Nothing Special   »   [go: up one dir, main page]

WO2016143876A1 - Ligand compound, and single-hole or multi-hole coordination polymer obtained using same - Google Patents

Ligand compound, and single-hole or multi-hole coordination polymer obtained using same Download PDF

Info

Publication number
WO2016143876A1
WO2016143876A1 PCT/JP2016/057669 JP2016057669W WO2016143876A1 WO 2016143876 A1 WO2016143876 A1 WO 2016143876A1 JP 2016057669 W JP2016057669 W JP 2016057669W WO 2016143876 A1 WO2016143876 A1 WO 2016143876A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
optionally substituted
monoporous
ring
ion
Prior art date
Application number
PCT/JP2016/057669
Other languages
French (fr)
Japanese (ja)
Inventor
進 北川
亮太郎 松田
暢彦 細野
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Priority to JP2017505410A priority Critical patent/JPWO2016143876A1/en
Publication of WO2016143876A1 publication Critical patent/WO2016143876A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J45/00Ion-exchange in which a complex or a chelate is formed; Use of material as complex or chelate forming ion-exchangers; Treatment of material for improving the complex or chelate forming ion-exchange properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/12Ion-exchange processes in general; Apparatus therefor characterised by the use of ion-exchange material in the form of ribbons, filaments, fibres or sheets, e.g. membranes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C327/00Thiocarboxylic acids
    • C07C327/36Esters of dithiocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C329/00Thiocarbonic acids; Halides, esters or anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C329/00Thiocarbonic acids; Halides, esters or anhydrides thereof
    • C07C329/12Dithiocarbonic acids; Derivatives thereof
    • C07C329/14Esters of dithiocarbonic acids
    • C07C329/16Esters of dithiocarbonic acids having sulfur atoms of dithiocarbonic groups bound to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C333/00Derivatives of thiocarbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C333/14Dithiocarbamic acids; Derivatives thereof
    • C07C333/18Esters of dithiocarbamic acids
    • C07C333/20Esters of dithiocarbamic acids having nitrogen atoms of dithiocarbamate groups bound to hydrogen atoms or to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum

Definitions

  • the present invention relates to a ligand compound and a monoporous or porous coordination polymer.
  • Organometallic polyhedra which are complexed with organic ligands and metal ions and built in a self-organized manner, are cage-like compounds with voids of several to several nanometers inside.
  • MOP Metal-Organic Polyhedra
  • Non-Patent Document 1 MOP can incorporate various small molecules inside the cage structure, and not only as a supramolecular host, but also in recent years as an adsorption and / or separation material for substances such as gases using its pores. Widely studied (for example, Non-Patent Document 2).
  • a simple MOP is usually obtained as a crystal or powdered solid, is hardly soluble in various solvents, and does not melt even when heated. Therefore, it has poor molding processability such as solution coating and thermoforming, which are indispensable for widespread use as a general-purpose material.
  • Non-Patent Document 3 As described above, although MOP has poor molding processability, various methods for forming a film have been attempted in order to utilize its unique structure (for example, Non-Patent Document 3). However, any of these methods is a method for forming a film by dispersing MOP in a polymer matrix, and there is no method for forming a film of MOP without using a polymer matrix.
  • MOP has its unique structure, application to various uses is attempted, but it can be treated only as a powdery microcrystalline solid for the purpose of adsorption and / or separation of substances, Further, it is poor in solvent solubility and molding processability, so that it can be formed into a film only by a method of dispersing in a polymer matrix.
  • a material that can be processed by a general-purpose process such as thermoforming and coating is preferable.
  • the present invention designs a compound in which MOP and a polymer are chemically bonded, MOP that can be formed into a film without using a polymer matrix, imparted solvent solubility and thermoforming processability, and It aims at providing the ligand compound which can manufacture the said MOP.
  • the present invention also provides a material separation membrane (especially a gas separation membrane) using MOP that has been provided with solvent solubility and thermoforming processability by chemically bonding MOP and polymer in this way. Also aimed.
  • the present inventors have conducted reversible addition-fragmentation chain transfer polymerization (RAFT polymerization) of a desired polymer compound from the outer surface of the MOP, while maintaining the characteristics of the MOP, It has been found that high solvent solubility derived from a polymer compound, molding processability, and the like can be imparted.
  • the MOP to which such solvent solubility and moldability are imparted is formed by a specific metal ion and a specific organic ligand being alternately coordinated. Based on such knowledge, the present inventors have further studied and completed the present invention. That is, the present invention includes the following configurations.
  • m represents an integer of 1 to 3.
  • X 1 represents a sulfur atom, an oxygen atom, a nitrogen atom, a carbon atom, an optionally substituted aromatic hydrocarbon group or an optionally substituted heteroaromatic group.
  • X 2 represents a single bond or a divalent linking group.
  • R 1 represents a hydrogen atom or an optionally substituted alkyl group. When m is 2 or more, R 1 may be the same or different.
  • R 2 is
  • Item 2 The ligand compound according to Item 1, which is a group represented by:
  • X 2 represents the general formula (2):
  • R 3 represents a hydrogen atom or an optionally substituted alkyl group.
  • R 4 represents a hydrogen atom, an optionally substituted alkyl group or a cyano group.
  • X 3 represents a single bond, an optionally substituted alkylene group, or a group represented by —R 5 —COO— (R 5 represents an optionally substituted alkylene group).
  • Item 3 The ligand compound according to Item 1 or 2, which is a group represented by:
  • Y in the general formula (3) is a single ring composed of a benzene ring, naphthalene ring, pyridine ring, pyrrole ring, or thiophene ring, or a condensed ring in which one or two or more benzene rings are condensed to the single ring.
  • R 8 is the same or different and represents a carbon atom or a nitrogen atom.
  • R 9 represents a divalent aromatic hydrocarbon group which may be substituted.
  • k represents an integer of 0-2.
  • Item 4 The ligand compound according to any one of Items 1 to 3, which may contain a group represented by:
  • m represents an integer of 1 to 3.
  • X 1 represents a sulfur atom, an oxygen atom, a nitrogen atom, a carbon atom, an optionally substituted aromatic hydrocarbon group or an optionally substituted heteroaromatic group.
  • X 2 represents a single bond or a divalent linking group.
  • R 1 represents a hydrogen atom or an optionally substituted alkyl group. When m is 2 or more, R 1 may be the same or different.
  • R 2 is
  • Y represents an aromatic hydrocarbon ring or a heteroaromatic ring.
  • Z is the same or different and represents an optionally substituted ethylene chain.
  • n represents an integer of 5 to 20000.
  • a monoporous or porous coordination polymer comprising an organic ligand represented by the formula (1) and wherein the metal ion and the organic ligand are alternately coordinated.
  • a monoporous or porous coordination polymer according to Item 5 which is a group represented by:
  • X 2 represents the general formula (2):
  • R 3 represents a hydrogen atom or an optionally substituted alkyl group.
  • R 4 represents a hydrogen atom, an optionally substituted alkyl group or a cyano group.
  • X 3 represents a single bond, an optionally substituted alkylene group, or a group represented by —R 5 —COO— (R 5 represents an optionally substituted alkylene group).
  • Item 7 The monoporous or porous coordination polymer according to Item 5 or 6, which is a group represented by:
  • R 6 represents a hydrogen atom or an optionally substituted alkyl group.
  • R 7 is a hydroxyl group, an optionally substituted carboxy group, an optionally substituted acyloxy group, an optionally substituted carbamoyl group, an optionally substituted aryl group, or an optionally substituted heteroaryl Indicates a group.
  • Item 8 The monoporous or porous coordination polymer according to any one of Items 5 to 7, which is a chain represented by:
  • Item 9 A monoporous or porous coordination polymer according to any one of Items 5 to 8, comprising the metal ion and the organic ligand.
  • Item 10 The monoporous or porous coordination polymer according to any one of Items 5 to 9, which contains 4 or more metal ions and 4 or more organic ligands.
  • Item 11 The monoporous or porous coordination polymer according to any one of Items 5 to 10, wherein the metal ion is a divalent metal ion.
  • Item 12. The monoporous or porous coordination polymer according to any one of Items 5 to 11, wherein the metal ion is a transition metal ion.
  • the metal ion is at least one selected from the group consisting of copper ion, zinc ion, cobalt ion, cadmium ion, rhodium ion, calcium ion, magnesium ion, manganese ion, nickel ion, palladium ion, lanthanum ion, and zirconium ion.
  • Item 15 The monoporous or porous coordination polymer according to any one of Items 5 to 12, wherein
  • Y in the general formula (3) is a single ring composed of a benzene ring, naphthalene ring, pyridine ring, pyrrole ring, or thiophene ring, or a condensed ring in which one or two or more benzene rings are condensed to the single ring.
  • R 8 is the same or different and represents a carbon atom or a nitrogen atom.
  • R 9 represents a divalent aromatic hydrocarbon group which may be substituted.
  • k represents an integer of 0-2.
  • Item 14 The monoporous or porous coordination polymer according to any one of Items 5 to 13, which may contain a group represented by:
  • Item 15 The monoporous or porous coordination polymer according to any one of Items 5 to 14, which is an organometallic polyhedron.
  • Item 16 The monoporous or porous coordination polymer according to Item 15, having an average diameter of 2 nm to 100 nm.
  • Item 17. The monoporous or porous coordination polymer according to Item 15 or 16, which has one pore having an average diameter of 2 nm or less inside.
  • Item 18 A method for producing an organometallic polyhedron having polymer chains introduced therein, Using an organometallic polyhedron and a monomer compound, and a step of performing reversible addition-fragmentation chain transfer polymerization, The organometallic polyhedron has a divalent or higher valent metal ion and a general formula (5):
  • m represents an integer of 1 to 3.
  • X 1 represents a sulfur atom, an oxygen atom, a nitrogen atom, a carbon atom, an optionally substituted aromatic hydrocarbon group or an optionally substituted heteroaromatic group.
  • X 2 represents a single bond or a divalent linking group.
  • R 1 represents a hydrogen atom or an optionally substituted alkyl group. When m is 2 or more, R 1 may be the same or different.
  • R 2 is
  • Y represents an aromatic hydrocarbon ring or a heteroaromatic ring.
  • a metal ion and the organic ligand are alternately coordinate-bonded to each other.
  • Item 19 A material for adsorbing and / or separating a substance comprising a monoporous or porous coordination polymer according to any one of Items 5 to 17.
  • Item 20 The material for adsorbing and / or separating a substance according to Item 19, which is at least one member selected from the group consisting of a gas and / or ion adsorbing material and a gas and / or ion separating material.
  • Item 21 A substance separation membrane comprising the monoporous or porous coordination polymer according to any one of Items 5 to 17, or the substance adsorption and / or separation material according to Item 19 or 20.
  • Item 22 The substance separation membrane according to Item 21, which is a gas and / or ion separation membrane.
  • a polymer chain can be easily introduced into a monoporous or porous coordination polymer.
  • This ligand compound is a novel compound not described in any literature.
  • the monoporous or porous coordination polymer of the present invention thus produced has high solvent solubility and molding processing derived from the polymer while maintaining the properties of the original monoporous or porous coordination compound. Therefore, it is possible to expand the applicability to existing mass production molding processes.
  • 6 is a photograph showing the appearance of a substance separation membrane obtained in Example 6.
  • 4 is a graph showing the results of GPC measurement of the compounds obtained in Synthesis Examples 1 to 3.
  • 3 is a graph showing the results of GPC measurement of the compounds obtained in Examples 1 to 5 and Synthesis Examples 4 to 8.
  • 6 is a graph showing the results of GPC measurement and reaction rate of the compounds obtained in Synthesis Examples 4 to 8. It is an electron micrograph which shows the surface structure of the substance separation membrane obtained in Example 7 and 8 (Example 7: Transmission electron microscope (TEM), Example 8: Atomic force microscope (AFM)).
  • 6 is a graph showing the results of nitrogen and carbon dioxide adsorption / desorption tests of MOP1 obtained in Synthesis Example 2.
  • Example 6 is a graph showing the results of GPC measurement of the compounds obtained in Examples 9 to 10 and Synthesis Examples 8 to 9.
  • 4 is a graph showing the measurement results of the diameters of the compounds obtained in Synthesis Example 2, Example 1 and Example 8.
  • 3 is a graph showing the results of GPC measurement of the compounds obtained in Examples 11 to 15 and Synthesis Examples 18 to 23.
  • (A) is a plot of polymerization reaction time and monomer conversion
  • (b) is a plot of monomer conversion and MOP number average molecular weight ( ⁇ : number average molecular weight, ⁇ : molecular weight dispersion (Mw / Mn))
  • (c) is 2 is a graph showing a plot of monomer conversion and number average molecular weight of decomposed organic ligand ( ⁇ : number average molecular weight, ⁇ : molecular weight dispersion (Mw / Mn)).
  • Ligand Compound The ligand compound of the present invention has the general formula (1):
  • m represents an integer of 1 to 3.
  • X 1 represents a sulfur atom, an oxygen atom, a nitrogen atom, a carbon atom, an optionally substituted aromatic hydrocarbon group or an optionally substituted heteroaromatic group.
  • X 2 represents a single bond or a divalent linking group.
  • R 1 represents a hydrogen atom or an optionally substituted alkyl group. When m is 2 or more, R 1 may be the same or different.
  • R 2 is
  • Y represents an aromatic hydrocarbon ring or a heteroaromatic ring.
  • the ligand compound (1) is obtained from the viewpoint of obtaining a monoporous or porous coordination polymer having a three-dimensional framework structure by connecting metal ions and clusters thereof by the production method described later. It has a plurality (two) of carboxy groups capable of coordinating with metal ions. When there is only one carboxy group, a three-dimensional framework structure cannot be constructed, and a monoporous or porous coordination polymer cannot be obtained.
  • the ligand compound (1) has a dithioester structure that can be the starting point of reversible addition-fragmentation chain transfer polymerization (RAFT polymerization) employed in the production method described later.
  • RAFT polymerization reversible addition-fragmentation chain transfer polymerization
  • MOP monoporous or porous coordination compound
  • examples of the aromatic hydrocarbon group represented by X 1 include a benzene ring, a pentalene ring, an indene ring, a naphthalene ring, an anthracene ring, a tetracene ring, a pentacene ring, a pyrene ring, a perylene ring, and triphenylene.
  • aromatic hydrocarbon rings such as a ring, an azulene ring, a heptalene ring, a biphenylene ring, an indacene ring, an acenaphthylene ring, a fluorene ring, a phenalene ring and a phenanthrene ring.
  • groups derived from aromatic hydrocarbon rings include, for example, 0 to 4 substituents such as halogen atoms (fluorine atoms, chlorine atoms, bromine atoms, etc.), alkyl groups (methyl groups, ethyl groups, propyl groups, etc.). It can also have about 1 (particularly 1 to 3).
  • examples of the heteroaromatic group represented by X 1 include a furan ring, a thiophene ring, a pyrrole ring, a silole ring, a borol ring, a phosphole ring, an oxazole ring, a thiazole ring, a pyridine ring, and a pyridazine ring.
  • Groups derived from heteroaromatic rings such as pyrimidine ring, pyrazine ring, thienothiophene ring and quinoline ring.
  • heteroaromatic ring-derived groups for example, 0 to 4 substituents such as halogen atoms (fluorine atoms, chlorine atoms, bromine atoms, etc.), alkyl groups (methyl groups, ethyl groups, propyl groups, etc.) ( In particular, it may have about 1 to 3).
  • substituents such as halogen atoms (fluorine atoms, chlorine atoms, bromine atoms, etc.), alkyl groups (methyl groups, ethyl groups, propyl groups, etc.) ( In particular, it may have about 1 to 3).
  • X 1 in the general formula (1) is various in the monoporous or porous coordination polymer of the present invention in order to give easy synthesis and good living radical polymerization reactivity to various monomers in the production method described later. From the viewpoint of giving such characteristics, a sulfur atom, an oxygen atom, a nitrogen atom, a carbon atom, an optionally substituted aromatic hydrocarbon group, and the like are preferable, and a sulfur atom is more preferable.
  • examples of the divalent linking group represented by X 2 include the general formula (2):
  • R 3 represents a hydrogen atom, an optionally substituted alkyl group, or an optionally substituted aryl group.
  • R 4 represents a hydrogen atom, an optionally substituted alkyl group, a cyano group, or an optionally substituted aryl group.
  • X 3 represents a single bond, an optionally substituted alkylene group, or a group represented by —R 5 —COO— (R 5 represents an optionally substituted alkylene group).
  • the group etc. which are represented by these are mentioned.
  • examples of the alkyl group represented by R 3 include acyclic alkyl groups having 1 to 6 carbon atoms such as a methyl group. These alkyl groups can also have about 0 to 5 (particularly 1 to 3) substituents such as halogen atoms (fluorine atom, chlorine atom, bromine atom, etc.).
  • examples of the aryl group represented by R 3 include a phenyl group and a naphthyl group. These aryl groups may have about 0 to 5 (especially 1 to 3) substituents such as halogen atoms (fluorine atoms, chlorine atoms, bromine atoms, etc.) and the above alkyl groups.
  • R 3 in the general formula (2) is preferably an alkyl group which may be substituted, from the viewpoint of easy synthesis and good living radical polymerization reactivity for various monomers in the production method described later.
  • the methyl group which may be sufficient is more preferable, and a methyl group (unsubstituted) is further more preferable.
  • examples of the alkyl group represented by R 4 include acyclic alkyl groups having 1 to 6 carbon atoms such as a methyl group. These alkyl groups can also have about 0 to 5 (particularly 1 to 3) substituents such as halogen atoms (fluorine atom, chlorine atom, bromine atom, etc.).
  • R 4 in the general formula (2) is preferably a cyano group or an optionally substituted aryl group from the viewpoint of ease of synthesis and good living radical polymerization reactivity for various monomers in the production method described below.
  • a cyano group is more preferable.
  • examples of the alkylene group represented by X 3 include methylene group, ethylene group, ethylidene group, trimethylene group, propylene group, propylidene group, tetramethylene group, 1-methyltrimethylene group, 2- Acyclic alkylene group such as methyltrimethylene group, 3-methyltrimethylene group, 1,1-dimethylethylene group, 1,2-dimethylethylene group (preferably having 1 to 6 carbon atoms, particularly having 1 to 4 carbon atoms) Acyclic alkylene group); cyclic alkylene group such as cyclopropylene group, cyclobutylene group, cyclopentylene group, cyclohexylene group, etc.
  • a linear acyclic alkylene group can also be employ
  • These alkylene groups can also have about 0 to 5 (particularly 1 to 3) substituents such as halogen atoms (fluorine atoms, chlorine atoms, bromine atoms, etc.).
  • X 3 in the general formula (2) is an ester group in which these alkylene groups are linked (the group represented by the above -R 5 -COO- (R 5 represents an optionally substituted alkylene group)).
  • R 5 represents an optionally substituted alkylene group
  • X 3 in the general formula (2) is an ester group in which an alkylene group is linked from the viewpoint of ease of synthesis (the above -R 5 -COO- (wherein R 5 represents an optionally substituted alkylene group)). Are preferred.
  • the alkyl group represented by R 1 is not particularly limited, and any of a straight chain alkyl group and a branched chain alkyl group may be employed. From the viewpoint of further improving the solvent solubility mainly in a nonpolar solvent, a linear alkyl group is preferable for the compound.
  • the number of carbon atoms of such an alkyl group is preferably 1 to 100 from the viewpoint of further improving the solubility of the monoporous or porous coordination compound such as MOP mainly in a nonpolar solvent. 20 is more preferable, and 8 to 16 is more preferable.
  • alkyl group examples include a decyl group, an undecyl group, a dodecyl group, a tridecyl group, and a tetradecyl group.
  • These alkyl groups can also have about 0 to 10 (especially 1 to 5) substituents such as halogen atoms (fluorine atoms, chlorine atoms, bromine atoms, etc.).
  • substituents such as halogen atoms (fluorine atoms, chlorine atoms, bromine atoms, etc.).
  • R 1 when m which is the number of R 1 is 2 or more, R 1 may be the same or different.
  • R 1 in the general formula (1) is preferably an alkyl group which may be substituted from the viewpoint of ease of synthesis and good living radical polymerization reactivity with respect to various monomers in the production method described later. Groups are more preferred.
  • m which is the number of R 1 , is a number determined by the type of X 1 , valence, etc., and is an integer of 1 to 3, preferably 1 or 2.
  • R 2 represents a dithioester structure
  • the ligand compound (1) and a metal ion described later are coordinated alternately.
  • the angle formed by two Y—COO — bonds is preferably less than 180 °.
  • the angle between the two Y—COO — bonds is less than 180 °, the angle between the two Y—COO — bonds can be used, Spherical monoporous or porous coordination polymers can be produced.
  • an organometallic polyhedron (monoporous coordination polymer) having micropores inside can be produced.
  • an aromatic hydrocarbon ring which may have a hetero atom is preferred, and a benzene ring, naphthalene ring, pyridine ring, pyrrole ring, thiophene ring, etc., or one in these rings or two or more benzene rings include condensed rings, etc. these rings and COO - in the binding of the group, the general formula (6):
  • R 8 is the same or different and represents a carbon atom or a nitrogen atom.
  • R 9 represents a divalent aromatic hydrocarbon group which may be substituted.
  • k represents an integer of 0-2.
  • the group represented by may be included.
  • k is preferably an integer of 0 to 2, more preferably 0 or 1.
  • Y is preferably a benzene ring, a naphthalene ring, a pyridine ring, a pyrrole ring, a thiophene ring, or the like, or a ring in which one or two or more benzene rings are condensed to these rings, a benzene ring, a naphthalene ring, A pyridine ring, a pyrrole ring, a thiophene ring and the like are more preferable, and a benzene ring is more preferable.
  • Such Y is, for example,
  • Such a ligand compound (1) can be obtained by adjusting the synthesis conditions (temperature, concentration, mixing ratio, etc.) for coordination with metal ions by the production method described later. Can give. In particular, it is possible to produce a porous coordination polymer having a jungle gym-like three-dimensional framework structure, and it is also possible to confine a large number of compounds inside.
  • ligand compounds (1) that satisfy these conditions include:
  • the monoporous or porous coordination polymer of the present invention comprises a divalent or higher valent metal ion and a general formula (3):
  • m represents an integer of 1 to 3.
  • X 1 represents a sulfur atom, an oxygen atom, a nitrogen atom, a carbon atom, an optionally substituted aromatic hydrocarbon group or an optionally substituted heteroaromatic group.
  • X 2 represents a single bond or a divalent linking group.
  • R 1 represents a hydrogen atom or an optionally substituted alkyl group. When m is 2 or more, R 1 may be the same or different.
  • R 2 is
  • Y represents an aromatic hydrocarbon ring or a heteroaromatic ring.
  • Z is the same or different and represents an optionally substituted ethylene chain.
  • n represents an integer of 5 to 20000.
  • organic ligand (3) the metal ion and the organic ligand are alternately coordinated and bonded to each other (hereinafter also referred to as “organic ligand (3)”). ing.
  • a transition metal ion can be preferably used, but it must be coordinated with the organic ligand (3).
  • a divalent metal ion (particularly a divalent transition metal ion) is preferable. Specifically, copper ion, zinc ion, cobalt ion, cadmium ion, rhodium ion, calcium ion, magnesium ion, manganese ion, nickel ion, palladium ion, lanthanum ion, zirconium ion, etc.
  • the metal ion is preferably used alone from the viewpoint of easy formation of a monoporous or porous coordination polymer by coordination bond with the organic ligand (3), but it should be used in combination of two or more. You can also.
  • the monoporous or porous coordination polymer of the present invention contains an organic ligand (3).
  • the organic ligand (3) is coordinated with the metal ion from the viewpoint of obtaining a monoporous or porous coordination polymer having a three-dimensional framework structure by linking the metal ion and its cluster. It has a plurality (two) of carboxy groups. When there is only one carboxy group, a three-dimensional framework structure cannot be constructed, and thus the monoporous or porous coordination polymer of the present invention cannot be obtained.
  • the organic ligand (3) has a dithioester structure that can be the starting point of reversible addition-fragmentation chain transfer polymerization (RAFT polymerization) employed in the production method described later.
  • RAFT polymerization reversible addition-fragmentation chain transfer polymerization
  • MOP monoporous or porous coordination compound
  • the aromatic hydrocarbon group and heteroaromatic group represented by X 1 those described above can be adopted.
  • the kind and number of substituents are the same.
  • the monoporous or porous coordination polymer of the present invention has a large number of organic ligands (3), but it is also possible to arrange each organic ligand (3).
  • X 1 in all the organic ligands (3) possessed by the monoporous or porous coordination polymer of the present invention can be the same.
  • the divalent linking group represented by X 2 those described above can be adopted.
  • the kind and number of substituents are the same.
  • the monoporous or porous coordination polymer of the present invention has a large number of organic ligands (3), but it is also possible to arrange each organic ligand (3).
  • X 2 in all organic ligands (3) possessed by the monoporous or porous coordination polymer of the present invention can be the same.
  • the alkyl group represented by R 1 those described above can be adopted.
  • the kind and number of substituents are the same.
  • the monoporous or porous coordination polymer of the present invention has a large number of organic ligands (3), but it is also possible to arrange each organic ligand (3).
  • R 1 in all the organic ligands (3) possessed by the monoporous or porous coordination polymer of the present invention can be the same.
  • the monoporous or porous coordination polymer of the present invention has a large number of organic ligands (3), but it is also possible to arrange each organic ligand (3). Specifically, R 2 in all the organic ligands (3) possessed by the monoporous or porous coordination polymer of the present invention can be the same.
  • the monoporous or porous coordination polymer of the present invention has a large number of organic ligands (3), but it is also possible to arrange each organic ligand (3). Specifically, m in all organic ligands (3) possessed by the monoporous or porous coordination polymer of the present invention can be the same.
  • the aromatic hydrocarbon group and heteroaromatic group represented by Y those described above can be adopted.
  • the kind and number of substituents are the same.
  • the monoporous or porous coordination polymer of the present invention has a large number of organic ligands (3), but it is also possible to arrange each organic ligand (3).
  • Y in all organic ligands (3) possessed by the monoporous or porous coordination polymer of the present invention can be the same.
  • Z is an ethylene chain which may be substituted, and means a monomer unit of a polymerized polymer. More specifically, this optionally substituted ethylene chain (monomer unit of the polymerized polymer) is introduced into a monoporous or porous coordination compound such as MOP by RAFT polymerization in the production method described later. It is a structural unit derived from the monomer compound used in the process. That is, depending on the type of Z, various characteristics can be imparted to a monoporous or porous coordination compound such as MOP. As such Z, general formula (4):
  • R 6 represents a hydrogen atom or an optionally substituted alkyl group.
  • R 7 is a hydroxyl group, an optionally substituted carboxy group, an optionally substituted acyloxy group, an optionally substituted carbamoyl group, an optionally substituted aryl group, or an optionally substituted heteroaryl Indicates a group.
  • the chain represented by is preferred.
  • examples of the alkyl group represented by R 6 include acyclic alkyl groups having 1 to 6 carbon atoms such as a methyl group. These alkyl groups can also have about 0 to 5 (particularly 1 to 3) substituents such as halogen atoms (fluorine atom, chlorine atom, bromine atom, etc.).
  • R 6 maintains the characteristics of a monoporous or porous coordination compound such as MOP (having micropores inside, selectively absorbing carbon dioxide in the case of MOP, etc.)
  • MOP having micropores inside, selectively absorbing carbon dioxide in the case of MOP, etc.
  • an optionally substituted alkyl group is preferred, an unsubstituted alkyl group is more preferred, and a methyl group is more preferred.
  • the carboxy group represented by R 7 is an alkyl group such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, or an n-hexyl group; an isobornyl group; a polyethylene glycol ( It can also have about 0 to 5 (especially 1 to 3) substituents such as (PEG) residues.
  • examples of the acyloxy group represented by R 7 include an acetoxy group, an ethanoyloxy group, a propionyloxy group, and the like, such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group.
  • an alkyl group such as an n-hexyl group; an isobornyl group; and a substituent such as a polyethylene glycol (PEG) residue may have about 0 to 5 (particularly 1 to 3) substituents.
  • the carbamoyl group represented by R 7 is an alkyl group such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, or an n-hexyl group; an isobornyl group; a polyethylene glycol ( It can also have about 0 to 5 (especially 1 to 3) substituents such as (PEG) residues.
  • examples of the heteroaryl group represented by R 7 include a pyridyl group, a pyrrolyl group, a thienyl group, and the like.
  • An alkyl group such as an n-hexyl group; an isobornyl group; and 0 to 5 (particularly 1 to 3) substituents such as a polyethylene glycol (PEG) residue may be included.
  • R 7 maintains the characteristics of a monoporous or porous coordination compound such as MOP (having micropores inside, selectively absorbing carbon dioxide in the case of MOP).
  • MOP monoporous or porous coordination compound
  • an optionally substituted carboxy group or an optionally substituted aryl group is preferred, and the carboxy substituted with an alkyl group is preferred.
  • a group or an unsubstituted aryl group is more preferable, and a carbonylmethoxy group or a phenyl group is more preferable.
  • Examples of Z satisfying such conditions include methacrylic acid or a derivative residue thereof (methyl methacrylate residue, n-butyl methacrylate residue, tert-butyl methacrylate residue, hexyl methacrylate residue, methacrylic acid residue).
  • examples of the solvent that can improve the solvent solubility include toluene, chloroform, tetrahydrofuran, N, N′-dimethylformamide, dichloromethane, benzene, 1,4-dioxane, carbon tetrachloride, acetone, dichlorobenzene and the like. Is mentioned. In particular, it is useful in that it can be dissolved in a solvent having a low polarity such as toluene, chloroform, or benzene.
  • polymethacrylic acid polysodium methacrylate, polyacrylic acid, polyacrylic, such as methacrylic acid residue, acrylic acid residue, vinyl alcohol residue, methoxy acrylate acrylate residue, 4-vinylpyridine residue, etc.
  • groups derived from water-soluble polymer compounds such as sodium acrylate, polyvinyl alcohol, methoxy PEG polyacrylate, and poly (4-vinylpyridine)
  • MOP internal In the case of MOP, the water solubility can be improved while maintaining the selective absorption of carbon dioxide.
  • Z is a methyl methacrylate residue. Or as a styrene residue,
  • a single group may be employed, or two or more groups may be employed.
  • an organic ligand (3) having two or more kinds of Z is employed, the properties possessed by two or more different polymer compounds may be imparted to a monoporous or porous coordination compound such as MOP. Is possible.
  • n which is the number of repeating Z, is not particularly limited, and is a characteristic of a monoporous or porous coordination compound such as MOP (in the case of MOP, carbon dioxide in the case of MOP having micropores inside) From the viewpoint of further improving the molding processability (especially thermoforming processability) and imparting ion exchange ability, further improving the solvent solubility, and the like.
  • An integer is preferable, and an integer of 10 to 500 is more preferable.
  • the monoporous or porous coordination polymer of the present invention has a large number of organic ligands (3), but it is also possible to align the length of each organic ligand (3). . Specifically, it is possible to narrow the dispersion of n in all the organic ligands (3) possessed by the monoporous or porous coordination polymer of the present invention.
  • such an organic ligand (3) can give a porous coordination polymer by adjusting the synthesis conditions (temperature, concentration, mixing ratio, etc.) when coordinated with a metal ion.
  • a porous coordination polymer having a jungle gym-like three-dimensional framework structure can be used, and a large number of compounds can be confined inside.
  • Such an organic ligand (3) is not particularly limited, and specifically includes a general formula:
  • Etc. are more preferable.
  • the number of metal ions possessed by the monoporous or porous coordination polymer of the present invention is the type of metal ion, the angle between two Y-COO - bonds, the monoporous or porous coordination of the present invention. Depending on the average diameter of the polymer, etc., it is preferably 4 to 128, more preferably 12 to 48, and particularly preferably 24.
  • the number of organic ligands (3) possessed by the monoporous or porous coordination polymer of the present invention depends on the type of metal ion, the angle formed by two Y—COO — bonds, Depending on the average diameter of the porous or porous coordination polymer, etc., it is preferably 4 to 128, more preferably 12 to 48, and particularly preferably 24.
  • copper ions (Cu 2+ ) are used as metal ions and organic ligands (Y) are organic ligands where Y is a benzene ring, copper ions (Cu 2+ ) and organic Organometallic polyhedra (monoporous coordination polymers) each having 24 ligands are easily generated.
  • Y aromatic hydrocarbon ring or heteroaromatic ring
  • the monoporous or porous coordination polymer of the present invention has a configuration in which the divalent or higher-valent metal ion and the organic ligand (3) are alternately coordinated.
  • the monoporous or porous coordination polymer of the present invention may contain ions or ligands other than the divalent or higher metal ion and the organic ligand (3), From the viewpoint of ease of synthesis and analysis, and from the viewpoint of stably presenting a monoporous or porous coordination compound such as MOP, the monoporous or porous coordination polymer of the present invention comprises the above-described divalent or higher-valent metal ions and It is preferable to consist only of the organic ligand (3).
  • the monoporous or porous coordination polymer of the present invention can be a spherical compound.
  • This spherical compound can be an organometallic polyhedron (monoporous coordination polymer) having micropores inside.
  • the average diameter is not particularly limited, but it may be a monoporous or porous coordination such as MOP.
  • MOP monoporous or porous coordination
  • the average diameter of the pores present in the interior is not particularly limited, but a single unit such as MOP can be used. From the viewpoint of maintaining the characteristics of the porous or porous coordination compound (having micropores inside, in the case of MOP, selectively absorbing carbon dioxide, etc.), it is preferably 2 nm or less, preferably 0.1 to 1.5 nm. More preferred.
  • the average molecular weight is not particularly limited, but it may be a monoporous or porous coordination such as MOP. From the viewpoint of imparting ion exchange capacity and further improving solvent solubility, while maintaining the properties of the coordination compound (having micropores inside, selectively absorbing carbon dioxide in the case of MOP, etc.)
  • the number average molecular weight is preferably 5000-2000000, and more preferably 7000-200000.
  • a porous coordination polymer in the organic ligand (3), can be provided by adjusting the synthesis conditions (temperature, concentration, mixing ratio, etc.) for coordination with metal ions.
  • a porous coordination polymer having a jungle gym-like three-dimensional framework structure can be used, and a large number of compounds can be confined inside.
  • the production method of the monoporous or porous coordination polymer of the present invention is not particularly limited, and can be synthesized by various methods.
  • reaction formula 1 when synthesizing an organometallic polyhedron (monoporous coordination polymer) as the monoporous or porous coordination polymer of the present invention, for example, reaction formula 1:
  • Ligand compound (1) The ligand compound (1) in the above reaction formula 1 is the above-described ligand compound of the present invention.
  • X 2 is a group represented by the above general formula (2) as a divalent linking group, and X 3 is —R 5 —COO— (where R 5 is substituted).
  • X 3 is —R 5 —COO— (where R 5 is substituted).
  • the carboxy group is protected with a protecting group such as a silyl group (such as t-butyldimethylsilyl group), and the compound (8 ), And then esterification, preferably under neutral conditions, by known methods (eg, adding oxalyl chloride and a catalytic amount of N, N′-dimethylformamide to produce acid chloride in the reaction system). Preferably it is done.
  • the amount of the compound (7) used is not particularly limited, but from the viewpoint of yield and the like, it is preferable to use 0.2 to 1 mol (particularly 0.5 to 0.9 mol) with respect to 1 mol of the compound (8).
  • a base such as pyridine and amines (trimethylamine, N, N′-diisopropylethylamine, etc.) may be added to accelerate the reaction.
  • organic solvent that can be used in this step
  • known ones may be employed.
  • cyclic ethers such as tetrahydrofuran and dioxane
  • halogen solvents such as dichloromethane and chloroform
  • These solvents are preferably strictly dehydrated.
  • the reaction conditions may be such that the reaction proceeds sufficiently, and can be, for example, -20 to 100 ° C., particularly 0 to 50 ° C., 1 to 48 hours, particularly 2 to 24 hours. After completion of the reaction, usual isolation and purification steps can be performed as necessary.
  • the ligand compound (1) has, for example, R 2
  • the cation represented by M is preferably an alkali metal cation, and examples thereof include a sodium cation and a potassium cation.
  • examples of the halogen atom represented by X 4 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the carboxy group is protected with a protecting group such as a silyl group (t-butyldimethylsilyl group, etc.) or a tert-butyl group.
  • a protecting group such as a silyl group (t-butyldimethylsilyl group, etc.) or a tert-butyl group.
  • the reaction is preferably carried out under neutral conditions by a known method (for example, a method of adding trifluoroacetic acid to form an ester in the reaction system).
  • the amount of compound (9) used is not particularly limited, but from the viewpoint of yield and the like, it is preferable to use 0.2 to 2 mol (particularly 0.5 to 1.5 mol) with respect to 1 mol of compound (10).
  • the organic solvent that can be used in this step may be a known one.
  • cyclic ethers such as tetrahydrofuran and dioxane
  • halogen solvents such as dichloromethane and chloroform
  • ketones such as acetone and methyl ethyl ketone; preferable.
  • the reaction conditions may be such that the reaction proceeds sufficiently, and can be, for example, -20 to 100 ° C., particularly 0 to 50 ° C., 1 to 48 hours, particularly 2 to 24 hours.
  • usual isolation and purification steps can be performed as necessary.
  • the ligand compound which is a group represented by the formula (1), can also be produced according to the above method (by changing the raw materials or the like to a desired one).
  • the ligand compound (1) has, for example, X 1 -R 2
  • the carboxy group is protected with a protecting group such as a silyl group (t-butyldimethylsilyl group, etc.) or a tert-butyl group.
  • a protecting group such as a silyl group (t-butyldimethylsilyl group, etc.) or a tert-butyl group.
  • the amount of the compound (11) and CS 2 used is not particularly limited, but from the viewpoint of further improving the yield and further suppressing the production of by-products, 1 mol of the compound (10), Compound (11) is preferably used in an amount of 0.2 to 2 mol (particularly 0.5 to 1.5 mol), and CS 2 is preferably used in an amount of 0.2 to 2 mol (particularly 0.5 to 1.5 mol).
  • the organic solvent that can be used in this step may be a known one.
  • cyclic ethers such as tetrahydrofuran and dioxane
  • halogen solvents such as dichloromethane and chloroform
  • ketones such as acetone and methyl ethyl ketone; preferable.
  • the reaction conditions may be such that the reaction proceeds sufficiently, and can be, for example, -20 to 100 ° C., particularly 0 to 50 ° C., 1 to 48 hours, particularly 2 to 24 hours.
  • usual isolation and purification steps can be performed as necessary.
  • an organometallic polyhedron (MOP) can be obtained by reacting the ligand compound (1) in the above reaction formula 1 with a metal compound in an organic solvent. it can.
  • the metal compound is not particularly limited, but a divalent metal salt is preferable from the viewpoint of easily configuring MOP.
  • the metal species constituting such a divalent metal salt is not particularly limited, from the viewpoint of easily forming a monoporous or porous coordination polymer by coordination bond with the organic ligand (3), Transition metals such as copper, zinc, cobalt, cadmium, rhodium, calcium, magnesium, manganese, nickel, palladium, lanthanum, and zirconium are preferable, and copper or zinc is more preferable.
  • organic acid salts such as acetates and formates; inorganic acid salts such as sulfates, nitrates, carbonates, hydrochlorides, and hydrobromides can be used.
  • metal compounds include copper (II) acetate, copper (II) nitrate, copper (II) chloride, zinc nitrate, cobalt (II) nitrate, cadmium acetate, and nickel (II) chloride. It can be preferably used.
  • the metal compound may be a hydrate or a solvate.
  • the metal compound is preferably used alone from the viewpoint of easy synthesis and structural analysis and from the viewpoint of easy formation of a stable MOP, but may be used in combination of two or more.
  • the amount of the metal compound used is preferably 0.5 to 2.0 moles per mole of the ligand compound (1).
  • the organic solvent that can be used in this step a known solvent may be employed.
  • amide solvents such as dimethylformamide, diethylformamide, dimethylacetamide, N-methylpyrrolidone are preferable.
  • the reaction conditions are not limited as long as the reaction proceeds sufficiently, and can be, for example, ⁇ 50 to 100 ° C., particularly 10 to 40 ° C., 10 minutes to 24 hours, particularly 30 minutes to 12 hours. After completion of the reaction, it may be purified by precipitation in an alcohol solvent such as methanol, if necessary.
  • X 1 , X 2 , R 1 , R 2 , Y and m are the same as defined above.
  • the metal ion and the organic ligand are alternately coordinated. That is, it is MOP in which a polymer chain is not introduced, and the description of the above “monoporous or porous coordination polymer” can be used for other characteristics.
  • RAFT polymerization a polymer chain can be introduced into MOP by causing RAFT polymerization using a desired monomer compound according to the required characteristics for MOP. Maintaining pores, selectively absorbing carbon dioxide, etc., while providing ion exchange capability, further improving solvent solubility, and further improving molding processability (especially thermoforming processability) Can do.
  • the compound of the present invention can be obtained by RAFT polymerization of MOP and a monomer compound in an organic solvent using a radical polymerization initiator.
  • R 6 and R 7 are the same as defined above.
  • methacrylic acid or a derivative thereof methyl methacrylate, n-butyl methacrylate, tert-butyl methacrylate, hexyl methacrylate, isobornyl methacrylate, methacrylic acid, methoxy methacrylate is preferable.
  • methyl methacrylate is particularly preferred from the viewpoint of ease of synthesis and imparting solvent solubility and thermoforming processability to MOP.
  • These monomer compounds can be used alone or in combination of two or more. In particular, if a plurality of monomer compounds are used, it is possible to introduce a copolymer polymer chain and impart characteristics derived from a plurality of different polymers.
  • the radical polymerization initiator is not particularly limited, and tert-butyl hydroperoxide, cumene hydroperoxide, tert-butyl peroxyacetate, tert-butyl peroxybenzoate, tert-butyl peroxyoctanoate, tert-butyl peroxyneodecanoate, peroxy Hydrogen peroxides such as tert-butyl isobutyrate, lauroyl peroxide, tert-amyl peroxypivalate, tert-butyl peroxypivalate, dicumyl peroxide, benzoyl peroxide, potassium persulfate, ammonium persulfate; 2,2'- Azobis (isobutyronitrile), 2,2'-azobis (2-butenonitrile), 4,4'-azobis (4-pentanoic acid), 1,1'-azobis (cyclohexanecarbonitrile), 2- (tert- Butylazo) -2
  • the amount of the monomer compound and radical polymerization initiator used is not particularly limited. From the viewpoints of yield and molecular weight dispersion of the polymer obtained by RAFT polymerization, the ligand compound (1) residue 1 in MOP It is preferable to use 20 to 10000 mol (particularly 50 to 2000 mol) of the monomer compound and 0.01 to 2 mol (particularly 0.5 to 1 mol) of the radical polymerization initiator with respect to mol.
  • the organic solvent that can be used in this step may be a known one.
  • an aromatic solvent such as benzene, toluene, xylene, mesitylene, and anisole
  • a cyclic ether such as 1,4-dioxane
  • the reaction conditions may be such that the reaction proceeds sufficiently, and can be, for example, 10 to 150 ° C., particularly 50 to 100 ° C., 10 minutes to 24 hours, particularly 30 minutes to 12 hours. After completion of the reaction, normal isolation and purification steps may be performed as necessary.
  • the completion of the reaction can be confirmed by quantifying the remaining amount of the raw material by gas chromatography, high performance liquid chromatography or the like, but is not limited thereto.
  • the obtained mixed solution is put into a poor polymer solvent (especially an alcohol-based organic solvent such as methanol), subjected to suction filtration to collect a precipitate, washed with the poor solvent, and if necessary.
  • the organometallic polyhedron (monoporous coordination polymer) of the present invention is vacuum-dried at a temperature at which the organometallic polyhedron (monoporous coordination polymer) does not decompose (for example, 25 to 250 ° C.) for several hours. ) Can be obtained. Cleaning with an organic solvent and vacuum drying can be replaced by cleaning with supercritical carbon dioxide, which is more effective.
  • This method can be applied to random copolymerization and block copolymerization of different monomers, and a monoporous or porous coordination polymer into which a copolymerized polymer chain is introduced can be obtained in the same manner.
  • a monoporous or porous coordination polymer into which a copolymerized polymer chain is introduced can be obtained in the same manner.
  • ATRP atom transfer radical polymerization
  • NMP nitroxide-mediated radical polymerization
  • anionic polymerization method etc.
  • the above-described monoporous or porous coordination polymer of the present invention is used as a substance adsorption and / or separation material by taking advantage of its unique substance absorption characteristics. be able to.
  • the monoporous or porous coordination polymer of the present invention can adsorb and / or separate a substance in a gas state and can capture and / or separate a substance in an ionic state. Therefore, the monoporous or porous coordination polymer of the present invention can be preferably used as a gas and / or ion adsorbing material or a gas and / or ion separating material.
  • the monoporous or porous coordination polymer of the present invention is an organometallic polyhedron
  • a carbon dioxide adsorbing material or a carbon dioxide is utilized by utilizing the property of selectively adsorbing carbon dioxide. It can be suitably used as a separation material.
  • other gas species and ionic species can be similarly adsorbed and / or separated.
  • a vacuum is used in order to remove moisture and solvent adsorbed on the monoporous or porous coordination polymer. Pre-drying is preferably performed.
  • a film can be easily produced using the monoporous or porous coordination polymer of the present invention.
  • a film can be used as a material separation membrane.
  • the monoporous or porous coordination polymer of the present invention can adsorb and / or separate a substance in a gas state and can capture and / or separate a substance in an ionic state.
  • the substance separation membrane of the present invention can be a gas and / or ion separation membrane.
  • the monoporous or porous coordination polymer of the present invention is an organometallic polyhedron, it is suitably used as a carbon dioxide separation membrane by utilizing the property of selectively adsorbing carbon dioxide. can do.
  • a suitable design is applied to the monoporous or porous coordination polymer of the present invention, other gas species and ionic species can be similarly adsorbed and / or separated.
  • Such a material separation membrane can be produced using, for example, a coating composition containing the monoporous or porous coordination polymer (material adsorption and / or separation material) of the present invention.
  • a coating composition for example, a solution obtained by dissolving the monoporous or porous coordination polymer of the present invention in an organic solvent can be used.
  • the monoporous or porous coordination polymer (substance adsorption and / or separation material) of the present invention can be used alone or in combination of two or more.
  • organic solvents examples include toluene, chloroform, tetrahydrofuran, benzene, N, N′-dimethylformamide, and the like.
  • the concentration of the monoporous or porous coordination polymer (substance adsorption and / or separation material) of the present invention is 1 to 100 mg / mL from the viewpoint of forming a more homogeneous and self-supporting film. 5 to 50 mg / mL is more preferable.
  • a binder resin may be used.
  • the monoporous or porous coordination polymer of the present invention (substance adsorption and / or separation) can be used without using a binder resin.
  • the binder resin should not be used. preferable.
  • a leveling agent, a coupling agent, a thickener, an ultraviolet absorber, a light stabilizer, an antifreezing agent, and the like may be added to the coating composition as long as the effects of the present invention are not adversely affected. However, it is preferably not used for the same reason as described above.
  • the substance separation membrane of the present invention can be coated on a substrate by, for example, coating or spraying.
  • the coating method is not particularly limited. For example, drop casting method, spin coating method, dip coating method, flow coating method, spray coating method, roll coating method, screen printing method, bar coater method, brush coating, sponge coating, etc. Conventionally known coating methods can be used.
  • an intermediate layer may be coated before coating the coating composition (material adsorption and / or separation material) on the substrate.
  • the film thickness of the coating film (substance separation film) formed by coating is not particularly limited, and is preferably from 100 to 10 ⁇ m, more preferably from 200 to 1.5 ⁇ m, from the viewpoint of material separation characteristics.
  • the substrate that can be coated is not particularly limited, and the material thereof is metal, ceramics, glass, plastic, wood, stone, cement, concrete, fiber, fabric, paper, combinations thereof, laminates thereof, and coatings thereof. Examples include the body.
  • the thus obtained material separation membrane of the present invention is a membrane made of a monoporous or porous coordination polymer having an average diameter of about 8 to 100 nm (particularly about 10 to 50 nm).
  • Such a material separation membrane of the present invention can be applied to molecular sensing, drug delivery, etc. in addition to substance (particularly gas) adsorption, substance (particularly gas) separation, substance (particularly gas) occlusion, and the like.
  • Synthesis Example 1 Synthesis of ligand compound 1 (organic ligand 1)
  • TBDMS-Cl represents tert-butyldimethylsilyl chloride.
  • DMF represents dimethylformamide.
  • CDPA 4-cyano-4-[(dodecylsulfanylthiocarbonyl) sulfanyl] pentanoic acid
  • TDMS-Cl tert-butyldimethylsilyl chloride
  • imidazole 0.17 g, 2.5 mmol
  • DMF dimethylformamide
  • the extracted organic phase was washed with a saturated aqueous sodium hydrogen carbonate solution and a saturated aqueous sodium chloride solution, and dehydrated by adding anhydrous magnesium sulfate.
  • the solution was filtered, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography using chloroform as a mobile phase to obtain a CDPA-protected TBDMS (CDPA-TBDMS) (0.58 g, 92%).
  • DMF dimethylformamide
  • THF tetrahydrofuran
  • CDPA-TBDMS (0.2 g, 0.39 mmol) was dissolved in dichloromethane (1 mL), the solution was cooled to 0 ° C. with an ice-water bath, and 1 or 2 drops of DMF were added (catalyst). To this, a solution of oxalyl chloride ((COCl) 2 ; 40.6 ⁇ L, 0.47 mmol) dissolved in 0.1 mL of dichloromethane was added dropwise little by little (at this time, carbon monoxide gas was generated as a by-product) ). The solution was allowed to react for 3 hours while gradually returning to room temperature, and then the solvent was completely distilled off.
  • Target 1 50 mg, 23%).
  • 1 H NMR 400 MHz, CDCl 3 , using JEOL ECX-400, solvent peak as internal standard: TM (ppm) 8.67 (s, 1H), 8.03 (s, 2H), 3.39 (tr, 2H) , 2.97 (tr, 2H), 2.79-2.64 (m, 1H), 2.58-2.48 (m, 1H), 1.97 (s, 3H), 1.80-1.68 (m, 2H), 1.48-1.20 (m, 21H) , 0.89 (tr, 3H).
  • Cu (OAc) 2 .H 2 O represents copper acetate monohydrate.
  • DMF represents dimethylformamide.
  • AIBN represents azobisisobutyronitrile
  • MOP1 (5 mg) obtained in Synthesis Example 2 and methyl methacrylate monomer (0.16 kg) were dissolved in toluene (1 ml). MOP1 is insoluble in toluene, but can be dissolved in a small amount when mixed with methyl methacrylate. To this was added a 0.1 M toluene solution (80 ⁇ L) of azobisisobutyronitrile (AIBN). The solution was freeze degassed (3 times) to remove dissolved oxygen, and then the solution was heated to 70 ° C. in an oil bath to initiate the reaction. The solution was polymerized for 4 hours with stirring.
  • AIBN azobisisobutyronitrile
  • Example 2 A part of the reaction solution of Example 1 was taken out after 65 minutes from the start of the reaction to obtain a polymer graft MOP.
  • Example 3 A part of the reaction solution of Example 1 was taken out after 130 minutes from the start of the reaction to obtain a polymer graft MOP.
  • Example 4 A part of the reaction solution of Example 1 was taken out after 205 minutes from the start of the reaction to obtain a polymer graft MOP.
  • Example 5 A part of the reaction solution of Example 1 was taken out after 265 minutes from the start of the reaction to obtain a polymer graft MOP.
  • Synthesis Examples 4 to 7 Decomposition of polymer chain-introduced organometallic polyhedron Synthesis Example 3 except that the polymer graft MOP obtained in Examples 2 to 5 was used in place of the polymer graft MOP obtained in Example 1 It was confirmed that an organic ligand having a structure in which methyl methacrylate was polymerized on the ligand compound 1 was obtained.
  • Example 6 Production of a material separation membrane (production of a self-supporting film)
  • the polymer graft MOP obtained in Example 5 was dissolved in chloroform to a concentration of 10 mg / mL, and the resulting solution was drop-cast on a glass substrate as a coating composition and dried at room temperature.
  • the material separation membrane was obtained by peeling the glass substrate. The appearance is shown in FIG.
  • Example 7 Production of a material separation membrane (production of a film for TEM observation)
  • the polymer graft MOP obtained in Example 5 was dissolved in chloroform so that the concentration was 5 mg / mL, and the obtained solution was drop-cast on a copper grid as a coating composition, and dried at room temperature. A material separation membrane was obtained.
  • Example 8 Production of a material separation membrane (production of a film for AFM observation)
  • the polymer graft MOP obtained in Example 5 was dissolved in chloroform so as to have a concentration of 5 mg / mL, and the obtained solution was dropped on a glass substrate as a coating composition, and dried at room temperature. A material separation membrane was obtained.
  • Example 9 Synthesis of Polymer Chain-Introduced Organometallic Polyhedron MOP1 (5 mg) and n-butyl methacrylate monomer (0.23 g) obtained in Synthesis Example 2 were dissolved in toluene (1 mL). A 0.1 M toluene solution (80 ⁇ L) of azobisisobutyronitrile (AIBN) was added thereto. The solution was freeze degassed (3 times) to remove dissolved oxygen, and then the solution was heated to 70 ° C. in an oil bath to initiate the reaction. The solution was polymerized for 2 hours with stirring. Thereafter, the solution was quenched with liquid nitrogen to stop the reaction, and the solution was poured into methanol (20 mL) to precipitate a polymer.
  • AIBN azobisisobutyronitrile
  • Example 10 Synthesis of copolymer polymer chain-introduced organometallic polyhedron MOP1-graft-PBMA (10 mg) and styrene monomer (0.2 g) obtained in Example 9 were dissolved in toluene (1 mL). A 0.1 M toluene solution (80 ⁇ L) of azobisisobutyronitrile (AIBN) was added thereto. The solution was freeze degassed (3 times) to remove dissolved oxygen, and then the solution was heated to 70 ° C. in an oil bath to initiate the reaction. The solution was allowed to polymerize for 2 hours 30 minutes with stirring.
  • AIBN azobisisobutyronitrile
  • Test example 1 Gel permeation chromatography (GPC) measurement
  • GPC Gel permeation chromatography
  • Test Example 2 Electron Microscope Observation The surface structure of the material separation membrane obtained in Examples 7 and 8 was observed with an electron microscope (Example 7: Transmission electron microscope (TEM), Example 8: Atomic force microscope (AFM) )). The results are shown in FIG. As a result, it can be understood that the surface is composed of particles (polymer graft MOP) of about 10 to 20 nm.
  • TEM Transmission electron microscope
  • AFM Atomic force microscope
  • Test Example 3 Gas Adsorption / Desorption Test With respect to MOP1 obtained in Synthesis Example 2, the nitrogen adsorption amount and nitrogen desorption amount at a temperature of 77 K, and the carbon dioxide adsorption amount and the carbon dioxide desorption amount at a temperature of 195 K were measured.
  • a Belsorp Max volumetric adsorption device manufactured by Nippon Bell Co., Ltd. was used for the measurement. The measurement was performed at a temperature of 77 K using a Belsorp Max cryosystem. The obtained result is shown in FIG. In FIG. 6, ads is an adsorption amount and des is a desorption amount.
  • MOP1 selectively adsorbs and desorbs carbon dioxide as compared with nitrogen. Since the characteristic of selectively adsorbing and desorbing carbon dioxide is derived from the unique structure of MOP, the compound of the present invention into which a polymer chain is introduced also selectively absorbs and desorbs carbon dioxide. Can do.
  • Test example 4 Gel permeation chromatography (GPC) measurement (2) As a measuring instrument, Measuring equipment: HPLC Prominence manufactured by Shimadzu Corporation (Liquid feeding pump: LC-20AD, Autosampler: SIL-20A, Column oven: CTO-20AC Detector: RI (differential refraction) detector (RID-10A) Column used: Shodex KF-804L 2 Column temperature: 40 ° C Mobile phase and flow rate: Tetrahydrofuran 1mL / min It was used.
  • GPC Gel permeation chromatography
  • Example 10 GPC measurement of the compounds obtained in Examples 9 to 10 and Synthesis Examples 8 to 9 was performed, and the molecular weight (number average molecular weight) of each compound was measured. The results are shown in FIG. In the same manner as in Example 1, in Example 9, n-butyl methacrylate monomer and MOP1 were reacted and GPC measurement was performed. As a result, it can be understood that the molecular weight is increased (number average molecular weight 132300) by introducing a polymer chain into MOP1. In Example 10, the compound (MOP1-graft-PBMA) obtained in Example 9 and the styrene monomer were reacted successively to perform GPC measurement.
  • MOP1-graft-PBMA number average molecular weight
  • the styrene monomer is continuously introduced into MOP1-graft-PBMA, thereby further increasing the molecular weight (number average molecular weight 269300). That is, through Examples 9 and 10, it was found that a block copolymer of butyl methacrylate and styrene could be introduced into MOP1 by performing two-step RAFT polymerization from MOP1. In addition, as described above, when PMDETA is allowed to act on the organometallic polyhedron, each organic ligand can be decomposed one by one.
  • the compound obtained in Synthesis Example 9 (number average molecular weight 14500) is the compound obtained in Synthesis Example 8 ( The molecular weight is certainly larger than the number average molecular weight 13400), which means that the living block copolymerization is proceeding on MOP1.
  • Test Example 5 MOP1 obtained in Diameter Synthesis Example 2, the polymer chain-introduced organometallic polyhedron obtained in Example 1, and the copolymer polymer chain-introduced organometallic polyhedron obtained in Example 8 were analyzed by Zetasizer Nano ZSP manufactured by Malvern. The diameter was measured. The results are shown in FIG. As a result, in the THF solution, MOP1 is distributed in the range of about 3 to 7 nm, the polymer chain-introduced organometallic polyhedra are in the range of about 10 to 30 nm, and the copolymer polymer chain-introduced organometallic polyhedra are in the range of about 12 to 50 nm.
  • the average diameter was about 5 nm for MOP1, about 18 nm for the polymer chain-introduced organometallic polyhedron, and about 20 nm for the copolymer polymer chain-introduced organometallic polyhedron.
  • Synthesis Example 12 Synthesis of ligand compound 2 (organic ligand 2)
  • t-Bu represents a tert-butyl group.
  • t-Bu represents a tert-butyl group.
  • TFA indicates trifluoroacetic acid.
  • Synthesis Example 13 Synthesis of ligand compound 3 (organic ligand 3)
  • t-Bu represents a tert-butyl group.
  • t-Bu represents a tert-butyl group.
  • TFA indicates trifluoroacetic acid.
  • Synthesis Example 14 Synthesis of ligand compound 4 (organic ligand 4)
  • t-Bu represents a tert-butyl group.
  • t-Bu represents a tert-butyl group.
  • TFA indicates trifluoroacetic acid.
  • Synthesis Example 15 Synthesis of ligand compound 5 (organic ligand 5)
  • t-Bu represents a tert-butyl group.
  • t-Bu represents a tert-butyl group.
  • TFA indicates trifluoroacetic acid.
  • Synthesis Example 16 Synthesis of ligand compound 6 (organic ligand 6)
  • t-Bu represents a tert-butyl group.
  • t-Bu represents a tert-butyl group.
  • TFA indicates trifluoroacetic acid.
  • Synthesis Example 17 Synthesis of ligand compound 7 (organic ligand 7)
  • t-Bu represents a tert-butyl group.
  • t-Bu represents a tert-butyl group.
  • TFA indicates trifluoroacetic acid.
  • Cu (OAc) 2 .H 2 O represents copper acetate monohydrate.
  • NMP represents N-methylpyrrolidone.
  • An organometallic polyhedral MOP2 was obtained in the same manner as in Synthesis Example 2, except that the ligand compound 3 (organic ligand 3) obtained in Synthesis Example 13 was used as a raw material and N-methylpyrrolidone was used as a solvent. It was.
  • Polymer grafting was carried out in the same manner as in Example 1, except that MOP2 obtained in Synthesis Example 18 was used as the raw material, tert-butyl acrylate was used as the monomer compound, tetrahydrofuran was used as the solvent, and the reaction time was 15 minutes. MOP (MOP2-graft-PtBA39) was obtained. In addition, since this polymer graft MOP is also highly soluble in a solvent, a film can be produced by coating and drying.
  • Example 12 A polymer graft MOP was obtained in the same manner except that the reaction time in Example 11 was 45 minutes.
  • Example 13 A polymer graft MOP was obtained in the same manner except that the reaction time in Example 11 was 75 minutes.
  • Example 14 A polymer graft MOP was obtained in the same manner except that the reaction time in Example 11 was changed to 105 minutes.
  • Example 15 A polymer graft MOP was obtained in the same manner except that the reaction time in Example 11 was 135 minutes.
  • Synthesis Examples 19 to 23 Decomposition of polymer chain-introduced organometallic polyhedra Synthesis Example 3 except that the polymer graft MOP obtained in Examples 11 to 15 was used instead of the polymer graft MOP obtained in Example 1 It was confirmed that an organic ligand having a structure in which tert-butyl acrylate was polymerized to the ligand compound 2 was obtained.
  • Test Example 6 Gel permeation chromatography (GPC) measurement (Part 3) As a measuring instrument, Measuring equipment: HPLC Prominence manufactured by Shimadzu Corporation (Liquid feeding pump: LC-20AD, Autosampler: SIL-20A, Column oven: CTO-20AC Detector: RI (differential refraction) detector (RID-10A) Column used: Shodex KF-804L 2 Column temperature: 40 ° C Mobile phase and flow rate: Tetrahydrofuran 1mL / min It was used.
  • GPC Gel permeation chromatography
  • Example 11 GPC measurement of the compounds obtained in Examples 11 to 15 and Synthesis Examples 18 to 23 was performed, and the molecular weight (number average molecular weight) of each compound was measured. The results are shown in FIG. In the same manner as in Example 1, in Examples 11 to 15, tert-butyl acrylate monomer and MOP2 were reacted and GPC measurement was performed. As a result, in comparison with MOP2 obtained in Synthesis Example 18 (number average molecular weight 5090 g / mol), Example 11 (number average molecular weight 6500 g / mol) was carried out by introducing a polymer chain.
  • Example 12 (number average molecular weight 18000 g / mol), Example 13 (number average molecular weight 30700 g / mol), Example 14 (number average molecular weight 46800 g / mol), Example 15 (number average molecular weight 59200 g / mol) It can be understood that both increase in molecular weight.
  • the organic ligands can be decomposed one by one.
  • the compounds obtained in Synthesis Examples 19 to 23 are the organic ligands of the polymer graft MOP.
  • FIG. 10 (a) a plot of the polymerization reaction time and the monomer conversion rate is shown in FIG. 10 (b) ( ⁇ : number average molecular weight, ⁇ : molecular weight.
  • FIG. 10 (b) a plot of the monomer conversion rate and the MOP number average molecular weight is shown in FIG. 10 (b) ( ⁇ : number average molecular weight, ⁇ : molecular weight.
  • the monomer conversion rate and the number average molecular weight of the decomposed organic ligand are plotted in FIG. 10 (c) ( ⁇ : number average molecular weight, ⁇ : molecular weight dispersion (Mw / Mn)).
  • Mw / Mn molecular weight dispersion
  • Example 16 Ligand compound 2 (organic ligand 2) obtained in Synthesis Example 12 instead of ligand compounds 1 and 3 (organic ligands 1 and 3) as the ligand compound (organic ligand)
  • a polymer graft MOP was obtained in the same manner as in Example 1 except that was used. It was also confirmed that polymer graft MOP was obtained by this method. In addition, since this polymer graft MOP is also highly soluble in a solvent, a film can be produced by coating and drying.
  • ligand compound (organic ligand)
  • ligand compound 4 (organic ligand) obtained in Synthesis Example 14 4
  • ligand compound 5 obtained in Synthesis Example 15
  • ligand compound 6 obtained in Synthesis Example 16
  • ligand obtained in Synthesis Example 17 Similar results are expected to be obtained when compound 7 (organic ligand 7) or the like is used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

