Nothing Special   »   [go: up one dir, main page]

WO2016147687A1 - Elastic wave device and production method for same - Google Patents

Elastic wave device and production method for same Download PDF

Info

Publication number
WO2016147687A1
WO2016147687A1 PCT/JP2016/051029 JP2016051029W WO2016147687A1 WO 2016147687 A1 WO2016147687 A1 WO 2016147687A1 JP 2016051029 W JP2016051029 W JP 2016051029W WO 2016147687 A1 WO2016147687 A1 WO 2016147687A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
piezoelectric substrate
wave device
main surface
film
Prior art date
Application number
PCT/JP2016/051029
Other languages
French (fr)
Japanese (ja)
Inventor
諭卓 岸本
木村 哲也
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2017506116A priority Critical patent/JP6497435B2/en
Publication of WO2016147687A1 publication Critical patent/WO2016147687A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves

Definitions

  • the present invention relates to an elastic wave device and a manufacturing method thereof.
  • Patent Document 1 discloses an elastic wave device using a plate wave.
  • Patent Document 1 describes an acoustic wave device in which a piezoelectric substrate is supported by a support.
  • a cavity is formed on the support side of the piezoelectric substrate.
  • An object of the present invention is to provide an elastic wave device in which a piezoelectric substrate is not easily broken in an elastic wave device having a hollow structure, and a method of manufacturing the elastic wave device.
  • An elastic wave device includes a support substrate having a concave portion on an upper surface, a thin film, a first main surface, and a first main surface facing the first main surface, disposed on the support substrate.
  • An IDT electrode provided on the second main surface of the piezoelectric substrate, the piezoelectric substrate being disposed on the thin film, and the first main surface side being disposed on the thin film
  • a cavity surrounded by the support substrate and at least the thin film of the thin film and the piezoelectric substrate is formed, and is a region on the first main surface of the piezoelectric substrate.
  • the thin film is disposed in a region bonded to the support substrate via the thin film and at least a portion of the region above the cavity.
  • the thin film may be disposed on the entire surface of the first main surface of the piezoelectric substrate. In this case, it is possible to further prevent the piezoelectric substrate from being broken.
  • the region at least a part of the region above the cavity is a region closer to the cavity than the region bonded to the support substrate via the thin film. is there. In this case, the piezoelectric substrate is more unlikely to break.
  • the region at least a part of the region above the cavity is a region where the IDT electrode is disposed when the elastic wave device is viewed in plan. is there. In this case, the heat dissipation is further improved.
  • the thin film is a dielectric film, a semiconductor film, or a metal film.
  • the temperature characteristics can be improved.
  • the thin film is a semiconductor film or a metal film, the heat dissipation can be further improved.
  • the thin film is a dielectric film, and the thickness of the dielectric film is not more than three times the thickness of the piezoelectric substrate. In this case, the spurious within the band can be suppressed, and the impedance ratio is hardly lowered.
  • the dielectric film is made of SiO 2 .
  • a through-hole penetrating the piezoelectric substrate and the thin film is provided.
  • a plate wave is used as the propagating elastic wave.
  • the method for manufacturing an acoustic wave device includes a step of forming a thin film on a first main surface of a piezoelectric substrate, and a second main surface facing the first main surface of the piezoelectric substrate, A step of forming an IDT electrode, a step of forming a sacrificial layer on the main surface of the thin film opposite to the side in contact with the piezoelectric substrate, and a support having a recess on the upper surface so as to cover the sacrificial layer A step of forming a substrate, a step of forming a through hole from the second main surface side of the piezoelectric substrate to the sacrificial layer in the piezoelectric substrate and the thin film, and etching using the through hole.
  • the thin film is a dielectric film, and the thickness of the dielectric film is not more than three times the thickness of the piezoelectric substrate. In this case, the spurious within the band can be suppressed, and the impedance ratio is hardly lowered.
  • the region on the first main surface of the piezoelectric substrate, the region bonded to the support substrate via the thin film, and the region above the cavity At least a part of the region is covered with a thin film.
  • the elastic wave device having a hollow structure it is possible to provide an elastic wave device in which the piezoelectric substrate is hardly broken.
  • FIG. 1 is a schematic plan view showing an acoustic wave device according to a first embodiment of the present invention.
  • 2A is a schematic front cross-sectional view taken along the line AA in FIG. 1
  • FIG. 2B is a schematic cross-sectional view taken along the line BB in FIG.
  • FIG. 3 is a schematic front sectional view showing an acoustic wave device according to a second embodiment of the present invention.
  • 4 (a) to 4 (d) are schematic front sectional views for explaining a method of manufacturing an acoustic wave device according to the first embodiment of the present invention.
  • 5 (a) to 5 (c) are schematic front sectional views for explaining a method of manufacturing an acoustic wave device according to the first embodiment of the present invention.
  • FIG. 6 (a) to 6 (c) are schematic front sectional views for explaining a method of manufacturing an acoustic wave device according to the first embodiment of the present invention.
  • FIG. 7 is a diagram showing the relationship between the thickness of the SiO 2 film and the impedance ratio (Za / Zr) in the acoustic wave device produced in the experimental example.
  • FIG. 8 is a diagram showing resonance characteristics when the thickness of the SiO 2 film is one time the thickness of the piezoelectric substrate in the acoustic wave device manufactured in the experimental example.
  • FIG. 9 is a diagram showing resonance characteristics when the thickness of the SiO 2 film is 3.2 times the thickness of the piezoelectric substrate in the acoustic wave device manufactured in the experimental example.
  • Figure 10 is a diagram showing a propagation state of acoustic waves S 0 mode.
  • FIG. 1 is a schematic plan view showing an acoustic wave device according to a first embodiment of the present invention.
  • 2A is a schematic front sectional view taken along the line AA in FIG. 1
  • FIG. 2B is a schematic sectional view taken along the line BB in FIG.
  • the broken line indicates the portion where the cavity 9 is provided, and the oblique line indicates the through hole 10.
  • the elastic wave device 1 is an elastic wave device that uses a plate wave as a propagating elastic wave.
  • the acoustic wave device 1 has a support substrate 2.
  • the support substrate 2 has an upper surface 2a and a lower surface 2b.
  • the upper surface 2a of the support substrate 2 is provided with a recess 2c that opens toward the upper surface 2a.
  • the reinforcing substrate 3 is laminated on the lower surface 2 b of the support substrate 2.
  • the reinforcing substrate 3 may not be provided if the strength of the supporting substrate 2 is sufficiently high. Therefore, the reinforcing substrate 3 is not an essential component.
  • the support substrate 2 and the reinforcing substrate 3 can be made of an appropriate dielectric material such as silicon oxide, aluminum oxide, or aluminum nitride, or a material such as a semiconductor such as Si. In addition, these materials may be used independently and may use multiple together. Moreover, the support substrate 2 and the reinforcement substrate 3 may be comprised with the same material, and may be comprised with the other material.
  • a thin film 6 is laminated on the upper surface 2 a of the support substrate 2. Although it does not specifically limit as the thin film 6, A dielectric film, a semiconductor film, or a metal film can be used. A plurality of thin films 6 may be provided.
  • silicon oxide aluminum nitride, silicon nitride, tantalum pentoxide, or the like can be used.
  • the material constituting the semiconductor film for example, a material such as silicon, silicon carbide or gallium nitride can be used.
  • the material constituting the metal film for example, a material such as titanium, aluminum, copper, platinum, or tungsten can be used.
  • a metal film is used as the thin film 6, the heat dissipation can be further improved.
  • the material which comprises the thin film 6 may be used independently, and may use multiple together.
  • the thin film 6 is provided so as to close the concave portion 2 c of the support substrate 2. Thereby, the concave portion 2 c constitutes a cavity 9 surrounded by the support substrate 2 and the thin film 6.
  • a piezoelectric substrate 4 is laminated on the thin film 6.
  • the piezoelectric substrate 4 is thin, for example, a thin film having a thickness of 1000 nm or less. As a result, the plate wave can be further excited.
  • the piezoelectric substrate 4 is a substrate made of LiTaO 3 .
  • a substrate made of another piezoelectric single crystal such as LiNbO 3 or a substrate made of piezoelectric ceramics may be used.
  • the piezoelectric substrate 4 has a first main surface 4a and a second main surface 4b facing each other.
  • the piezoelectric substrate 4 is laminated on the thin film 6 with the first main surface 4a facing down. That is, the first main surface 4a side of the piezoelectric substrate 4 is disposed on the support substrate 2 side.
  • an IDT electrode 5 is provided on the second main surface 4 b of the piezoelectric substrate 4. Therefore, when an alternating electric field is applied to the IDT electrode 5, the IDT electrode 5 is excited.
  • the elastic wave device 1 uses a plate wave as an elastic wave generated when the IDT electrode 5 is excited as described above.
  • an SiO 2 film as a temperature adjustment film may be provided so as to cover the IDT electrode 5.
  • the IDT electrode 5 includes first and second bus bars and a plurality of first and second electrode fingers.
  • the plurality of first electrode fingers and the plurality of second electrode fingers are interleaved with each other.
  • the plurality of first electrode fingers are connected to the first bus bar, and the plurality of second electrode fingers are connected to the second bus bar.
  • Electrode lands 7 a and 7 b are formed on the second main surface 4 b of the piezoelectric substrate 4.
  • the electrode lands 7 a and 7 b are provided so as to be electrically connected to the IDT electrode 5.
  • the IDT electrode 5 and the electrode lands 7a and 7b are made of an appropriate metal or alloy such as Cu, Ni, NiCr, AlCu alloy, Ti, Al, or Pt. Further, the IDT electrode 5 and the electrode lands 7a and 7b may be constituted by a laminated metal film formed by laminating a plurality of metal films.
  • Second-layer wirings 8a and 8b are provided on the electrode lands 7a and 7b.
  • the second layer wirings 8a and 8b are electrically connected to the electrode lands 7a and 7b. Therefore, metal bumps or the like may be bonded onto the second layer wirings 8a and 8b.
  • the second layer wirings 8a and 8b can be made of an appropriate metal or alloy such as Cu, Ni, NiCr, AlCu alloy, Ti, Al, and Pt. Second-layer wirings 8a and 8b may be formed of a laminated metal film formed by laminating a plurality of metal films.
  • a through hole 10 is provided in the piezoelectric substrate 4 and the thin film 6.
  • the through hole 10 penetrates from the second main surface 4 b of the piezoelectric substrate 4 toward the cavity 9.
  • the through hole 10 is used as an etching hole in a manufacturing process described later.
  • the through hole 10 connects the cavity 9 formed by the recess 2c and the outside air.
  • the thin film 6 is provided so as to cover the entire surface of the first main surface 4a of the piezoelectric substrate 4, and the mechanical strength of the piezoelectric substrate 4 is increased. Therefore, in the acoustic wave device having a hollow structure, the piezoelectric substrate 4 is hardly broken. In addition, since the thin film 6 is provided on the first main surface 4a of the piezoelectric substrate 4, it is possible to improve the heat dissipation when a voltage is applied.
  • the heat dissipation can be further improved.
  • the temperature characteristics can be improved.
  • the thickness of the dielectric film is preferably 3 times or less the thickness of the piezoelectric substrate 4.
  • the film thickness of the dielectric film is more preferably smaller than three times the thickness of the piezoelectric substrate 4.
  • the acoustic wave device 1 was manufactured under the following conditions.
  • is the wavelength of the elastic wave.
  • IDT electrode 5 composed of Al, duty: 0.5, film thickness: 0.07 ⁇ Piezoelectric substrate 4 ... LiNbO 3 ⁇ Euler angle (90, 90, 40) ⁇ , film thickness: 0.1 ⁇ Thin film 6 ... Dielectric film (SiO 2 film), film thickness: 0 to 0.34 ⁇
  • a mode with a speed of sound of 5000 to 6000 m / sec (a wave having a frequency in the vicinity of 5 to 6 GHz) was used.
  • the mode mainly excited here is an acoustic wave of S 0 mode having the displacement shown in FIG. 10 in the piezoelectric substrate 4 of LiNbO 3 .
  • 1 ⁇ m.
  • FIG. 7 is a diagram showing the relationship between the thickness of the SiO 2 film and the impedance ratio (Za / Zr) in the fabricated acoustic wave device. Note that in Figure 7 the value obtained by dividing the film thickness of the SiO 2 film at the thickness of the piezoelectric substrate (SiO 2 film having a thickness / piezoelectric substrate thickness) and the horizontal axis.
  • FIG. 7 shows that when the thickness of the SiO 2 film is larger than three times the thickness of the piezoelectric substrate 4, the impedance ratio (Za / Zr) rapidly decreases.
  • FIG. 8 is a diagram showing resonance characteristics when the thickness of the SiO 2 film is 1 times the thickness of the piezoelectric substrate in the fabricated acoustic wave device.
  • FIG. 9 is a diagram showing resonance characteristics when the thickness of the SiO 2 film is 3.2 times the thickness of the piezoelectric substrate in the manufactured acoustic wave device.
  • the impedance ratio and the resonance waveform (log
  • FIG. 9 shows that when the thickness of the SiO 2 film is 3.2 times the thickness of the piezoelectric substrate, spurious is mixed in the vicinity of the frequency of 5 to 6 GHz.
  • the film thickness of the SiO 2 film is one times the thickness of the piezoelectric substrate, no spurious is mixed in the vicinity of the frequency of 5 to 6 GHz. From these results, it was confirmed that when the film thickness of the SiO 2 film is 3 times or less than the thickness of the piezoelectric substrate, spurious in the band can be further suppressed, and the impedance ratio is hardly further reduced. .
  • the thickness of the SiO 2 film is more preferably smaller than three times the thickness of the piezoelectric substrate.
  • the present invention not the entire surface of the first main surface 4a of the piezoelectric substrate 4, but the region bonded to the support substrate 2 and the thin film 6 which is the most easily broken portion in the piezoelectric substrate 4, and
  • the thin film 6 may be formed only in the region closer to the cavity 9 than the region bonded to the support substrate 2 via the thin film 6. In this case, it is possible to efficiently protect the piezoelectric substrate 4 from the viewpoint of cost effectiveness.
  • FIG. 3 is a schematic front sectional view showing an acoustic wave device according to a second embodiment of the present invention.
  • the IDT electrode 5 is disposed on the first main surface 4 a of the piezoelectric substrate 4 when the elastic wave device 21 is viewed in a plan view and the region bonded to the support substrate 2 through the thin film 6.
  • a thin film 6 is provided in the region where the film is formed. Therefore, the recess 2 c forms a cavity 9 surrounded by the support substrate 2, the thin film 6 and the piezoelectric substrate 4.
  • Other points are the same as in the first embodiment.
  • the thin film 6 may be provided so as to cover the entire surface of the first main surface 4 a of the piezoelectric substrate 4.
  • a region on the first main surface 4a of the piezoelectric substrate 4 that is bonded to the support substrate 2 via the thin film 6 and the acoustic wave device 21 are viewed in plan view.
  • a thin film 6 is provided in the region where the IDT electrode 5 is disposed, and the mechanical strength of the piezoelectric substrate 4 is increased. Therefore, the piezoelectric substrate 4 is not easily broken. Furthermore, since the thin film 6 is provided, it is possible to improve heat dissipation during voltage application.
  • the elastic wave device 21 when the elastic wave device 21 is viewed in plan, the region where the IDT electrode 5 is arranged, the portion that is most easily broken in the piezoelectric substrate 4, the support substrate 2 and the thin film 6 are interposed.
  • the thin film 6 may be formed in a region closer to the cavity 9 than the region bonded and the region bonded to the support substrate 2 via the thin film 6. In this case, a structure having both protection of the piezoelectric substrate 4 and heat dissipation can be provided.
  • a method for manufacturing the acoustic wave device 1 is not particularly limited, but an example will be described with reference to FIGS.
  • a thin film 6 is formed on the entire main surface of one side of the piezoelectric plate 4A for obtaining the piezoelectric substrate 4.
  • a plate made of LiTaO 3 is used as the piezoelectric plate 4A.
  • a plate made of another piezoelectric single crystal such as LiNbO 3 may be used, or a plate made of piezoelectric ceramics may be used.
  • the method for forming the thin film 6 is not particularly limited, but can be formed by sputtering, for example.
  • a sacrificial layer 11 is formed on the thin film 6.
  • the sacrificial layer 11 is made of an appropriate material that can be removed by etching, which will be described later. Examples of such a material include ZnO and Cu.
  • the sacrificial layer 11 may be formed by other methods.
  • a planarization film 2 ⁇ / b> A for obtaining the support substrate 2 is formed so as to cover the sacrificial layer 11.
  • an SiO 2 film is formed as the planarizing film 2A.
  • the planarizing film 2A can be formed by, for example, a sputtering method.
  • the film thickness of the planarizing film 2A is preferably 2 ⁇ m or more and 8 ⁇ m or less.
  • the planarization film 2A is planarized by CMP (Chemical Mechanical Polishing). Thereby, the support substrate 2 having a recess was obtained.
  • CMP Chemical Mechanical Polishing
  • the reinforcing substrate 3 is bonded to the lower surface of the support substrate 2.
  • the support substrate 2 and the reinforcing substrate 3 can be bonded by, for example, a resin adhesive.
  • the reinforcing substrate 3 may not be provided. However, by providing the reinforcing substrate 3, the piezoelectric plate 4A can be easily smoothed.
  • the laminate includes a reinforcing substrate 3, a support substrate 2 having a recess 2c on the upper surface, a sacrificial layer 11, a thin film 6 and a piezoelectric substrate 4 filled in the recess 2c.
  • the piezoelectric substrate 4 is laminated on the thin film 6 from the first main surface 4a side.
  • the thinning of the piezoelectric plate 4A can be performed by a smart cut method or polishing.
  • the thickness of the piezoelectric substrate 4 obtained by thinning the piezoelectric plate 4A is preferably 10 nm or more and 1000 nm or less. From the viewpoint of more effectively increasing the excitation efficiency of the plate wave, the thickness of the piezoelectric substrate 4 is more preferably 100 nm or more and 500 nm or less.
  • the IDT electrode 5 and the electrode lands 7a and 7b were formed on the second main surface 4b of the piezoelectric substrate 4.
  • the IDT electrode 5 and the electrode lands 7a and 7b can be formed by, for example, a vapor deposition lift-off method.
  • the thickness of the IDT electrode 5 and the electrode lands 7a and 7b is not particularly limited, but is preferably 10 nm or more and 1000 nm or less.
  • the IDT electrode 5 is formed of a laminated metal film in which Ti and Al are laminated in this order.
  • the IDT electrode 5 can be made of an appropriate metal or alloy such as Ti, Cu, Al, Pt, an AlCu alloy, NiCr, or Ni.
  • second-layer wirings 8 a and 8 b were formed on the second main surface 4 b of the piezoelectric substrate 4.
  • the second layer wirings 8a and 8b can also be formed by a vapor deposition lift-off method.
  • the thickness of the second layer wirings 8a and 8b is preferably 100 nm or more and 2000 nm or less.
  • the second-layer wirings 8a and 8b are composed of a laminated metal film in which Ti and Al are laminated in this order.
  • the second layer wirings 8a and 8b may be formed of other appropriate metals or alloys.
  • through holes 10 are formed in the piezoelectric substrate 4 and the thin film 6.
  • the through hole 10 is provided so as to reach the sacrificial layer 11.
  • the through hole 10 can be formed by, for example, a dry etching method (ICP-RIE (Inductive Coupled Plasma-Reactive Ion Etching)).
  • the sacrificial layer 11 is removed using the through hole 10 to obtain the acoustic wave device 1 (sacrificial layer type membrane plate wave resonator) shown in FIG.
  • the thin film 6 is provided on the first main surface 4a of the piezoelectric substrate 4, sticking hardly occurs after the sacrificial layer 11 is etched and dried.
  • the manufacturing method of the elastic wave device 21 is not particularly limited. For example, it can be manufactured by a method similar to the method of manufacturing the acoustic wave device 1 except for the position where the thin film 6 is formed.
  • the thin film 6 is formed in a region bonded via the support substrate 2 and the thin film 6 and a region where the IDT electrode 5 is disposed when the elastic wave device 21 is viewed in plan.
  • the thin film pattern shown in FIG. 3 is formed by a dry etching method or a wet etching method.
  • the thin film 6 is provided on the first main surface 4a of the piezoelectric substrate 4, sticking hardly occurs after the sacrificial layer 11 is etched and dried.
  • the method for manufacturing an acoustic wave device according to the present invention does not require complicated patterning or etching. Therefore, the elastic wave device of the present invention can be easily manufactured.
  • the present invention at least a region sandwiched between the piezoelectric substrate and the support substrate and a region below the IDT electrode on the first main surface of the piezoelectric substrate are covered with the thin film, so that the mechanical strength is increased. . For this reason, it is possible to suppress breakage of the piezoelectric substrate and increase the strength at the boundary between the piezoelectric substrate and the support substrate. In addition, since the thin film is provided on the first main surface of the piezoelectric substrate, it is possible to improve heat dissipation when a voltage is applied.
  • the elastic wave device of the present invention is widely used in various electronic devices and communication devices.
  • the electronic device include a sensor.
  • a duplexer including the elastic wave device of the present invention a communication module device including the elastic wave device of the present invention and PA (Power Amplifier) and / or LNA (Low Noise Amplifier) and / or SW (Switch).
  • PA Power Amplifier
  • LNA Low Noise Amplifier
  • SW SW
  • mobile communication devices and healthcare communication devices including the communication module devices. Examples of mobile communication devices include mobile phones, smartphones, car navigation systems, and the like. Examples of health care communication devices include a weight scale and a body fat scale. Health care communication devices and mobile communication devices include an antenna, an RF module, an LSI, a display, an input unit, a power source, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

