後で、基材の表面等の支持面に、本発明の液晶性組成物を塗布して、液晶性組成物の層を形成する工程を行う。液晶性組成物を塗布する方法としては、例えば、カーテンコーティング法、押し出しコーティング法、ロールコーティング法、スピンコーティング法、ディップコーティング法、バーコーティング法、スプレーコーティング法、スライドコーティング法、印刷コーティング法、グラビアコーティング法、ダイコーティング法、キャップコーティング法、及びディッピング法が挙げられる。塗布される液晶性組成物の層の厚みは、位相差層に求められる所望の厚さに応じて適切に設定しうる。
 [2.2.逆波長重合性液晶化合物の配向]
 液晶性組成物の層を形成した後で、当該層に含まれる逆波長重合性液晶化合物を配向させる工程を行う。通常は、液晶性組成物の層に、加温等の配向処理を施すことにより、逆波長重合性液晶化合物を配向させられる。配向処理の条件は、使用する液晶性組成物の性質に応じて適切に設定しうる。配向処理の条件の具体例を挙げると、50℃~160℃の温度条件において、30秒間~5分間処理する条件としうる。
 ただし、逆波長重合性液晶化合物の配向は、本発明の液晶性組成物の塗布により直ちに達成される場合がありえる。そのため、逆波長重合性液晶化合物を配向させるための配向処理は、必ずしも液晶性組成物の層に施さなくてもよい。
 [2.3.逆波長重合性液晶化合物の重合]
 逆波長重合性液晶化合物を配向させた後で、逆波長重合性液晶化合物を重合させて、位相差層を得る工程を行う。逆波長重合性液晶化合物の重合方法としては、液晶性組成物に含まれる成分の性質に適合した方法を選択しうる。重合方法としては、例えば、活性エネルギー線を照射する方法、及び、熱重合法が挙げられる。中でも、加熱が不要であり、室温で重合反応を進行させられるので、活性エネルギー線を照射する方法が好ましい。ここで、照射される活性エネルギー線には、可視光線、紫外線、及び赤外線等の光、並びに電子線等の任意のエネルギー線が含まれうる。
 なかでも、操作が簡便なことから、紫外線等の光を照射する方法が好ましい。紫外線照射時の温度は、基材のガラス転移温度以下とすることが好ましく、通常150℃以下、好ましくは100℃以下、より好ましくは80℃以下である。紫外線照射時の温度の下限は、15℃以上としうる。紫外線の照射強度は、好ましくは0.1mW/cm以上、より好ましくは0.5mW/cm以上であり、好ましくは1000mW/cm以下、より好ましくは600mW/cm以下である。
 [2.4.任意の工程]
 位相差層の製造方法は、前記の工程に加えて、更に任意の工程を含みうる。
 例えば、位相差層の製造方法は、液晶性組成物の層に含まれる逆波長重合性液晶化合物を配向させる工程の後、逆波長重合性液晶化合物を重合させる工程の前に、液晶性組成物の層を乾燥させる工程を含んでいてもよい。かかる乾燥は、自然乾燥、加熱乾燥、減圧乾燥、減圧加熱乾燥等の乾燥方法で達成しうる。かかる乾燥により、液晶性組成物の層から、溶媒を除去することができる。
 また、例えば、位相差層の製造方法は、製造された位相差層を支持面から剥離する工程を含んでいてもよい。
 [2.5.製造される位相差層]
 前記のようにして製造された位相差層は、逆波長重合性液晶化合物を重合させた重合体を含む。この重合体は、逆波長重合性液晶化合物が液晶相における分子の配向を維持したまま重合して得られたものであるので、ホモジニアス配向規則性を有する。ここで、「ホモジニアス配向規則性を有する」とは、重合体の分子のメソゲンの長軸方向が、位相差層の面に水平なある一の方向に整列することをいう。また、前記の重合体の分子のメソゲンの長軸方向は、当該重合体に対応する逆波長重合性液晶化合物のメソゲンの長軸方向となる。さらに、逆波長重合性液晶化合物として化合物(I)を用いた場合のように、位相差層中に配向方向の異なる複数種類のメソゲンが存在する場合は、それらのうち最も長い種類のメソゲンが整列する方向が、前記の整列方向となる。
 このような位相差層は、通常、前記のような重合体の配向規則性に対応して、前記の重合体の整列方向と平行な遅相軸を有する。逆波長重合性液晶化合物を重合させて得た重合体がホモジニアス配向規則性を有しているか否か、及びその整列方向は、AxoScan(Axometrics社製)に代表されるような位相差計を用いた遅相軸方向の測定と、遅相軸方向における入射角毎のリタデーション分布の測定とにより確認しうる。
 逆波長重合性液晶化合物を重合させた重合体を含むので、位相差層は、逆波長分散性の複屈折を有する。したがって、位相差層は、逆波長分散性のレターデーションを有することができる。ここで、逆波長分散性のレターデーションとは、波長450nmにおけるレターデーションRe(450)、波長550nmにおけるレターデーションRe(550)及び波長650nmにおけるレターデーションRe(650)が、通常下記式(3)を満たすレターデーションを言い、好ましくは下記式(4)を満たすレターデーションを言う。逆波長分散性のレターデーションを有することにより、前記の位相差層は、1/4波長板又は1/2波長板等の光学用途において、広い帯域において均一に機能を発現できる。
 Re(450)<Re(650)  (3)
 Re(450)<Re(550)<Re(650)  (4)
 位相差層の具体的なレターデーションの範囲は、位相差層の用途に応じて任意に設定しうる。例えば、位相差層を1/4波長板として機能させたい場合には、位相差層のレターデーションRe(550)は、好ましくは80nm以上、より好ましくは100nm以上、特に好ましくは120nm以上であり、好ましくは180nm以下、より好ましくは160nm以下、特に好ましくは150nm以下である。
 前記の位相差層は、本発明の液晶性組成物を用いて製造されたものであるので、面状態に優れる。ここで、面状態が良好な位相差層とは、当該位相差層の表面形状にムラ及び欠陥が少なく滑らかである位相差層をいう。
 また、前記の位相差層は、本発明の液晶性組成物を用いて製造されたものであるので、配向性に優れる。ここで配向性に優れる位相差層とは、当該位相差層に含まれる逆波長重合性液晶化合物を重合させた重合体の配向欠陥が少ない位相差層をいう。
 このように、前記の位相差層は面状態及び配向性の両方に優れるので、この位相差層を備える円偏光板による反射防止性能を、円偏光板の面内において均一にできる。
 さらに、前記の位相差層は、通常、位相差ムラ及び厚みムラを抑制できる。そのため、通常は、この位相差層を備える円偏光板による反射防止性能を、円偏光板の面内において更に高度に均一化できる。
 位相差層の厚みは、リターデーション等の特性を所望の範囲にできるように、適切に設定しうる。具体的には、位相差層の厚みは、好ましくは0.5μm以上、より好ましくは1.0μm以上であり、好ましくは10μm以下、より好ましくは7μm以下である。