Provided is a substance separation membrane (in particular, gas separation membrane) obtained using a ligand compound capable of producing the MOP. Also provided is a single-hole or multi-hole coordination polymer which comprises metal ions having a valence of 2 or greater and an organic ligand represented by general formula (3), the metal ions and the organic ligand have been alternately bonded by coordinate bonding. The coordination polymer can be formed into a film without requiring the use of a polymer matrix and can have solvent solubility and moldability. [In the formula, m is an integer of 1-3; X1 represents a sulfur atom, an oxygen atom, a nitrogen atom, a carbon atom, an optionally substituted aromatic hydrocarbon group, or an optionally substituted heteroaromatic group; X2 represents a single bond or a divalent linking group; R1 represents a hydrogen atom or an optionally substituted alkyl group and when m is 2 or greater, then the R1 moieties may be the same or different; R2 represents a group represented by formula BB; Y represents an aromatic hydrocarbon ring or a heteroaromatic ring; the Z moieties may be the same or different and each represent an optionally substituted ethylene chain; and n is an integer of 5-20,000.]

Description

配位子化合物、並びにそれを用いた単孔性若しくは多孔性配位高分子Ligand compound and monoporous or porous coordination polymer using the same
 本発明は、配位子化合物、並びに単孔性若しくは多孔性配位高分子に関する。 The present invention relates to a ligand compound and a monoporous or porous coordination polymer.
 有機配位子と金属イオンとが錯形成し、自己組織化的に構築される有機金属多面体(Metal-Organic Polyhedra: MOP)は、内部に数Å~数nm程度の空隙を有するケージ状化合物である(例えば、非特許文献1)。MOPは、ケージ構造内部に様々な小分子を取り込むことが可能であり、超分子ホストとしてだけでなく、近年ではその細孔を利用したガス等の物質の吸着及び/又は分離材料としての利用も広く検討されている(例えば、非特許文献2)。しかしながら、MOP単体は通常結晶又は粉末状固体として得られ、各種溶剤に溶けにくく、また加熱によっても融解しないため、汎用材料として普及するために不可欠な溶液塗布、熱成形といった成形加工性に乏しい。 Organometallic polyhedra (Metal-Organic Polyhedra: MOP), which are complexed with organic ligands and metal ions and built in a self-organized manner, are cage-like compounds with voids of several to several nanometers inside. There is (for example, Non-Patent Document 1). MOP can incorporate various small molecules inside the cage structure, and not only as a supramolecular host, but also in recent years as an adsorption and / or separation material for substances such as gases using its pores. Widely studied (for example, Non-Patent Document 2). However, a simple MOP is usually obtained as a crystal or powdered solid, is hardly soluble in various solvents, and does not melt even when heated. Therefore, it has poor molding processability such as solution coating and thermoforming, which are indispensable for widespread use as a general-purpose material.
 このように、MOPは成形加工性に乏しいものの、その特異な構造を活用するため、フィルム化する手法は種々試みられている(例えば、非特許文献3)。しかしながら、その手法はいずれも、MOPを高分子マトリクス中に分散させてフィルム化する手法であり、高分子マトリクスを使用せずにMOPをフィルム化する手法は存在しない。 As described above, although MOP has poor molding processability, various methods for forming a film have been attempted in order to utilize its unique structure (for example, Non-Patent Document 3). However, any of these methods is a method for forming a film by dispersing MOP in a polymer matrix, and there is no method for forming a film of MOP without using a polymer matrix.
 上記のとおり、MOPはその特異な構造を有することから、種々の用途への適用が試みられるものの、物質の吸着及び/又は分離材料といった目的では粉末状微結晶固体としてしか扱うことができず、また、溶媒可溶性及び成形加工性に乏しく、そのため、高分子マトリクス中に分散させる手法でしかフィルム化することはできなかった。一方、MOPを汎用材料として普及させるためには、汎用のプロセスである熱成形、塗布等の手法で加工できる素材であることが好ましい。また、MOPを高分子マトリクス中に分散させるフィルム化手法においては、フィルム中のMOP含有量を40~50 %質量程度まで上げることができるが、MOPと高分子マトリクスの間に結合がないため、フィルムの強度が著しく低下するという問題点がある。そこで、本発明は、MOPと高分子とを化学的に結合させた化合物を設計し、高分子マトリクスを使用せずともフィルム化が可能な、溶媒可溶性及び熱成形加工性を付与したMOP、並びに当該MOPを製造可能な配位子化合物を提供することを目的とする。また、本発明は、このようにしてMOPと高分子とを化学的に結合させることで溶媒可溶性及び熱成形加工性を付与したMOPを用いた物質分離膜(特にガス分離膜)を提供することも目的とする。 As mentioned above, since MOP has its unique structure, application to various uses is attempted, but it can be treated only as a powdery microcrystalline solid for the purpose of adsorption and / or separation of substances, Further, it is poor in solvent solubility and molding processability, so that it can be formed into a film only by a method of dispersing in a polymer matrix. On the other hand, in order to popularize MOP as a general-purpose material, a material that can be processed by a general-purpose process such as thermoforming and coating is preferable. In addition, in the filming method in which MOP is dispersed in the polymer matrix, the MOP content in the film can be increased to about 40-50% by mass, but there is no bond between MOP and the polymer matrix, There is a problem that the strength of the film is significantly reduced. Therefore, the present invention designs a compound in which MOP and a polymer are chemically bonded, MOP that can be formed into a film without using a polymer matrix, imparted solvent solubility and thermoforming processability, and It aims at providing the ligand compound which can manufacture the said MOP. The present invention also provides a material separation membrane (especially a gas separation membrane) using MOP that has been provided with solvent solubility and thermoforming processability by chemically bonding MOP and polymer in this way. Also aimed.
 本発明者らは、上記課題に鑑み鋭意検討した結果、MOP外表面から所望の高分子化合物を可逆的付加開裂連鎖移動重合(RAFT重合)することにより、MOPが有する特性は維持しつつ、MOPに高分子化合物由来の高い溶媒可溶性、成形加工性等を付与することができることを見出した。このような溶媒可溶性及び成形加工性が付与されたMOPは、特定の金属イオンと、特定の有機配位子とが交互に配位結合されて形成されている。本発明者らは、このような知見に基づき、さらに研究を重ね、本発明を完成した。すなわち、本発明は、以下の構成を包含する。  As a result of intensive studies in view of the above problems, the present inventors have conducted reversible addition-fragmentation chain transfer polymerization (RAFT polymerization) of a desired polymer compound from the outer surface of the MOP, while maintaining the characteristics of the MOP, It has been found that high solvent solubility derived from a polymer compound, molding processability, and the like can be imparted. The MOP to which such solvent solubility and moldability are imparted is formed by a specific metal ion and a specific organic ligand being alternately coordinated. Based on such knowledge, the present inventors have further studied and completed the present invention. That is, the present invention includes the following configurations.
 項1.一般式(1): Item 1. General formula (1):
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
[式中、mは1~3の整数を示す。X1は硫黄原子、酸素原子、窒素原子、炭素原子、置換されていてもよい芳香族炭化水素基又は置換されていてもよい複素芳香族基を示す。X2は単結合又は2価の連結基を示す。R1は、水素原子、又は置換されていてもよいアルキル基を示す。mが2以上の場合、R1は同一でも異なっていてもよい。R2[Wherein, m represents an integer of 1 to 3. X 1 represents a sulfur atom, an oxygen atom, a nitrogen atom, a carbon atom, an optionally substituted aromatic hydrocarbon group or an optionally substituted heteroaromatic group. X 2 represents a single bond or a divalent linking group. R 1 represents a hydrogen atom or an optionally substituted alkyl group. When m is 2 or more, R 1 may be the same or different. R 2 is
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
で表される基を示す。Yは芳香族炭化水素環又は複素芳香環を示す。]
で表される配位子化合物。
The group represented by these is shown. Y represents an aromatic hydrocarbon ring or a heteroaromatic ring. ]
A ligand compound represented by:
 項2.前記R2が、 Item 2. R 2 is
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
で表される基である、項1に記載の配位子化合物。 Item 2. The ligand compound according to Item 1, which is a group represented by:
 項3.前記X2が、一般式(2): Item 3. X 2 represents the general formula (2):
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
[式中、R3は水素原子又は置換されていてもよいアルキル基を示す。R4は水素原子、置換されていてもよいアルキル基又はシアノ基を示す。X3は単結合、置換されていてもよいアルキレン基、又は-R5-COO-(R5は置換されていてもよいアルキレン基を示す)で表される基を示す。]
で表される基である、項1又は2に記載の配位子化合物。
[Wherein R 3 represents a hydrogen atom or an optionally substituted alkyl group. R 4 represents a hydrogen atom, an optionally substituted alkyl group or a cyano group. X 3 represents a single bond, an optionally substituted alkylene group, or a group represented by —R 5 —COO— (R 5 represents an optionally substituted alkylene group). ]
Item 3. The ligand compound according to Item 1 or 2, which is a group represented by:
 項4.前記一般式(3)におけるYが、ベンゼン環、ナフタレン環、ピリジン環、ピロール環、若しくはチオフェン環からなる単環、又は前記単環に1個又は2個以上のベンゼン環が縮合した縮合環であり、
前記単環又は縮合環とCOO基との結合中に、一般式(6):
Item 4. Y in the general formula (3) is a single ring composed of a benzene ring, naphthalene ring, pyridine ring, pyrrole ring, or thiophene ring, or a condensed ring in which one or two or more benzene rings are condensed to the single ring. Yes,
Said monocyclic or condensed and COO - in the binding of the group, the general formula (6):
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
[式中、R8は同一又は異なって、炭素原子又は窒素原子を示す。R9は置換されていてもよい2価の芳香族炭化水素基を示す。kは0~2の整数を示す。]
で表される基が含まれていてもよい、項1~3のいずれかに記載の配位子化合物。
[Wherein R 8 is the same or different and represents a carbon atom or a nitrogen atom. R 9 represents a divalent aromatic hydrocarbon group which may be substituted. k represents an integer of 0-2. ]
Item 4. The ligand compound according to any one of Items 1 to 3, which may contain a group represented by:
 項5.2価以上の金属イオンと、一般式(3): Item 5. Metal ions having a valence of 2 or more and general formula (3):
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
[式中、mは1~3の整数を示す。X1は硫黄原子、酸素原子、窒素原子、炭素原子、置換されていてもよい芳香族炭化水素基又は置換されていてもよい複素芳香族基を示す。X2は単結合又は2価の連結基を示す。R1は、水素原子、又は置換されていてもよいアルキル基を示す。mが2以上の場合、R1は同一でも異なっていてもよい。R2[Wherein, m represents an integer of 1 to 3. X 1 represents a sulfur atom, an oxygen atom, a nitrogen atom, a carbon atom, an optionally substituted aromatic hydrocarbon group or an optionally substituted heteroaromatic group. X 2 represents a single bond or a divalent linking group. R 1 represents a hydrogen atom or an optionally substituted alkyl group. When m is 2 or more, R 1 may be the same or different. R 2 is
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
で表される基を示す。Yは芳香族炭化水素環又は複素芳香環を示す。Zは同一又は異なって、置換されていてもよいエチレン鎖を示す。nは5~20000の整数を示す。]
で表される有機配位子とを含有し、且つ、該金属イオンと該有機配位子とが交互に配位結合されている、単孔性又は多孔性配位高分子。
The group represented by these is shown. Y represents an aromatic hydrocarbon ring or a heteroaromatic ring. Z is the same or different and represents an optionally substituted ethylene chain. n represents an integer of 5 to 20000. ]
A monoporous or porous coordination polymer comprising an organic ligand represented by the formula (1) and wherein the metal ion and the organic ligand are alternately coordinated.
 項6.前記R2が、 Item 6. R 2 is
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
で表される基である、項5に記載の単孔性又は多孔性配位高分子。 Item 6. A monoporous or porous coordination polymer according to Item 5, which is a group represented by:
 項7.前記X2が、一般式(2): Item 7. X 2 represents the general formula (2):
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
[式中、R3は水素原子又は置換されていてもよいアルキル基を示す。R4は水素原子、置換されていてもよいアルキル基又はシアノ基を示す。X3は単結合、置換されていてもよいアルキレン基、又は-R5-COO-(R5は置換されていてもよいアルキレン基を示す)で表される基を示す。]
で表される基である、項5又は6に記載の単孔性又は多孔性配位高分子。
[Wherein R 3 represents a hydrogen atom or an optionally substituted alkyl group. R 4 represents a hydrogen atom, an optionally substituted alkyl group or a cyano group. X 3 represents a single bond, an optionally substituted alkylene group, or a group represented by —R 5 —COO— (R 5 represents an optionally substituted alkylene group). ]
Item 7. The monoporous or porous coordination polymer according to Item 5 or 6, which is a group represented by:
 項8.前記Zが、一般式(4): Item 8. Said Z is the general formula (4):
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
[式中、R6は水素原子又は置換されていてもよいアルキル基を示す。R7は水酸基、置換されていてもよいカルボキシ基、置換されていてもよいアシルオキシ基、置換されていてもよいカルバモイル基、置換されていてもよいアリール基、又は置換されていてもよいヘテロアリール基を示す。]
で表される鎖である、項5~7のいずれかに記載の単孔性又は多孔性配位高分子。
[Wherein R 6 represents a hydrogen atom or an optionally substituted alkyl group. R 7 is a hydroxyl group, an optionally substituted carboxy group, an optionally substituted acyloxy group, an optionally substituted carbamoyl group, an optionally substituted aryl group, or an optionally substituted heteroaryl Indicates a group. ]
Item 8. The monoporous or porous coordination polymer according to any one of Items 5 to 7, which is a chain represented by:
 項9.前記金属イオンと、前記有機配位子とからなる、項5~8のいずれかに記載の単孔性又は多孔性配位高分子。 Item 9. Item 9. A monoporous or porous coordination polymer according to any one of Items 5 to 8, comprising the metal ion and the organic ligand.
 項10.前記金属イオンを4個以上含有し、且つ、前記有機配位子を4個以上含有する、項5~9のいずれかに記載の単孔性又は多孔性配位高分子。 Item 10. Item 10. The monoporous or porous coordination polymer according to any one of Items 5 to 9, which contains 4 or more metal ions and 4 or more organic ligands.
 項11.記金属イオンが2価の金属イオンである、項5~10のいずれかに記載の単孔性又は多孔性配位高分子。 Item 11. Item 11. The monoporous or porous coordination polymer according to any one of Items 5 to 10, wherein the metal ion is a divalent metal ion.
 項12.前記金属イオンが遷移金属イオンである、項5~11のいずれかに記載の単孔性又は多孔性配位高分子。 Item 12. Item 12. The monoporous or porous coordination polymer according to any one of Items 5 to 11, wherein the metal ion is a transition metal ion.
 項13.前記金属イオンが、銅イオン、亜鉛イオン、コバルトイオン、カドミウムイオン、ロジウムイオン、カルシウムイオン、マグネシウムイオン、マンガンイオン、ニッケルイオン、パラジウムイオン、ランタンイオン、及びジルコニウムイオンよりなる群から選ばれる少なくとも1種である、項5~12のいずれかに記載の単孔性又は多孔性配位高分子。 Item 13. The metal ion is at least one selected from the group consisting of copper ion, zinc ion, cobalt ion, cadmium ion, rhodium ion, calcium ion, magnesium ion, manganese ion, nickel ion, palladium ion, lanthanum ion, and zirconium ion. Item 15. The monoporous or porous coordination polymer according to any one of Items 5 to 12, wherein
 項14.前記一般式(3)におけるYが、ベンゼン環、ナフタレン環、ピリジン環、ピロール環、若しくはチオフェン環からなる単環、又は前記単環に1個又は2個以上のベンゼン環が縮合した縮合環であり、
前記単環又は縮合環とCOO基との結合中に、一般式(6):
Item 14. Y in the general formula (3) is a single ring composed of a benzene ring, naphthalene ring, pyridine ring, pyrrole ring, or thiophene ring, or a condensed ring in which one or two or more benzene rings are condensed to the single ring. Yes,
Said monocyclic or condensed and COO - in the binding of the group, the general formula (6):
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
[式中、R8は同一又は異なって、炭素原子又は窒素原子を示す。R9は置換されていてもよい2価の芳香族炭化水素基を示す。kは0~2の整数を示す。]
で表される基が含まれていてもよい、項5~13のいずれかに記載の単孔性又は多孔性配位高分子。
[Wherein R 8 is the same or different and represents a carbon atom or a nitrogen atom. R 9 represents a divalent aromatic hydrocarbon group which may be substituted. k represents an integer of 0-2. ]
Item 14. The monoporous or porous coordination polymer according to any one of Items 5 to 13, which may contain a group represented by:
 項15.有機金属多面体である、項5~14のいずれかに記載の単孔性又は多孔性配位高分子。 Item 15. Item 15. The monoporous or porous coordination polymer according to any one of Items 5 to 14, which is an organometallic polyhedron.
 項16.平均直径が2 nm~100 nmである、項15に記載の単孔性又は多孔性配位高分子。 Item 16. Item 16. The monoporous or porous coordination polymer according to Item 15, having an average diameter of 2 nm to 100 nm.
 項17.内部に平均直径が2 nm以下の孔を1個有する、項15又は16に記載の単孔性又は多孔性配位高分子。 Item 17. Item 17. The monoporous or porous coordination polymer according to Item 15 or 16, which has one pore having an average diameter of 2 nm or less inside.
 項18.ポリマー鎖が導入された有機金属多面体の製造方法であって、
有機金属多面体と、モノマー化合物とを用いて、可逆的付加開裂連鎖移動重合を施す工程
を備え、
前記有機金属多面体は、2価以上の金属イオンと、一般式(5):
Item 18. A method for producing an organometallic polyhedron having polymer chains introduced therein,
Using an organometallic polyhedron and a monomer compound, and a step of performing reversible addition-fragmentation chain transfer polymerization,
The organometallic polyhedron has a divalent or higher valent metal ion and a general formula (5):
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
[式中、mは1~3の整数を示す。X1は硫黄原子、酸素原子、窒素原子、炭素原子、置換されていてもよい芳香族炭化水素基又は置換されていてもよい複素芳香族基を示す。X2は単結合又は2価の連結基を示す。R1は、水素原子、又は置換されていてもよいアルキル基を示す。mが2以上の場合、R1は同一でも異なっていてもよい。R2[Wherein, m represents an integer of 1 to 3. X 1 represents a sulfur atom, an oxygen atom, a nitrogen atom, a carbon atom, an optionally substituted aromatic hydrocarbon group or an optionally substituted heteroaromatic group. X 2 represents a single bond or a divalent linking group. R 1 represents a hydrogen atom or an optionally substituted alkyl group. When m is 2 or more, R 1 may be the same or different. R 2 is
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
で表される基を示す。Yは芳香族炭化水素環又は複素芳香環を示す。]
で表される有機配位子とを含有し、且つ、該金属イオンと該有機配位子とが交互に配位結合されている、製造方法。
The group represented by these is shown. Y represents an aromatic hydrocarbon ring or a heteroaromatic ring. ]
And a metal ion and the organic ligand are alternately coordinate-bonded to each other.
 項19.項5~17のいずれかに記載の単孔性又は多孔性配位高分子からなる物質の吸着及び/又は分離材料。 Item 19. Item 18. A material for adsorbing and / or separating a substance comprising a monoporous or porous coordination polymer according to any one of Items 5 to 17.
 項20.ガス及び/又はイオンの吸着材料、並びにガス及び/又はイオンの分離材料よりなる群から選ばれる少なくとも1種である、項19に記載の物質の吸着及び/又は分離材料。 Item 20. Item 20. The material for adsorbing and / or separating a substance according to Item 19, which is at least one member selected from the group consisting of a gas and / or ion adsorbing material and a gas and / or ion separating material.
 項21.項5~17のいずれかに記載の単孔性又は多孔性配位高分子、又は項19若しくは20に記載の物質の吸着及び/又は分離材料を含有する、物質分離膜。 Item 21. Item 18. A substance separation membrane comprising the monoporous or porous coordination polymer according to any one of Items 5 to 17, or the substance adsorption and / or separation material according to Item 19 or 20.
 項22.ガス及び/又はイオン分離膜である、項21に記載の物質分離膜。 Item 22. Item 22. The substance separation membrane according to Item 21, which is a gas and / or ion separation membrane.
 本発明の配位子化合物を使用することで、単孔性又は多孔性配位高分子中に高分子鎖を容易に導入することができる。この配位子化合物は、文献未記載の新規化合物である。 By using the ligand compound of the present invention, a polymer chain can be easily introduced into a monoporous or porous coordination polymer. This ligand compound is a novel compound not described in any literature.
 このようにして製造した本発明の単孔性又は多孔性配位高分子は、元々の単孔性又は多孔性配位化合物が有する特性は維持しつつ、高分子由来の高い溶媒可溶性及び成形加工性(特に熱成形加工性)が付与されているため、既存の量産型成形プロセスへの適用可能性を広げることが可能である。 The monoporous or porous coordination polymer of the present invention thus produced has high solvent solubility and molding processing derived from the polymer while maintaining the properties of the original monoporous or porous coordination compound. Therefore, it is possible to expand the applicability to existing mass production molding processes.
実施例6で得た物質分離膜の外観を示す写真である。6 is a photograph showing the appearance of a substance separation membrane obtained in Example 6. 合成例1~3で得た化合物のGPC測定の結果を示すグラフである。4 is a graph showing the results of GPC measurement of the compounds obtained in Synthesis Examples 1 to 3. 実施例1~5及び合成例4~8で得た化合物のGPC測定の結果を示すグラフである。3 is a graph showing the results of GPC measurement of the compounds obtained in Examples 1 to 5 and Synthesis Examples 4 to 8. 合成例4~8で得た化合物のGPC測定及び反応率の結果を示すグラフである。6 is a graph showing the results of GPC measurement and reaction rate of the compounds obtained in Synthesis Examples 4 to 8. 実施例7及び8で得た物質分離膜の表面構造を示す電子顕微鏡写真である(実施例7:透過型電子顕微鏡(TEM)、実施例8:原子間力顕微鏡(AFM))。It is an electron micrograph which shows the surface structure of the substance separation membrane obtained in Example 7 and 8 (Example 7: Transmission electron microscope (TEM), Example 8: Atomic force microscope (AFM)). 合成例2で得たMOP1の窒素及び二酸化炭素の吸脱着試験の結果を示すグラフである。6 is a graph showing the results of nitrogen and carbon dioxide adsorption / desorption tests of MOP1 obtained in Synthesis Example 2. FIG. 実施例9~10及び合成例8~9で得た化合物のGPC測定の結果を示すグラフである。6 is a graph showing the results of GPC measurement of the compounds obtained in Examples 9 to 10 and Synthesis Examples 8 to 9. 合成例2、実施例1及び実施例8で得た化合物の直径の測定結果を示すグラフである。4 is a graph showing the measurement results of the diameters of the compounds obtained in Synthesis Example 2, Example 1 and Example 8. 実施例11~15及び合成例18~23で得た化合物のGPC測定の結果を示すグラフである。3 is a graph showing the results of GPC measurement of the compounds obtained in Examples 11 to 15 and Synthesis Examples 18 to 23. (a)は重合反応時間とモノマー転化率のプロット、(b)はモノマー転化率とMOP数平均分子量のプロット(●:数平均分子量、■:分子量分散(Mw/Mn))、(c)はモノマー転化率と分解した有機配位子の数平均分子量のプロット(●:数平均分子量、■:分子量分散(Mw/Mn))を示すグラフである。(A) is a plot of polymerization reaction time and monomer conversion, (b) is a plot of monomer conversion and MOP number average molecular weight (●: number average molecular weight, ■: molecular weight dispersion (Mw / Mn)), (c) is 2 is a graph showing a plot of monomer conversion and number average molecular weight of decomposed organic ligand (●: number average molecular weight, ■: molecular weight dispersion (Mw / Mn)).
 1.配位子化合物
 本発明の配位子化合物は、一般式(1):
1. Ligand Compound The ligand compound of the present invention has the general formula (1):
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
[式中、mは1~3の整数を示す。X1は硫黄原子、酸素原子、窒素原子、炭素原子、置換されていてもよい芳香族炭化水素基又は置換されていてもよい複素芳香族基を示す。X2は単結合又は2価の連結基を示す。R1は、水素原子、又は置換されていてもよいアルキル基を示す。mが2以上の場合、R1は同一でも異なっていてもよい。R2[Wherein, m represents an integer of 1 to 3. X 1 represents a sulfur atom, an oxygen atom, a nitrogen atom, a carbon atom, an optionally substituted aromatic hydrocarbon group or an optionally substituted heteroaromatic group. X 2 represents a single bond or a divalent linking group. R 1 represents a hydrogen atom or an optionally substituted alkyl group. When m is 2 or more, R 1 may be the same or different. R 2 is
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
で表される基を示す。Yは芳香族炭化水素環又は複素芳香環を示す。]
で表される化合物(以下、「配位子化合物(1)」と言うこともある)である。
The group represented by these is shown. Y represents an aromatic hydrocarbon ring or a heteroaromatic ring. ]
(Hereinafter also referred to as “ligand compound (1)”).
 配位子化合物(1)は、後述の製造方法により、金属イオン及びそのクラスターを連結して三次元的なフレームワーク構造をもった単孔性又は多孔性配位高分子が得られる観点から、金属イオンと配位結合し得るカルボキシ基を複数(2個)有している。カルボキシ基が1個のみの場合は、三次元フレームワーク構造を構築し得ないため、単孔性又は多孔性配位高分子が得られない。 The ligand compound (1) is obtained from the viewpoint of obtaining a monoporous or porous coordination polymer having a three-dimensional framework structure by connecting metal ions and clusters thereof by the production method described later. It has a plurality (two) of carboxy groups capable of coordinating with metal ions. When there is only one carboxy group, a three-dimensional framework structure cannot be constructed, and a monoporous or porous coordination polymer cannot be obtained.
 また、配位子化合物(1)は、後述の製造方法で採用する可逆的付加開裂連鎖移動重合(RAFT重合)の開始点となり得るジチオエステル構造を有する。このような配位子化合物(1)を用いて単孔性又は多孔性配位高分子を製造した場合、高分子化合物由来のポリマー鎖(置換されていてもよいエチレン鎖)をMOP等の単孔性又は多孔性配位化合物を構成する有機配位子中に導入することが可能となり、高分子化合物が有する溶媒可溶性、成形加工性等をMOP等の単孔性又は多孔性配位化合物に付与することができる。 Further, the ligand compound (1) has a dithioester structure that can be the starting point of reversible addition-fragmentation chain transfer polymerization (RAFT polymerization) employed in the production method described later. When a monoporous or porous coordination polymer is produced using such a ligand compound (1), a polymer chain derived from the polymer compound (an ethylene chain which may be substituted) is converted to a single molecule such as MOP. It becomes possible to introduce into the organic ligand constituting the porous or porous coordination compound, and the solvent solubility, molding processability, etc. of the polymer compound can be changed to a monoporous or porous coordination compound such as MOP. Can be granted.
 一般式(1)において、X1で示される芳香族炭化水素基としては、例えば、ベンゼン環、ペンタレン環、インデン環、ナフタレン環、アントラセン環、テトラセン環、ペンタセン環、ピレン環、ペリレン環、トリフェニレン環、アズレン環、ヘプタレン環、ビフェニレン環、インダセン環、アセナフチレン環、フルオレン環、フェナレン環、フェナントレン環等の芳香族炭化水素環由来の基が挙げられる。これらの芳香族炭化水素環由来の基には、例えば、ハロゲン原子(フッ素原子、塩素原子、臭素原子等)、アルキル基(メチル基、エチル基、プロピル基等)等の置換基を0~4個(特に1~3個)程度有することもできる。 In the general formula (1), examples of the aromatic hydrocarbon group represented by X 1 include a benzene ring, a pentalene ring, an indene ring, a naphthalene ring, an anthracene ring, a tetracene ring, a pentacene ring, a pyrene ring, a perylene ring, and triphenylene. And groups derived from aromatic hydrocarbon rings such as a ring, an azulene ring, a heptalene ring, a biphenylene ring, an indacene ring, an acenaphthylene ring, a fluorene ring, a phenalene ring and a phenanthrene ring. These groups derived from aromatic hydrocarbon rings include, for example, 0 to 4 substituents such as halogen atoms (fluorine atoms, chlorine atoms, bromine atoms, etc.), alkyl groups (methyl groups, ethyl groups, propyl groups, etc.). It can also have about 1 (particularly 1 to 3).
 一般式(1)において、X1で示される複素芳香族基としては、例えば、フラン環、チオフェン環、ピロール環、シロール環、ボロール環、ホスホール環、オキサゾール環、チアゾール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、チエノチオフェン環、キノリン環等の複素芳香環由来の基が挙げられる。これらの複素芳香環由来の基には、例えば、ハロゲン原子(フッ素原子、塩素原子、臭素原子等)、アルキル基(メチル基、エチル基、プロピル基等)等の置換基を0~4個(特に1~3個)程度有することもできる。 In the general formula (1), examples of the heteroaromatic group represented by X 1 include a furan ring, a thiophene ring, a pyrrole ring, a silole ring, a borol ring, a phosphole ring, an oxazole ring, a thiazole ring, a pyridine ring, and a pyridazine ring. , Groups derived from heteroaromatic rings such as pyrimidine ring, pyrazine ring, thienothiophene ring and quinoline ring. In these heteroaromatic ring-derived groups, for example, 0 to 4 substituents such as halogen atoms (fluorine atoms, chlorine atoms, bromine atoms, etc.), alkyl groups (methyl groups, ethyl groups, propyl groups, etc.) ( In particular, it may have about 1 to 3).
 一般式(1)におけるX1としては、合成の容易さと、後述の製造方法において各種モノマーに対する良好なリビングラジカル重合反応性を与えるため、本発明の単孔性又は多孔性配位高分子に様々な特性を与えることができる観点から、硫黄原子、酸素原子、窒素原子、炭素原子、置換されていてもよい芳香族炭化水素基等が好ましく、硫黄原子がより好ましい。 X 1 in the general formula (1) is various in the monoporous or porous coordination polymer of the present invention in order to give easy synthesis and good living radical polymerization reactivity to various monomers in the production method described later. From the viewpoint of giving such characteristics, a sulfur atom, an oxygen atom, a nitrogen atom, a carbon atom, an optionally substituted aromatic hydrocarbon group, and the like are preferable, and a sulfur atom is more preferable.
 一般式(1)において、X2で示される2価の連結基としては、例えば、一般式(2): In the general formula (1), examples of the divalent linking group represented by X 2 include the general formula (2):
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
[式中、R3は水素原子、置換されていてもよいアルキル基、又は置換されていてもよいアリール基を示す。R4は水素原子、置換されていてもよいアルキル基、シアノ基、又は置換されていてもよいアリール基を示す。X3は単結合、置換されていてもよいアルキレン基、又は-R5-COO-(R5は置換されていてもよいアルキレン基を示す)で表される基を示す。]
で表される基等が挙げられる。
[Wherein, R 3 represents a hydrogen atom, an optionally substituted alkyl group, or an optionally substituted aryl group. R 4 represents a hydrogen atom, an optionally substituted alkyl group, a cyano group, or an optionally substituted aryl group. X 3 represents a single bond, an optionally substituted alkylene group, or a group represented by —R 5 —COO— (R 5 represents an optionally substituted alkylene group). ]
The group etc. which are represented by these are mentioned.
 一般式(2)において、R3で示されるアルキル基としては、例えば、メチル基等の炭素数1~6の非環式アルキル基等が挙げられる。これらアルキル基は、ハロゲン原子(フッ素原子、塩素原子、臭素原子等)等の置換基を0~5個(特に1~3個)程度有することもできる。 In the general formula (2), examples of the alkyl group represented by R 3 include acyclic alkyl groups having 1 to 6 carbon atoms such as a methyl group. These alkyl groups can also have about 0 to 5 (particularly 1 to 3) substituents such as halogen atoms (fluorine atom, chlorine atom, bromine atom, etc.).
 一般式(2)において、R3で示されるアリール基としては、例えば、フェニル基、ナフチル基等が挙げられる。これらアリール基は、ハロゲン原子(フッ素原子、塩素原子、臭素原子等)、上記アルキル基等の置換基を0~5個(特に1~3個)程度有することもできる。 In the general formula (2), examples of the aryl group represented by R 3 include a phenyl group and a naphthyl group. These aryl groups may have about 0 to 5 (especially 1 to 3) substituents such as halogen atoms (fluorine atoms, chlorine atoms, bromine atoms, etc.) and the above alkyl groups.
 一般式(2)におけるR3としては、合成の容易さと、後述の製造方法において各種モノマーに対する良好なリビングラジカル重合反応性を与える観点から、置換されていてもよいアルキル基が好ましく、置換されていてもよいメチル基がより好ましく、メチル基(非置換)がさらに好ましい。 R 3 in the general formula (2) is preferably an alkyl group which may be substituted, from the viewpoint of easy synthesis and good living radical polymerization reactivity for various monomers in the production method described later. The methyl group which may be sufficient is more preferable, and a methyl group (unsubstituted) is further more preferable.
 一般式(2)において、R4で示されるアルキル基としては、例えば、メチル基等の炭素数1~6の非環式アルキル基等が挙げられる。これらアルキル基は、ハロゲン原子(フッ素原子、塩素原子、臭素原子等)等の置換基を0~5個(特に1~3個)程度有することもできる。 In the general formula (2), examples of the alkyl group represented by R 4 include acyclic alkyl groups having 1 to 6 carbon atoms such as a methyl group. These alkyl groups can also have about 0 to 5 (particularly 1 to 3) substituents such as halogen atoms (fluorine atom, chlorine atom, bromine atom, etc.).
 一般式(2)において、R4で示されるアリール基としては、上記したものを採用できる。置換基の種類及び数も同様である。 In the general formula (2), as the aryl group represented by R 4 , those described above can be adopted. The kind and number of substituents are the same.
 一般式(2)におけるR4としては、合成の容易さと、後述の製造方法において各種モノマーに対する良好なリビングラジカル重合反応性を与える観点から、シアノ基又は置換されていてもよいアリール基が好ましく、シアノ基がより好ましい。 R 4 in the general formula (2) is preferably a cyano group or an optionally substituted aryl group from the viewpoint of ease of synthesis and good living radical polymerization reactivity for various monomers in the production method described below. A cyano group is more preferable.
 一般式(2)において、X3で示されるアルキレン基としては、例えば、メチレン基、エチレン基、エチリデン基、トリメチレン基、プロピレン基、プロピリデン基、テトラメチレン基、1-メチルトリメチレン基、2-メチルトリメチレン基、3-メチルトリメチレン基、1,1-ジメチルエチレン基、1,2-ジメチルエチレン基等の非環式アルキレン基(好ましくは炭素数1~6、特に炭素数1~4の非環式アルキレン基);シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロヘキシレン基等の環式アルキレン基(好ましくは炭素数3~10、特に炭素数3~8の環式アルキレン基)等が挙げられる。なお、非環式アルキレン基を採用する場合、直鎖非環式アルキレン基を採用することもでき、分岐鎖非環式アルキレン基を採用することもできる。これらアルキレン基は、ハロゲン原子(フッ素原子、塩素原子、臭素原子等)等の置換基を0~5個(特に1~3個)程度有することもできる。 In the general formula (2), examples of the alkylene group represented by X 3 include methylene group, ethylene group, ethylidene group, trimethylene group, propylene group, propylidene group, tetramethylene group, 1-methyltrimethylene group, 2- Acyclic alkylene group such as methyltrimethylene group, 3-methyltrimethylene group, 1,1-dimethylethylene group, 1,2-dimethylethylene group (preferably having 1 to 6 carbon atoms, particularly having 1 to 4 carbon atoms) Acyclic alkylene group); cyclic alkylene group such as cyclopropylene group, cyclobutylene group, cyclopentylene group, cyclohexylene group, etc. (preferably a cyclic alkylene group having 3 to 10 carbon atoms, especially 3 to 8 carbon atoms) Etc. In addition, when employ | adopting an acyclic alkylene group, a linear acyclic alkylene group can also be employ | adopted and a branched acyclic alkylene group can also be employ | adopted. These alkylene groups can also have about 0 to 5 (particularly 1 to 3) substituents such as halogen atoms (fluorine atoms, chlorine atoms, bromine atoms, etc.).