Provided is an elastic wave device that has a hollow structure and that has a piezoelectric substrate that does not easily break. An elastic wave device 1 that is provided with: a support substrate 2 that has a recessed part 2c in an upper surface 2a thereof; a thin film 6 that is arranged upon the support substrate 2; a piezoelectric substrate 4 that has a first main surface 4a and a second main surface 4b that is on the reverse side from the first main surface 4a, wherein the first main surface 4a is arranged upon the thin film 6; and an IDT electrode 5 that is provided upon the second main surface 4b. A cavity 9 is formed so as to be enclosed by the support substrate 2 and, from among the thin film 6 and the piezoelectric substrate 4, by at least the thin film 6. With respect to regions of the first main surface 4a of the piezoelectric substrate 4, the thin film 6 is arranged in at least one portion of a region that is above the cavity 9 and in a region that is connected to the support substrate 2 via the thin film 6.

Description

弾性波装置及びその製造方法Elastic wave device and manufacturing method thereof
 本発明は、弾性波装置及びその製造方法に関する。 The present invention relates to an elastic wave device and a manufacturing method thereof.
 従来、表面波、バルク波、板波などのさまざまな弾性波を用いた弾性波装置が提案されている。例えば、下記の特許文献1には、板波を利用した弾性波装置が開示されている。 Conventionally, elastic wave devices using various elastic waves such as surface waves, bulk waves, and plate waves have been proposed. For example, Patent Document 1 below discloses an elastic wave device using a plate wave.
 特許文献1には、圧電基板が支持体により支持された弾性波装置が記載されている。特許文献1では、上記圧電基板の支持体側に空洞が形成されている。 Patent Document 1 describes an acoustic wave device in which a piezoelectric substrate is supported by a support. In Patent Document 1, a cavity is formed on the support side of the piezoelectric substrate.
特許第4636292号公報Japanese Patent No. 4636292
 しかしながら、特許文献1の弾性波装置のように、圧電基板の支持体側に空洞が設けられている構成は、空洞の影響により外力に弱くなってしまうため、圧電基板の破壊が生じやすいという問題があった。 However, the configuration in which the cavity is provided on the support side of the piezoelectric substrate as in the elastic wave device of Patent Document 1 is susceptible to external force due to the influence of the cavity, and thus the piezoelectric substrate is likely to be broken. there were.
 本発明の目的は、中空構造をもつ弾性波装置において、圧電基板の破壊が生じ難い弾性波装置及び該弾性波装置の製造方法を提供することにある。 An object of the present invention is to provide an elastic wave device in which a piezoelectric substrate is not easily broken in an elastic wave device having a hollow structure, and a method of manufacturing the elastic wave device.
 本発明に係る弾性波装置は、上面に凹部を有する支持基板と、前記支持基板上に配置されている、薄膜と、第1の主面と、該第1の主面と対向している第2の主面と、を有し、前記第1の主面側が、前記薄膜上に配置されている、圧電基板と、前記圧電基板の前記第2の主面上に設けられている、IDT電極と、を備え、前記支持基板と、前記薄膜及び前記圧電基板のうち少なくとも前記薄膜と、で囲まれた空洞が形成されており、前記圧電基板の前記第1の主面上の領域であって、前記支持基板と前記薄膜を介して接合されている領域、並びに、前記空洞の上方の領域の少なくとも一部分の領域に、前記薄膜が配置されている。 An elastic wave device according to the present invention includes a support substrate having a concave portion on an upper surface, a thin film, a first main surface, and a first main surface facing the first main surface, disposed on the support substrate. An IDT electrode provided on the second main surface of the piezoelectric substrate, the piezoelectric substrate being disposed on the thin film, and the first main surface side being disposed on the thin film A cavity surrounded by the support substrate and at least the thin film of the thin film and the piezoelectric substrate is formed, and is a region on the first main surface of the piezoelectric substrate. The thin film is disposed in a region bonded to the support substrate via the thin film and at least a portion of the region above the cavity.
 本発明に係る弾性波装置のある特定の局面では、前記薄膜が、前記圧電基板の前記第1の主面の全面に配置されていてもよい。この場合には、圧電基板の破壊をより一層生じ難くすることができる。 In a specific aspect of the acoustic wave device according to the present invention, the thin film may be disposed on the entire surface of the first main surface of the piezoelectric substrate. In this case, it is possible to further prevent the piezoelectric substrate from being broken.
 本発明に係る弾性波装置の他の特定の局面では、前記空洞の上方の領域の少なくとも一部分の領域とは、前記支持基板と前記薄膜を介して接合されている領域よりも空洞側の領域である。この場合、圧電基板の破壊がより一層生じ難い。 In another specific aspect of the acoustic wave device according to the present invention, the region at least a part of the region above the cavity is a region closer to the cavity than the region bonded to the support substrate via the thin film. is there. In this case, the piezoelectric substrate is more unlikely to break.
 本発明に係る弾性波装置の別の特定の局面では、前記空洞の上方の領域の少なくとも一部分の領域とは、前記弾性波装置を平面視した場合に、前記IDT電極が配置されている領域である。この場合、放熱性がより一層向上する。 In another specific aspect of the elastic wave device according to the present invention, the region at least a part of the region above the cavity is a region where the IDT electrode is disposed when the elastic wave device is viewed in plan. is there. In this case, the heat dissipation is further improved.
 本発明に係る弾性波装置のさらに他の特定の局面では、前記薄膜が、誘電体膜、半導体膜又は金属膜である。前記薄膜が誘電体膜の場合、温度特性を改善することができる。前記薄膜が、半導体膜又は金属膜の場合、放熱性をより一層向上させることができる。 In still another specific aspect of the acoustic wave device according to the present invention, the thin film is a dielectric film, a semiconductor film, or a metal film. When the thin film is a dielectric film, the temperature characteristics can be improved. When the thin film is a semiconductor film or a metal film, the heat dissipation can be further improved.
 本発明に係る弾性波装置のさらに他の特定の局面では、前記薄膜は、誘電体膜であって、前記誘電体膜の膜厚が、前記圧電基板の厚みの3倍以下である。この場合には、帯域内におけるスプリアスを抑制することができ、インピーダンス比の低下が生じ難い。 In still another specific aspect of the acoustic wave device according to the present invention, the thin film is a dielectric film, and the thickness of the dielectric film is not more than three times the thickness of the piezoelectric substrate. In this case, the spurious within the band can be suppressed, and the impedance ratio is hardly lowered.
 本発明に係る弾性波装置のさらに他の特定の局面では、前記誘電体膜が、SiOにより構成されている。 In still another specific aspect of the acoustic wave device according to the present invention, the dielectric film is made of SiO 2 .
 本発明に係る弾性波装置のさらに他の特定の局面では、前記圧電基板及び前記薄膜を貫通している貫通孔が設けられている。 In yet another specific aspect of the acoustic wave device according to the present invention, a through-hole penetrating the piezoelectric substrate and the thin film is provided.
 本発明に係る弾性波装置のさらに他の特定の局面では、伝搬する弾性波として板波を利用している。 In still another specific aspect of the elastic wave device according to the present invention, a plate wave is used as the propagating elastic wave.
 本発明に係る弾性波装置の製造方法は、圧電基板の第1の主面上に薄膜を形成する工程と、前記圧電基板の前記第1の主面と対向する第2の主面上に、IDT電極を形成する工程と、前記薄膜の前記圧電基板と接している側とは反対側の主面に、犠牲層を形成する工程と、前記犠牲層を覆うように、上面に凹部を有する支持基板を形成する工程と、前記圧電基板及び前記薄膜に、前記圧電基板の前記第2の主面側から前記犠牲層に至る貫通孔を形成する工程と、前記貫通孔を利用して、エッチングにより前記犠牲層を除去し、前記犠牲層が設けられている部分を空洞とする工程と、を備え、前記圧電基板の前記第1の主面上の領域であって、前記支持基板と前記薄膜を介して接合される領域、並びに、前記空洞の上方の領域の少なくとも一部分の領域に前記薄膜を形成する。 The method for manufacturing an acoustic wave device according to the present invention includes a step of forming a thin film on a first main surface of a piezoelectric substrate, and a second main surface facing the first main surface of the piezoelectric substrate, A step of forming an IDT electrode, a step of forming a sacrificial layer on the main surface of the thin film opposite to the side in contact with the piezoelectric substrate, and a support having a recess on the upper surface so as to cover the sacrificial layer A step of forming a substrate, a step of forming a through hole from the second main surface side of the piezoelectric substrate to the sacrificial layer in the piezoelectric substrate and the thin film, and etching using the through hole. Removing the sacrificial layer, and forming a cavity in a portion where the sacrificial layer is provided, the region on the first main surface of the piezoelectric substrate, wherein the support substrate and the thin film are At least one of the region joined through the cavity and the region above the cavity Forming the thin film on the minute area.
 本発明に係る弾性波装置の製造方法のある特定の局面では、前記薄膜が誘電体膜であり、該誘電体膜の膜厚が、前記圧電基板の厚みの3倍以下である。この場合には、帯域内におけるスプリアスを抑制することができ、インピーダンス比の低下が生じ難い。 In a specific aspect of the method for manufacturing an acoustic wave device according to the present invention, the thin film is a dielectric film, and the thickness of the dielectric film is not more than three times the thickness of the piezoelectric substrate. In this case, the spurious within the band can be suppressed, and the impedance ratio is hardly lowered.
 本発明に係る弾性波装置では、上記のように、圧電基板の第1の主面上の領域であって、支持基板と前記薄膜を介して接合されている領域、並びに、空洞の上方の領域の少なくとも一部分の領域が、薄膜により覆われている。 In the acoustic wave device according to the present invention, as described above, the region on the first main surface of the piezoelectric substrate, the region bonded to the support substrate via the thin film, and the region above the cavity At least a part of the region is covered with a thin film.
 従って、本発明によれば、中空構造をもつ弾性波装置において、圧電基板の破壊が生じ難い弾性波装置を提供することが可能となる。 Therefore, according to the present invention, in the elastic wave device having a hollow structure, it is possible to provide an elastic wave device in which the piezoelectric substrate is hardly broken.