 位相差層は、光学用途に用いることができ、特に、1/4波長板及び1/2波長板等の波長板として好適である。
 前記の波長板は、位相差層のみを備えていてもよい。このように位相差層のみを備える波長板は、例えば、基材上で形成された位相差層を基材から剥離し、矩形などの用途に応じた所望の形状に裁断して製造し得る。
 また、前記の波長板は、位相差層に加えて、位相差層の製造に用いた基材を更に備えていてもよい。このように位相差層及び基材を備えた波長板は、例えば、基材上で形成された位相差層を基材から剥離せず、基材及び位相差層を備える複層フィルムをそのまま、波長板として用いてもよい。
 さらに、前記の波長板は、位相差層及び基材以外に任意の層を備えていてもよい。任意の層の例としては、他の部材と接着するための接着層、フィルムの滑り性を良くするマット層、耐衝撃性ポリメタクリレート樹脂層などのハードコート層、反射防止層、防汚層等が挙げられる。
[3.円偏光板]
 本発明の円偏光板は、直線偏光子と、本発明の液晶性組成物から製造された前記の位相差層とを備える。
 直線偏光子としては、液晶表示装置等の装置に用いられている公知の直線偏光子を用いうる。直線偏光子の例としては、ポリビニルアルコールフィルムにヨウ素又は二色性染料を吸着させた後、ホウ酸浴中で一軸延伸することによって得られるもの;ポリビニルアルコールフィルムにヨウ素又は二色性染料を吸着させ延伸しさらに分子鎖中のポリビニルアルコール単位の一部をポリビニレン単位に変性することによって得られるもの;が挙げられる。直線偏光子の他の例としては、グリッド偏光子、多層偏光子、コレステリック液晶偏光子などの偏光を反射光と透過光に分離する機能を有する偏光子が挙げられる。これらのうちポリビニルアルコールを含有する偏光子が好ましい。
 直線偏光子に自然光を入射させると、一方の偏光だけが透過する。直線偏光子の偏光度は、好ましくは98%以上、より好ましくは99%以上である。また、直線偏光子の平均厚みは、好ましくは5μm~80μmである。
 位相差層は、1/4波長板として機能しうるように、適切なレターデーションを有することが好ましい。また、位相差層の遅相軸と直線偏光子の透過軸とがなす角は、厚み方向から見て45°またはそれに近い角度であることが好ましく、具体的には40°~50°であることが好ましい。
 このような円偏光板の用途の一つとして、有機エレクトロルミネッセンス表示装置等の表示装置の反射防止フィルムとしての用途が挙げられる。表示装置の表面に、円偏光板を、直線偏光子側の面が視認側に向くように設けることにより、装置外部から入射した光が装置内で反射して装置外部へ出射することを抑制することができ、その結果、表示装置の表示面のぎらつきを抑制できる。具体的には、装置外部から入射した光は、その一部の直線偏光のみが直線偏光子を通過し、次にそれが位相差層を通過することにより円偏光となる。円偏光は、装置内の光を反射する構成要素(反射電極等)により反射され、再び位相差層を通過することにより、入射した直線偏光の偏光軸と直交する方向に偏光軸を有する直線偏光となり、直線偏光子を通過しなくなる。これにより、反射防止の機能が達成される。
 また、円偏光板は、直線偏光子及び位相差層に加えて、更に任意の層を備えていてもよい。
 以下、実施例を示して本発明について具体的に説明する。ただし、本発明は以下に説明する実施例に限定されるものではなく、本発明の特許請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。
 以下の説明において、量を表す「%」及び「部」は、別に断らない限り重量基準である。また、以下に説明する操作は、別に断らない限り、常温及び常圧の条件において行った。
[評価及び測定方法]
 〔1.界面活性剤のフッ素原子含有量の測定方法〕
 試料としての界面活性剤を秤量し、分析装置の燃焼管内で燃焼させた。燃焼により発生したガスを、溶液に吸収させた。その後、吸収液の一部をイオンクロマトグラフィーにより分析して、界面活性剤の分子中のフッ素原子の割合を測定した。各工程における条件は、下記の通りである。
 (1.1.燃焼・吸収条件)
 システム:AQF-2100、GA-210(三菱化学社製)
 電気炉温度:Inlet 900℃、Outlet 1000℃
 ガス:Ar/O 200mL/min
    O 400mL/min
 吸収液:溶媒 H 90μg/mL、
     内標準物質 P 4μg/mL 又は Br 8μg/mL
 吸収液量:20mL
 (1.2.イオンクロマトグラフィー・アニオン分析条件)
 システム:ICS1600(DIONEX社製)
 移動相:2.7mmol/L NaCO / 0.3mmol/L NaHCO
 流速:1.50mL/min
 検出器:電気伝導度検出器
 注入量:20μL
 〔2.位相差層の面状態の評価方法〕
 ライトテーブル上に一対の直線偏光子(偏光子及び検光子)を、パラニコルとなるように重ねた。ここでパラニコルとは、直線偏光子の偏光透過軸が平行となる態様を表す。
 実施例又は比較例で製造した複層フィルムを、16cm角サイズに裁断し、測定用のフィルム片を得た。このフィルム片を、前記のようにライトテーブル上に設置した直線偏光子の間に置いた。この際、フィルム片の遅相軸は、厚み方向から見て偏光子の吸収軸に対して略45°の角度をなすように設定した。その後、目視にて観察した。観察された像での均一性(位相差の均一性)に応じて、下記の基準によって位相差層の面状態を評価した。
 I:全面ほぼ均一でムラ及び欠陥が認められない。
 II:全面ほぼ均一であるが僅かに微小なムラが認められる。
 III:はっきりとムラが認められる。
 IV:全面に強いムラが見られる。
 ところで、別途、前記のライトテーブル上に設置された一対の直線偏光子の間に、製造例1で製造した延伸基材を置き、目視で観察した。その結果、位相差層を備えない延伸基材のみを前記フィルム片の代わりに用いて観察した場合には、全面がほぼ均一でムラ及び欠陥が認められなかった。この結果から、前記の評価で観察されるムラ及び欠陥は、位相差層の面状態に起因して生じていることを確認した。
 〔3.位相差層の配向性の評価方法〕
 実施例又は比較例で製造した複層フィルムの位相差層を、ガラス板に転写して、ガラス板及び位相差層を備える測定用試料を得た。この測定用試料の位相差層を、偏光顕微鏡のクロスニコル下において観察した。ここで、クロスニコルとは、偏光顕微鏡が備える直線偏光子(偏光子及び検光子)の偏光透過軸が厚み方向から見て垂直となる態様を表す。観察の際、位相差層の位置は、消光位、及び、位相差層の遅相軸を消光位から数°ずらした位置に設定した。ここで、消光位とは、観察される光が最も弱くなる位置を表す。また、観察時の偏光顕微鏡の倍率は、対物5倍及び50倍に設定した。観察された配向欠陥の程度、及び、消光位での光の漏れ状態に応じて、下記の基準によって位相差層の配向性を評価した。
