Nothing Special   »   [go: up one dir, main page]

WO2016147989A1 - 化合物、樹脂、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜、パターン形成方法、及び、化合物又は樹脂の精製方法 - Google Patents

化合物、樹脂、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜、パターン形成方法、及び、化合物又は樹脂の精製方法 Download PDF

Info

Publication number
WO2016147989A1
WO2016147989A1 PCT/JP2016/057438 JP2016057438W WO2016147989A1 WO 2016147989 A1 WO2016147989 A1 WO 2016147989A1 JP 2016057438 W JP2016057438 W JP 2016057438W WO 2016147989 A1 WO2016147989 A1 WO 2016147989A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
acid
compound
carbon atoms
formula
Prior art date
Application number
PCT/JP2016/057438
Other languages
English (en)
French (fr)
Inventor
佳奈 岡田
淳矢 堀内
牧野嶋 高史
越後 雅敏
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to CN201680015557.XA priority Critical patent/CN107406383B/zh
Priority to SG11201706660WA priority patent/SG11201706660WA/en
Priority to US15/557,747 priority patent/US10577323B2/en
Priority to KR1020177025470A priority patent/KR20170128287A/ko
Priority to EP16764819.5A priority patent/EP3269712A4/en
Priority to JP2016542787A priority patent/JP6028959B1/ja
Publication of WO2016147989A1 publication Critical patent/WO2016147989A1/ja
Priority to IL254447A priority patent/IL254447A0/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/124Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one nitrogen atom in the ring
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor

Definitions

  • the present invention relates to a compound or resin having a specific structure.
  • the present invention also relates to a material for forming an underlayer film for lithography and a composition for forming an underlayer film for lithography containing the compound or resin, an underlayer film for lithography obtained from the material, and a method for forming a photoresist pattern using the material. Furthermore, this invention relates to the purification method of this compound or resin.
  • the light source for lithography used for resist pattern formation is shortened from KrF excimer laser (248 nm) to ArF excimer laser (193 nm).
  • KrF excimer laser 248 nm
  • ArF excimer laser (193 nm)
  • simply thinning the resist makes it difficult to obtain a resist pattern film thickness sufficient for substrate processing. Therefore, not only a resist pattern but also a process of forming a resist underlayer film between the resist and a semiconductor substrate to be processed and providing the resist underlayer film with a function as a mask during substrate processing is required.
  • a resist underlayer film for lithography having a dry etching rate selection ratio close to that of a resist can be used.
  • a resin component having at least a substituent that generates a sulfonic acid residue by elimination of a terminal group when a predetermined energy is applied and a solvent are contained.
  • An underlayer film forming material for a multilayer resist process has been proposed (see, for example, Patent Document 1).
  • a resist underlayer film for lithography having a smaller dry etching rate selection ratio than that of the resist can be used.
  • a resist underlayer film material containing a polymer having a specific repeating unit has been proposed (for example, see Patent Document 2).
  • a resist underlayer film for lithography having a small dry etching rate selection ratio compared to a semiconductor substrate can also be mentioned.
  • a resist underlayer film material containing a polymer obtained by copolymerizing a repeating unit of acenaphthylenes and a repeating unit having a substituted or unsubstituted hydroxyl group has been proposed (see, for example, Patent Document 3).
  • an amorphous carbon underlayer film formed by CVD using methane gas, ethane gas, acetylene gas or the like as a raw material is well known.
  • a resist underlayer film material capable of forming a resist underlayer film by a wet process such as spin coating or screen printing is required.
  • the inventors of the present invention provide a lithographic lower layer containing a naphthalene formaldehyde polymer containing a specific structural unit and an organic solvent as a material that is excellent in optical characteristics and etching resistance and is soluble in a solvent and applicable to a wet process.
  • a film-forming composition has been proposed (see, for example, Patent Documents 4 and 5).
  • a silicon nitride film formation method for example, refer to Patent Document 6
  • a silicon nitride film CVD formation method for example, Patent Document 7
  • an intermediate layer material for a three-layer process a material containing a silsesquioxane-based silicon compound is known (for example, see Patent Documents 8 and 9).
  • the resist layer (resist underlayer) disposed on the substrate side has a high demand.
  • the present invention has been made in view of the above-described problems, and is a compound that can be applied to a wet process when forming a photoresist underlayer film, and that can provide a lithography underlayer film having excellent heat resistance and etching resistance. It is to provide a resin, an underlayer film forming material for lithography, a composition containing the material, a pattern forming method using the material, and a method for purifying the compound or resin.
  • the present inventors have found that the above problems can be solved by using a compound or resin having a specific structure, and have completed the present invention. That is, the present invention is as follows. [1] The compound represented by following formula (1).
  • each X independently represents an oxygen atom, a sulfur atom or no bridge
  • each R 1 independently represents a hydrogen atom, a halogen group, a nitro group, an amino group, Selected from the group consisting of a hydroxyl group, an alkyl group having 1 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms, an aryl group having 6 to 40 carbon atoms, and combinations thereof, wherein the alkyl group, The alkenyl group and the aryl group may contain an ether bond, a ketone bond or an ester bond, and each R 2 independently represents a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms.
  • R 1 , p, q, and n are as defined in the formula (1), and R 3 and m 2 are those described in the formula (1-2).
  • the cross-linking reactive compound is at least one selected from the group consisting of aldehydes, ketones, carboxylic acids, carboxylic acid halides, halogen-containing compounds, amino compounds, imino compounds, isocyanates and unsaturated hydrocarbon group-containing compounds.
  • Resin which has a structure represented by following formula (2).
  • each X independently represents an oxygen atom, a sulfur atom or no bridge
  • each R 1 independently represents a hydrogen atom, a halogen group, a nitro group, an amino group, Selected from the group consisting of a hydroxyl group, an alkyl group having 1 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms, an aryl group having 6 to 40 carbon atoms, and combinations thereof, wherein the alkyl group, The alkenyl group and the aryl group may contain an ether bond, a ketone bond or an ester bond, and each R 2 independently represents a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms.
  • a material for forming a lower layer film for lithography comprising the compound according to any one of [1] to [6] and / or the resin according to any one of claims 7 to 10.
  • a composition for forming an underlayer film for lithography comprising the material for forming an underlayer film for lithography according to [11] and a solvent.
  • the composition for forming a lower layer film for lithography according to [12] further comprising an acid generator.
  • [15] [12] A lithography lower layer film formed from the composition for forming a lithography lower layer film according to any one of [12] to [14].
  • [16] Forming a lower layer film on the substrate using the composition for forming a lower layer film for lithography according to any one of [12] to [14] (A-1); Forming at least one photoresist layer on the lower layer film (A-2); After the step (A-2), a step of irradiating a predetermined region of the photoresist layer with radiation and developing (A-3); A method for forming a resist pattern.
  • a circuit pattern forming method [18] A method for purifying a compound according to any one of [1] to [6] or a resin according to any one of [7] to [10], A purification method comprising a step of contacting and extracting an organic solvent that is not arbitrarily miscible with water, a solution containing the compound or the resin, and an acidic aqueous solution.
  • the acidic aqueous solution is one or more mineral acid aqueous solutions selected from the group consisting of hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid, or acetic acid, propionic acid, succinic acid, malonic acid, succinic acid, fumaric acid, maleic acid
  • the purification method according to [18] which is one or more organic acid aqueous solutions selected from the group consisting of tartaric acid, citric acid, methanesulfonic acid, phenolsulfonic acid, p-toluenesulfonic acid and trifluoroacetic acid.
  • the organic solvent optionally immiscible with water is toluene, 2-heptanone, cyclohexanone, cyclopentanone, methyl isobutyl ketone, propylene glycol monomethyl ether acetate, 1,2-diethoxy ketone, butyl acetate, or ethyl acetate.
  • a lithography lower layer film forming material that can be applied with a wet process and that can provide a lithography lower layer film that is excellent in heat resistance and etching resistance.
  • the present embodiment is an illustration for demonstrating this invention, and this invention is not limited only to this embodiment.
  • the compound of this embodiment is represented by the following formula (1). Since the compound of the present embodiment is configured in this way, a wet process can be applied when forming the photoresist underlayer film, and it is excellent in heat resistance and etching resistance. Moreover, since the compound of this embodiment has a specific structure, it has high heat resistance and high solvent solubility. Therefore, by using the compound of this embodiment, the deterioration of the film during high-temperature baking is suppressed, the etching resistance against oxygen plasma etching and the like is excellent, and the underlayer film excellent in the embedding property to the stepped substrate and the flatness of the film Can be formed. Furthermore, since the adhesiveness with the resist layer is also excellent, an excellent resist pattern can be formed.
  • X shows each independently an oxygen atom, a sulfur atom, or non-bridge
  • R 1 each independently represents a hydrogen atom, a halogen group, a nitro group, an amino group, a hydroxyl group, an alkyl group having 1 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms, or an alkyl group having 6 to 40 carbon atoms. It is selected from the group consisting of an aryl group, and combinations thereof, wherein the alkyl group, the alkenyl group, and the aryl group may include an ether bond, a ketone bond, or an ester bond.
  • halogen group examples include, but are not limited to, a fluoro group, a chloro group, a bromo group, and an iodo group.
  • alkyl group having 1 to 30 carbon atoms examples include, but are not limited to, a methyl group, an ethyl group, an n-propyl group, an i-propyl group, a cyclopropyl group, an n-butyl group, and an i-butyl group.
  • alkenyl group having 2 to 30 carbon atoms examples include, but are not limited to, for example, ethenyl group, 1-propenyl group, 2-propenyl group, 1-methyl-1-ethenyl group, 1-butenyl group, 2- Butenyl group, 3-butenyl group, 2-methyl-1-propenyl group, 2-methyl-2-propenyl group, 1-ethylethenyl group, 1-methyl-1-propenyl group, 1-methyl-2-propenyl group, 1 -Pentenyl group, 2-pentenyl group, 3-pentenyl group, 4-pentenyl group, 1-n-propylethenyl group, 1-methyl-1-butenyl group, 1-methyl-2-butenyl group, 1-methyl- 3-butenyl group, 2-ethyl-2-propenyl group, 2-methyl-1-butenyl group, 2-methyl-2-butenyl group, 2-methyl-3-butenyl group, 3-methyl-1-butenyl 3-
  • aryl group having 6 to 40 carbon atoms examples include, but are not limited to, phenyl group, o-methylphenyl group, m-methylphenyl group, p-methylphenyl group, o-chlorophenyl group, m- Chlorphenyl group, p-chlorophenyl group, o-fluorophenyl group, p-fluorophenyl group, o-methoxyphenyl group, p-methoxyphenyl group, p-nitrophenyl group, p-cyanophenyl group, ⁇ -naphthyl group , ⁇ -naphthyl group, o-biphenyl group, m-biphenyl group, p-biphenyl group, 1-anthryl group, 2-anthryl group, 9-anthryl group, 1-phenanthryl group, 2-phenanthryl group, 3-phenanthryl group , 4-phenanthryl group and 9
  • R 2 is each independently a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms, a thiol group or a hydroxyl group. Yes, wherein at least one of R 2 is a group containing a hydroxyl group or a thiol group. Examples of the group containing a hydroxyl group include, but are not limited to, for example, a hydroxyl group, a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms substituted with a hydroxyl group, and a carbon number of 6 substituted with a hydroxyl group.
  • An aryl group having ⁇ 40, and an alkenyl group having 2 to 30 carbon atoms substituted with a hydroxyl group examples include, but are not limited to, a thiol group, a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms substituted with a thiol group, and a thiol group. And an aryl group having 6 to 40 carbon atoms and an alkenyl group having 2 to 30 carbon atoms substituted with a thiol group.
  • alkyl group having 1 to 30 carbon atoms examples of the alkyl group having 1 to 30 carbon atoms, the alkenyl group having 2 to 30 carbon atoms, and the aryl group having 6 to 40 carbon atoms are the same as those exemplified for R 1 .
  • m is each independently an integer of 1 to 7
  • p is each independently 0 or 1
  • q is each independently an integer of 0 to 4, and is n0 or 1.
  • the compound represented by the above formula (1) has a relatively low molecular weight, but has high heat resistance due to the rigidity of its structure, and therefore can be used under high temperature baking conditions.
  • the substrate has a relatively low molecular weight and low viscosity, it is easy to uniformly fill every corner of a step even on a substrate having a step (particularly, a fine space or a hole pattern).
  • the embedding characteristic of the material for forming a lower layer film for lithography using this can be improved relatively advantageously.
  • high etching resistance is also provided.
  • the molecular weight of the compound of the present embodiment is preferably 400 to 3000, more preferably 400 to 2000, and still more preferably 400 to 1000.
  • the said molecular weight can be measured by the method as described in the Example mentioned later.
  • At least one of R 2 contains a hydroxyl group or a thiol group from the viewpoint of easy crosslinking and solubility in an organic solvent.
  • the compound represented by the above formula (1) is preferably a compound represented by the following formula (1-1) from the viewpoint of feedability of raw materials.
  • R 1 , R 2 , m, p, q, and n have the same meaning as described in the above formula (1).
  • the compound represented by the above formula (1-1) is more preferably a compound represented by the following formula (1-2) from the viewpoint of solubility in an organic solvent.
  • R 1 , p, q and n are as defined in the above formula (1), and R 3 is each independently a straight chain having 1 to 30 carbon atoms.
  • R 3 is each independently a straight chain having 1 to 30 carbon atoms.
  • the compound represented by the above formula (1-2) is more preferably a compound represented by the following formula (1-3) from the viewpoint of further solubility in an organic solvent.
  • R 1 , R 2 , p, q, n are as defined in the above formula (1), and R 3 , m 2 are described in the above formula (1-2). Synonymous with )
  • R 1 and q are as defined in the above formula (1).
  • the compound represented by the general formula (1-4) is more preferably a compound represented by the following formula (CAX-1) from the viewpoint of ease of production and supply of raw materials.
  • R 1 , R 2 , q, and m have the same meanings as described in the above formula (1).
  • R 1 , R 2 and m have the same meaning as described in the above formula (1).
  • q is an integer of 0 to 3.
  • the compound represented by the formula (1) can be appropriately synthesized by applying a known technique, and the synthesis technique is not particularly limited.
  • a compound represented by the above formula (1) is obtained by subjecting phenols, thiophenols, naphthols or thionaphthols to a corresponding aldehyde under a normal pressure and a polycondensation reaction in the presence of an acid catalyst. be able to. Moreover, it can also carry out under pressure as needed.
  • phenols include, but are not limited to, phenol, methylphenol, methoxybenzene, catechol, hydroquinone, trimethylhydroquinone, and the like. These can be used individually by 1 type or in combination of 2 or more types. Among these, it is preferable to use hydroquinone and trimethylhydroquinone from the viewpoint that a xanthene structure can be easily formed.
  • thiophenols examples include, but are not limited to, benzenethiol, methylbenzenethiol, methoxybenzenethiol, benzenedithiol, trimethylbenzenedithiol, and the like. These can be used individually by 1 type or in combination of 2 or more types. Among these, it is preferable to use benzenedithiol or trimethylbenzenedithiol from the viewpoint of easily making a thioxanthene structure.
  • naphthols examples include, but are not limited to, naphthol, methyl naphthol, methoxy naphthol, naphthalene diol, and the like. These can be used alone or in combination of two or more. Among these, use of naphthalene diol is preferable from the viewpoint that a benzoxanthene structure can be easily formed.
  • thionaphthols examples include, but are not limited to, naphthalenethiol, methylnaphthalenethiol, methoxynaphthalenethiol, naphthalenedithiol, and the like. These can be used alone or in combination of two or more. Among these, use of naphthalene dithiol is preferable from the viewpoint that a thiobenzoxanthene structure can be easily formed.
  • aldehydes include carbazole-3-carbaldehyde, N-methylcarbazole-3-carbaldehyde, N-ethylcarbazole-3-carbaldehyde, N-propylcarbazole-3-carbaldehyde, N- (t- Butyl) carbazole-3-carbaldehyde, N-hydroxyethylcarbazole-3-carbaldehyde, N-cyclohexylcarbazole-3-carbaldehyde, N-phenylcarbazole-3-carbaldehyde, N- (4-methylphenyl) carbazole- 3-carbaldehyde, N- (4-ethylphenyl) carbazole-3-carbaldehyde, N- (4-methoxyphenyl) carbazole-3-carbaldehyde, N- (3-methoxyphenyl) carbazole-3-carbaldehyde, N- (4-et Ciphenyl
  • N-ethylcarbazole-3-carbaldehyde and N-hydroxyethylcarbazole-3-carbaldehyde are preferably used from the viewpoint of providing high solubility and high heat resistance.
  • the acid catalyst used in the above reaction can be appropriately selected from known ones and is not particularly limited.
  • inorganic acids and organic acids are widely known.
  • inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, hydrobromic acid, hydrofluoric acid, oxalic acid, malonic acid, and succinic acid.
  • Adipic acid sebacic acid, citric acid, fumaric acid, maleic acid, formic acid, p-toluenesulfonic acid, methanesulfonic acid, trifluoroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, naphthalenesulfonic acid
  • Organic acids such as naphthalenedisulfonic acid, Lewis acids such as zinc chloride, aluminum chloride, iron chloride, boron trifluoride, or solid acids such as silicotungstic acid, phosphotungstic acid, silicomolybdic acid or phosphomolybdic acid
  • Lewis acids such as zinc chloride, aluminum chloride, iron chloride, boron trifluoride, or solid acids
  • silicotungstic acid phosphotungstic acid, silicomolybdic acid or phosphomolybdic acid
  • silicomolybdic acid phosphomoly
  • organic acids and solid acids are preferred from the viewpoint of production, and hydrochloric acid or sulfuric acid is more preferred from the viewpoint of production such as availability and ease of handling.
  • an acid catalyst 1 type can be used individually or in combination of 2 or more types.
  • the amount of the acid catalyst used can be appropriately set according to the raw material used, the type of catalyst used, and the reaction conditions, and is not particularly limited, but is 0.01 to 100 per 100 parts by mass of the reactive raw material. It is preferable that it is a mass part.
  • a reaction solvent may be used.
  • the reaction solvent is not particularly limited as long as the reaction between the aldehyde to be used and the phenols, thiophenols, naphthols, or thionaphthols proceeds. Examples thereof include water, methanol, ethanol, propanol, butanol, tetrahydrofuran, dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, or a mixed solvent thereof.
  • a solvent can be used individually by 1 type or in combination of 2 or more types.
  • the amount of these solvents used can be appropriately set according to the raw material used, the type of catalyst used, and the reaction conditions, and is not particularly limited, but is 0 to 2000 parts by mass with respect to 100 parts by mass of the reaction raw material. It is preferable that it is the range of these.
  • the reaction temperature in the above reaction can be appropriately selected according to the reactivity of the reaction raw material, and is not particularly limited, but is usually in the range of 10 to 200 ° C.
  • a higher reaction temperature is preferable, and specifically, a range of 60 to 200 ° C. is preferable.
  • the reaction method can be appropriately selected from known methods and is not particularly limited. For example, phenols, thiophenols, naphthols or thionaphthols, aldehydes, and a catalyst are collectively used. There are a method of charging and a method of dropping phenols, thiophenols, naphthols, thionaphthols, aldehydes or ketones in the presence of a catalyst. After completion of the polycondensation reaction, the obtained compound can be isolated according to a conventional method, and is not particularly limited.
  • a general method is adopted such as raising the temperature of the reaction vessel to 130-230 ° C. and removing volatile matter at about 1-50 mmHg.
  • the target compound can be obtained.
  • reaction conditions 1 mol to an excess of phenols, thiophenols, naphthols or thionaphthols and 0.001 to 1 mol of an acid catalyst are used with respect to 1 mol of an aldehyde at normal pressure.
  • the reaction proceeds at 50 to 150 ° C. for about 20 minutes to 100 hours.
  • the target product can be isolated by a known method.
  • the reaction solution is concentrated, pure water is added to precipitate the reaction product, cooled to room temperature, filtered and separated, and the resulting solid is filtered and dried, followed by column chromatography.
  • the compound represented by the above general formula (1), which is the target product can be obtained by separating and purifying the product from the by-product, distilling off the solvent, filtering and drying.
  • the resin of the present embodiment is a resin obtained using the compound represented by the above formula (1) as a monomer. Moreover, the resin of this embodiment has a structure represented by Formula (2).
  • each X independently represents an oxygen atom, a sulfur atom or no bridge.
  • R 1 each independently represents a hydrogen atom, a halogen group, a nitro group, an amino group, a hydroxyl group, an alkyl group having 1 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms, or an alkyl group having 6 to 40 carbon atoms. It is selected from the group consisting of an aryl group, and combinations thereof, wherein the alkyl group, the alkenyl group, and the aryl group may include an ether bond, a ketone bond, or an ester bond.
  • R 2 is each independently a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms, an aryl group having 6 to 40 carbon atoms, an alkenyl group having 2 to 30 carbon atoms, a thiol group or a hydroxyl group. Yes, wherein at least one of R 2 is a group containing a hydroxyl group or a thiol group. Examples of the group containing a hydroxyl group include, but are not limited to, for example, a hydroxyl group, a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms substituted with a hydroxyl group, and a carbon number of 6 substituted with a hydroxyl group.
  • An aryl group having ⁇ 40, and an alkenyl group having 2 to 30 carbon atoms substituted with a hydroxyl group examples include, but are not limited to, a thiol group, a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms substituted with a thiol group, and a thiol group. And an aryl group having 6 to 40 carbon atoms and an alkenyl group having 2 to 30 carbon atoms substituted with a thiol group.
  • Y is each independently a single bond or a linear or branched alkylene group having 1 to 20 carbon atoms.
  • m is each independently an integer of 1 to 6
  • p is each independently 0 or 1
  • q is each independently an integer of 0 to 4
  • n is 0 or 1.
  • the resin having the structure represented by the formula (2) used in the present embodiment can be obtained, for example, by reacting the compound represented by the formula (1) with a compound having a crosslinking reactivity.
  • the crosslinkable compound is not particularly limited as long as it can oligomerize or polymerize the compound represented by the above formula (1), and known compounds can be used. Specific examples thereof include, but are not limited to, aldehydes, ketones, carboxylic acids, carboxylic acid halides, halogen-containing compounds, amino compounds, imino compounds, isocyanates, unsaturated hydrocarbon group-containing compounds, and the like.
  • the resin having the structure represented by the formula (2) are not limited to the following, but the compound represented by the formula (1) may be subjected to a condensation reaction with an aldehyde that is a crosslinking-reactive monomer.
  • a novolak resin can be mentioned.
  • aldehyde for example, formaldehyde, trioxane, paraformaldehyde, benzaldehyde, acetaldehyde, propylaldehyde, phenylacetaldehyde, phenylpropylaldehyde, hydroxybenzaldehyde
  • aldehyde for example, formaldehyde, trioxane, paraformaldehyde, benzaldehyde, acetaldehyde, propylaldehyde, phenylacetaldehyde, phenylpropylaldehyde, hydroxybenzaldehyde
  • Examples include, but are not limited to, chlorobenzaldehyde, nitrobenzaldehyde, methylbenzaldehyde, ethylbenzaldehyde, butylbenzaldehyde, biphenylaldehyde, naphthaldehyde, anthracenecarbald
  • aldehydes can be used individually by 1 type or in combination of 2 or more types.
  • the amount of the aldehyde used is not particularly limited, but is preferably 0.2 to 5 mol, more preferably 0.5 to 2 mol, relative to 1 mol of the compound represented by the formula (1). is there.
  • a reaction solvent can also be used.
  • the reaction solvent in this polycondensation can be appropriately selected from known solvents and is not particularly limited. Examples thereof include water, methanol, ethanol, propanol, butanol, tetrahydrofuran, dioxane, and mixed solvents thereof. Can be mentioned.
  • a solvent can be used individually by 1 type or in combination of 2 or more types.
  • the amount of these solvents used can be appropriately set according to the raw material used, the type of catalyst used, and the reaction conditions, and is not particularly limited, but is 0 to 2000 parts by mass with respect to 100 parts by mass of the reaction raw material. It is preferable that it is the range of these.
  • the reaction temperature can be appropriately selected according to the reactivity of the reaction raw material, and is not particularly limited, but is usually in the range of 10 to 200 ° C.
  • reaction method can select and use a well-known method suitably, although it does not specifically limit,
  • the method of charging the compound represented by the said Formula (1), aldehydes, and a catalyst collectively, or said Formula (1) There is a method in which a compound or an aldehyde represented by (2) is dropped in the presence of a catalyst.
  • the obtained compound can be isolated according to a conventional method, and is not particularly limited.
  • a general method is adopted such as raising the temperature of the reaction vessel to 130-230 ° C. and removing volatile matter at about 1-50 mmHg.
  • a novolak resin as the target product can be obtained.
  • the resin of the present embodiment may be a homopolymer of the compound represented by the above formula (1), or may be a copolymer with other phenols.
  • the copolymerizable phenols include phenol, cresol, dimethylphenol, trimethylphenol, butylphenol, phenylphenol, diphenylphenol, naphthylphenol, resorcinol, methylresorcinol, catechol, butylcatechol, methoxyphenol, methoxyphenol, Examples include, but are not limited to, propylphenol, pyrogallol, thymol and the like.
  • the resin of this embodiment may be a resin copolymerized with a polymerizable monomer other than the above-described phenols.
  • the copolymerization monomer include naphthol, methylnaphthol, methoxynaphthol, dihydroxynaphthalene, indene, hydroxyindene, benzofuran, hydroxyanthracene, acenaphthylene, biphenyl, bisphenol, trisphenol, dicyclopentadiene, tetrahydroindene, 4-vinylcyclohexene. , Norbornadiene, vinylnorbornaene, pinene, limonene and the like, but are not limited thereto.
  • the resin of this embodiment may be a copolymer of two or more (for example, a quaternary system) of the compound represented by the above formula (1) and the above-described phenols.
  • it may be a ternary or more (for example, ternary to quaternary) copolymer of the above-mentioned copolymerization monomer.
  • the molecular weight of the resin of the present embodiment is not particularly limited, but the polystyrene equivalent weight average molecular weight (Mw) is preferably 500 to 20,000, more preferably 750 to 10,000. Further, from the viewpoint of increasing the crosslinking efficiency and suppressing the volatile components in the baking, the resin of the present embodiment has a dispersity (weight average molecular weight Mw / number average molecular weight Mn) within the range of 1.1-7. preferable. In addition, said Mn can be calculated
  • the compound represented by the formula (1) and / or the resin obtained using the compound as a monomer is preferably highly soluble in a solvent from the viewpoint of easier application of a wet process. . More specifically, when these compounds and / or resins use 1-methoxy-2-propanol (PGME) and / or propylene glycol monomethyl ether acetate (PGMEA) as a solvent, the solubility in the solvent is 10% by mass or more. It is preferable that Here, the solubility in PGM and / or PGMEA is defined as “resin mass ⁇ (resin mass + solvent mass) ⁇ 100 (mass%)”.
  • the compound represented by the above formula (1) and / or 10 g of the resin obtained by using the compound as a monomer is dissolved in 90 g of PGMEA, and the compound represented by the formula (1) and / or the It is a case where the solubility with respect to PGMEA of resin obtained by using a compound as a monomer is “10% by mass or more”, and the case where the solubility is “less than 10% by mass” is evaluated as not being dissolved.
  • the material for forming a lower layer film for lithography contains at least one substance selected from the group consisting of the compound represented by the above formula (1) and a resin obtained using the compound as a monomer.
  • the substance is preferably 1 to 100% by mass, more preferably 10 to 100% by mass, in the lower layer film forming material for lithography, from the viewpoints of coatability and quality stability.
  • the content is more preferably 50 to 100% by mass, and still more preferably 100% by mass.
  • the lower layer film forming material for lithography of the present embodiment may include a known lower layer film forming material for lithography and the like as long as the effects of the present embodiment are not impaired.
  • the material for forming a lower layer film for lithography of the present embodiment contains at least the compound or resin of the present embodiment. Since it has such a structure, the lower layer film forming material for lithography of the present embodiment can be applied with a wet process and is excellent in heat resistance and etching resistance. Furthermore, since the lower layer film forming material for lithography of this embodiment uses the above compound or resin, the deterioration of the film during high-temperature baking is suppressed, and a lower layer film having excellent etching resistance against oxygen plasma etching or the like is formed. be able to. Furthermore, since the lower layer film forming material for lithography of this embodiment is excellent in adhesion to the resist layer, an excellent resist pattern can be obtained.
  • composition for forming a lower layer film for lithography of the present embodiment contains a solvent in addition to the compound represented by the above formula (1) and / or the resin obtained using the compound as a monomer. Furthermore, the composition for forming a lower layer film for lithography of the present embodiment may contain a crosslinking agent, an acid generator, and other components as necessary. Hereinafter, the solvent and these optional components will be described.
  • the composition for forming a lower layer film for lithography of the present embodiment may contain a solvent.
  • the solvent is not particularly limited as long as the compound represented by the above formula (1) and / or a resin obtained using the compound as a monomer is at least soluble, and a known one can be used as appropriate.
  • solvents include ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; cellosolv solvents such as propylene glycol monomethyl ether and propylene glycol monomethyl ether acetate; ethyl lactate, methyl acetate, ethyl acetate, butyl acetate, Ester solvents such as isoamyl acetate, ethyl lactate, methyl methoxypropionate and methyl hydroxyisobutyrate; alcohol solvents such as methanol, ethanol, isopropanol and 1-ethoxy-2-propanol; aromatic solvents such as toluene, xylene and anisole Although hydrocarbon etc. are mentioned, it is not limited to these. These solvents can be used alone or in combination of two or more.
  • cyclohexanone propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, ethyl lactate, methyl hydroxyisobutyrate and anisole are preferable from the viewpoint of safety.
  • the content of the solvent is not particularly limited, but from the viewpoint of solubility and film formation, the content is preferably 100 to 10,000 parts by mass with respect to 100 parts by mass of the lower layer film-forming material, 200 to 5 More preferably, it is 1,000 parts by mass, and even more preferably 200 to 1,000 parts by mass.
  • the composition for forming a lower layer film for lithography of the present embodiment may contain a crosslinking agent as necessary from the viewpoint of suppressing intermixing.
  • a crosslinking agent that can be used in this embodiment include double bonds such as melamine compounds, guanamine compounds, glycoluril compounds, urea compounds, epoxy compounds, thioepoxy compounds, isocyanate compounds, azide compounds, and alkenyl ether groups.
  • the compound include, but are not limited to, a compound having at least one group selected from a methylol group, an alkoxymethyl group, and an acyloxymethyl group as a substituent (crosslinkable group).
  • crosslinking agents can be used individually by 1 type or in combination of 2 or more types. Moreover, you may use these as an additive. In addition, you may introduce
  • the melamine compound include, but are not limited to, hexamethylol melamine, hexamethoxymethyl melamine, a compound in which 1 to 6 methylol groups of hexamethylol melamine are methoxymethylated, or a mixture thereof, hexamethoxyethyl melamine, hexa
  • examples include acyloxymethyl melamine, compounds in which 1 to 6 methylol groups of hexamethylol melamine are acyloxymethylated, or a mixture thereof.
  • epoxy compound examples include, but are not limited to, tris (2,3-epoxypropyl) isocyanurate, trimethylolmethane triglycidyl ether, trimethylolpropane triglycidyl ether, triethylolethane triglycidyl ether, and the like. .
  • the guanamine compound include, but are not limited to, a compound in which 1 to 4 methylol groups of tetramethylolguanamine, tetramethoxymethylguanamine, and tetramethylolguanamine are methoxymethylated, or a mixture thereof, tetramethoxyethylguanamine, tetra Examples include compounds in which 1 to 4 methylol groups of acyloxyguanamine and tetramethylolguanamine are acyloxymethylated, or a mixture thereof.
  • glycoluril compound examples include, but are not limited to, a compound in which 1 to 4 methylol groups of tetramethylol glycoluril, tetramethoxyglycoluril, tetramethoxymethylglycoluril, tetramethylolglycoluril are methoxymethylated or Examples thereof include a mixture thereof, a compound in which 1 to 4 methylol groups of tetramethylol glycoluril are acyloxymethylated, or a mixture thereof.
  • urea compound examples include, but are not limited to, tetramethylol urea, tetramethoxymethyl urea, a compound in which 1 to 4 methylol groups of tetramethylol urea are methoxymethylated, or a mixture thereof, tetramethoxyethyl urea, and the like. Can be mentioned.
  • the compound containing an alkenyl ether group include, but are not limited to, ethylene glycol divinyl ether, triethylene glycol divinyl ether, 1,2-propanediol divinyl ether, 1,4-butanediol divinyl ether, tetramethylene glycol.
  • the content of the crosslinking agent is not particularly limited, but is preferably 5 to 50 parts by mass with respect to 100 parts by mass of the underlayer film forming material for lithography.
  • the amount is preferably 10 to 40 parts by mass.
  • the composition for forming a lower layer film for lithography of the present embodiment may contain an acid generator as necessary from the viewpoint of further promoting a crosslinking reaction by heat.
  • an acid generator those that generate an acid by thermal decomposition and those that generate an acid by light irradiation are known, and any of them can be used.
  • R 101a , R 101b and R 101c are each independently a linear, branched or cyclic alkyl group, alkenyl group, oxoalkyl group or oxoalkenyl group having 1 to 12 carbon atoms; Represents an aryl group of 20; or an aralkyl group or an aryloxoalkyl group having 7 to 12 carbon atoms, and a part or all of hydrogen atoms of these groups may be substituted by an alkoxy group or the like.
  • R 101b and R 101c may form a ring. When a ring is formed, R 101b and R 101c each independently represents an alkylene group having 1 to 6 carbon atoms.
  • K ⁇ represents a non-nucleophilic counter ion.
  • R 101d , R 101e , R 101f and R 101g are each independently represented by adding a hydrogen atom to R 101a , R 101b and R 101c .
  • R 101d and R 101e , R 101d and R 101e and R 101f may form a ring, and in the case of forming a ring, R 101d and R 101e and R 101d , R 101e and R 101f have 3 carbon atoms.
  • R 101a , R 101b , R 101c , R 101d , R 101e , R 101f and R 101g may be the same as or different from each other.
  • Specific examples of the alkyl group include, but are not limited to, for example, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group.
  • alkenyl groups include, but are not limited to, vinyl groups, allyl groups, propenyl groups, butenyl groups, hexenyl groups, and cyclohexenyl groups.
  • oxoalkyl groups include, but are not limited to, 2-oxocyclopentyl group, 2-oxocyclohexyl group, 2-oxopropyl group, 2-cyclopentyl-2-oxoethyl group, 2-cyclohexyl-2-oxoethyl group, and the like.
  • oxoalkenyl group include, but are not limited to, a 2-oxo-4-cyclohexenyl group, a 2-oxo-4-propenyl group, and the like.
  • aryl group examples include, but are not limited to, phenyl group, naphthyl group, p-methoxyphenyl group, m-methoxyphenyl group, o-methoxyphenyl group, ethoxyphenyl group, p-tert-butoxyphenyl group.
  • Alkoxyphenyl groups such as m-tert-butoxyphenyl group; 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, ethylphenyl group, 4-tert-butylphenyl group, 4-butylphenyl group, Alkylphenyl groups such as dimethylphenyl group; alkyl naphthyl groups such as methyl naphthyl group and ethyl naphthyl group; alkoxy naphthyl groups such as methoxy naphthyl group and ethoxy naphthyl group; dialkyl naphthyl groups such as dimethyl naphthyl group and diethyl naphthyl group; Group, diethoxynaphthy Dialkoxy naphthyl group such as a group.
  • aralkyl group For example, a benzyl group, a phenylethyl group, a phenethyl group etc. are mentioned.
  • aryloxoalkyl groups include, but are not limited to, 2-phenyl-2-oxoethyl group, 2- (1-naphthyl) -2-oxoethyl group, 2- (2-naphthyl) -2-oxoethyl group, and the like. And 2-aryl-2-oxoethyl group.
  • non-nucleophilic counter ion of K ⁇ examples include, but are not limited to, halide ions such as chloride ion and bromide ion; triflate, 1,1,1-trifluoroethanesulfonate, nonafluorobutanesulfonate, and the like.
  • aryl sulfonates such as tosylate, benzene sulfonate, 4-fluorobenzene sulfonate, 1,2,3,4,5-pentafluorobenzene sulfonate; alkyl sulfonates such as mesylate and butane sulfonate.
  • the heteroaromatic ring may be an imidazole derivative (for example, imidazole, 4-methyl Imidazole, 4-methyl-2-phenylimidazole, etc.), pyrazole derivatives, furazane derivatives, pyrroline derivatives (eg pyrroline, 2-methyl-1-pyrroline etc.), pyrrolidine derivatives (eg pyrrolidine, N-methylpyrrolidine, pyrrolidinone, N- Methylpyrrolidone etc.), imidazoline derivatives, imidazolidine derivatives, pyridine derivatives (eg pyridine, methylpyridine, ethylpyridine, propylpyridine, butylpyridine, 4- (1-butylpentyl) pyridine, dimethylpyridine, trimethylpyridine, triethylpyridine, phenylpyri
  • imidazole derivative for example, imidazole, 4-methyl Imidazole, 4-methyl-2-phenylimidazole, etc.
  • the onium salts of the above formulas (P1a-1) and (P1a-2) have a function as a photoacid generator and a thermal acid generator.
  • the onium salt of the above formula (P1a-3) has a function as a thermal acid generator.
  • R 102a and R 102b each independently represent a linear, branched or cyclic alkyl group having 1 to 8 carbon atoms.
  • R 103 represents a linear, branched or cyclic alkylene group having 1 to 10 carbon atoms.
  • R 104a and R 104b each independently represent a 3-oxoalkyl group having 3 to 7 carbon atoms.
  • K ⁇ represents a non-nucleophilic counter ion.
  • R 102a and R 102b include, but are not limited to, a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, a pentyl group, and a hexyl group.
  • R 103 include, but are not limited to, methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, heptylene group, octylene group, nonylene group, 1,4-cyclohexylene.
  • R 103 includes, but are not limited to, methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, heptylene group, octylene group, nonylene group, 1,4-cyclohexylene.
  • R 104a and R 104b include, but are not limited to, 2-oxopropyl group, 2-oxocyclopentyl group, 2-oxocyclohexyl group, 2-oxocycloheptyl group and the like.
  • K - is the formula (P1a-1), can be exemplified the same ones as described in (P1a-2) and (P1a-3).
  • R 105 and R 106 are each independently a linear, branched or cyclic alkyl group or halogenated alkyl group having 1 to 12 carbon atoms, aryl group or halogen having 6 to 20 carbon atoms. Represents an aryl group or an aralkyl group having 7 to 12 carbon atoms.
  • alkyl group for R 105 and R 106 examples include, but are not limited to, for example, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl.
  • halogenated alkyl group examples include, but are not limited to, a trifluoromethyl group, a 1,1,1-trifluoroethyl group, a 1,1,1-trichloroethyl group, and a nonafluorobutyl group.
  • aryl group examples include, but are not limited to, phenyl group, p-methoxyphenyl group, m-methoxyphenyl group, o-methoxyphenyl group, ethoxyphenyl group, p-tert-butoxyphenyl group, m-tert- Alkoxyphenyl groups such as butoxyphenyl group; 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, ethylphenyl group, 4-tert-butylphenyl group, 4-butylphenyl group, dimethylphenyl group, etc.
  • An alkylphenyl group etc. are mentioned.
  • halogenated aryl group examples include, but are not limited to, a fluorophenyl group, a chlorophenyl group, a 1,2,3,4,5-pentafluorophenyl group, and the like.
  • aralkyl group examples include, but are not limited to, a benzyl group and a phenethyl group.
  • R 107 , R 108 and R 109 are each independently a linear, branched or cyclic alkyl group or halogenated alkyl group having 1 to 12 carbon atoms; an aryl group having 6 to 20 carbon atoms Or a halogenated aryl group; or an aralkyl group having 7 to 12 carbon atoms.
  • R 108 and R 109 may be bonded to each other to form a cyclic structure.
  • R 108 and R 109 each represent a linear or branched alkylene group having 1 to 6 carbon atoms. .
  • Examples of the alkyl group, halogenated alkyl group, aryl group, halogenated aryl group, and aralkyl group of R 107 , R 108 , and R 109 include the same groups as those described for R 105 and R 106 .
  • the alkylene group for R 108 and R 109 is not limited to the following, and examples thereof include a methylene group, an ethylene group, a propylene group, a butylene group, and a hexylene group.
  • R 101a and R 101b are the same as above.
  • R 110 represents an arylene group having 6 to 10 carbon atoms, an alkylene group having 1 to 6 carbon atoms, or an alkenylene group having 2 to 6 carbon atoms. Some or all of the hydrogen atoms in these groups may be further substituted with a linear or branched alkyl group having 1 to 4 carbon atoms, an alkoxy group, a nitro group, an acetyl group, or a phenyl group.
  • R 111 represents a linear, branched or substituted alkyl group, alkenyl group, alkoxyalkyl group, phenyl group, or naphthyl group having 1 to 8 carbon atoms.