図1は、本発明の第1の実施形態に係る弾性波装置を示す模式的平面図である。FIG. 1 is a schematic plan view showing an acoustic wave device according to a first embodiment of the present invention. 図2(a)は、図1のA-A線に沿う略図的正面断面図であり、図2(b)は、図1のB-B線に沿う略図的断面図である。2A is a schematic front cross-sectional view taken along the line AA in FIG. 1, and FIG. 2B is a schematic cross-sectional view taken along the line BB in FIG. 図3は、本発明の第2の実施形態に係る弾性波装置を示す略図的正面断面図である。FIG. 3 is a schematic front sectional view showing an acoustic wave device according to a second embodiment of the present invention. 図4(a)~図4(d)は、本発明の第1の実施形態に係る弾性波装置の製造方法を説明するための各略図的正面断面図である。4 (a) to 4 (d) are schematic front sectional views for explaining a method of manufacturing an acoustic wave device according to the first embodiment of the present invention. 図5(a)~図5(c)は、本発明の第1の実施形態に係る弾性波装置の製造方法を説明するための各略図的正面断面図である。5 (a) to 5 (c) are schematic front sectional views for explaining a method of manufacturing an acoustic wave device according to the first embodiment of the present invention. 図6(a)~図6(c)は、本発明の第1の実施形態に係る弾性波装置の製造方法を説明するための各略図的正面断面図である。6 (a) to 6 (c) are schematic front sectional views for explaining a method of manufacturing an acoustic wave device according to the first embodiment of the present invention. 図7は、実験例で作製した弾性波装置におけるSiO膜の膜厚とインピーダンス比(Za/Zr)との関係を示す図である。FIG. 7 is a diagram showing the relationship between the thickness of the SiO 2 film and the impedance ratio (Za / Zr) in the acoustic wave device produced in the experimental example. 図8は、実験例で作製した弾性波装置において、SiO膜の膜厚が、圧電基板の厚みの1倍のときの、共振特性を示す図である。FIG. 8 is a diagram showing resonance characteristics when the thickness of the SiO 2 film is one time the thickness of the piezoelectric substrate in the acoustic wave device manufactured in the experimental example. 図9は、実験例で作製した弾性波装置において、SiO膜の膜厚が、圧電基板の厚みの3.2倍のときの、共振特性を示す図である。FIG. 9 is a diagram showing resonance characteristics when the thickness of the SiO 2 film is 3.2 times the thickness of the piezoelectric substrate in the acoustic wave device manufactured in the experimental example. 図10は、Sモードの弾性波の伝搬状態を示す図である。Figure 10 is a diagram showing a propagation state of acoustic waves S 0 mode.
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。 Hereinafter, the present invention will be clarified by describing specific embodiments of the present invention with reference to the drawings.
 なお、本明細書に記載の各実施形態は、例示的なものであり、異なる実施形態間において、構成の部分的な置換または組み合わせが可能であることを指摘しておく。 It should be pointed out that each embodiment described in this specification is an example, and a partial replacement or combination of configurations is possible between different embodiments.
 (第1の実施形態)
 図1は、本発明の第1の実施形態に係る弾性波装置を示す模式的平面図である。また、図2(a)は、図1のA-A線に沿う略図的正面断面図であり、図2(b)は、図1のB-B線に沿う略図的断面図である。なお、図1中、破線は、空洞9が設けられている部分を示し、斜線は、貫通孔10を示すものとする。
(First embodiment)
FIG. 1 is a schematic plan view showing an acoustic wave device according to a first embodiment of the present invention. 2A is a schematic front sectional view taken along the line AA in FIG. 1, and FIG. 2B is a schematic sectional view taken along the line BB in FIG. In FIG. 1, the broken line indicates the portion where the cavity 9 is provided, and the oblique line indicates the through hole 10.
 弾性波装置1は、伝搬する弾性波として板波を利用した弾性波装置である。弾性波装置1は、支持基板2を有する。支持基板2は、上面2a及び下面2bを有する。支持基板2の上面2aに、上面2aに向かって開いた凹部2cが設けられている。 The elastic wave device 1 is an elastic wave device that uses a plate wave as a propagating elastic wave. The acoustic wave device 1 has a support substrate 2. The support substrate 2 has an upper surface 2a and a lower surface 2b. The upper surface 2a of the support substrate 2 is provided with a recess 2c that opens toward the upper surface 2a.
 支持基板2の下面2bには、補強基板3が積層されている。もっとも、補強基板3は、支持基板2の強度が十分に高ければ、設けなくともよい。従って、補強基板3は必須の構成要素ではない。 The reinforcing substrate 3 is laminated on the lower surface 2 b of the support substrate 2. However, the reinforcing substrate 3 may not be provided if the strength of the supporting substrate 2 is sufficiently high. Therefore, the reinforcing substrate 3 is not an essential component.
 支持基板2及び補強基板3は、酸化ケイ素、酸化アルミニウム又は窒化アルミニウムなどの適宜の誘電体、あるいはSiなどの半導体などの材料より構成することができる。なお、これらの材料は、単独で用いてもよく、複数を併用してもよい。また、支持基板2及び補強基板3は、同じ材料により構成されていてもよいし、他の材料により構成されていてもよい。 The support substrate 2 and the reinforcing substrate 3 can be made of an appropriate dielectric material such as silicon oxide, aluminum oxide, or aluminum nitride, or a material such as a semiconductor such as Si. In addition, these materials may be used independently and may use multiple together. Moreover, the support substrate 2 and the reinforcement substrate 3 may be comprised with the same material, and may be comprised with the other material.
 支持基板2の上面2a上には、薄膜6が積層されている。薄膜6としては、特に限定されないが、誘電体膜、半導体膜又は金属膜を用いることができる。なお、薄膜6は、複数層設けてもよい。 A thin film 6 is laminated on the upper surface 2 a of the support substrate 2. Although it does not specifically limit as the thin film 6, A dielectric film, a semiconductor film, or a metal film can be used. A plurality of thin films 6 may be provided.
 上記誘電体膜を構成する材料としては、例えば、酸化ケイ素、窒化アルミニウム、窒化ケイ素又は五酸化タンタルなどを用いることができる。 As a material constituting the dielectric film, for example, silicon oxide, aluminum nitride, silicon nitride, tantalum pentoxide, or the like can be used.
 上記半導体膜を構成する材料としては、例えば、ケイ素、炭化ケイ素又は窒化ガリウムなどの材料を用いることができる。 As the material constituting the semiconductor film, for example, a material such as silicon, silicon carbide or gallium nitride can be used.
 上記金属膜を構成する材料としては、例えば、チタン、アルミニウム、銅、プラチナ又はタングステンなどの材料を用いることができる。薄膜6として、金属膜を用いた場合、放熱性をより一層向上させることができる。 As the material constituting the metal film, for example, a material such as titanium, aluminum, copper, platinum, or tungsten can be used. When a metal film is used as the thin film 6, the heat dissipation can be further improved.
 なお、薄膜6を構成する材料は、単独で用いてもよく、複数を併用してもよい。 In addition, the material which comprises the thin film 6 may be used independently, and may use multiple together.
 薄膜6は、支持基板2の凹部2cを閉成するように設けられている。それによって、凹部2cが、支持基板2と、薄膜6とで囲まれた空洞9を構成している。 The thin film 6 is provided so as to close the concave portion 2 c of the support substrate 2. Thereby, the concave portion 2 c constitutes a cavity 9 surrounded by the support substrate 2 and the thin film 6.
 薄膜6上には、圧電基板4が積層されている。圧電基板4は、薄く、例えば、厚み1000nm以下の薄膜状である。それによって、板波をより一層励振させることが可能とされている。 A piezoelectric substrate 4 is laminated on the thin film 6. The piezoelectric substrate 4 is thin, for example, a thin film having a thickness of 1000 nm or less. As a result, the plate wave can be further excited.
 圧電基板4は、LiTaOからなる基板である。もっとも、圧電基板4としては、LiNbOなどの他の圧電単結晶からなる基板を用いてもよいし、圧電セラミックスからなる基板を用いてもよい。 The piezoelectric substrate 4 is a substrate made of LiTaO 3 . However, as the piezoelectric substrate 4, a substrate made of another piezoelectric single crystal such as LiNbO 3 or a substrate made of piezoelectric ceramics may be used.
 圧電基板4は、対向し合う第1の主面4a及び第2の主面4bを有する。圧電基板4は、第1の主面4aを下にして、薄膜6上に積層されている。すなわち、圧電基板4の第1の主面4a側が、支持基板2側に配置されている。 The piezoelectric substrate 4 has a first main surface 4a and a second main surface 4b facing each other. The piezoelectric substrate 4 is laminated on the thin film 6 with the first main surface 4a facing down. That is, the first main surface 4a side of the piezoelectric substrate 4 is disposed on the support substrate 2 side.
 他方、圧電基板4の第2の主面4b上には、IDT電極5が設けられている。よって、IDT電極5に交番電界を印加すると、IDT電極5が励振する。弾性波装置1は、上記のようにIDT電極5が励振することによって発生する弾性波として板波を利用している。 On the other hand, an IDT electrode 5 is provided on the second main surface 4 b of the piezoelectric substrate 4. Therefore, when an alternating electric field is applied to the IDT electrode 5, the IDT electrode 5 is excited. The elastic wave device 1 uses a plate wave as an elastic wave generated when the IDT electrode 5 is excited as described above.
 本実施形態においては、図示を省略しているが、本発明においては、IDT電極5を覆うように、温度調整膜としてのSiO膜を設けてもよい。 Although not shown in the present embodiment, in the present invention, an SiO 2 film as a temperature adjustment film may be provided so as to cover the IDT electrode 5.
 図1に示すように、IDT電極5は、第1及び第2のバスバーと、複数本の第1及び第2の電極指とを有する。複数本の第1の電極指と、複数本の第2の電極指とは、互いに間挿し合っている。また、複数本の第1の電極指は、第1のバスバーに接続されており、複数本の第2の電極指は、第2のバスバーに接続されている。 As shown in FIG. 1, the IDT electrode 5 includes first and second bus bars and a plurality of first and second electrode fingers. The plurality of first electrode fingers and the plurality of second electrode fingers are interleaved with each other. The plurality of first electrode fingers are connected to the first bus bar, and the plurality of second electrode fingers are connected to the second bus bar.
 圧電基板4の第2の主面4b上には、電極ランド7a,7bが形成されている。電極ランド7a,7bは、IDT電極5に電気的に接続されるように設けられている。 Electrode lands 7 a and 7 b are formed on the second main surface 4 b of the piezoelectric substrate 4. The electrode lands 7 a and 7 b are provided so as to be electrically connected to the IDT electrode 5.
 IDT電極5及び電極ランド7a,7bはCu、Ni、NiCr、AlCu合金、Ti、Al、Ptなどの適宜の金属または合金からなる。また、IDT電極5及び電極ランド7a,7bは、複数の金属膜を積層してなる積層金属膜により構成されていてもよい。 The IDT electrode 5 and the electrode lands 7a and 7b are made of an appropriate metal or alloy such as Cu, Ni, NiCr, AlCu alloy, Ti, Al, or Pt. Further, the IDT electrode 5 and the electrode lands 7a and 7b may be constituted by a laminated metal film formed by laminating a plurality of metal films.
 電極ランド7a,7b上には、2層目配線8a,8bが設けられている。2層目配線8a,8bは、電極ランド7a,7bと電気的に接続されている。従って、この2層目配線8a,8b上には、金属バンプ等を接合してもよい。 Second- layer wirings 8a and 8b are provided on the electrode lands 7a and 7b. The second layer wirings 8a and 8b are electrically connected to the electrode lands 7a and 7b. Therefore, metal bumps or the like may be bonded onto the second layer wirings 8a and 8b.
 2層目配線8a,8bは、Cu、Ni、NiCr、AlCu合金、Ti、Al、Ptなどの適宜の金属もしくは合金により構成することができる。2層目配線8a,8bは、複数の金属膜を積層してなる積層金属膜により構成されていてもよい。 The second layer wirings 8a and 8b can be made of an appropriate metal or alloy such as Cu, Ni, NiCr, AlCu alloy, Ti, Al, and Pt. Second- layer wirings 8a and 8b may be formed of a laminated metal film formed by laminating a plurality of metal films.
 圧電基板4及び薄膜6には、貫通孔10が設けられている。貫通孔10は、圧電基板4の第2の主面4bから、空洞9に向かって貫通している。貫通孔10は、後述する製造工程においてエッチングホールとして利用される。貫通孔10は、凹部2cにより形成される空洞9と外気とを接続している。 A through hole 10 is provided in the piezoelectric substrate 4 and the thin film 6. The through hole 10 penetrates from the second main surface 4 b of the piezoelectric substrate 4 toward the cavity 9. The through hole 10 is used as an etching hole in a manufacturing process described later. The through hole 10 connects the cavity 9 formed by the recess 2c and the outside air.
 本実施形態においては、圧電基板4の第1の主面4aの全面を覆うように、薄膜6が設けられており、圧電基板4の機械的強度が高められている。そのため、中空構造をもつ弾性波装置において、圧電基板4の破壊が生じ難い。また、圧電基板4の第1の主面4aに薄膜6が設けられていることから、電圧印加時の放熱性を高めることも可能となる。 In the present embodiment, the thin film 6 is provided so as to cover the entire surface of the first main surface 4a of the piezoelectric substrate 4, and the mechanical strength of the piezoelectric substrate 4 is increased. Therefore, in the acoustic wave device having a hollow structure, the piezoelectric substrate 4 is hardly broken. In addition, since the thin film 6 is provided on the first main surface 4a of the piezoelectric substrate 4, it is possible to improve the heat dissipation when a voltage is applied.