 優:配向欠陥が見られず、消光位での漏れ光がほとんど観察されない。
 良:配向欠陥のような構造がわずかに認められ、消光位での漏れ光が僅かにある。
 不良:配向欠陥が明らかに見られ、消光位で光が漏れる。
 〔4.位相差層の位相差ムラの評価方法〕
 実施例又は比較例で製造した複層フィルムを16cm角サイズに裁断し、測定用のフィルム片を得た。このフィルム片の中央部13cm×10cmの範囲について、0.5mmピッチで、位相差測定装置(フォトロン社製「KAMAKIRI」)を用いて位相差マッピング測定を実施した。測定データから位相差層の位相差ムラを評価した。
 ところで、別途、前記の位相差測定装置を用いて、製造例1で製造した延伸基材の位相差マッピング測定を実施した。その結果、位相差層を備えない延伸基材のみを前記フィルム片の代わりに用いて測定した場合には、位相差ムラが認められなかった。この結果から、前記の評価で観察される位相差ムラは、位相差層に生じていることを確認した。
 〔5.位相差層の厚みムラの評価〕
 実施例又は比較例で製造した複層フィルムを16cm角サイズに裁断し、測定用のフィルム片を得た。このフィルム片の中央部13cm×10cmの範囲について、0.2mmピッチで、干渉膜厚測定機(キーエンス社製「SI-T80」)を用いてスキャンして、延伸基材込みでの膜厚マッピング測定を実施した。測定データから位相差層の厚みムラを評価した。
 ところで、別途、前記の干渉式膜厚測定機を用いて、製造例1で製造した延伸基材の膜厚マッピング測定を実施した。その結果、位相差層を備えない延伸基材のみを前記フィルム片の代わりに用いて測定した場合には、厚みムラが認められなかった。この結果から、前記の評価で観察される厚みムラは、位相差層に生じていることを確認した。
 〔6.位相差層の面内レターデーションの測定方法〕
 実施例又は比較例で製造した複層フィルムの位相差層を、ガラス板に転写して、ガラス板及び位相差層を備える測定用試料を得た。この測定用試料を用いて、位相差層の面内レターデーションReを、ポラリメータ(Axometrics社製「AxoScan」)によって、波長450nm、550nm及び650nmで測定した。
[製造例1.延伸基材の製造]
 (延伸前基材の製造)
 熱可塑性ノルボルネン樹脂のペレット(日本ゼオン社製「ZEONOR1420R」)を90℃で5時間乾燥させた。乾燥させたペレットを押し出し機に供給し、押し出し機内で溶融させ、ポリマーパイプ及びポリマーフィルターを通し、Tダイからキャスティングドラム上にフィルム状に押し出し、冷却して、厚み60μm、幅1490mmの長尺の延伸前基材を製造した。この製造した延伸前基材を巻き取って、ロールを得た。
 (延伸処理)
 前記の延伸前基材を、ロールから引き出し、テンター延伸機に供給した。そして、テンター延伸機を用いて、延伸後に得られる延伸基材の遅相軸が延伸基材の巻取方向に対して45°の角度をなすように延伸を行い、さらにフィルム幅方向の両端をトリミングし、巻き取って、幅1350mmの長尺の延伸基材のロールを得た。得られた延伸基材の測定波長550nmにおける面内レターデーションReは148nm、厚みは47μmであった。
[1.実施例1:逆波長重合性液晶化合物を含む液晶性組成物を用いた位相差層の製造〕
 (1-1.液晶性組成物の製造)
 逆波長重合性液晶化合物A100.0部、界面活性剤(DIC社製「メガファックF-251」)0.30部、重合開始剤(BASF社製「IRGACURE379」)3.0部、並びに、溶媒としてシクロペンタノン(日本ゼオン株式会社製)188.0部及び1,3-ジオキソラン(東邦化学製)282.0部を混合して、液状の液晶性組成物を製造した。
 (1-2.位相差層の形成)
 製造例1で製造した延伸基材を、ロールから引き出して搬送した。この延伸基材の一方の表面に、工程(1-1)で製造した液晶性組成物を、ダイコーターを用いて塗布し、液晶性組成物の層を形成した。液晶性組成物の層を110℃で4分間配向処理し、N雰囲気下で400mJ/cmの紫外線を照射して硬化させて、位相差層を形成した。これにより、延伸基材と、延伸基材上に形成された乾燥厚み2.2μmの位相差層とを備える複層フィルムを得た。得られた位相差層には、逆波長重合性液晶化合物を重合させた重合体が、ホモジニアス配向規則性を有して含まれていた。また、位相差層の遅相軸の角度は、塗布に用いた延伸基材と同じく、巻取方向に対して45°の角度をなしていることが確認された。
 前述した方法で位相差層の面内レターデーションReを測定したところ、測定波長450nmではRe(450)=111nm、測定波長550nmではRe(550)=140nm、測定波長650nmではRe(650)=145nmであった。この結果から、実施例1において使用した重合性液晶化合物Aの複屈折Δnは、測定波長が大きくなるにつれて大きくなる特性(逆波長分散性)を有していることが確認された。
[実施例2~13及び比較例1~14]
 液晶性組成物の調製に用いる(i)逆波長重合性液晶化合物の種類、(ii)界面活性剤の種類、及び(iii)界面活性剤の量を表1に示すように変更した。以上の事項以外は実施例1と同様にして、延伸基材及び位相差層を備える複層フィルムを製造した。
 製造された複層フィルムに含まれる位相差層には、逆波長重合性液晶化合物を重合させた重合体が、ホモジニアス配向規則性を有して含まれていた。また、位相差層の遅相軸の角度は、巻取方向に対して45°の角度をなしていることが確認された。さらに、位相差層の面内レターデーションReを測定して、使用した逆波長重合性液晶化合物の複屈折Δnが、測定波長が大きくなるにつれて大きくなる特性(逆波長分散性)を有していることを確認した。
[比較例15.順波長重合性液晶化合物を含む液晶性組成物を用いた位相差層の製造]
 (15-1.液晶性組成物の製造)
 順波長分散性の複屈折を発現しうる重合性液晶化合物LC242(BASF社製「LC242」)100.0部、界面活性剤(ネオス社製「フタージェントFTX-208G」)0.30部、重合開始剤(BASF社製「IRGACURE379」)3.0部、及び、溶媒としてメチルエチルケトン(丸善石油化学製)470部を混合して、液状の液晶性組成物を製造した。
 (15-2.位相差層の形成)
 製造例1で製造した延伸基材を、ロールから引き出して搬送した。この延伸基材の一方の表面に、工程(15-1)で製造した液晶性組成物を、ダイコーターを用いて塗布し、液晶性組成物の層を形成した。液晶性組成物の層を100℃で2分間配向処理し、N雰囲気化で400mJ/cm以上の紫外線を照射して硬化させて、位相差層を形成した。これにより、延伸基材と、延伸基材上に形成された乾燥厚み1.2μmの位相差層とを備える複層フィルムを得た。得られた位相差層には、重合性液晶化合物を重合させた重合体が、ホモジニアス配向規則性を有して含まれていた。また、位相差層の遅相軸の角度は、塗布に用いた延伸基材と同じく、巻取方向に対して45°の角度をなしていることが確認された。