  • Some or all of the hydrogen atoms of these groups may be further substituted with an alkyl group having 1 to 4 carbon atoms or an alkoxy group; an alkyl group having 1 to 4 carbon atoms, an alkoxy group, a nitro group, or an acetyl group.
  • the arylene group of R 110 is not limited to the following, and examples thereof include a 1,2-phenylene group and a 1,8-naphthylene group.
  • the alkylene group include, but are not limited to, methylene group, ethylene group, trimethylene group, tetramethylene group, phenylethylene group, norbornane-2,3-diyl group, and the like.
  • the alkenylene group include, but are not limited to, 1,2-vinylene group, 1-phenyl-1,2-vinylene group, 5-norbornene-2,3-diyl group, and the like.
  • the alkyl group for R 111 include the same groups as R 101a to R 101c .
  • alkenyl group examples include, but are not limited to, vinyl group, 1-propenyl group, allyl group, 1-butenyl group, 3-butenyl group, isoprenyl group, 1-pentenyl group, 3-pentenyl group, 4-pentenyl group. Group, dimethylallyl group, 1-hexenyl group, 3-hexenyl group, 5-hexenyl group, 1-heptenyl group, 3-heptenyl group, 6-heptenyl group, 7-octenyl group and the like.
  • alkoxyalkyl group examples include, but are not limited to, for example, methoxymethyl group, ethoxymethyl group, propoxymethyl group, butoxymethyl group, pentyloxymethyl group, hexyloxymethyl group, heptyloxymethyl group, methoxyethyl group, Ethoxyethyl group, propoxyethyl group, butoxyethyl group, pentyloxyethyl group, hexyloxyethyl group, methoxypropyl group, ethoxypropyl group, propoxypropyl group, butoxypropyl group, methoxybutyl group, ethoxybutyl group, propoxybutyl group, A methoxypentyl group, an ethoxypentyl group, a methoxyhexyl group, a methoxyheptyl group, etc. are mentioned.
  • the optionally substituted alkyl group having 1 to 4 carbon atoms is not limited to the following, but for example, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, tert- A butyl group etc. are mentioned.
  • alkoxy group having 1 to 4 carbon atoms include, but are not limited to, methoxy group, ethoxy group, propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, and tert-butoxy group.
  • Examples of the phenyl group which may be substituted with an alkyl group having 1 to 4 carbon atoms, an alkoxy group, a nitro group, or an acetyl group include, but are not limited to, for example, a phenyl group, a tolyl group, a p-tert-butoxyphenyl group , P-acetylphenyl group, p-nitrophenyl group and the like.
  • Examples of the heteroaromatic group having 3 to 5 carbon atoms include, but are not limited to, a pyridyl group and a furyl group.
  • the acid generator include, but are not limited to, tetramethylammonium trifluoromethanesulfonate, tetramethylammonium nonafluorobutanesulfonate, triethylammonium nonafluorobutanesulfonate, pyridinium nonafluorobutanesulfonate, camphorsulfonic acid Triethylammonium, pyridinium camphorsulfonate, tetra-n-butylammonium nonafluorobutanesulfonate, tetraphenylammonium nonafluorobutanesulfonate, tetramethylammonium p-toluenesulfonate, diphenyliodonium trifluoromethanesulfonate, trifluoromethanesulfonic acid (p -Tert-butoxyphenyl) phenyliodonium, p-toluen
  • triphenylsulfonium trifluoromethanesulfonate trifluoromethanesulfonic acid (p-tert-butoxyphenyl) diphenylsulfonium, trifluoromethanesulfonic acid tris (p-tert-butoxyphenyl) sulfonium, p-toluenesulfonic acid Triphenylsulfonium, p-toluenesulfonic acid (p-tert-butoxyphenyl) diphenylsulfonium, p-toluenesulfonic acid tris (p-tert-butoxyphenyl) sulfonium, trifluoromethanesulfonic acid trinaphthylsulfonium, trifluoromethanesulfonic acid cyclohexylmethyl (2-oxocyclohexyl) sulfonium, trifluoromethanesulfonic acid cyclo
  • the content of the acid generator is not particularly limited, but is 0.1 to 50 parts by weight with respect to 100 parts by weight of the lower layer film forming material for lithography. Is more preferable, and 0.5 to 40 parts by mass is more preferable.
  • composition for forming a lower layer film for lithography of the present embodiment may contain a basic compound from the viewpoint of improving storage stability.
  • the basic compound serves as a quencher for the acid to prevent the acid generated in a trace amount from the acid generator from causing the crosslinking reaction to proceed.
  • Examples of such basic compounds include primary, secondary or tertiary aliphatic amines, hybrid amines, aromatic amines, heterocyclic amines, nitrogen-containing compounds having a carboxy group, Examples thereof include, but are not limited to, nitrogen-containing compounds having a sulfonyl group, nitrogen-containing compounds having a hydroxyl group, nitrogen-containing compounds having a hydroxyphenyl group, alcoholic nitrogen-containing compounds, amide derivatives, and imide derivatives.
  • the primary aliphatic amines include, but are not limited to, ammonia, methylamine, ethylamine, n-propylamine, isopropylamine, n-butylamine, isobutylamine, sec-butylamine.
  • Tert-butylamine pentylamine, tert-amylamine, cyclopentylamine, hexylamine, cyclohexylamine, heptylamine, octylamine, nonylamine, decylamine, dodecylamine, cetylamine, methylenediamine, ethylenediamine, tetraethylenepentamine and the like.
  • secondary aliphatic amines include, but are not limited to, dimethylamine, diethylamine, di-n-propylamine, diisopropylamine, di-n-butylamine, diisobutylamine, di-sec-butylamine, Dipentylamine, dicyclopentylamine, dihexylamine, dicyclohexylamine, diheptylamine, dioctylamine, dinonylamine, didecylamine, didodecylamine, dicetylamine, N, N-dimethylmethylenediamine, N, N-dimethylethylenediamine, N, N-dimethyl Examples include tetraethylenepentamine.
  • tertiary aliphatic amines include, but are not limited to, trimethylamine, triethylamine, tri-n-propylamine, triisopropylamine, tri-n-butylamine, triisobutylamine, tri-sec-butylamine , Tripentylamine, tricyclopentylamine, trihexylamine, tricyclohexylamine, triheptylamine, trioctylamine, trinonylamine, tridecylamine, tridodecylamine, tricetylamine, N, N, N ′, N ′ -Tetramethylmethylenediamine, N, N, N ', N'-tetramethylethylenediamine, N, N, N', N'-tetramethyltetraethylenepentamine and the like.
  • hybrid amines include, but are not limited to, dimethylethylamine, methylethylpropylamine, benzylamine, phenethylamine, benzyldimethylamine, and the like.
  • aromatic amines and heterocyclic amines include, but are not limited to, aniline derivatives (for example, aniline, N-methylaniline, N-ethylaniline, N-propylaniline, N, N-dimethylaniline, 2 -Methylaniline, 3-methylaniline, 4-methylaniline, ethylaniline, propylaniline, trimethylaniline, 2-nitroaniline, 3-nitroaniline, 4-nitroaniline, 2,4-dinitroaniline, 2,6-dinitro Aniline, 3,5-dinitroaniline, N, N-dimethyltoluidine, etc.), diphenyl (p-tolyl) amine, methyldiphenylamine, triphenylamine, phenyl (p-
  • nitrogen-containing compounds having a carboxy group include, but are not limited to, aminobenzoic acid, indolecarboxylic acid, amino acid derivatives (for example, nicotinic acid, alanine, arginine, aspartic acid, glutamic acid, glycine, histidine, isoleucine). Glycylleucine, leucine, methionine, phenylalanine, threonine, lysine, 3-aminopyrazine-2-carboxylic acid, methoxyalanine) and the like.
  • aminobenzoic acid indolecarboxylic acid
  • amino acid derivatives for example, nicotinic acid, alanine, arginine, aspartic acid, glutamic acid, glycine, histidine, isoleucine.
  • nitrogen-containing compound having a sulfonyl group examples include, but are not limited to, 3-pyridinesulfonic acid, pyridinium p-toluenesulfonate, and the like.
  • Specific examples of the nitrogen-containing compound having a hydroxyl group, the nitrogen-containing compound having a hydroxyphenyl group, and the alcoholic nitrogen-containing compound include, but are not limited to, 2-hydroxypyridine, aminocresol, 2,4-quinolinediol, 3- Indolemethanol hydrate, monoethanolamine, diethanolamine, triethanolamine, N-ethyldiethanolamine, N, N-diethylethanolamine, triisopropanolamine, 2,2'-iminodiethanol, 2-aminoethanol, 3-amino- 1-propanol, 4-amino-1-butanol, 4- (2-hydroxyethyl) morpholine, 2- (2-hydroxyethyl) pyridine, 1- (2-hydroxyethyl) piperazine,
  • amide derivatives include, but are not limited to, formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, propionamide, benzamide and the like.
  • imide derivative include, but are not limited to, phthalimide, succinimide, maleimide and the like.
  • the content of the basic compound is not particularly limited, but is 0.001 to 2 parts by mass with respect to 100 parts by mass of the underlayer film forming material for lithography. Is more preferable, and 0.01 to 1 part by mass is more preferable. By making it into the above preferred range, the storage stability tends to be enhanced without excessively impairing the crosslinking reaction.
  • the composition for forming a lower layer film for lithography of the present embodiment may contain other resins and / or compounds for the purpose of imparting thermosetting properties and controlling absorbance.
  • other resins and / or compounds include naphthol resins, xylene resins, naphthol-modified resins, phenol-modified resins of naphthalene resins, polyhydroxystyrene, dicyclopentadiene resins, (meth) acrylates, dimethacrylates, trimethacrylates, tetra Resins containing no heterocyclic ring or aromatic ring such as methacrylate, vinyl naphthalene, polyacenaphthylene and other naphthalene rings, phenanthrenequinone, biphenyl rings such as fluorene, hetero rings having hetero atoms such as thiophene and indene; rosin resins; Examples include, but are not limited to, resins or compounds containing an alicyclic structure
  • the lower layer film for lithography of this embodiment is formed from the composition for lower layer film formation for lithography of this embodiment.
  • the resist pattern forming method of the present embodiment includes a step (A-1) of forming a lower layer film on a substrate using the composition for forming a lower layer film for lithography of the present embodiment, and on the lower layer film, Step (A-2) for forming at least one photoresist layer and Step (A-3) for performing development by irradiating a predetermined region of the photoresist layer with radiation after the second formation step And having.
  • the circuit pattern forming method of the present embodiment includes a step (B-1) of forming a lower layer film on the substrate using the composition for forming a lower layer film for lithography of the present embodiment, and on the lower layer film, A step (B-2) of forming an intermediate layer film using a resist intermediate layer film material containing silicon atoms, and a step (B-3) of forming at least one photoresist layer on the intermediate layer film
  • the step (B-4) the intermediate layer film is etched using the resist pattern as a mask
  • the lower layer film is etched using the obtained intermediate layer film pattern as an etching mask
  • the substrate is etched using the obtained lower layer film pattern as an etching mask.
  • the formation method of the underlayer film for lithography of the present embodiment is not particularly limited as long as it is formed from the composition for forming an underlayer film for lithography of the present embodiment, and a known method can be applied.
  • a known method can be applied.
  • the composition for forming a lower layer film for lithography of the present embodiment on a substrate by a known coating method such as spin coating or screen printing or a printing method, the organic solvent is volatilized and removed.
  • a lower layer film can be formed.
  • the baking temperature is not particularly limited, but is preferably in the range of 80 to 450 ° C., more preferably 200 to 400 ° C.
  • the baking time is not particularly limited, but is preferably within the range of 10 to 300 seconds.
  • the thickness of the lower layer film can be appropriately selected according to the required performance, and is not particularly limited, but is usually preferably about 30 to 20,000 nm, more preferably 50 to 15,000 nm. .
  • a silicon-containing resist layer thereon or a single-layer resist made of ordinary hydrocarbons in the case of a three-layer process, a silicon-containing intermediate layer is further formed thereon It is preferable to produce a single-layer resist layer that does not contain silicon. In this case, a well-known thing can be used as a photoresist material for forming this resist layer.
  • a silicon-containing resist layer or a single layer resist made of ordinary hydrocarbon can be formed on the lower layer film.
  • a silicon-containing intermediate layer can be formed on the lower layer film, and a single-layer resist layer not containing silicon can be formed on the silicon-containing intermediate layer.
  • the photoresist material for forming the resist layer can be appropriately selected from known materials and is not particularly limited.
  • a silicon-containing resist material for a two-layer process from the viewpoint of oxygen gas etching resistance, a silicon atom-containing polymer such as a polysilsesquioxane derivative or a vinylsilane derivative is used as a base polymer, and an organic solvent, an acid generator, If necessary, a positive photoresist material containing a basic compound or the like is preferably used.
  • a silicon atom-containing polymer a known polymer used in this type of resist material can be used.
  • a polysilsesquioxane-based intermediate layer is preferably used as the silicon-containing intermediate layer for the three-layer process.
  • the intermediate layer By giving the intermediate layer an effect as an antireflection film, reflection tends to be effectively suppressed.
  • the k value increases and the substrate reflection tends to increase, but the reflection is suppressed in the intermediate layer.
  • the substrate reflection can be reduced to 0.5% or less.
  • the intermediate layer having such an antireflection effect is not limited to the following, but for 193 nm exposure, a polysilsesquioxy crosslinked with acid or heat into which a light absorbing group having a phenyl group or a silicon-silicon bond is introduced. Sun is preferably used.
  • an intermediate layer formed by a Chemical-Vapor-deposition (CVD) method can be used.
  • the intermediate layer having a high effect as an antireflection film produced by the CVD method is not limited to the following, but for example, a SiON film is known.
  • the formation of the intermediate layer by a wet process such as spin coating or screen printing has a simpler and more cost-effective advantage than the CVD method.
  • the upper layer resist in the three-layer process may be either a positive type or a negative type, and the same one as a commonly used single layer resist can be used.
  • the lower layer film of this embodiment can also be used as an antireflection film for a normal single layer resist or a base material for suppressing pattern collapse. Since the lower layer film of this embodiment is excellent in etching resistance for the base processing, it can be expected to function as a hard mask for the base processing.
  • a wet process such as spin coating or screen printing is preferably used as in the case of forming the lower layer film.
  • prebaking is usually performed, but this prebaking is preferably performed at 80 to 180 ° C. for 10 to 300 seconds.
  • a resist pattern can be obtained by performing exposure, post-exposure baking (PEB), and development.
  • the thickness of the resist film is not particularly limited, but is generally preferably 30 to 500 nm, and more preferably 50 to 400 nm.
  • the exposure light may be appropriately selected and used according to the photoresist material to be used.
  • high energy rays having a wavelength of 300 nm or less, specifically, 248 nm, 193 nm, 157 nm excimer laser, 3 to 20 nm soft X-ray, electron beam, X-ray and the like can be mentioned.
  • the resist pattern formed by the above method is one in which pattern collapse is suppressed by the lower layer film of this embodiment. Therefore, by using the lower layer film of this embodiment, a finer pattern can be obtained, and the exposure amount necessary for obtaining the resist pattern can be reduced.
  • gas etching is preferably used as the etching of the lower layer film in the two-layer process.
  • gas etching etching using oxygen gas is suitable.
  • an inert gas such as He or Ar, or CO, CO 2 , NH 3 , SO 2 , N 2 , NO 2 or H 2 gas can be added.
  • the latter gas is preferably used for side wall protection for preventing undercut of the pattern side wall.
  • gas etching is also preferably used for etching the intermediate layer in the three-layer process.
  • the gas etching the same one as described in the above two-layer process can be applied.
  • the processing of the intermediate layer in the three-layer process is preferably performed using a fluorocarbon gas and a resist pattern as a mask.
  • the lower layer film can be processed by, for example, oxygen gas etching using the intermediate layer pattern as a mask.
  • a silicon oxide film, a silicon nitride film, or a silicon oxynitride film is formed by a CVD method, an ALD method, or the like.
  • the method for forming the nitride film is not limited to the following, but for example, a method described in Japanese Patent Application Laid-Open No. 2002-334869 (Patent Document 6) and WO 2004/066377 (Patent Document 7) can be used.
  • a photoresist film can be formed directly on such an intermediate film, but an organic antireflection film (BARC) is formed on the intermediate film by spin coating, and a photoresist film is formed thereon. May be.
  • BARC organic antireflection film
  • an intermediate layer based on polysilsesquioxane is also preferably used.
  • the resist intermediate layer film By providing the resist intermediate layer film with an effect as an antireflection film, reflection tends to be effectively suppressed.
  • Specific materials of the polysilsesquioxane-based intermediate layer are not limited to the following, but are described, for example, in JP-A-2007-226170 (Patent Document 8) and JP-A-2007-226204 (Patent Document 9). Can be used.
  • Etching of the next substrate can also be performed by a conventional method.
  • the substrate is SiO 2 or SiN
  • Etching mainly with gas can be performed.
  • the substrate is etched with a chlorofluorocarbon gas, the silicon-containing resist of the two-layer resist process and the silicon-containing intermediate layer of the three-layer process are peeled off simultaneously with the substrate processing.
  • the silicon-containing resist layer or the silicon-containing intermediate layer is separately peeled, and generally, dry etching peeling with a chlorofluorocarbon-based gas is performed after the substrate is processed. .
  • the lower layer film of this embodiment is characterized by excellent etching resistance of these substrates.
  • a known substrate can be appropriately selected and used, and is not particularly limited. Examples thereof include Si, ⁇ -Si, p-Si, SiO 2 , SiN, SiON, W, TiN, and Al. .
  • the substrate may be a laminate having a film to be processed (substrate to be processed) on a base material (support). Examples of such processed films include various low-k films such as Si, SiO 2 , SiON, SiN, p-Si, ⁇ -Si, W, W-Si, Al, Cu, and Al-Si, and their stopper films. In general, a material different from the base material (support) is used.
  • the thickness of the substrate to be processed or the film to be processed is not particularly limited, but is usually preferably about 50 to 10,000 nm, more preferably 75 to 5,000 nm.
  • the method for purifying a compound or resin according to the present embodiment includes a step of bringing an organic solvent that is not arbitrarily miscible with water, a solution containing the compound or the resin, and an acidic aqueous solution into contact with each other for extraction. More specifically, in the present embodiment, the compound represented by the formula (1) or a resin obtained using the compound as a monomer is dissolved in an organic solvent that is not arbitrarily miscible with water, and the solution is contacted with an acidic aqueous solution.
  • the metal component contained in the solution (A) containing the compound or the resin and the organic solvent is transferred to the aqueous phase, and then the organic phase and the aqueous phase can be separated and purified. .
  • the purification method of the present embodiment the content of various metals in the compound represented by formula (1) or a resin obtained using the compound as a monomer can be significantly reduced.
  • the organic solvent that is not arbitrarily miscible with water means an organic solvent having a solubility in water of less than 30% at room temperature.
  • the solubility is preferably less than 20%, more preferably less than 10%.
  • the organic solvent that is not arbitrarily miscible with water is not particularly limited, but an organic solvent that can be safely applied to a semiconductor manufacturing process is preferable.
  • the amount of the organic solvent to be used is usually about 1 to 100 times by mass with respect to the compound represented by the formula (1) to be used or a resin obtained using the compound as a monomer.
  • ethers such as diethyl ether and diisopropyl ether
  • esters such as ethyl acetate, butyl acetate and isoamyl acetate, methyl ethyl ketone, 1,2-diethoxy ketone, methyl Ketones such as isobutyl ketone, ethyl isobutyl ketone, cyclohexanone, cyclopentanone, 2-heptanone, 2-pentanone, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate (PGMEA), propylene glycol mono Glycol ether acetates such as ethyl ether acetate, aliphatic hydrocarbons such as n-hexane and n-heptane, and aromatic hydrocarbons such as toluene and x
  • toluene, 2-heptanone, cyclohexanone, cyclopentanone, methyl isobutyl ketone, propylene glycol monomethyl ether acetate, 1,2-diethoxyketone, butyl acetate, ethyl acetate and the like are preferable.
  • Cyclohexanone, propylene glycol monomethyl ether acetate Is more preferable.
  • the acidic aqueous solution used in the present embodiment is appropriately selected from aqueous solutions in which generally known organic and inorganic compounds are dissolved in water.
  • aqueous solutions in which generally known organic and inorganic compounds are dissolved in water.
  • mineral acid such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid is dissolved in water, or acetic acid, propionic acid, succinic acid, malonic acid, succinic acid, fumaric acid, maleic acid, tartaric acid, citric acid, methanesulfone
  • An aqueous solution in which an organic acid such as acid, phenolsulfonic acid, p-toluenesulfonic acid or trifluoroacetic acid is dissolved in water may be mentioned.
  • acidic aqueous solutions can be used alone or in combination of two or more.
  • aqueous solutions of sulfuric acid, nitric acid, and carboxylic acids such as acetic acid, oxalic acid, tartaric acid, and citric acid are preferable
  • aqueous solutions of sulfuric acid, succinic acid, tartaric acid, and citric acid are more preferable
  • aqueous solutions of succinic acid are more preferable.
  • polyvalent carboxylic acids such as succinic acid, tartaric acid, and citric acid are coordinated to metal ions to produce a chelate effect, it is considered that the metal tends to be removed more effectively.
  • water with low metal content for example, ion-exchange water etc. according to the objective of this embodiment, as the water used here.
  • the pH of the acidic aqueous solution used in the present embodiment is not particularly limited, but the acidity of the aqueous solution is adjusted in consideration of the influence on the compound represented by formula (1) or the resin obtained using the compound as a monomer. Is preferred. Usually, the pH range is about 0 to 5, more preferably about pH 0 to 3.
  • the amount of acidic aqueous solution used in the present embodiment is not particularly limited, but from the viewpoint of reducing the number of extractions for metal removal and from the viewpoint of ensuring operability in consideration of the total amount of liquid, the amount used is It is preferable to adjust.
  • the amount of the aqueous solution used is usually 10 to 200% by mass, preferably 20 to 100% by mass, based on the compound represented by formula (1) dissolved in an organic solvent or a resin solution obtained using the compound as a monomer. %.
  • the acidic aqueous solution as described above is brought into contact with the compound represented by formula (1) or a solution (A) containing an organic solvent which is not miscible with water and a resin obtained using the compound as a monomer. To extract the metal content.
  • the temperature at the time of the extraction treatment is usually 20 to 90 ° C, preferably 30 to 80 ° C.
  • the extraction operation is performed, for example, by mixing the mixture well by stirring or the like and then allowing it to stand. Thereby, the metal content contained in the solution represented by the compound represented by formula (1) or the resin obtained using the compound as a monomer and the organic solvent is transferred to the aqueous phase. Moreover, the acidity of a solution falls by this operation, and the quality change of the resin represented by using the compound represented by Formula (1) or this compound as a monomer can be suppressed.
  • the resulting mixture is separated into a compound phase represented by the formula (1) or a solution phase containing the compound obtained as a monomer and an organic solvent and an aqueous phase, and therefore the compound represented by the formula (1) by decantation or the like.
  • a solution containing a resin obtained using the compound as a monomer and an organic solvent is recovered.
  • the standing time is not particularly limited, but it is preferable to adjust the standing time from the viewpoint of improving the separation between the solution phase containing the organic solvent and the aqueous phase.
  • the time for standing is 1 minute or longer, preferably 10 minutes or longer, more preferably 30 minutes or longer.
  • the extraction process may be performed only once, but it is also effective to repeat the operations of mixing, standing, and separation a plurality of times.
  • the above extraction operation with water is performed, for example, by mixing well by stirring and then allowing to stand.
  • the obtained solution is represented by the formula (1) by decantation or the like in order to separate the compound represented by the formula (1) or a solution phase containing the resin obtained by using the compound as a monomer and an organic solvent and an aqueous phase. Or a solution phase containing a resin obtained using the compound as a monomer and an organic solvent.
  • the water used here is a thing with little metal content, for example, ion-exchange water etc. according to the objective of this embodiment.
  • the extraction process may be performed only once, but it is also effective to repeat the operations of mixing, standing, and separation a plurality of times. Further, the use ratio of both in the extraction process, conditions such as temperature and time are not particularly limited, but they may be the same as those in the contact process with the acidic aqueous solution.
  • the thus obtained compound represented by the formula (1) or water that can be mixed in a solution containing a resin obtained by using the compound as a monomer and an organic solvent can be easily removed by performing an operation such as vacuum distillation. Further, if necessary, an organic solvent can be added to adjust the concentration of the compound represented by the formula (1) or the resin obtained using the compound as a monomer to an arbitrary concentration.
  • the compound represented by the formula (1) or the resin obtained by using the compound as a monomer is isolated from the solution containing the compound represented by the formula (1) or a resin obtained by using the compound as a monomer and an organic solvent.
  • the method to perform can be performed by a well-known method, such as removal under reduced pressure, separation by reprecipitation, and a combination thereof. If necessary, known processes such as a concentration operation, a filtration operation, a centrifugal separation operation, and a drying operation can be performed.
  • Carbon concentration and oxygen concentration Carbon concentration and oxygen concentration (mass%) were measured by organic elemental analysis.
  • GPC gel permeation chromatography
  • the obtained compound (CAX-1) had a carbon concentration of 82.8% and an oxygen concentration of 9.4%. As a result of measuring the molecular weight of the obtained compound by the above method, it was 508. As a result of thermogravimetry (TG), the 10% heat loss temperature of the obtained compound (CAX-1) was 400 ° C. or higher. Therefore, it was evaluated that it has high heat resistance and can be applied to high-temperature baking. As a result of evaluating the solubility in PGMEA and PGMEA, it was 10 wt% or more (Evaluation A), and the compound (CAX-1) was evaluated as having excellent solubility. Therefore, it was evaluated that the compound (CAX-1) has high storage stability in a solution state and can be sufficiently applied to an edge beat rinse liquid (PGME / PGMEA mixed liquid) widely used in semiconductor microfabrication processes. .
  • PGME / PGMEA mixed liquid edge beat rinse liquid
  • reaction solution 150 mL of 1,4-dioxane (reagent manufactured by Kanto Chemical Co., Inc.) was charged, and 7.8 g (42 mmol) of p-toluenesulfonic acid (reagent manufactured by Kanto Chemical Co., Inc.) was added to prepare a reaction solution.
  • the reaction was stirred at 90 ° C. for 6 hours to carry out the reaction.
  • neutralization is performed with a 24% aqueous sodium hydroxide solution (Kanto Chemical Co., Ltd.), the reaction solution is concentrated, and 50 g of n-heptane (Kanto Chemical Co., Ltd.) is added to precipitate the reaction product. After cooling to room temperature, it was separated by filtration.
  • the compound (CAX-2) obtained had a carbon concentration of 82.8% and an oxygen concentration of 9.4%. As a result of measuring the molecular weight of the obtained compound by the above method, it was 508. As a result of thermogravimetry (TG), the 10% heat loss temperature of the obtained compound (CAX-2) was 400 ° C. or higher. It was evaluated as having high heat resistance and applicable to high temperature baking. As a result of evaluating the solubility in PGMEA and PGMEA, it was 5 wt% or more (Evaluation B), and the compound (CAX-2) was evaluated as having excellent solubility.
  • TG thermogravimetry
  • the reaction was stirred at 100 ° C. for 8 hours to carry out the reaction.
  • neutralization treatment is performed with a 24% aqueous sodium hydroxide solution (a reagent manufactured by Kanto Chemical Co., Inc.), the reaction solution is concentrated, and 100 g of ion-exchanged water is added to precipitate a reaction product, which is then cooled to room temperature. Separated by filtration. The solid obtained by filtration was dried and then subjected to separation and purification by column chromatography to obtain 4.8 g of the target compound (CAX-3) represented by the following formula. The following peaks were found by 400 MHz- 1 H-NMR, and confirmed to have a chemical structure of the following formula.
  • the obtained compound (CAX-3) had a carbon concentration of 81.0% and an oxygen concentration of 11.0%. As a result of measuring the molecular weight of the obtained compound by the above method, it was 576. As a result of thermogravimetry (TG), the 10% heat loss temperature of the obtained compound (CAX-3) was 400 ° C. or higher. It was evaluated as having high heat resistance and applicable to high temperature baking. As a result of evaluating the solubility in PGMEA and PGMEA, it was 10 wt% or more (Evaluation A), and the compound (CAX-3) was evaluated as having excellent solubility. Therefore, it was evaluated that the compound (CAX-3) has high storage stability in a solution state and can be sufficiently applied to an edge beat rinse liquid (PGME / PGMEA mixed liquid) widely used in a semiconductor microfabrication process. .
  • PGME / PGMEA mixed liquid edge beat rinse liquid
  • reaction solution 100 mL of 1,4-dioxane (Kanto Chemical Co., Ltd.) was charged, and 3.9 g (21 mmol) of p-toluenesulfonic acid (Kanto Chemical Co., Ltd. reagent) was added to prepare a reaction solution.
  • the reaction was stirred at 90 ° C. for 6 hours to carry out the reaction.
  • neutralization is performed with a 24% aqueous sodium hydroxide solution (Kanto Chemical Co., Ltd.), the reaction solution is concentrated, and 50 g of n-heptane (Kanto Chemical Co., Ltd.) is added to precipitate the reaction product. After cooling to room temperature, it was separated by filtration.
  • the compound (CAX-4) obtained had a carbon concentration of 82.9% and an oxygen concentration of 8.9%. It was 535 as a result of measuring molecular weight by the said method about the obtained compound.
  • thermogravimetry (TG) the 10% heat loss temperature of the obtained compound (CAX-4) was 400 ° C. or higher. It was evaluated as having high heat resistance and applicable to high temperature baking.
  • solubility in PGMEA and PGMEA it was 10 wt% or more (Evaluation A), and the compound (CAX-4) was evaluated as having excellent solubility. Therefore, it was evaluated that the compound (CAX-4) has high storage stability in a solution state and can be sufficiently applied to an edge beat rinse liquid (PGME / PGMEA mixed liquid) widely used in a semiconductor microfabrication process. .
  • the compound (CAX-5) obtained had a carbon concentration of 80.0% and an oxygen concentration of 12.9%. It was 495 as a result of measuring molecular weight by the said method about the obtained compound.
  • thermogravimetry (TG) the 10% heat loss temperature of the obtained compound (CAX-5) was 400 ° C. or higher. It was evaluated as having high heat resistance and applicable to high temperature baking.
  • solubility in PGM and PGMEA it was 10 wt% or more (Evaluation A), and the compound (CAX-5) was evaluated to have excellent solubility. Therefore, it was evaluated that the compound (CAX-5) has high storage stability in a solution state and can be sufficiently applied to an edge beat rinse liquid (PGME / PGMEA mixed liquid) widely used in semiconductor microfabrication processes. .
  • the obtained compound (CAX-6) had a carbon concentration of 80.1% and an oxygen concentration of 12.5%. It was 509 as a result of measuring molecular weight about the obtained compound by the said method.
  • thermogravimetry TG
  • the 10% heat loss temperature of the obtained compound (CAX-6) was 400 ° C. or higher. It was evaluated as having high heat resistance and applicable to high temperature baking.
  • the solubility in PGMEA and PGMEA it was 10 wt% or more (Evaluation A), and the compound (CAX-6) was evaluated as having excellent solubility. Therefore, it was evaluated that the compound (CAX-6) has high storage stability in a solution state and can be sufficiently applied to an edge beat rinse liquid (PGME / PGMEA mixed liquid) widely used in a semiconductor microfabrication process. .
  • the obtained compound (CAX-7) had a carbon concentration of 80.0% and an oxygen concentration of 12.9%. It was 495 as a result of measuring molecular weight by the said method about the obtained compound.
  • thermogravimetry TG
  • the 10% heat loss temperature of the obtained compound (CAX-7) was 400 ° C. or higher. It was evaluated as having high heat resistance and applicable to high temperature baking.
  • the solubility in PGM and PGMEA it was 10 wt% or more (Evaluation A), and the compound (CAX-7) was evaluated as having excellent solubility. Therefore, it was evaluated that the compound (CAX-7) has high storage stability in a solution state and can be sufficiently applied to an edge beat rinse liquid (PGME / PGMEA mixed liquid) widely used in semiconductor microfabrication processes. .
  • the obtained resin (CAR-1) was Mn: 1885, Mw: 4220, and Mw / Mn: 2.24.
  • the carbon concentration was 79.8% by mass, and the oxygen concentration was 8.5% by mass.
  • TG thermogravimetry
  • the 10% heat loss temperature of the obtained resin (CAR-1) was 350 ° C. or higher and lower than 400 ° C. Therefore, it was evaluated that application to high temperature baking was possible.
  • the solubility in PGMEA and PGMEA it was 10 wt% or more (Evaluation A), and the resin (CAR-1) was evaluated as having excellent solubility.
  • the obtained resin (CAR-2) was Mn: 2382, Mw: 4610, and Mw / Mn: 1.93.
  • the carbon concentration was 82.8% by mass, and the oxygen concentration was 7.5% by mass.
  • TG thermogravimetry
  • the 10% heat loss temperature of the obtained resin (CAR-2) was 350 ° C. or higher and lower than 400 ° C. Therefore, it was evaluated that application to high temperature baking was possible.
  • the solubility in PGMEA and PGMEA it was 10 wt% or more (Evaluation A), and the resin (CAR-2) was evaluated as having excellent solubility.
  • a four-necked flask having an internal volume of 0.5 L equipped with a Dimroth condenser, a thermometer, and a stirring blade was prepared.
  • This four-necked flask was charged with 100 g (0.51 mol) of the dimethylnaphthalene formaldehyde resin obtained as described above and 0.05 g of paratoluenesulfonic acid under a nitrogen stream, and the temperature was raised to 190 ° C. Stir after heating for hours. Thereafter, 52.0 g (0.36 mol) of 1-naphthol was further added, and the temperature was further raised to 220 ° C. to react for 2 hours.
  • the obtained resin (CR-1) was Mn: 885, Mw: 2220, and Mw / Mn: 4.17.
  • the carbon concentration was 89.1% by mass, and the oxygen concentration was 4.5% by mass.
  • TG thermogravimetry
  • the 10% heat loss temperature of the obtained resin (CR-1) was less than 350 ° C. Therefore, it was evaluated that it was difficult to apply to high temperature baking where high etching resistance and heat resistance were required.
  • As a result of evaluating the solubility in PGMEA and PGMEA it was 10 wt% or more (Evaluation A), and the resin (CR-1) was evaluated as having excellent solubility.
  • Examples 1 to 9, Comparative Example 1 A composition for forming a lower layer film for lithography was prepared so as to have the composition shown in Table 1. That is, the following materials were used.
  • Acid generator Ditertiary butyl diphenyliodonium nonafluoromethanesulfonate (DTDPI) manufactured by Midori Chemical Co., Ltd.
  • Cross-linking agent Nikalac MX270 (Nikalac) manufactured by Sanwa Chemical Co., Ltd.
  • Organic solvent Propylene glycol monomethyl ether acetate acetate (PGMEA)
  • Novolak PSM4357 manufactured by Gunei Chemical Co., Ltd.
  • the composition for forming the lower layer film was spin-coated on a silicon substrate, and then baked at 240 ° C. for 60 seconds and further at 400 ° C. for 120 seconds to prepare 200 nm-thick lower layer films. And the etching test was done on the conditions shown below, and etching tolerance was evaluated. The evaluation results are shown in Table 1.
  • Etching resistance was evaluated according to the following procedure. First, a novolac underlayer film was produced under the same conditions as in Example 1 except that novolak (PSM4357 manufactured by Gunei Chemical Co., Ltd.) was used instead of the compound (CAX-1) used in Example 1. Then, the above-described etching test was performed on this novolac lower layer film, and the etching rate at that time was measured.
  • novolak PSM4357 manufactured by Gunei Chemical Co., Ltd.
  • the etching resistance was evaluated according to the following evaluation criteria based on the etching rate of the novolak underlayer film.
  • evaluation criteria A: Etching rate is less than -10% compared to the novolac lower layer film
  • Example 10 the composition for forming a lower layer film for lithography of Example 1 was applied onto a 300 nm-thick SiO 2 substrate and baked at 240 ° C. for 60 seconds and further at 400 ° C. for 120 seconds. A lower layer film was formed. On this lower layer film, an ArF resist solution was applied and baked at 130 ° C. for 60 seconds to form a 140 nm-thick photoresist layer.
  • the ArF resist solution a compound of the following formula (11): 5 parts by mass, triphenylsulfonium nonafluoromethanesulfonate: 1 part by mass, tributylamine: 2 parts by mass, and PGMEA: 92 parts by mass are blended.
  • the prepared one was used.
  • the compound of formula (11) was prepared as follows. That is, 4.15 g of 2-methyl-2-methacryloyloxyadamantane, 3.00 g of methacryloyloxy- ⁇ -butyrolactone, 2.08 g of 3-hydroxy-1-adamantyl methacrylate, 0.38 g of azobisisobutyronitrile, The reaction solution was dissolved in 80 mL. This reaction solution was polymerized for 22 hours under a nitrogen atmosphere while maintaining the reaction temperature at 63 ° C., and then the reaction solution was dropped into 400 mL of n-hexane. The product resin thus obtained was coagulated and purified, and the resulting white powder was filtered and dried overnight at 40 ° C. under reduced pressure to obtain a compound represented by the following formula.
  • 40, 40 and 20 indicate the ratio of each structural unit, and do not indicate a block copolymer.
  • the photoresist layer was exposed using an electron beam drawing apparatus (ELIONX, ELS-7500, 50 keV), baked at 115 ° C. for 90 seconds (PEB), and 2.38 mass% tetramethylammonium hydroxide (A positive resist pattern was obtained by developing with an aqueous solution of TMAH for 60 seconds.
  • ELIONX electron beam drawing apparatus
  • ELS-7500 ELS-7500, 50 keV
  • PEB baked at 115 ° C. for 90 seconds
  • TMAH 2.38 mass% tetramethylammonium hydroxide
  • Example 10 For each of Example 10 and Comparative Example 2, the obtained resist pattern shapes of 40 nm L / S (1: 1) and 80 nm L / S (1: 1) were analyzed using an electron microscope (S-4800) manufactured by Hitachi, Ltd. Was observed. As for the shape of the resist pattern after development, the resist pattern was not collapsed and the rectangular shape was good, and the resist pattern was evaluated as bad. As a result of the observation, the minimum line width with no pattern collapse and good rectangularity was used as an evaluation index as the resolution. Furthermore, the minimum amount of electron beam energy that can draw a good pattern shape is used as an evaluation index as sensitivity. The results are shown in Table 2.
  • Example 10 As is clear from Table 2, it was confirmed that the lower layer film obtained in Example 10 was significantly superior in both resolution and sensitivity as compared with Comparative Example 2. In addition, it was confirmed that the resist pattern shape after development did not collapse and the rectangularity was good. Furthermore, from the difference in the resist pattern shape after development, it was shown that the lower layer film forming material for lithography in Example 1 had good adhesion to the resist material.
  • Example 11 Purification of CAX-1 A 1000 mL four-necked flask (bottomed type) was charged with 300 g of a solution (5% by mass) obtained by dissolving CAX-1 obtained in Example 1 in PGMEA. Heat to 80 ° C. with stirring. Next, 74 g of an aqueous succinic acid solution (pH 1.3) was added, and the mixture was stirred for 5 minutes and allowed to stand for 30 minutes. Since it separated into the oil phase and the water phase by this, the water phase was removed. After repeating this operation once, 74 g of ultrapure water was added to the obtained oil phase, stirred for 5 minutes, and allowed to stand for 30 minutes to remove the aqueous phase.
  • aqueous succinic acid solution pH 1.3
  • the compound and resin of the present invention have relatively high heat resistance and relatively high solvent solubility, and a wet process can be applied. Therefore, the lower layer film-forming material and the lower layer film for lithography using the compound or resin of the present invention can be widely and effectively used in various applications that require these performances. Therefore, the present invention can be used widely and effectively in, for example, semiconductor coating agents, semiconductor resist resins, underlayer film forming resins, and the like. In particular, the present invention can be used particularly effectively in the field of lithography lower layer films and multilayer resist lower layer films.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Architecture (AREA)
  • Materials For Photolithography (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Indole Compounds (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