 また、本発明においては、薄膜6として金属膜、半導体膜を用いた場合には、放熱性を一層向上させることができる。 Further, in the present invention, when a metal film or a semiconductor film is used as the thin film 6, the heat dissipation can be further improved.
 また、本発明においては、薄膜6として誘電体膜を用いた場合には、温度特性を改善させることができる。 In the present invention, when a dielectric film is used as the thin film 6, the temperature characteristics can be improved.
 また、本発明においては、薄膜6として誘電体膜を用いた場合、該誘電体膜の膜厚は、圧電基板4の厚みの3倍以下とすることが好ましい。上記誘電体膜の膜厚が厚すぎると、帯域内にスプリアスが混入し、インピーダンス比が低下することがある。インピーダンス比の低下をより一層抑制する観点からは、上記誘電体膜の膜厚は、圧電基板4の厚みの3倍より小さくすることがより好ましい。 In the present invention, when a dielectric film is used as the thin film 6, the thickness of the dielectric film is preferably 3 times or less the thickness of the piezoelectric substrate 4. When the film thickness of the dielectric film is too thick, spurious may be mixed in the band and the impedance ratio may be lowered. From the viewpoint of further suppressing the reduction in impedance ratio, the thickness of the dielectric film is more preferably smaller than three times the thickness of the piezoelectric substrate 4.
 以下、FEM(有限要素法)による実験例を用いてより詳細に説明する。 Hereinafter, a detailed description will be given using an experimental example by FEM (finite element method).
 実験例においては、下記の条件により弾性波装置1を作製した。ただし、λは弾性波の波長である。 In the experimental example, the acoustic wave device 1 was manufactured under the following conditions. Where λ is the wavelength of the elastic wave.
 IDT電極5…Alにより構成、デュ-ティー:0.5、膜厚:0.07λ
 圧電基板4…LiNbO{オイラー角(90,90,40)}、膜厚:0.1λ
 薄膜6…誘電体膜(SiO膜)、膜厚:0~0.34λ
IDT electrode 5: composed of Al, duty: 0.5, film thickness: 0.07λ
Piezoelectric substrate 4 ... LiNbO 3 {Euler angle (90, 90, 40)}, film thickness: 0.1λ
Thin film 6 ... Dielectric film (SiO 2 film), film thickness: 0 to 0.34λ
 なお、本実験例においては、音速5000~6000m/秒のモード(周波数が、5~6GHz近傍となる波)を利用した。ここで主に励振されているモードは、LiNbOの圧電基板4中に図10に示す変位を持ったSモードの弾性波である。また、本実験例では、λ=1μmである。 In this experimental example, a mode with a speed of sound of 5000 to 6000 m / sec (a wave having a frequency in the vicinity of 5 to 6 GHz) was used. The mode mainly excited here is an acoustic wave of S 0 mode having the displacement shown in FIG. 10 in the piezoelectric substrate 4 of LiNbO 3 . In this experimental example, λ = 1 μm.
 図7は、作製した弾性波装置におけるSiO膜の膜厚とインピーダンス比(Za/Zr)との関係を示す図である。なお、図7においては、SiO膜の膜厚を圧電基板の厚みで除した値(SiO膜の膜厚/圧電基板の厚み)を横軸としている。 FIG. 7 is a diagram showing the relationship between the thickness of the SiO 2 film and the impedance ratio (Za / Zr) in the fabricated acoustic wave device. Note that in Figure 7 the value obtained by dividing the film thickness of the SiO 2 film at the thickness of the piezoelectric substrate (SiO 2 film having a thickness / piezoelectric substrate thickness) and the horizontal axis.
 図7より、SiO膜の膜厚が、圧電基板4の厚みの3倍より大きい場合、インピーダンス比(Za/Zr)が急激に低下していることがわかる。 FIG. 7 shows that when the thickness of the SiO 2 film is larger than three times the thickness of the piezoelectric substrate 4, the impedance ratio (Za / Zr) rapidly decreases.
 図8は、作製した弾性波装置において、SiO膜の膜厚が、圧電基板の厚みの1倍のときの、共振特性を示す図である。また、図9は、作製した弾性波装置において、SiO膜の膜厚が、圧電基板の厚みの3.2倍のときの、共振特性を示す図である。なお、図8及び図9においては、インピーダンス比と共振波形(log|Z|)とを、FEM(有限要素法)を用いて計算した結果をプロットしたものである。 FIG. 8 is a diagram showing resonance characteristics when the thickness of the SiO 2 film is 1 times the thickness of the piezoelectric substrate in the fabricated acoustic wave device. FIG. 9 is a diagram showing resonance characteristics when the thickness of the SiO 2 film is 3.2 times the thickness of the piezoelectric substrate in the manufactured acoustic wave device. In FIGS. 8 and 9, the impedance ratio and the resonance waveform (log | Z |) are plotted using FEM (finite element method).
 図9より、SiO膜の膜厚が、圧電基板の厚みの3.2倍のとき、周波数5~6GHz付近において、スプリアスが混入していることがわかる。他方、図8より、SiO膜の膜厚が、圧電基板の厚みの1倍のとき、周波数が5~6GHz付近において、スプリアスが混入していないことがわかる。これらの結果より、SiO膜の膜厚が、圧電基板の厚みの3倍以下のとき、帯域内のスプリアスをより一層抑制することができ、インピーダンス比がより一層低下し難いことを確認できた。なお、帯域内のスプリアスをより一層抑制し、インピーダンス比の低下をより一層抑制する観点から、SiO膜の膜厚は、圧電基板の厚みの3倍より小さくすることがより好ましい。 FIG. 9 shows that when the thickness of the SiO 2 film is 3.2 times the thickness of the piezoelectric substrate, spurious is mixed in the vicinity of the frequency of 5 to 6 GHz. On the other hand, it can be seen from FIG. 8 that when the film thickness of the SiO 2 film is one times the thickness of the piezoelectric substrate, no spurious is mixed in the vicinity of the frequency of 5 to 6 GHz. From these results, it was confirmed that when the film thickness of the SiO 2 film is 3 times or less than the thickness of the piezoelectric substrate, spurious in the band can be further suppressed, and the impedance ratio is hardly further reduced. . Note that, from the viewpoint of further suppressing spurious in the band and further suppressing a decrease in impedance ratio, the thickness of the SiO 2 film is more preferably smaller than three times the thickness of the piezoelectric substrate.
 なお、本発明においては、圧電基板4の第1の主面4aの全面ではなく、圧電基板4の中で最も折れやすい部位である、支持基板2と薄膜6を介して接合されている領域及び支持基板2と薄膜6を介して接合されている領域よりも空洞9側の領域にのみ薄膜6を形成してもよい。この場合、費用対効果の観点で、圧電基板4を効率よく保護することもできる。 In the present invention, not the entire surface of the first main surface 4a of the piezoelectric substrate 4, but the region bonded to the support substrate 2 and the thin film 6 which is the most easily broken portion in the piezoelectric substrate 4, and The thin film 6 may be formed only in the region closer to the cavity 9 than the region bonded to the support substrate 2 via the thin film 6. In this case, it is possible to efficiently protect the piezoelectric substrate 4 from the viewpoint of cost effectiveness.
 (第2の実施形態)
 図3は、本発明の第2の実施形態に係る弾性波装置を示す略図的正面断面図である。弾性波装置21では、圧電基板4の第1の主面4a上において、支持基板2と薄膜6を介して接合されている領域と、弾性波装置21を平面視した場合にIDT電極5が配置されている領域とに薄膜6が設けられている。そのため、凹部2cは、支持基板2と、薄膜6及び圧電基板4により囲まれた空洞9を形成することとなる。その他の点は、第1の実施形態と同様である。
(Second Embodiment)
FIG. 3 is a schematic front sectional view showing an acoustic wave device according to a second embodiment of the present invention. In the acoustic wave device 21, the IDT electrode 5 is disposed on the first main surface 4 a of the piezoelectric substrate 4 when the elastic wave device 21 is viewed in a plan view and the region bonded to the support substrate 2 through the thin film 6. A thin film 6 is provided in the region where the film is formed. Therefore, the recess 2 c forms a cavity 9 surrounded by the support substrate 2, the thin film 6 and the piezoelectric substrate 4. Other points are the same as in the first embodiment.
 なお、薄膜6は、圧電基板4の第1の主面4aの全面を覆うように設けられていてもよい。 The thin film 6 may be provided so as to cover the entire surface of the first main surface 4 a of the piezoelectric substrate 4.
 第2の実施形態においては、圧電基板4の第1の主面4a上の領域であって、支持基板2と薄膜6を介して接合されている領域と、弾性波装置21を平面視した場合にIDT電極5が配置されている領域とに薄膜6が設けられており、圧電基板4の機械的強度が高められている。そのため、圧電基板4の破壊が生じ難い。さらに、薄膜6が設けられているため、電圧印加時の放熱性も高めることが可能となる。 In the second embodiment, a region on the first main surface 4a of the piezoelectric substrate 4 that is bonded to the support substrate 2 via the thin film 6 and the acoustic wave device 21 are viewed in plan view. A thin film 6 is provided in the region where the IDT electrode 5 is disposed, and the mechanical strength of the piezoelectric substrate 4 is increased. Therefore, the piezoelectric substrate 4 is not easily broken. Furthermore, since the thin film 6 is provided, it is possible to improve heat dissipation during voltage application.
 なお、本発明においては、弾性波装置21を平面視した場合に、IDT電極5が配置されている領域、圧電基板4の中で最も折れやすい部位である、支持基板2と薄膜6を介して接合されている領域及び支持基板2と薄膜6を介して接合されている領域よりも空洞9側の領域に薄膜6を形成してもよい。この場合、圧電基板4の保護と放熱性を兼ね備えた構造にすることもできる。 In the present invention, when the elastic wave device 21 is viewed in plan, the region where the IDT electrode 5 is arranged, the portion that is most easily broken in the piezoelectric substrate 4, the support substrate 2 and the thin film 6 are interposed. The thin film 6 may be formed in a region closer to the cavity 9 than the region bonded and the region bonded to the support substrate 2 via the thin film 6. In this case, a structure having both protection of the piezoelectric substrate 4 and heat dissipation can be provided.
 (製造方法)
 弾性波装置1の製造方法は、特に限定されないが、一例を図4~図6を参照して説明する。
(Production method)
A method for manufacturing the acoustic wave device 1 is not particularly limited, but an example will be described with reference to FIGS.
 まず、図4(a)に示すように、圧電基板4を得るための圧電板4Aの一方側主面上の全面に薄膜6を形成する。 First, as shown in FIG. 4A, a thin film 6 is formed on the entire main surface of one side of the piezoelectric plate 4A for obtaining the piezoelectric substrate 4.
 圧電板4Aとしては、LiTaOからなる板が用いられる。もっとも、圧電板4Aとしては、LiNbOなどの他の圧電単結晶からなる板を用いてもよいし、圧電セラミックスからなる板を用いてもよい。 A plate made of LiTaO 3 is used as the piezoelectric plate 4A. However, as the piezoelectric plate 4A, a plate made of another piezoelectric single crystal such as LiNbO 3 may be used, or a plate made of piezoelectric ceramics may be used.
 薄膜6を形成する方法としては、特に限定されないが、例えば、スパッタリングにより形成することができる。 The method for forming the thin film 6 is not particularly limited, but can be formed by sputtering, for example.
 次に、図4(b)に示すように、薄膜6上に、犠牲層11を形成する。犠牲層11は、後述するエッチングにより除去され得る適宜の材料からなる。このような材料としては、ZnO、Cuなどを挙げることができる。 Next, as shown in FIG. 4B, a sacrificial layer 11 is formed on the thin film 6. The sacrificial layer 11 is made of an appropriate material that can be removed by etching, which will be described later. Examples of such a material include ZnO and Cu.