 また、一般式(2)におけるX3は、これらアルキレン基が連結したエステル基(上記-R5-COO-(R5は上記置換されていてもよいアルキレン基を示す)で表される基)とすることもでき、例えば、-CH2COO-基、-CH2CH2COO-基、-CH(CH3)COO-基、-CH2CH2CH2COO-基、-CH(CH3)CH2COO-基、-CH(CH2CH3)COO-基、-CH2CH2CH2CH2COO-基、-CH(CH3)CH2CH2COO-基、-CH2CH(CH3)CH2COO-基、-CH2 CH2CH(CH3)COO-基、-CH(CH3)2CH2COO-基、-CH(CH3)CH(CH3)CH2COO-基、-CH2CH2CH2CH2CH2COO-基等が挙げられる。 X 3 in the general formula (2) is an ester group in which these alkylene groups are linked (the group represented by the above -R 5 -COO- (R 5 represents an optionally substituted alkylene group)). For example, —CH 2 COO— group, —CH 2 CH 2 COO— group, —CH (CH 3 ) COO— group, —CH 2 CH 2 CH 2 COO— group, —CH (CH 3 ) CH 2 COO— group, —CH (CH 2 CH 3 ) COO— group, —CH 2 CH 2 CH 2 CH 2 COO— group, —CH (CH 3 ) CH 2 CH 2 COO— group, —CH 2 CH (CH 3 ) CH 2 COO— group, —CH 2 CH 2 CH (CH 3 ) COO— group, —CH (CH 3 ) 2 CH 2 COO— group, —CH (CH 3 ) CH (CH 3 ) CH 2 COO— group, —CH 2 CH 2 CH 2 CH 2 CH 2 COO— group and the like can be mentioned.
 一般式(2)におけるX3としては、合成の容易さの観点から、アルキレン基が連結したエステル基(上記-R5-COO-(R5は上記置換されていてもよいアルキレン基を示す)で表される基)が好ましい。 X 3 in the general formula (2) is an ester group in which an alkylene group is linked from the viewpoint of ease of synthesis (the above -R 5 -COO- (wherein R 5 represents an optionally substituted alkylene group)). Are preferred.
 一般式(1)において、R1で示されるアルキル基としては、特に制限はなく、直鎖アルキル基及び分岐鎖アルキル基のいずれも採用し得るが、MOP等の単孔性又は多孔性配位化合物に、主に非極性溶媒中への溶媒溶解性をさらに向上させる観点から直鎖アルキル基が好ましい。このようなアルキル基の炭素数は、MOP等の単孔性又は多孔性配位化合物に、主に非極性溶媒中への溶媒溶解性をさらに向上させる観点から、1~100が好ましく、5~20がより好ましく、8~16がさらに好ましい。このようなアルキル基としては、具体的には、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基等が挙げられる。これらアルキル基は、ハロゲン原子(フッ素原子、塩素原子、臭素原子等)等の置換基を0~10個(特に1~5個)程度有することもできる。なお、一般式(1)において、R1の数であるmが2以上である場合、R1は同一でも異なっていてもよい。 In the general formula (1), the alkyl group represented by R 1 is not particularly limited, and any of a straight chain alkyl group and a branched chain alkyl group may be employed. From the viewpoint of further improving the solvent solubility mainly in a nonpolar solvent, a linear alkyl group is preferable for the compound. The number of carbon atoms of such an alkyl group is preferably 1 to 100 from the viewpoint of further improving the solubility of the monoporous or porous coordination compound such as MOP mainly in a nonpolar solvent. 20 is more preferable, and 8 to 16 is more preferable. Specific examples of such an alkyl group include a decyl group, an undecyl group, a dodecyl group, a tridecyl group, and a tetradecyl group. These alkyl groups can also have about 0 to 10 (especially 1 to 5) substituents such as halogen atoms (fluorine atoms, chlorine atoms, bromine atoms, etc.). In the general formula (1), when m which is the number of R 1 is 2 or more, R 1 may be the same or different.
 一般式(1)におけるR1としては、合成の容易さと、後述の製造方法において各種モノマーに対する良好なリビングラジカル重合反応性を与える観点から、置換されていてもよいアルキル基が好ましく、非置換アルキル基がより好ましい。 R 1 in the general formula (1) is preferably an alkyl group which may be substituted from the viewpoint of ease of synthesis and good living radical polymerization reactivity with respect to various monomers in the production method described later. Groups are more preferred.
 一般式(1)において、R1の数であるmは、X1の種類、価数等によって決定される数であり、1~3の整数、好ましくは1又は2である。 In the general formula (1), m, which is the number of R 1 , is a number determined by the type of X 1 , valence, etc., and is an integer of 1 to 3, preferably 1 or 2.
 一般式(1)において、R2はジチオエステル構造を示し、 In the general formula (1), R 2 represents a dithioester structure,
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
で表される基を示す。 The group represented by these is shown.
 このような構造を有することにより、後述の製造方法において、可逆的付加開裂連鎖移動重合(RAFT重合)の開始点となり得る。このようなR2としては、合成の容易さと、後述の製造方法において各種モノマーに対する良好なリビングラジカル重合反応性を与える観点から、 By having such a structure, it can be the starting point of reversible addition-fragmentation chain transfer polymerization (RAFT polymerization) in the production method described later. As such R 2 , from the viewpoint of easy synthesis and good living radical polymerization reactivity for various monomers in the production method described below,
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
で表される基が好ましい。 The group represented by these is preferable.
 本発明の配位子化合物を用いて、有機金属多面体(単孔性配位高分子)を製造する場合には、前記配位子化合物(1)と、後述の金属イオンとが交互に配位結合を構成することにより内部に微小孔を有する球状の高分子化合物を形成するために、2個のY-COO結合同士のなす角度は180°未満であることが好ましい。なお、前記配位子化合物(1)において、2個のY-COO結合同士のなす角度を180°未満とすれば、この2個のY-COO結合同士のなす角度を利用して、球状の単孔性又は多孔性配位高分子を製造することができる。この球状の化合物として、内部に微小孔を有している有機金属多面体(単孔性配位高分子)を製造することができる。 In the case of producing an organometallic polyhedron (monoporous coordination polymer) using the ligand compound of the present invention, the ligand compound (1) and a metal ion described later are coordinated alternately. In order to form a spherical polymer compound having micropores inside by forming a bond, the angle formed by two Y—COO bonds is preferably less than 180 °. In the ligand compound (1), if the angle between the two Y—COO bonds is less than 180 °, the angle between the two Y—COO bonds can be used, Spherical monoporous or porous coordination polymers can be produced. As this spherical compound, an organometallic polyhedron (monoporous coordination polymer) having micropores inside can be produced.
 このような条件を満たすYとしては、ヘテロ原子を有していてもよい芳香族炭化水素環が好ましく、ベンゼン環、ナフタレン環、ピリジン環、ピロール環、チオフェン環等、又はこれらの環に1個又は2個以上のベンゼン環が縮合した環等が挙げられ、これらの環とCOO基との結合中に、一般式(6): As Y satisfying such conditions, an aromatic hydrocarbon ring which may have a hetero atom is preferred, and a benzene ring, naphthalene ring, pyridine ring, pyrrole ring, thiophene ring, etc., or one in these rings or two or more benzene rings include condensed rings, etc. these rings and COO - in the binding of the group, the general formula (6):
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
[式中、R8は同一又は異なって、炭素原子又は窒素原子を示す。R9は置換されていてもよい2価の芳香族炭化水素基を示す。kは0~2の整数を示す。]
で表される基が含まれていてもよい。
[Wherein R 8 is the same or different and represents a carbon atom or a nitrogen atom. R 9 represents a divalent aromatic hydrocarbon group which may be substituted. k represents an integer of 0-2. ]
The group represented by may be included.
 一般式(6)において、R9で示される2価の芳香族炭化水素基としては、上記したものを採用できる。置換基の種類及び数も同様である。一般式(6)において、kは0~2の整数が好ましく、0又は1がより好ましい。 In the general formula (6), as the divalent aromatic hydrocarbon group represented by R 9 , those described above can be adopted. The kind and number of substituents are the same. In general formula (6), k is preferably an integer of 0 to 2, more preferably 0 or 1.
 なかでも、Yとしては、ベンゼン環、ナフタレン環、ピリジン環、ピロール環、チオフェン環等、又はこれらの環に1個又は2個以上のベンゼン環が縮合した環が好ましく、ベンゼン環、ナフタレン環、ピリジン環、ピロール環、チオフェン環等がより好ましく、ベンゼン環がさらに好ましい。 Among them, Y is preferably a benzene ring, a naphthalene ring, a pyridine ring, a pyrrole ring, a thiophene ring, or the like, or a ring in which one or two or more benzene rings are condensed to these rings, a benzene ring, a naphthalene ring, A pyridine ring, a pyrrole ring, a thiophene ring and the like are more preferable, and a benzene ring is more preferable.
 このようなYとしては、例えば、 Such Y is, for example,
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
等が挙げられる。 Etc.
 このような配位子化合物(1)は、後述の製造方法により、金属イオンと配位させる際の合成条件(温度、濃度、混合比等)を調整することで多孔性の配位高分子を与え得る。特に、ジャングルジム状の三次元フレームワーク構造を有する多孔性の配位高分子を製造することも可能であり、内部に多数の化合物を閉じ込めることも可能である。 Such a ligand compound (1) can be obtained by adjusting the synthesis conditions (temperature, concentration, mixing ratio, etc.) for coordination with metal ions by the production method described later. Can give. In particular, it is possible to produce a porous coordination polymer having a jungle gym-like three-dimensional framework structure, and it is also possible to confine a large number of compounds inside.
 このような条件を満たす配位子化合物(1)としては、例えば、 Examples of ligand compounds (1) that satisfy these conditions include:
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
等が挙げられ、後述の製造方法において各種モノマーに対する良好なリビングラジカル重合反応性を与える観点から、 From the viewpoint of giving good living radical polymerization reactivity to various monomers in the production method described below,
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
等が好ましい。 Etc. are preferred.
 2.単孔性又は多孔性配位高分子
 本発明の単孔性又は多孔性配位高分子は、2価以上の金属イオンと、一般式(3):
2. Monoporous or Porous Coordination Polymer The monoporous or porous coordination polymer of the present invention comprises a divalent or higher valent metal ion and a general formula (3):
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
[式中、mは1~3の整数を示す。X1は硫黄原子、酸素原子、窒素原子、炭素原子、置換されていてもよい芳香族炭化水素基又は置換されていてもよい複素芳香族基を示す。X2は単結合又は2価の連結基を示す。R1は、水素原子、又は置換されていてもよいアルキル基を示す。mが2以上の場合、R1は同一でも異なっていてもよい。R2[Wherein, m represents an integer of 1 to 3. X 1 represents a sulfur atom, an oxygen atom, a nitrogen atom, a carbon atom, an optionally substituted aromatic hydrocarbon group or an optionally substituted heteroaromatic group. X 2 represents a single bond or a divalent linking group. R 1 represents a hydrogen atom or an optionally substituted alkyl group. When m is 2 or more, R 1 may be the same or different. R 2 is
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
で表される基を示す。Yは芳香族炭化水素環又は複素芳香環を示す。Zは同一又は異なって、置換されていてもよいエチレン鎖を示す。nは5~20000の整数を示す。]
で表される有機配位子(以下、「有機配位子(3)」と言うこともある)とを含有し、且つ、該金属イオンと該有機配位子とが交互に配位結合されている。
The group represented by these is shown. Y represents an aromatic hydrocarbon ring or a heteroaromatic ring. Z is the same or different and represents an optionally substituted ethylene chain. n represents an integer of 5 to 20000. ]
And the metal ion and the organic ligand are alternately coordinated and bonded to each other (hereinafter also referred to as “organic ligand (3)”). ing.
 本発明の単孔性又は多孔性配位高分子を構成する2価以上の金属イオンとしては、遷移金属イオンを好ましく採用することができるが、有機配位子(3)と配位結合することにより単孔性又は多孔性配位高分子を構成しやすい観点から、2価の金属イオン(特に2価の遷移金属イオン)が好ましい。具体的には、銅イオン、亜鉛イオン、コバルトイオン、カドミウムイオン、ロジウムイオン、カルシウムイオン、マグネシウムイオン、マンガンイオン、ニッケルイオン、パラジウムイオン、ランタンイオン、ジルコニウムイオン等が好ましく、銅イオン、亜鉛イオンがより好ましい。金属イオンは、有機配位子(3)と配位結合することにより単孔性又は多孔性配位高分子を構成しやすい観点から単独で用いることが好ましいが、2種以上を組合せて用いることもできる。 As the divalent or higher-valent metal ion constituting the monoporous or porous coordination polymer of the present invention, a transition metal ion can be preferably used, but it must be coordinated with the organic ligand (3). From the viewpoint of easily constituting a monoporous or porous coordination polymer, a divalent metal ion (particularly a divalent transition metal ion) is preferable. Specifically, copper ion, zinc ion, cobalt ion, cadmium ion, rhodium ion, calcium ion, magnesium ion, manganese ion, nickel ion, palladium ion, lanthanum ion, zirconium ion, etc. are preferable, and copper ion and zinc ion are preferred. More preferred. The metal ion is preferably used alone from the viewpoint of easy formation of a monoporous or porous coordination polymer by coordination bond with the organic ligand (3), but it should be used in combination of two or more. You can also.
 本発明の単孔性又は多孔性配位高分子は、有機配位子(3)を含有している。 The monoporous or porous coordination polymer of the present invention contains an organic ligand (3).
 有機配位子(3)は、金属イオン及びそのクラスターを連結して三次元的なフレームワーク構造をもった単孔性又は多孔性配位高分子が得られる観点から、金属イオンと配位結合し得るカルボキシ基を複数(2個)有している。カルボキシ基が1個のみの場合は、三次元フレームワーク構造を構築し得ないため、本発明の単孔性又は多孔性配位高分子が得られない。 The organic ligand (3) is coordinated with the metal ion from the viewpoint of obtaining a monoporous or porous coordination polymer having a three-dimensional framework structure by linking the metal ion and its cluster. It has a plurality (two) of carboxy groups. When there is only one carboxy group, a three-dimensional framework structure cannot be constructed, and thus the monoporous or porous coordination polymer of the present invention cannot be obtained.
 また、有機配位子(3)は、後述の製造方法で採用する可逆的付加開裂連鎖移動重合(RAFT重合)の開始点となり得るジチオエステル構造を有する。このような有機配位子(3)を採用することで、高分子化合物由来のポリマー鎖(置換されていてもよいエチレン鎖)をMOP等の単孔性又は多孔性配位化合物を構成する有機配位子中に導入することが可能となり、高分子化合物が有する溶媒可溶性、成形加工性等をMOP等の単孔性又は多孔性配位化合物に付与することができる。 The organic ligand (3) has a dithioester structure that can be the starting point of reversible addition-fragmentation chain transfer polymerization (RAFT polymerization) employed in the production method described later. By adopting such an organic ligand (3), a polymer chain derived from a polymer compound (an ethylene chain which may be substituted) constitutes a monoporous or porous coordination compound such as MOP. It can be introduced into the ligand, and the solvent solubility and molding processability of the polymer compound can be imparted to a monoporous or porous coordination compound such as MOP.
 一般式(3)において、X1で示される芳香族炭化水素基及び複素芳香族基としては、上記したものを採用できる。置換基の種類及び数も同様である。本発明の単孔性又は多孔性配位高分子においては、有機配位子(3)を多数有しているが、各々の有機配位子(3)を揃えることも可能である。具体的には、本発明の単孔性又は多孔性配位高分子が有する全ての有機配位子(3)におけるX1を同一とすることも可能である。 In the general formula (3), as the aromatic hydrocarbon group and heteroaromatic group represented by X 1 , those described above can be adopted. The kind and number of substituents are the same. The monoporous or porous coordination polymer of the present invention has a large number of organic ligands (3), but it is also possible to arrange each organic ligand (3). Specifically, X 1 in all the organic ligands (3) possessed by the monoporous or porous coordination polymer of the present invention can be the same.
 一般式(3)において、X2で示される2価の連結基としては、上記したものを採用できる。置換基の種類及び数も同様である。本発明の単孔性又は多孔性配位高分子においては、有機配位子(3)を多数有しているが、各々の有機配位子(3)を揃えることも可能である。具体的には、本発明の単孔性又は多孔性配位高分子が有する全ての有機配位子(3)におけるX2を同一とすることも可能である。 In the general formula (3), as the divalent linking group represented by X 2 , those described above can be adopted. The kind and number of substituents are the same. The monoporous or porous coordination polymer of the present invention has a large number of organic ligands (3), but it is also possible to arrange each organic ligand (3). Specifically, X 2 in all organic ligands (3) possessed by the monoporous or porous coordination polymer of the present invention can be the same.
 一般式(3)において、R1で示されるアルキル基としては、上記したものを採用できる。置換基の種類及び数も同様である。本発明の単孔性又は多孔性配位高分子においては、有機配位子(3)を多数有しているが、各々の有機配位子(3)を揃えることも可能である。具体的には、本発明の単孔性又は多孔性配位高分子が有する全ての有機配位子(3)におけるR1を同一とすることも可能である。 In the general formula (3), as the alkyl group represented by R 1 , those described above can be adopted. The kind and number of substituents are the same. The monoporous or porous coordination polymer of the present invention has a large number of organic ligands (3), but it is also possible to arrange each organic ligand (3). Specifically, R 1 in all the organic ligands (3) possessed by the monoporous or porous coordination polymer of the present invention can be the same.
 R2の好ましい例としては、上記したものを採用できる。本発明の単孔性又は多孔性配位高分子においては、有機配位子(3)を多数有しているが、各々の有機配位子(3)を揃えることも可能である。具体的には、本発明の単孔性又は多孔性配位高分子が有する全ての有機配位子(3)におけるR2を同一とすることも可能である。 As preferred examples of R 2 , those described above can be employed. The monoporous or porous coordination polymer of the present invention has a large number of organic ligands (3), but it is also possible to arrange each organic ligand (3). Specifically, R 2 in all the organic ligands (3) possessed by the monoporous or porous coordination polymer of the present invention can be the same.
 一般式(3)において、mとしては、上記したものを採用できる。本発明の単孔性又は多孔性配位高分子においては、有機配位子(3)を多数有しているが、各々の有機配位子(3)を揃えることも可能である。具体的には、本発明の単孔性又は多孔性配位高分子が有する全ての有機配位子(3)におけるmを同一とすることも可能である。 In the general formula (3), the above-mentioned thing can be adopted as m. The monoporous or porous coordination polymer of the present invention has a large number of organic ligands (3), but it is also possible to arrange each organic ligand (3). Specifically, m in all organic ligands (3) possessed by the monoporous or porous coordination polymer of the present invention can be the same.
 一般式(3)において、Yで示される芳香族炭化水素基及び複素芳香族基としては、上記したものを採用できる。置換基の種類及び数も同様である。本発明の単孔性又は多孔性配位高分子においては、有機配位子(3)を多数有しているが、各々の有機配位子(3)を揃えることも可能である。具体的には、本発明の単孔性又は多孔性配位高分子が有する全ての有機配位子(3)におけるYを同一とすることも可能である。 In the general formula (3), as the aromatic hydrocarbon group and heteroaromatic group represented by Y, those described above can be adopted. The kind and number of substituents are the same. The monoporous or porous coordination polymer of the present invention has a large number of organic ligands (3), but it is also possible to arrange each organic ligand (3). Specifically, Y in all organic ligands (3) possessed by the monoporous or porous coordination polymer of the present invention can be the same.
 一般式(3)において、Zは置換されていてもよいエチレン鎖であり、重合高分子のモノマー単位を意味する。より詳細には、この置換されていてもよいエチレン鎖(重合高分子のモノマー単位)は、後述の製造方法において、ポリマー鎖をRAFT重合によってMOP等の単孔性又は多孔性配位化合物に導入する際に用いられるモノマー化合物に由来する構成単位である。つまり、Zの種類によっては、種々様々な特性をMOP等の単孔性又は多孔性配位化合物に付与することができる。このようなZとしては、一般式(4): In the general formula (3), Z is an ethylene chain which may be substituted, and means a monomer unit of a polymerized polymer. More specifically, this optionally substituted ethylene chain (monomer unit of the polymerized polymer) is introduced into a monoporous or porous coordination compound such as MOP by RAFT polymerization in the production method described later. It is a structural unit derived from the monomer compound used in the process. That is, depending on the type of Z, various characteristics can be imparted to a monoporous or porous coordination compound such as MOP. As such Z, general formula (4):
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
[式中、R6は水素原子又は置換されていてもよいアルキル基を示す。R7は水酸基、置換されていてもよいカルボキシ基、置換されていてもよいアシルオキシ基、置換されていてもよいカルバモイル基、置換されていてもよいアリール基、又は置換されていてもよいヘテロアリール基を示す。]
で表される鎖が好ましい。
[Wherein R 6 represents a hydrogen atom or an optionally substituted alkyl group. R 7 is a hydroxyl group, an optionally substituted carboxy group, an optionally substituted acyloxy group, an optionally substituted carbamoyl group, an optionally substituted aryl group, or an optionally substituted heteroaryl Indicates a group. ]
The chain represented by is preferred.
 一般式(4)において、R6で示されるアルキル基としては、例えば、メチル基等の炭素数1~6の非環式アルキル基等が挙げられる。これらアルキル基は、ハロゲン原子(フッ素原子、塩素原子、臭素原子等)等の置換基を0~5個(特に1~3個)程度有することもできる。 In the general formula (4), examples of the alkyl group represented by R 6 include acyclic alkyl groups having 1 to 6 carbon atoms such as a methyl group. These alkyl groups can also have about 0 to 5 (particularly 1 to 3) substituents such as halogen atoms (fluorine atom, chlorine atom, bromine atom, etc.).
 一般式(4)において、R6としては、MOP等の単孔性又は多孔性配位化合物の特性(内部に微小孔を有する、MOPの場合は二酸化炭素を選択的に吸収する等)を維持しつつ、溶剤可溶性及び成形加工性(特に熱成形加工性)をより向上させる観点から、置換されていてもよいアルキル基が好ましく、非置換アルキル基がより好ましく、メチル基がさらに好ましい。 In general formula (4), R 6 maintains the characteristics of a monoporous or porous coordination compound such as MOP (having micropores inside, selectively absorbing carbon dioxide in the case of MOP, etc.) However, from the viewpoint of further improving solvent solubility and moldability (particularly thermoforming processability), an optionally substituted alkyl group is preferred, an unsubstituted alkyl group is more preferred, and a methyl group is more preferred.
 一般式(4)において、R7で示されるカルボキシ基は、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、n-ヘキシル基等のアルキル基;イソボルニル基;ポリエチレングリコール(PEG)残基等の置換基を0~5個(特に1~3個)程度有することもできる。 In the general formula (4), the carboxy group represented by R 7 is an alkyl group such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, or an n-hexyl group; an isobornyl group; a polyethylene glycol ( It can also have about 0 to 5 (especially 1 to 3) substituents such as (PEG) residues.
 一般式(4)において、R7で示されるアシルオキシ基としては、アセトキシ基、エタノイルオキシ基、プロピオニルオキシ基等が挙げられ、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、n-ヘキシル基等のアルキル基;イソボルニル基;ポリエチレングリコール(PEG)残基等の置換基を0~5個(特に1~3個)程度有することもできる。 In the general formula (4), examples of the acyloxy group represented by R 7 include an acetoxy group, an ethanoyloxy group, a propionyloxy group, and the like, such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group. And an alkyl group such as an n-hexyl group; an isobornyl group; and a substituent such as a polyethylene glycol (PEG) residue may have about 0 to 5 (particularly 1 to 3) substituents.
 一般式(4)において、R7で示されるカルバモイル基は、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、n-ヘキシル基等のアルキル基;イソボルニル基;ポリエチレングリコール(PEG)残基等の置換基を0~5個(特に1~3個)程度有することもできる。 In the general formula (4), the carbamoyl group represented by R 7 is an alkyl group such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, or an n-hexyl group; an isobornyl group; a polyethylene glycol ( It can also have about 0 to 5 (especially 1 to 3) substituents such as (PEG) residues.
 一般式(4)において、R7で示されるヘテロアリール基としては、ピリジル基、ピロリル基、チエニル基等が挙げられ、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、n-ヘキシル基等のアルキル基;イソボルニル基;ポリエチレングリコール(PEG)残基等の置換基を0~5個(特に1~3個)程度有することもできる。 In the general formula (4), examples of the heteroaryl group represented by R 7 include a pyridyl group, a pyrrolyl group, a thienyl group, and the like. A methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, An alkyl group such as an n-hexyl group; an isobornyl group; and 0 to 5 (particularly 1 to 3) substituents such as a polyethylene glycol (PEG) residue may be included.
 一般式(4)において、R7で示されるアリール基としては、上記したものを採用できる。置換基の種類及び数も同様である。 In the general formula (4), as the aryl group represented by R 7 , those described above can be adopted. The kind and number of substituents are the same.
 一般式(4)において、R7としては、MOP等の単孔性又は多孔性配位化合物の特性(内部に微小孔を有する、MOPの場合は二酸化炭素を選択的に吸収する等)を維持しつつ、溶剤可溶性及び成形加工性(特に熱成形加工性)をより向上させる観点から、置換されていてもよいカルボキシ基又は置換されていてもよいアリール基が好ましく、アルキル基で置換されたカルボキシ基又は非置換アリール基がより好ましく、カルボニルメトキシ基又はフェニル基がさらに好ましい。 In the general formula (4), R 7 maintains the characteristics of a monoporous or porous coordination compound such as MOP (having micropores inside, selectively absorbing carbon dioxide in the case of MOP). However, from the viewpoint of further improving solvent solubility and moldability (particularly thermoforming processability), an optionally substituted carboxy group or an optionally substituted aryl group is preferred, and the carboxy substituted with an alkyl group is preferred. A group or an unsubstituted aryl group is more preferable, and a carbonylmethoxy group or a phenyl group is more preferable.
 このような条件を満たすZとしては、例えば、メタクリル酸若しくはその誘導体残基(メタクリル酸メチル残基、メタクリル酸n-ブチル残基、メタクリル酸tert-ブチル残基、メタクリル酸ヘキシル残基、メタクリル酸イソボルニル残基、メタクリル酸残基、メタクリル酸メトキシポリエチレングリコール(PEG)残基)、アクリル酸若しくはその誘導体残基(アクリル酸メチル残基、アクリル酸n-ブチル残基、アクリル酸tert-ブチル残基、アクリル酸ヘキシル残基、アクリル酸イソボルニル残基、アクリル酸残基、アクリル酸メトキシポリエチレングリコール(PEG)残基、アクリルアミド残基、N-イソプロピルアクリルアミド残基)、スチレン若しくはその誘導体残基(スチレン残基、ペンタフルオロスチレン残基)、4-ビニルピリジン残基、酢酸ビニル残基、ビニルアルコール残基等のように、ポリメタクリル酸メチル樹脂、ポリアクリル酸樹脂、ポリスチレン樹脂、ポリアクリルアミド樹脂、ポリビニルアルコール樹脂等の高分子化合物由来の基を導入すれば、MOP等の単孔性又は多孔性配位化合物の特性(内部に微小孔を有する、MOPの場合は二酸化炭素を選択的に吸収する等)を維持しつつ、溶剤可溶性及び成形加工性(特に熱成形加工性)を向上させることができる。この際、溶剤可溶性を向上させることができる溶剤としては、例えば、トルエン、クロロホルム、テトラヒドロフラン、N,N’-ジメチルホルムアミド、ジクロロメタン、ベンゼン、1,4-ジオキサン、四塩化炭素、アセトン、ジクロロベンゼン等が挙げられる。特に、トルエン、クロロホルム、ベンゼン等の極性の低い溶剤に溶解させることも可能である点で有用である。 Examples of Z satisfying such conditions include methacrylic acid or a derivative residue thereof (methyl methacrylate residue, n-butyl methacrylate residue, tert-butyl methacrylate residue, hexyl methacrylate residue, methacrylic acid residue). Isobornyl residue, methacrylic acid residue, methoxypolyethylene glycol (PEG) methacrylate), acrylic acid or its derivative residue (methyl acrylate residue, n-butyl acrylate residue, tert-butyl acrylate residue) Hexyl acrylate residue, isobornyl acrylate residue, acrylic acid residue, methoxypolyethylene glycol acrylate (PEG) residue, acrylamide residue, N-isopropylacrylamide residue), styrene or its derivative residue (styrene residue) Group, pentafluorostyrene residue), 4-vinylpyridine residue If a group derived from a polymer compound such as a polymethyl methacrylate resin, a polyacrylic acid resin, a polystyrene resin, a polyacrylamide resin, or a polyvinyl alcohol resin is introduced, such as a group, a vinyl acetate residue, a vinyl alcohol residue, Solvent solubility and moldability (especially heat) while maintaining the properties of monoporous or porous coordination compounds such as MOP (having micropores inside, selectively absorbing carbon dioxide in the case of MOP, etc.) Molding processability) can be improved. At this time, examples of the solvent that can improve the solvent solubility include toluene, chloroform, tetrahydrofuran, N, N′-dimethylformamide, dichloromethane, benzene, 1,4-dioxane, carbon tetrachloride, acetone, dichlorobenzene and the like. Is mentioned. In particular, it is useful in that it can be dissolved in a solvent having a low polarity such as toluene, chloroform, or benzene.
 また、メタクリル酸残基、アクリル酸残基、ビニルアルコール残基、アクリル酸メトキシPEG残基、4-ビニルピリジン残基等のように、ポリメタクリル酸、ポリメタクリル酸ナトリウム、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリビニルアルコール、ポリアクリル酸メトキシPEG、ポリ(4-ビニルピリジン)等の水溶性高分子化合物由来の基を導入すれば、MOP等の単孔性又は多孔性配位化合物の特性(内部に微小孔を有する、MOPの場合は二酸化炭素を選択的に吸収する等)を維持しつつ、水溶性を向上させることも可能である。 Also, polymethacrylic acid, polysodium methacrylate, polyacrylic acid, polyacrylic, such as methacrylic acid residue, acrylic acid residue, vinyl alcohol residue, methoxy acrylate acrylate residue, 4-vinylpyridine residue, etc. By introducing groups derived from water-soluble polymer compounds such as sodium acrylate, polyvinyl alcohol, methoxy PEG polyacrylate, and poly (4-vinylpyridine), the properties of monoporous or porous coordination compounds such as MOP (internal In the case of MOP, the water solubility can be improved while maintaining the selective absorption of carbon dioxide.
 これらのなかでも、合成の容易さと、MOP等の単孔性又は多孔性配位化合物に溶媒溶解性、溶液加工性、熱加工性をさらに向上させる観点から、Zとしては、メタクリル酸メチル残基又はスチレン残基として、 Among these, from the viewpoint of ease of synthesis and further improving solvent solubility, solution processability, and thermal processability in monoporous or porous coordination compounds such as MOP, Z is a methyl methacrylate residue. Or as a styrene residue,
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
を採用することが好ましい。 Is preferably adopted.
 このようなZとしては、単独の基を採用してもよいし、2種以上の基を採用してもよい。例えば、2種以上のZを有する有機配位子(3)を採用すれば、異なる2種以上の高分子化合物が有する特性をMOP等の単孔性又は多孔性配位化合物に付与することも可能である。 As such Z, a single group may be employed, or two or more groups may be employed. For example, if an organic ligand (3) having two or more kinds of Z is employed, the properties possessed by two or more different polymer compounds may be imparted to a monoporous or porous coordination compound such as MOP. Is possible.
 一般式(3)において、Zの繰り返し数であるnは、特に制限されず、MOP等の単孔性又は多孔性配位化合物が有する特性(内部に微小孔を有する、MOPの場合は二酸化炭素を選択的に吸収する等)を維持しつつ、イオン交換能を付与するとともに、溶媒溶解性をさらに向上させ、成形加工性(特に熱成形加工性)をさらに向上させる観点から、5~20000の整数が好ましく、10~500の整数がより好ましい。本発明の単孔性又は多孔性配位高分子においては、有機配位子(3)を多数有しているが、各々の有機配位子(3)の長さを揃えることも可能である。具体的には、本発明の単孔性又は多孔性配位高分子が有する全ての有機配位子(3)におけるnの分散を狭くすることが可能である。 In the general formula (3), n, which is the number of repeating Z, is not particularly limited, and is a characteristic of a monoporous or porous coordination compound such as MOP (in the case of MOP, carbon dioxide in the case of MOP having micropores inside) From the viewpoint of further improving the molding processability (especially thermoforming processability) and imparting ion exchange ability, further improving the solvent solubility, and the like. An integer is preferable, and an integer of 10 to 500 is more preferable. The monoporous or porous coordination polymer of the present invention has a large number of organic ligands (3), but it is also possible to align the length of each organic ligand (3). . Specifically, it is possible to narrow the dispersion of n in all the organic ligands (3) possessed by the monoporous or porous coordination polymer of the present invention.
 一方、このような有機配位子(3)は、金属イオンと配位させる際の合成条件(温度、濃度、混合比等)を調整することで多孔性の配位高分子を与え得る。特に、ジャングルジム状の三次元フレームワーク構造を有する多孔性の配位高分子とすることも可能であり、内部に多数の化合物を閉じ込めることも可能である。 On the other hand, such an organic ligand (3) can give a porous coordination polymer by adjusting the synthesis conditions (temperature, concentration, mixing ratio, etc.) when coordinated with a metal ion. In particular, a porous coordination polymer having a jungle gym-like three-dimensional framework structure can be used, and a large number of compounds can be confined inside.
 このような有機配位子(3)としては、特に制限されず、具体的には、一般式: Such an organic ligand (3) is not particularly limited, and specifically includes a general formula:
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
[式中、nは前記に同じである。]
で表される有機配位子等が好ましく、各種モノマーに対する良好なリビングラジカル重合反応性を与える観点から、
[Wherein n is the same as defined above. ]
From the viewpoint of giving good living radical polymerization reactivity to various monomers,
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
等がより好ましい。 Etc. are more preferable.
 本発明の単孔性又は多孔性配位高分子が有する金属イオンの数は、金属イオンの種類、2個のY-COO結合同士のなす角度、本発明の単孔性又は多孔性配位高分子の平均直径等によっても異なるが、4~128個が好ましく、12~48個がより好ましく、24個が特に好ましい。また、本発明の単孔性又は多孔性配位高分子が有する有機配位子(3)の数は、金属イオンの種類、2個のY-COO結合同士のなす角度、本発明の単孔性又は多孔性配位高分子の平均直径等によっても異なるが、4~128個が好ましく、12~48個がより好ましく、24個が特に好ましい。なお、金属イオンとして銅イオン(Cu2+)を採用し、有機配位子(3)としてYがベンゼン環である有機配位子を採用する場合には、銅イオン(Cu2+)及び有機配位子をそれぞれ24個ずつ有する有機金属多面体(単孔性配位高分子)が生成されやすい。 The number of metal ions possessed by the monoporous or porous coordination polymer of the present invention is the type of metal ion, the angle between two Y-COO - bonds, the monoporous or porous coordination of the present invention. Depending on the average diameter of the polymer, etc., it is preferably 4 to 128, more preferably 12 to 48, and particularly preferably 24. In addition, the number of organic ligands (3) possessed by the monoporous or porous coordination polymer of the present invention depends on the type of metal ion, the angle formed by two Y—COO bonds, Depending on the average diameter of the porous or porous coordination polymer, etc., it is preferably 4 to 128, more preferably 12 to 48, and particularly preferably 24. When copper ions (Cu 2+ ) are used as metal ions and organic ligands (Y) are organic ligands where Y is a benzene ring, copper ions (Cu 2+ ) and organic Organometallic polyhedra (monoporous coordination polymers) each having 24 ligands are easily generated.
 本発明の単孔性又は多孔性配位高分子においては、Y(芳香族炭化水素環又は複素芳香環)に結合した2個のCOO基は、2価以上の金属イオンに対して配位する基である。つまり、本発明の単孔性又は多孔性配位高分子は、前記2価以上の金属イオンと、前記有機配位子(3)とが、交互に配位結合された構成を有している。この際、本発明の単孔性又は多孔性配位高分子は、前記2価以上の金属イオン及び前記有機配位子(3)以外のイオン又は配位子を含有していてもよいが、合成及び解析の容易さと、MOP等の単孔性又は多孔性配位化合物を安定に存在させる観点から、本発明の単孔性又は多孔性配位高分子は、前記2価以上の金属イオン及び前記有機配位子(3)のみからなることが好ましい。 In single-hole or porous coordination polymer of the present invention, Y (aromatic hydrocarbon ring or heteroaromatic ring) two COO bound to - group, coordinated to two or more valent metal ions It is a group to do. That is, the monoporous or porous coordination polymer of the present invention has a configuration in which the divalent or higher-valent metal ion and the organic ligand (3) are alternately coordinated. . At this time, the monoporous or porous coordination polymer of the present invention may contain ions or ligands other than the divalent or higher metal ion and the organic ligand (3), From the viewpoint of ease of synthesis and analysis, and from the viewpoint of stably presenting a monoporous or porous coordination compound such as MOP, the monoporous or porous coordination polymer of the present invention comprises the above-described divalent or higher-valent metal ions and It is preferable to consist only of the organic ligand (3).