 下記式(1)で表される、化合物。(式(1)中、Xは、各々独立して、酸素原子、硫黄原子又は無架橋であることを示し、Rは、各々独立して、水素原子、ハロゲン基、ニトロ基、アミノ基、水酸基、炭素原子数1~30のアルキル基、炭素原子数2~30のアルケニル基、炭素原子数6~40のアリール基、及びそれらの組み合わせからなる群より選択され、ここで、該アルキル基、該アルケニル基及び該アリール基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、Rは、各々独立して、炭素数1~30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6~40のアリール基、炭素数2~30のアルケニル基、チオール基又は水酸基であり、ここで、Rの少なくとも1つは水酸基又はチオール基を含む基であり、mは、各々独立して、1~7の整数であり、pは各々独立して0又は1であり、qは各々独立して0~4の整数であり、nは0又は1である。)

Description

化合物、樹脂、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜、パターン形成方法、及び、化合物又は樹脂の精製方法
 本発明は、特定の構造を有する化合物又は樹脂に関する。また、本発明は、該化合物又は樹脂を含有するリソグラフィー用下層膜形成材料及びリソグラフィー用下層膜形成用組成物、該材料から得られるリソグラフィー用下層膜及び該材料を用いるフォトレジストパターン形成方法に関する。さらに、本発明は、該化合物又は樹脂の精製方法に関する。
 半導体デバイスの製造において、フォトレジスト材料を用いたリソグラフィーによる微細加工が行われているが、近年、LSIの高集積化と高速度化に伴い、パターンルールによる更なる微細化が求められている。現在の汎用技術として用いられている光露光を用いたリソグラフィーにおいては、光源の波長に由来する本質的な解像度の限界に近づきつつある。
 レジストパターン形成の際に使用するリソグラフィー用の光源は、KrFエキシマレーザー(248nm)からArFエキシマレーザー(193nm)へと短波長化されている。しかしながら、レジストパターンの微細化が進むにつれ、解像度の問題又は現像後にレジストパターンが倒れるといった問題が生じてくるため、レジストの薄膜化が望まれるようになる。このような要望に対して、単にレジストの薄膜化を行うと、基板加工に十分なレジストパターンの膜厚を得ることが難しくなる。そのため、レジストパターンだけではなく、レジストと加工する半導体基板との間にレジスト下層膜を作製し、このレジスト下層膜にも基板加工時のマスクとしての機能を持たせるプロセスが必要になってくる。
 現在、このようなプロセス用のレジスト下層膜として、種々のものが知られている。例えば、従来のエッチング速度の速いレジスト下層膜とは異なり、レジストに近いドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜を挙げることができる。このようなソグラフィー用レジスト下層膜を形成するための材料として、所定のエネルギーが印加されることにより末端基が脱離してスルホン酸残基を生じる置換基を少なくとも有する樹脂成分と溶媒とを含有する多層レジストプロセス用下層膜形成材料が提案されている(例えば、特許文献1参照)。また、レジストに比べて小さいドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜も挙げることができる。このようなソグラフィー用レジスト下層膜を形成するための材料として、特定の繰り返し単位を有する重合体を含むレジスト下層膜材料が提案されている(例えば、特許文献2参照)。さらに、半導体基板に比べて小さいドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜も挙げることができる。このようなソグラフィー用レジスト下層膜を形成するための材料として、アセナフチレン類の繰り返し単位と、置換又は非置換の水酸基を有する繰り返し単位とを共重合してなる重合体を含むレジスト下層膜材料が提案されている(例えば、特許文献3参照)。
 一方、この種のレジスト下層膜において高いエッチング耐性を持つ材料としては、メタンガス、エタンガス、アセチレンガスなどを原料に用いたCVDによって形成されたアモルファスカーボン下層膜がよく知られている。しかしながら、プロセス上の観点から、スピンコート法やスクリーン印刷等の湿式プロセスでレジスト下層膜を形成できるレジスト下層膜材料が求められている。
 また、本発明者らは、光学特性及びエッチング耐性に優れるとともに、溶媒に可溶で湿式プロセスが適用可能な材料として、特定の構成単位を含むナフタレンホルムアルデヒド重合体及び有機溶媒を含有するリソグラフィー用下層膜形成組成物を提案している(例えば、特許文献4及び5を参照)。
 なお、3層プロセスにおけるレジスト下層膜の形成において用いられる中間層の形成方法に関しては、例えば、シリコン窒化膜の形成方法(例えば、特許文献6参照)や、シリコン窒化膜のCVD形成方法(例えば、特許文献7参照)が知られている。また、3層プロセス用の中間層材料としては、シルセスキオキサンベースの珪素化合物を含む材料が知られている(例えば、特許文献8及び9参照)。
特開2004-177668号公報 特開2004-271838号公報 特開2005-250434号公報 国際公開第2009/072465 国際公開第2011/034062 特開2002-334869号公報 国際公開第2004/066377 特開2007-226170号公報 特開2007-226204号公報
 上述したように、従来数多くのリソグラフィー用下層膜形成材料が提案されているが、スピンコート法やスクリーン印刷等の湿式プロセスが適用可能な高い溶媒溶解性を有するのみならず、耐熱性及びエッチング耐性を高い水準で両立させたものはなく、新たな材料の開発が求められている。
 また、近年はパターンの微細化の進行に伴い、段差を有する基板(特に、微細なスペースやホールパターン等)であっても、その段差の隅々まで均一に充填させることを可能とする段差埋め込み特性、及び形成された膜の平坦化性が求められている。特に、基板側に配置されるレジスト層(レジスト下膜層)は当該要求が高い。
 本発明は、上記の課題に鑑みてなされたものであり、フォトレジスト下層膜を形成する際に、湿式プロセスが適用可能であり、耐熱性及びエッチング耐性に優れるリソグラフィー用下層膜が得られる、化合物、樹脂、リソグラフィー用下層膜形成材料、該材料を含む組成物及び該材料を用いたパターン形成方法、当該化合物又は樹脂の精製方法を提供することにある。
 本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、特定構造を有する化合物又は樹脂を用いることにより、上記課題を解決できることを見出し、本発明を完成するに到った。
 すなわち、本発明は、次のとおりである。
[1]
 下記式(1)で表される、化合物。
Figure JPOXMLDOC01-appb-C000008
(式(1)中、Xは、各々独立して、酸素原子、硫黄原子又は無架橋であることを示し、Rは、各々独立して、水素原子、ハロゲン基、ニトロ基、アミノ基、水酸基、炭素原子数1~30のアルキル基、炭素原子数2~30のアルケニル基、炭素原子数6~40のアリール基、及びそれらの組み合わせからなる群より選択され、ここで、該アルキル基、該アルケニル基及び該アリール基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、Rは、各々独立して、炭素数1~30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6~40のアリール基、炭素数2~30のアルケニル基、チオール基又は水酸基であり、ここで、Rの少なくとも1つは水酸基又はチオール基を含む基であり、mは、各々独立して、1~7の整数であり、pは各々独立して0又は1であり、qは各々独立して0~4の整数であり、nは0又は1である。)
[2]
 前記式(1)で表される化合物が、下記式(1-1)で表される化合物である、[1]に記載の化合物。
Figure JPOXMLDOC01-appb-C000009
(式(1-1)中、R、R、m、p、q、nは、前記式(1)で説明したものと同義である。)
[3]
 前記式(1-1)で表される化合物が、下記式(1-2)で表される化合物である、[2]に記載の化合物。
Figure JPOXMLDOC01-appb-C000010
(前記式(1-2)中、R、p、q、nは、前記式(1)で説明したものと同義であり、Rは、各々独立して、炭素数1~30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6~40のアリール基、炭素数2~30のアルケニル基であり、mは、各々独立して0~5の整数であり、mは、各々独立して1~6の整数であり、m+mは1~6の整数である。)
[4]
 前記式(1-2)で表される化合物が、下記式(1-3)で表される化合物である、[3]に記載の化合物。
Figure JPOXMLDOC01-appb-C000011
(前記式(1-3)中、R、p、q、nは前記式(1)で説明したものと同義であり、R、mは前記式(1-2)で説明したものと同義である。)
[5]
 前記式(1-3)で表される化合物が、下記式(1-4)で表される化合物である、[4]に記載の化合物。
Figure JPOXMLDOC01-appb-C000012
(式(1-4)中、R、及びqは前記式(1)で説明したものと同義である。)
[6]
 前記式(1-4)で表される化合物が、下記式(CAX-1)で表される化合物である、[5]に記載の化合物。
Figure JPOXMLDOC01-appb-C000013
[7]
 [1]~[6]のいずれかに記載の化合物をモノマーとして得られる、樹脂。
[8]
 [1]~[6]のいずれかに記載の化合物と架橋反応性のある化合物とを反応させることによって得られる、[7]に記載の樹脂。
[9]
 前記架橋反応性のある化合物が、アルデヒド、ケトン、カルボン酸、カルボン酸ハライド、ハロゲン含有化合物、アミノ化合物、イミノ化合物、イソシアネート及び不飽和炭化水素基含有化合物からなる群より選ばれる1種以上である、[7]に記載の樹脂。
[10]
 下記式(2)で表される構造を有する、樹脂。
Figure JPOXMLDOC01-appb-C000014
(式(2)中、Xは、各々独立して、酸素原子、硫黄原子又は無架橋であることを示し、Rは、各々独立して、水素原子、ハロゲン基、ニトロ基、アミノ基、水酸基、炭素原子数1~30のアルキル基、炭素原子数2~30のアルケニル基、炭素原子数6~40のアリール基、及びそれらの組み合わせからなる群より選択され、ここで、該アルキル基、該アルケニル基及び該アリール基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、Rは、各々独立して、炭素数1~30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6~40のアリール基、炭素数2~30のアルケニル基、チオール基又は水酸基であり、ここで、Rの少なくとも1つは水酸基又はチオール基を含む基であり、Yは、各々独立して、単結合又は炭素数1~20の直鎖状若しくは分岐状のアルキレン基であり、mは、各々独立して、1~6の整数であり、pは各々独立して0又は1であり、qは各々独立して0~4の整数であり、nは0又は1である。)
[11]
 [1]~[6]のいずれかに記載の化合物及び/又は請求項7~10のいずれかに記載の樹脂を含有する、リソグラフィー用下層膜形成材料。
[12]
 [11]に記載のリソグラフィー用下層膜形成材料と溶媒とを含有する、リソグラフィー用下層膜形成用組成物。
[13]
 酸発生剤をさらに含有する、[12]に記載のリソグラフィー用下層膜形成用組成物。
[14]
 架橋剤をさらに含有する、[12]又は[13]に記載のリソグラフィー用下層膜形成用組成物。
[15]
 [12]~[14]のいずれかに記載のリソグラフィー用下層膜形成用組成物から形成される、リソグラフィー用下層膜。
[16]
 基板上に、[12]~[14]のいずれかに記載のリソグラフィー用下層膜形成用組成物を用いて下層膜を形成する工程(A-1)と、
 前記下層膜上に、少なくとも1層のフォトレジスト層を形成する工程(A-2)と、
 前記工程(A-2)の後、前記フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程(A-3)と、
 を有する、レジストパターン形成方法。
[17]
 基板上に、[12]~[14]のいずれかに記載のリソグラフィー用下層膜形成用組成物を用いて下層膜を形成する工程(B-1)と、
 前記下層膜上に、珪素原子を含有するレジスト中間層膜材料を用いて中間層膜を形成する工程(B-2)と、
 前記中間層膜上に、少なくとも1層のフォトレジスト層を形成する工程(B-3)と、
 前記工程(B-3)の後、前記フォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成する工程(B-4)と、
 前記工程(B-4)の後、前記レジストパターンをマスクとして前記中間層膜をエッチングし、得られた中間層膜パターンをエッチングマスクとして前記下層膜をエッチングし、得られた下層膜パターンをエッチングマスクとして基板をエッチングすることで基板にパターンを形成する工程(B-5)と、
 を有する、回路パターン形成方法。
[18]
 [1]~[6]のいずれかに記載の化合物、又は、[7]~[10]のいずれかに記載の樹脂の精製方法であって、
 水と任意に混和しない有機溶媒及び、前記化合物又は前記樹脂を含む溶液と、酸性の水溶液と、を接触させて抽出する工程を含む、精製方法。
[19]
 前記酸性の水溶液が、塩酸、硫酸、硝酸及びリン酸からなる群より選ばれる1種以上の鉱酸水溶液である、又は、酢酸、プロピオン酸、蓚酸、マロン酸、コハク酸、フマル酸、マレイン酸、酒石酸、クエン酸、メタンスルホン酸、フェノールスルホン酸、p-トルエンスルホン酸及びトリフルオロ酢酸からなる群より選ばれる1種以上の有機酸水溶液である、[18]に記載の精製方法。
[20]
 前記水と任意に混和しない有機溶媒が、トルエン、2-ヘプタノン、シクロヘキサノン、シクロペンタノン、メチルイソブチルケトン、プロピレングリコールモノメチルエーテルアセテート、1,2-ジエトキシケトン、酢酸ブチル、又は酢酸エチルである、[18]又は[19]に記載の精製方法。
[21]
 前記溶液と酸性の水溶液とを接触させて抽出する工程の後、さらに水による抽出処理を行う工程を含む、[18]~[20]のいずれかに記載の精製方法。
 本発明によれば、湿式プロセスが適用可能であり、耐熱性及びエッチング耐性に優れるリソグラフィー用下層膜が得られる、リソグラフィー用下層膜形成材料を実現することができる。
 以下、本発明の実施の形態(以下、「本実施形態」という)について説明する。なお、本実施形態は、本発明を説明するための例示であり、本発明は本実施形態のみに限定されない。
[化合物]
 本実施形態の化合物は、下記式(1)で表される。本実施形態の化合物は、このように構成されているため、フォトレジスト下層膜を形成する際に、湿式プロセスが適用可能であり、耐熱性及びエッチング耐性に優れる。また、本実施形態の化合物は特定の構造を有するため、耐熱性が高く、溶媒溶解性も高い。そのため、本実施形態の化合物を用いることで、高温ベーク時の膜の劣化が抑制され、酸素プラズマエッチング等に対するエッチング耐性にも優れ、段差基板への埋め込み特性及び膜の平坦性に優れた下層膜を形成することができる。さらには、レジスト層との密着性にも優れるので、優れたレジストパターンを形成することができる。
Figure JPOXMLDOC01-appb-C000015
 上記式(1)中、Xは、各々独立して、酸素原子、硫黄原子又は無架橋であることを示す。
 Rは、各々独立して、水素原子、ハロゲン基、ニトロ基、アミノ基、水酸基、炭素原子数1~30のアルキル基、炭素原子数2~30のアルケニル基、炭素原子数6~40のアリール基、及びそれらの組み合わせからなる群より選択され、ここで、該アルキル基、該アルケニル基及び該アリール基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよい。
 上記ハロゲン基としては、以下に限定されないが、例えば、フルオロ基、クロロ基、ブロモ基、ヨード基が挙げられる。
 上記炭素原子数1~30のアルキル基としては、以下に限定されないが、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、シクロプロピル基、n-ブチル基、i-ブチル基、s-ブチル基、t-ブチル基、シクロブチル基、1-メチル-シクロプロピル基、2-メチル-シクロプロピル基、n-ペンチル基、1-メチル-n-ブチル基、2-メチル-n-ブチル基、3-メチル-n-ブチル基、1,1-ジメチル-n-プロピル基、1,2-ジメチル-n-プロピル基、2,2-ジメチル-n-プロピル基、1-エチル-n-プロピル基、シクロペンチル基、1-メチル-シクロブチル基、2-メチル-シクロブチル基、3-メチル-シクロブチル基、1,2-ジメチル-シクロプロピル基、2,3-ジメチル-シクロプロピル基、1-エチル-シクロプロピル基、2-エチル-シクロプロピル基、n-ヘキシル基、1-メチル-n-ペンチル基、2-メチル-n-ペンチル基、3-メチル-n-ペンチル基、4-メチル-n-ペンチル基、1,1-ジメチル-n-ブチル基、1,2-ジメチル-n-ブチル基、1,3-ジメチル-n-ブチル基、2,2-ジメチル-n-ブチル基、2,3-ジメチル-n-ブチル基、3,3-ジメチル-n-ブチル基、1-エチル-n-ブチル基、2-エチル-n-ブチル基、1,1,2-トリメチル-n-プロピル基、1,2,2-トリメチル-n-プロピル基、1-エチル-1-メチル-n-プロピル基、1-エチル-2-メチル-n-プロピル基、シクロヘキシル基、1-メチル-シクロペンチル基、2-メチル-シクロペンチル基、3-メチル-シクロペンチル基、1-エチル-シクロブチル基、2-エチル-シクロブチル基、3-エチル-シクロブチル基、1,2-ジメチル-シクロブチル基、1,3-ジメチル-シクロブチル基、2,2-ジメチル-シクロブチル基、2,3-ジメチル-シクロブチル基、2,4-ジメチル-シクロブチル基、3,3-ジメチル-シクロブチル基、1-n-プロピル-シクロプロピル基、2-n-プロピル-シクロプロピル基、1-i-プロピル-シクロプロピル基、2-i-プロピル-シクロプロピル基、1,2,2-トリメチル-シクロプロピル基、1,2,3-トリメチル-シクロプロピル基、2,2,3-トリメチル-シクロプロピル基、1-エチル-2-メチル-シクロプロピル基、2-エチル-1-メチル-シクロプロピル基、2-エチル-2-メチル-シクロプロピル及び2-エチル-3-メチル-シクロプロピル基等が挙げられる。
 上記炭素原子数2~30のアルケニル基としては、以下に限定されないが、例えば、エテニル基、1-プロペニル基、2-プロペニル基、1-メチル-1-エテニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、2-メチル-1-プロペニル基、2-メチル-2-プロペニル基、1-エチルエテニル基、1-メチル-1-プロペニル基、1-メチル-2-プロペニル基、1-ペンテニル基、2-ペンテニル基、3-ペンテニル基、4-ペンテニル基、1-n-プロピルエテニル基、1-メチル-1-ブテニル基、1-メチル-2-ブテニル基、1-メチル-3-ブテニル基、2-エチル-2-プロペニル基、2-メチル-1-ブテニル基、2-メチル-2-ブテニル基、2-メチル-3-ブテニル基、3-メチル-1-ブテニル基、3-メチル-2-ブテニル基、3-メチル-3-ブテニル基、1,1-ジメチル-2-プロペニル基、1-i-プロピルエテニル基、1,2-ジメチル-1-プロペニル基、1,2-ジメチル-2-プロペニル基、1-シクロペンテニル基、2-シクロペンテニル基、3-シクロペンテニル基、1-ヘキセニル基、2-ヘキセニル基、3-ヘキセニル基、4-ヘキセニル基、5-ヘキセニル基、1-メチル-1-ペンテニル基、1-メチル-2-ペンテニル基、1-メチル-3-ペンテニル基、1-メチル-4-ペンテニル基、1-n-ブチルエテニル基、2-メチル-1-ペンテニル基、2-メチル-2-ペンテニル基、2-メチル-3-ペンテニル基、2-メチル-4-ペンテニル基、2-n-プロピル-2-プロペニル基、3-メチル-1-ペンテニル基、3-メチル-2-ペンテニル基、3-メチル-3-ペンテニル基、3-メチル-4-ペンテニル基、3-エチル-3-ブテニル基、4-メチル-1-ペンテニル基、4-メチル-2-ペンテニル基、4-メチル-3-ペンテニル基、4-メチル-4-ペンテニル基、1,1-ジメチル-2-ブテニル基、1,1-ジメチル-3-ブテニル基、1,2-ジメチル-1-ブテニル基、1,2-ジメチル-2-ブテニル基、1,2-ジメチル-3-ブテニル基、1-メチル-2-エチル-2-プロペニル基、1-s-ブチルエテニル基、1,3-ジメチル-1-ブテニル基、1,3-ジメチル-2-ブテニル基、1,3-ジメチル-3-ブテニル基、1-i-ブチルエテニル基、2,2-ジメチル-3-ブテニル基、2,3-ジメチル-1-ブテニル基、2,3-ジメチル-2-ブテニル基、2,3-ジメチル-3-ブテニル基、2-i-プロピル-2-プロペニル基、3,3-ジメチル-1-ブテニル基、1-エチル-1-ブテニル基、1-エチル-2-ブテニル基、1-エチル-3-ブテニル基、1-n-プロピル-1-プロペニル基、1-n-プロピル-2-プロペニル基、2-エチル-1-ブテニル基、2-エチル-2-ブテニル基、2-エチル-3-ブテニル基、1,1,2-トリメチル-2-プロペニル基、1-t-ブチルエテニル基、1-メチル-1-エチル-2-プロペニル基、1-エチル-2-メチル-1-プロペニル基、1-エチル-2-メチル-2-プロペニル基、1-i-プロピル-1-プロペニル基、1-i-プロピル-2-プロペニル基、1-メチル-2-シクロペンテニル基、1-メチル-3-シクロペンテニル基、2-メチル-1-シクロペンテニル基、2-メチル-2-シクロペンテニル基、2-メチル-3-シクロペンテニル基、2-メチル-4-シクロペンテニル基、2-メチル-5-シクロペンテニル基、2-メチレン-シクロペンチル基、3-メチル-1-シクロペンテニル基、3-メチル-2-シクロペンテニル基、3-メチル-3-シクロペンテニル基、3-メチル-4-シクロペンテニル基、3-メチル-5-シクロペンテニル基、3-メチレン-シクロペンチル基、1-シクロヘキセニル基、2-シクロヘキセニル基及び3-シクロヘキセニル基等が挙げられる。
 上記炭素原子数6~40のアリール基としては、以下に限定されないが、例えば、フェニル基、o-メチルフェニル基、m-メチルフェニル基、p-メチルフェニル基、o-クロルフェニル基、m-クロルフェニル基、p-クロルフェニル基、o-フルオロフェニル基、p-フルオロフェニル基、o-メトキシフェニル基、p-メトキシフェニル基、p-ニトロフェニル基、p-シアノフェニル基、α-ナフチル基、β-ナフチル基、o-ビフェニル基、m-ビフェニル基、p-ビフェニル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基及び9-フェナントリル基が挙げられる。
 Rは、各々独立して、炭素数1~30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6~30のアリール基、炭素数2~30のアルケニル基、チオール基又は水酸基であり、ここで、Rの少なくとも1つは水酸基又はチオール基を含む基である。なお、水酸基を含む基としては、以下に限定されないが、例えば、水酸基、水酸基で置換された炭素数1~30の直鎖状、分岐状若しくは環状のアルキル基、水酸基で置換された炭素数6~40のアリール基、水酸基で置換された炭素数2~30のアルケニル基が挙げられる。また、チオール基を含む基としては、以下に限定されないが、例えば、チオール基、チオール基で置換された炭素数1~30の直鎖状、分岐状若しくは環状のアルキル基、チオール基で置換された炭素数6~40のアリール基、チオール基で置換された炭素数2~30のアルケニル基が挙げられる。
 上記炭素原子数1~30のアルキル基、上記炭素原子数2~30のアルケニル基及び上記炭素原子数6~40のアリール基としては、Rに係る上記例示と同様のものが挙げられる。
 mは、各々独立して、1~7の整数であり、pは各々独立して0又は1であり、qは各々独立して0~4の整数であり、n0又は1である。
 上記式(1)で表される化合物は、比較的に低分子量ながらも、その構造の剛直さにより高い耐熱性を有するので、高温ベーク条件でも使用可能である。また、比較的に低分子量で低粘度であることから、段差を有する基板(特に、微細なスペースやホールパターン等)であっても、その段差の隅々まで均一に充填させることが容易であり、その結果、これを用いたリソグラフィー用下層膜形成材料は埋め込み特性が比較的に有利に高められ得る。また、高いエッチング耐性をも付与される。ここで、本実施形態の化合物の分子量としては、400~3000が好ましく、400~2000がより好ましく、400~1000がさらに好ましい。なお、上記分子量は、後述する実施例に記載の方法により測定することができる。
 上記式(1)で表される化合物は、架橋のし易さと有機溶媒への溶解性の観点から、Rの少なくとも1つが水酸基又はチオール基を含む。
 また、上記式(1)で表される化合物は、原料の供給性の観点から、下記式(1-1)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000016
 上記式(1-1)中、R、R、m、p、q、nは、上記式(1)で説明したものと同義である。
 上記式(1-1)で表される化合物は、有機溶媒への溶解性の観点から、下記式(1-2)で表される化合物であることがより好ましい。
Figure JPOXMLDOC01-appb-C000017
 上記式(1-2)中、R、p、q、nは、上記式(1)で説明したものと同義であり、Rは、各々独立して、炭素数1~30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6~40のアリール基、炭素数2~30のアルケニル基であり、mは、各々独立して0~5の整数であり、mは、各々独立して1~6の整数であり、m+mは1~6の整数である。
 上記式(1-2)で表される化合物は、さらなる有機溶媒への溶解性の観点から、下記式(1-3)で表される化合物であることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000018
 上記式(1-3)中、R、R、p、q、nは上記式(1)で説明したものと同義であり、R、mは上記式(1-2)で説明したものと同義である。)
 また、低分子量のほうが、流動性が良好である観点から、上記式(1-3)で表される化合物は、上記式(1-3)においてn=1である態様、すなわち下記式(1-4)で表される化合物であることがよりさらに好ましい。
Figure JPOXMLDOC01-appb-C000019
 上記式(1-4)中、R、及びqは上記式(1)で説明したものと同義である。
 さらにまた、上記一般式(1-4)で表される化合物は、製造のし易さと原料の供給性の観点から下記式(CAX-1)で表される化合物であることが一層好ましい。
Figure JPOXMLDOC01-appb-C000020
 以下に、上記式(1)で表される化合物の具体例を示すが、ここで列挙した限りではない。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
上記化合物中、R、R、q、mは、上記式(1)で説明したものと同義である。
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
 上記化合物中、R、R、mは、上記式(1)で説明したものと同義である。qは、0~3の整数である。
 本実施形態において、式(1)で表される化合物は、公知の手法を応用して適宜合成することができ、その合成手法は特に限定されない。例えば、常圧下、フェノール類、チオフェノール類、ナフトール類又はチオナフトール類と、対応するアルデヒド類とを酸触媒下にて重縮合反応させることによって、上記式(1)で表される化合物を得ることができる。また、必要に応じて、加圧下で行うこともできる。
 前記フェノール類としては、例えば、フェノール、メチルフェノール、メトキシベンゼン、カテコール、ハイドロキノン、トリメチルハイドロキノン等が挙げられるが、これらに限定されない。これらは、1種を単独で、又は2種以上を組み合わせて使用することができる。これらのなかでも、ハイドロキノン、トリメチルハイドロキノンを用いることがキサンテン構造を容易に作ることができる観点から好ましい。
 前記チオフェノール類としては、例えば、ベンゼンチオール、メチルベンゼンチオール、メトキシベンゼンチオール、ベンゼンジチオール、トリメチルベンゼンジチオール等が挙げられるが、これらに限定されない。これらは、1種を単独で、又は2種以上を組み合わせて使用することができる。これらのなかでも、ベンゼンジチオール、トリメチルベンゼンジチオールを用いることがチオキサンテン構造を容易に作ることができる観点から好ましい。
 前記ナフトール類としては、例えば、ナフトール、メチルナフトール、メトキシナフトール、ナフタレンジオール等が挙げられるが、これらに限定されない。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。これらのなかでも、ナフタレンジオールを用いることがベンゾキサンテン構造を容易に作ることができる観点から好ましい。
 前記チオナフトール類としては、例えば、ナフタレンチオール、メチルナフタレンチオール、メトキシナフタレンチオール、ナフタレンジチオール等が挙げられるが、これらに限定されない。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。これらのなかでも、ナフタレンジチオールを用いることがチオベンゾキサンテン構造を容易に作ることができる観点から好ましい。
 前記アルデヒド類としては、例えば、カルバゾール‐3‐カルバルデヒド、N‐メチルカルバゾール‐3‐カルバルデヒド、N‐エチルカルバゾール‐3‐カルバルデヒド、N‐プロピルカルバゾール‐3‐カルバルデヒド、N‐(t-ブチル)カルバゾール‐3‐カルバルデヒド、N‐ヒドロキシエチルカルバゾール‐3‐カルバルデヒド、N‐シクロヘキシルカルバゾール‐3‐カルバルデヒド、N‐フェニルカルバゾール‐3‐カルバルデヒド、N‐(4-メチルフェニル)カルバゾール‐3‐カルバルデヒド、N‐(4-エチルフェニル)カルバゾール‐3‐カルバルデヒド、N‐(4-メトキシフェニル)カルバゾール‐3‐カルバルデヒド、N‐(3-メトキシフェニル)カルバゾール‐3‐カルバルデヒド、N‐(4-エトキシフェニル)カルバゾール‐3‐カルバルデヒド、N‐(3-エトキシフェニル)カルバゾール‐3‐カルバルデヒド、N‐(4-ヒドロキシフェニル)カルバゾール‐3‐カルバルデヒド、N‐(3-ヒドロキシフェニル)カルバゾール‐3‐カルバルデヒド、N‐ベンジルカルバゾール‐3‐カルバルデヒド、N‐ビフェニルカルバゾール‐3‐カルバルデヒド、N‐(4-ヒドロキシビフェニル)カルバゾール‐3‐カルバルデヒド、1,4‐ジメチル‐9H‐カルバゾール‐3‐カルバルデヒド、6‐メトキシ‐1,4‐ジメチル‐9H‐カルバゾール‐3‐カルバルデヒド、N‐ニトロソカルバゾール‐3‐カルバルデヒド、 カルバゾール‐3,6‐ジカルバルデヒド、N‐メチルカルバゾール‐3,6‐ジカルバルデヒド、N‐エチルカルバゾール‐3,6‐ジカルバルデヒド、N‐プロピルカルバゾール‐3,6‐ジカルバルデヒド、N‐(t-ブチル)カルバゾール‐3,6‐ジカルバルデヒド、N‐ヒドロキシエチルカルバゾール‐3,6‐ジカルバルデヒド、N‐シクロヘキシルカルバゾール‐3,6‐ジカルバルデヒド、N‐フェニルカルバゾール‐3,6‐ジカルバルデヒド、N‐(4-メチルフェニル)カルバゾール‐3,6‐ジカルバルデヒド、N‐(4-エチルフェニル)カルバゾール‐3,6‐ジカルバルデヒド、N‐(4-メトキシフェニル)カルバゾール‐3,6‐ジカルバルデヒド、N‐(3-メトキシフェニル)カルバゾール‐3,6‐ジカルバルデヒド、N‐(4-エトキシフェニル)カルバゾール‐3,6‐ジカルバルデヒド、N‐(3-エトキシフェニル)カルバゾール‐3,6‐ジカルバルデヒド、N‐(4-ヒドロキシフェニル)カルバゾール‐3,6‐ジカルバルデヒド、N‐(3-ヒドロキシフェニル)カルバゾール‐3,6‐ジカルバルデヒド、N‐ベンジルカルバゾール‐3,6‐ジカルバルデヒド、N‐ビフェニルカルバゾール‐3,6‐ジカルバルデヒド、N‐(4-ヒドロキシビフェニル)カルバゾール‐3,6‐ジカルバルデヒド、1,4‐ジメチル‐9H‐カルバゾール‐3,6‐ジカルバルデヒド、N‐ニトロソカルバゾール‐3,6‐ジカルバルデヒド等が挙げられるが、これらに限定されない。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。これらのなかでもN‐エチルカルバゾール‐3‐カルバルデヒド、N‐ヒドロキシエチルカルバゾール‐3‐カルバルデヒドを用いることが、高い溶解性と高い耐熱性を与える観点から好ましい。
 上記反応に用いる酸触媒については、公知のものから適宜選択して用いることができ、特に限定されない。このような酸触媒としては、無機酸や有機酸が広く知られており、例えば、塩酸、硫酸、リン酸、臭化水素酸、フッ酸等の無機酸や、シュウ酸、マロン酸、こはく酸、アジピン酸、セバシン酸、クエン酸、フマル酸、マレイン酸、蟻酸、p-トルエンスルホン酸、メタンスルホン酸、トリフルオロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、ナフタレンジスルホン酸等の有機酸や、塩化亜鉛、塩化アルミニウム、塩化鉄、三フッ化ホウ素等のルイス酸、或いはケイタングステン酸、リンタングステン酸、ケイモリブデン酸又はリンモリブデン酸等の固体酸等が挙げられるが、これらに限定されない。これらのなかでも、製造上の観点から、有機酸及び固体酸が好ましく、入手の容易さや取り扱い易さ等の製造上の観点から、塩酸又は硫酸を用いることがより好ましい。なお、酸触媒については、1種を単独で又は2種以上を組み合わせて用いることができる。また、酸触媒の使用量は、使用する原料及び使用する触媒の種類、さらには反応条件などに応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して、0.01~100質量部であることが好ましい。
 上記反応の際には、反応溶媒を用いてもよい。反応溶媒としては、用いるアルデヒド類とフェノール類、チオフェノール類、ナフトール類、又はチオナフトール類との反応が進行するものであれば、特に限定されず、公知のものの中から適宜選択して用いることができるが、例えば、水、メタノール、エタノール、プロパノール、ブタノール、テトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル又はこれらの混合溶媒等が例示される。なお、溶媒は、1種を単独で或いは2種以上を組み合わせて用いることができる。また、これらの溶媒の使用量は、使用する原料及び使用する触媒の種類、さらには反応条件などに応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して0~2000質量部の範囲であることが好ましい。さらに、上記反応における反応温度は、反応原料の反応性に応じて適宜選択することができ、特に限定されないが、通常10~200℃の範囲である。
 本実施形態の一般式(1)で表される化合物を得るためには、反応温度は高い方が好ましく、具体的には60~200℃の範囲が好ましい。なお、反応方法は、公知の手法を適宜選択して用いることができ、特に限定されないが、例えば、フェノール類、チオフェノール類、ナフトール類又はチオナフトール類と、アルデヒド類と、触媒とを一括で仕込む方法や、フェノール類、チオフェノール類、ナフトール類又はチオナフトール類やアルデヒド類又はケトン類を触媒存在下で滴下していく方法がある。重縮合反応終了後、得られた化合物の単離は、常法にしたがって行うことができ、特に限定されない。例えば、系内に存在する未反応原料や触媒等を除去するために、反応釜の温度を130~230℃ にまで上昇させ、1~50mmHg程度で揮発分を除去する等の一般的手法を採ることにより、目的物である化合物を得ることができる。
 好ましい反応条件としては、アルデヒド類1モルに対し、フェノール類、チオフェノール類、ナフトール類又はチオナフトール類を1モル~過剰量、及び酸触媒を0.001~1モル使用し、常圧で、50~150℃で20分~100時間程度反応させることにより進行する。
 反応終了後、公知の方法により目的物を単離することができる。例えば、反応液を濃縮し、純水を加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離させ、得られた固形物を濾過し、乾燥させた後、カラムクロマトにより、副生成物と分離精製し、溶媒留去、濾過、乾燥を行って目的物である上記一般式(1)で示される化合物を得ることができる。
[樹脂]
 本実施形態の樹脂は、上記式(1)で表される化合物をモノマーとして得られる樹脂である。また、本実施形態の樹脂は、式(2)で表される構造を有する。
Figure JPOXMLDOC01-appb-C000026
 式(2)中、Xは、各々独立して、酸素原子、硫黄原子又は無架橋であることを示す。
 Rは、各々独立して、水素原子、ハロゲン基、ニトロ基、アミノ基、水酸基、炭素原子数1~30のアルキル基、炭素原子数2~30のアルケニル基、炭素原子数6~40のアリール基、及びそれらの組み合わせからなる群より選択され、ここで、該アルキル基、該アルケニル基及び該アリール基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよい。
 Rは、各々独立して、炭素数1~30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6~40のアリール基、炭素数2~30のアルケニル基、チオール基又は水酸基であり、ここで、Rの少なくとも1つは水酸基又はチオール基を含む基である。なお、水酸基を含む基としては、以下に限定されないが、例えば、水酸基、水酸基で置換された炭素数1~30の直鎖状、分岐状若しくは環状のアルキル基、水酸基で置換された炭素数6~40のアリール基、水酸基で置換された炭素数2~30のアルケニル基が挙げられる。また、チオール基を含む基としては、以下に限定されないが、例えば、チオール基、チオール基で置換された炭素数1~30の直鎖状、分岐状若しくは環状のアルキル基、チオール基で置換された炭素数6~40のアリール基、チオール基で置換された炭素数2~30のアルケニル基が挙げられる。
 Yは、各々独立して、単結合又は炭素数1~20の直鎖状若しくは分岐状のアルキレン基である。
 mは、各々独立して、1~6の整数であり、pは各々独立して0又は1であり、qは各々独立して0~4の整数であり、nは0又は1である。
 本実施形態で使用される式(2)で表される構造を有する樹脂は、例えば、上記式(1)で表される化合物を架橋反応性のある化合物と反応させることにより得られる。
 架橋反応性のある化合物としては、上記式(1)で表される化合物をオリゴマー化又はポリマー化し得るものであれば特に限定されず、公知のものを使用することができる。その具体例としては、例えば、アルデヒド、ケトン、カルボン酸、カルボン酸ハライド、ハロゲン含有化合物、アミノ化合物、イミノ化合物、イソシアネート、不飽和炭化水素基含有化合物等が挙げられるが、これらに限定されない。
 式(2)に表される構造を有する樹脂の具体例としては、以下に限定されないが、上記式(1)で表される化合物を架橋反応性のあるモノマーであるアルデヒドとの縮合反応等によってノボラック化した樹脂が挙げられる。
 ここで、上記式(1)で表される化合物をノボラック化する際に用いるアルデヒドとしては、例えば、ホルムアルデヒド、トリオキサン、パラホルムアルデヒド、ベンズアルデヒド、アセトアルデヒド、プロピルアルデヒド、フェニルアセトアルデヒド、フェニルプロピルアルデヒド、ヒドロキシベンズアルデヒド、クロロベンズアルデヒド、ニトロベンズアルデヒド、メチルベンズアルデヒド、エチルベンズアルデヒド、ブチルベンズアルデヒド、ビフェニルアルデヒド、ナフトアルデヒド、アントラセンカルボアルデヒド、フェナントレンカルボアルデヒド、ピレンカルボアルデヒド、フルフラール等が挙げられるが、これらに限定されない。これらの中でも、ホルムアルデヒドがより好ましい。なお、これらのアルデヒド類は、1種を単独で又は2種以上を組み合わせて用いることができる。また、上記アルデヒド類の使用量は、特に限定されないが、上記式(1)で表される化合物1モルに対して、0.2~5モルが好ましく、より好ましくは0.5~2モルである。
 上記式(1)で表される化合物とアルデヒドとの縮合反応において、反応溶媒を用いることもできる。この重縮合における反応溶媒としては、公知のものの中から適宜選択して用いることができ、特に限定されないが、例えば、水、メタノール、エタノール、プロパノール、ブタノール、テトラヒドロフラン、ジオキサン又はこれらの混合溶媒等が挙げられる。なお、溶媒は、1種を単独で或いは2種以上を組み合わせて用いることができる。
 また、これらの溶媒の使用量は、使用する原料及び使用する触媒の種類、さらには反応条件などに応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して0~2000質量部の範囲であることが好ましい。さらに、反応温度は、反応原料の反応性に応じて適宜選択することができ、特に限定されないが、通常10~200℃の範囲である。なお、反応方法は、公知の手法を適宜選択して用いることができ、特に限定されないが、上記式(1)で表される化合物、アルデヒド類、触媒を一括で仕込む方法や、上記式(1)で表される化合物やアルデヒド類を触媒存在下で滴下していく方法がある。
 重縮合反応終了後、得られた化合物の単離は、常法にしたがって行うことができ、特に限定されない。例えば、系内に存在する未反応原料や触媒等を除去するために、反応釜の温度を130~230℃ にまで上昇させ、1~50mmHg程度で揮発分を除去する等の一般的手法を採ることにより、目的物であるノボラック化した樹脂を得ることができる。
 ここで、本実施形態の樹脂は、上記式(1)で表される化合物の単独重合体であってもよいが、他のフェノール類との共重合体であってもよい。ここで共重合可能なフェノール類としては、例えば、フェノール、クレゾール、ジメチルフェノール、トリメチルフェノール、ブチルフェノール、フェニルフェノール、ジフェニルフェノール、ナフチルフェノール、レゾルシノール、メチルレゾルシノール、カテコール、ブチルカテコール、メトキシフェノール、メトキシフェノール、プロピルフェノール、ピロガロール、チモール等が挙げるが、これらに限定されない。
 また、本実施形態の樹脂は、上述した他のフェノール類以外に、重合可能なモノマーと共重合させたものであってもよい。かかる共重合モノマーとしては、例えば、ナフトール、メチルナフトール、メトキシナフトール、ジヒドロキシナフタレン、インデン、ヒドロキシインデン、ベンゾフラン、ヒドロキシアントラセン、アセナフチレン、ビフェニル、ビスフェノール、トリスフェノール、ジシクロペンタジエン、テトラヒドロインデン、4-ビニルシクロヘキセン、ノルボルナジエン、ビニルノルボルナエン、ピネン、リモネン等が挙げられるが、これらに限定されない。なお、本実施形態の樹脂は、上記式(1)で表される化合物と上述したフェノール類との2元以上の(例えば、2~4元系)共重合体であっても、上記式(1)で表される化合物と上述した共重合モノマーとの2元以上(例えば、2~4元系)共重合体であっても、上記式(1)で表される化合物と上述したフェノール類と上述した共重合モノマーとの3元以上の(例えば、3~4元系)共重合体であってもよい。
 なお、本実施形態の樹脂の分子量は、特に限定されないが、ポリスチレン換算の重量平均分子量(Mw)が500~20,000であることが好ましく、より好ましくは750~10,000である。また、架橋効率を高めるとともにベーク中の揮発成分を抑制する観点から、本実施形態の樹脂は、分散度(重量平均分子量Mw/数平均分子量Mn)が1.1~7の範囲内のものが好ましい。なお、上記Mnは、後述する実施例に記載の方法により求めることができる。