 犠牲層11は、例えば、以下の方法により形成することができる。まず、スパッタリング法により、膜厚がおよそ1~3μmのZnO膜を形成する。その後、レジスト塗布、露光及び現像をこの順に行う。次に、酢酸、リン酸及び水の混合液(酢酸:リン酸:水=1:1:10)を用いて、ウエットエッチングを行い犠牲層11のパターンを形成する。なお、犠牲層11は、他の方法により形成してもよい。 The sacrificial layer 11 can be formed by the following method, for example. First, a ZnO film having a thickness of about 1 to 3 μm is formed by sputtering. Thereafter, resist coating, exposure and development are performed in this order. Next, wet etching is performed using a mixed solution of acetic acid, phosphoric acid and water (acetic acid: phosphoric acid: water = 1: 1: 10) to form a pattern of the sacrificial layer 11. The sacrificial layer 11 may be formed by other methods.
 次に、図4(c)に示すように、犠牲層11を覆うように、支持基板2を得るための平坦化用膜2Aを形成する。本実施形態では、平坦化用膜2Aとして、SiO膜を形成した。平坦化用膜2Aは、例えば、スパッタリング法により形成することができる。平坦化用膜2Aの膜厚としては、2μm以上、8μm以下とすることが好ましい。 Next, as shown in FIG. 4C, a planarization film 2 </ b> A for obtaining the support substrate 2 is formed so as to cover the sacrificial layer 11. In the present embodiment, an SiO 2 film is formed as the planarizing film 2A. The planarizing film 2A can be formed by, for example, a sputtering method. The film thickness of the planarizing film 2A is preferably 2 μm or more and 8 μm or less.
 次に、図4(d)に示すように、CMP(Chemical Mechanical Polishing)により、平坦化用膜2Aの平坦化研磨を行った。それによって、凹部を有する支持基板2を得た。 Next, as shown in FIG. 4D, the planarization film 2A is planarized by CMP (Chemical Mechanical Polishing). Thereby, the support substrate 2 having a recess was obtained.
 次に、図5(a)に示すように、支持基板2の下面に補強基板3を接合する。支持基板2及び補強基板3の接合は、例えば、樹脂接着剤により接合することができる。なお、補強基板3は設けられなくともよい。もっとも、補強基板3を設けることにより、圧電板4Aの平滑化処理を容易に行うことができる。 Next, as shown in FIG. 5A, the reinforcing substrate 3 is bonded to the lower surface of the support substrate 2. The support substrate 2 and the reinforcing substrate 3 can be bonded by, for example, a resin adhesive. The reinforcing substrate 3 may not be provided. However, by providing the reinforcing substrate 3, the piezoelectric plate 4A can be easily smoothed.
 次に、圧電板4Aの薄板化を行った。それによって、図5(b)に示す積層体を得た。上記積層体は、補強基板3、上面に凹部2cを有する支持基板2、凹部2cに充填されている犠牲層11、薄膜6及び圧電基板4を備える。なお、圧電基板4は、第1の主面4a側から、薄膜6に積層されている。 Next, the piezoelectric plate 4A was thinned. Thereby, the laminate shown in FIG. 5B was obtained. The laminate includes a reinforcing substrate 3, a support substrate 2 having a recess 2c on the upper surface, a sacrificial layer 11, a thin film 6 and a piezoelectric substrate 4 filled in the recess 2c. The piezoelectric substrate 4 is laminated on the thin film 6 from the first main surface 4a side.
 圧電板4Aの薄板化は、スマートカット法や研磨などで行うことができる。圧電板4Aの薄板化により得られた圧電基板4の厚みは、10nm以上、1000nm以下とすることが好ましい。板波の励振効率をより一層効果的に高める観点からは、圧電基板4の厚みは、100nm以上、500nm以下とすることがより好ましい。 The thinning of the piezoelectric plate 4A can be performed by a smart cut method or polishing. The thickness of the piezoelectric substrate 4 obtained by thinning the piezoelectric plate 4A is preferably 10 nm or more and 1000 nm or less. From the viewpoint of more effectively increasing the excitation efficiency of the plate wave, the thickness of the piezoelectric substrate 4 is more preferably 100 nm or more and 500 nm or less.
 次に、図5(c)に示すように、圧電基板4の第2の主面4b上に、IDT電極5及び電極ランド7a,7bを形成した。IDT電極5及び電極ランド7a,7bは、例えば、蒸着リフトオフ法により形成することができる。IDT電極5及び電極ランド7a,7bの厚みは、特に限定されないが、10nm以上、1000nm以下とすることが好ましい。 Next, as shown in FIG. 5C, the IDT electrode 5 and the electrode lands 7a and 7b were formed on the second main surface 4b of the piezoelectric substrate 4. The IDT electrode 5 and the electrode lands 7a and 7b can be formed by, for example, a vapor deposition lift-off method. The thickness of the IDT electrode 5 and the electrode lands 7a and 7b is not particularly limited, but is preferably 10 nm or more and 1000 nm or less.
 本実施形態においてIDT電極5は、Ti、及びAlをこの順に積層した積層金属膜により形成されている。IDT電極5は、Ti、Cu、Al、Pt、AlCu合金、NiCr、Niなどの適宜の金属もしくは合金により構成することができる。 In this embodiment, the IDT electrode 5 is formed of a laminated metal film in which Ti and Al are laminated in this order. The IDT electrode 5 can be made of an appropriate metal or alloy such as Ti, Cu, Al, Pt, an AlCu alloy, NiCr, or Ni.
 次に、図6(a)に示すように、圧電基板4の第2の主面4b上に、2層目配線8a,8bを形成した。2層目配線8a,8bは、蒸着リフトオフ法により形成することもできる。2層目配線8a,8bの厚みは、100nm以上、2000nm以下とすることが好ましい。 Next, as shown in FIG. 6A, second- layer wirings 8 a and 8 b were formed on the second main surface 4 b of the piezoelectric substrate 4. The second layer wirings 8a and 8b can also be formed by a vapor deposition lift-off method. The thickness of the second layer wirings 8a and 8b is preferably 100 nm or more and 2000 nm or less.
 本実施形態において、2層目配線8a,8bは、Ti及びAlをこの順に積層した積層金属膜により構成されている。なお、2層目配線8a,8bは、他の適宜の金属もしくは合金により形成されていてもよい。 In the present embodiment, the second- layer wirings 8a and 8b are composed of a laminated metal film in which Ti and Al are laminated in this order. The second layer wirings 8a and 8b may be formed of other appropriate metals or alloys.
 次に、図6(b)に示すように、圧電基板4及び薄膜6に、貫通孔10を形成する。なお、貫通孔10は、犠牲層11に至るように設ける。貫通孔10は、例えば、ドライエッチング法(ICP-RIE(Inductive Coupled Plasma- Reactive Ion Etching))により形成することができる。 Next, as shown in FIG. 6B, through holes 10 are formed in the piezoelectric substrate 4 and the thin film 6. The through hole 10 is provided so as to reach the sacrificial layer 11. The through hole 10 can be formed by, for example, a dry etching method (ICP-RIE (Inductive Coupled Plasma-Reactive Ion Etching)).
 最後に、貫通孔10を利用して、犠牲層11を除去し、図6(c)に示す弾性波装置1(犠牲層型のメンブレン板波共振器)を得る。犠牲層11の材料がZnOであった場合は、例えば、酢酸、リン酸及び水の混合溶液(酢酸:リン酸:水=1:1:10)を用い、ウエットエッチングにより除去することができる。本実施形態においては、圧電基板4の第1の主面4aに薄膜6が設けられているため、犠牲層11をエッチングし乾燥した後に、スティッキングが生じ難い。 Finally, the sacrificial layer 11 is removed using the through hole 10 to obtain the acoustic wave device 1 (sacrificial layer type membrane plate wave resonator) shown in FIG. When the material of the sacrificial layer 11 is ZnO, for example, it can be removed by wet etching using a mixed solution of acetic acid, phosphoric acid and water (acetic acid: phosphoric acid: water = 1: 1: 10). In the present embodiment, since the thin film 6 is provided on the first main surface 4a of the piezoelectric substrate 4, sticking hardly occurs after the sacrificial layer 11 is etched and dried.
 弾性波装置21の製造方法についても、特に限定されない。例えば、薄膜6の形成位置を除いては、弾性波装置1の製造方法と同様の方法で製造することができる。薄膜6は、支持基板2と薄膜6を介して接合されている領域と、弾性波装置21を平面視した場合にIDT電極5が配置されている領域とに形成するものとする。例えば、圧電基板4の第1の主面4aに全面に薄膜6を形成した後、ドライエッチング法やウエットエッチング法で図3に示した薄膜パターンを形成する。本実施形態においても、圧電基板4の第1の主面4aに薄膜6が設けられているため、犠牲層11をエッチングし乾燥した後に、スティッキングが生じ難い。 The manufacturing method of the elastic wave device 21 is not particularly limited. For example, it can be manufactured by a method similar to the method of manufacturing the acoustic wave device 1 except for the position where the thin film 6 is formed. The thin film 6 is formed in a region bonded via the support substrate 2 and the thin film 6 and a region where the IDT electrode 5 is disposed when the elastic wave device 21 is viewed in plan. For example, after the thin film 6 is formed on the entire first main surface 4a of the piezoelectric substrate 4, the thin film pattern shown in FIG. 3 is formed by a dry etching method or a wet etching method. Also in this embodiment, since the thin film 6 is provided on the first main surface 4a of the piezoelectric substrate 4, sticking hardly occurs after the sacrificial layer 11 is etched and dried.
 上記のように、本発明に係る弾性波装置の製造方法においては、複雑なパターニングやエッチング処理を必要としない。そのため、本発明の弾性波装置は、簡便に製造することができる。 As described above, the method for manufacturing an acoustic wave device according to the present invention does not require complicated patterning or etching. Therefore, the elastic wave device of the present invention can be easily manufactured.
 本発明においては、圧電基板の第1の主面の、少なくとも、圧電基板及び支持基板により挟まれる領域、並びにIDT電極の下方の領域が薄膜によって覆われており、機械的強度が高められている。そのため、圧電基板の破壊を抑制し、圧電基板と支持基板との境界における強度を高めることが可能となる。また、圧電基板の第1の主面に薄膜が設けられているため、電圧印加時の放熱性を高めることも可能となる。 In the present invention, at least a region sandwiched between the piezoelectric substrate and the support substrate and a region below the IDT electrode on the first main surface of the piezoelectric substrate are covered with the thin film, so that the mechanical strength is increased. . For this reason, it is possible to suppress breakage of the piezoelectric substrate and increase the strength at the boundary between the piezoelectric substrate and the support substrate. In addition, since the thin film is provided on the first main surface of the piezoelectric substrate, it is possible to improve heat dissipation when a voltage is applied.
 本発明の弾性波装置は、様々な電子機器や通信機器に広く用いられる。電子機器としては、例えば、センサーがある。通信機器としては、例えば、本発明の弾性波装置を含むデュプレクサ、本発明の弾性波装置とPA(Power Amplifier)及び/またはLNA(Low Noise Amplifier)及び/またはSW(Switch)を含む通信モジュール機器、その通信モジュール機器を含む移動体通信機器やヘルスケア通信機器等がある。移動体通信機器としては、携帯電話、スマートフォン、カーナビ等がある。ヘルスケア通信機器としては、体重計や体脂肪計等がある。ヘルスケア通信機器や移動体通信機器は、アンテナ、RFモジュール、LSI、ディスプレイ、入力部、電源等を備えている。 The elastic wave device of the present invention is widely used in various electronic devices and communication devices. Examples of the electronic device include a sensor. As communication equipment, for example, a duplexer including the elastic wave device of the present invention, a communication module device including the elastic wave device of the present invention and PA (Power Amplifier) and / or LNA (Low Noise Amplifier) and / or SW (Switch). There are mobile communication devices and healthcare communication devices including the communication module devices. Examples of mobile communication devices include mobile phones, smartphones, car navigation systems, and the like. Examples of health care communication devices include a weight scale and a body fat scale. Health care communication devices and mobile communication devices include an antenna, an RF module, an LSI, a display, an input unit, a power source, and the like.
1,21…弾性波装置
2…支持基板
2a…上面
2b…下面
2c…凹部
2A…平坦化用膜
3…補強基板
4…圧電基板
4a,4b…第1,第2の主面
4A…圧電板
5…IDT電極
6…薄膜
7a,7b…電極ランド
8a,8b…2層目配線
9…空洞
10…貫通孔
11…犠牲層
DESCRIPTION OF SYMBOLS 1,21 ... Elastic wave apparatus 2 ... Support substrate 2a ... Upper surface 2b ... Lower surface 2c ... Recess 2A ... Flattening film | membrane 3 ... Reinforcement substrate 4 ... Piezoelectric substrate 4a, 4b ... 1st, 2nd main surface 4A ... Piezoelectric plate 5 ... IDT electrode 6 ... thin films 7a, 7b ... electrode lands 8a, 8b ... second layer wiring 9 ... cavity 10 ... through hole 11 ... sacrificial layer