 なお、前記有機配位子(3)において、2個のY-COO結合同士のなす角度を180°未満とすれば、この2個のY-COO結合同士のなす角度を利用して、本発明の単孔性又は多孔性配位高分子を球状の化合物とすることができる。この球状の化合物は、内部に微小孔を有している有機金属多面体(単孔性配位高分子)とすることができる。 In the organic ligand (3), if the angle formed by the two Y—COO bonds is less than 180 °, the angle formed by the two Y—COO bonds is used. The monoporous or porous coordination polymer of the present invention can be a spherical compound. This spherical compound can be an organometallic polyhedron (monoporous coordination polymer) having micropores inside.
 本発明の単孔性又は多孔性配位高分子が有機金属多面体(単孔性配位高分子)である場合、その平均直径は、特に制限されないが、MOP等の単孔性又は多孔性配位化合物が有する特性(内部に微小孔を有する、MOPの場合は二酸化炭素を選択的に吸収する等)を維持しつつ、イオン交換能を付与するとともに、溶媒溶解性をさらに向上させる観点から、3~100 nmが好ましく、5~50 nmがより好ましい。 When the monoporous or porous coordination polymer of the present invention is an organometallic polyhedron (monoporous coordination polymer), the average diameter is not particularly limited, but it may be a monoporous or porous coordination such as MOP. From the viewpoint of imparting ion exchange capacity and further improving solvent solubility, while maintaining the properties of the coordination compound (having micropores inside, selectively absorbing carbon dioxide in the case of MOP, etc.) 3 to 100 nm is preferable, and 5 to 50 nm is more preferable.
 本発明の単孔性又は多孔性配位高分子が有機金属多面体(単孔性配位高分子)である場合、その内部に存在する孔の平均直径は、特に制限されないが、MOP等の単孔性又は多孔性配位化合物が有する特性(内部に微小孔を有する、MOPの場合は二酸化炭素を選択的に吸収する等)を維持する観点から、2 nm以下が好ましく、0.1~1.5 nmがより好ましい。 When the monoporous or porous coordination polymer of the present invention is an organometallic polyhedron (monoporous coordination polymer), the average diameter of the pores present in the interior is not particularly limited, but a single unit such as MOP can be used. From the viewpoint of maintaining the characteristics of the porous or porous coordination compound (having micropores inside, in the case of MOP, selectively absorbing carbon dioxide, etc.), it is preferably 2 nm or less, preferably 0.1 to 1.5 nm. More preferred.
 本発明の単孔性又は多孔性配位高分子が有機金属多面体(単孔性配位高分子)である場合、その平均分子量は、特に制限されないが、MOP等の単孔性又は多孔性配位化合物が有する特性(内部に微小孔を有する、MOPの場合は二酸化炭素を選択的に吸収する等)を維持しつつ、イオン交換能を付与するとともに、溶媒溶解性をさらに向上させる観点から、数平均分子量を5000~2000000とすることが好ましく、7000~200000とすることがより好ましい。 When the monoporous or porous coordination polymer of the present invention is an organometallic polyhedron (monoporous coordination polymer), the average molecular weight is not particularly limited, but it may be a monoporous or porous coordination such as MOP. From the viewpoint of imparting ion exchange capacity and further improving solvent solubility, while maintaining the properties of the coordination compound (having micropores inside, selectively absorbing carbon dioxide in the case of MOP, etc.) The number average molecular weight is preferably 5000-2000000, and more preferably 7000-200000.
 一方、前記有機配位子(3)において、金属イオンと配位させる際の合成条件(温度、濃度、混合比など)を調整することで多孔性の配位高分子を与え得る。特に、ジャングルジム状の三次元フレームワーク構造を有する多孔性の配位高分子とすることも可能であり、内部に多数の化合物を閉じ込めることも可能である。 On the other hand, in the organic ligand (3), a porous coordination polymer can be provided by adjusting the synthesis conditions (temperature, concentration, mixing ratio, etc.) for coordination with metal ions. In particular, a porous coordination polymer having a jungle gym-like three-dimensional framework structure can be used, and a large number of compounds can be confined inside.
 3.単孔性又は多孔性配位高分子の製造方法 本発明の単孔性又は多孔性配位高分子の製造方法は、特に制限されず、種々様々な方法で合成することができる。例えば、本発明の単孔性又は多孔性配位高分子として、有機金属多面体(単孔性配位高分子)を合成する場合は、例えば、反応式1: 3. Production Method of Monoporous or Porous Coordination Polymer The production method of the monoporous or porous coordination polymer of the present invention is not particularly limited, and can be synthesized by various methods. For example, when synthesizing an organometallic polyhedron (monoporous coordination polymer) as the monoporous or porous coordination polymer of the present invention, for example, reaction formula 1:
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
[式中、X1、X2、R1、R2、Y及びmは前記に同じである。]
にしたがって合成することができる。
[Wherein, X 1 , X 2 , R 1 , R 2 , Y and m are the same as defined above. ]
Can be synthesized according to
 (2-1)配位子化合物(1)
 上記反応式1における配位子化合物(1)は、上記した本発明の配位子化合物である。
(2-1) Ligand compound (1)
The ligand compound (1) in the above reaction formula 1 is the above-described ligand compound of the present invention.
 配位子化合物(1)は、例えば、X2が2価の連結基として上記一般式(2)で表される基であり、X3が-R5-COO-(R5は置換されていてもよいアルキレン基を示す)で表される基である場合には、有機溶媒中で、一般式(7): In the ligand compound (1), for example, X 2 is a group represented by the above general formula (2) as a divalent linking group, and X 3 is —R 5 —COO— (where R 5 is substituted). In an organic solvent, the general formula (7):
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
[式中、X1、X3、R1、R2、R3、R4及びmは前記に同じである。]
で表される化合物(以下、「化合物(7)」と言うこともある)と、一般式(8):
[Wherein, X 1 , X 3 , R 1 , R 2 , R 3 , R 4 and m are the same as defined above. ]
And a compound represented by the general formula (8):
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
[式中、Yは前記に同じである。]
で表される化合物(以下、「化合物(8)」と言うこともある)とを反応させることにより得ることができる。
[Wherein Y is the same as defined above. ]
It can obtain by making it react with the compound (henceforth "compound (8)") represented by these.
 この場合、化合物(7)は加水分解しやすく、酸や塩基に対して非常に弱いため、カルボキシ基を、シリル基(t-ブチルジメチルシリル基等)等の保護基で保護し、化合物(8)を加えた後、公知の方法(例えば、塩化オキサリルと触媒量のN,N’-ジメチルホルムアミドを添加し反応系中で酸クロリドを生成させる方法)により、好ましくは中性条件でエステル化を行うことが好ましい。 In this case, since the compound (7) is easily hydrolyzed and very weak against acids and bases, the carboxy group is protected with a protecting group such as a silyl group (such as t-butyldimethylsilyl group), and the compound (8 ), And then esterification, preferably under neutral conditions, by known methods (eg, adding oxalyl chloride and a catalytic amount of N, N′-dimethylformamide to produce acid chloride in the reaction system). Preferably it is done.
 上記化合物(7)の使用量は、特に制限はないが、収率等の観点から、化合物(8)1モルに対して、0.2~1モル(特に0.5~0.9モル)使用することが好ましい。 The amount of the compound (7) used is not particularly limited, but from the viewpoint of yield and the like, it is preferable to use 0.2 to 1 mol (particularly 0.5 to 0.9 mol) with respect to 1 mol of the compound (8).
 また、化合物(7)の保護及び脱保護を行う場合は、反応を促進させるために、ピリジン、アミン類(トリメチルアミン、N,N’-ジイソプロピルエチルアミン等)等の塩基を添加することもできる。 In addition, when protecting and deprotecting the compound (7), a base such as pyridine and amines (trimethylamine, N, N′-diisopropylethylamine, etc.) may be added to accelerate the reaction.
 本工程において使用され得る有機溶媒としては、公知のものを採用すればよく、本工程では、例えば、テトラヒドロフラン、ジオキサン等の環状エーテル;ジクロロメタン、クロロホルム等のハロゲン溶媒等が好ましい。これらの溶媒は厳密に脱水されていることが好ましい。また、反応条件は、反応が十分に進行する程度であればよく、例えば、-20~100℃、特に0~50℃において1~48時間、特に2~24時間とすることができる。反応終了後、必要に応じて通常の単離及び精製工程を施すこともできる。 As the organic solvent that can be used in this step, known ones may be employed. In this step, for example, cyclic ethers such as tetrahydrofuran and dioxane; halogen solvents such as dichloromethane and chloroform are preferable. These solvents are preferably strictly dehydrated. The reaction conditions may be such that the reaction proceeds sufficiently, and can be, for example, -20 to 100 ° C., particularly 0 to 50 ° C., 1 to 48 hours, particularly 2 to 24 hours. After completion of the reaction, usual isolation and purification steps can be performed as necessary.
 また、配位子化合物(1)は、例えば、R2The ligand compound (1) has, for example, R 2
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
で表される配位子化合物である場合には、有機溶媒中で、一般式(9): In the case of a ligand compound represented by general formula (9):
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
[式中、X1、R1及びmは前記に同じである。Mはカチオンを示す。]
で表される化合物(以下、「化合物(9)」と言うこともある)と、一般式(10):
[Wherein, X 1 , R 1 and m are the same as defined above. M represents a cation. ]
And a compound represented by the following general formula (10):
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
[式中、X2及びYは前記に同じである。X4はハロゲン原子を示す。]
で表される化合物(以下、「化合物(10)」と言うこともある)とを反応させることにより得ることができる。
[Wherein X 2 and Y are the same as defined above. X 4 represents a halogen atom. ]
It can obtain by making it react with the compound (henceforth "compound (10)") represented by these.
 一般式(9)において、Mで示されるカチオンとしては、アルカリ金属カチオンが好ましく、例えば、ナトリウムカチオン、カリウムカチオン等が挙げられる。 In the general formula (9), the cation represented by M is preferably an alkali metal cation, and examples thereof include a sodium cation and a potassium cation.
 一般式(9)において、X4で示されるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。 In the general formula (9), examples of the halogen atom represented by X 4 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
 この場合、化合物(10)は加水分解しやすく、酸や塩基に対して非常に弱いため、カルボキシ基を、シリル基(t-ブチルジメチルシリル基等)、tert-ブチル基等の保護基で保護し、化合物(9)を加えた後、公知の方法(例えば、トリフルオロ酢酸を添加し反応系中でエステルを生成させる方法)により、好ましくは中性条件で反応させることが好ましい。 In this case, since the compound (10) is easily hydrolyzed and very weak against acids and bases, the carboxy group is protected with a protecting group such as a silyl group (t-butyldimethylsilyl group, etc.) or a tert-butyl group. Then, after adding the compound (9), the reaction is preferably carried out under neutral conditions by a known method (for example, a method of adding trifluoroacetic acid to form an ester in the reaction system).
 上記化合物(9)の使用量は、特に制限はないが、収率等の観点から、化合物(10)1モルに対して、0.2~2モル(特に0.5~1.5モル)使用することが好ましい。 The amount of compound (9) used is not particularly limited, but from the viewpoint of yield and the like, it is preferable to use 0.2 to 2 mol (particularly 0.5 to 1.5 mol) with respect to 1 mol of compound (10).
 本工程において使用され得る有機溶媒としては、公知のものを採用すればよく、本工程では、例えば、テトラヒドロフラン、ジオキサン等の環状エーテル;ジクロロメタン、クロロホルム等のハロゲン溶媒;アセトン、メチルエチルケトン等のケトン等が好ましい。また、反応条件は、反応が十分に進行する程度であればよく、例えば、-20~100℃、特に0~50℃において1~48時間、特に2~24時間とすることができる。反応終了後、必要に応じて通常の単離及び精製工程を施すこともできる。 The organic solvent that can be used in this step may be a known one. In this step, for example, cyclic ethers such as tetrahydrofuran and dioxane; halogen solvents such as dichloromethane and chloroform; ketones such as acetone and methyl ethyl ketone; preferable. The reaction conditions may be such that the reaction proceeds sufficiently, and can be, for example, -20 to 100 ° C., particularly 0 to 50 ° C., 1 to 48 hours, particularly 2 to 24 hours. After completion of the reaction, usual isolation and purification steps can be performed as necessary.
 なお、R2R 2 is
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
で表される基である配位子化合物についても、上記の方法に準じて(原料等を所望のものに変えること等により)、製造することが可能である。 The ligand compound, which is a group represented by the formula (1), can also be produced according to the above method (by changing the raw materials or the like to a desired one).
 また、配位子化合物(1)は、例えば、X1-R2In addition, the ligand compound (1) has, for example, X 1 -R 2
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
で表される配位子化合物である場合には、有機溶媒中で、一般式(11): In the case of a ligand compound represented by general formula (11):
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
[式中、R1及びmは前記に同じである。]
で表される化合物(以下、「化合物(11)」と言うこともある)と、CS2と、上記化合物(10)とを反応させることにより得ることができる。
[Wherein, R 1 and m are the same as defined above. ]
Can be obtained by reacting CS 2 with the above compound (10) (hereinafter also referred to as “compound (11)”).
 この場合、化合物(10)は加水分解しやすく、酸や塩基に対して非常に弱いため、カルボキシ基を、シリル基(t-ブチルジメチルシリル基等)、tert-ブチル基等の保護基で保護し、化合物(11)及びCS2を加えた後、公知の方法(例えば、トリフルオロ酢酸を添加し反応系中でエステルを生成させる方法)により、好ましくは中性条件で反応させることが好ましい。 In this case, since the compound (10) is easily hydrolyzed and very weak against acids and bases, the carboxy group is protected with a protecting group such as a silyl group (t-butyldimethylsilyl group, etc.) or a tert-butyl group. Then, after adding the compound (11) and CS 2 , the reaction is preferably carried out under neutral conditions by a known method (for example, a method of adding trifluoroacetic acid to form an ester in the reaction system).
 上記化合物(11)及びCS2の使用量は、特に制限はないが、収率をより向上させ、副生成物の生成をより抑制する等の観点から、化合物(10)1モルに対して、化合物(11)を0.2~2モル(特に0.5~1.5モル)使用することが好ましく、CS2を0.2~2モル(特に0.5~1.5モル)使用することが好ましい。 The amount of the compound (11) and CS 2 used is not particularly limited, but from the viewpoint of further improving the yield and further suppressing the production of by-products, 1 mol of the compound (10), Compound (11) is preferably used in an amount of 0.2 to 2 mol (particularly 0.5 to 1.5 mol), and CS 2 is preferably used in an amount of 0.2 to 2 mol (particularly 0.5 to 1.5 mol).
 本工程において使用され得る有機溶媒としては、公知のものを採用すればよく、本工程では、例えば、テトラヒドロフラン、ジオキサン等の環状エーテル;ジクロロメタン、クロロホルム等のハロゲン溶媒;アセトン、メチルエチルケトン等のケトン等が好ましい。また、反応条件は、反応が十分に進行する程度であればよく、例えば、-20~100℃、特に0~50℃において1~48時間、特に2~24時間とすることができる。反応終了後、必要に応じて通常の単離及び精製工程を施すこともできる。 The organic solvent that can be used in this step may be a known one. In this step, for example, cyclic ethers such as tetrahydrofuran and dioxane; halogen solvents such as dichloromethane and chloroform; ketones such as acetone and methyl ethyl ketone; preferable. The reaction conditions may be such that the reaction proceeds sufficiently, and can be, for example, -20 to 100 ° C., particularly 0 to 50 ° C., 1 to 48 hours, particularly 2 to 24 hours. After completion of the reaction, usual isolation and purification steps can be performed as necessary.
 (2-2)MOP化反応
 本工程では、有機溶媒中で、上記反応式1における配位子化合物(1)と、金属化合物とを反応させることにより、有機金属多面体(MOP)を得ることができる。
(2-2) MOP-forming reaction In this step, an organometallic polyhedron (MOP) can be obtained by reacting the ligand compound (1) in the above reaction formula 1 with a metal compound in an organic solvent. it can.
 金属化合物としては、特に制限されないが、MOPを構成しやすい観点から、2価の金属塩が好ましい。このような2価の金属塩を構成する金属種も特に制限されないが、有機配位子(3)と配位結合することにより単孔性又は多孔性配位高分子を構成しやすい観点から、銅、亜鉛、コバルト、カドミウム、ロジウム、カルシウム、マグネシウム、マンガン、ニッケル、パラジウム、ランタン、ジルコニウム等の遷移金属が好ましく、銅又は亜鉛がより好ましい。また、これらの金属塩としては、酢酸塩、ギ酸塩等の有機酸塩;硫酸塩、硝酸塩、炭酸塩、塩酸塩、臭化水素酸塩等の無機酸塩を使用することができる。 The metal compound is not particularly limited, but a divalent metal salt is preferable from the viewpoint of easily configuring MOP. Although the metal species constituting such a divalent metal salt is not particularly limited, from the viewpoint of easily forming a monoporous or porous coordination polymer by coordination bond with the organic ligand (3), Transition metals such as copper, zinc, cobalt, cadmium, rhodium, calcium, magnesium, manganese, nickel, palladium, lanthanum, and zirconium are preferable, and copper or zinc is more preferable. In addition, as these metal salts, organic acid salts such as acetates and formates; inorganic acid salts such as sulfates, nitrates, carbonates, hydrochlorides, and hydrobromides can be used.
 このような金属化合物としては、具体的には、酢酸銅(II)、硝酸銅(II)、塩化銅(II)、硝酸亜鉛、硝酸コバルト(II)、酢酸カドミウム、塩化ニッケル(II)等を好適に使用することができる。なお、金属化合物は、水和物、溶媒和物とすることもできる。また、金属化合物は、合成及び構造解析が容易である点並びに安定なMOPを構成しやすい観点から単独で用いることが好ましいが、2種以上を組合せて用いることもできる。 Specific examples of such metal compounds include copper (II) acetate, copper (II) nitrate, copper (II) chloride, zinc nitrate, cobalt (II) nitrate, cadmium acetate, and nickel (II) chloride. It can be preferably used. The metal compound may be a hydrate or a solvate. In addition, the metal compound is preferably used alone from the viewpoint of easy synthesis and structural analysis and from the viewpoint of easy formation of a stable MOP, but may be used in combination of two or more.
 上記金属化合物の使用量は配位子化合物(1)1モルに対して0.5~2.0モル使用することが好ましい。 The amount of the metal compound used is preferably 0.5 to 2.0 moles per mole of the ligand compound (1).
 本工程において使用され得る有機溶媒としては、公知のものを採用すればよく、本工程では、例えば、ジメチルホルムアミド、ジエチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等のアミド系溶媒が好ましい。また、反応条件は、反応が十分に進行する程度であればよく、例えば、-50~100℃、特に10~40℃において10分~24時間、特に30分~12時間とすることができる。反応終了後、必要に応じてメタノール等のアルコール溶媒中で析出、沈殿させ精製してもよい。 As the organic solvent that can be used in this step, a known solvent may be employed. In this step, for example, amide solvents such as dimethylformamide, diethylformamide, dimethylacetamide, N-methylpyrrolidone are preferable. The reaction conditions are not limited as long as the reaction proceeds sufficiently, and can be, for example, −50 to 100 ° C., particularly 10 to 40 ° C., 10 minutes to 24 hours, particularly 30 minutes to 12 hours. After completion of the reaction, it may be purified by precipitation in an alcohol solvent such as methanol, if necessary.
 このようにして得られるMOPは、2価以上の金属イオンと、一般式(12): MOP obtained in this way is divalent or higher metal ion and general formula (12):
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
[式中、X1、X2、R1、R2、Y及びmは前記に同じである。]
で表される有機配位子(12)とを含有し、且つ、該金属イオンと該有機配位子とが交互に配位結合されているものである。つまり、ポリマー鎖が導入されていないMOPであり、それ以外の特性等については、上記「単孔性又は多孔性配位高分子」の記載を援用できる。
[Wherein, X 1 , X 2 , R 1 , R 2 , Y and m are the same as defined above. ]
And the metal ion and the organic ligand are alternately coordinated. That is, it is MOP in which a polymer chain is not introduced, and the description of the above “monoporous or porous coordination polymer” can be used for other characteristics.
 (2-3)ポリマー化反応(RAFT重合)
 本工程では、MOPに対して、要求特性に応じて所望のモノマー化合物を用いて、RAFT重合を引き起こすことにより、MOPに対してポリマー鎖を導入することができ、MOPが有する特性(内部に微小孔を有する、二酸化炭素を選択的に吸収する等)を維持しつつ、イオン交換能を付与するとともに、溶媒溶解性をさらに向上させ、成形加工性(特に熱成形加工性)をさらに向上させることができる。具体的には、有機溶媒中で、MOPと、モノマー化合物とを、ラジカル重合開始剤を用いてRAFT重合させることにより、本発明の化合物を得ることができる。
(2-3) Polymerization reaction (RAFT polymerization)
In this process, a polymer chain can be introduced into MOP by causing RAFT polymerization using a desired monomer compound according to the required characteristics for MOP. Maintaining pores, selectively absorbing carbon dioxide, etc., while providing ion exchange capability, further improving solvent solubility, and further improving molding processability (especially thermoforming processability) Can do. Specifically, the compound of the present invention can be obtained by RAFT polymerization of MOP and a monomer compound in an organic solvent using a radical polymerization initiator.
 モノマー化合物としては、特に制限されないが、MOPの特性(内部に微小孔を有する、二酸化炭素を選択的に吸収する等)を維持しつつ、溶剤可溶性及び成形加工性(特に熱成形加工性)をより向上させる観点からは、一般式(13): Although it does not restrict | limit especially as a monomer compound, Solvent solubility and moldability (especially thermoforming processability) are maintained, maintaining the characteristic of MOP (it has a micropore inside, selectively absorbs carbon dioxide etc.). From the viewpoint of further improvement, the general formula (13):
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
[式中、R6及びR7は前記に同じである。]
で表されるモノマー化合物が好ましく、具体的には、メタクリル酸若しくはその誘導体(メタクリル酸メチル、メタクリル酸n-ブチル、メタクリル酸tert-ブチル、メタクリル酸ヘキシル、メタクリル酸イソボルニル、メタクリル酸、メタクリル酸メトキシポリエチレングリコール(PEG))、アクリル酸若しくはその誘導体(アクリル酸メチル、アクリル酸n-ブチル、アクリル酸tert-ブチル、アクリル酸ヘキシル、アクリル酸イソボルニル、アクリル酸、アクリル酸メトキシポリエチレングリコール(PEG)、アクリルアミド、N-イソプロピルアクリルアミド)、スチレン若しくはその誘導体(スチレン、ペンタフルオロスチレン)、4-ビニルピリジン、酢酸ビニル、ビニルアルコール等が挙げられ、メタクリル酸メチル、アクリル酸メチル、アクリルアミド、スチレン、酢酸ビニル等が好ましい。なお、溶剤可溶性を向上させることができる溶剤としては、例えば、トルエン、クロロホルム、テトラヒドロフラン、N,N’-ジメチルホルムアミド、ジクロロメタン、ベンゼン、1,4-ジオキサン、四塩化炭素、アセトン、ジクロロベンゼン等が挙げられる。特に、トルエン、クロロホルム、ベンゼン等の極性の低い溶剤に溶解させることも可能である点で有用である。
[Wherein, R 6 and R 7 are the same as defined above. ]
In particular, methacrylic acid or a derivative thereof (methyl methacrylate, n-butyl methacrylate, tert-butyl methacrylate, hexyl methacrylate, isobornyl methacrylate, methacrylic acid, methoxy methacrylate) is preferable. Polyethylene glycol (PEG)), acrylic acid or its derivatives (methyl acrylate, n-butyl acrylate, tert-butyl acrylate, hexyl acrylate, isobornyl acrylate, acrylic acid, methoxypolyethylene glycol acrylate (PEG), acrylamide N-isopropylacrylamide), styrene or its derivatives (styrene, pentafluorostyrene), 4-vinylpyridine, vinyl acetate, vinyl alcohol, and the like. Methyl methacrylate, methyl acrylate Acrylamide, styrene, vinyl acetate and the like are preferable. Examples of solvents that can improve solvent solubility include toluene, chloroform, tetrahydrofuran, N, N′-dimethylformamide, dichloromethane, benzene, 1,4-dioxane, carbon tetrachloride, acetone, dichlorobenzene, and the like. Can be mentioned. In particular, it is useful in that it can be dissolved in a solvent having a low polarity such as toluene, chloroform, or benzene.
 また、メタクリル酸、アクリル酸、ビニルアルコール、アクリル酸メトキシポリエチレングリコール(PEG)、4-ビニルピリジン等のように、水溶性モノマー化合物を使用すれば、MOPの特性(内部に微小孔を有する、二酸化炭素を選択的に吸収する等)を維持しつつ、水溶性を向上させることも可能である。 In addition, if a water-soluble monomer compound such as methacrylic acid, acrylic acid, vinyl alcohol, methoxypolyethylene glycol acrylate (PEG), 4-vinylpyridine, etc. is used, the characteristics of MOP (with micropores inside, It is also possible to improve water solubility while maintaining (such as selectively absorbing carbon).
 なかでも、合成の容易さと、MOPに溶媒溶解性及び熱成形加工性を付与する観点から、メタクリル酸メチルが特に好ましい。 Of these, methyl methacrylate is particularly preferred from the viewpoint of ease of synthesis and imparting solvent solubility and thermoforming processability to MOP.
 これらのモノマー化合物は、単独で用いることもでき、2種以上を組合せて用いることもできる。特に、複数のモノマー化合物を用いれば、共重合体ポリマー鎖を導入し、異なる複数のポリマー由来の特性を付与することも可能である。 These monomer compounds can be used alone or in combination of two or more. In particular, if a plurality of monomer compounds are used, it is possible to introduce a copolymer polymer chain and impart characteristics derived from a plurality of different polymers.
 ラジカル重合開始剤としては、特に制限はなく、tert-ブチルヒドロペルオキシド、クメンヒドロペルオキシド、ペルオキシ酢酸tert-ブチル、ペルオキシ安息香酸tert-ブチル、ペルオキシオクタン酸 tert-ブチル、ペルオキシネオデカン酸tert-ブチル、ペルオキシイソ酪酸tert-ブチル、過酸化ラウロイル、ペルオキシピバリン酸tert-アミル、ペルオキシピバリン酸tert-ブチル、過酸化ジクミル、過酸化ベンゾイル、過硫酸カリウム、過硫酸アンモニウム等の過酸化水素類;2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2-ブテノニトリル)、4,4’-アゾビス(4-ペンタン酸)、1,1’-アゾビス(シクロヘキサンカルボニトリル)、2-(tert-ブチルアゾ)-2-シアノプロパン、2,2’-アゾビス[2-メチル-N-(1,1)-ビス(ヒドロキシメチル)-2-ヒドロキシエチル]プロピオンアミド、2,2’-アゾビス(2-メチル-N-ヒドロキシエチル)プロピオンアミド、二塩化2,2’-アゾビス(N,N’-ジメチレンイソブチルアミジン)、二塩化2,2’-アゾビス(2-アミジノプロパン)、2,2’-アゾビス(N,N’-ジメチレンイソブチルアミド)、2,2’-アゾビス(2-メチル-N-[1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル]プロピオンアミド)、2,2’-アゾビス(2-メチル-N-[1,1-ビス(ヒドロキシメチル)エチル]プロピオンアミド)、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]、2,2’-アゾビス(イソブチリルアミド)二水和物等のアゾ化合物等が挙げられる。 The radical polymerization initiator is not particularly limited, and tert-butyl hydroperoxide, cumene hydroperoxide, tert-butyl peroxyacetate, tert-butyl peroxybenzoate, tert-butyl peroxyoctanoate, tert-butyl peroxyneodecanoate, peroxy Hydrogen peroxides such as tert-butyl isobutyrate, lauroyl peroxide, tert-amyl peroxypivalate, tert-butyl peroxypivalate, dicumyl peroxide, benzoyl peroxide, potassium persulfate, ammonium persulfate; 2,2'- Azobis (isobutyronitrile), 2,2'-azobis (2-butenonitrile), 4,4'-azobis (4-pentanoic acid), 1,1'-azobis (cyclohexanecarbonitrile), 2- (tert- Butylazo) -2-cyanopropane, 2,2'-azobis [2-methyl-N- (1,1) -bis (hydroxymethyl) ) -2-Hydroxyethyl] propionamide, 2,2'-azobis (2-methyl-N-hydroxyethyl) propionamide, 2,2'-azobis (N, N'-dimethyleneisobutylamidine) dichloride, 2,2'-azobis (2-amidinopropane) chloride, 2,2'-azobis (N, N'-dimethyleneisobutyramide), 2,2'-azobis (2-methyl-N- [1,1- Bis (hydroxymethyl) -2-hydroxyethyl] propionamide), 2,2'-azobis (2-methyl-N- [1,1-bis (hydroxymethyl) ethyl] propionamide), 2,2'-azobis Examples include azo compounds such as [2-methyl-N- (2-hydroxyethyl) propionamide] and 2,2′-azobis (isobutyrylamide) dihydrate.
 上記モノマー化合物及びラジカル重合開始剤の使用量は、特に制限はなく、収率及びRAFT重合して得られる高分子の分子量分散等の観点から、MOP中の配位子化合物(1)残基1モルに対して、モノマー化合物を20~10000モル(特に50~2000モル)、ラジカル重合開始剤を0.01~2モル(特に0.5~1モル)使用することが好ましい。 The amount of the monomer compound and radical polymerization initiator used is not particularly limited. From the viewpoints of yield and molecular weight dispersion of the polymer obtained by RAFT polymerization, the ligand compound (1) residue 1 in MOP It is preferable to use 20 to 10000 mol (particularly 50 to 2000 mol) of the monomer compound and 0.01 to 2 mol (particularly 0.5 to 1 mol) of the radical polymerization initiator with respect to mol.
 本工程において使用され得る有機溶媒としては、公知のものを採用すればよく、本工程では、例えば、ベンゼン、トルエン、キシレン、メシチレン、アニソール等の芳香族溶媒;1,4-ジオキサン等の環状エーテル類が好ましい。また、反応条件は、反応が十分に進行する程度であればよく、例えば、10~150℃、特に50~100℃において10分~24時間、特に30分~12時間とすることができる。反応終了後、必要に応じて通常の単離及び精製工程を施してもよい。 The organic solvent that can be used in this step may be a known one. In this step, for example, an aromatic solvent such as benzene, toluene, xylene, mesitylene, and anisole; a cyclic ether such as 1,4-dioxane Are preferred. The reaction conditions may be such that the reaction proceeds sufficiently, and can be, for example, 10 to 150 ° C., particularly 50 to 100 ° C., 10 minutes to 24 hours, particularly 30 minutes to 12 hours. After completion of the reaction, normal isolation and purification steps may be performed as necessary.
 反応が終了したことはガスクロマトグラフィー、高速液体クロマトグラフィー等により原料の残存量を定量することにより確認することができるが、これらに限定されるものではない。反応終了後、得られた混合液をポリマーの貧溶媒(特にメタノール等のアルコール系有機溶媒)中に投入し、吸引濾過に付して沈殿物を集め、同貧溶媒による洗浄後、必要に応じて有機金属多面体(単孔性配位高分子)が分解しない程度の温度(例えば25~250℃)程度で数時間真空乾燥することにより、本発明の有機金属多面体(単孔性配位高分子)を得ることができる。有機溶媒による洗浄、真空乾燥操作は、超臨界二酸化炭素による洗浄によっても代えることができ、より効果的である。 The completion of the reaction can be confirmed by quantifying the remaining amount of the raw material by gas chromatography, high performance liquid chromatography or the like, but is not limited thereto. After completion of the reaction, the obtained mixed solution is put into a poor polymer solvent (especially an alcohol-based organic solvent such as methanol), subjected to suction filtration to collect a precipitate, washed with the poor solvent, and if necessary. The organometallic polyhedron (monoporous coordination polymer) of the present invention is vacuum-dried at a temperature at which the organometallic polyhedron (monoporous coordination polymer) does not decompose (for example, 25 to 250 ° C.) for several hours. ) Can be obtained. Cleaning with an organic solvent and vacuum drying can be replaced by cleaning with supercritical carbon dioxide, which is more effective.
 この手法は異種モノマー同士のランダム共重合及びブロック共重合にも適用可能であり、共重合ポリマー鎖が導入された単孔性又は多孔性配位高分子も同様に得ることができる。また、上記では、RAFT重合によりポリマー鎖を導入する方法を示したが、他のリビング重合(原子移動ラジカル重合(ATRP)法、ニトロキシドを介したラジカル重合(NMP)法、アニオン重合法等)によってもポリマー鎖を導入することが可能である。なお、上記では、有機金属多面体(単孔性配位高分子)の合成方法のみを示したが、多孔性配位高分子も、上記方法に準じて、同様の方法で合成することができる。 This method can be applied to random copolymerization and block copolymerization of different monomers, and a monoporous or porous coordination polymer into which a copolymerized polymer chain is introduced can be obtained in the same manner. In the above, the method of introducing a polymer chain by RAFT polymerization was shown, but by other living polymerization (atom transfer radical polymerization (ATRP) method, nitroxide-mediated radical polymerization (NMP) method, anionic polymerization method, etc.)) It is also possible to introduce polymer chains. Although only the method for synthesizing the organometallic polyhedron (monoporous coordination polymer) has been described above, the porous coordination polymer can also be synthesized by the same method according to the above method.
4.物質吸着及び/又は分離材料、並びに物質分離膜
 上記した本発明の単孔性又は多孔性配位高分子は、その特異な物質吸収特性を生かして、物質の吸着及び/又は分離材料として使用することができる。この際、本発明の単孔性又は多孔性配位高分子は、物質をガスの状態で吸着及び/又は分離し得るし、物質をイオンの状態でも捕捉及び/又は分離し得る。このため、本発明の単孔性又は多孔性配位高分子は、ガス及び/又はイオンの吸着材料や、ガス及び/又はイオンの分離材料として好ましく使用し得る。具体的には、本発明の単孔性又は多孔性配位高分子が有機金属多面体である場合には、二酸化炭素を選択的に吸着する性質を利用して、二酸化炭素吸着材料や、二酸化炭素分離材料として好適に使用することができる。また、本発明の単孔性又は多孔性配位高分子に適切なデザインを施せば、他のガス種及びイオン種についても同様に吸着及び/又は分離することができる。
Four. Substance Adsorption and / or Separation Material and Substance Separation Membrane The above-described monoporous or porous coordination polymer of the present invention is used as a substance adsorption and / or separation material by taking advantage of its unique substance absorption characteristics. be able to. In this case, the monoporous or porous coordination polymer of the present invention can adsorb and / or separate a substance in a gas state and can capture and / or separate a substance in an ionic state. Therefore, the monoporous or porous coordination polymer of the present invention can be preferably used as a gas and / or ion adsorbing material or a gas and / or ion separating material. Specifically, when the monoporous or porous coordination polymer of the present invention is an organometallic polyhedron, a carbon dioxide adsorbing material or a carbon dioxide is utilized by utilizing the property of selectively adsorbing carbon dioxide. It can be suitably used as a separation material. Further, if a suitable design is applied to the monoporous or porous coordination polymer of the present invention, other gas species and ionic species can be similarly adsorbed and / or separated.
 なお、単孔性又は多孔性配位高分子の細孔内にガス等を吸着させる前には、単孔性又は多孔性配位高分子に吸着された水分や溶媒を除去するため、真空で予備乾燥を行うことが好ましい。 Before gas or the like is adsorbed in the pores of the monoporous or porous coordination polymer, a vacuum is used in order to remove moisture and solvent adsorbed on the monoporous or porous coordination polymer. Pre-drying is preferably performed.
 また、本発明の単孔性又は多孔性配位高分子を使用して、簡便にフィルムを作製することもできる。このようなフィルムは、物質分離膜として使用することができる。この際、本発明の単孔性又は多孔性配位高分子は、物質をガスの状態で吸着及び/又は分離し得るし、物質をイオンの状態でも捕捉及び/又は分離し得る。このため、本発明の物質分離膜は、ガス及び/又はイオンの分離膜とし得る。具体的には、本発明の単孔性又は多孔性配位高分子が有機金属多面体である場合には、二酸化炭素を選択的に吸着する性質を利用して、二酸化炭素分離膜として好適に使用することができる。また、本発明の単孔性又は多孔性配位高分子に適切なデザインを施せば、他のガス種及びイオン種についても同様に吸着及び/又は分離することができる。 Also, a film can be easily produced using the monoporous or porous coordination polymer of the present invention. Such a film can be used as a material separation membrane. In this case, the monoporous or porous coordination polymer of the present invention can adsorb and / or separate a substance in a gas state and can capture and / or separate a substance in an ionic state. For this reason, the substance separation membrane of the present invention can be a gas and / or ion separation membrane. Specifically, when the monoporous or porous coordination polymer of the present invention is an organometallic polyhedron, it is suitably used as a carbon dioxide separation membrane by utilizing the property of selectively adsorbing carbon dioxide. can do. Further, if a suitable design is applied to the monoporous or porous coordination polymer of the present invention, other gas species and ionic species can be similarly adsorbed and / or separated.
 このような物質分離膜は、例えば、本発明の単孔性又は多孔性配位高分子(物質の吸着及び/又は分離材料)を含有する塗料組成物を用いて作製することができる。塗料組成物として、例えば、本発明の単孔性又は多孔性配位高分子を有機溶媒に溶解させたものを用いることができる。この際、本発明の単孔性又は多孔性配位高分子(物質の吸着及び/又は分離材料)は、単独で用いることもでき、2種以上を組合せて用いることもできる。 Such a material separation membrane can be produced using, for example, a coating composition containing the monoporous or porous coordination polymer (material adsorption and / or separation material) of the present invention. As the coating composition, for example, a solution obtained by dissolving the monoporous or porous coordination polymer of the present invention in an organic solvent can be used. At this time, the monoporous or porous coordination polymer (substance adsorption and / or separation material) of the present invention can be used alone or in combination of two or more.