 上述した式(1)で表される化合物及び/又は該化合物をモノマーとして得られる樹脂は、湿式プロセスの適用がより容易になる等の観点から、溶媒に対する溶解性が高いものであることが好ましい。より具体的には、これら化合物及び/又は樹脂は、1-メトキシ-2-プロパノール(PGME)及び/又はプロピレングリコールモノメチルエーテルアセテート(PGMEA)を溶媒とする場合、当該溶媒に対する溶解度が10質量%以上であることが好ましい。ここで、PGME及び/又はPGMEAに対する溶解度は、「樹脂の質量÷(樹脂の質量+溶媒の質量)×100(質量%)」と定義される。例えば、上記式(1)で表される化合物及び/又は該化合物をモノマーとして得られる樹脂10gがPGMEA90gに対して溶解すると評価されるのは、式(1)で表される化合物及び/又は該化合物をモノマーとして得られる樹脂のPGMEAに対する溶解度が「10質量%以上」となる場合であり、溶解しないと評価されるのは、当該溶解度が「10質量%未満」となる場合である。
[リソグラフィー用下層膜形成材料]
 本実施形態のリソグラフィー用下層膜形成材料は、上述した式(1)で表される化合物及び該化合物をモノマーとして得られる樹脂からなる群より選ばれる少なくとも1種の物質を含有する。本実施形態において、前記物質は、塗布性及び品質安定性の点から、リソグラフィー用下層膜形成材料中、1~100質量%であることが好ましく、10~100質量%であることがより好ましく、50~100質量%であることがさらに好ましく、100質量%であることがよりさらに好ましい。
 なお、本実施形態のリソグラフィー用下層膜形成材料は、本実施形態の効果が損なわれない範囲において、既に知られているリソグラフィー用下層膜形成材料等を含んでいてもよい。
 上述のとおり、本実施形態のリソグラフィー用下層膜形成材料は、本実施形態の上記化合物又は樹脂を少なくとも含有するものである。このような構成を有するため、本実施形態のリソグラフィー用下層膜形成材料は、湿式プロセスが適用可能であり、耐熱性及びエッチング耐性に優れる。さらに、本実施形態のリソグラフィー用下層膜形成材料は上記化合物又は樹脂を用いているため、高温ベーク時の膜の劣化が抑制され、酸素プラズマエッチング等に対するエッチング耐性にも優れた下層膜を形成することができる。さらに、本実施形態のリソグラフィー用下層膜形成材料はレジスト層との密着性にも優れるので、優れたレジストパターンを得ることができる。
[リソグラフィー用下層膜形成用組成物]
 本実施形態のリソグラフィー用下層膜形成用組成物は、上述した式(1)で表される化合物及び/又は該化合物をモノマーとして得られる樹脂以外に、溶媒を含む。さらに、本実施形態のリソグラフィー用下層膜形成用組成物は、必要に応じて、架橋剤、酸発生剤、その他の成分を含んでいてもよい。以下、溶媒とこれらの任意成分について説明する。
[溶媒]
 本実施形態のリソグラフィー用下層膜形成用組成物は、溶媒を含有していてもよい。溶媒としては、上述した式(1)で表される化合物及び/又は該化合物をモノマーとして得られる樹脂が少なくとも溶解するものであれば、特に限定されず、公知のものを適宜用いることができる。
 溶媒の具体例としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等のセロソルブ系溶媒;乳酸エチル、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソアミル、乳酸エチル、メトキシプロピオン酸メチル、ヒドロキシイソ酪酸メチル等のエステル系溶媒;メタノール、エタノール、イソプロパノール、1-エトキシ-2-プロパノール等のアルコール系溶媒;トルエン、キシレン、アニソール等の芳香族系炭化水素等が挙げられるが、これらに限定されない。これらの溶媒は、1種を単独で、或いは2種以上を組み合わせて用いることができる。
 上記溶媒の中で、安全性の点から、シクロヘキサノン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、乳酸エチル、ヒドロキシイソ酪酸メチル、アニソールが好ましい。
 上記溶媒の含有量は、特に限定されないが、溶解性及び製膜上の観点から、前記下層膜形成材料100質量部に対して、100~10,000質量部であることが好ましく、200~5,000質量部であることがより好ましく、200~1,000質量部であることがさらに好ましい。
[架橋剤]
 本実施形態のリソグラフィー用下層膜形成用組成物は、インターミキシングを抑制する等の観点から、必要に応じて架橋剤を含有していてもよい。本実施形態で使用可能な架橋剤の具体例としては、メラミン化合物、グアナミン化合物、グリコールウリル化合物、ウレア化合物、エポキシ化合物、チオエポキシ化合物、イソシアネート化合物、アジド化合物、アルケニルエーテル基などの2重結合を含む化合物であって、メチロール基、アルコキシメチル基、アシロキシメチル基から選ばれる少なくとも一つの基を置換基(架橋性基)として有するものなどが挙げるが、これらに限定されない。なお、これらの架橋剤は、1種を単独で、或いは2種以上を組み合わせて用いることができる。また、これらは添加剤として用いてもよい。なお、上記架橋性基を式(1)で表される化合物及び/又は該化合物をモノマーとして得られる樹脂におけるポリマー側鎖にペンダント基として導入してもよい。また、水酸基を含む化合物も架橋剤として用いることができる。
 メラミン化合物の具体例としては、以下に限定されないが、ヘキサメチロールメラミン、ヘキサメトキシメチルメラミン、ヘキサメチロールメラミンの1~6個のメチロール基がメトキシメチル化した化合物又はその混合物、ヘキサメトキシエチルメラミン、ヘキサアシロキシメチルメラミン、ヘキサメチロールメラミンのメチロール基の1~6個がアシロキシメチル化した化合物又はその混合物などが挙げられる。エポキシ化合物の具体例としては、以下に限定されないが、トリス(2,3-エポキシプロピル)イソシアヌレート、トリメチロールメタントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、トリエチロールエタントリグリシジルエーテルなどが挙げられる。
 グアナミン化合物の具体例としては、以下に限定されないが、テトラメチロールグアナミン、テトラメトキシメチルグアナミン、テトラメチロールグアナミンの1~4個のメチロール基がメトキシメチル化した化合物又はその混合物、テトラメトキシエチルグアナミン、テトラアシロキシグアナミン、テトラメチロールグアナミンの1~4個のメチロール基がアシロキシメチル化した化合物又はその混合物などが挙げられる。グリコールウリル化合物の具体例としては、以下に限定されないが、テトラメチロールグリコールウリル、テトラメトキシグリコールウリル、テトラメトキシメチルグリコールウリル、テトラメチロールグリコールウリルのメチロール基の1~4個がメトキシメチル化した化合物又はその混合物、テトラメチロールグリコールウリルのメチロール基の1~4個がアシロキシメチル化した化合物又はその混合物などが挙げられる。ウレア化合物の具体例としては、以下に限定されないが、テトラメチロールウレア、テトラメトキシメチルウレア、テトラメチロールウレアの1~4個のメチロール基がメトキシメチル化した化合物又はその混合物、テトラメトキシエチルウレアなどが挙げられる。
 アルケニルエーテル基を含む化合物の具体例としては、以下に限定されないが、エチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、1,2-プロパンジオールジビニルエーテル、1,4-ブタンジオールジビニルエーテル、テトラメチレングリコールジビニルエーテル、ネオペンチルグリコールジビニルエーテル、トリメチロールプロパントリビニルエーテル、ヘキサンジオールジビニルエーテル、1,4-シクロヘキサンジオールジビニルエーテル、ペンタエリスリトールトリビニルエーテル、ペンタエリスリトールテトラビニルエーテル、ソルビトールテトラビニルエーテル、ソルビトールペンタビニルエーテル、トリメチロールプロパントリビニルエーテルなどが挙げられる。
 本実施形態のリソグラフィー用下層膜形成用組成物において、架橋剤の含有量は、特に限定されないが、リソグラフィー用下層膜形成材料100質量に対して、5~50質量部であることが好ましく、より好ましくは10~40質量部である。上記の好ましい範囲にすることで、レジスト層とのミキシング現象の発生が抑制される傾向にあり、また、反射防止効果が高められ、架橋後の膜形成性が高められる傾向にある。
[酸発生剤]
 本実施形態のリソグラフィー用下層膜形成用組成物は、熱による架橋反応をさらに促進させるなどの観点から、必要に応じて酸発生剤を含有していてもよい。酸発生剤としては、熱分解によって酸を発生するもの、光照射によって酸を発生するものなどが知られているが、いずれのものも使用することができる。
 酸発生剤としては、
1)下記一般式(P1a-1)、(P1a-2)、(P1a-3)又は(P1b)のオニウム塩、
2)下記一般式(P2)のジアゾメタン誘導体、
3)下記一般式(P3)のグリオキシム誘導体、
4)下記一般式(P4)のビススルホン誘導体、
5)下記一般式(P5)のN-ヒドロキシイミド化合物のスルホン酸エステル、
6)β-ケトスルホン酸誘導体、
7)ジスルホン誘導体、
8)ニトロベンジルスルホネート誘導体、
9)スルホン酸エステル誘導体
等が挙げられるが、これらに限定されない。なお、これらの酸発生剤は、1種を単独で、或いは2種以上を組み合わせて用いることができる。
Figure JPOXMLDOC01-appb-C000027
 上記式中、R101a、R101b、R101cはそれぞれ独立して炭素数1~12の直鎖状、分岐状若しくは環状のアルキル基、アルケニル基、オキソアルキル基又はオキソアルケニル基;炭素数6~20のアリール基;又は炭素数7~12のアラルキル基若しくはアリールオキソアルキル基を表し、これらの基の水素原子の一部又は全部がアルコキシ基等によって置換されていてもよい。また、R101bとR101cとは環を形成してもよく、環を形成する場合には、R101b、R101cはそれぞれ独立して炭素数1~6のアルキレン基を表す。K-は非求核性対向イオンを表す。R101d、R101e、R101f、R101gは、それぞれ独立してR101a、R101b、R101cに水素原子を加えて表される。R101dとR101e、R101dとR101eとR101fとは環を形成してもよく、環を形成する場合には、R101dとR101e及びR101dとR101eとR101fは炭素数3~10のアルキレン基を表し、又は、式中の窒素原子を環の中に有する複素芳香族環を表す。
 上記のR101a、R101b、R101c、R101d、R101e、R101f、R101gは互いに同一であっても異なっていてもよい。具体的には、アルキル基としては、以下に限定されないが、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロプロピルメチル基、4-メチルシクロヘキシル基、シクロヘキシルメチル基、ノルボルニル基、アダマンチル基等が挙げられる。アルケニル基としては、以下に限定されないが、例えば、ビニル基、アリル基、プロぺニル基、ブテニル基、ヘキセニル基、シクロヘキセニル基等が挙げられる。オキソアルキル基としては、以下に限定されないが、例えば、2-オキソシクロペンチル基、2-オキソシクロヘキシル基等や、2-オキソプロピル基、2-シクロペンチル-2-オキソエチル基、2-シクロヘキシル-2-オキソエチル基、2-(4-メチルシクロヘキシル)-2-オキソエチル基等を挙げることができる。オキソアルケニル基としては、以下に限定されないが、例えば、2-オキソ-4-シクロヘキセニル基、2-オキソ-4-プロペニル基等が挙げられる。アリール基としては、以下に限定されないが、例えば、フェニル基、ナフチル基等や、p-メトキシフェニル基、m-メトキシフェニル基、o-メトキシフェニル基、エトキシフェニル基、p-tert-ブトキシフェニル基、m-tert-ブトキシフェニル基等のアルコキシフェニル基;2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、エチルフェニル基、4-tert-ブチルフェニル基、4-ブチルフェニル基、ジメチルフェニル基等のアルキルフェニル基;メチルナフチル基、エチルナフチル基等のアルキルナフチル基;メトキシナフチル基、エトキシナフチル基等のアルコキシナフチル基;ジメチルナフチル基、ジエチルナフチル基等のジアルキルナフチル基;ジメトキシナフチル基、ジエトキシナフチル基等のジアルコキシナフチル基等が挙げられる。アラルキル基としては、以下に限定されないが、例えば、ベンジル基、フェニルエチル基、フェネチル基等が挙げられる。アリールオキソアルキル基としては、以下に限定されないが、例えば、2-フェニル-2-オキソエチル基、2-(1-ナフチル)-2-オキソエチル基、2-(2-ナフチル)-2-オキソエチル基等の2-アリール-2-オキソエチル基等が挙げられる。K-の非求核性対向イオンとしては、以下に限定されないが、例えば、塩化物イオン、臭化物イオン等のハライドイオン;トリフレート、1,1,1-トリフルオロエタンスルホネート、ノナフルオロブタンスルホネート等のフルオロアルキルスルホネート;トシレート、ベンゼンスルホネート、4-フルオロベンゼンスルホネート、1,2,3,4,5-ペンタフルオロベンゼンスルホネート等のアリールスルホネート;メシレート、ブタンスルホネート等のアルキルスルホネート等が挙げられる。
 また、R101d、R101e、R101f、R101gが式中の窒素原子を環の中に有する複素芳香族環である場合、その複素芳香族環としては、イミダゾール誘導体(例えばイミダゾール、4-メチルイミダゾール、4-メチル-2-フェニルイミダゾール等)、ピラゾール誘導体、フラザン誘導体、ピロリン誘導体(例えばピロリン、2-メチル-1-ピロリン等)、ピロリジン誘導体(例えばピロリジン、N-メチルピロリジン、ピロリジノン、N-メチルピロリドン等)、イミダゾリン誘導体、イミダゾリジン誘導体、ピリジン誘導体(例えばピリジン、メチルピリジン、エチルピリジン、プロピルピリジン、ブチルピリジン、4-(1-ブチルペンチル)ピリジン、ジメチルピリジン、トリメチルピリジン、トリエチルピリジン、フェニルピリジン、3-メチル-2-フェニルピリジン、4-tert-ブチルピリジン、ジフェニルピリジン、ベンジルピリジン、メトキシピリジン、ブトキシピリジン、ジメトキシピリジン、1-メチル-2-ピリドン、4-ピロリジノピリジン、1-メチル-4-フェニルピリジン、2-(1-エチルプロピル)ピリジン、アミノピリジン、ジメチルアミノピリジン等)、ピリダジン誘導体、ピリミジン誘導体、ピラジン誘導体、ピラゾリン誘導体、ピラゾリジン誘導体、ピペリジン誘導体、ピペラジン誘導体、モルホリン誘導体、インドール誘導体、イソインドール誘導体、1H-インダゾール誘導体、インドリン誘導体、キノリン誘導体(例えばキノリン、3-キノリンカルボニトリル等)、イソキノリン誘導体、シンノリン誘導体、キナゾリン誘導体、キノキサリン誘導体、フタラジン誘導体、プリン誘導体、プテリジン誘導体、カルバゾール誘導体、フェナントリジン誘導体、アクリジン誘導体、フェナジン誘導体、1,10-フェナントロリン誘導体、アデニン誘導体、アデノシン誘導体、グアニン誘導体、グアノシン誘導体、ウラシル誘導体、ウリジン誘導体等が例示される。
 上記式(P1a-1)と式(P1a-2)のオニウム塩は、光酸発生剤及び熱酸発生剤としての機能を有する。上記式(P1a-3)のオニウム塩は、熱酸発生剤としての機能を有する。
Figure JPOXMLDOC01-appb-C000028
 式(P1b)中、R102a、R102bはそれぞれ独立して炭素数1~8の直鎖状、分岐状又は環状のアルキル基を示す。R103は炭素数1~10の直鎖状、分岐状又は環状のアルキレン基を示す。R104a、R104bはそれぞれ独立して炭素数3~7の2-オキソアルキル基を示す。K-は非求核性対向イオンを表す。
 上記R102a、R102bの具体例としては、以下に限定されないが、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、シクロペンチル基、シクロヘキシル基、シクロプロピルメチル基、4-メチルシクロヘキシル基、シクロヘキシルメチル基等が挙げられる。R103の具体例としては、以下に限定されないが、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、へキシレン基、へプチレン基、オクチレン基、ノニレン基、1,4-シクロへキシレン基、1,2-シクロへキシレン基、1,3-シクロペンチレン基、1,4-シクロオクチレン基、1,4-シクロヘキサンジメチレン基等が挙げられる。R104a、R104bの具体例としては、以下に限定されないが、2-オキソプロピル基、2-オキソシクロペンチル基、2-オキソシクロヘキシル基、2-オキソシクロヘプチル基等が挙げられる。K-は式(P1a-1)、(P1a-2)及び(P1a-3)で説明したものと同様のものを挙げることができる。
Figure JPOXMLDOC01-appb-C000029
 上記式(P2)中、R105、R106はそれぞれ独立して炭素数1~12の直鎖状、分岐状又は環状のアルキル基又はハロゲン化アルキル基、炭素数6~20のアリール基又はハロゲン化アリール基、又は炭素数7~12のアラルキル基を表す。
 R105、R106のアルキル基としては、以下に限定されないが、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、アミル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、ノルボルニル基、アダマンチル基等が挙げられる。ハロゲン化アルキル基としては、以下に限定されないが、例えば、トリフルオロメチル基、1,1,1-トリフルオロエチル基、1,1,1-トリクロロエチル基、ノナフルオロブチル基等が挙げられる。アリール基としては、以下に限定されないが、例えば、フェニル基、p-メトキシフェニル基、m-メトキシフェニル基、o-メトキシフェニル基、エトキシフェニル基、p-tert-ブトキシフェニル基、m-tert-ブトキシフェニル基等のアルコキシフェニル基;2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、エチルフェニル基、4-tert-ブチルフェニル基、4-ブチルフェニル基、ジメチルフェニル基等のアルキルフェニル基等が挙げられる。ハロゲン化アリール基としては、以下に限定されないが、例えば、フルオロフェニル基、クロロフェニル基、1,2,3,4,5-ペンタフルオロフェニル基等が挙げられる。アラルキル基としては、以下に限定されないが、例えば、ベンジル基、フェネチル基等が挙げられる。
Figure JPOXMLDOC01-appb-C000030
 式(P3)中、R107、R108、R109はそれぞれ独立して炭素数1~12の直鎖状、分岐状若しくは環状のアルキル基又はハロゲン化アルキル基;炭素数6~20のアリール基若しくはハロゲン化アリール基;又は炭素数7~12のアラルキル基を示す。R108、R109は互いに結合して環状構造を形成してもよく、環状構造を形成する場合、R108、R109はそれぞれ炭素数1~6の直鎖状又は分岐状のアルキレン基を表す。
 R107、R108、R109のアルキル基、ハロゲン化アルキル基、アリール基、ハロゲン化アリール基、アラルキル基としては、R105、R106で説明したものと同様の基が挙げられる。なお、R108、R109のアルキレン基としては、以下に限定されないが、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ヘキシレン基等が挙げられる。
Figure JPOXMLDOC01-appb-C000031
 上記式(P4)中、R101a、R101bは上記と同様である。
Figure JPOXMLDOC01-appb-C000032
 上記式(P5)中、R110は炭素数6~10のアリーレン基、炭素数1~6のアルキレン基又は炭素数2~6のアルケニレン基を表す。これらの基の水素原子の一部又は全部は、さらに炭素数1~4の直鎖状若しくは分岐状のアルキル基又はアルコキシ基、ニトロ基、アセチル基、又はフェニル基で置換されていてもよい。R111は炭素数1~8の直鎖状、分岐状若しくは置換のアルキル基、アルケニル基又はアルコキシアルキル基、フェニル基、又はナフチル基を表す。これらの基の水素原子の一部又は全部は、さらに炭素数1~4のアルキル基又はアルコキシ基;炭素数1~4のアルキル基、アルコキシ基、ニトロ基又はアセチル基で置換されていてもよいフェニル基;炭素数3~5のヘテロ芳香族基;又は塩素原子、フッ素原子で置換されていてもよい。
 ここで、R110のアリーレン基としては、以下に限定されないが、例えば、1,2-フェニレン基、1,8-ナフチレン基等が挙げられる。アルキレン基としては、以下に限定されないが、例えば、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、フェニルエチレン基、ノルボルナン-2,3-ジイル基等が挙げられる。アルケニレン基としては、以下に限定されないが、例えば、1,2-ビニレン基、1-フェニル-1,2-ビニレン基、5-ノルボルネン-2,3-ジイル基等が挙げられる。R111のアルキル基としては、R101a~R101cと同様のものが挙げられる。アルケニル基としては、以下に限定されないが、例えば、ビニル基、1-プロペニル基、アリル基、1-ブテニル基、3-ブテニル基、イソプレニル基、1-ペンテニル基、3-ペンテニル基、4-ペンテニル基、ジメチルアリル基、1-ヘキセニル基、3-ヘキセニル基、5-ヘキセニル基、1-ヘプテニル基、3-ヘプテニル基、6-ヘプテニル基、7-オクテニル基等が挙げられる。アルコキシアルキル基としては、以下に限定されないが、例えば、メトキシメチル基、エトキシメチル基、プロポキシメチル基、ブトキシメチル基、ペンチロキシメチル基、ヘキシロキシメチル基、ヘプチロキシメチル基、メトキシエチル基、エトキシエチル基、プロポキシエチル基、ブトキシエチル基、ペンチロキシエチル基、ヘキシロキシエチル基、メトキシプロピル基、エトキシプロピル基、プロポキシプロピル基、ブトキシプロピル基、メトキシブチル基、エトキシブチル基、プロポキシブチル基、メトキシペンチル基、エトキシペンチル基、メトキシヘキシル基、メトキシヘプチル基等が挙げられる。
 なお、さらに置換されていてもよい炭素数1~4のアルキル基としては、以下に限定されないが、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基等が挙げられる。炭素数1~4のアルコキシ基としては、以下に限定されないが、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、tert-ブトキシ基等が挙げられる。炭素数1~4のアルキル基、アルコキシ基、ニトロ基又はアセチル基で置換されていてもよいフェニル基としては、以下に限定されないが、例えば、フェニル基、トリル基、p-tert-ブトキシフェニル基、p-アセチルフェニル基、p-ニトロフェニル基等が挙げられる。炭素数3~5のヘテロ芳香族基としては、以下に限定されないが、例えば、ピリジル基、フリル基等が挙げられる。
 酸発生剤の具体例としては、以下に限定されないが、トリフルオロメタンスルホン酸テトラメチルアンモニウム、ノナフルオロブタンスルホン酸テトラメチルアンモニウム、ノナフルオロブタンスルホン酸トリエチルアンモニウム、ノナフルオロブタンスルホン酸ピリジニウム、カンファースルホン酸トリエチルアンモニウム、カンファースルホン酸ピリジニウム、ノナフルオロブタンスルホン酸テトラn-ブチルアンモニウム、ノナフルオロブタンスルホン酸テトラフェニルアンモニウム、p-トルエンスルホン酸テトラメチルアンモニウム、トリフルオロメタンスルホン酸ジフェニルヨードニウム、トリフルオロメタンスルホン酸(p-tert-ブトキシフェニル)フェニルヨードニウム、p-トルエンスルホン酸ジフェニルヨードニウム、p-トルエンスルホン酸(p-tert-ブトキシフェニル)フェニルヨードニウム、トリフルオロメタンスルホン酸トリフェニルスルホニウム、トリフルオロメタンスルホン酸(p-tert-ブトキシフェニル)ジフェニルスルホニウム、トリフルオロメタンスルホン酸ビス(p-tert-ブトキシフェニル)フェニルスルホニウム、トリフルオロメタンスルホン酸トリス(p-tert-ブトキシフェニル)スルホニウム、p-トルエンスルホン酸トリフェニルスルホニウム、p-トルエンスルホン酸(p-tert-ブトキシフェニル)ジフェニルスルホニウム、p-トルエンスルホン酸ビス(p-tert-ブトキシフェニル)フェニルスルホニウム、p-トルエンスルホン酸トリス(p-tert-ブトキシフェニル)スルホニウム、ノナフルオロブタンスルホン酸トリフェニルスルホニウム、ブタンスルホン酸トリフェニルスルホニウム、トリフルオロメタンスルホン酸トリメチルスルホニウム、p-トルエンスルホン酸トリメチルスルホニウム、トリフルオロメタンスルホン酸シクロヘキシルメチル(2-オキソシクロヘキシル)スルホニウム、p-トルエンスルホン酸シクロヘキシルメチル(2-オキソシクロヘキシル)スルホニウム、トリフルオロメタンスルホン酸ジメチルフェニルスルホニウム、p-トルエンスルホン酸ジメチルフェニルスルホニウム、トリフルオロメタンスルホン酸ジシクロヘキシルフェニルスルホニウム、p-トルエンスルホン酸ジシクロヘキシルフェニルスルホニウム、トリフルオロメタンスルホン酸トリナフチルスルホニウム、トリフルオロメタンスルホン酸シクロヘキシルメチル(2-オキソシクロヘキシル)スルホニウム、トリフルオロメタンスルホン酸(2-ノルボニル)メチル(2-オキソシクロヘキシル)スルホニウム、エチレンビス[メチル(2-オキソシクロペンチル)スルホニウムトリフルオロメタンスルホナート]、1,2’-ナフチルカルボニルメチルテトラヒドロチオフェニウムトリフレート等のオニウム塩;ビス(ベンゼンスルホニル)ジアゾメタン、ビス(p-トルエンスルホニル)ジアゾメタン、ビス(キシレンスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(シクロペンチルスルホニル)ジアゾメタン、ビス(n-ブチルスルホニル)ジアゾメタン、ビス(イソブチルスルホニル)ジアゾメタン、ビス(sec-ブチルスルホニル)ジアゾメタン、ビス(n-プロピルスルホニル)ジアゾメタン、ビス(イソプロピルスルホニル)ジアゾメタン、ビス(tert-ブチルスルホニル)ジアゾメタン、ビス(n-アミルスルホニル)ジアゾメタン、ビス(イソアミルスルホニル)ジアゾメタン、ビス(sec-アミルスルホニル)ジアゾメタン、ビス(tert-アミルスルホニル)ジアゾメタン、1-シクロヘキシルスルホニル-1-(tert-ブチルスルホニル)ジアゾメタン、1-シクロヘキシルスルホニル-1-(tert-アミルスルホニル)ジアゾメタン、1-tert-アミルスルホニル-1-(tert-ブチルスルホニル)ジアゾメタン等のジアゾメタン誘導体;ビス-(p-トルエンスルホニル)-α-ジメチルグリオキシム、ビス-(p-トルエスルホニル)-α-ジフェニルグリオキシム、ビス-(p-トルエンスルホニル)-α-ジシクロヘキシルグリオキシム、ビス-(p-トルエンスルホニル)-2,3-ペンタンジオングリオキシム、ビス-(p-トルエンスルホニル)-2-メチル-3,4-ペンタンジオングリオキシム、ビス-(n-ブタンスルホニル)-α-ジメチルグリオキシム、ビス-(n-ブタンスルホニル)-α-ジフェニルグリオキシム、ビス-(n-ブタンスルホニル)-α-ジシクロヘキシルグリオキシム、ビス-(n-ブタンスルホニル)-2,3-ペンタンジオングリオキシム、ビス-(n-ブタンスルホニル)-2-メチル-3,4-ペンタンジオングリオキシム、ビス-(メタンスルホニル)-α-ジメチルグリオキシム、ビス-(トリフルオロメタンスルホニル)-α-ジメチルグリオキシム、ビス-(1,1,1-トリフルオロエタンスルホニル)-α-ジメチルグリオキシム、ビス-(tert-ブタンスルホニル)-α-ジメチルグリオキシム、ビス-(パーフルオロオクタンスルホニル)-α-ジメチルグリオキシム、ビス-(シクロヘキサンスルホニル)-α-ジメチルグリオキシム、ビス-(ベンゼンスルホニル)-α-ジメチルグリオキシム、ビス-(p-フルオロベンゼンスルホニル)-α-ジメチルグリオキシム、ビス-(p-tert-ブチルベンゼンスルホニル)-α-ジメチルグリオキシム、ビス-(キシレンスルホニル)-α-ジメチルグリオキシム、ビス-(カンファースルホニル)-α-ジメチルグリオキシム等のグリオキシム誘導体;ビスナフチルスルホニルメタン、ビストリフルオロメチルスルホニルメタン、ビスメチルスルホニルメタン、ビスエチルスルホニルメタン、ビスプロピルスルホニルメタン、ビスイソプロピルスルホニルメタン、ビス-p-トルエンスルホニルメタン、ビスベンゼンスルホニルメタン等のビススルホン誘導体;2-シクロヘキシルカルボニル-2-(p-トルエンスルホニル)プロパン、2-イソプロピルカルボニル-2-(p-トルエンスルホニル)プロパン等のβ-ケトスルホン誘導体;ジフェニルジスルホン誘導体、ジシクロヘキシルジスルホン誘導体等のジスルホン誘導体、p-トルエンスルホン酸2,6-ジニトロベンジル、p-トルエンスルホン酸2,4-ジニトロベンジル等のニトロベンジルスルホネート誘導体;1,2,3-トリス(メタンスルホニルオキシ)ベンゼン、1,2,3-トリス(トリフルオロメタンスルホニルオキシ)ベンゼン、1,2,3-トリス(p-トルエンスルホニルオキシ)ベンゼン等のスルホン酸エステル誘導体;N-ヒドロキシスクシンイミドメタンスルホン酸エステル、N-ヒドロキシスクシンイミドトリフルオロメタンスルホン酸エステル、N-ヒドロキシスクシンイミドエタンスルホン酸エステル、N-ヒドロキシスクシンイミド1-プロパンスルホン酸エステル、N-ヒドロキシスクシンイミド2-プロパンスルホン酸エステル、N-ヒドロキシスクシンイミド1-ペンタンスルホン酸エステル、N-ヒドロキシスクシンイミド1-オクタンスルホン酸エステル、N-ヒドロキシスクシンイミドp-トルエンスルホン酸エステル、N-ヒドロキシスクシンイミドp-メトキシベンゼンスルホン酸エステル、N-ヒドロキシスクシンイミド2-クロロエタンスルホン酸エステル、N-ヒドロキシスクシンイミドベンゼンスルホン酸エステル、N-ヒドロキシスクシンイミド-2,4,6-トリメチルベンゼンスルホン酸エステル、N-ヒドロキシスクシンイミド1-ナフタレンスルホン酸エステル、N-ヒドロキシスクシンイミド2-ナフタレンスルホン酸エステル、N-ヒドロキシ-2-フェニルスクシンイミドメタンスルホン酸エステル、N-ヒドロキシマレイミドメタンスルホン酸エステル、N-ヒドロキシマレイミドエタンスルホン酸エステル、N-ヒドロキシ-2-フェニルマレイミドメタンスルホン酸エステル、N-ヒドロキシグルタルイミドメタンスルホン酸エステル、N-ヒドロキシグルタルイミドベンゼンスルホン酸エステル、N-ヒドロキシフタルイミドメタンスルホン酸エステル、N-ヒドロキシフタルイミドベンゼンスルホン酸エステル、N-ヒドロキシフタルイミドトリフルオロメタンスルホン酸エステル、N-ヒドロキシフタルイミドp-トルエンスルホン酸エステル、N-ヒドロキシナフタルイミドメタンスルホン酸エステル、N-ヒドロキシナフタルイミドベンゼンスルホン酸エステル、N-ヒドロキシ-5-ノルボルネン-2,3-ジカルボキシイミドメタンスルホン酸エステル、N-ヒドロキシ-5-ノルボルネン-2,3-ジカルボキシイミドトリフルオロメタンスルホン酸エステル、N-ヒドロキシ-5-ノルボルネン-2,3-ジカルボキシイミドp-トルエンスルホン酸エステル等のN-ヒドロキシイミド化合物のスルホン酸エステル誘導体等が挙げられる。
 これらのなかでも、特に、トリフルオロメタンスルホン酸トリフェニルスルホニウム、トリフルオロメタンスルホン酸(p-tert-ブトキシフェニル)ジフェニルスルホニウム、トリフルオロメタンスルホン酸トリス(p-tert-ブトキシフェニル)スルホニウム、p-トルエンスルホン酸トリフェニルスルホニウム、p-トルエンスルホン酸(p-tert-ブトキシフェニル)ジフェニルスルホニウム、p-トルエンスルホン酸トリス(p-tert-ブトキシフェニル)スルホニウム、トリフルオロメタンスルホン酸トリナフチルスルホニウム、トリフルオロメタンスルホン酸シクロヘキシルメチル(2-オキソシクロヘキシル)スルホニウム、トリフルオロメタンスルホン酸(2-ノルボニル)メチル(2-オキソシクロヘキシル)スルホニウム、1,2’-ナフチルカルボニルメチルテトラヒドロチオフェニウムトリフレート等のオニウム塩;ビス(ベンゼンスルホニル)ジアゾメタン、ビス(p-トルエンスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(n-ブチルスルホニル)ジアゾメタン、ビス(イソブチルスルホニル)ジアゾメタン、ビス(sec-ブチルスルホニル)ジアゾメタン、ビス(n-プロピルスルホニル)ジアゾメタン、ビス(イソプロピルスルホニル)ジアゾメタン、ビス(tert-ブチルスルホニル)ジアゾメタン等のジアゾメタン誘導体;ビス-(p-トルエンスルホニル)-α-ジメチルグリオキシム、ビス-(n-ブタンスルホニル)-α-ジメチルグリオキシム等のグリオキシム誘導体、ビスナフチルスルホニルメタン等のビススルホン誘導体;N-ヒドロキシスクシンイミドメタンスルホン酸エステル、N-ヒドロキシスクシンイミドトリフルオロメタンスルホン酸エステル、N-ヒドロキシスクシンイミド1-プロパンスルホン酸エステル、N-ヒドロキシスクシンイミド2-プロパンスルホン酸エステル、N-ヒドロキシスクシンイミド1-ペンタンスルホン酸エステル、N-ヒドロキシスクシンイミドp-トルエンスルホン酸エステル、N-ヒドロキシナフタルイミドメタンスルホン酸エステル、N-ヒドロキシナフタルイミドベンゼンスルホン酸エステル等のN-ヒドロキシイミド化合物のスルホン酸エステル誘導体等が好ましく用いられる。
 本実施形態のリソグラフィー用下層膜形成用組成物において、酸発生剤の含有量は、特に限定されないが、リソグラフィー用下層膜形成材料100質量部に対して、0.1~50質量部であることが好ましく、より好ましくは0.5~40質量部である。上記の好ましい範囲にすることで、酸発生量が多くなって架橋反応が高められる傾向にあり、また、レジスト層とのミキシング現象の発生が抑制される傾向にある。
[塩基性化合物]
 さらに、本実施形態のリソグラフィー用下層膜形成用組成物は、保存安定性を向上させる等の観点から、塩基性化合物を含有していてもよい。
 塩基性化合物は、酸発生剤より微量に発生した酸が架橋反応を進行させるのを防ぐための、酸に対するクエンチャーの役割を果たす。このような塩基性化合物としては、例えば、第一級、第二級又は第三級の脂肪族アミン類、混成アミン類、芳香族アミン類、複素環アミン類、カルボキシ基を有する含窒素化合物、スルホニル基を有する含窒素化合物、水酸基を有する含窒素化合物、ヒドロキシフェニル基を有する含窒素化合物、アルコール性含窒素化合物、アミド誘導体、イミド誘導体等が挙げられるが、これらに限定されない。
 具体的には、第一級の脂肪族アミン類の具体例としては、以下に限定されないが、アンモニア、メチルアミン、エチルアミン、n-プロピルアミン、イソプロピルアミン、n-ブチルアミン、イソブチルアミン、sec-ブチルアミン、tert-ブチルアミン、ペンチルアミン、tert-アミルアミン、シクロペンチルアミン、ヘキシルアミン、シクロヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ドデシルアミン、セチルアミン、メチレンジアミン、エチレンジアミン、テトラエチレンペンタミン等が挙げられる。第二級の脂肪族アミン類の具体例としては、以下に限定されないが、ジメチルアミン、ジエチルアミン、ジ-n-プロピルアミン、ジイソプロピルアミン、ジ-n-ブチルアミン、ジイソブチルアミン、ジ-sec-ブチルアミン、ジペンチルアミン、ジシクロペンチルアミン、ジヘキシルアミン、ジシクロヘキシルアミン、ジヘプチルアミン、ジオクチルアミン、ジノニルアミン、ジデシルアミン、ジドデシルアミン、ジセチルアミン、N,N-ジメチルメチレンジアミン、N,N-ジメチルエチレンジアミン、N,N-ジメチルテトラエチレンペンタミン等が挙げられる。第三級の脂肪族アミン類の具体例としては、以下に限定されないが、トリメチルアミン、トリエチルアミン、トリ-n-プロピルアミン、トリイソプロピルアミン、トリ-n-ブチルアミン、トリイソブチルアミン、トリ-sec-ブチルアミン、トリペンチルアミン、トリシクロペンチルアミン、トリヘキシルアミン、トリシクロヘキシルアミン、トリヘプチルアミン、トリオクチルアミン、トリノニルアミン、トリデシルアミン、トリドデシルアミン、トリセチルアミン、N,N,N’,N’-テトラメチルメチレンジアミン、N,N,N’,N’-テトラメチルエチレンジアミン、N,N,N’,N’-テトラメチルテトラエチレンペンタミン等が挙げられる。
 また、混成アミン類の具体例としては、以下に限定されないが、ジメチルエチルアミン、メチルエチルプロピルアミン、ベンジルアミン、フェネチルアミン、ベンジルジメチルアミン等が挙げられる。芳香族アミン類及び複素環アミン類の具体例としては、以下に限定されないが、アニリン誘導体(例えばアニリン、N-メチルアニリン、N-エチルアニリン、N-プロピルアニリン、N,N-ジメチルアニリン、2-メチルアニリン、3-メチルアニリン、4-メチルアニリン、エチルアニリン、プロピルアニリン、トリメチルアニリン、2-ニトロアニリン、3-ニトロアニリン、4-ニトロアニリン、2,4-ジニトロアニリン、2,6-ジニトロアニリン、3,5-ジニトロアニリン、N,N-ジメチルトルイジン等)、ジフェニル(p-トリル)アミン、メチルジフェニルアミン、トリフェニルアミン、フェニレンジアミン、ナフチルアミン、ジアミノナフタレン、ピロール誘導体(例えばピロール、2H-ピロール、1-メチルピロール、2,4-ジメチルピロール、2,5-ジメチルピロール、N-メチルピロール等)、オキサゾール誘導体(例えばオキサゾール、イソオキサゾール等)、チアゾール誘導体(例えばチアゾール、イソチアゾール等)、イミダゾール誘導体(例えばイミダゾール、4-メチルイミダゾール、4-メチル-2-フェニルイミダゾール等)、ピラゾール誘導体、フラザン誘導体、ピロリン誘導体(例えばピロリン、2-メチル-1-ピロリン等)、ピロリジン誘導体(例えばピロリジン、N-メチルピロリジン、ピロリジノン、N-メチルピロリドン等)、イミダゾリン誘導体、イミダゾリジン誘導体、ピリジン誘導体(例えばピリジン、メチルピリジン、エチルピリジン、プロピルピリジン、ブチルピリジン、4-(1-ブチルペンチル)ピリジン、ジメチルピリジン、トリメチルピリジン、トリエチルピリジン、フェニルピリジン、3-メチル-2-フェニルピリジン、4-tert-ブチルピリジン、ジフェニルピリジン、ベンジルピリジン、メトキシピリジン、ブトキシピリジン、ジメトキシピリジン、1-メチル-2-ピリドン、4-ピロリジノピリジン、1-メチル-4-フェニルピリジン、2-(1-エチルプロピル)ピリジン、アミノピリジン、ジメチルアミノピリジン等)、ピリダジン誘導体、ピリミジン誘導体、ピラジン誘導体、ピラゾリン誘導体、ピラゾリジン誘導体、ピペリジン誘導体、ピペラジン誘導体、モルホリン誘導体、インドール誘導体、イソインドール誘導体、1H-インダゾール誘導体、インドリン誘導体、キノリン誘導体(例えばキノリン、3-キノリンカルボニトリル等)、イソキノリン誘導体、シンノリン誘導体、キナゾリン誘導体、キノキサリン誘導体、フタラジン誘導体、プリン誘導体、プテリジン誘導体、カルバゾール誘導体、フェナントリジン誘導体、アクリジン誘導体、フェナジン誘導体、1,10-フェナントロリン誘導体、アデニン誘導体、アデノシン誘導体、グアニン誘導体、グアノシン誘導体、ウラシル誘導体、ウリジン誘導体等が挙げられる。
 さらに、カルボキシ基を有する含窒素化合物の具体例としては、以下に限定されないが、アミノ安息香酸、インドールカルボン酸、アミノ酸誘導体(例えばニコチン酸、アラニン、アルギニン、アスパラギン酸、グルタミン酸、グリシン、ヒスチジン、イソロイシン、グリシルロイシン、ロイシン、メチオニン、フェニルアラニン、スレオニン、リジン、3-アミノピラジン-2-カルボン酸、メトキシアラニン)等が挙げられる。スルホニル基を有する含窒素化合物の具体例としては、以下に限定されないが、3-ピリジンスルホン酸、p-トルエンスルホン酸ピリジニウム等が挙げられる。水酸基を有する含窒素化合物、ヒドロキシフェニル基を有する含窒素化合物、アルコール性含窒素化合物の具体例としては、以下に限定されないが、2-ヒドロキシピリジン、アミノクレゾール、2,4-キノリンジオール、3-インドールメタノールヒドレート、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、N-エチルジエタノールアミン、N,N-ジエチルエタノールアミン、トリイソプロパノールアミン、2,2’-イミノジエタノール、2-アミノエタノ-ル、3-アミノ-1-プロパノール、4-アミノ-1-ブタノール、4-(2-ヒドロキシエチル)モルホリン、2-(2-ヒドロキシエチル)ピリジン、1-(2-ヒドロキシエチル)ピペラジン、1-[2-(2-ヒドロキシエトキシ)エチル]ピペラジン、ピペリジンエタノール、1-(2-ヒドロキシエチル)ピロリジン、1-(2-ヒドロキシエチル)-2-ピロリジノン、3-ピペリジノ-1,2-プロパンジオール、3-ピロリジノ-1,2-プロパンジオール、8-ヒドロキシユロリジン、3-クイヌクリジノール、3-トロパノール、1-メチル-2-ピロリジンエタノール、1-アジリジンエタノール、N-(2-ヒドロキシエチル)フタルイミド、N-(2-ヒドロキシエチル)イソニコチンアミド等が挙げられる。アミド誘導体の具体例としては、以下に限定されないが、ホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、プロピオンアミド、ベンズアミド等が挙げられる。イミド誘導体の具体例としては、以下に限定されないが、フタルイミド、スクシンイミド、マレイミド等が挙げられる。
 本実施形態のリソグラフィー用下層膜形成用組成物において、塩基性化合物の含有量は、特に限定されないが、リソグラフィー用下層膜形成材料100質量部に対して、0.001~2質量部であることが好ましく、より好ましくは0.01~1質量部である。上記の好ましい範囲にすることで、架橋反応を過度に損なうことなく保存安定性が高められる傾向にある。
 また、本実施形態のリソグラフィー用下層膜形成用組成物は、熱硬化性の付与や吸光度をコントロールする目的で、他の樹脂及び/又は化合物を含有していてもよい。このような他の樹脂及び/又は化合物としては、ナフトール樹脂、キシレン樹脂ナフトール変性樹脂、ナフタレン樹脂のフェノール変性樹脂、ポリヒドロキシスチレン、ジシクロペンタジエン樹脂、(メタ)アクリレート、ジメタクリレート、トリメタクリレート、テトラメタクリレート、ビニルナフタレン、ポリアセナフチレンなどのナフタレン環、フェナントレンキノン、フルオレンなどのビフェニル環、チオフェン、インデンなどのヘテロ原子を有する複素環を含む樹脂や芳香族環を含まない樹脂;ロジン系樹脂、シクロデキストリン、アダマンタン(ポリ)オール、トリシクロデカン(ポリ)オール及びそれらの誘導体等の脂環構造を含む樹脂又は化合物等が挙げられるが、これらに限定されない。さらに、本実施形態のリソグラフィー用下層膜形成用組成物は、公知の添加剤を含有していてもよい。上記公知の添加剤としては、以下に限定されないが、例えば、紫外線吸収剤、界面活性剤、着色剤、ノニオン系界面活性剤が挙げられる。
[リソグラフィー用下層膜及び多層レジストパターンの形成方法]
 本実施形態のリソグラフィー用下層膜は、本実施形態のリソグラフィー用下層膜形成用組成物から形成される。
 また、本実施形態のレジストパターン形成方法は、基板上に、本実施形態のリソグラフィー用下層膜形成用組成物を用いて下層膜を形成する工程(A-1)と、前記下層膜上に、少なくとも1層のフォトレジスト層を形成する工程(A-2)と、前記第2の形成工程の後、前記フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程(A-3)と、を有する。
 さらに、本実施形態の回路パターン形成方法は、基板上に、本実施形態のリソグラフィー用下層膜形成用組成物を用いて下層膜を形成する工程(B-1)と、前記下層膜上に、珪素原子を含有するレジスト中間層膜材料を用いて中間層膜を形成する工程(B-2)と、前記中間層膜上に、少なくとも1層のフォトレジスト層を形成する工程(B-3)と、前記工程(B-3)の後、前記フォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成する工程(B-4)と、前記工程(B-4)の後、前記レジストパターンをマスクとして前記中間層膜をエッチングし、得られた中間層膜パターンをエッチングマスクとして前記下層膜をエッチングし、得られた下層膜パターンをエッチングマスクとして基板をエッチングすることで基板にパターンを形成する工程(B-5)と、を有する。
 本実施形態のリソグラフィー用下層膜は、本実施形態のリソグラフィー用下層膜形成用組成物から形成されるものであれば、その形成方法は特に限定されず、公知の手法を適用することができる。例えば、本実施形態のリソグラフィー用下層膜形成用組成物をスピンコートやスクリーン印刷等の公知の塗布法或いは印刷法などで基板上に付与した後、有機溶媒を揮発させるなどして除去することで、下層膜を形成することができる。