 前述した方法で位相差層の面内レターデーションを測定したところ、測定波長450nmではRe(450)=151nm、測定波長550nmではRe(550)=140nm、測定波長650nmではRe(650)=136nmであった。この結果から、比較例15において使用した重合性液晶化合物LC242の複屈折は、測定波長が大きくなるにつれて小さくなる特性(順波長分散性)を有していることが確認された。
[比較例16~31]
 液晶性組成物の調製に用いる(i)重合性液晶化合物の種類、(ii)界面活性剤の種類、及び(iii)界面活性剤の量を表2に示すように変更した。以上の事項以外は比較例15と同様にして、延伸基材及び位相差層を備える複層フィルムを製造した。
 製造された複層フィルムに含まれる位相差層には、重合性液晶化合物を重合させた重合体が、ホモジニアス配向規則性を有して含まれていた。また、位相差層の遅相軸の角度は、巻取方向に対して45°の角度をなしていることが確認された。さらに、位相差層の面内レターデーションReを測定して、使用した重合性液晶化合物の複屈折Δnが、測定波長が大きくなるにつれて小さくなる特性(順波長分散性)を有していることを確認した。
[評価]
 全ての実施例及び比較例で製造した複層フィルムについて、位相差層の面状態の評価及び配向性の評価を行った。結果を、表1及び表2に示す。
 また、実施例2、実施例5、比較例3及び比較例5については、面状態の評価を行う際に観察された像を、ぞれぞれ図1~図4に示す。
 さらに、実施例2、実施例5、比較例3及び比較例5については、位相差ムラの評価を行った。実施例2、実施例5、比較例3及び比較例5で測定されたレターデーションのマッピング表示を、それぞれ図5~図8に示す。また、実施例2、実施例5、比較例3及び比較例5で測定されたレターデーションの値から、位相差層の幅方向に平行な線分上の点でのレターデーションの値を抽出し、抽出したレターデーションのグラフ表示を、それぞれ図9~図12に示す。
 さらに、実施例2、実施例5、比較例3及び比較例5については、厚みムラの評価を行った。実施例2、実施例5、比較例3及び比較例5で測定された厚みのマッピング表示を、それぞれ図13~図16に示す。また、実施例2、実施例5、比較例3及び比較例5で測定された厚みの値から、位相差層の幅方向に平行な線分上の点での厚みの値を抽出し、抽出した厚みのグラフ表示を、それぞれ図17~図20に示す。
[結果]
 下記の表1及び表2は、前述した実施例及び比較例の結果を示すものである。下記の表において、略称の意味は、下記の通りである。
 重合性液晶化合物「A」:下記式(A)で表される逆波長重合性液晶化合物。
 重合性液晶化合物「B」:下記式(B)で表される逆波長重合性液晶化合物。
 重合性液晶化合物「C」:下記式(C)で表される逆波長重合性液晶化合物。
 重合性液晶化合物「D」:下記式(D)で表される逆波長重合性液晶化合物。
 重合性液晶化合物「E」:下記式(E)で表される逆波長重合性液晶化合物。
Figure JPOXMLDOC01-appb-C000037
 重合性液晶化合物「LC242」:下記式(F1)で表される、順波長分散性を発現しうる重合性液晶化合物(BASF社製「LC242」)。
 重合性液晶化合物「K35」:下記式(F2)で表される順波長分散性を発現しうる重合性液晶化合物。
Figure JPOXMLDOC01-appb-C000038
 界面活性剤「S242」:AGCセイミケミカル社製「サーフロンS242」。
 界面活性剤「S243」:AGCセイミケミカル社製「サーフロンS243」。
 界面活性剤「S420」:AGCセイミケミカル社製「サーフロンS420」。
 界面活性剤「S611」:AGCセイミケミカル社製「サーフロンS611」。
 界面活性剤「208G」:ネオス社製「フタージェントFTX-208G」。
 界面活性剤「FTX209」:ネオス社製「フタージェントFTX-209F」。
 界面活性剤「FTX218」:ネオス社製「フタージェントFTX-218」。
 界面活性剤「601AD」:ネオス社製「フタージェントFTX-601AD」。
 界面活性剤「610FM」:ネオス社製「フタージェントFTX-610FM」。
 界面活性剤「F251」:DIC社製「メガファックF-251」。
 界面活性剤「F444」:DIC社製「メガファックF-444」。
 界面活性剤「F554」:DIC社製「メガファックF-554」。
 界面活性剤「F556」:DIC社製「メガファックF-556」。
 界面活性剤「F562」:DIC社製「メガファックF-562」。
 界面活性剤「RS-75」:DIC社製「メガファックRS-75」。
 界面活性剤「PF6320」:OMNOVA社製「ポリフォックスPF-6320」。
 界面活性剤「PF656」:OMNOVA社製「ポリフォックスPF-656」。
 界面活性剤「PF6520」:OMNOVA社製「ポリフォックスPF-6520」。
 界面活性剤「NS9013」:ダイキン社製「NS-9013」。
 F量:界面活性剤の分子中のフッ素原子の割合。
 活性剤量:界面活性剤の量。
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
[検討]
 表1及び表2から分かるように、逆波長重合性液晶化合物と分子中のフッ素原子の割合が30重量%以下の界面活性剤とを組み合わせて用いた実施例においては、面状態及び配向性の両方に優れる位相差層が得られている。中でも、実施例1~11及び13において特に優れた結果が得られていることから、逆波長重合性液晶化合物としては、式(I)においてm及びnが1である化合物(I)を用いることが好ましいことが確認された。
 また、図9~図12に示すレターデーションのグラフから、実施例2、実施例5、比較例3及び比較例5に係る位相差層の位相差ムラの評価指標として、レターデーションの標準偏差Reσを計算した。さらに、図17~図20に示す厚みのグラフから、実施例2、実施例5、比較例3及び比較例5に係る位相差層の厚みの評価指標として、厚みの標準偏差Δdσを計算した。結果を、下記の表3に示す。
Figure JPOXMLDOC01-appb-T000041
 表3から分かるように、レターデーションの標準偏差Reσ及び厚みの標準偏差Δdσは、いずれも、比較例よりも実施例の方が小さくなっている。したがって、本発明により、位相差層の位相差ムラ及び厚みムラを小さくできることが確認された。