 使用できる有機溶媒としては、例えば、トルエン、クロロホルム、テトラヒドロフラン、ベンゼン、N,N’-ジメチルホルムアミド等を採用することができる。 Examples of organic solvents that can be used include toluene, chloroform, tetrahydrofuran, benzene, N, N′-dimethylformamide, and the like.
 この際、本発明の単孔性又は多孔性配位高分子(物質の吸着及び/又は分離材料)の濃度は、より均質かつ自立するフィルムを形成しやすい観点から、1~100 mg/mLが好ましく、5~50 mg/mLがより好ましい。 At this time, the concentration of the monoporous or porous coordination polymer (substance adsorption and / or separation material) of the present invention is 1 to 100 mg / mL from the viewpoint of forming a more homogeneous and self-supporting film. 5 to 50 mg / mL is more preferable.
 また、上記塗料組成物には、バインダー樹脂を使用してもよいが、本発明ではバインダー樹脂を使用せずとも本発明の単孔性又は多孔性配位高分子(物質の吸着及び/又は分離材料)をフィルム化できるうえに、本発明の単孔性又は多孔性配位高分子の特性(物質吸着特性、物質分離特性等)を発現しやすくするためには、バインダー樹脂を使用しないことが好ましい。 In the coating composition, a binder resin may be used. In the present invention, the monoporous or porous coordination polymer of the present invention (substance adsorption and / or separation) can be used without using a binder resin. In order to facilitate the development of the characteristics (material adsorption characteristics, substance separation characteristics, etc.) of the monoporous or porous coordination polymer of the present invention, the binder resin should not be used. preferable.
 さらに、塗料組成物には、本発明の効果に悪影響を与えない範囲内で、レベリング剤、カップリング剤、増粘剤、紫外線吸収剤、光安定剤、凍結防止剤等を添加してもよいが、上記と同様の理由により、使用しないことが好ましい。 Furthermore, a leveling agent, a coupling agent, a thickener, an ultraviolet absorber, a light stabilizer, an antifreezing agent, and the like may be added to the coating composition as long as the effects of the present invention are not adversely affected. However, it is preferably not used for the same reason as described above.
 本発明の物質分離膜は、例えば、塗布又は吹き付けることにより基材にコーティングすることができる。コーティングする方法は特に限定されず、例えば、ドロップキャスティング法、スピンコーティング法、ディップコーティング法、フローコーティング法、スプレーコーティング法、ロールコーティング法、スクリーン印刷法、バーコーター法、刷毛塗り、スポンジ塗り等の従来公知の塗布方法を使用することができる。密着性を向上させるために、基材に上記塗料組成物(物質の吸着及び/又は分離材料)をコーティングする前に、中間層をコーティングしてもよい。 The substance separation membrane of the present invention can be coated on a substrate by, for example, coating or spraying. The coating method is not particularly limited. For example, drop casting method, spin coating method, dip coating method, flow coating method, spray coating method, roll coating method, screen printing method, bar coater method, brush coating, sponge coating, etc. Conventionally known coating methods can be used. In order to improve adhesion, an intermediate layer may be coated before coating the coating composition (material adsorption and / or separation material) on the substrate.
 コーティングして形成される塗膜(物質分離膜)の膜厚は、特に制限されず、物質分離特性の観点から、例えば、100 nm~10μmが好ましく、200 nm~1.5μmがより好ましい。 The film thickness of the coating film (substance separation film) formed by coating is not particularly limited, and is preferably from 100 to 10 μm, more preferably from 200 to 1.5 μm, from the viewpoint of material separation characteristics.
 コーティングできる基材としては、特に制限されず、その材質として、金属、セラミックス、ガラス、プラスチック、木、石、セメント、コンクリート、繊維、布帛、紙、これらの組合せ、これらの積層体、これらの塗装体等が挙げられる。 The substrate that can be coated is not particularly limited, and the material thereof is metal, ceramics, glass, plastic, wood, stone, cement, concrete, fiber, fabric, paper, combinations thereof, laminates thereof, and coatings thereof. Examples include the body.
 このようにして得られる本発明の物質分離膜は、平均直径が8~100 nm程度(特に10~50 nm程度)の単孔性又は多孔性配位高分子からなる膜である。このような本発明の物質分離膜は、物質(特にガス)吸着、物質(特にガス)分離、物質(特にガス)吸蔵等以外にも、分子センシング、ドラッグデリバリー等への応用も可能である。 The thus obtained material separation membrane of the present invention is a membrane made of a monoporous or porous coordination polymer having an average diameter of about 8 to 100 nm (particularly about 10 to 50 nm). Such a material separation membrane of the present invention can be applied to molecular sensing, drug delivery, etc. in addition to substance (particularly gas) adsorption, substance (particularly gas) separation, substance (particularly gas) occlusion, and the like.
 以下に実施例および比較例を示して本発明をより具体的に説明する。なお、本発明は以下の実施例に限定されるものではない。実施例における分析及び評価は、以下の方法によって実施した。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. In addition, this invention is not limited to a following example. Analysis and evaluation in the examples were carried out by the following methods.
 合成例1:配位子化合物1(有機配位子1)の合成 Synthesis Example 1: Synthesis of ligand compound 1 (organic ligand 1)
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
 式中、TBDMS-Clはtert-ブチルジメチルシリルクロリドを示す。DMFはジメチルホルムアミドを示す。 In the formula, TBDMS-Cl represents tert-butyldimethylsilyl chloride. DMF represents dimethylformamide.
 市販の4-シアノ-4-[(ドデシルスルファニルチオカルボニル)スルファニル]ペンタン酸(CDPA;0.50 g, 1.2 mmol)、tert-ブチルジメチルシリルクロリド(TBDMS-Cl;0.20 g, 1.4 mmol)、及びイミダゾール(0.17 g, 2.5 mmol)をジメチルホルムアミド(DMF;3 mL)に溶解させ、室温で12時間反応させた。その後、水(5 mL)を加えて反応を停止させ、有機相を酢酸エチルで抽出した(5 mL×3回)。さらに、抽出された有機相を飽和炭酸水素ナトリウム水溶液、飽和塩化ナトリウム水溶液で洗浄し、無水硫酸マグネシウムを加えて脱水した。溶液をろ過し、溶媒を減圧下で留去した後、クロロホルムを移動相としたシリカゲルカラムクロマトグラフィーで精製し、CDPAのTBDMS保護体(CDPA-TBDMS)を得た(0.58 g, 92%)。
1H NMR (400 MHz, CDCl3, JEOL ECX-400を使用, 溶媒ピークを内部標準として使用): TM(ppm) 3.33 (tr, 2H), 2.63 (tr, 2H), 2.52-2.40 (m, 1H), 2.39-2.28 (m, 1H), 1.88 (s, 3H), 1.73-1.64 (m, 2H), 1.45-1.22 (m, 21H), 0.94 (s, 9H), 0.88 (tr, 3H), 0.27 (s, 6H)。
Commercially available 4-cyano-4-[(dodecylsulfanylthiocarbonyl) sulfanyl] pentanoic acid (CDPA; 0.50 g, 1.2 mmol), tert-butyldimethylsilyl chloride (TBDMS-Cl; 0.20 g, 1.4 mmol), and imidazole ( 0.17 g, 2.5 mmol) was dissolved in dimethylformamide (DMF; 3 mL) and reacted at room temperature for 12 hours. Thereafter, water (5 mL) was added to stop the reaction, and the organic phase was extracted with ethyl acetate (5 mL × 3 times). Further, the extracted organic phase was washed with a saturated aqueous sodium hydrogen carbonate solution and a saturated aqueous sodium chloride solution, and dehydrated by adding anhydrous magnesium sulfate. The solution was filtered, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography using chloroform as a mobile phase to obtain a CDPA-protected TBDMS (CDPA-TBDMS) (0.58 g, 92%).
1 H NMR (400 MHz, CDCl 3 , using JEOL ECX-400, solvent peak as internal standard): TM (ppm) 3.33 (tr, 2H), 2.63 (tr, 2H), 2.52-2.40 (m, 1H), 2.39-2.28 (m, 1H), 1.88 (s, 3H), 1.73-1.64 (m, 2H), 1.45-1.22 (m, 21H), 0.94 (s, 9H), 0.88 (tr, 3H) , 0.27 (s, 6H).
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
 式中、DMFはジメチルホルムアミドを示す。THFはテトラヒドロフランを示す。 In the formula, DMF represents dimethylformamide. THF represents tetrahydrofuran.
 得られたCDPA-TBDMS(0.2 g, 0.39 mmol)をジクロロメタン(1 mL)へ溶解させ、氷水浴で溶液を0℃へ冷却し、DMFを1, 2滴加えた(触媒)。ここに、塩化オキサリル((COCl)2; 40.6μL, 0.47 mmol)を0.1 mLのジクロロメタンへ溶解させた溶液を少しずつ滴下して加えた(この際、副生成物として一酸化炭素ガスが発生する)。溶液を徐々に常温に戻しつつ3時間反応させ、その後溶媒を完全に留去した。 The obtained CDPA-TBDMS (0.2 g, 0.39 mmol) was dissolved in dichloromethane (1 mL), the solution was cooled to 0 ° C. with an ice-water bath, and 1 or 2 drops of DMF were added (catalyst). To this, a solution of oxalyl chloride ((COCl) 2 ; 40.6 μL, 0.47 mmol) dissolved in 0.1 mL of dichloromethane was added dropwise little by little (at this time, carbon monoxide gas was generated as a by-product) ). The solution was allowed to react for 3 hours while gradually returning to room temperature, and then the solvent was completely distilled off.
 次に、ここに、5-ヒドロキシイソフタル酸(70 mg, 0.39 mmol)、及びピリジン(78μL)をテトラヒドロフラン(THF;1 mL)へ溶解させた溶液を加えた。溶液を45℃に保ったオイルバスで加熱しながら窒素雰囲気下で12時間反応させた。その後、反応溶液に水(3 mL)を加えて反応を停止させ、クロロホルム(3 mL)を加えて生成物を抽出し(3 mL×3回)、有機相を無水硫酸マグネシウムで脱水した。溶液をろ過し、溶媒を減圧下で留去した後、クロロホルムを移動相としたシリカゲルカラムクロマトグラフィーで精製し、目的物1を得た(50 mg, 23%)。
1H NMR (400 MHz, CDCl3, JEOL ECX-400を使用, 溶媒ピークを内部標準として使用): TM(ppm) 8.67 (s, 1H), 8.03 (s, 2H), 3.39 (tr, 2H), 2.97 (tr, 2H), 2.79-2.64 (m, 1H), 2.58-2.48 (m, 1H), 1.97 (s, 3H), 1.80-1.68 (m, 2H), 1.48-1.20 (m, 21H), 0.89 (tr, 3H)。
Next, a solution in which 5-hydroxyisophthalic acid (70 mg, 0.39 mmol) and pyridine (78 μL) were dissolved in tetrahydrofuran (THF; 1 mL) was added thereto. The solution was reacted in a nitrogen atmosphere for 12 hours while being heated in an oil bath maintained at 45 ° C. Thereafter, water (3 mL) was added to the reaction solution to stop the reaction, chloroform (3 mL) was added to extract the product (3 mL × 3 times), and the organic phase was dehydrated with anhydrous magnesium sulfate. The solution was filtered, and the solvent was distilled off under reduced pressure. Then, the residue was purified by silica gel column chromatography using chloroform as a mobile phase to obtain Target 1 (50 mg, 23%).
1 H NMR (400 MHz, CDCl 3 , using JEOL ECX-400, solvent peak as internal standard): TM (ppm) 8.67 (s, 1H), 8.03 (s, 2H), 3.39 (tr, 2H) , 2.97 (tr, 2H), 2.79-2.64 (m, 1H), 2.58-2.48 (m, 1H), 1.97 (s, 3H), 1.80-1.68 (m, 2H), 1.48-1.20 (m, 21H) , 0.89 (tr, 3H).
 合成例2:有機金属多面体MOP1の合成 Synthesis Example 2: Synthesis of organometallic polyhedral MOP1
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
 式中、Cu(OAc)2・H2Oは酢酸銅一水和物を示す。DMFはジメチルホルムアミドを示す。 In the formula, Cu (OAc) 2 .H 2 O represents copper acetate monohydrate. DMF represents dimethylformamide.
 合成例1で得た有機配位子1(24 mg)及び酢酸銅一水和物(8.4 mg)をそれぞれDMF (1 mL)に溶解させた後、それらを混合し、室温で3時間撹拌した。その後、反応溶液中にメタノール(4 mL)を加え、固体を析出させた。析出した固体を遠心分離機を用いて沈殿させ、上澄み液を捨てた後、再度THF(1 mL)へ溶解させた。得られたTHF溶液に再度メタノール 4 mLを加えて固体を析出させた。この操作を3回繰り返して最終的に青色の粉体としてMOP1(19 mg)を得たことを確認した。得られたMOP1は、50℃で真空乾燥させた。 After dissolving the organic ligand 1 (24 mg) and copper acetate monohydrate (8.4 mg) obtained in Synthesis Example 1 in DMF (1 ml), they were mixed and stirred at room temperature for 3 hours. . Thereafter, methanol (4 mL) was added to the reaction solution to precipitate a solid. The precipitated solid was precipitated using a centrifuge, the supernatant was discarded, and then dissolved again in THF (1 mL). To the obtained THF solution, 4 mL of methanol was added again to precipitate a solid. This operation was repeated three times to confirm that MOP1 (19 mg) was finally obtained as a blue powder. The obtained MOP1 was vacuum dried at 50 ° C.
 実施例1:ポリマー鎖導入有機金属多面体の合成 Example 1: Synthesis of polymer chain-introduced organometallic polyhedra
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
 式中、AIBNはアゾビスイソブチロニトリルを示す。 In the formula, AIBN represents azobisisobutyronitrile.
 合成例2で得たMOP1(5 mg)、メチルメタクリレートモノマー(0.16 g)をトルエン(1 mL)へ溶解させた。なお、MOP1はトルエンに不溶であるが、メチルメタクリレートと混合すれば少量ながら溶解させることができる。ここに、アゾビスイソブチロニトリル(AIBN)の0.1 Mトルエン溶液(80μL)を加えた。溶液を凍結脱気(3回)して溶存酸素を取り除いた後、溶液をオイルバスで70℃へ加熱し、反応を開始させた。溶液を撹拌しながら4時間重合させた。その後、溶液を液体窒素で急冷して反応を停止させ、溶液をメタノール(20 mL)へ投入して重合物を沈殿させた。沈殿物をろ過して回収し、THFへ溶解させた後、再度メタノールへ投入して重合物を沈殿させた(再沈精製)。沈殿した固体を濾過して回収し、50℃で真空乾燥して高分子グラフトMOP(MOP1-graft-PMMA)を得たことを確認した(33 mg)。 MOP1 (5 mg) obtained in Synthesis Example 2 and methyl methacrylate monomer (0.16 kg) were dissolved in toluene (1 ml). MOP1 is insoluble in toluene, but can be dissolved in a small amount when mixed with methyl methacrylate. To this was added a 0.1 M toluene solution (80 μL) of azobisisobutyronitrile (AIBN). The solution was freeze degassed (3 times) to remove dissolved oxygen, and then the solution was heated to 70 ° C. in an oil bath to initiate the reaction. The solution was polymerized for 4 hours with stirring. Thereafter, the solution was quenched with liquid nitrogen to stop the reaction, and the solution was poured into methanol (20 mL) to precipitate a polymer. The precipitate was collected by filtration, dissolved in THF, and then poured into methanol again to precipitate the polymer (reprecipitation purification). The precipitated solid was collected by filtration and vacuum dried at 50 ° C. to confirm that a polymer graft MOP (MOP1-graft-PMMA) was obtained (33 mg).
 実施例2
 実施例1の反応溶液を反応開始後65分経過した時点で一部取り出し、高分子グラフトMOPを得た。
Example 2
A part of the reaction solution of Example 1 was taken out after 65 minutes from the start of the reaction to obtain a polymer graft MOP.
 実施例3
 実施例1の反応溶液を反応開始後130分経過した時点で一部取り出し、高分子グラフトMOPを得た。
Example 3
A part of the reaction solution of Example 1 was taken out after 130 minutes from the start of the reaction to obtain a polymer graft MOP.
 実施例4
 実施例1の反応溶液を反応開始後205分経過した時点で一部取り出し、高分子グラフトMOPを得た。
Example 4
A part of the reaction solution of Example 1 was taken out after 205 minutes from the start of the reaction to obtain a polymer graft MOP.
 実施例5
 実施例1の反応溶液を反応開始後265分経過した時点で一部取り出し、高分子グラフトMOPを得た。
Example 5
A part of the reaction solution of Example 1 was taken out after 265 minutes from the start of the reaction to obtain a polymer graft MOP.
 合成例3:MOP1の分解
 実施例1で得られた高分子グラフトMOPのTHF溶液(1mg / 1 mL)に、N,N,N’,N”,N”-ペンタメチルジエチレントリアミン(PMDETA)のTHF溶液(10μL / 1mL)を10μL程度加え、10分ほど静置することでMOP1部分のみを分解し、有機配位子1にメチルメタクリレートが重合した構造をもつ有機配位子を得たことを確認した。
Synthesis Example 3: Decomposition of MOP1 In the THF solution (1 mg / 1 mL) of the polymer graft MOP obtained in Example 1, N, N, N ', N ", N" -pentamethyldiethylenetriamine (PMDETA) in THF Add about 10 μL of solution (10 μL / 1 mL) and let stand for about 10 minutes to decompose only the MOP1 part, confirming that an organic ligand with a structure in which methyl methacrylate is polymerized to organic ligand 1 was obtained did.
 合成例4~7:ポリマー鎖導入有機金属多面体の分解
 実施例1で得られた高分子グラフトMOPの代わりに実施例2~5で得られた高分子グラフトMOPを用いたこと以外は合成例3と同様の処理を行い、配位子化合物1にメチルメタクリレートが重合した構造をもつ有機配位子を得たことを確認した。
Synthesis Examples 4 to 7: Decomposition of polymer chain-introduced organometallic polyhedron Synthesis Example 3 except that the polymer graft MOP obtained in Examples 2 to 5 was used in place of the polymer graft MOP obtained in Example 1 It was confirmed that an organic ligand having a structure in which methyl methacrylate was polymerized on the ligand compound 1 was obtained.
 実施例6:物質分離膜の製造(自立フィルムの作製)
 実施例5で得た高分子グラフトMOPを、クロロホルムに濃度が10 mg/mLとなるように溶解させ、得られた溶液を塗料組成物として、ガラス基材上にドロップキャストし、室温で乾燥し、ガラス基材を剥離することで、物質分離膜を得た。その外観を図1に示す。
Example 6: Production of a material separation membrane (production of a self-supporting film)
The polymer graft MOP obtained in Example 5 was dissolved in chloroform to a concentration of 10 mg / mL, and the resulting solution was drop-cast on a glass substrate as a coating composition and dried at room temperature. The material separation membrane was obtained by peeling the glass substrate. The appearance is shown in FIG.
 実施例7:物質分離膜の製造(TEM観察用フィルムの作製)
 実施例5で得た高分子グラフトMOPを、クロロホルムに濃度が5 mg/mLとなるように溶解させ、得られた溶液を塗料組成物として、銅グリッド上にドロップキャストし、室温で乾燥し、物質分離膜を得た。
Example 7: Production of a material separation membrane (production of a film for TEM observation)
The polymer graft MOP obtained in Example 5 was dissolved in chloroform so that the concentration was 5 mg / mL, and the obtained solution was drop-cast on a copper grid as a coating composition, and dried at room temperature. A material separation membrane was obtained.
 実施例8:物質分離膜の製造(AFM観察用フィルムの作製)
 実施例5で得た高分子グラフトMOPを、クロロホルムに濃度が5 mg/mLとなるように溶解させ、得られた溶液を塗料組成物として、ガラス基板上にドロップキャストし、室温で乾燥し、物質分離膜を得た。
Example 8: Production of a material separation membrane (production of a film for AFM observation)
The polymer graft MOP obtained in Example 5 was dissolved in chloroform so as to have a concentration of 5 mg / mL, and the obtained solution was dropped on a glass substrate as a coating composition, and dried at room temperature. A material separation membrane was obtained.
 実施例9:ポリマー鎖導入有機金属多面体の合成
 合成例2で得たMOP1(5 mg)、n-ブチルメタクリレートモノマー(0.23 g)をトルエン(1 mL)へ溶解させた。ここに、アゾビスイソブチロニトリル(AIBN)の0.1 Mトルエン溶液(80μL)を加えた。溶液を凍結脱気(3回)して溶存酸素を取り除いた後、溶液をオイルバスで70℃へ加熱し、反応を開始させた。溶液を撹拌しながら2時間重合させた。その後、溶液を液体窒素で急冷して反応を停止させ、溶液をメタノール(20 mL)へ投入して重合物を沈殿させた。沈殿物をろ過して回収し、THFへ溶解させた後、再度メタノールへ投入して重合物を沈殿させた(再沈精製)。沈殿した固体を濾過して回収し、50℃で真空乾燥して高分子グラフトMOP(MOP1-graft-PBMA)を得たことを確認した(41 mg)。
Example 9 Synthesis of Polymer Chain-Introduced Organometallic Polyhedron MOP1 (5 mg) and n-butyl methacrylate monomer (0.23 g) obtained in Synthesis Example 2 were dissolved in toluene (1 mL). A 0.1 M toluene solution (80 μL) of azobisisobutyronitrile (AIBN) was added thereto. The solution was freeze degassed (3 times) to remove dissolved oxygen, and then the solution was heated to 70 ° C. in an oil bath to initiate the reaction. The solution was polymerized for 2 hours with stirring. Thereafter, the solution was quenched with liquid nitrogen to stop the reaction, and the solution was poured into methanol (20 mL) to precipitate a polymer. The precipitate was collected by filtration, dissolved in THF, and then poured into methanol again to precipitate the polymer (reprecipitation purification). The precipitated solid was collected by filtration and vacuum dried at 50 ° C. to confirm that a polymer graft MOP (MOP1-graft-PBMA) was obtained (41 mg).
 実施例10:共重合ポリマー鎖導入有機金属多面体の合成
 実施例9で得られたMOP1-graft-PBMA(10mg)、スチレンモノマー(0.2 g)をトルエン(1 mL)へ溶解させた。ここに、アゾビスイソブチロニトリル(AIBN)の0.1 Mトルエン溶液(80μL)を加えた。溶液を凍結脱気(3回)して溶存酸素を取り除いた後、溶液をオイルバスで70℃へ加熱し、反応を開始させた。溶液を撹拌しながら2時間30分重合させた。その後、溶液を液体窒素で急冷して反応を停止させ、溶液をメタノール(20 mL)へ投入して重合物を沈殿させた。沈殿物をろ過して回収し、THFへ溶解させた後、再度メタノールへ投入して重合物を沈殿させた(再沈精製)。沈殿した固体を濾過して回収し、50℃で真空乾燥して高分子グラフトMOP(MOP1-graft-(PBMA-b-PSt))を得たことを確認した(17 mg)。
Example 10: Synthesis of copolymer polymer chain-introduced organometallic polyhedron MOP1-graft-PBMA (10 mg) and styrene monomer (0.2 g) obtained in Example 9 were dissolved in toluene (1 mL). A 0.1 M toluene solution (80 μL) of azobisisobutyronitrile (AIBN) was added thereto. The solution was freeze degassed (3 times) to remove dissolved oxygen, and then the solution was heated to 70 ° C. in an oil bath to initiate the reaction. The solution was allowed to polymerize for 2 hours 30 minutes with stirring. Thereafter, the solution was quenched with liquid nitrogen to stop the reaction, and the solution was poured into methanol (20 mL) to precipitate a polymer. The precipitate was collected by filtration, dissolved in THF, and then poured into methanol again to precipitate the polymer (reprecipitation purification). The precipitated solid was collected by filtration and vacuum dried at 50 ° C. to confirm that a polymer graft MOP (MOP1-graft- (PBMA-b-PSt)) was obtained (17 mg).
 合成例8:ポリマー鎖導入有機金属多面体の分解
 実施例9で得られた高分子グラフトMOPのTHF溶液(1mg / 1 mL)に、N,N,N’,N”,N”-ペンタメチルジエチレントリアミン(PMDETA)のTHF溶液 (10μL / 1mL)を10μL程度加え、10分ほど静置することでMOP1部分のみを分解し、配位子化合物1にブチルメタクリレートが重合した構造をもつ有機配位子を得た。
Synthesis Example 8 Decomposition of Polymer Chain-Introduced Organometallic Polyhedron N, N, N ', N ", N" -pentamethyldiethylenetriamine was added to the THF solution (1 mg / 1 mL) of the polymer graft MOP obtained in Example 9. Add about 10 μL of (PMDETA) THF solution (10 μL / 1 mL) and leave it for about 10 minutes to decompose only the MOP1 part, and to form an organic ligand with a structure in which butyl methacrylate is polymerized to ligand compound 1. Obtained.
 合成例9:共重合ポリマー鎖導入有機金属多面体の分解
 実施例10で得られた高分子グラフトMOPのTHF溶液(1mg / 1 mL)に、N,N,N’,N”,N”-ペンタメチルジエチレントリアミン(PMDETA)のTHF溶液 (10μL / 1mL)を10μL程度加え、10分ほど静置することでMOP1部分のみを分解し、有機配位子1にブチルメタクリレートとスチレンがブロック共重合した構造をもつ有機配位子を得た。
Synthesis Example 9: Decomposition of Copolymer Polymer Chain-Introduced Organometallic Polyhedron To the THF solution (1 mg / 1 mL) of the polymer graft MOP obtained in Example 10, N, N, N ', N ", N" -penta Add about 10 μL of a methyldiethylenetriamine (PMDETA) THF solution (10 μL / 1 mL) and let stand for about 10 minutes to decompose only the MOP1 part, and the structure is obtained by block copolymerizing butyl methacrylate and styrene to the organic ligand 1. An organic ligand was obtained.
 試験例1:ゲルパーミエーションクロマトグラフィー(GPC)測定(その1)
 測定機器として、
測定装置:島津製作所製 HPLC Prominence (送液ポンプ:LC-20AD、オートサンプラ:SIL-20A、カラムオーブン:CTO-20AC
検出器:RI(示差屈折)検出器(RID-10A)
使用カラム:Shodex社製 KF-804L 2本
カラム温度:40℃
移動相と流速:テトラヒドロフラン 1mL/min
を使用した。
Test example 1: Gel permeation chromatography (GPC) measurement (1)
As a measuring instrument,
Measuring equipment: HPLC Prominence manufactured by Shimadzu Corporation (Liquid feeding pump: LC-20AD, Autosampler: SIL-20A, Column oven: CTO-20AC
Detector: RI (differential refraction) detector (RID-10A)
Column used: Shodex KF-804L 2 Column temperature: 40 ° C
Mobile phase and flow rate: Tetrahydrofuran 1mL / min
It was used.
 合成例1~3で得た化合物のGPC測定を行い、各化合物の分子量(数平均分子量)の測定を行った。結果を図2に示す。その結果、合成例1で得た配位子化合物1(有機配位子1)の数平均分子量は530であったが、銅イオンと配位させてMOP1とすることにより、数平均分子量は9500と増大した。一方、このMOP1に対してPMDETAを作用させると、再び数平均分子量が約530となった。このことから、有機金属多面体に対して、PMDETAを作用させると、有機配位子を1本ずつ分離することが理解できる。 GPC measurement of the compounds obtained in Synthesis Examples 1 to 3 was performed, and the molecular weight (number average molecular weight) of each compound was measured. The result is shown in figure 2. As a result, the number average molecular weight of the ligand compound 1 (organic ligand 1) obtained in Synthesis Example 1 was 530, but the number average molecular weight was 9500 by coordinating with copper ions to form MOP1. And increased. On the other hand, when PMDETA was allowed to act on this MOP1, the number average molecular weight was again about 530. From this, it can be understood that when PMDETA is applied to an organometallic polyhedron, the organic ligands are separated one by one.
 次に、合成例2で得たMOP1、実施例2~5で得た高分子グラフトMOP及び合成例4~8で得た高分子グラフトMOPを分解した有機配位子のGPC測定を行い、各化合物の分子量(数平均分子量)の測定を行った。結果を図3~4に示す。その結果、実施例2~5で得た高分子グラフトMOPは、いずれも、合成例2で得たMOP1(数平均分子量9500)と比較し、ポリマー鎖が導入されていることにより、実施例2(数平均分子量32000)、実施例3(数平均分子量78200)、実施例4(数平均分子量121500)、実施例5(数平均分子量147500)と、いずれも分子量が増大していることが理解できる。また、上記のとおり、有機金属多面体に対してPMDETAを作用させると有機配位子1本ずつ分解できるところ、合成例4~8で得た化合物は、高分子グラフトMOPの有機配位子を1本ずつ分解したものであり、当初の配位子化合物1(有機配位子1)にポリマー鎖が導入されたものであるため、配位子化合物1(有機配位子1)と比較すると、合成例4(数平均分子量3600)、合成例5(数平均分子量9400)、合成例6(数平均分子量13000)、合成例7(数平均分子量14900)と分子量が大きかった。また、ピーク幅が狭いことから、高分子グラフトMOPを構成する有機配位子には、いずれも同程度のポリマー鎖が導入されていることも理解できる。 Next, GOP measurement of the organic ligand obtained by decomposing the MOP1 obtained in Synthesis Example 2, the polymer graft MOP obtained in Examples 2 to 5 and the polymer graft MOP obtained in Synthesis Examples 4 to 8 was performed. The molecular weight (number average molecular weight) of the compound was measured. The results are shown in FIGS. As a result, all of the polymer graft MOPs obtained in Examples 2 to 5 were compared with MOP1 (number average molecular weight 9500) obtained in Synthesis Example 2, and the polymer chain was introduced. (Number average molecular weight 32000), Example 3 (number average molecular weight 78200), Example 4 (number average molecular weight 121500), Example 5 (number average molecular weight 147500), it can be understood that all have increased molecular weight. . In addition, as described above, when PMDETA is allowed to act on an organometallic polyhedron, the organic ligands can be decomposed one by one. However, the compounds obtained in Synthesis Examples 4 to 8 are the organic ligands of the polymer graft MOP. Since it was decomposed one by one and the polymer chain was introduced into the original ligand compound 1 (organic ligand 1), compared with ligand compound 1 (organic ligand 1), The molecular weights of Synthesis Example 4 (number average molecular weight 3600), Synthesis Example 5 (number average molecular weight 9400), Synthesis Example 6 (number average molecular weight 13000), Synthesis Example 7 (number average molecular weight 14900) were large. In addition, since the peak width is narrow, it can be understood that the same degree of polymer chain is introduced into the organic ligand constituting the polymer graft MOP.
 試験例2:電子顕微鏡観察
 実施例7及び8で得た物質分離膜の表面構造を電子顕微鏡で観察した(実施例7:透過型電子顕微鏡(TEM)、実施例8:原子間力顕微鏡(AFM))。結果を図5に示す。その結果、表面は10~20 nm程度の粒子(高分子グラフトMOP)から構成されていることが理解できる。
Test Example 2: Electron Microscope Observation The surface structure of the material separation membrane obtained in Examples 7 and 8 was observed with an electron microscope (Example 7: Transmission electron microscope (TEM), Example 8: Atomic force microscope (AFM) )). The results are shown in FIG. As a result, it can be understood that the surface is composed of particles (polymer graft MOP) of about 10 to 20 nm.
 試験例3:ガス吸脱着試験
 合成例2で得たMOP1について、温度77 Kにおける窒素吸着量及び窒素脱着量、温度195 Kにおける二酸化炭素吸着量及び二酸化炭素脱着量の測定を行った。測定には日本ベル株式会社製のBelsorp Max体積吸着装置を用いた。測定は、Belsorp Maxクライオシステムを使用し、温度77 Kで行った。得られた結果を図6に示す。図6において、adsは吸着量、desは脱着量である。その結果、MOP1は窒素と比較して二酸化炭素を選択的に吸脱着することが理解できる。この二酸化炭素を選択的に吸脱着する特性は、MOPが有する特有の構造に由来するものであるため、ポリマー鎖を導入した本発明の化合物においても同様に二酸化炭素を選択的に吸脱着することができる。
Test Example 3: Gas Adsorption / Desorption Test With respect to MOP1 obtained in Synthesis Example 2, the nitrogen adsorption amount and nitrogen desorption amount at a temperature of 77 K, and the carbon dioxide adsorption amount and the carbon dioxide desorption amount at a temperature of 195 K were measured. A Belsorp Max volumetric adsorption device manufactured by Nippon Bell Co., Ltd. was used for the measurement. The measurement was performed at a temperature of 77 K using a Belsorp Max cryosystem. The obtained result is shown in FIG. In FIG. 6, ads is an adsorption amount and des is a desorption amount. As a result, it can be understood that MOP1 selectively adsorbs and desorbs carbon dioxide as compared with nitrogen. Since the characteristic of selectively adsorbing and desorbing carbon dioxide is derived from the unique structure of MOP, the compound of the present invention into which a polymer chain is introduced also selectively absorbs and desorbs carbon dioxide. Can do.
 試験例4:ゲルパーミエーションクロマトグラフィー(GPC)測定(その2)
 測定機器として、
測定装置:島津製作所製 HPLC Prominence (送液ポンプ:LC-20AD、オートサンプラ:SIL-20A、カラムオーブン:CTO-20AC
検出器:RI(示差屈折)検出器(RID-10A)
使用カラム:Shodex社製 KF-804L 2本
カラム温度:40℃
移動相と流速:テトラヒドロフラン 1mL/min
を使用した。
Test example 4: Gel permeation chromatography (GPC) measurement (2)
As a measuring instrument,
Measuring equipment: HPLC Prominence manufactured by Shimadzu Corporation (Liquid feeding pump: LC-20AD, Autosampler: SIL-20A, Column oven: CTO-20AC
Detector: RI (differential refraction) detector (RID-10A)
Column used: Shodex KF-804L 2 Column temperature: 40 ° C
Mobile phase and flow rate: Tetrahydrofuran 1mL / min
It was used.
 実施例9~10及び合成例8~9で得た化合物のGPC測定を行い、各化合物の分子量(数平均分子量)の測定を行った。結果を図7に示す。実施例1に準ずる方法で、実施例9ではn-ブチルメタクリレートモノマーとMOP1を反応させ、GPC測定を行った。その結果、MOP1にポリマー鎖が導入されていることにより、分子量が増大(数平均分子量132300)していることが理解できる。実施例10では、実施例9で得た化合物(MOP1-graft-PBMA)とスチレンモノマーを続けて反応させ、GPC測定を行った。その結果、MOP1-graft-PBMAにスチレンモノマーが続けて導入されていることにより、分子量がさらに増大(数平均分子量269300)していることが理解できる。すなわち、実施例9及び10を通して、MOP1から2段階のRAFT重合を行うことにより、MOP1にブチルメタクリレートとスチレンのブロック共重合体を導入できたことがわかる。また、上記のとおり、有機金属多面体に対してPMDETAを作用させると有機配位子1本ずつ分解できるところ、合成例9で得た化合物(数平均分子量14500)は合成例8で得た化合物(数平均分子量13400)よりも確かに分子量が大きく、これはMOP1上でリビングブロック共重合が進行していることを意味している。 GPC measurement of the compounds obtained in Examples 9 to 10 and Synthesis Examples 8 to 9 was performed, and the molecular weight (number average molecular weight) of each compound was measured. The results are shown in FIG. In the same manner as in Example 1, in Example 9, n-butyl methacrylate monomer and MOP1 were reacted and GPC measurement was performed. As a result, it can be understood that the molecular weight is increased (number average molecular weight 132300) by introducing a polymer chain into MOP1. In Example 10, the compound (MOP1-graft-PBMA) obtained in Example 9 and the styrene monomer were reacted successively to perform GPC measurement. As a result, it can be understood that the styrene monomer is continuously introduced into MOP1-graft-PBMA, thereby further increasing the molecular weight (number average molecular weight 269300). That is, through Examples 9 and 10, it was found that a block copolymer of butyl methacrylate and styrene could be introduced into MOP1 by performing two-step RAFT polymerization from MOP1. In addition, as described above, when PMDETA is allowed to act on the organometallic polyhedron, each organic ligand can be decomposed one by one. As a result, the compound obtained in Synthesis Example 9 (number average molecular weight 14500) is the compound obtained in Synthesis Example 8 ( The molecular weight is certainly larger than the number average molecular weight 13400), which means that the living block copolymerization is proceeding on MOP1.
 試験例5:直径
 合成例2で得たMOP1、実施例1で得たポリマー鎖導入有機金属多面体、実施例8で得た共重合体ポリマー鎖導入有機金属多面体について、Malvern社製 Zetasizer Nano ZSPにより、直径を測定した。結果を図8に示す。その結果、THF溶液中においてMOP1は3~7 nm程度、ポリマー鎖導入有機金属多面体は10~30 nm程度、共重合体ポリマー鎖導入有機金属多面体は12~50 nm程度の範囲に分布しており、平均直径は、MOP1は5 nm程度、ポリマー鎖導入有機金属多面体は18 nm程度、共重合体ポリマー鎖導入有機金属多面体は20 nm程度であった。
Test Example 5: MOP1 obtained in Diameter Synthesis Example 2, the polymer chain-introduced organometallic polyhedron obtained in Example 1, and the copolymer polymer chain-introduced organometallic polyhedron obtained in Example 8 were analyzed by Zetasizer Nano ZSP manufactured by Malvern. The diameter was measured. The results are shown in FIG. As a result, in the THF solution, MOP1 is distributed in the range of about 3 to 7 nm, the polymer chain-introduced organometallic polyhedra are in the range of about 10 to 30 nm, and the copolymer polymer chain-introduced organometallic polyhedra are in the range of about 12 to 50 nm. The average diameter was about 5 nm for MOP1, about 18 nm for the polymer chain-introduced organometallic polyhedron, and about 20 nm for the copolymer polymer chain-introduced organometallic polyhedron.
 合成例10:化合物8の合成 Synthesis Example 10: Synthesis of Compound 8
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
[式中、t-Buはtert-ブチル基を示す。]
 化合物8は文献(Davis, B. G.; Shang, X.; DeSantis, G.; Bott, R. R.; Jones, J. B. Bioorg. Med. Chem. 1999, 7, 2293-2301)に準ずる方法で得た。収率70%。
1H NMR (400 MHz, CDCl3): δ (ppm) 8.48 (t, J = 1.4 Hz, isophH, 1H), 8.13 (d, J = 1.4 Hz, isophH, 2H), 4.52 (s, benzyl, 2H), 1.59 (s, -C(CH3)3, 18H). 13C NMR (100 MHz, DMSO-d6): δ (ppm) 164.6, 138.4, 133.7, 133.3, 130.4, 82.0, 32.0, 28.2。
[Wherein t-Bu represents a tert-butyl group. ]
Compound 8 was obtained by a method according to the literature (Davis, B. G .; Shang, X .; DeSantis, G .; Bott, R. R .; Jones, J. B. Bioorg. Med. Chem. 1999, 7, 2293-2301). Yield 70%.
1 H NMR (400 MHz, CDCl 3 ): δ (ppm) 8.48 (t, J = 1.4 Hz, isophH, 1H), 8.13 (d, J = 1.4 Hz, isophH, 2H), 4.52 (s, benzyl, 2H ), 1.59 (s, -C (CH 3 ) 3 , 18H). 13 C NMR (100 MHz, DMSO-d 6 ): δ (ppm) 164.6, 138.4, 133.7, 133.3, 130.4, 82.0, 32.0, 28.2.
 合成例11:化合物9の合成 Synthesis Example 11 Synthesis of Compound 9
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
 化合物9は文献(Kato, S.; Yamada, S.; Goto, H.; Terashima, K.; Mizuta, M.; Katada, T. Z. Naturforsch. B 1980, 35, 458-462)に準ずる方法で得た。収率98%。
1H NMR (400 MHz, CDCl3): δ (ppm) 8.43-8.35 (m, 2H), 7.26-7.18 (m, 1H), 7.16-7.08 (m, 2H). 13C NMR (100 MHz, CDCl3): δ (ppm) 253.5, 153.7, 128.9, 127.7, 126.8。
Compound 9 was obtained by a method according to the literature (Kato, S .; Yamada, S .; Goto, H .; Terashima, K .; Mizuta, M .; Katada, TZ Naturforsch. B 1980, 35, 458-462) . Yield 98%.