Claims (11)

  1.  上面に凹部を有する支持基板と、
     前記支持基板上に配置されている、薄膜と、
     第1の主面と、該第1の主面と対向している第2の主面と、を有し、前記第1の主面側が、前記薄膜上に配置されている、圧電基板と、
     前記圧電基板の前記第2の主面上に設けられている、IDT電極と、
    を備え、
     前記支持基板と、前記薄膜及び前記圧電基板のうち少なくとも前記薄膜と、で囲まれた空洞が形成されており、
     前記圧電基板の前記第1の主面上の領域であって、前記支持基板と前記薄膜を介して接合されている領域、並びに、前記空洞の上方の領域の少なくとも一部分の領域に、前記薄膜が配置されている、弾性波装置。
    A support substrate having a recess on the upper surface;
    A thin film disposed on the support substrate;
    A piezoelectric substrate having a first main surface and a second main surface facing the first main surface, the first main surface side being disposed on the thin film;
    An IDT electrode provided on the second main surface of the piezoelectric substrate;
    With
    A cavity surrounded by the support substrate and at least the thin film of the thin film and the piezoelectric substrate is formed,
    The thin film is in a region on the first main surface of the piezoelectric substrate, the region bonded to the support substrate via the thin film, and at least a portion of the region above the cavity. Arranged elastic wave device.
  2.  前記薄膜が、前記圧電基板の前記第1の主面の全面に配置されている、請求項1に記載の弾性波装置。 The elastic wave device according to claim 1, wherein the thin film is disposed on the entire surface of the first main surface of the piezoelectric substrate.
  3.  前記空洞の上方の領域の少なくとも一部分の領域とは、前記支持基板と前記薄膜を介して接合されている領域よりも空洞側の領域である、請求項1又は2に記載の弾性波装置。 The elastic wave device according to claim 1 or 2, wherein the region at least a part of the region above the cavity is a region closer to the cavity than the region bonded to the support substrate via the thin film.
  4.  前記空洞の上方の領域の少なくとも一部分の領域とは、前記弾性波装置を平面視した場合に、前記IDT電極が配置されている領域である、請求項1又は2に記載の弾性波装置。 The elastic wave device according to claim 1 or 2, wherein the region of at least a part of the region above the cavity is a region where the IDT electrode is disposed when the elastic wave device is viewed in plan.
  5.  前記薄膜が、誘電体膜、半導体膜又は金属膜である、請求項1~4のいずれか1項に記載の弾性波装置。 The elastic wave device according to any one of claims 1 to 4, wherein the thin film is a dielectric film, a semiconductor film, or a metal film.
  6.  前記薄膜は、誘電体膜であって、
     前記誘電体膜の膜厚が、前記圧電基板の厚みの3倍以下である、請求項5に記載の弾性波装置。
    The thin film is a dielectric film,
    The elastic wave device according to claim 5, wherein a film thickness of the dielectric film is three times or less of a thickness of the piezoelectric substrate.
  7.  前記誘電体膜が、SiOにより構成されている、請求項5又は6に記載の弾性波装置。 The dielectric film is constituted by SiO 2, acoustic wave device according to claim 5 or 6.
  8.  前記圧電基板及び前記薄膜を貫通している貫通孔が設けられている、請求項1~7のいずれか1項に記載の弾性波装置。 The elastic wave device according to any one of claims 1 to 7, wherein a through-hole penetrating the piezoelectric substrate and the thin film is provided.
  9.  伝搬する弾性波として板波を利用している、請求項1~8のいずれか1項に記載の弾性波装置。 The elastic wave device according to any one of claims 1 to 8, wherein a plate wave is used as the propagating elastic wave.
  10.  圧電基板の第1の主面上に薄膜を形成する工程と、
     前記圧電基板の前記第1の主面と対向する第2の主面上に、IDT電極を形成する工程と、
     前記薄膜の前記圧電基板と接している側とは反対側の主面に、犠牲層を形成する工程と、
     前記犠牲層を覆うように、上面に凹部を有する支持基板を形成する工程と、
     前記圧電基板及び前記薄膜に、前記圧電基板の前記第2の主面側から前記犠牲層に至る貫通孔を形成する工程と、
     前記貫通孔を利用して、エッチングにより前記犠牲層を除去し、前記犠牲層が設けられている部分を空洞とする工程と、
    を備え、
     前記圧電基板の前記第1の主面上の領域であって、前記支持基板と前記薄膜を介して接合される領域、並びに、前記空洞の上方の領域の少なくとも一部分の領域に前記薄膜を形成する、弾性波装置の製造方法。
    Forming a thin film on the first main surface of the piezoelectric substrate;
    Forming an IDT electrode on a second main surface opposite to the first main surface of the piezoelectric substrate;
    Forming a sacrificial layer on the main surface of the thin film opposite to the side in contact with the piezoelectric substrate;
    Forming a support substrate having a recess on an upper surface so as to cover the sacrificial layer;
    Forming a through hole in the piezoelectric substrate and the thin film from the second main surface side of the piezoelectric substrate to the sacrificial layer;
    Removing the sacrificial layer by etching using the through-hole, and forming a cavity in a portion where the sacrificial layer is provided;
    With
    The thin film is formed in a region on the first main surface of the piezoelectric substrate, the region bonded to the support substrate via the thin film, and at least a portion of the region above the cavity. The manufacturing method of an elastic wave device.
  11.  前記薄膜が誘電体膜であり、
     該誘電体膜の膜厚が、前記圧電基板の厚みの3倍以下である、請求項10に記載の弾性波装置の製造方法。
    The thin film is a dielectric film;
    The method for manufacturing an acoustic wave device according to claim 10, wherein a thickness of the dielectric film is three times or less of a thickness of the piezoelectric substrate.
PCT/JP2016/051029 2015-03-13 2016-01-14 Elastic wave device and production method for same WO2016147687A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017506116A JP6497435B2 (en) 2015-03-13 2016-01-14 Elastic wave device and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-050893 2015-03-13
JP2015050893 2015-03-13

Publications (1)

Publication Number Publication Date
WO2016147687A1 true WO2016147687A1 (en) 2016-09-22

Family

ID=56920251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051029 WO2016147687A1 (en) 2015-03-13 2016-01-14 Elastic wave device and production method for same

Country Status (2)

Country Link
JP (1) JP6497435B2 (en)
WO (1) WO2016147687A1 (en)