Claims (5)

  1.  逆波長分散性の複屈折を発現しうる重合性液晶化合物と、
     フッ素原子を含む界面活性剤と、
     溶媒とを含み、
     前記界面活性剤の分子中のフッ素原子の割合が、30重量%以下である、液晶性組成物。
  2.  前記重合性液晶化合物が、前記重合性液晶化合物の分子中に、主鎖メソゲンと、前記主鎖メソゲンに結合した側鎖メソゲンとを含む、請求項1記載の液晶性組成物。
  3.  前記重合性液晶化合物が、下記式(I)で表される、請求項1又は2記載の液晶性組成物。
    Figure JPOXMLDOC01-appb-C000001
    (前記式(I)において、
     Y~Yは、それぞれ独立して、化学的な単結合、-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR-C(=O)-、-C(=O)-NR-、-O-C(=O)-NR-、-NR-C(=O)-O-、-NR-C(=O)-NR-、-O-NR-、又は、-NR-O-を表す。ここで、Rは、水素原子又は炭素数1~6のアルキル基を表す。
     G、Gは、それぞれ独立して、置換基を有していてもよい、炭素数1~20の二価の脂肪族基を表す。また、前記脂肪族基には、1つの脂肪族基当たり1以上の-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR-C(=O)-、-C(=O)-NR-、-NR-、又は、-C(=O)-が介在していてもよい。ただし、-O-又は-S-がそれぞれ2以上隣接して介在する場合を除く。ここで、Rは、水素原子又は炭素数1~6のアルキル基を表す。
     Z、Zは、それぞれ独立して、ハロゲン原子で置換されていてもよい炭素数2~10のアルケニル基を表す。
     Aは、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基を表す。
     Aは、水素原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、置換基を有していてもよい炭素数2~20のアルキニル基、-C(=O)-R、-SO-R、-C(=S)NH-R、又は、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基を表す。ここで、Rは、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、又は、炭素数5~12の芳香族炭化水素環基を表す。Rは、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、フェニル基、又は、4-メチルフェニル基を表す。Rは、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、又は、置換基を有していてもよい炭素数5~20の芳香族基を表す。前記A及びAが有する芳香環は、置換基を有していてもよい。また、前記AとAは、一緒になって、環を形成していてもよい。
     Aは、置換基を有していてもよい三価の芳香族基を表す。
     A、Aは、それぞれ独立して、置換基を有していてもよい炭素数3~30の二価の脂環式炭化水素基を表す。
     A、Aは、それぞれ独立して、置換基を有していてもよい、炭素数6~30の二価の芳香族基を表す。
     Qは、水素原子、又は、置換基を有していてもよい炭素数1~6のアルキル基を表す。
     m及びnは、それぞれ独立に、0又は1を表す。)
  4.  支持面に、請求項1~3のいずれか一項に記載の液晶性組成物を塗布して、前記液晶性組成物の層を形成する工程と、
     前記液晶性組成物の層に含まれる前記重合性液晶化合物を配向させる工程と、
     前記重合性液晶化合物を重合させて、位相差層を得る工程とを含む、位相差層の製造方法。
  5.  直線偏光子と、
     請求項4記載の製造方法で製造された位相差層とを備える、円偏光板。
PCT/JP2016/057717 2015-03-19 2016-03-11 液晶性組成物、位相差層の製造方法及び円偏光板 WO2016148047A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017506514A JP6669160B2 (ja) 2015-03-19 2016-03-11 液晶性組成物、位相差層の製造方法及び円偏光板
CN201680015703.9A CN107406769B (zh) 2015-03-19 2016-03-11 液晶性组合物、相位差层的制造方法和圆偏振片
US15/558,196 US10533137B2 (en) 2015-03-19 2016-03-11 Liquid crystal composition, method for producing retardation layer, and circularly polarizing plate
KR1020177025938A KR102626269B1 (ko) 2015-03-19 2016-03-11 액정성 조성물, 위상차층의 제조 방법 및 원편광판
EP16764877.3A EP3272836B1 (en) 2015-03-19 2016-03-11 Liquid crystal composition, method for producing retardation layer, and circularly polarizing plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015055626 2015-03-19
JP2015-055626 2015-03-19