1 H NMR (400 MHz, CDCl 3 ): δ (ppm) 8.43-8.35 (m, 2H), 7.26-7.18 (m, 1H), 7.16-7.08 (m, 2H). 13 C NMR (100 MHz, CDCl 3 ): δ (ppm) 253.5, 153.7, 128.9, 127.7, 126.8.
 合成例12:配位子化合物2(有機配位子2)の合成 Synthesis Example 12: Synthesis of ligand compound 2 (organic ligand 2)
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
 式中、t-Buはtert-ブチル基を示す。 In the formula, t-Bu represents a tert-butyl group.
 合成例10で得た化合物8(5.3 g, 14.4 mmol)のアセトン溶液(50 mL)に合成例11で得た化合物9(3.6 g, 18.7 mmol)を加え、窒素雰囲気下、室温で3時間撹拌した。反応溶液に20 mLの水を加え、ロータリーエバポレーターで15 mL程度まで濃縮した後、残渣を酢酸エチルで抽出した。抽出した有機相を硫酸マグネシウムで乾燥後、ロータリーエバポレーターで溶媒を減圧留去し、粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフィーで精製し、目的化合物10を得た。収率94%。
1H NMR (400 MHz, CDCl3): δ (ppm) 8.48 (t, J = 1.4 Hz, isophH, 1H), 8.16 (d, J = 1.4 Hz, isophH, 2H), 8.01-7.99 (m, ArH, 2H), 7.56-7.52 (m, ArH, 1H), 7.41-7.37 (m, ArH, 2H), 4.66 (s, benzyl, 2H), 1.60 (s, -C(CH3)3, 18H). 13C NMR (100 MHz, CDCl3): δ (ppm) 226.8, 164.7, 144.5, 135.8, 133.9, 132.7, 132.6, 129.8, 128.4, 126.9, 81.8, 41.2, 28.1. ESI-MS (methanol with a trace amount of KI, positive mode): calcd. for [M + K]+, m/z = 483.11; found m/z = 483.13。
Compound 9 (3.6 g, 18.7 mmol) obtained in Synthesis Example 11 is added to an acetone solution (50 mL) of Compound 8 (5.3 g, 14.4 mmol) obtained in Synthesis Example 10, and the mixture is stirred at room temperature for 3 hours under a nitrogen atmosphere. did. After adding 20 mL of water to the reaction solution and concentrating to about 15 mL with a rotary evaporator, the residue was extracted with ethyl acetate. The extracted organic phase was dried over magnesium sulfate, and then the solvent was distilled off under reduced pressure with a rotary evaporator to obtain a crude product. The crude product was purified by silica gel column chromatography to obtain the target compound 10. Yield 94%.
1 H NMR (400 MHz, CDCl 3 ): δ (ppm) 8.48 (t, J = 1.4 Hz, isophH, 1H), 8.16 (d, J = 1.4 Hz, isophH, 2H), 8.01-7.99 (m, ArH , 2H), 7.56-7.52 (m, ArH, 1H), 7.41-7.37 (m, ArH, 2H), 4.66 (s, benzyl, 2H), 1.60 (s, -C (CH 3) 3, 18H). 13 C NMR (100 MHz, CDCl 3 ): δ (ppm) 226.8, 164.7, 144.5, 135.8, 133.9, 132.7, 132.6, 129.8, 128.4, 126.9, 81.8, 41.2, 28.1. ESI-MS (methanol with a trace amount of KI, positive mode): calcd. for [M + K] + , m / z = 483.11; found m / z = 483.13.
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
 式中、t-Buはtert-ブチル基を示す。TFAはトリフルオロ酢酸を示す。 In the formula, t-Bu represents a tert-butyl group. TFA indicates trifluoroacetic acid.
 化合物10(6.67 g, 15 mmol)のジクロロメタン溶液(15 mL)にトリフルオロ酢酸(TFA; 18.4 mL, 240 mmol)のジクロロメタン溶液(15 mL)を加え、窒素雰囲気下、室温で1時間撹拌した。生成した沈殿物をろ取し、漏斗上でジクロロメタン及び水で洗浄した。得られた粉末状固体を減圧下80℃で24時間乾燥させ、配位子化合物2(有機配位子2)を得た。収率96%。
1H NMR (400 MHz, DMSO-d6): δ (ppm) 8.38 (t, J = 1.8 Hz, isophH, 1H), 8.23 (d, J = 1.8 Hz, isophH, 2H), 7.99-7.94 (m, ArH, 2H), 7.67-7.60 (m, ArH, 1H), 7.51-7.42 (m, ArH, 2H), 4.84 (s, benzyl, 2H). 13C NMR (100 MHz, DMSO-d6): δ (ppm) 227.0, 166.3, 143.9, 137.0, 134.0, 133.2, 131.5, 129.1, 128.8, 126.6, (the benzyl carbon signal was overlapped with a solvent signal.). ESI-MS (methanol, negative mode): calcd. for [M - H]-, m/z = 331.01; found m/z = 331.03。
To a dichloromethane solution (15 mL) of compound 10 (6.67 g, 15 mmol) was added a dichloromethane solution (15 mL) of trifluoroacetic acid (TFA; 18.4 mL, 240 mmol), and the mixture was stirred at room temperature for 1 hour under a nitrogen atmosphere. The formed precipitate was collected by filtration and washed with dichloromethane and water on a funnel. The obtained powdery solid was dried at 80 ° C. under reduced pressure for 24 hours to obtain Ligand Compound 2 (Organic Ligand 2). Yield 96%.
1 H NMR (400 MHz, DMSO-d 6 ): δ (ppm) 8.38 (t, J = 1.8 Hz, isophH, 1H), 8.23 (d, J = 1.8 Hz, isophH, 2H), 7.99-7.94 (m , ArH, 2H), 7.67-7.60 (m, ArH, 1H), 7.51-7.42 (m, ArH, 2H), 4.84 (s, benzyl, 2H). 13 C NMR (100 MHz, DMSO-d 6 ): δ (ppm) 227.0, 166.3, 143.9, 137.0, 134.0, 133.2, 131.5, 129.1, 128.8, 126.6, (the benzyl carbon signal was overlapped with a solvent signal.). ESI-MS (methanol, negative mode): calcd. for [M-H] - , m / z = 331.01; found m / z = 331.03.
 合成例13:配位子化合物3(有機配位子3)の合成 Synthesis Example 13: Synthesis of ligand compound 3 (organic ligand 3)
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
 式中、t-Buはtert-ブチル基を示す。 In the formula, t-Bu represents a tert-butyl group.
 リン酸カリウム(1.63 g, 7.7 mmol)をアセトン(10 mL)に懸濁させ撹拌した。そこへ1-ブタンチオール(CH3(CH2)2CH2SH; 0.83 mL, 7.7 mmol)を加えた後、撹拌しながら二硫化炭素(CS2; 0.47 mg, 7.7 mmol)を滴下し、窒素雰囲気下、室温で3時間撹拌した。この溶液に、合成例10で得た化合物8(2.60 g, 7.0 mmol)のアセトン溶液(8 mL)を加え、さらに室温で16時間撹拌した。水(20 mL)を加え、溶液をロータリーエバポレーターで濃縮後、残渣を酢酸エチルで抽出した。有機相を硫酸マグネシウムで乾燥させ、ロータリーエバポレーターで溶媒を減圧留去後、得られる粗生成物をシリカゲルカラムクロマトグラフィーで精製し、目的化合物11を得た。収率88%。
1H NMR (400 MHz, CDCl3): δ (ppm) 8.46 (t, J = 1.8 Hz, isophH, 1H), 8.11 (d, J = 1.8 Hz, isophH, 2H), 4.67 (s, benzyl, 2H), 3.39 (t, J = 7.3 Hz, S=C-S-CH2-, 2H), 1.69 (quin., J = 7.3 Hz, S=C-S-CH2-CH2-, 2H), 1.60 (s, -C(CH3)3, 18H), 1.43 (sext., J = 7.3 Hz, -CH2-CH2-CH3, 2H), 0.94 (t, J = 7.3 Hz, -CH2-CH3, 3H). 13C NMR (100 MHz, CDCl3): δ (ppm) 223.1, 164.8, 136.2, 134.0, 132.8, 129.9, 81.9, 40.4, 37.1, 30.1, 28.1, 22.2, 13.7. ESI-MS (methanol with a trace amount of KI, positive mode): calcd. for [M + K]+, m/z = 495.11; found m/z = 495.15。
Potassium phosphate (1.63 g, 7.7 mmol) was suspended in acetone (10 mL) and stirred. 1-butanethiol (CH 3 (CH 2 ) 2 CH 2 SH; 0.83 mL, 7.7 mmol) was added thereto, and then carbon disulfide (CS 2 ; 0.47 mg, 7.7 mmol) was added dropwise with stirring, followed by nitrogen. Stir for 3 hours at room temperature under atmosphere. To this solution was added an acetone solution (8 mL) of compound 8 (2.60 g, 7.0 mmol) obtained in Synthesis Example 10, and the mixture was further stirred at room temperature for 16 hours. Water (20 mL) was added, the solution was concentrated on a rotary evaporator, and the residue was extracted with ethyl acetate. The organic phase was dried over magnesium sulfate, the solvent was distilled off under reduced pressure using a rotary evaporator, and the resulting crude product was purified by silica gel column chromatography to obtain the target compound 11. Yield 88%.
1 H NMR (400 MHz, CDCl 3 ): δ (ppm) 8.46 (t, J = 1.8 Hz, isophH, 1H), 8.11 (d, J = 1.8 Hz, isophH, 2H), 4.67 (s, benzyl, 2H ), 3.39 (t, J = 7.3 Hz, S = CS-CH 2- , 2H), 1.69 (quin., J = 7.3 Hz, S = CS-CH 2 -CH 2- , 2H), 1.60 (s, -C (CH 3 ) 3 , 18H), 1.43 (sext., J = 7.3 Hz, -CH 2 -CH 2 -CH 3 , 2H), 0.94 (t, J = 7.3 Hz, -CH 2 -CH 3 , 13 C NMR (100 MHz, CDCl 3 ): δ (ppm) 223.1, 164.8, 136.2, 134.0, 132.8, 129.9, 81.9, 40.4, 37.1, 30.1, 28.1, 22.2, 13.7. ESI-MS (methanol with a trace amount of KI, positive mode): calcd. for [M + K] + , m / z = 495.11; found m / z = 495.15.
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
 式中、t-Buはtert-ブチル基を示す。TFAはトリフルオロ酢酸を示す。 In the formula, t-Bu represents a tert-butyl group. TFA indicates trifluoroacetic acid.
 化合物11(3.54 g, 7.75 mmol)のジクロロメタン溶液(15 mL)にトリフルオロ酢酸(TFA; 1.4 mL, 18.3 mmol)のジクロロメタン溶液(15 mL)を加え、窒素雰囲気下、室温で1.5時間撹拌した。生成した沈殿物をろ取し、漏斗上でヘキサン及び水で洗浄した。得られた粉末状固体を減圧下30℃で24時間乾燥させ、配位子化合物3(有機配位子3)を得た。収率94%。
1H NMR (400 MHz, DMSO-d6): δ (ppm) 13.6-13.0 (br, -COOH, 2H), 8.56 (d, J = 1.4 Hz, isophH, 1H), 8.17 (d, J = 1.4 Hz, isophH, 2H), 4.82 (s, benzyl, 2H), 3.38 (t, J = 7.3 Hz, S=C-S-CH2-, 2H), 1.61 (quin., J = 7.3 Hz, S=C-S-CH2-CH2-, 2H), 1.34 (sext., J = 7.3 Hz, -CH2-CH2-CH3, 2H), 0.86 (t, J = 7.3 Hz, -CH2-CH3, 3H). 13C NMR (100 MHz, DMSO-d6): δ (ppm) 223.3, 166.3, 137.4, 134.0, 131.5, 129.1, 39.0, 36.3, 29.6, 21.4, 13.4. ESI-MS (methanol, negative mode): calcd. for [M - H]-, m/z = 343.01; found m/z = 343.03。
A dichloromethane solution (15 mL) of trifluoroacetic acid (TFA; 1.4 mL, 18.3 mmol) was added to a dichloromethane solution (15 mL) of compound 11 (3.54 g, 7.75 mmol), and the mixture was stirred at room temperature for 1.5 hours under a nitrogen atmosphere. The formed precipitate was collected by filtration and washed with hexane and water on the funnel. The obtained powdered solid was dried under reduced pressure at 30 ° C. for 24 hours to obtain a ligand compound 3 (organic ligand 3). Yield 94%.
1 H NMR (400 MHz, DMSO-d 6 ): δ (ppm) 13.6-13.0 (br, -COOH, 2H), 8.56 (d, J = 1.4 Hz, isophH, 1H), 8.17 (d, J = 1.4 Hz, isophH, 2H), 4.82 (s, benzyl, 2H), 3.38 (t, J = 7.3 Hz, S = CS-CH 2- , 2H), 1.61 (quin., J = 7.3 Hz, S = CS- CH 2 -CH 2- , 2H), 1.34 (sext., J = 7.3 Hz, -CH 2 -CH 2 -CH 3 , 2H), 0.86 (t, J = 7.3 Hz, -CH 2 -CH 3 , 3H 13 C NMR (100 MHz, DMSO-d 6 ): δ (ppm) 223.3, 166.3, 137.4, 134.0, 131.5, 129.1, 39.0, 36.3, 29.6, 21.4, 13.4. ESI-MS (methanol, negative mode) : calcd. for [M-H] - , m / z = 343.01; found m / z = 343.03.
 合成例14:配位子化合物4(有機配位子4)の合成 Synthesis Example 14: Synthesis of ligand compound 4 (organic ligand 4)
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
 式中、t-Buはtert-ブチル基を示す。 In the formula, t-Bu represents a tert-butyl group.
 まず、カリウムプロパンジチオエートを、 原料にエチルマグネシウムブロミドを用い、文献(Kato, S.; Yamada, S.; Goto, H.; Terashima, K.; Mizuta, M.; Katada, T. Z. Naturforsch. B 1980, 35, 458-462)に準ずる方法で得た。
1H NMR (400 MHz, DMSO-d6): δ (ppm) 3.01 (q, J = 7.3 Hz, -CH2CH3, 2H), 1.25 (t, J = 7.3 Hz, -CH2CH3, 3H)。
First, using potassium propanedithioate and ethylmagnesium bromide as raw materials, the literature (Kato, S .; Yamada, S .; Goto, H .; Terashima, K .; Mizuta, M .; Katada, TZ Naturforsch. B 1980 , 35, 458-462).
1 H NMR (400 MHz, DMSO-d 6 ): δ (ppm) 3.01 (q, J = 7.3 Hz, -CH 2 CH 3 , 2H), 1.25 (t, J = 7.3 Hz, -CH 2 CH 3 , 3H).
 次に、合成例10で得た化合物8(150 mg, 0.40 mmol)のアセトン溶液(1.5 mL)にカリウムプロパンジチオエート(76 mg, 0.53 mmol)を加え、室温で1時間撹拌した。ロータリーエバポレーターで反応溶液を濃縮し乾固させた後、生成物をシリカゲルカラムクロマトグラフィーで精製し、減圧下40℃で16時間乾燥させ、目的化合物12を得た(収量154 mg、黄褐色固体、収率96%)。
1H NMR (400 MHz, CDCl3): δ (ppm) 8.46 (t, J = 1.4 Hz, isophH, 1H), 8.09 (d, J = 1.4 Hz, isophH, 2H), 4.52 (s, benzyl, 2H), 3.03 (q, J = 7.3 Hz, -CH2CH3, 2H), 1.60 (s, -C(CH3)3, 18H), 1.38 (t, J = 7.3 Hz, -CH2CH3, 3H)。
Next, potassium propanedithioate (76 mg, 0.53 mmol) was added to an acetone solution (1.5 mL) of compound 8 (150 mg, 0.40 mmol) obtained in Synthesis Example 10, and the mixture was stirred at room temperature for 1 hour. After the reaction solution was concentrated to dryness on a rotary evaporator, the product was purified by silica gel column chromatography and dried at 40 ° C. under reduced pressure for 16 hours to obtain the target compound 12 (yield 154 mg, tan solid, Yield 96%).
1 H NMR (400 MHz, CDCl 3 ): δ (ppm) 8.46 (t, J = 1.4 Hz, isophH, 1H), 8.09 (d, J = 1.4 Hz, isophH, 2H), 4.52 (s, benzyl, 2H ), 3.03 (q, J = 7.3 Hz, -CH 2 CH 3 , 2H), 1.60 (s, -C (CH 3 ) 3 , 18H), 1.38 (t, J = 7.3 Hz, -CH 2 CH 3 , 3H).
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
 式中、t-Buはtert-ブチル基を示す。TFAはトリフルオロ酢酸を示す。 In the formula, t-Bu represents a tert-butyl group. TFA indicates trifluoroacetic acid.
 化合物12(154 mg, 0.39 mmol)のジクロロメタン溶液(0.8 mL)にトリフルオロ酢酸(TFA; 0.39 mL, 5.0 mmol)のジクロロメタン溶液(0.8 mL)を加え、室温で1時間撹拌した。生成した沈殿物をろ取し、漏斗上で酢酸エチル/ヘキサン(1/50, v/v)の混合液で洗浄した。得られた粉末状固体を減圧下40℃で16時間乾燥させ、配位子化合物4(有機配位子4)を得た(収量87 mg、薄黄色固体、収率79%)。
1H NMR (400 MHz, DMSO-d6): δ (ppm) 13.4-13.2 (br, -COOH, 2H), 8.36 (t, J = 1.8 Hz, isophH, 1H), 8.15 (d, J = 1.8 Hz, isophH, 2H), 4.69 (s, benzyl, 2H), 3.03 (q, J = 7.3 Hz, -CH2CH3, 2H), 1.28 (t, J = 7.3 Hz, -CH2CH3, 3H)。
A dichloromethane solution (0.8 mL) of trifluoroacetic acid (TFA; 0.39 mL, 5.0 mmol) was added to a dichloromethane solution (0.8 mL) of compound 12 (154 mg, 0.39 mmol), and the mixture was stirred at room temperature for 1 hour. The formed precipitate was collected by filtration, and washed on the funnel with a mixture of ethyl acetate / hexane (1/50, v / v). The obtained powdery solid was dried under reduced pressure at 40 ° C. for 16 hours to obtain ligand compound 4 (organic ligand 4) (yield 87 mg, light yellow solid, yield 79%).
1 H NMR (400 MHz, DMSO-d 6 ): δ (ppm) 13.4-13.2 (br, -COOH, 2H), 8.36 (t, J = 1.8 Hz, isophH, 1H), 8.15 (d, J = 1.8 Hz, isophH, 2H), 4.69 (s, benzyl, 2H), 3.03 (q, J = 7.3 Hz, -CH 2 CH 3 , 2H), 1.28 (t, J = 7.3 Hz, -CH 2 CH 3 , 3H ).
 合成例15:配位子化合物5(有機配位子5)の合成 Synthesis Example 15: Synthesis of ligand compound 5 (organic ligand 5)
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
 式中、t-Buはtert-ブチル基を示す。 In the formula, t-Bu represents a tert-butyl group.
 合成例10で得た化合物8(4.0 g, 10.7 mmol)のアセトン溶液(80 mL)にジチオカルバミン酸ナトリウム三水和物(3.13 g, 13.9 mmol)を加え、室温で16時間撹拌した。反応溶液に80 mLの水を加え、ロータリーエバポレーターでアセトンを留去した後、残渣をジクロロメタン(40 mL×2回)で抽出した。抽出した有機相を硫酸マグネシウムで乾燥後、ロータリーエバポレーターで溶媒を減圧留去し、減圧下40℃で16時間乾燥させ、目的化合物13を得た(収量4.69 g、白色固体、収率99%)。
1H NMR (400 MHz, CDCl3): δ (ppm) 8.46 (t, J = 1.6 Hz, isophH, 1H), 8.16 (d, J = 1.6 Hz, isophH, 2H), 4.61 (s, benzyl, 2H), 4.04 (q, J =7.3 Hz, -N(CH2CH3)2, 2H), 3.73 (q, J = 7.3 Hz, -N(CH2CH3)2, 2H), 1.60 (s, -C(CH3)3, 18H), 1.29 (t, J = 7.3 Hz, -N(CH2CH3)2, 6H)。
Sodium dithiocarbamate trihydrate (3.13 g, 13.9 mmol) was added to an acetone solution (80 mL) of compound 8 (4.0 g, 10.7 mmol) obtained in Synthesis Example 10, and the mixture was stirred at room temperature for 16 hours. After adding 80 mL of water to the reaction solution and distilling off acetone with a rotary evaporator, the residue was extracted with dichloromethane (40 mL × 2 times). The extracted organic phase was dried over magnesium sulfate, and then the solvent was distilled off under reduced pressure using a rotary evaporator, followed by drying at 40 ° C. under reduced pressure for 16 hours to obtain the target compound 13 (yield 4.69 g, white solid, 99% yield). .
1 H NMR (400 MHz, CDCl 3 ): δ (ppm) 8.46 (t, J = 1.6 Hz, isophH, 1H), 8.16 (d, J = 1.6 Hz, isophH, 2H), 4.61 (s, benzyl, 2H ), 4.04 (q, J = 7.3 Hz, -N (CH 2 CH 3 ) 2 , 2H), 3.73 (q, J = 7.3 Hz, -N (CH 2 CH 3 ) 2 , 2H), 1.60 (s, -C (CH 3) 3, 18H ), 1.29 (t, J = 7.3 Hz, -N (CH 2 CH 3) 2, 6H).
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
 式中、t-Buはtert-ブチル基を示す。TFAはトリフルオロ酢酸を示す。 In the formula, t-Bu represents a tert-butyl group. TFA indicates trifluoroacetic acid.
 化合物13(4.69 g, 10.7 mmol)のジクロロメタン溶液(22 mL)にトリフルオロ酢酸(TFA; 11 mL, 144 mmol)のジクロロメタン溶液(11 mL)を加え、室温で1時間撹拌した。生成した沈殿物をろ取し、漏斗上で水およびジクロロメタンで洗浄した。得られた粉末状固体を減圧下80℃で16時間乾燥させ、配位子化合物5(有機配位子5)を得た(収量3.16 g、白色固体、収率91%)。
1H NMR (400 MHz, DMSO-d6): δ (ppm) 13.4-13.2 (br, -COOH, 2H), 8.35 (t, J = 1.8 Hz, isophH, 1H), 8.18 (d, J = 1.8 Hz, isophH, 2H), 4.71 (s, benzyl, 2H), 3.97 (q, J =7.3 Hz, -N(CH2CH3)2, 2H), 3.75 (q, J = 7.3 Hz, -N(CH2CH3)2, 2H), 1.21 (t, J = 7.3 Hz, -N(CH2CH3)2, 3H), 1.16 (t, J = 7.3 Hz, -N(CH2CH3)2, 3H)。
A dichloromethane solution (11 mL) of trifluoroacetic acid (TFA; 11 mL, 144 mmol) was added to a dichloromethane solution (22 mL) of compound 13 (4.69 g, 10.7 mmol), and the mixture was stirred at room temperature for 1 hour. The formed precipitate was collected by filtration and washed on the funnel with water and dichloromethane. The obtained powdery solid was dried at 80 ° C. under reduced pressure for 16 hours to obtain a ligand compound 5 (organic ligand 5) (yield 3.16 g, white solid, yield 91%).
1 H NMR (400 MHz, DMSO-d 6 ): δ (ppm) 13.4-13.2 (br, -COOH, 2H), 8.35 (t, J = 1.8 Hz, isophH, 1H), 8.18 (d, J = 1.8 Hz, isophH, 2H), 4.71 (s, benzyl, 2H), 3.97 (q, J = 7.3 Hz, -N (CH 2 CH 3 ) 2 , 2H), 3.75 (q, J = 7.3 Hz, -N ( CH 2 CH 3 ) 2 , 2H), 1.21 (t, J = 7.3 Hz, -N (CH 2 CH 3 ) 2 , 3H), 1.16 (t, J = 7.3 Hz, -N (CH 2 CH 3 ) 2 , 3H).
 合成例16:配位子化合物6(有機配位子6)の合成 Synthesis Example 16: Synthesis of ligand compound 6 (organic ligand 6)
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
 式中、t-Buはtert-ブチル基を示す。 In the formula, t-Bu represents a tert-butyl group.
 合成例10で得た化合物8(3.0 g, 8.1 mmol)のアセトン溶液(30 mL)にキサントゲン酸カリウム(1.68 g, 10.5 mmol)を加え、室温で3時間撹拌した。ロータリーエバポレーターで反応溶液を濃縮し乾固させた後、再び酢酸エチル(50 mL)へ溶解させ水で有機相を洗浄した(30 mL×2回)。有機相を硫酸マグネシウムで乾燥後、ロータリーエバポレーターで溶媒を減圧留去し、生成物をシリカゲルカラムクロマトグラフィーで精製した。生成物を減圧下40℃で16時間乾燥させ、目的化合物14を得た(収量3.24 g、薄黄色固体、収率97%)。
1H NMR (400 MHz, CDCl3): δ (ppm) 8.47 (t, J = 1.8 Hz, isophH, 1H), 8.12 (d, J = 1.8 Hz, isophH, 2H), 4.65 (q, J = 7.3 Hz, -OCH2CH3, 2H), 4.40 (s, benzyl, 2H), 1.60 (s, -C(CH3)3, 18H), 1.44 (t, J = 7.3 Hz, -OCH2CH3, 3H)。
Potassium xanthate (1.68 g, 10.5 mmol) was added to an acetone solution (30 mL) of compound 8 (3.0 g, 8.1 mmol) obtained in Synthesis Example 10, and the mixture was stirred at room temperature for 3 hours. The reaction solution was concentrated and dried with a rotary evaporator, and then dissolved again in ethyl acetate (50 mL), and the organic phase was washed with water (30 mL × 2 times). The organic phase was dried over magnesium sulfate, the solvent was distilled off under reduced pressure using a rotary evaporator, and the product was purified by silica gel column chromatography. The product was dried under reduced pressure at 40 ° C. for 16 hours to obtain the target compound 14 (yield 3.24 g, light yellow solid, yield 97%).
1 H NMR (400 MHz, CDCl 3 ): δ (ppm) 8.47 (t, J = 1.8 Hz, isophH, 1H), 8.12 (d, J = 1.8 Hz, isophH, 2H), 4.65 (q, J = 7.3 Hz, -OCH 2 CH 3 , 2H), 4.40 (s, benzyl, 2H), 1.60 (s, -C (CH 3 ) 3 , 18H), 1.44 (t, J = 7.3 Hz, -OCH 2 CH 3 , 3H).
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
 式中、t-Buはtert-ブチル基を示す。TFAはトリフルオロ酢酸を示す。 In the formula, t-Bu represents a tert-butyl group. TFA indicates trifluoroacetic acid.
 化合物14(158 mg, 0.38 mmol)のジクロロメタン溶液(0.77 mL)にトリフルオロ酢酸(TFA; 0.38 mL, 4.98 mmol)のジクロロメタン溶液(0.77 mL)を加え、室温で1時間撹拌した。生成した沈殿物をろ取し、漏斗上でヘキサン洗浄後、酢酸エチル/ヘキサン(1/30, v/v)の混合液で洗浄した。得られた粉末状固体を減圧下40℃で16時間乾燥させ、配位子化合物6(有機配位子6)を得た(収量98 mg、白色固体、収率85%)。
1H NMR (400 MHz, DMSO-d6): δ (ppm) 13.4-13.2 (br, -COOH, 2H), 8.36 (t, J = 1.8 Hz, isophH, 1H), 8.19 (d, J = 1.8 Hz, isophH, 2H), 4.60 (q, J = 7.3 Hz, -OCH2CH3, 2H), 4.53 (s, benzyl, 2H), 1.36 (t, J = 7.3 Hz, -OCH2CH3, 3H)。
A dichloromethane solution (0.77 mL) of trifluoroacetic acid (TFA; 0.38 mL, 4.98 mmol) was added to a dichloromethane solution (0.77 mL) of compound 14 (158 mg, 0.38 mmol), and the mixture was stirred at room temperature for 1 hour. The formed precipitate was collected by filtration, washed with hexane on the funnel, and then washed with a mixed solution of ethyl acetate / hexane (1/30, v / v). The obtained powdery solid was dried under reduced pressure at 40 ° C. for 16 hours to obtain ligand compound 6 (organic ligand 6) (yield 98 mg, white solid, yield 85%).
1 H NMR (400 MHz, DMSO-d 6 ): δ (ppm) 13.4-13.2 (br, -COOH, 2H), 8.36 (t, J = 1.8 Hz, isophH, 1H), 8.19 (d, J = 1.8 Hz, isophH, 2H), 4.60 (q, J = 7.3 Hz, -OCH 2 CH 3 , 2H), 4.53 (s, benzyl, 2H), 1.36 (t, J = 7.3 Hz, -OCH 2 CH 3 , 3H ).
 合成例17:配位子化合物7(有機配位子7)の合成 Synthesis Example 17: Synthesis of ligand compound 7 (organic ligand 7)
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069
 式中、t-Buはtert-ブチル基を示す。 In the formula, t-Bu represents a tert-butyl group.
 まず、カリウム2,5-ジメチルベンゼンカルボジチオエートを、 原料に2,5-ジメチルフェニルマグネシウムブロミドを用い、文献(Kato, S.; Yamada, S.; Goto, H.; Terashima, K.; Mizuta, M.; Katada, T. Z. Naturforsch. B 1980, 35, 458-462)に準ずる方法で得た。
1H NMR (400 MHz, DMSO-d6): δ (ppm) 6.82-6.79 (m, ArH, 1H), 6.72-6.68 (s, ArH, 2H), 2.18 (s, Ar-CH3, 6H)。
First, using potassium 2,5-dimethylbenzenecarbodithioate and 2,5-dimethylphenylmagnesium bromide as raw materials, the literature (Kato, S .; Yamada, S .; Goto, H .; Terashima, K .; Mizuta , M .; Katada, TZ Naturforsch. B 1980, 35, 458-462).
1 H NMR (400 MHz, DMSO-d 6 ): δ (ppm) 6.82-6.79 (m, ArH, 1H), 6.72-6.68 (s, ArH, 2H), 2.18 (s, Ar-CH 3 , 6H) .
 次に、合成例10で得た化合物8(2.25 g, 6.1 mmol)のアセトン溶液(40 mL)にカリウム2,5-ジメチルベンゼンカルボジチオエート(2.0 g, 9.1 mmol)を加え、室温で20時間撹拌した。ロータリーエバポレーターで反応溶液を濃縮し乾固させた後、再び酢酸エチル(50 mL)へ溶解させ水で有機相を洗浄した(30 mL×2回)。有機相を硫酸マグネシウムで乾燥後、ロータリーエバポレーターで溶媒を減圧留去し、生成物をシリカゲルカラムクロマトグラフィーで精製した。得られた黒褐色の生成物を冷ヘキサンへ懸濁させ洗浄後、ろ取して減圧下40℃で16時間乾燥させ、目的化合物15を得た(収量1.16 g、山吹色固体、収率40%)。
1H NMR (400 MHz, CDCl3): δ (ppm) 8.48 (t, J = 1.4 Hz, isophH, 1H), 8.14 (d, J = 1.4 Hz, isophH, 2H), 7.10-7.08 (m, ArH, 2H), 7.07-7.05 (m, ArH, 1H), 4.64 (s, benzyl, 2H), 2.31 (s, Ar-CH3, 6H), 1.61 (s, -C(CH3)3, 18H)。
Next, potassium 2,5-dimethylbenzenecarbodithioate (2.0 g, 9.1 mmol) was added to an acetone solution (40 mL) of compound 8 (2.25 g, 6.1 mmol) obtained in Synthesis Example 10, and the mixture was stirred at room temperature for 20 hours. Stir. The reaction solution was concentrated and dried with a rotary evaporator, and then dissolved again in ethyl acetate (50 mL), and the organic phase was washed with water (30 mL × 2 times). The organic phase was dried over magnesium sulfate, the solvent was distilled off under reduced pressure using a rotary evaporator, and the product was purified by silica gel column chromatography. The resulting black-brown product was suspended in cold hexane, washed, filtered, and dried under reduced pressure at 40 ° C. for 16 hours to obtain the target compound 15 (yield 1.16 g, bright yellow solid, 40% yield). ).
1 H NMR (400 MHz, CDCl 3 ): δ (ppm) 8.48 (t, J = 1.4 Hz, isophH, 1H), 8.14 (d, J = 1.4 Hz, isophH, 2H), 7.10-7.08 (m, ArH , 2H), 7.07-7.05 (m, ArH, 1H), 4.64 (s, benzyl, 2H), 2.31 (s, Ar-CH 3, 6H), 1.61 (s, -C (CH 3) 3, 18H) .
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000070
 式中、t-Buはtert-ブチル基を示す。TFAはトリフルオロ酢酸を示す。 In the formula, t-Bu represents a tert-butyl group. TFA indicates trifluoroacetic acid.
 化合物15(2.34 g, 4.95 mmol)のジクロロメタン溶液(13 mL)にトリフルオロ酢酸(TFA; 0.95 mL, 12.4 mmol)のジクロロメタン溶液(10 mL)を加え、室温で3時間撹拌した。生成した沈殿物をろ取し、漏斗上で水、及び酢酸エチル/ヘキサン(1/30, v/v)の混合液で洗浄した。得られた粉末状固体を減圧下40℃で16時間乾燥させ、配位子化合物7(有機配位子7)を得た(収量1.7 g、山吹色固体、収率96%)。
1H NMR (400 MHz, DMSO-d6): δ (ppm) 13.0-13.6 (br, -COOH, 2H), 8.38 (t, J = 1.8 Hz, isophH, 1H), 8.22 (d, J = 1.8 Hz, isophH, 2H), 7.16-7.12 (m, ArH, 2H), 7.03-6.98 (m, ArH, 1H), 4.81 (s, benzyl, 2H), 2.27 (s, Ar-CH3, 3H), 2.20 (s, -CH3, 3H)。
A dichloromethane solution (10 mL) of trifluoroacetic acid (TFA; 0.95 mL, 12.4 mmol) was added to a dichloromethane solution (13 mL) of compound 15 (2.34 g, 4.95 mmol), and the mixture was stirred at room temperature for 3 hours. The formed precipitate was collected by filtration, and washed on the funnel with water and a mixed solution of ethyl acetate / hexane (1/30, v / v). The obtained powdery solid was dried at 40 ° C. under reduced pressure for 16 hours to obtain a ligand compound 7 (organic ligand 7) (yield 1.7 g, bright yellow solid, yield 96%).
1 H NMR (400 MHz, DMSO-d 6 ): δ (ppm) 13.0-13.6 (br, -COOH, 2H), 8.38 (t, J = 1.8 Hz, isophH, 1H), 8.22 (d, J = 1.8 Hz, isophH, 2H), 7.16-7.12 (m, ArH, 2H), 7.03-6.98 (m, ArH, 1H), 4.81 (s, benzyl, 2H), 2.27 (s, Ar-CH 3 , 3H), 2.20 (s, -CH 3 , 3H).
 合成例18:有機金属多面体MOP2の合成 Synthesis Example 18: Synthesis of organometallic polyhedral MOP2
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000071
 式中、Cu(OAc)2・H2Oは酢酸銅一水和物を示す。NMPはN-メチルピロリドンを示す。 In the formula, Cu (OAc) 2 .H 2 O represents copper acetate monohydrate. NMP represents N-methylpyrrolidone.
 原料として合成例13で得た配位子化合物3(有機配位子3)を用い、溶媒としてN-メチルピロリドンを用いたこと以外は合成例2と同様の手法で、有機金属多面体MOP2を得た。 An organometallic polyhedral MOP2 was obtained in the same manner as in Synthesis Example 2, except that the ligand compound 3 (organic ligand 3) obtained in Synthesis Example 13 was used as a raw material and N-methylpyrrolidone was used as a solvent. It was.
 実施例11:ポリマー鎖導入有機金属多面体の合成 Example 11: Synthesis of polymer chain-introduced organometallic polyhedra
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000072
 原料として合成例18で得たMOP2を用い、モノマー化合物としてtert-ブチルアクリレートを用い、溶媒としてテトラヒドロフランを用い、反応時間を15分としたこと以外は実施例1と同様の手法で、高分子グラフトMOP(MOP2-graft-PtBA39)を得た。また、この高分子グラフトMOPも、溶剤可溶性が高いため、塗布及び乾燥によりフィルムを製造することができる。 Polymer grafting was carried out in the same manner as in Example 1, except that MOP2 obtained in Synthesis Example 18 was used as the raw material, tert-butyl acrylate was used as the monomer compound, tetrahydrofuran was used as the solvent, and the reaction time was 15 minutes. MOP (MOP2-graft-PtBA39) was obtained. In addition, since this polymer graft MOP is also highly soluble in a solvent, a film can be produced by coating and drying.
 実施例12
 実施例11の反応時間を45分としたこと以外は同様に、高分子グラフトMOPを得た。
Example 12
A polymer graft MOP was obtained in the same manner except that the reaction time in Example 11 was 45 minutes.
 実施例13
 実施例11の反応時間を75分としたこと以外は同様に、高分子グラフトMOPを得た。
Example 13
A polymer graft MOP was obtained in the same manner except that the reaction time in Example 11 was 75 minutes.
 実施例14
 実施例11の反応時間を105分としたこと以外は同様に、高分子グラフトMOPを得た。
Example 14
A polymer graft MOP was obtained in the same manner except that the reaction time in Example 11 was changed to 105 minutes.
 実施例15
 実施例11の反応時間を135分としたこと以外は同様に、高分子グラフトMOPを得た。
Example 15
A polymer graft MOP was obtained in the same manner except that the reaction time in Example 11 was 135 minutes.
 合成例19~23:ポリマー鎖導入有機金属多面体の分解
 実施例1で得られた高分子グラフトMOPの代わりに実施例11~15で得られた高分子グラフトMOPを用いたこと以外は合成例3と同様の処理を行い、配位子化合物2にアクリル酸tert-ブチルが重合した構造をもつ有機配位子を得たことを確認した。
Synthesis Examples 19 to 23: Decomposition of polymer chain-introduced organometallic polyhedra Synthesis Example 3 except that the polymer graft MOP obtained in Examples 11 to 15 was used instead of the polymer graft MOP obtained in Example 1 It was confirmed that an organic ligand having a structure in which tert-butyl acrylate was polymerized to the ligand compound 2 was obtained.
 試験例6:ゲルパーミエーションクロマトグラフィー(GPC)測定(その3)
 測定機器として、
測定装置:島津製作所製 HPLC Prominence (送液ポンプ:LC-20AD、オートサンプラ:SIL-20A、カラムオーブン:CTO-20AC
検出器:RI(示差屈折)検出器(RID-10A)
使用カラム:Shodex社製 KF-804L 2本
カラム温度:40℃
移動相と流速:テトラヒドロフラン 1mL/min
を使用した。
Test Example 6: Gel permeation chromatography (GPC) measurement (Part 3)
As a measuring instrument,
Measuring equipment: HPLC Prominence manufactured by Shimadzu Corporation (Liquid feeding pump: LC-20AD, Autosampler: SIL-20A, Column oven: CTO-20AC
Detector: RI (differential refraction) detector (RID-10A)
Column used: Shodex KF-804L 2 Column temperature: 40 ° C
Mobile phase and flow rate: Tetrahydrofuran 1mL / min
It was used.
 実施例11~15及び合成例18~23で得た化合物のGPC測定を行い、各化合物の分子量(数平均分子量)の測定を行った。結果を図9に示す。実施例1に準ずる方法で、実施例11~15ではtert-ブチルアクリレートモノマーとMOP2を反応させ、GPC測定を行った。その結果、いずれも、合成例18で得たMOP2(数平均分子量5090 g/mol)と比較し、ポリマー鎖が導入されていることにより、実施例11(数平均分子量6500 g/mol)、実施例12(数平均分子量18000 g/mol)、実施例13(数平均分子量30700 g/mol)、実施例14(数平均分子量46800 g/mol)、実施例15(数平均分子量59200 g/mol)と、いずれも分子量が増大していることが理解できる。また、上記のとおり、有機金属多面体に対してPMDETAを作用させると有機配位子1本ずつ分解できるところ、合成例19~23で得た化合物は、高分子グラフトMOPの有機配位子を1本ずつ分解したものであり、当初の配位子化合物3(有機配位子3)にポリマー鎖が導入されたものであるため、配位子化合物3(有機配位子3)と比較すると、合成例19(数平均分子量880 g/mol)、合成例20(数平均分子量2030 g/mol)、合成例21(数平均分子量3080 g/mol)、合成例22(数平均分子量4500 g/mol)、合成例23(数平均分子量5800 g/mol)と分子量が大きかった。また、ピーク幅が狭いことから、高分子グラフトMOPを構成する有機配位子には、いずれも同程度のポリマー鎖が導入されていることも理解できる。 GPC measurement of the compounds obtained in Examples 11 to 15 and Synthesis Examples 18 to 23 was performed, and the molecular weight (number average molecular weight) of each compound was measured. The results are shown in FIG. In the same manner as in Example 1, in Examples 11 to 15, tert-butyl acrylate monomer and MOP2 were reacted and GPC measurement was performed. As a result, in comparison with MOP2 obtained in Synthesis Example 18 (number average molecular weight 5090 g / mol), Example 11 (number average molecular weight 6500 g / mol) was carried out by introducing a polymer chain. Example 12 (number average molecular weight 18000 g / mol), Example 13 (number average molecular weight 30700 g / mol), Example 14 (number average molecular weight 46800 g / mol), Example 15 (number average molecular weight 59200 g / mol) It can be understood that both increase in molecular weight. In addition, as described above, when PMDETA is allowed to act on the organometallic polyhedron, the organic ligands can be decomposed one by one. The compounds obtained in Synthesis Examples 19 to 23 are the organic ligands of the polymer graft MOP. Since it was decomposed one by one and a polymer chain was introduced into the original ligand compound 3 (organic ligand 3), compared with ligand compound 3 (organic ligand 3), Synthesis example 19 (number average molecular weight 880 g / mol), synthesis example 20 (number average molecular weight 2030 g / mol), synthesis example 21 (number average molecular weight 3080 g / mol), synthesis example 22 (number average molecular weight 4500 g / mol) ), Synthesis Example 23 (number average molecular weight 5800 g / mol) and molecular weight were large. In addition, since the peak width is narrow, it can be understood that the same degree of polymer chain is introduced into the organic ligand constituting the polymer graft MOP.
 また、これらの結果から、重合反応時間とモノマー転化率のプロットを図10(a)に、モノマー転化率とMOP数平均分子量のプロットを図10(b)(●:数平均分子量、■:分子量分散(Mw/Mn))に、モノマー転化率と分解した有機配位子の数平均分子量のプロットを図10(c)(●:数平均分子量、■:分子量分散(Mw/Mn))に、それぞれ示す。図10(b)からも理解できるように、モノマー転化率が増える(重合が進む)にしたがい、分子量が線形に大きくなり、且つ、分子量分散が常に1に近い状態であるため、反応がリビング機構で進行していることが示唆される。 From these results, a plot of the polymerization reaction time and the monomer conversion rate is shown in FIG. 10 (a), and a plot of the monomer conversion rate and the MOP number average molecular weight is shown in FIG. 10 (b) (●: number average molecular weight, ■: molecular weight. In the dispersion (Mw / Mn)), the monomer conversion rate and the number average molecular weight of the decomposed organic ligand are plotted in FIG. 10 (c) (●: number average molecular weight, ■: molecular weight dispersion (Mw / Mn)). Each is shown. As can be seen from FIG. 10 (b), as the monomer conversion increases (polymerization proceeds), the molecular weight increases linearly and the molecular weight dispersion is always close to 1, so the reaction is a living mechanism. It is suggested that it is progressing.
 実施例16
 配位子化合物(有機配位子)として、配位子化合物1及び3(有機配位子1及び3)の代わりに、合成例12で得た配位子化合物2(有機配位子2)を用いたこと以外は実施例1と同様の処理を行い、高分子グラフトMOPを得た。また、この方法によっても高分子グラフトMOPが得られたことを確認した。また、この高分子グラフトMOPも、溶剤可溶性が高いため、塗布及び乾燥によりフィルムを製造することができる。
Example 16
Ligand compound 2 (organic ligand 2) obtained in Synthesis Example 12 instead of ligand compounds 1 and 3 (organic ligands 1 and 3) as the ligand compound (organic ligand) A polymer graft MOP was obtained in the same manner as in Example 1 except that was used. It was also confirmed that polymer graft MOP was obtained by this method. In addition, since this polymer graft MOP is also highly soluble in a solvent, a film can be produced by coating and drying.
 また、配位子化合物(有機配位子)として、配位子化合物1及び3(有機配位子1及び3)の代わりに、合成例14で得た配位子化合物4(有機配位子4)、合成例15で得た配位子化合物5(有機配位子4)、合成例16で得た配位子化合物6(有機配位子6)、合成例17で得た配位子化合物7(有機配位子7)等を使用した場合にも、同様の結果が得られることが期待される。 In addition, as a ligand compound (organic ligand), instead of ligand compounds 1 and 3 (organic ligands 1 and 3), ligand compound 4 (organic ligand) obtained in Synthesis Example 14 4), ligand compound 5 obtained in Synthesis Example 15 (organic ligand 4), ligand compound 6 obtained in Synthesis Example 16 (organic ligand 6), ligand obtained in Synthesis Example 17 Similar results are expected to be obtained when compound 7 (organic ligand 7) or the like is used.