Cited By (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018097016A1 (en) * 2016-11-25 2018-05-31 国立大学法人東北大学 Elastic wave device
JP2018093487A (en) * 2016-11-30 2018-06-14 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. Saw filter that comprises piezoelectric substrate having stepwise cross section
CN110100387A (en) * 2016-12-16 2019-08-06 株式会社村田制作所 Acoustic wave device, high-frequency front-end circuit and communication device
CN111030629A (en) * 2019-12-31 2020-04-17 武汉衍熙微器件有限公司 Method for manufacturing acoustic wave device and acoustic wave device
WO2022014493A1 (en) * 2020-07-15 2022-01-20 株式会社村田製作所 Elastic wave device
WO2022071605A1 (en) * 2020-10-02 2022-04-07 株式会社村田製作所 Elastic wave device and method for manufacturing elastic wave device
JP7055499B1 (en) 2021-05-24 2022-04-18 三安ジャパンテクノロジー株式会社 A module with an elastic wave device and its elastic wave device
JP2022524136A (en) * 2019-03-14 2022-04-27 レゾナント インコーポレイテッド Laterally Excited Film Bulk Acoustic Resonator with Half Lambda Dielectric Layer
WO2022085581A1 (en) * 2020-10-23 2022-04-28 株式会社村田製作所 Acoustic wave device
WO2022102720A1 (en) * 2020-11-13 2022-05-19 株式会社村田製作所 Elastic wave device
WO2022102719A1 (en) * 2020-11-13 2022-05-19 株式会社村田製作所 Elastic wave device
WO2022124391A1 (en) * 2020-12-11 2022-06-16 株式会社村田製作所 Elastic wave device
WO2022131309A1 (en) * 2020-12-17 2022-06-23 株式会社村田製作所 Elastic wave device
WO2022138552A1 (en) * 2020-12-22 2022-06-30 株式会社村田製作所 Elastic wave device
WO2022163865A1 (en) * 2021-02-01 2022-08-04 株式会社村田製作所 Elastic wave device
WO2022168937A1 (en) * 2021-02-05 2022-08-11 株式会社村田製作所 Elastic wave device and method for manufacturing elastic wave device
WO2022186201A1 (en) * 2021-03-01 2022-09-09 株式会社村田製作所 Elastic wave device
WO2022211103A1 (en) * 2021-03-31 2022-10-06 株式会社村田製作所 Elastic wave device and method for manufacturing elastic wave device
WO2022209525A1 (en) * 2021-03-31 2022-10-06 株式会社村田製作所 Elastic wave device
WO2022210941A1 (en) * 2021-03-31 2022-10-06 株式会社村田製作所 Elastic wave device
WO2022210683A1 (en) * 2021-03-31 2022-10-06 株式会社村田製作所 Elastic wave device and method for manufacturing same
WO2022211055A1 (en) * 2021-03-31 2022-10-06 株式会社村田製作所 Elastic wave device
WO2022210293A1 (en) * 2021-03-31 2022-10-06 株式会社村田製作所 Elastic wave device
WO2022210809A1 (en) * 2021-03-31 2022-10-06 株式会社村田製作所 Elastic wave device
WO2022224972A1 (en) * 2021-04-19 2022-10-27 株式会社村田製作所 Elastic wave device and method for manufacturing elastic wave device
WO2023140327A1 (en) * 2022-01-19 2023-07-27 株式会社村田製作所 Elastic wave device
WO2023159091A1 (en) * 2022-02-16 2023-08-24 Murata Manufacturing Co., Ltd. Tuning acoustic resonators with back-side coating
WO2023191089A1 (en) * 2022-04-01 2023-10-05 株式会社村田製作所 Elastic wave device
WO2023190721A1 (en) * 2022-03-31 2023-10-05 株式会社村田製作所 Elastic wave device
WO2023195409A1 (en) * 2022-04-06 2023-10-12 株式会社村田製作所 Elastic wave device and production method for elastic wave device
US11811391B2 (en) 2020-05-04 2023-11-07 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with etched conductor patterns
US11817840B2 (en) 2018-06-15 2023-11-14 Murata Manufacturing Co., Ltd. XBAR resonators with non-rectangular diaphragms
US11824520B2 (en) 2018-06-15 2023-11-21 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with optimized electrode thickness, mark, and pitch
US11831289B2 (en) 2018-06-15 2023-11-28 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with reduced spurious modes
US11870423B2 (en) 2018-06-15 2024-01-09 Murata Manufacturing Co., Ltd. Wide bandwidth temperature-compensated transversely-excited film bulk acoustic resonator
US11870424B2 (en) 2018-06-15 2024-01-09 Murata Manufacturing Co., Ltd. Filters using transversly-excited film bulk acoustic resonators with frequency-setting dielectric layers
US11876498B2 (en) 2018-06-15 2024-01-16 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with multiple diaphragm thicknesses and fabrication method
US11881835B2 (en) 2020-11-11 2024-01-23 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with low thermal impedance
US11888463B2 (en) 2018-06-15 2024-01-30 Murata Manufacturing Co., Ltd. Multi-port filter using transversely-excited film bulk acoustic resonators
US11901878B2 (en) 2018-06-15 2024-02-13 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with two-layer electrodes with a wider top layer
US11909381B2 (en) 2018-06-15 2024-02-20 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with two-layer electrodes having a narrower top layer
US11916540B2 (en) 2018-06-15 2024-02-27 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with periodic etched holes
US11916539B2 (en) 2020-02-28 2024-02-27 Murata Manufacturing Co., Ltd. Split-ladder band N77 filter using transversely-excited film bulk acoustic resonators
US11929731B2 (en) 2018-02-18 2024-03-12 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with optimized electrode mark, and pitch
US11936361B2 (en) 2018-06-15 2024-03-19 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators
US11949399B2 (en) 2018-06-15 2024-04-02 Murata Manufacturing Co., Ltd. Solidly-mounted transversely-excited film bulk acoustic resonator with diamond layers in Bragg reflector stack
US11949403B2 (en) 2019-08-28 2024-04-02 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with interdigital transducer with varied mark and pitch
US11949402B2 (en) 2020-08-31 2024-04-02 Murata Manufacturing Co., Ltd. Resonators with different membrane thicknesses on the same die
US11955952B2 (en) 2019-06-24 2024-04-09 Murata Manufacturing Co., Ltd. Solidly-mounted transversely-excited bulk acoustic resonator split ladder filter
US11967946B2 (en) 2020-02-18 2024-04-23 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with a bonding layer and an etch-stop layer
US11967942B2 (en) 2018-06-15 2024-04-23 Murata Manufacturing Co., Ltd Transversely-excited film bulk acoustic filters with symmetric layout
US11984868B2 (en) 2018-06-15 2024-05-14 Murata Manufacturing Co., Ltd. Filter using piezoelectric film bonded to high resistivity silicon substrate with trap-rich layer
US11984872B2 (en) 2018-06-15 2024-05-14 Murata Manufacturing Co., Ltd. Film bulk acoustic resonator fabrication method
US11990888B2 (en) 2018-06-15 2024-05-21 Murata Manufacturing Co., Ltd. Resonator using YX-cut lithium niobate for high power applications
US11996822B2 (en) 2018-06-15 2024-05-28 Murata Manufacturing Co., Ltd. Wide bandwidth time division duplex transceiver
US11996825B2 (en) 2020-06-17 2024-05-28 Murata Manufacturing Co., Ltd. Filter using lithium niobate and rotated lithium tantalate transversely-excited film bulk acoustic resonators
US12003226B2 (en) 2020-11-11 2024-06-04 Murata Manufacturing Co., Ltd Transversely-excited film bulk acoustic resonator with low thermal impedance
US12015393B2 (en) 2018-06-15 2024-06-18 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with diaphragm support pedestals
US12021496B2 (en) 2020-08-31 2024-06-25 Murata Manufacturing Co., Ltd. Resonators with different membrane thicknesses on the same die
US12028040B2 (en) 2020-07-18 2024-07-02 Murata Manufacturing Co., Ltd. Acoustic resonators and filters with reduced temperature coefficient of frequency
US12034428B2 (en) 2018-06-15 2024-07-09 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic filter using pitch to establish frequency separation between resonators
US12040778B2 (en) 2018-06-15 2024-07-16 Murata Manufacturing Co., Ltd. High frequency, high power film bulk acoustic resonators
US12040783B2 (en) 2020-04-20 2024-07-16 Murata Manufacturing Co., Ltd. Low loss transversely-excited film bulk acoustic resonators and filters
US12040779B2 (en) 2020-04-20 2024-07-16 Murata Manufacturing Co., Ltd. Small transversely-excited film bulk acoustic resonators with enhanced Q-factor
US12040781B2 (en) 2018-06-15 2024-07-16 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator package
WO2024157710A1 (en) * 2023-01-27 2024-08-02 日本碍子株式会社 Joined body and method of manufacturing joined body
US12081187B2 (en) 2018-06-15 2024-09-03 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator
US12088280B2 (en) 2018-06-15 2024-09-10 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator package
US12088281B2 (en) 2021-02-03 2024-09-10 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with multi-mark interdigital transducer
US12088270B2 (en) 2019-04-05 2024-09-10 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator package and method
US12088272B2 (en) 2018-06-15 2024-09-10 Murata Manufacturing Co., Ltd. Solidly-mounted transversely-excited film bulk acoustic resonator
US12095446B2 (en) 2018-06-15 2024-09-17 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with optimized electrode thickness, mark, and pitch
US12113512B2 (en) 2021-03-29 2024-10-08 Murata Manufacturing Co., Ltd. Layout of XBARs with multiple sub-resonators in parallel
US12132464B2 (en) 2018-06-15 2024-10-29 Murata Manufacturing Co., Ltd. Filter using transversely-excited film bulk acoustic resonators with divided frequency-setting dielectric layers

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002152007A (en) * 2000-11-15 2002-05-24 Hitachi Ltd Lamb wave type elastic wave resonator
JP2006186900A (en) * 2004-12-28 2006-07-13 Seiko Epson Corp Surface acoustic wave element composite apparatus
JP2010109949A (en) * 2008-10-31 2010-05-13 Murata Mfg Co Ltd Method of manufacturing electronic device and method of manufacturing piezoelectric device
JP2010154315A (en) * 2008-12-25 2010-07-08 Ngk Insulators Ltd Composite substrate, method of manufacturing acoustic wave element, and acoustic wave element
JP2011066590A (en) * 2009-09-16 2011-03-31 Seiko Epson Corp Lamb wave device, and manufacturing method thereof
WO2012073871A1 (en) * 2010-11-30 2012-06-07 株式会社村田製作所 Elastic wave device and method for manufacturing same
JP2012165132A (en) * 2011-02-04 2012-08-30 Taiyo Yuden Co Ltd Method for manufacturing acoustic wave device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7319284B2 (en) * 2005-09-02 2008-01-15 Precision Instrument Development Center National Applied Research Laboratories Surface acoustic wave device and method for fabricating the same
US8689426B2 (en) * 2008-12-17 2014-04-08 Sand 9, Inc. Method of manufacturing a resonating structure

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002152007A (en) * 2000-11-15 2002-05-24 Hitachi Ltd Lamb wave type elastic wave resonator
JP2006186900A (en) * 2004-12-28 2006-07-13 Seiko Epson Corp Surface acoustic wave element composite apparatus
JP2010109949A (en) * 2008-10-31 2010-05-13 Murata Mfg Co Ltd Method of manufacturing electronic device and method of manufacturing piezoelectric device
JP2010154315A (en) * 2008-12-25 2010-07-08 Ngk Insulators Ltd Composite substrate, method of manufacturing acoustic wave element, and acoustic wave element
JP2011066590A (en) * 2009-09-16 2011-03-31 Seiko Epson Corp Lamb wave device, and manufacturing method thereof
WO2012073871A1 (en) * 2010-11-30 2012-06-07 株式会社村田製作所 Elastic wave device and method for manufacturing same
JP2012165132A (en) * 2011-02-04 2012-08-30 Taiyo Yuden Co Ltd Method for manufacturing acoustic wave device