Publications (1)

Publication Number Publication Date
WO2016148047A1 true WO2016148047A1 (ja) 2016-09-22

Family

ID=56918787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057717 WO2016148047A1 (ja) 2015-03-19 2016-03-11 液晶性組成物、位相差層の製造方法及び円偏光板

Country Status (7)

Country Link
US (1) US10533137B2 (ja)
EP (1) EP3272836B1 (ja)
JP (1) JP6669160B2 (ja)
KR (1) KR102626269B1 (ja)
CN (1) CN107406769B (ja)
TW (1) TWI680181B (ja)
WO (1) WO2016148047A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017057005A1 (ja) * 2015-09-30 2017-04-06 日本ゼオン株式会社 光学フィルム及びその製造方法
JP2017111256A (ja) * 2015-12-15 2017-06-22 大日本印刷株式会社 位相差フィルム、位相差層転写シート、反射防止フィルム、及び有機発光表示装置
WO2017154598A1 (ja) * 2016-03-08 2017-09-14 日本ゼオン株式会社 液晶性組成物、液晶硬化層及びその液晶硬化層の製造方法
JP2018053019A (ja) * 2016-09-27 2018-04-05 日本ゼオン株式会社 コレステリック液晶性組成物、液晶硬化層及びその製造方法
JP2018162379A (ja) * 2017-03-24 2018-10-18 日本ゼオン株式会社 液晶組成物、液晶硬化フィルム及びその製造方法
WO2019116989A1 (ja) * 2017-12-12 2019-06-20 日本ゼオン株式会社 液晶配向層及びその製造方法、光学フィルム及びその製造方法、1/4波長板、偏光板並びに有機エレクトロルミネッセンス表示パネル
WO2019131662A1 (ja) * 2017-12-28 2019-07-04 日本ゼオン株式会社 液晶硬化フィルム、偏光板及び有機エレクトロルミネッセンス表示装置の製造方法
JP2019117222A (ja) * 2017-12-26 2019-07-18 日本ゼオン株式会社 液晶組成物、液晶硬化層及び光学フィルム
CN111095050A (zh) * 2017-08-23 2020-05-01 日本瑞翁株式会社 聚合性液晶材料、聚合性液晶组合物、高分子、光学膜、光学各向异性体、偏振片、防反射膜、显示装置、以及聚合性液晶组合物的制造方法
WO2021201209A1 (ja) * 2020-04-02 2021-10-07 コニカミノルタ株式会社 積層フィルム、偏光板、表示装置及び偏光板ロールの製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105452311B (zh) * 2013-08-22 2018-01-16 日本瑞翁株式会社 聚合性化合物、聚合性组合物、高分子以及光学各向异性体
TWI717401B (zh) * 2015-10-20 2021-02-01 南韓商東友精細化工有限公司 整合有偏光板之窗口基板、及製備該窗口基板之方法
KR102183678B1 (ko) * 2017-12-22 2020-11-27 주식회사 엘지화학 액정 조성물 및 이의 용도
KR20200121799A (ko) * 2018-02-20 2020-10-26 니폰 제온 가부시키가이샤 액정 경화층 및 그 제조 방법, 광학 필름, 편광판, 그리고, 디스플레이 장치
US20220282028A1 (en) * 2019-08-30 2022-09-08 Zeon Corporation Phase contrast film and production method therefor
CN115280199A (zh) * 2020-03-11 2022-11-01 住友化学株式会社 聚合性液晶组合物、相位差膜、椭圆偏光板及光学显示器
JP6995234B1 (ja) 2021-04-26 2022-01-14 住友化学株式会社 光学積層体及びその巻回体