Claims (22)

  1. 一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    [式中、mは1~3の整数を示す。X1は硫黄原子、酸素原子、窒素原子、炭素原子、置換されていてもよい芳香族炭化水素基又は置換されていてもよい複素芳香族基を示す。X2は単結合又は2価の連結基を示す。R1は、水素原子、又は置換されていてもよいアルキル基を示す。mが2以上の場合、R1は同一でも異なっていてもよい。R2
    Figure JPOXMLDOC01-appb-C000002
    で表される基を示す。Yは芳香族炭化水素環又は複素芳香環を示す。]
    で表される配位子化合物。
    General formula (1):
    Figure JPOXMLDOC01-appb-C000001
    [Wherein, m represents an integer of 1 to 3. X 1 represents a sulfur atom, an oxygen atom, a nitrogen atom, a carbon atom, an optionally substituted aromatic hydrocarbon group or an optionally substituted heteroaromatic group. X 2 represents a single bond or a divalent linking group. R 1 represents a hydrogen atom or an optionally substituted alkyl group. When m is 2 or more, R 1 may be the same or different. R 2 is
    Figure JPOXMLDOC01-appb-C000002
    The group represented by these is shown. Y represents an aromatic hydrocarbon ring or a heteroaromatic ring. ]
    A ligand compound represented by:
  2. 前記R2が、
    Figure JPOXMLDOC01-appb-C000003
    で表される基である、請求項1に記載の配位子化合物。
    R 2 is
    Figure JPOXMLDOC01-appb-C000003
    The ligand compound of Claim 1 which is group represented by these.
  3. 前記X2が、一般式(2):
    Figure JPOXMLDOC01-appb-C000004
    [式中、R3は水素原子又は置換されていてもよいアルキル基を示す。R4は水素原子、置換されていてもよいアルキル基又はシアノ基を示す。X3は単結合、置換されていてもよいアルキレン基、又は-R5-COO-(R5は置換されていてもよいアルキレン基を示す)で表される基を示す。]
    で表される基である、請求項1又は2に記載の配位子化合物。
    X 2 represents the general formula (2):
    Figure JPOXMLDOC01-appb-C000004
    [Wherein R 3 represents a hydrogen atom or an optionally substituted alkyl group. R 4 represents a hydrogen atom, an optionally substituted alkyl group or a cyano group. X 3 represents a single bond, an optionally substituted alkylene group, or a group represented by —R 5 —COO— (R 5 represents an optionally substituted alkylene group). ]
    The ligand compound of Claim 1 or 2 which is group represented by these.
  4. 前記一般式(3)におけるYが、ベンゼン環、ナフタレン環、ピリジン環、ピロール環、若しくはチオフェン環からなる単環、又は前記単環に1個又は2個以上のベンゼン環が縮合した縮合環であり、
    前記単環又は縮合環とCOO基との結合中に、一般式(6):
    Figure JPOXMLDOC01-appb-C000005
    [式中、R8は同一又は異なって、炭素原子又は窒素原子を示す。R9は置換されていてもよい2価の芳香族炭化水素基を示す。kは0~2の整数を示す。]
    で表される基が含まれていてもよい、請求項1~3のいずれかに記載の配位子化合物。
    Y in the general formula (3) is a single ring composed of a benzene ring, naphthalene ring, pyridine ring, pyrrole ring, or thiophene ring, or a condensed ring in which one or two or more benzene rings are condensed to the single ring. Yes,
    Said monocyclic or condensed and COO - in the binding of the group, the general formula (6):
    Figure JPOXMLDOC01-appb-C000005
    [Wherein R 8 is the same or different and represents a carbon atom or a nitrogen atom. R 9 represents a divalent aromatic hydrocarbon group which may be substituted. k represents an integer of 0-2. ]
    The ligand compound according to any one of claims 1 to 3, which may contain a group represented by:
  5. 2価以上の金属イオンと、一般式(3):
    Figure JPOXMLDOC01-appb-C000006
    [式中、mは1~3の整数を示す。X1は硫黄原子、酸素原子、窒素原子、炭素原子、置換されていてもよい芳香族炭化水素基又は置換されていてもよい複素芳香族基を示す。X2は単結合又は2価の連結基を示す。R1は、水素原子、又は置換されていてもよいアルキル基を示す。mが2以上の場合、R1は同一でも異なっていてもよい。R2
    Figure JPOXMLDOC01-appb-C000007
    で表される基を示す。Yは芳香族炭化水素環又は複素芳香環を示す。Zは同一又は異なって、置換されていてもよいエチレン鎖を示す。nは5~20000の整数を示す。]
    で表される有機配位子とを含有し、且つ、該金属イオンと該有機配位子とが交互に配位結合されている、単孔性又は多孔性配位高分子。
    Bivalent or higher metal ions and general formula (3):
    Figure JPOXMLDOC01-appb-C000006
    [Wherein, m represents an integer of 1 to 3. X 1 represents a sulfur atom, an oxygen atom, a nitrogen atom, a carbon atom, an optionally substituted aromatic hydrocarbon group or an optionally substituted heteroaromatic group. X 2 represents a single bond or a divalent linking group. R 1 represents a hydrogen atom or an optionally substituted alkyl group. When m is 2 or more, R 1 may be the same or different. R 2 is
    Figure JPOXMLDOC01-appb-C000007
    The group represented by these is shown. Y represents an aromatic hydrocarbon ring or a heteroaromatic ring. Z is the same or different and represents an optionally substituted ethylene chain. n represents an integer of 5 to 20000. ]
    A monoporous or porous coordination polymer comprising an organic ligand represented by the formula (1) and wherein the metal ion and the organic ligand are alternately coordinated.
  6. 前記R2が、
    Figure JPOXMLDOC01-appb-C000008
    で表される基である、請求項5に記載の単孔性又は多孔性配位高分子。
    R 2 is
    Figure JPOXMLDOC01-appb-C000008
    The monoporous or porous coordination polymer according to claim 5, which is a group represented by:
  7. 前記X2が、一般式(2):
    Figure JPOXMLDOC01-appb-C000009
    [式中、R3は水素原子又は置換されていてもよいアルキル基を示す。R4は水素原子、置換されていてもよいアルキル基又はシアノ基を示す。X3は単結合、置換されていてもよいアルキレン基、又は-R5-COO-(R5は置換されていてもよいアルキレン基を示す)で表される基を示す。]
    で表される基である、請求項5又は6に記載の単孔性又は多孔性配位高分子。
    X 2 represents the general formula (2):
    Figure JPOXMLDOC01-appb-C000009
    [Wherein R 3 represents a hydrogen atom or an optionally substituted alkyl group. R 4 represents a hydrogen atom, an optionally substituted alkyl group or a cyano group. X 3 represents a single bond, an optionally substituted alkylene group, or a group represented by —R 5 —COO— (R 5 represents an optionally substituted alkylene group). ]
    The monoporous or porous coordination polymer according to claim 5 or 6, which is a group represented by the formula:
  8. 前記Zが、一般式(4):
    Figure JPOXMLDOC01-appb-C000010
    [式中、R6は水素原子又は置換されていてもよいアルキル基を示す。R7は水酸基、置換されていてもよいカルボキシ基、置換されていてもよいアシルオキシ基、置換されていてもよいカルバモイル基、置換されていてもよいアリール基、又は置換されていてもよいヘテロアリール基を示す。]
    で表される鎖である、請求項5~7のいずれかに記載の単孔性又は多孔性配位高分子。
    Said Z is the general formula (4):
    Figure JPOXMLDOC01-appb-C000010
    [Wherein R 6 represents a hydrogen atom or an optionally substituted alkyl group. R 7 is a hydroxyl group, an optionally substituted carboxy group, an optionally substituted acyloxy group, an optionally substituted carbamoyl group, an optionally substituted aryl group, or an optionally substituted heteroaryl Indicates a group. ]
    The monoporous or porous coordination polymer according to any one of claims 5 to 7, which is a chain represented by
  9. 前記金属イオンと、前記有機配位子とからなる、請求項5~8のいずれかに記載の単孔性又は多孔性配位高分子。 The monoporous or porous coordination polymer according to any one of claims 5 to 8, comprising the metal ion and the organic ligand.
  10. 前記金属イオンを4個以上含有し、且つ、前記有機配位子を4個以上含有する、請求項5~9のいずれかに記載の単孔性又は多孔性配位高分子。 The monoporous or porous coordination polymer according to any one of claims 5 to 9, comprising 4 or more metal ions and 4 or more organic ligands.
  11. 記金属イオンが2価の金属イオンである、請求項5~10のいずれかに記載の単孔性又は多孔性配位高分子。 The monoporous or porous coordination polymer according to any one of claims 5 to 10, wherein the metal ion is a divalent metal ion.
  12. 前記金属イオンが遷移金属イオンである、請求項5~11のいずれかに記載の単孔性又は多孔性配位高分子。 The monoporous or porous coordination polymer according to any one of claims 5 to 11, wherein the metal ion is a transition metal ion.
  13. 前記金属イオンが、銅イオン、亜鉛イオン、コバルトイオン、カドミウムイオン、ロジウムイオン、カルシウムイオン、マグネシウムイオン、マンガンイオン、ニッケルイオン、パラジウムイオン、ランタンイオン、及びジルコニウムイオンよりなる群から選ばれる少なくとも1種である、請求項5~12のいずれかに記載の単孔性又は多孔性配位高分子。 The metal ion is at least one selected from the group consisting of copper ion, zinc ion, cobalt ion, cadmium ion, rhodium ion, calcium ion, magnesium ion, manganese ion, nickel ion, palladium ion, lanthanum ion, and zirconium ion. The monoporous or porous coordination polymer according to any one of claims 5 to 12, wherein
  14. 前記一般式(3)におけるYが、ベンゼン環、ナフタレン環、ピリジン環、ピロール環、若しくはチオフェン環からなる単環、又は前記単環に1個又は2個以上のベンゼン環が縮合した縮合環であり、
    前記単環又は縮合環とCOO基との結合中に、一般式(6):
    Figure JPOXMLDOC01-appb-C000011
    [式中、R8は同一又は異なって、炭素原子又は窒素原子を示す。R9は置換されていてもよい2価の芳香族炭化水素基を示す。kは0~2の整数を示す。]
    で表される基が含まれていてもよい、請求項5~13のいずれかに記載の単孔性又は多孔性配位高分子。
    Y in the general formula (3) is a single ring composed of a benzene ring, naphthalene ring, pyridine ring, pyrrole ring, or thiophene ring, or a condensed ring in which one or two or more benzene rings are condensed to the single ring. Yes,
    Said monocyclic or condensed and COO - in the binding of the group, the general formula (6):
    Figure JPOXMLDOC01-appb-C000011
    [Wherein R 8 is the same or different and represents a carbon atom or a nitrogen atom. R 9 represents a divalent aromatic hydrocarbon group which may be substituted. k represents an integer of 0-2. ]
    The monoporous or porous coordination polymer according to any one of claims 5 to 13, which may contain a group represented by:
  15. 有機金属多面体である、請求項5~14のいずれかに記載の単孔性又は多孔性配位高分子。 The monoporous or porous coordination polymer according to any one of claims 5 to 14, which is an organometallic polyhedron.
  16. 平均直径が2 nm~100 nmである、請求項15に記載の単孔性又は多孔性配位高分子。 The monoporous or porous coordination polymer according to claim 15, having an average diameter of 2 nm to 100 nm.
  17. 内部に平均直径が2 nm以下の孔を1個有する、請求項15又は16に記載の単孔性又は多孔性配位高分子。 The monoporous or porous coordination polymer according to claim 15 or 16, which has one pore having an average diameter of 2 nm or less inside.
  18. ポリマー鎖が導入された有機金属多面体の製造方法であって、
    有機金属多面体と、モノマー化合物とを用いて、可逆的付加開裂連鎖移動重合を施す工程
    を備え、
    前記有機金属多面体は、2価以上の金属イオンと、一般式(5):
    Figure JPOXMLDOC01-appb-C000012
    [式中、mは1~3の整数を示す。X1は硫黄原子、酸素原子、窒素原子、炭素原子、置換されていてもよい芳香族炭化水素基又は置換されていてもよい複素芳香族基を示す。X2は単結合又は2価の連結基を示す。R1は、水素原子、又は置換されていてもよいアルキル基を示す。mが2以上の場合、R1は同一でも異なっていてもよい。R2
    Figure JPOXMLDOC01-appb-C000013
    で表される基を示す。Yは芳香族炭化水素環又は複素芳香環を示す。]
    で表される有機配位子とを含有し、且つ、該金属イオンと該有機配位子とが交互に配位結合されている、製造方法。
    A method for producing an organometallic polyhedron having polymer chains introduced therein,
    Using an organometallic polyhedron and a monomer compound, and a step of performing reversible addition-fragmentation chain transfer polymerization,
    The organometallic polyhedron has a divalent or higher valent metal ion and a general formula (5):
    Figure JPOXMLDOC01-appb-C000012
    [Wherein, m represents an integer of 1 to 3. X 1 represents a sulfur atom, an oxygen atom, a nitrogen atom, a carbon atom, an optionally substituted aromatic hydrocarbon group or an optionally substituted heteroaromatic group. X 2 represents a single bond or a divalent linking group. R 1 represents a hydrogen atom or an optionally substituted alkyl group. When m is 2 or more, R 1 may be the same or different. R 2 is
    Figure JPOXMLDOC01-appb-C000013
    The group represented by these is shown. Y represents an aromatic hydrocarbon ring or a heteroaromatic ring. ]
    And a metal ion and the organic ligand are alternately coordinate-bonded to each other.
  19. 請求項5~17のいずれかに記載の単孔性又は多孔性配位高分子からなる物質の吸着及び/又は分離材料。 A material for adsorbing and / or separating a substance comprising the monoporous or porous coordination polymer according to any one of claims 5 to 17.
  20. ガス及び/又はイオンの吸着材料、並びにガス及び/又はイオンの分離材料よりなる群から選ばれる少なくとも1種である、請求項19に記載の物質の吸着及び/又は分離材料。 The material for adsorbing and / or separating a substance according to claim 19, which is at least one selected from the group consisting of a gas and / or ion adsorbing material and a gas and / or ion separating material.
  21. 請求項5~17のいずれかに記載の単孔性又は多孔性配位高分子、又は請求項19若しくは20に記載の物質の吸着及び/又は分離材料を含有する、物質分離膜。 A substance separation membrane comprising the monoporous or porous coordination polymer according to any one of claims 5 to 17, or the substance adsorption and / or separation material according to claim 19 or 20.
  22. ガス及び/又はイオン分離膜である、請求項21に記載の物質分離膜。 The substance separation membrane according to claim 21, which is a gas and / or ion separation membrane.
PCT/JP2016/057669 2015-03-10 2016-03-10 Ligand compound, and single-hole or multi-hole coordination polymer obtained using same WO2016143876A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017505410A JPWO2016143876A1 (en) 2015-03-10 2016-03-10 Ligand compound and monoporous or porous coordination polymer using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015047768 2015-03-10
JP2015-047768 2015-03-10