Cited By (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018097016A1 (en) * 2016-11-25 2019-10-17 国立大学法人東北大学 Elastic wave device
WO2018097016A1 (en) * 2016-11-25 2018-05-31 国立大学法人東北大学 Elastic wave device
US11258427B2 (en) 2016-11-25 2022-02-22 Tohoku University Acoustic wave devices
GB2572099B (en) * 2016-11-25 2022-03-23 Univ Tohoku Acoustic wave devices
JP2018093487A (en) * 2016-11-30 2018-06-14 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. Saw filter that comprises piezoelectric substrate having stepwise cross section
CN110100387B (en) * 2016-12-16 2023-06-06 株式会社村田制作所 Elastic wave device, high-frequency front-end circuit, and communication device
CN110100387A (en) * 2016-12-16 2019-08-06 株式会社村田制作所 Acoustic wave device, high-frequency front-end circuit and communication device
US11929731B2 (en) 2018-02-18 2024-03-12 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with optimized electrode mark, and pitch
US12021502B2 (en) 2018-06-15 2024-06-25 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with multi-mark electrodes and optimized electrode thickness
US11870423B2 (en) 2018-06-15 2024-01-09 Murata Manufacturing Co., Ltd. Wide bandwidth temperature-compensated transversely-excited film bulk acoustic resonator
US11936361B2 (en) 2018-06-15 2024-03-19 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators
US12132464B2 (en) 2018-06-15 2024-10-29 Murata Manufacturing Co., Ltd. Filter using transversely-excited film bulk acoustic resonators with divided frequency-setting dielectric layers
US11984872B2 (en) 2018-06-15 2024-05-14 Murata Manufacturing Co., Ltd. Film bulk acoustic resonator fabrication method
US12119808B2 (en) 2018-06-15 2024-10-15 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator package
US11984868B2 (en) 2018-06-15 2024-05-14 Murata Manufacturing Co., Ltd. Filter using piezoelectric film bonded to high resistivity silicon substrate with trap-rich layer
US11942922B2 (en) 2018-06-15 2024-03-26 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with optimized electrode thickness, mark, and pitch
US12095445B2 (en) 2018-06-15 2024-09-17 Murata Manufacturing Co., Ltd. High power acoustic resonators
US12095446B2 (en) 2018-06-15 2024-09-17 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with optimized electrode thickness, mark, and pitch
US11967945B2 (en) 2018-06-15 2024-04-23 Murata Manufacturing Co., Ltd. Transversly-excited film bulk acoustic resonators and filters
US12095448B2 (en) 2018-06-15 2024-09-17 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator package and method
US12088272B2 (en) 2018-06-15 2024-09-10 Murata Manufacturing Co., Ltd. Solidly-mounted transversely-excited film bulk acoustic resonator
US11949399B2 (en) 2018-06-15 2024-04-02 Murata Manufacturing Co., Ltd. Solidly-mounted transversely-excited film bulk acoustic resonator with diamond layers in Bragg reflector stack
US12088280B2 (en) 2018-06-15 2024-09-10 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator package
US11967942B2 (en) 2018-06-15 2024-04-23 Murata Manufacturing Co., Ltd Transversely-excited film bulk acoustic filters with symmetric layout
US12081187B2 (en) 2018-06-15 2024-09-03 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator
US12040781B2 (en) 2018-06-15 2024-07-16 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator package
US11990888B2 (en) 2018-06-15 2024-05-21 Murata Manufacturing Co., Ltd. Resonator using YX-cut lithium niobate for high power applications
US11929727B2 (en) 2018-06-15 2024-03-12 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with reduced spurious modes
US12040778B2 (en) 2018-06-15 2024-07-16 Murata Manufacturing Co., Ltd. High frequency, high power film bulk acoustic resonators
US12034428B2 (en) 2018-06-15 2024-07-09 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic filter using pitch to establish frequency separation between resonators
US11929735B2 (en) 2018-06-15 2024-03-12 Murata Manufacturing Co., Ltd. XBAR resonators with non-rectangular diaphragms
US12021503B2 (en) 2018-06-15 2024-06-25 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with optimized piezoelectric plate thickness and having multiple pitches and marks
US12021504B2 (en) 2018-06-15 2024-06-25 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with a front-side dielectric layer and optimized pitch and mark
US11923821B2 (en) 2018-06-15 2024-03-05 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with reduced spurious modes
US12015393B2 (en) 2018-06-15 2024-06-18 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with diaphragm support pedestals
US11916540B2 (en) 2018-06-15 2024-02-27 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with periodic etched holes
US11817840B2 (en) 2018-06-15 2023-11-14 Murata Manufacturing Co., Ltd. XBAR resonators with non-rectangular diaphragms
US11824520B2 (en) 2018-06-15 2023-11-21 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with optimized electrode thickness, mark, and pitch
US11831289B2 (en) 2018-06-15 2023-11-28 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with reduced spurious modes
US11996822B2 (en) 2018-06-15 2024-05-28 Murata Manufacturing Co., Ltd. Wide bandwidth time division duplex transceiver
US11870424B2 (en) 2018-06-15 2024-01-09 Murata Manufacturing Co., Ltd. Filters using transversly-excited film bulk acoustic resonators with frequency-setting dielectric layers
US11876498B2 (en) 2018-06-15 2024-01-16 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with multiple diaphragm thicknesses and fabrication method
US11881834B2 (en) 2018-06-15 2024-01-23 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with reduced spurious modes
US11909381B2 (en) 2018-06-15 2024-02-20 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with two-layer electrodes having a narrower top layer
US11888463B2 (en) 2018-06-15 2024-01-30 Murata Manufacturing Co., Ltd. Multi-port filter using transversely-excited film bulk acoustic resonators
US11901878B2 (en) 2018-06-15 2024-02-13 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with two-layer electrodes with a wider top layer
US11901874B2 (en) 2018-06-15 2024-02-13 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with half-lambda dielectric layer
JP7556358B2 (en) 2019-03-14 2024-09-26 株式会社村田製作所 Acoustic resonator device, filter device, and method for manufacturing an acoustic resonator device
JP2022524136A (en) * 2019-03-14 2022-04-27 レゾナント インコーポレイテッド Laterally Excited Film Bulk Acoustic Resonator with Half Lambda Dielectric Layer
US12095438B2 (en) 2019-04-05 2024-09-17 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator package and method
US12088270B2 (en) 2019-04-05 2024-09-10 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator package and method
US12119798B2 (en) 2019-04-05 2024-10-15 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator package and method
US12113517B2 (en) 2019-06-24 2024-10-08 Murata Manufacturing Co., Ltd. Transversely-excited bulk acoustic resonator split ladder filter
US11955952B2 (en) 2019-06-24 2024-04-09 Murata Manufacturing Co., Ltd. Solidly-mounted transversely-excited bulk acoustic resonator split ladder filter
US12009804B2 (en) 2019-08-28 2024-06-11 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with interdigital transducer with varied mark and pitch
US11949403B2 (en) 2019-08-28 2024-04-02 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with interdigital transducer with varied mark and pitch
CN111030629A (en) * 2019-12-31 2020-04-17 武汉衍熙微器件有限公司 Method for manufacturing acoustic wave device and acoustic wave device
CN111030629B (en) * 2019-12-31 2024-04-05 武汉衍熙微器件有限公司 Method for manufacturing acoustic wave device and acoustic wave device
US11967946B2 (en) 2020-02-18 2024-04-23 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with a bonding layer and an etch-stop layer
US11996826B2 (en) 2020-02-18 2024-05-28 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with thermally conductive etch-stop layer
US12081198B2 (en) 2020-02-18 2024-09-03 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with a back-side dielectric layer and an etch-stop layer
US11916539B2 (en) 2020-02-28 2024-02-27 Murata Manufacturing Co., Ltd. Split-ladder band N77 filter using transversely-excited film bulk acoustic resonators
US12028049B2 (en) 2020-02-28 2024-07-02 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator filters with sub-resonators having different mark and pitch
US12040779B2 (en) 2020-04-20 2024-07-16 Murata Manufacturing Co., Ltd. Small transversely-excited film bulk acoustic resonators with enhanced Q-factor
US12040783B2 (en) 2020-04-20 2024-07-16 Murata Manufacturing Co., Ltd. Low loss transversely-excited film bulk acoustic resonators and filters
US11967943B2 (en) 2020-05-04 2024-04-23 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with etched conductor patterns
US11811391B2 (en) 2020-05-04 2023-11-07 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with etched conductor patterns
US11996825B2 (en) 2020-06-17 2024-05-28 Murata Manufacturing Co., Ltd. Filter using lithium niobate and rotated lithium tantalate transversely-excited film bulk acoustic resonators
WO2022014493A1 (en) * 2020-07-15 2022-01-20 株式会社村田製作所 Elastic wave device
US12028040B2 (en) 2020-07-18 2024-07-02 Murata Manufacturing Co., Ltd. Acoustic resonators and filters with reduced temperature coefficient of frequency
US11949402B2 (en) 2020-08-31 2024-04-02 Murata Manufacturing Co., Ltd. Resonators with different membrane thicknesses on the same die
US12021496B2 (en) 2020-08-31 2024-06-25 Murata Manufacturing Co., Ltd. Resonators with different membrane thicknesses on the same die
WO2022071605A1 (en) * 2020-10-02 2022-04-07 株式会社村田製作所 Elastic wave device and method for manufacturing elastic wave device
WO2022085581A1 (en) * 2020-10-23 2022-04-28 株式会社村田製作所 Acoustic wave device
US12003226B2 (en) 2020-11-11 2024-06-04 Murata Manufacturing Co., Ltd Transversely-excited film bulk acoustic resonator with low thermal impedance
US11881835B2 (en) 2020-11-11 2024-01-23 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with low thermal impedance
US11936358B2 (en) 2020-11-11 2024-03-19 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with low thermal impedance
WO2022102720A1 (en) * 2020-11-13 2022-05-19 株式会社村田製作所 Elastic wave device
WO2022102719A1 (en) * 2020-11-13 2022-05-19 株式会社村田製作所 Elastic wave device
WO2022124391A1 (en) * 2020-12-11 2022-06-16 株式会社村田製作所 Elastic wave device
WO2022131309A1 (en) * 2020-12-17 2022-06-23 株式会社村田製作所 Elastic wave device
WO2022138552A1 (en) * 2020-12-22 2022-06-30 株式会社村田製作所 Elastic wave device
WO2022163865A1 (en) * 2021-02-01 2022-08-04 株式会社村田製作所 Elastic wave device
US12088281B2 (en) 2021-02-03 2024-09-10 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with multi-mark interdigital transducer
WO2022168937A1 (en) * 2021-02-05 2022-08-11 株式会社村田製作所 Elastic wave device and method for manufacturing elastic wave device
WO2022186201A1 (en) * 2021-03-01 2022-09-09 株式会社村田製作所 Elastic wave device
US12113512B2 (en) 2021-03-29 2024-10-08 Murata Manufacturing Co., Ltd. Layout of XBARs with multiple sub-resonators in parallel
WO2022210941A1 (en) * 2021-03-31 2022-10-06 株式会社村田製作所 Elastic wave device
WO2022210809A1 (en) * 2021-03-31 2022-10-06 株式会社村田製作所 Elastic wave device
WO2022210293A1 (en) * 2021-03-31 2022-10-06 株式会社村田製作所 Elastic wave device
WO2022209525A1 (en) * 2021-03-31 2022-10-06 株式会社村田製作所 Elastic wave device
WO2022211103A1 (en) * 2021-03-31 2022-10-06 株式会社村田製作所 Elastic wave device and method for manufacturing elastic wave device
WO2022211055A1 (en) * 2021-03-31 2022-10-06 株式会社村田製作所 Elastic wave device
WO2022210683A1 (en) * 2021-03-31 2022-10-06 株式会社村田製作所 Elastic wave device and method for manufacturing same
WO2022224972A1 (en) * 2021-04-19 2022-10-27 株式会社村田製作所 Elastic wave device and method for manufacturing elastic wave device
JP2022179858A (en) * 2021-05-24 2022-12-06 三安ジャパンテクノロジー株式会社 Acoustic wave device and module including the acoustic wave device
JP7055499B1 (en) 2021-05-24 2022-04-18 三安ジャパンテクノロジー株式会社 A module with an elastic wave device and its elastic wave device
WO2023140327A1 (en) * 2022-01-19 2023-07-27 株式会社村田製作所 Elastic wave device
WO2023159091A1 (en) * 2022-02-16 2023-08-24 Murata Manufacturing Co., Ltd. Tuning acoustic resonators with back-side coating
WO2023190721A1 (en) * 2022-03-31 2023-10-05 株式会社村田製作所 Elastic wave device
WO2023191089A1 (en) * 2022-04-01 2023-10-05 株式会社村田製作所 Elastic wave device
WO2023195409A1 (en) * 2022-04-06 2023-10-12 株式会社村田製作所 Elastic wave device and production method for elastic wave device
WO2024157710A1 (en) * 2023-01-27 2024-08-02 日本碍子株式会社 Joined body and method of manufacturing joined body

Also Published As

Publication number Publication date
JPWO2016147687A1 (en) 2017-08-31
JP6497435B2 (en) 2019-04-10

Similar Documents

Publication Publication Date Title
JP6497435B2 (en) Elastic wave device and manufacturing method thereof
WO2016103925A1 (en) Elastic wave device and method for manufacturing same
WO2017212774A1 (en) Elastic wave device and method for manufacturing same
JP6464735B2 (en) Elastic wave device and manufacturing method thereof
US10469053B2 (en) Elastic wave device and manufacturing method for the same
CN110392978B (en) Elastic wave device, high-frequency front-end circuit, and communication device
JP5319491B2 (en) Piezoelectric thin film resonator
US8531087B2 (en) Piezoelectric thin-film resonator with distributed concave or convex patterns
JP5147932B2 (en) Piezoelectric thin film resonator, filter, communication module, and communication device
CN108028637B (en) Elastic wave device
JP5100849B2 (en) Elastic wave device and manufacturing method thereof
US11770111B2 (en) Elastic wave device
JP2017224890A (en) Acoustic wave device
JPWO2009013938A1 (en) Piezoelectric resonator and piezoelectric filter device
JP2013214954A (en) Resonator, frequency filter, duplexer, electronic device, and method for manufacturing resonator
JP5716833B2 (en) Piezoelectric bulk wave device and manufacturing method thereof
CN112787614B (en) Film lamb wave resonator, filter and manufacturing method thereof
JP2015119249A (en) Piezoelectric thin film resonator, manufacturing method thereof, filter and duplexer
JP2007208728A (en) Piezoelectric thin-film resonator, filter, and method of manufacturing the piezoelectric thin-film resonator
JP2019021997A (en) Acoustic wave element, splitter, and communication device
WO2004088840A1 (en) Piezoelectric thin film device and method of producing the same
JP5862368B2 (en) Method for manufacturing piezoelectric device
JP5579429B2 (en) Elastic wave device, communication module, communication device
JP5027534B2 (en) Piezoelectric thin film device
WO2020098484A1 (en) Bulk acoustic wave resonator having fracture structure and manufacturing method therefor, filter, and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764518

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017506116

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16764518

Country of ref document: EP

Kind code of ref document: A1