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018526A1 (ja) * 2011-07-29 2013-02-07 日本ゼオン株式会社 光学異方体の波長分散調整方法及び重合性組成物
WO2014069515A1 (ja) * 2012-10-30 2014-05-08 日本ゼオン株式会社 液晶組成物、位相差板、画像表示装置、および光学異方性層の波長分散制御方法
WO2014132978A1 (ja) * 2013-02-28 2014-09-04 富士フイルム株式会社 位相差板、反射防止板、画像表示装置、および位相差板の製造方法
WO2015025793A1 (ja) * 2013-08-22 2015-02-26 日本ゼオン株式会社 重合性化合物、重合性組成物、高分子、及び光学異方体
JP2015111257A (ja) * 2013-10-28 2015-06-18 日本ゼオン株式会社 樹脂フィルム、λ/4板、円偏光板、有機エレクトロルミネッセンス表示装置、及び製造方法
JP2015200877A (ja) * 2014-03-31 2015-11-12 富士フイルム株式会社 液晶化合物および光学フィルム、ならびに光学フィルムの製造方法
JP2016047813A (ja) * 2014-08-27 2016-04-07 Jnc株式会社 液晶性化合物、液晶組成物およびその重合体

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4309022B2 (ja) * 2000-05-18 2009-08-05 富士フイルム株式会社 光学補償シート、楕円偏光板および液晶表示装置
JP2005336103A (ja) 2004-05-27 2005-12-08 Fuji Photo Film Co Ltd フェニルヒドラジン類の製造方法
JP4415818B2 (ja) 2004-10-14 2010-02-17 チッソ株式会社 重合性トリプチセン誘導体
DE602006005592D1 (de) 2005-12-10 2009-04-23 Merck Patent Gmbh Polymerfilm aus Flüssigkristall mit verbesserter Stabilität
CN101416083A (zh) * 2006-04-07 2009-04-22 旭硝子株式会社 线栅型偏振器及其制造方法
MX2010003315A (es) 2007-09-26 2011-03-15 Univ Indiana Res & Tech Corp Derivados de benzoquinona e3330 en combinacion con agentes quimioterapeuticos para el tratamiento de cancer y angiogenesis.
JP5604774B2 (ja) 2008-03-31 2014-10-15 Dic株式会社 重合性液晶組成物
JP2010107941A (ja) * 2008-07-08 2010-05-13 Fujifilm Corp Tnモード液晶表示装置、それに用いられる光学補償フィルムとその製造方法および偏光板
JP5493689B2 (ja) * 2008-12-10 2014-05-14 Jnc株式会社 重合性液晶組成物およびホモジニアス配向液晶フィルム
KR101641385B1 (ko) * 2009-03-16 2016-07-20 스미또모 가가꾸 가부시끼가이샤 화합물, 광학 필름 및 광학 필름의 제조 방법
JP5899607B2 (ja) 2009-03-16 2016-04-06 住友化学株式会社 化合物、光学フィルム及び光学フィルムの製造方法
JP4963732B2 (ja) * 2010-06-22 2012-06-27 富士フイルム株式会社 光学フィルム、その製造方法、並びにそれを用いた偏光板、画像表示装置及び立体画像表示システム
JP2013076851A (ja) 2011-09-30 2013-04-25 Nippon Zeon Co Ltd 液晶組成物
JP5775479B2 (ja) * 2012-03-21 2015-09-09 富士フイルム株式会社 着色感放射線性組成物、着色硬化膜、カラーフィルタ、パターン形成方法、カラーフィルタの製造方法、固体撮像素子、及び画像表示装置
CN104603165B (zh) 2012-07-09 2017-04-26 日本瑞翁株式会社 聚合性化合物、聚合性组合物、高分子、光学各向异性体及聚合性化合物的制备方法
KR102079276B1 (ko) * 2012-10-22 2020-02-19 니폰 제온 가부시키가이샤 위상차판, 원편광판, 및 화상 표시 장치
TWI634105B (zh) 2013-05-29 2018-09-01 迪愛生股份有限公司 聚合性組成物溶液、及使用其之光學異向體
JP6224829B2 (ja) * 2014-05-27 2017-11-01 富士フイルム株式会社 遮光性組成物
TWI665239B (zh) * 2014-09-29 2019-07-11 日商富士軟片股份有限公司 組成物、片的製造方法、片、積層體及帶有元件晶圓的積層體