Publications (1)

Publication Number Publication Date
WO2016143876A1 true WO2016143876A1 (en) 2016-09-15

Family

ID=56879815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057669 WO2016143876A1 (en) 2015-03-10 2016-03-10 Ligand compound, and single-hole or multi-hole coordination polymer obtained using same

Country Status (2)

Country Link
JP (1) JPWO2016143876A1 (en)
WO (1) WO2016143876A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017104724A1 (en) * 2015-12-14 2017-06-22 国立大学法人京都大学 Star polymer
CN110975940A (en) * 2019-12-12 2020-04-10 万华化学集团股份有限公司 Composite metal photocatalysis system and preparation method and application thereof
CN111939771A (en) * 2020-07-01 2020-11-17 华南理工大学 Polystyrene-metal organic polyhedron with oriented structure and preparation method and application thereof
CN114213575A (en) * 2021-12-15 2022-03-22 华南理工大学 Metal-organic coordination polymer and preparation method and application thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH063869A (en) * 1992-06-23 1994-01-14 Fuji Photo Film Co Ltd Liquid developer for elctrostatic image
WO2007054581A2 (en) * 2005-11-14 2007-05-18 Basf Se Porous organo-metallic skeleton material containing an additional polymer
WO2007102501A1 (en) * 2006-03-09 2007-09-13 The University Of Tokyo Polymerizable spherical transition metal complexes, spherical transition metal complexes, and processes for the production of both
WO2008082087A1 (en) * 2007-01-03 2008-07-10 Insilicotech Co., Ltd Coordination polymer crystal with porous metal-organic frameworks and preperation method thereof
JP2011529789A (en) * 2008-08-05 2011-12-15 ポリマーズ シーアールシー リミテッド Functionalized thin film polyamide film
WO2015012373A1 (en) * 2013-07-26 2015-01-29 国立大学法人京都大学 Pcp complex
JP2015136697A (en) * 2014-01-20 2015-07-30 中原大學 Method for removing impurity ion from liquid crystal material
WO2015170506A1 (en) * 2014-05-08 2015-11-12 国立大学法人北海道大学 Metal-organic framework/stimulus-responsive polymer composite capable of controlling release of guest

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH063869A (en) * 1992-06-23 1994-01-14 Fuji Photo Film Co Ltd Liquid developer for elctrostatic image
WO2007054581A2 (en) * 2005-11-14 2007-05-18 Basf Se Porous organo-metallic skeleton material containing an additional polymer
WO2007102501A1 (en) * 2006-03-09 2007-09-13 The University Of Tokyo Polymerizable spherical transition metal complexes, spherical transition metal complexes, and processes for the production of both
WO2008082087A1 (en) * 2007-01-03 2008-07-10 Insilicotech Co., Ltd Coordination polymer crystal with porous metal-organic frameworks and preperation method thereof
JP2011529789A (en) * 2008-08-05 2011-12-15 ポリマーズ シーアールシー リミテッド Functionalized thin film polyamide film
WO2015012373A1 (en) * 2013-07-26 2015-01-29 国立大学法人京都大学 Pcp complex
JP2015136697A (en) * 2014-01-20 2015-07-30 中原大學 Method for removing impurity ion from liquid crystal material
WO2015170506A1 (en) * 2014-05-08 2015-11-12 国立大学法人北海道大学 Metal-organic framework/stimulus-responsive polymer composite capable of controlling release of guest

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HOSONO NOBUHIKO ET AL.: "Polymer Grafted Metal- Organic Polyhedra", DAI 95 ANNUAL MEETING OF THE CHEMICAL SOCIETY OF JAPAN IN SPRING KOEN YOKOSHU III, pages 777, ISSN: 0285-7626 *
SHU XIAOWEN ET AL.: "Determination of trace uranyl ion by thermoresponsive porphyrin- terminated polymeric sensor", TALANTA, vol. 131, pages 198 - 204, XP029050236, ISSN: 0039-9140, [retrieved on 20150000] *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017104724A1 (en) * 2015-12-14 2017-06-22 国立大学法人京都大学 Star polymer
CN110975940A (en) * 2019-12-12 2020-04-10 万华化学集团股份有限公司 Composite metal photocatalysis system and preparation method and application thereof
CN110975940B (en) * 2019-12-12 2022-09-20 万华化学集团股份有限公司 Composite metal photocatalysis system and preparation method and application thereof
CN111939771A (en) * 2020-07-01 2020-11-17 华南理工大学 Polystyrene-metal organic polyhedron with oriented structure and preparation method and application thereof
CN111939771B (en) * 2020-07-01 2022-03-25 华南理工大学 Polystyrene-metal organic polyhedron with oriented structure and preparation method and application thereof
CN114213575A (en) * 2021-12-15 2022-03-22 华南理工大学 Metal-organic coordination polymer and preparation method and application thereof
CN114213575B (en) * 2021-12-15 2022-12-16 华南理工大学 Metal-organic coordination polymer and preparation method and application thereof

Also Published As

Publication number Publication date
JPWO2016143876A1 (en) 2017-12-28

Similar Documents

Publication Publication Date Title
Lee et al. Toward ultimate control of radical polymerization: functionalized metal–organic frameworks as a robust environment for metal-catalyzed polymerizations
WO2016143876A1 (en) Ligand compound, and single-hole or multi-hole coordination polymer obtained using same
CN102702536B (en) Synthetic method of triblock polymer
Mishra et al. Thermoresponsive ureido-derivatized polymers: the effect of quaternization on UCST properties
WO2018159791A1 (en) Host-group-containing polymerizable monomer, polymer material, method for producing same, and clathrate compound and method for producing same
US8247498B2 (en) Star polymer and method for producing the same
Feng et al. Preparation and properties of optically active poly (N-methacryloyl L-leucine methyl ester)
Jiang et al. The first amphiphilic graft copolymer bearing a hydrophilic poly (2-hydroxylethyl acrylate) backbone synthesized by successive RAFT and ATRP
WO2016148890A1 (en) Method of additive manufacturing using photoregulated radical polymerization
KR20160142328A (en) Regulation of a controlled radical polymerization of acrylates by light
Audouin et al. Structured hybrid nanoparticles via surface‐initiated ATRP of methyl methacrylate from ordered mesoporous silica
Jin et al. Dynamic polymer brushes on the surface of silica particles
JP5798396B2 (en) Block copolymer, process for producing the same, adhesive composition, and adhesive sheet
JP2011522087A (en) Highly efficient dispersant for dispersion of nanoparticles in matrix materials
Qian et al. A new ferrocene/disulfide-containing methacrylate monomer: synthesis, ATRP and nanocomposite
JP7113509B2 (en) Method for producing polymer metal complex
Ruehl et al. Nitroxide-mediated polymerization to form symmetrical ABA triblock copolymers from a bidirectional alkoxyamine initiator
JP5101816B2 (en) Hyperbranched polymer
He et al. Double‐Hydrophilic Polymer Brushes: Synthesis and Application for Crystallization Modification of Calcium Carbonate
CN100418992C (en) Process for preparing hydrophilic-hydrophobic graft polymer with controllable main and side chain length
Fleet et al. Synthesis of novel glycopolymer brushes via a combination of RAFT-mediated polymerisation and ATRP
WO2009113148A1 (en) Process for production of polymers with iron complex catalyst
Yang et al. Preparation of core–shell attapulgite particles by redox-initiated surface reversible addition–fragmentation chain transfer polymerization via a “graft from” approach
Saikia et al. Mn2+ anchored CdS polymer nanocomposites: An efficient alternative for Mn2+ doped CdS nanoparticles
WO2017104724A1 (en) Star polymer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761842

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017505410

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16761842

Country of ref document: EP

Kind code of ref document: A1