 下層膜の形成時には、上層レジストとのミキシング現象の発生を抑制するとともに架橋反応を促進させるために、ベークをすることが好ましい。この場合、ベーク温度は、特に限定されないが、80~450℃の範囲内であることが好ましく、より好ましくは200~400℃である。また、ベーク時間も、特に限定されないが、10~300秒の範囲内であることが好ましい。なお、下層膜の厚さは、要求性能に応じて適宜選定することができ、特に限定されないが、通常、30~20,000nm程度であることが好ましく、より好ましくは50~15,000nmである。
 下層膜を作製した後、2層プロセスの場合はその上に珪素含有レジスト層、或いは通常の炭化水素からなる単層レジスト、3層プロセスの場合はその上に珪素含有中間層、さらにその上に珪素を含まない単層レジスト層を作製することが好ましい。この場合、このレジスト層を形成するためのフォトレジスト材料としては公知のものを使用することができる。
 基板上に下層膜を作製した後、2層プロセスの場合はその下層膜上に珪素含有レジスト層あるいは通常の炭化水素からなる単層レジストを作製することができる。3層プロセスの場合はその下層膜上に珪素含有中間層、さらにその珪素含有中間層上に珪素を含まない単層レジスト層を作製することができる。これらの場合において、レジスト層を形成するためのフォトレジスト材料は、公知のものから適宜選択して使用することができ、特に限定されない。
 2層プロセス用の珪素含有レジスト材料としては、酸素ガスエッチング耐性の観点から、ベースポリマーとしてポリシルセスキオキサン誘導体又はビニルシラン誘導体等の珪素原子含有ポリマーを使用し、さらに有機溶媒、酸発生剤、必要により塩基性化合物等を含むポジ型のフォトレジスト材料が好ましく用いられる。ここで珪素原子含有ポリマーとしては、この種のレジスト材料において用いられている公知のポリマーを使用することができる。
 3層プロセス用の珪素含有中間層としてはポリシルセスキオキサンベースの中間層が好ましく用いられる。中間層に反射防止膜として効果を持たせることによって、効果的に反射を抑えることができる傾向にある。例えば、193nm露光用プロセスにおいて、下層膜として芳香族基を多く含み基板エッチング耐性が高い材料を用いると、k値が高くなり、基板反射が高くなる傾向にあるが、中間層で反射を抑えることによって、基板反射を0.5%以下にすることができる。このような反射防止効果がある中間層としては、以下に限定されないが、193nm露光用としてはフェニル基又は珪素-珪素結合を有する吸光基を導入された、酸或いは熱で架橋するポリシルセスキオキサンが好ましく用いられる。
 また、Chemical Vapour Deposition(CVD)法で形成した中間層を用いることもできる。CVD法で作製した反射防止膜としての効果が高い中間層としては、以下に限定されないが、例えば、SiON膜が知られている。一般的には、CVD法よりスピンコート法やスクリーン印刷等の湿式プロセスによる中間層の形成の方が、簡便でコスト的なメリットがある。なお、3層プロセスにおける上層レジストは、ポジ型でもネガ型でもどちらでもよく、また、通常用いられている単層レジストと同じものを用いることができる。
 さらに、本実施形態の下層膜は、通常の単層レジスト用の反射防止膜或いはパターン倒れ抑制のための下地材として用いることもできる。本実施形態の下層膜は、下地加工のためのエッチング耐性に優れるため、下地加工のためのハードマスクとしての機能も期待できる。
 上記フォトレジスト材料によりレジスト層を形成する場合においては、上記下層膜を形成する場合と同様に、スピンコート法やスクリーン印刷等の湿式プロセスが好ましく用いられる。また、レジスト材料をスピンコート法などで塗布した後、通常、プリベークが行われるが、このプリベークは、80~180℃で10~300秒の範囲で行うことが好ましい。その後、常法にしたがい、露光を行い、ポストエクスポジュアーベーク(PEB)、現像を行うことで、レジストパターンを得ることができる。なお、レジスト膜の厚さは特に限定されないが、一般的には、30~500nmが好ましく、より好ましくは50~400nmである。
 また、露光光は、使用するフォトレジスト材料に応じて適宜選択して用いればよい。一般的には、波長300nm以下の高エネルギー線、具体的には248nm、193nm、157nmのエキシマレーザー、3~20nmの軟X線、電子ビーム、X線等を挙げることができる。
 上記の方法により形成されるレジストパターンは、本実施形態の下層膜によってパターン倒れが抑制されたものとなる。そのため、本実施形態の下層膜を用いることで、より微細なパターンを得ることができ、また、そのレジストパターンを得るために必要な露光量を低下させ得る。
 次に、得られたレジストパターンをマスクにしてエッチングを行う。2層プロセスにおける下層膜のエッチングとしては、ガスエッチングが好ましく用いられる。ガスエッチングとしては、酸素ガスを用いたエッチングが好適である。酸素ガスに加えて、He、Arなどの不活性ガスや、CO、CO2、NH3、SO2、N2、NO2、2ガスを加えることも可能である。また、酸素ガスを用いずに、CO、CO2、NH3、N2、NO2、2ガスだけでガスエッチングを行うこともできる。特に後者のガスは、パターン側壁のアンダーカット防止のための側壁保護のために好ましく用いられる。
 一方、3層プロセスにおける中間層のエッチングにおいても、ガスエッチングが好ましく用いられる。ガスエッチングとしては、上記の2層プロセスにおいて説明したものと同様のものが適用可能である。とりわけ、3層プロセスにおける中間層の加工は、フロン系のガスを用いてレジストパターンをマスクにして行うことが好ましい。その後、上述したように中間層パターンをマスクにして、例えば酸素ガスエッチングを行うことで、下層膜の加工を行うことができる。
 ここで、中間層として無機ハードマスク中間層膜を形成する場合は、CVD法やALD法等で、珪素酸化膜、珪素窒化膜、珪素酸化窒化膜(SiON膜)が形成される。窒化膜の形成方法としては、以下に限定されないが、例えば、特開2002-334869号公報(特許文献6)、WO2004/066377(特許文献7)に記載された方法を用いることができる。このような中間層膜の上に直接フォトレジスト膜を形成することができるが、中間層膜の上に有機反射防止膜(BARC)をスピンコートで形成して、その上にフォトレジスト膜を形成してもよい。
 中間層として、ポリシルセスキオキサンベースの中間層も好ましく用いられる。レジスト中間層膜に反射防止膜として効果を持たせることによって、効果的に反射を抑えることができる傾向にある。ポリシルセスキオキサンベースの中間層の具体的な材料については、以下に限定されないが、例えば、特開2007-226170号(特許文献8)、特開2007-226204号(特許文献9)に記載されたものを用いることができる。
 また、次の基板のエッチングも、常法によって行うことができ、例えば、基板がSiO2、SiNであればフロン系ガスを主体としたエッチング、p-SiやAl、Wでは塩素系、臭素系ガスを主体としたエッチングを行うことができる。基板をフロン系ガスでエッチングする場合、2層レジストプロセスの珪素含有レジストと3層プロセスの珪素含有中間層は、基板加工と同時に剥離される。一方、塩素系或いは臭素系ガスで基板をエッチングした場合は、珪素含有レジスト層又は珪素含有中間層の剥離が別途行われ、一般的には、基板加工後にフロン系ガスによるドライエッチング剥離が行われる。
 本実施形態の下層膜は、これら基板のエッチング耐性に優れる特徴がある。なお、基板は、公知のものを適宜選択して使用することができ、特に限定されないが、Si、α-Si、p-Si、SiO、SiN、SiON、W、TiN、Al等が挙げられる。また、基板は、基材(支持体)上に被加工膜(被加工基板)を有する積層体であってもよい。このような被加工膜としては、Si、SiO、SiON、SiN、p-Si、α-Si、W、W-Si、Al、Cu、Al-Si等種々のLow-k膜及びそのストッパー膜等が挙げられ、通常、基材(支持体)とは異なる材質のものが用いられる。なお、加工対象となる基板或いは被加工膜の厚さは、特に限定されないが、通常、50~10,000nm程度であることが好ましく、より好ましくは75~5,000nmである。
[化合物又は樹脂の精製方法]
 本実施形態の化合物又は樹脂の精製方法は、水と任意に混和しない有機溶媒及び、前記化合物又は前記樹脂を含む溶液と、酸性の水溶液と、を接触させて抽出する工程を含む。より詳細には、本実施形態においては、式(1)で表される化合物又は該化合物をモノマーとして得られる樹脂を、水と任意に混和しない有機溶媒に溶解させ、その溶液を酸性水溶液と接触させ抽出処理を行うことにより、該化合物又は該樹脂と有機溶媒を含む溶液(A)に含まれる金属分を水相に移行させたのち、有機相と水相を分離して精製することができる。本実施形態の精製方法により、式(1)で表される化合物又は該化合物をモノマーとして得られる樹脂中の種々の金属の含有量を著しく低減させることができる。
 本実施形態において、水と任意に混和しない有機溶媒とは、室温下における水への溶解度が30%未満である有機溶媒を意味する。なお、上記溶解度は20%未満であることが好ましく、より好ましくは10%未満である。水と任意に混和しない有機溶媒としては、特に限定されないが、半導体製造プロセスに安全に適用できる有機溶媒が好ましい。使用する有機溶媒の量は、使用する式(1)で表される化合物又は該化合物をモノマーとして得られる樹脂に対して、通常1~100質量倍程度使用される。
 使用される溶媒の具体例としては、以下に限定されないが、ジエチルエーテル、ジイソプロピルエーテル等のエーテル類、酢酸エチル、酢酸ブチル、酢酸イソアミル等のエステル類、メチルエチルケトン、1,2-ジエトキシケトン、メチルイソブチルケトン、エチルイソブチルケトン、シクロヘキサノン、シクロペンタノン、2‐ヘプタノン、2-ペンタノン等のケトン類、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノエチルエーテルアセテート等のグリコールエーテルアセテート類、n‐ヘキサン、n‐ヘプタン等の脂肪族炭化水素類、トルエン、キシレン等の芳香族炭化水素類、塩化メチレン、クロロホルム等のハロゲン化炭化水素類等が挙げられる。これらの中でも、トルエン、2-ヘプタノン、シクロヘキサノン、シクロペンタノン、メチルイソブチルケトン、プロピレングリコールモノメチルエーテルアセテート、1,2-ジエトキシケトン、酢酸ブチル、酢酸エチル等が好ましく、シクロヘキサノン、プロピレングリコールモノメチルエーテルアセテートがより好ましい。これらの溶媒はそれぞれ単独で用いることもできるし、また2種以上を混合して用いることもできる。
 本実施形態で使用される酸性の水溶液としては、一般に知られる有機、無機系化合物を水に溶解させた水溶液の中から適宜選択される。例えば、塩酸、硫酸、硝酸、リン酸等の鉱酸を水に溶解させた水溶液、又は、酢酸、プロピオン酸、蓚酸、マロン酸、コハク酸、フマル酸、マレイン酸、酒石酸、クエン酸、メタンスルホン酸、フェノールスルホン酸、p-トルエンスルホン酸、トリフルオロ酢酸等の有機酸を水に溶解させた水溶液が挙げられる。これら酸性の水溶液は、それぞれ単独で用いることもできるし、また2種以上を組み合わせて用いることもできる。これら酸性の水溶液の中でも、硫酸、硝酸、及び酢酸、蓚酸、酒石酸、クエン酸等のカルボン酸の水溶液が好ましく、硫酸、蓚酸、酒石酸、クエン酸の水溶液がより好ましく、蓚酸の水溶液がさらに好ましい。蓚酸、酒石酸、クエン酸等の多価カルボン酸は金属イオンに配位し、キレート効果が生じるために、より効果的に金属を除去できる傾向にあるものと考えられる。また、ここで用いる水は、本実施形態の目的に沿って、金属含有量の少ないもの、例えばイオン交換水等を用いることが好ましい。
 本実施形態で使用する酸性の水溶液のpHは特に限定されないが、式(1)で表される化合物又は該化合物をモノマーとして得られる樹脂への影響を考慮し、水溶液の酸性度を調整することが好ましい。通常、pH範囲は0~5程度であり、より好ましくはpH0~3程度である。
 本実施形態で使用する酸性の水溶液の使用量は特に限定されないが、金属除去のための抽出回数を低減する観点及び全体の液量を考慮して操作性を確保する観点から、当該使用量を調整することが好ましい。水溶液の使用量は、通常、有機溶媒に溶解した式(1)で表される化合物又は該化合物をモノマーとして得られる樹脂の溶液に対して10~200質量%であり、好ましくは20~100質量%である。
 本実施形態では上記のような酸性の水溶液と、式(1)で表される化合物又は該化合物をモノマーとして得られる樹脂及び水と任意に混和しない有機溶媒を含む溶液(A)とを接触させることにより金属分を抽出する。
 抽出処理を行う際の温度は通常、20~90℃であり、好ましくは30~80℃の範囲である。抽出操作は、例えば、撹拌等により、よく混合させたあと、静置することにより行われる。これにより、式(1)で表される化合物又は該化合物をモノマーとして得られる樹脂と有機溶媒を含む溶液に含まれていた金属分が水相に移行する。また本操作により、溶液の酸性度が低下し、式(1)で表される化合物又は該化合物をモノマーとして得られる樹脂の変質を抑制することができる。
 得られる混合物は、式(1)で表される化合物又は該化合物をモノマーとして得られる樹脂と有機溶媒を含む溶液相と水相に分離するのでデカンテーション等により式(1)で表される化合物又は該化合物をモノマーとして得られる樹脂と有機溶媒を含む溶液を回収する。静置する時間は特に限定されないが、有機溶媒を含む溶液相と水相との分離をより良好にする観点から、当該静置する時間を調整することが好ましい。通常、静置する時間は1分以上であり、好ましくは10分以上であり、より好ましくは30分以上である。また、抽出処理は1回だけでもかまわないが、混合、静置、分離という操作を複数回繰り返して行うのも有効である。
 本実施形態において、溶液(A)と酸性の水溶液とを接触させて抽出する工程の後、さらに水による抽出処理を行う工程を含むものとすることが好ましい。すなわち、酸性の水溶液を用いて上記抽出処理を行った後に、該水溶液から抽出され、回収された式(1)で表される化合物又は該化合物をモノマーとして得られる樹脂と有機溶媒を含む溶液(A)を、さらに水による抽出処理に供することが好ましい。上記の水による抽出操作は、例えば、撹拌等により、よく混合させたあと、静置することにより行われる。そして得られる溶液は、式(1)で表される化合物又は該化合物をモノマーとして得られる樹脂と有機溶媒を含む溶液相と水相に分離するため、デカンテーション等により式(1)で表される化合物又は該化合物をモノマーとして得られる樹脂と有機溶媒を含む溶液相を回収する。また、ここで用いる水は、本実施形態の目的に沿って、金属含有量の少ないもの、例えばイオン交換水等であることが好ましい。抽出処理は1回だけでもかまわないが、混合、静置、分離という操作を複数回繰り返して行うのも有効である。また、抽出処理における両者の使用割合や、温度、時間等の条件は特に限定されないが、先の酸性の水溶液との接触処理の場合と同様で構わない。
 こうして得られた式(1)で表される化合物又は該化合物をモノマーとして得られる樹脂と有機溶媒を含む溶液に混入しうる水分については、減圧蒸留等の操作を施すことにより容易に除去できる。また、必要により有機溶媒を加え、式(1)で表される化合物又は該化合物をモノマーとして得られる樹脂の濃度を任意の濃度に調整することができる。
 得られた式(1)で表される化合物又は該化合物をモノマーとして得られる樹脂と有機溶媒を含む溶液から、式(1)で表される化合物又は該化合物をモノマーとして得られる樹脂を単離する方法は、例えば、減圧除去、再沈殿による分離、及びそれらの組み合わせ等、公知の方法で行うことができる。必要に応じて、濃縮操作、ろ過操作、遠心分離操作、乾燥操作等の公知の処理を行うことができる。
 以下、本実施形態を実施例及び比較例によりさらに詳細に説明するが、本実施形態は、これらの例によって何ら限定されるものではない。
(炭素濃度及び酸素濃度)
 有機元素分析により炭素濃度及び酸素濃度(質量%)を測定した。
 装置:CHNコーダーMT-6(ヤナコ分析工業(株)製)
(分子量)
 LC-MS分析により、Water社製Acquity UPLC/MALDI-Synapt HDMSを用いて測定した。
(ポリスチレン換算分子量)
 ゲル浸透クロマトグラフィー(GPC)分析により、ポリスチレン換算の重量平均分子量(Mw)、数平均分子量(Mn)を求め、分散度(Mw/Mn)を求めた。
 装置:Shodex GPC-101型(昭和電工(株)製)
 カラム:KF-80M×3
 溶離液:THF 1mL/min
 温度:40℃
(熱分解温度(Tg))
 エスアイアイ・ナノテクノロジー社製EXSTAR6000DSC装置を使用し、試料約5mgをアルミニウム製非密封容器に入れ、窒素ガス(30mL/min)気流中昇温速度10℃/minで500℃まで昇温した。その際、ベースラインに減少部分が現れる温度を熱分解温度(Tg)とした。
(溶解度)
 23℃にて、化合物の1-メトキシ-2-プロパノール(PGME)及びプロピレングリコールモノメチルエーテルアセテート(PGMEA)に対する溶解量を測定し、その結果を以下の基準で評価した。
 評価A:10wt%以上
 評価B:5wt%以上10wt%未満
 評価C:5wt%未満
(合成例1) CAX-1の合成
 攪拌機、冷却管及びビュレットを備えた内容積200mLの容器を準備した。この容器に、N‐エチルカルバゾール‐3‐カルバルデヒド(日触テクノファインケミカル社製)17.8g(80mmol)と、2,6-ジヒドロキシナフタレン(東京化成社製試薬)25.6g(160mmol)と、1,4-ジオキサン(関東化学社製試薬)100mLとを仕込み、p-トルエンスルホン酸(関東化学社製試薬)3.9g(21mmol)を加えて、反応液を調製した。この反応液を90℃で6時間撹拌して反応を行った。次に、24%水酸化ナトリウム水溶液(関東化学社製試薬)にて中和処理を行い、反応液を濃縮し、n-ヘプタン(関東化学社製試薬)50gを加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離した。濾過により得られた固形物を乾燥させた後、カラムクロマトによる分離精製を行うことにより、下記式で表される目的化合物(CAX-1)4.2gを得た。
 なお、400MHz-H-NMRにより以下のピークが見出され、下記式の化学構造を有することを確認した。
 H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm)9.9(2H,O-H)、7.0~8.3(17H,Ph-H)、6.2(1H,C-H)、4.2(2H,CH)、1.2(3H,CH
Figure JPOXMLDOC01-appb-C000033
 有機元素分析の結果、得られた化合物(CAX-1)の炭素濃度は82.8%、酸素濃度は9.4%であった。
 得られた化合物について、前記方法により分子量を測定した結果、508であった。
 熱重量測定(TG)の結果、得られた化合物(CAX-1)の10%熱減量温度は400℃以上であった。そのため、高い耐熱性を有し、高温ベークへの適用が可能であると評価された。
 PGME及びPGMEAへの溶解性を評価した結果、10wt%以上(評価A)であり、化合物(CAX-1)は優れた溶解性を有するものと評価された。そのため、化合物(CAX-1)は溶液状態で高い保存安定性を有し、半導体微細加工プロセスで広く用いられるエッジビートリンス液(PGME/PGMEA混合液)にも十分に適用できるものと評価された。
(合成例2) CAX-2の合成
 攪拌機、冷却管及びビュレットを備えた内容積200mLの容器を準備した。この容器に、N‐エチルカルバゾール‐3‐カルバルデヒド(日触テクノファインケミカル社製)17.8g(80mmol)と、2,7-ジヒドロキシナフタレン(東京化成社製試薬)25.6g(160mmol)と、1,4-ジオキサン(関東化学社製試薬)150mLとを仕込み、p-トルエンスルホン酸(関東化学社製試薬)7.8g(42mmol)を加えて、反応液を調製した。この反応液を90℃で6時間撹拌して反応を行った。次に、24%水酸化ナトリウム水溶液(関東化学社製試薬)にて中和処理を行い、反応液を濃縮し、n-ヘプタン(関東化学社製試薬)50gを加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離した。濾過により得られた固形物を乾燥させた後、カラムクロマトによる分離精製を行うことにより、下記式で表される目的化合物(CAX-2)3.8gを得た。
 なお、400MHz-H-NMRにより以下のピークが見出され、下記式の化学構造を有することを確認した。
 H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm)9.9(2H,O-H)、7.0~8.1(17H,Ph-H)、6.1(1H,C-H)、4.4(2H,CH)、1.3(3H,CH
Figure JPOXMLDOC01-appb-C000034
 有機元素分析の結果、得られた化合物(CAX-2)の炭素濃度は82.8%、酸素濃度は9.4%であった。
 得られた化合物について、前記方法により分子量を測定した結果、508であった。
 熱重量測定(TG)の結果、得られた化合物(CAX-2)の10%熱減量温度は400℃以上であった。高い耐熱性を有し、高温ベークへの適用が可能であるものと評価された。
 PGME及びPGMEAへの溶解性を評価した結果、5wt%以上(評価B)であり、化合物(CAX-2)は優れた溶解性を有するものと評価された。
(合成例3) CAX-3の合成
 攪拌機、冷却管及びビュレットを備えた内容積200mLの容器を準備した。この容器に、N‐エチルカルバゾール‐3‐カルバルデヒド(日触テクノファインケミカル社製)17.8g(80mmol)と、4,4‘-ビフェノール(東京化成社製試薬)29.8g(160mmol)と、γ-ブチロラクトン(関東化学社製試薬)100mLとを仕込み、p-トルエンスルホン酸(関東化学社製試薬)7.8g(42mmol)を加えて、反応液を調製した。この反応液を100℃で8時間撹拌して反応を行った。次に、24%水酸化ナトリウム水溶液(関東化学社製試薬)にて中和処理を行い、反応液を濃縮し、イオン交換水100gを加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離した。濾過により得られた固形物を乾燥させた後、カラムクロマトによる分離精製を行うことにより、下記式で表される目的化合物(CAX-3)4.8gを得た。
 なお、400MHz-H-NMRにより以下のピークが見出され、下記式の化学構造を有することを確認した。
 H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm)9.4(4H,O-H)、6.8~7.8(14H,Ph-H)、6.1(1H,C-H)、4.2(2H,CH)、1.2(3H,CH
Figure JPOXMLDOC01-appb-C000035
 有機元素分析の結果、得られた化合物(CAX-3)の炭素濃度は81.0%、酸素濃度は11.0%であった。
 得られた化合物について、前記方法により分子量を測定した結果、577であった。
 熱重量測定(TG)の結果、得られた化合物(CAX-3)の10%熱減量温度は400℃以上であった。高い耐熱性を有し、高温ベークへの適用が可能であるものと評価された。
 PGME及びPGMEAへの溶解性を評価した結果、10wt%以上(評価A)であり、化合物(CAX-3)は優れた溶解性を有するものと評価された。そのため、化合物(CAX-3)は溶液状態で高い保存安定性を有し、半導体微細加工プロセスで広く用いられるエッジビートリンス液(PGME/PGMEA混合液)にも十分に適用できるものと評価された。
(合成例4) CAX-4の合成
 攪拌機、冷却管及びビュレットを備えた内容積300mLの容器を準備した。この容器に、N‐ブチルカルバゾール‐3‐カルバルデヒド(日触テクノファインケミカル社製)19.8g(80mmol)と、2,6-ジヒドロキシナフタレン(東京化成社製試薬)25.6g(160mmol)と、1,4-ジオキサン(関東化学社製試薬)100mLとを仕込み、p-トルエンスルホン酸(関東化学社製試薬)3.9g(21mmol)を加えて、反応液を調製した。この反応液を90℃で6時間撹拌して反応を行った。次に、24%水酸化ナトリウム水溶液(関東化学社製試薬)にて中和処理を行い、反応液を濃縮し、n-ヘプタン(関東化学社製試薬)50gを加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離した。濾過により得られた固形物を乾燥させた後、カラムクロマトによる分離精製を行うことにより、下記式で表される目的化合物(CAX-4)4.2gを得た。
 なお、400MHz-H-NMRにより以下のピークが見出され、下記式の化学構造を有することを確認した。
 H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm)9.9(2H,O-H)、7.0~8.2(17H,Ph-H)、6.1(1H,C-H)、3.9~4.3(6H,CH)、1.2(3H,CH
Figure JPOXMLDOC01-appb-C000036
 有機元素分析の結果、得られた化合物(CAX-4)の炭素濃度は82.9%、酸素濃度は8.9%であった。
 得られた化合物について、前記方法により分子量を測定した結果、535であった。
 熱重量測定(TG)の結果、得られた化合物(CAX-4)の10%熱減量温度は400℃以上であった。高い耐熱性を有し、高温ベークへの適用が可能であるものと評価された。
 PGME及びPGMEAへの溶解性を評価した結果、10wt%以上(評価A)であり、化合物(CAX-4)は優れた溶解性を有するものと評価された。そのため、化合物(CAX-4)は溶液状態で高い保存安定性を有し、半導体微細加工プロセスで広く用いられるエッジビートリンス液(PGME/PGMEA混合液)にも十分に適用できるものと評価された。
(合成例5) CAX-5の合成
 攪拌機、冷却管及びビュレットを備えた内容積300mLの容器を準備した。この容器に、9H‐カルバゾール‐1‐カルバルデヒド(Tetrahedron; vol. 67; nb.32; (2011); p.5725-5731を参考に合成)15.6g(80mmol)と、2,6-ジヒドロキシナフタレン(東京化成社製試薬)25.6g(160mmol)と、1,4-ジオキサン(関東化学社製試薬)100mLとを仕込み、p-トルエンスルホン酸(関東化学社製試薬)3.9g(21mmol)を加えて、反応液を調製した。この反応液を90℃で6時間撹拌して反応を行った。次に、24%水酸化ナトリウム水溶液(関東化学社製試薬)にて中和処理を行い、反応液を濃縮し、n-ヘプタン(関東化学社製試薬)50gを加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離した。濾過により得られた固形物を乾燥させた後、カラムクロマトによる分離精製を行うことにより、下記式で表される目的化合物(CAX-5)2.4gを得た。
 なお、400MHz-H-NMRにより以下のピークが見出され、下記式の化学構造を有することを確認した。
 H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm)9.7~9.9(2H,O-H)、10.9(1H,N-H)、7.0~7.9(16H,Ph-H)、6.0(1H,C-H)
Figure JPOXMLDOC01-appb-C000037
 有機元素分析の結果、得られた化合物(CAX-5)の炭素濃度は80.0%、酸素濃度は12.9%であった。
 得られた化合物について、前記方法により分子量を測定した結果、495であった。
 熱重量測定(TG)の結果、得られた化合物(CAX-5)の10%熱減量温度は400℃以上であった。高い耐熱性を有し、高温ベークへの適用が可能であるものと評価された。
 PGME及びPGMEAへの溶解性を評価した結果、10wt%以上(評価A)であり、化合物(CAX-5)は優れた溶解性を有するものと評価された。そのため、化合物(CAX-5)は溶液状態で高い保存安定性を有し、半導体微細加工プロセスで広く用いられるエッジビートリンス液(PGME/PGMEA混合液)にも十分に適用できるものと評価された。
(合成例6) CAX-6の合成
 攪拌機、冷却管及びビュレットを備えた内容積300mLの容器を準備した。この容器に、1-メトキシ-9H-カルバゾール-3-カルボアルデヒド(ムラヤニン;Knolker,H.-J.; Bauermeister, M.J.Chem.Soc.Chem.Commun.1990, 664.を参考に合成)18.0g(80mmol)と、2,6-ジヒドロキシナフタレン(東京化成社製試薬)25.6g(160mmol)と、1,4-ジオキサン(関東化学社製試薬)100mLとを仕込み、p-トルエンスルホン酸(関東化学社製試薬)3.9g(21mmol)を加えて、反応液を調製した。この反応液を90℃で6時間撹拌して反応を行った。次に、24%水酸化ナトリウム水溶液(関東化学社製試薬)にて中和処理を行い、反応液を濃縮し、n-ヘプタン(関東化学社製試薬)50gを加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離した。濾過により得られた固形物を乾燥させた後、カラムクロマトによる分離精製を行うことにより、下記式で表される目的化合物(CAX-6)2.4gを得た。
 なお、400MHz-H-NMRにより以下のピークが見出され、下記式の化学構造を有することを確認した。
 H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm)9.9(2H,O-H)、11.3(1H,N-H)、7.0~7.9(16H,Ph-H)、6.0(1H,C-H)、1.5(3H,CH
Figure JPOXMLDOC01-appb-C000038
 有機元素分析の結果、得られた化合物(CAX-6)の炭素濃度は80.1%、酸素濃度は12.5%であった。
 得られた化合物について、前記方法により分子量を測定した結果、509であった。
 熱重量測定(TG)の結果、得られた化合物(CAX-6)の10%熱減量温度は400℃以上であった。高い耐熱性を有し、高温ベークへの適用が可能であるものと評価された。
 PGME及びPGMEAへの溶解性を評価した結果、10wt%以上(評価A)であり、化合物(CAX-6)は優れた溶解性を有するものと評価された。そのため、化合物(CAX-6)は溶液状態で高い保存安定性を有し、半導体微細加工プロセスで広く用いられるエッジビートリンス液(PGME/PGMEA混合液)にも十分に適用できるものと評価された。
(合成例7) CAX-7の合成
 攪拌機、冷却管及びビュレットを備えた内容積300mLの容器を準備した。この容器に、2-ヒドロキシ-9H‐カルバゾール‐1‐カルバルデヒド(Francisco, Caria S.;Rodrigues, Ligia R.; Cerqueira, Nuno M.F.S.A.; Oliveira-campos, Ana M.F.; Rodrigues, Ligia M.; Esteves, Ana P.; Bioorganic and Medicinal Chemistry; vol. 21; nb. 17; (2013); p.5047-5053を参考に合成)15.6g(80mmol)と、2,6-ジヒドロキシナフタレン(東京化成社製試薬)25.6g(160mmol)と、1,4-ジオキサン(関東化学社製試薬)100mLとを仕込み、p-トルエンスルホン酸(関東化学社製試薬)3.9g(21mmol)を加えて、反応液を調製した。この反応液を90℃で8時間撹拌して反応を行った。次に、24%水酸化ナトリウム水溶液(関東化学社製試薬)にて中和処理を行い、反応液を濃縮し、n-ヘプタン(関東化学社製試薬)100gを加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離した。濾過により得られた固形物を乾燥させた後、カラムクロマトによる分離精製を行うことにより、下記式で表される目的化合物(CAX-7)2.9gを得た。
 なお、400MHz-H-NMRにより以下のピークが見出され、下記式の化学構造を有することを確認した。
 H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm)9.4~9.6(3H,O-H)、11.2(1H,N-H)、7.0~7.9(16H,Ph-H)、6.0(1H,C-H)
Figure JPOXMLDOC01-appb-C000039
 有機元素分析の結果、得られた化合物(CAX-7)の炭素濃度は80.0%、酸素濃度は12.9%であった。
 得られた化合物について、前記方法により分子量を測定した結果、495であった。
 熱重量測定(TG)の結果、得られた化合物(CAX-7)の10%熱減量温度は400℃以上であった。高い耐熱性を有し、高温ベークへの適用が可能であるものと評価された。
 PGME及びPGMEAへの溶解性を評価した結果、10wt%以上(評価A)であり、化合物(CAX-7)は優れた溶解性を有するものと評価された。そのため、化合物(CAX-7)は溶液状態で高い保存安定性を有し、半導体微細加工プロセスで広く用いられるエッジビートリンス液(PGME/PGMEA混合液)にも十分に適用できるものと評価された。
(合成例8)樹脂(CAR-1)の合成
 ジムロート冷却管、温度計及び攪拌翼を備えた、底抜きが可能な内容積1Lの四つ口フラスコを準備した。この四つ口フラスコに、窒素気流中、合成例1で得られたCAX-1を35.6g(70mmol、三菱ガス化学(株)製)、40質量%ホルマリン水溶液21.0g(ホルムアルデヒドとして280mmol、三菱ガス化学(株)製)及び98質量%硫酸(関東化学(株)製)0.97mLを仕込み、常圧下、100℃で還流させながら7時間反応させた。その後、希釈溶媒としてオルソキシレン(和光純薬工業(株)製試薬特級)180.0gを反応液に加え、静置後、下相の水相を除去した。さらに、中和及び水洗を行い、オルソキシレンを減圧下で留去することにより、褐色固体の樹脂(CAR-1)38.2gを得た。
 得られた樹脂(CAR-1)は、Mn:1885、Mw:4220、Mw/Mn:2.24であった。また、炭素濃度は79.8質量%、酸素濃度は8.5質量%であった。
 熱重量測定(TG)の結果、得られた樹脂(CAR-1)の10%熱減量温度は350℃以上400℃未満であった。そのため、高温ベークへの適用が可能であるものと評価された。
 PGME及びPGMEAへの溶解性を評価した結果、10wt%以上(評価A)であり、樹脂(CAR-1)は優れた溶解性を有するものと評価された。
(合成例9)樹脂(CAR-2)の合成
 ジムロート冷却管、温度計及び攪拌翼を備えた、底抜きが可能な内容積1Lの四つ口フラスコを準備した。この四つ口フラスコに、窒素気流中、合成例1で得られたCAX-1を35.6g(70mmol、三菱ガス化学(株)製)、4-ビフェニルアルデヒド50.9g(280mmol、三菱ガス化学(株)製)、アニソール(関東化学(株)製)100mL及びシュウ酸二水和物(関東化学(株)製)10mLを仕込み、常圧下、100℃で還流させながら7時間反応させた。その後、希釈溶媒としてオルソキシレン(和光純薬工業(株)製試薬特級)180.0gを反応液に加え、静置後、下相の水相を除去した。さらに、中和及び水洗を行い、有機相の溶媒および未反応の4-ビフェニルアルデヒドを減圧下で留去することにより、褐色固体の樹脂(CAR-2)38.2gを得た。
 得られた樹脂(CAR-2)は、Mn:2382、Mw:4610、Mw/Mn:1.93であった。また、炭素濃度は82.8質量%、酸素濃度は7.5質量%であった。
 熱重量測定(TG)の結果、得られた樹脂(CAR-2)の10%熱減量温度は350℃以上400℃未満であった。そのため、高温ベークへの適用が可能であるものと評価された。
 PGME及びPGMEAへの溶解性を評価した結果、10wt%以上(評価A)であり、樹脂(CAR-2)は優れた溶解性を有するものと評価された。
(比較合成例1)
 ジムロート冷却管、温度計及び攪拌翼を備えた、底抜きが可能な内容積10Lの四つ口フラスコを準備した。この四つ口フラスコに、窒素気流中、1,5-ジメチルナフタレン1.09kg(7mol、三菱ガス化学(株)製)、40質量%ホルマリン水溶液2.1kg(ホルムアルデヒドとして28mol、三菱ガス化学(株)製)及び98質量%硫酸(関東化学(株)製)0.97mLを仕込み、常圧下、100℃で還流させながら7時間反応させた。その後、希釈溶媒としてエチルベンゼン(和光純薬工業(株)製試薬特級)1.8kgを反応液に加え、静置後、下相の水相を除去した。さらに、中和及び水洗を行い、エチルベンゼン及び未反応の1,5-ジメチルナフタレンを減圧下で留去することにより、淡褐色固体のジメチルナフタレンホルムアルデヒド樹脂1.25kgを得た。
 得られたジメチルナフタレンホルムアルデヒドの分子量は、Mn:562、Mw:1168、Mw/Mn:2.08であった。また、炭素濃度は84.2質量%、酸素濃度は8.3質量%であった。
 続いて、ジムロート冷却管、温度計及び攪拌翼を備えた内容積0.5Lの四つ口フラスコを準備した。この四つ口フラスコに、窒素気流下で、上記のようにして得られたジメチルナフタレンホルムアルデヒド樹脂100g(0.51mol)とパラトルエンスルホン酸0.05gとを仕込み、190℃まで昇温させて2時間加熱した後、攪拌した。その後さらに、1-ナフトール52.0g(0.36mol)を加え、さらに220℃まで昇温させて2時間反応させた。溶剤希釈後、中和及び水洗を行い、溶剤を減圧下で除去することにより、黒褐色固体の変性樹脂(CR-1)126.1gを得た。
 得られた樹脂(CR-1)は、Mn:885、Mw:2220、Mw/Mn:4.17であった。また、炭素濃度は89.1質量%、酸素濃度は4.5質量%であった。
 熱重量測定(TG)の結果、得られた樹脂(CR-1)の10%熱減量温度は350℃未満であった。そのため、高いエッチング耐性及び耐熱性が必要とされる高温ベークへの適用が困難であるものと評価された。
 PGME及びPGMEAへの溶解性を評価した結果、10wt%以上(評価A)であり、樹脂(CR-1)は優れた溶解性を有するものと評価された。
(実施例1~9、比較例1)
 表1に示す組成となるように、リソグラフィー用下層膜形成用組成物を調製した。すなわち、下記の材料を使用した。
 酸発生剤:みどり化学社製 ジターシャリーブチルジフェニルヨードニウムノナフルオロメタンスルホナート(DTDPI)
 架橋剤:三和ケミカル社製 ニカラックMX270(ニカラック)
 有機溶媒:プロピレングリコールモノメチルエーテルアセテートアセテート(PGMEA)
 ノボラック:群栄化学社製 PSM4357
 次に、該下層膜形成用組成物をシリコン基板上に回転塗布し、その後、240℃で60秒間、さらに400℃で120秒間ベークして、膜厚200nmの下層膜を各々作製した。
 そして、下記に示す条件でエッチング試験を行い、エッチング耐性を評価した。評価結果を表1に示す。
[エッチング試験]
 エッチング装置:サムコインターナショナル社製 RIE-10NR
 出力:50W
 圧力:20Pa
 時間:2min
 エッチングガス
 Arガス流量:CF4ガス流量:O2ガス流量=50:5:5(sccm)
[エッチング耐性の評価]
 エッチング耐性の評価は、以下の手順で行った。
 まず、実施例1で用いた化合物(CAX-1)に代えてノボラック(群栄化学社製 PSM4357)を用いること以外は、実施例1と同様の条件で、ノボラックの下層膜を作製した。そして、このノボラックの下層膜を対象として、上記のエッチング試験を行い、そのときのエッチングレートを測定した。
 そして、ノボラックの下層膜のエッチングレートを基準として、以下の評価基準でエッチング耐性を評価した。
 [評価基準]
 A:ノボラックの下層膜に比べてエッチングレートが、-10%未満
 B:ノボラックの下層膜に比べてエッチングレートが、-10%~+5%
 C:ノボラックの下層膜に比べてエッチングレートが、+5%超
Figure JPOXMLDOC01-appb-T000040
(実施例10)
 次に、実施例1のリソグラフィー用下層膜形成用組成物を膜厚300nmのSiO基板上に塗布して、240℃で60秒間、さらに400℃で120秒間ベークすることにより、膜厚70nmの下層膜を形成した。この下層膜上に、ArF用レジスト溶液を塗布し、130℃で60秒間ベークすることにより、膜厚140nmのフォトレジスト層を形成した。
 なお、ArFレジスト溶液としては、下記式(11)の化合物:5質量部、トリフェニルスルホニウムノナフルオロメタンスルホナート:1質量部、トリブチルアミン:2質量部、及びPGMEA:92質量部を配合して調製したものを用いた。
 式(11)の化合物は、次のように調製した。すなわち、2-メチル-2-メタクリロイルオキシアダマンタン4.15g、メタクリルロイルオキシ-γ-ブチロラクトン3.00g、3-ヒドロキシ-1-アダマンチルメタクリレート2.08g、アゾビスイソブチロニトリル0.38gを、テトラヒドロフラン80mLに溶解させて反応溶液とした。この反応溶液を、窒素雰囲気下、反応温度を63℃に保持して、22時間重合させた後、反応溶液を400mLのn-ヘキサン中に滴下した。このようにして得られる生成樹脂を凝固精製させ、生成した白色粉末をろ過し、減圧下40℃で一晩乾燥させて下記式で表される化合物を得た。
Figure JPOXMLDOC01-appb-C000041
 上記式(11)中、40、40、20とあるのは、各構成単位の比率を示すものであり、ブロック共重合体を示すものではない。
 次いで、電子線描画装置(エリオニクス社製;ELS-7500,50keV)を用いて、フォトレジスト層を露光し、115℃で90秒間ベーク(PEB)し、2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液で60秒間現像することにより、ポジ型のレジストパターンを得た。
(比較例2)
 下層膜の形成を行わないこと以外は、実施例7と同様にして、フォトレジスト層をSiO基板上に直接形成し、ポジ型のレジストパターンを得た。
[評価]
 実施例10及び比較例2のそれぞれについて、得られた40nmL/S(1:1)及び80nmL/S(1:1)のレジストパターンの形状を(株)日立製作所製電子顕微鏡(S-4800)を用いて観察した。現像後のレジストパターンの形状については、パターン倒れがなく、矩形性が良好なものを良好とし、そうでないものを不良として評価した。また、当該観察の結果、パターン倒れが無く、矩形性が良好な最小の線幅を解像性として評価の指標とした。さらに、良好なパターン形状を描画可能な最小の電子線エネルギー量を感度として、評価の指標とした。その結果を、表2に示す。
Figure JPOXMLDOC01-appb-T000042
 表2から明らかなように、実施例10で得られた下層膜は、比較例2に比して、解像性及び感度ともに有意に優れていることが確認された。また、現像後のレジストパターン形状もパターン倒れがなく、矩形性が良好であることが確認された。さらに、現像後のレジストパターン形状の相違から、実施例1におけるリソグラフィー用下層膜形成材料は、レジスト材料との密着性がよいことが示された。
(実施例11) CAX-1の精製
 1000mL容量の四つ口フラスコ(底抜き型)に、実施例1で得られたCAX-1をPGMEAに溶解させた溶液(5質量%)を300g仕込み、攪拌しながら80℃まで加熱した。次いで、蓚酸水溶液(pH1.3)74gを加え、5分間攪拌後、30分静置した。これにより油相と水相に分離したので、水相を除去した。この操作を1回繰り返した後、得られた油相に、超純水74gを仕込み、5分間攪拌後、30分静置し、水相を除去した。この操作を3回繰り返した後、80℃に加熱しながらフラスコ内を200hPa以下に減圧することで、残留水分及びPGMEAを濃縮留去した。その後、ELグレードのPGMEA(関東化学社製試薬)を希釈し、10質量%に濃度調整を行うことにより、金属含有量の低減されたCAX‐1のPGMEA溶液を得た。
 処理前のCAX-1の10質量%PGMEA溶液、実施例11において得られた溶液について、各種金属含有量をICP-MSによって測定した。測定結果を表3に示す。
Figure JPOXMLDOC01-appb-T000043
 本発明の化合物及び樹脂は、耐熱性が比較的に高く、溶媒溶解性も比較的に高く、湿式プロセスが適用可能である。そのため、本発明の化合物又は樹脂を用いるリソグラフィー用下層膜形成材料及び下層膜はこれらの性能が要求される各種用途において、広く且つ有効に利用可能である。したがって、本発明は、例えば、半導体用のコーティング剤、半導体用のレジスト用樹脂、下層膜形成用樹脂等において、広く且つ有効に利用可能である。特に、本発明は、リソグラフィー用下層膜及び多層レジスト用下層膜の分野において、特に有効に利用可能である。

Claims (21)

  1.  下記式(1)で表される、化合物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Xは、各々独立して、酸素原子、硫黄原子又は無架橋であることを示し、Rは、各々独立して、水素原子、ハロゲン基、ニトロ基、アミノ基、水酸基、炭素原子数1~30のアルキル基、炭素原子数2~30のアルケニル基、炭素原子数6~40のアリール基、及びそれらの組み合わせからなる群より選択され、ここで、該アルキル基、該アルケニル基及び該アリール基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、Rは、各々独立して、炭素数1~30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6~40のアリール基、炭素数2~30のアルケニル基、チオール基又は水酸基であり、ここで、Rの少なくとも1つは水酸基又はチオール基を含む基であり、mは、各々独立して、1~7の整数であり、pは各々独立して0又は1であり、qは各々独立して0~4の整数であり、nは0又は1である。)
  2.  前記式(1)で表される化合物が、下記式(1-1)で表される化合物である、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000002
    (式(1-1)中、R、R、m、p、q、nは、前記式(1)で説明したものと同義である。)
  3.  前記式(1-1)で表される化合物が、下記式(1-2)で表される化合物である、請求項2に記載の化合物。
    Figure JPOXMLDOC01-appb-C000003
    (前記式(1-2)中、R、p、q、nは、前記式(1)で説明したものと同義であり、Rは、各々独立して、炭素数1~30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6~40のアリール基、炭素数2~30のアルケニル基であり、mは、各々独立して0~5の整数であり、mは、各々独立して1~6の整数であり、m+mは1~6の整数である。)
  4.  前記式(1-2)で表される化合物が、下記式(1-3)で表される化合物である、請求項3に記載の化合物。
    Figure JPOXMLDOC01-appb-C000004
    (前記式(1-3)中、R、p、q、nは前記式(1)で説明したものと同義であり、R、mは前記式(1-2)で説明したものと同義である。)
  5.  前記式(1-3)で表される化合物が、下記式(1-4)で表される化合物である、請求項4に記載の化合物。
    Figure JPOXMLDOC01-appb-C000005
    (式(1-4)中、R、及びqは前記式(1)で説明したものと同義である。)
  6.  前記式(1-4)で表される化合物が、下記式(CAX-1)で表される化合物である、請求項5に記載の化合物。
    Figure JPOXMLDOC01-appb-C000006
  7.  請求項1~6のいずれか1項に記載の化合物をモノマーとして得られる、樹脂。
  8.  請求項1~6のいずれか1項に記載の化合物と架橋反応性のある化合物とを反応させることによって得られる、請求項7に記載の樹脂。
  9.  前記架橋反応性のある化合物が、アルデヒド、ケトン、カルボン酸、カルボン酸ハライド、ハロゲン含有化合物、アミノ化合物、イミノ化合物、イソシアネート及び不飽和炭化水素基含有化合物からなる群より選ばれる1種以上である、請求項8に記載の樹脂。
  10.  下記式(2)で表される構造を有する、樹脂。
    Figure JPOXMLDOC01-appb-C000007
    (式(2)中、Xは、各々独立して、酸素原子、硫黄原子又は無架橋であることを示し、Rは、各々独立して、水素原子、ハロゲン基、ニトロ基、アミノ基、水酸基、炭素原子数1~30のアルキル基、炭素原子数2~30のアルケニル基、炭素原子数6~40のアリール基、及びそれらの組み合わせからなる群より選択され、ここで、該アルキル基、該アルケニル基及び該アリール基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、Rは、各々独立して、炭素数1~30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6~40のアリール基、炭素数2~30のアルケニル基、チオール基又は水酸基であり、ここで、Rの少なくとも1つは水酸基又はチオール基を含む基であり、Yは、各々独立して、単結合又は炭素数1~20の直鎖状若しくは分岐状のアルキレン基であり、mは、各々独立して、1~6の整数であり、pは各々独立して0又は1であり、qは各々独立して0~4の整数であり、nは0又は1である。)
  11.  請求項1~6のいずれか1項に記載の化合物及び/又は請求項7~10のいずれか1項に記載の樹脂を含有する、リソグラフィー用下層膜形成材料。
  12.  請求項11に記載のリソグラフィー用下層膜形成材料と溶媒とを含有する、リソグラフィー用下層膜形成用組成物。
  13.  酸発生剤をさらに含有する、請求項12に記載のリソグラフィー用下層膜形成用組成物。
  14.  架橋剤をさらに含有する、請求項12又は13に記載のリソグラフィー用下層膜形成用組成物。
  15.  請求項12~14のいずれか1項に記載のリソグラフィー用下層膜形成用組成物から形成される、リソグラフィー用下層膜。
  16.  基板上に、請求項12~14のいずれか1項に記載のリソグラフィー用下層膜形成用組成物を用いて下層膜を形成する工程(A-1)と、
     前記下層膜上に、少なくとも1層のフォトレジスト層を形成する工程(A-2)と、
     前記工程(A-2)の後、前記フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程(A-3)と、
     を有する、レジストパターン形成方法。
  17.  基板上に、請求項12~14のいずれか1項に記載のリソグラフィー用下層膜形成用組成物を用いて下層膜を形成する工程(B-1)と、
     前記下層膜上に、珪素原子を含有するレジスト中間層膜材料を用いて中間層膜を形成する工程(B-2)と、
     前記中間層膜上に、少なくとも1層のフォトレジスト層を形成する工程(B-3)と、
     前記工程(B-3)の後、前記フォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成する工程(B-4)と、
     前記工程(B-4)の後、前記レジストパターンをマスクとして前記中間層膜をエッチングし、得られた中間層膜パターンをエッチングマスクとして前記下層膜をエッチングし、得られた下層膜パターンをエッチングマスクとして基板をエッチングすることで基板にパターンを形成する工程(B-5)と、
     を有する、回路パターン形成方法。
  18.  請求項1~6のいずれか1項に記載の化合物、又は、請求項7~10のいずれか1項に記載の樹脂の精製方法であって、
     水と任意に混和しない有機溶媒及び、前記化合物又は前記樹脂を含む溶液と、酸性の水溶液と、を接触させて抽出する工程を含む、精製方法。
  19.  前記酸性の水溶液が、塩酸、硫酸、硝酸及びリン酸からなる群より選ばれる1種以上の鉱酸水溶液である、又は、酢酸、プロピオン酸、蓚酸、マロン酸、コハク酸、フマル酸、マレイン酸、酒石酸、クエン酸、メタンスルホン酸、フェノールスルホン酸、p-トルエンスルホン酸及びトリフルオロ酢酸からなる群より選ばれる1種以上の有機酸水溶液である、請求項18に記載の精製方法。
  20.  前記水と任意に混和しない有機溶媒が、トルエン、2-ヘプタノン、シクロヘキサノン、シクロペンタノン、メチルイソブチルケトン、プロピレングリコールモノメチルエーテルアセテート、1,2-ジエトキシケトン、酢酸ブチル、又は酢酸エチルである、請求項18又は19に記載の精製方法。
  21.  前記溶液と酸性の水溶液とを接触させて抽出する工程の後、さらに水による抽出処理を行う工程を含む、請求項18~20のいずれか1項に記載の精製方法。
PCT/JP2016/057438 2015-03-13 2016-03-09 化合物、樹脂、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜、パターン形成方法、及び、化合物又は樹脂の精製方法 WO2016147989A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201680015557.XA CN107406383B (zh) 2015-03-13 2016-03-09 光刻用的化合物、树脂以及下层膜形成材料
SG11201706660WA SG11201706660WA (en) 2015-03-13 2016-03-09 Compound, resin, material for forming underlayer film for lithography, composition for forming underlayer film for lithography, underlayer film for lithography, pattern forming method, and method for purifying compound or resin
US15/557,747 US10577323B2 (en) 2015-03-13 2016-03-09 Compound, resin, material for forming underlayer film for lithography, composition for forming underlayer film for lithography, underlayer film for lithography, pattern forming method, and method for purifying compound or resin
KR1020177025470A KR20170128287A (ko) 2015-03-13 2016-03-09 화합물, 수지, 리소그래피용 하층막 형성재료, 리소그래피용 하층막 형성용 조성물, 리소그래피용 하층막, 패턴 형성방법, 및, 화합물 또는 수지의 정제방법
EP16764819.5A EP3269712A4 (en) 2015-03-13 2016-03-09 Compound, resin, material for forming underlayer film for lithography, composition for forming underlayer film for lithography, underlayer film for lithography, pattern forming method, and method for purifying compound or resin
JP2016542787A JP6028959B1 (ja) 2015-03-13 2016-03-09 化合物、樹脂、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜、パターン形成方法、及び、化合物又は樹脂の精製方法
IL254447A IL254447A0 (en) 2015-03-13 2017-09-12 Compound, resin, material for making a sublayer film for lithography, a preparation for creating a sublayer film for lithography, a sublayer film for lithography, a method for creating a pattern and a method for cleaning the compound or resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-050731 2015-03-13
JP2015050731 2015-03-13

Publications (1)

Publication Number Publication Date
WO2016147989A1 true WO2016147989A1 (ja) 2016-09-22

Family

ID=56918793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057438 WO2016147989A1 (ja) 2015-03-13 2016-03-09 化合物、樹脂、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜、パターン形成方法、及び、化合物又は樹脂の精製方法

Country Status (9)

Country Link
US (1) US10577323B2 (ja)
EP (1) EP3269712A4 (ja)
JP (1) JP6028959B1 (ja)
KR (1) KR20170128287A (ja)
CN (1) CN107406383B (ja)
IL (1) IL254447A0 (ja)
SG (1) SG11201706660WA (ja)
TW (1) TWI694996B (ja)
WO (1) WO2016147989A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018099836A1 (en) * 2016-11-30 2018-06-07 Az Electronic Materials (Luxembourg) S.A.R.L. Planarizing coating-forming composition and methods for manufacturing planarizing coating and device using the same
WO2018164267A1 (ja) * 2017-03-10 2018-09-13 Jsr株式会社 レジスト下層膜形成用組成物、レジスト下層膜及びその形成方法並びにパターニングされた基板の製造方法
JP2018154600A (ja) * 2017-03-21 2018-10-04 三菱瓦斯化学株式会社 化合物、樹脂、組成物、パターン形成方法及び精製方法
KR20180109296A (ko) * 2017-03-27 2018-10-08 동우 화인켐 주식회사 하드마스크용 조성물
US10133178B2 (en) 2014-09-19 2018-11-20 Nissan Chemical Industries, Ltd. Coating liquid for resist pattern coating
WO2019013293A1 (ja) * 2017-07-14 2019-01-17 日産化学株式会社 レジスト下層膜形成組成物、レジスト下層膜、レジストパターンの形成方法及び半導体装置の製造方法
WO2019093761A1 (ko) * 2017-11-10 2019-05-16 동우화인켐 주식회사 하드마스크용 조성물
WO2019098109A1 (ja) * 2017-11-16 2019-05-23 Jsr株式会社 レジスト下層膜形成用組成物、レジスト下層膜及びその形成方法、パターニングされた基板の製造方法並びに化合物
EP3623867A1 (en) 2018-09-13 2020-03-18 Shin-Etsu Chemical Co., Ltd. Patterning process
EP3761115A1 (en) 2019-07-05 2021-01-06 Shin-Etsu Chemical Co., Ltd. Composition for forming organic film, substrate for manufacturing semiconductor device, method for forming organic film, patterning process, and polymer
JP2022184850A (ja) * 2017-02-28 2022-12-13 三菱瓦斯化学株式会社 化合物又は樹脂の精製方法、及び組成物の製造方法
EP4418305A1 (en) 2023-02-15 2024-08-21 Shin-Etsu Chemical Co., Ltd. Patterning process

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102456165B1 (ko) * 2020-03-10 2022-10-17 삼성에스디아이 주식회사 하드마스크 조성물 및 패턴 형성 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2112416A1 (de) * 1970-03-16 1971-10-07 Horizons Research Inc Photoempfindliches Material und Verfahren zur Bilderzeugung
WO2009072465A1 (ja) * 2007-12-07 2009-06-11 Mitsubishi Gas Chemical Company, Inc. リソグラフィー用下層膜形成組成物及び多層レジストパターン形成方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU76074A1 (ja) * 1976-10-26 1978-05-16
CH645306A5 (de) * 1980-04-16 1984-09-28 Ciba Geigy Ag Verfahren zur herstellung von konzentrierten loesungen von farbbildern.
JPS6057340A (ja) * 1983-09-08 1985-04-03 Fuji Photo Film Co Ltd 焼出し性組成物
DE3923426A1 (de) * 1989-07-15 1991-01-17 Hoechst Ag Verfahren zur herstellung von novolak-harzen mit geringem metallionengehalt
DE3940478A1 (de) * 1989-12-07 1991-06-13 Bayer Ag Bis-triarylmethanverbindungen
JPH10152636A (ja) * 1991-05-30 1998-06-09 Ricoh Co Ltd 磁性インク
JP3774668B2 (ja) 2001-02-07 2006-05-17 東京エレクトロン株式会社 シリコン窒化膜形成装置の洗浄前処理方法
JP2003300922A (ja) * 2002-04-08 2003-10-21 Honshu Chem Ind Co Ltd トリメチロール化トリフェノール類
JP3914493B2 (ja) 2002-11-27 2007-05-16 東京応化工業株式会社 多層レジストプロセス用下層膜形成材料およびこれを用いた配線形成方法
WO2004066377A1 (ja) 2003-01-24 2004-08-05 Tokyo Electron Limited 被処理基板上にシリコン窒化膜を形成するcvd方法
JP3981030B2 (ja) 2003-03-07 2007-09-26 信越化学工業株式会社 レジスト下層膜材料ならびにパターン形成方法
JP4388429B2 (ja) 2004-02-04 2009-12-24 信越化学工業株式会社 レジスト下層膜材料ならびにパターン形成方法
JP4659678B2 (ja) * 2005-12-27 2011-03-30 信越化学工業株式会社 フォトレジスト下層膜形成材料及びパターン形成方法
JP4781280B2 (ja) 2006-01-25 2011-09-28 信越化学工業株式会社 反射防止膜材料、基板、及びパターン形成方法
JP4638380B2 (ja) 2006-01-27 2011-02-23 信越化学工業株式会社 反射防止膜材料、反射防止膜を有する基板及びパターン形成方法
TW200741353A (en) * 2006-02-27 2007-11-01 Mitsubishi Gas Chemical Co Compound for forming antireflective film and antireflective film
JP4847426B2 (ja) * 2007-10-03 2011-12-28 信越化学工業株式会社 レジスト下層膜材料およびこれを用いたパターン形成方法
SG176777A1 (en) * 2009-06-19 2012-01-30 Nissan Chemical Ind Ltd Carbazole novolak resin
WO2011034062A1 (ja) 2009-09-15 2011-03-24 三菱瓦斯化学株式会社 芳香族炭化水素樹脂及びリソグラフィー用下層膜形成組成物
KR102082839B1 (ko) * 2011-08-12 2020-02-28 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 레지스트 조성물, 레지스트 패턴 형성방법, 이에 이용되는 폴리페놀 화합물 및 이로부터 유도될 수 있는 알코올 화합물
WO2013024779A1 (ja) * 2011-08-12 2013-02-21 三菱瓦斯化学株式会社 リソグラフィー用下層膜形成材料、リソグラフィー用下層膜及びパターン形成方法
JP5958734B2 (ja) * 2011-10-17 2016-08-02 三菱瓦斯化学株式会社 新規エポキシ化合物及びその製造方法
JP6421942B2 (ja) * 2013-09-19 2018-11-14 日産化学株式会社 脂肪族多環構造を含む自己組織化膜の下層膜形成組成物
TWI633096B (zh) * 2013-11-29 2018-08-21 三菱瓦斯化學股份有限公司 化合物或樹脂之精製方法
KR102352289B1 (ko) * 2014-04-17 2022-01-19 삼성디스플레이 주식회사 포토레지스트 조성물 및 이를 이용한 디스플레이 기판의 제조 방법
WO2017038643A1 (ja) * 2015-08-31 2017-03-09 三菱瓦斯化学株式会社 リソグラフィー用下層膜形成材料、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜及びその製造方法、並びにレジストパターン形成方法
CN107949808B (zh) * 2015-08-31 2021-10-22 三菱瓦斯化学株式会社 光刻用下层膜形成材料、光刻用下层膜形成用组合物、光刻用下层膜及其制造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2112416A1 (de) * 1970-03-16 1971-10-07 Horizons Research Inc Photoempfindliches Material und Verfahren zur Bilderzeugung
WO2009072465A1 (ja) * 2007-12-07 2009-06-11 Mitsubishi Gas Chemical Company, Inc. リソグラフィー用下層膜形成組成物及び多層レジストパターン形成方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SAWICKI, E. ET AL.: "Reaction of Thiaxanthydrol With Compounds Containing Active Hydrogen", JOURNAL OF ORGANIC CHEMISTRY, vol. 21, 1956, pages 183 - 189, XP002063988 *
See also references of EP3269712A4 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10133178B2 (en) 2014-09-19 2018-11-20 Nissan Chemical Industries, Ltd. Coating liquid for resist pattern coating
WO2018099836A1 (en) * 2016-11-30 2018-06-07 Az Electronic Materials (Luxembourg) S.A.R.L. Planarizing coating-forming composition and methods for manufacturing planarizing coating and device using the same
JP2022184850A (ja) * 2017-02-28 2022-12-13 三菱瓦斯化学株式会社 化合物又は樹脂の精製方法、及び組成物の製造方法
CN110383173A (zh) * 2017-03-10 2019-10-25 Jsr株式会社 抗蚀剂下层膜形成用组合物、抗蚀剂下层膜及其形成方法和形成有图案的基板的制造方法
CN110383173B (zh) * 2017-03-10 2023-05-09 Jsr株式会社 抗蚀剂下层膜形成用组合物、抗蚀剂下层膜及其形成方法和形成有图案的基板的制造方法
KR102456399B1 (ko) * 2017-03-10 2022-10-20 제이에스알 가부시끼가이샤 레지스트 하층막 형성용 조성물, 레지스트 하층막 및 그의 형성 방법 그리고 패터닝된 기판의 제조 방법
WO2018164267A1 (ja) * 2017-03-10 2018-09-13 Jsr株式会社 レジスト下層膜形成用組成物、レジスト下層膜及びその形成方法並びにパターニングされた基板の製造方法
KR20190125331A (ko) * 2017-03-10 2019-11-06 제이에스알 가부시끼가이샤 레지스트 하층막 형성용 조성물, 레지스트 하층막 및 그의 형성 방법 그리고 패터닝된 기판의 제조 방법
JPWO2018164267A1 (ja) * 2017-03-10 2020-01-09 Jsr株式会社 レジスト下層膜形成用組成物、レジスト下層膜及びその形成方法並びにパターニングされた基板の製造方法
JP7064149B2 (ja) 2017-03-10 2022-05-10 Jsr株式会社 レジスト下層膜形成用組成物、レジスト下層膜及びその形成方法並びにパターニングされた基板の製造方法
JP2018154600A (ja) * 2017-03-21 2018-10-04 三菱瓦斯化学株式会社 化合物、樹脂、組成物、パターン形成方法及び精製方法
KR20180109296A (ko) * 2017-03-27 2018-10-08 동우 화인켐 주식회사 하드마스크용 조성물
KR102349937B1 (ko) * 2017-03-27 2022-01-10 동우 화인켐 주식회사 하드마스크용 조성물
CN110832397B (zh) * 2017-07-14 2023-12-15 日产化学株式会社 抗蚀剂下层膜形成用组合物、抗蚀剂下层膜、及抗蚀剂图案的形成方法
JPWO2019013293A1 (ja) * 2017-07-14 2020-05-07 日産化学株式会社 レジスト下層膜形成組成物、レジスト下層膜、レジストパターンの形成方法及び半導体装置の製造方法
US11169441B2 (en) 2017-07-14 2021-11-09 Nissan Chemical Corporation Composition for forming resist underlayer film, resist underlayer film, method for forming resist pattern and method for producing semiconductor device
JP7368791B2 (ja) 2017-07-14 2023-10-25 日産化学株式会社 レジスト下層膜形成組成物、レジスト下層膜、レジストパターンの形成方法及び半導体装置の製造方法
CN110832397A (zh) * 2017-07-14 2020-02-21 日产化学株式会社 抗蚀剂下层膜形成用组合物、抗蚀剂下层膜、抗蚀剂图案的形成方法及半导体装置的制造方法
WO2019013293A1 (ja) * 2017-07-14 2019-01-17 日産化学株式会社 レジスト下層膜形成組成物、レジスト下層膜、レジストパターンの形成方法及び半導体装置の製造方法
WO2019093761A1 (ko) * 2017-11-10 2019-05-16 동우화인켐 주식회사 하드마스크용 조성물
WO2019098109A1 (ja) * 2017-11-16 2019-05-23 Jsr株式会社 レジスト下層膜形成用組成物、レジスト下層膜及びその形成方法、パターニングされた基板の製造方法並びに化合物
EP3623867A1 (en) 2018-09-13 2020-03-18 Shin-Etsu Chemical Co., Ltd. Patterning process
US11635691B2 (en) 2019-07-05 2023-04-25 Shin-Etsu Chemical Co., Ltd. Composition for forming organic film, substrate for manufacturing semiconductor device, method for forming organic film, patterning process, and polymer
EP3761115A1 (en) 2019-07-05 2021-01-06 Shin-Etsu Chemical Co., Ltd. Composition for forming organic film, substrate for manufacturing semiconductor device, method for forming organic film, patterning process, and polymer
EP4418305A1 (en) 2023-02-15 2024-08-21 Shin-Etsu Chemical Co., Ltd. Patterning process

Also Published As

Publication number Publication date
EP3269712A1 (en) 2018-01-17
SG11201706660WA (en) 2017-09-28
IL254447A0 (en) 2017-11-30
CN107406383B (zh) 2021-01-26
US10577323B2 (en) 2020-03-03
TWI694996B (zh) 2020-06-01
JP6028959B1 (ja) 2016-11-24
JPWO2016147989A1 (ja) 2017-04-27
KR20170128287A (ko) 2017-11-22
TW201641496A (zh) 2016-12-01
CN107406383A (zh) 2017-11-28
EP3269712A4 (en) 2018-08-08
US20180065930A1 (en) 2018-03-08

Similar Documents

Publication Publication Date Title
JP6028959B1 (ja) 化合物、樹脂、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜、パターン形成方法、及び、化合物又は樹脂の精製方法
JP6573217B2 (ja) 化合物、樹脂、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜、パターン形成方法、及び化合物又は樹脂の精製方法
US11137686B2 (en) Material for forming underlayer film for lithography, composition for forming underlayer film for lithography, underlayer film for lithography and production method thereof, and resist pattern forming method
JP6880537B2 (ja) 化合物、樹脂、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜及びレジストパターン形成方法、回路パターン形成方法、及び、精製方法
JP6390911B2 (ja) 化合物、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜及びパターン形成方法
KR102643950B1 (ko) 화합물, 수지, 및 이들의 정제방법, 리소그래피용 하층막 형성재료, 하층막 형성용 조성물, 및 하층막, 그리고, 레지스트패턴 형성방법, 및 회로패턴 형성방법
WO2016104214A1 (ja) 化合物、樹脂、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜、パターン形成方法及び精製方法
JP6388126B2 (ja) 化合物、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜及びパターン形成方法
WO2016129679A1 (ja) 化合物、樹脂、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜、レジストパターン形成方法、回路パターン形成方法及び化合物又は樹脂の精製方法
WO2016143635A1 (ja) 化合物、樹脂、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜、パターン形成方法及び化合物又は樹脂の精製方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016542787

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764819

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11201706660W

Country of ref document: SG

REEP Request for entry into the european phase

Ref document number: 2016764819

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177025470

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15557747

Country of ref document: US

Ref document number: 254447

Country of ref document: IL

NENP Non-entry into the national phase

Ref country code: DE