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018526A1 (ja) * 2011-07-29 2013-02-07 日本ゼオン株式会社 光学異方体の波長分散調整方法及び重合性組成物
WO2014069515A1 (ja) * 2012-10-30 2014-05-08 日本ゼオン株式会社 液晶組成物、位相差板、画像表示装置、および光学異方性層の波長分散制御方法
WO2014132978A1 (ja) * 2013-02-28 2014-09-04 富士フイルム株式会社 位相差板、反射防止板、画像表示装置、および位相差板の製造方法
WO2015025793A1 (ja) * 2013-08-22 2015-02-26 日本ゼオン株式会社 重合性化合物、重合性組成物、高分子、及び光学異方体
JP2015111257A (ja) * 2013-10-28 2015-06-18 日本ゼオン株式会社 樹脂フィルム、λ/4板、円偏光板、有機エレクトロルミネッセンス表示装置、及び製造方法
JP2015200877A (ja) * 2014-03-31 2015-11-12 富士フイルム株式会社 液晶化合物および光学フィルム、ならびに光学フィルムの製造方法
JP2016047813A (ja) * 2014-08-27 2016-04-07 Jnc株式会社 液晶性化合物、液晶組成物およびその重合体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3272836A4 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017057005A1 (ja) * 2015-09-30 2017-04-06 日本ゼオン株式会社 光学フィルム及びその製造方法
JPWO2017057005A1 (ja) * 2015-09-30 2018-07-19 日本ゼオン株式会社 光学フィルム及びその製造方法
JP2017111256A (ja) * 2015-12-15 2017-06-22 大日本印刷株式会社 位相差フィルム、位相差層転写シート、反射防止フィルム、及び有機発光表示装置
WO2017154598A1 (ja) * 2016-03-08 2017-09-14 日本ゼオン株式会社 液晶性組成物、液晶硬化層及びその液晶硬化層の製造方法
US10669482B2 (en) 2016-03-08 2020-06-02 Zeon Corporation Liquid crystal composition, liquid crystal cured layer, and method for producing said liquid crystal cured layer
JP2018053019A (ja) * 2016-09-27 2018-04-05 日本ゼオン株式会社 コレステリック液晶性組成物、液晶硬化層及びその製造方法
JP2018162379A (ja) * 2017-03-24 2018-10-18 日本ゼオン株式会社 液晶組成物、液晶硬化フィルム及びその製造方法
CN111095050A (zh) * 2017-08-23 2020-05-01 日本瑞翁株式会社 聚合性液晶材料、聚合性液晶组合物、高分子、光学膜、光学各向异性体、偏振片、防反射膜、显示装置、以及聚合性液晶组合物的制造方法
JP7255484B2 (ja) 2017-08-23 2023-04-11 日本ゼオン株式会社 重合性液晶材料、重合性液晶組成物、高分子、光学フィルム、光学異方体、偏光板、反射防止フィルム、表示装置、並びに、重合性液晶組成物の製造方法
CN111095050B (zh) * 2017-08-23 2022-06-07 日本瑞翁株式会社 聚合性液晶材料、组合物、高分子、膜、异性体、偏振片、装置及组合物的制造方法
JPWO2019039165A1 (ja) * 2017-08-23 2020-08-20 日本ゼオン株式会社 重合性液晶材料、重合性液晶組成物、高分子、光学フィルム、光学異方体、偏光板、反射防止フィルム、表示装置、並びに、重合性液晶組成物の製造方法
US11492552B2 (en) 2017-08-23 2022-11-08 Zeon Corporation Polymerizable liquid crystal material, polymerizable liquid crystal composition, polymer, optical film, optically anisotropic body, polarizing plate, anti-reflection film, display device, and method of producing polymerizable liquid crystal composition
WO2019116989A1 (ja) * 2017-12-12 2019-06-20 日本ゼオン株式会社 液晶配向層及びその製造方法、光学フィルム及びその製造方法、1/4波長板、偏光板並びに有機エレクトロルミネッセンス表示パネル
JP2019117222A (ja) * 2017-12-26 2019-07-18 日本ゼオン株式会社 液晶組成物、液晶硬化層及び光学フィルム
JPWO2019131662A1 (ja) * 2017-12-28 2021-01-28 日本ゼオン株式会社 液晶硬化フィルム、偏光板及び有機エレクトロルミネッセンス表示装置の製造方法
WO2019131662A1 (ja) * 2017-12-28 2019-07-04 日本ゼオン株式会社 液晶硬化フィルム、偏光板及び有機エレクトロルミネッセンス表示装置の製造方法
JP7306273B2 (ja) 2017-12-28 2023-07-11 日本ゼオン株式会社 液晶硬化フィルム、偏光板及び有機エレクトロルミネッセンス表示装置の製造方法
WO2021201209A1 (ja) * 2020-04-02 2021-10-07 コニカミノルタ株式会社 積層フィルム、偏光板、表示装置及び偏光板ロールの製造方法

Also Published As

Publication number Publication date
US20180072952A1 (en) 2018-03-15
EP3272836B1 (en) 2020-05-06
TW201638314A (zh) 2016-11-01
EP3272836A1 (en) 2018-01-24
KR20170129740A (ko) 2017-11-27
JP6669160B2 (ja) 2020-03-18
KR102626269B1 (ko) 2024-01-16
JPWO2016148047A1 (ja) 2017-12-28
US10533137B2 (en) 2020-01-14
EP3272836A4 (en) 2018-08-08
TWI680181B (zh) 2019-12-21
CN107406769A (zh) 2017-11-28
CN107406769B (zh) 2021-01-29

Similar Documents

Publication Publication Date Title
WO2016148047A1 (ja) 液晶性組成物、位相差層の製造方法及び円偏光板
WO2016171041A1 (ja) 複層フィルムの製造方法及び複層フィルム
KR102208206B1 (ko) 액정 조성물, 위상차판, 화상 표시 장치, 및 광학 이방성층의 파장 분산 제어 방법
WO2017154598A1 (ja) 液晶性組成物、液晶硬化層及びその液晶硬化層の製造方法
JP6641683B2 (ja) 樹脂フィルム、λ/4板、円偏光板、有機エレクトロルミネッセンス表示装置、及び製造方法
WO2017057005A1 (ja) 光学フィルム及びその製造方法
JP6844615B2 (ja) 液晶硬化フィルム及びその製造方法
JPWO2017110638A1 (ja) 液晶性組成物、液晶硬化層及びその製造方法、並びに、光学フィルム
JP6442886B2 (ja) 複層フィルム、位相差フィルム、円偏光板、及び、有機エレクトロルミネッセンス表示装置の製造方法
WO2018173778A1 (ja) 液晶組成物、液晶硬化フィルム及びその製造方法
WO2018173773A1 (ja) 液晶硬化フィルム及びその製造方法
JP6446860B2 (ja) 複層フィルム、位相差フィルム、円偏光板、及び、有機エレクトロルミネッセンス表示装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764877

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017506514

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177025938

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15558196

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2016764877

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE