Nothing Special   »   [go: up one dir, main page]

WO2016143077A1 - メモリ診断装置及びメモリ診断プログラム - Google Patents

メモリ診断装置及びメモリ診断プログラム Download PDF

Info

Publication number
WO2016143077A1
WO2016143077A1 PCT/JP2015/057050 JP2015057050W WO2016143077A1 WO 2016143077 A1 WO2016143077 A1 WO 2016143077A1 JP 2015057050 W JP2015057050 W JP 2015057050W WO 2016143077 A1 WO2016143077 A1 WO 2016143077A1
Authority
WO
WIPO (PCT)
Prior art keywords
memory
diagnosis
execution unit
base region
areas
Prior art date
Application number
PCT/JP2015/057050
Other languages
English (en)
French (fr)
Inventor
怜也 市岡
亮一 佐々木
貴博 秋元
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/057050 priority Critical patent/WO2016143077A1/ja
Priority to US15/554,751 priority patent/US10438679B2/en
Priority to JP2016554513A priority patent/JP6042046B1/ja
Publication of WO2016143077A1 publication Critical patent/WO2016143077A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C29/38Response verification devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/16Protection against loss of memory contents
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/06Acceleration testing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C29/14Implementation of control logic, e.g. test mode decoders
    • G11C29/16Implementation of control logic, e.g. test mode decoders using microprogrammed units, e.g. state machines
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C2029/4402Internal storage of test result, quality data, chip identification, repair information
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C29/36Data generation devices, e.g. data inverters

Definitions

  • the present invention relates to a memory diagnostic device and a memory diagnostic program for detecting a memory failure.
  • Patent Document 1 a memory to be diagnosed is divided into a plurality of areas, and a combination of the divided areas is executed in combination with two known memory diagnoses.
  • a technique for detecting a memory failure is known.
  • a coupling failure is a failure in which other cells change arbitrarily depending on the value of a certain cell in the memory.
  • a regenerative failure is a failure in which the value of a certain cell in the memory is fixed to 0 or 1 and does not change.
  • Non-patent document 1 discloses a procedure necessary for detecting a coupling failure and a retraction failure.
  • Patent Document 1 divides the memory into a plurality of areas, and performs the same process on the divided areas to diagnose the failure.
  • the procedure that can be omitted is repeatedly performed, and there is a problem that the processing time becomes long.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a memory diagnostic apparatus that shortens the processing time required for memory diagnosis without lowering the diagnostic rate.
  • the present invention is a memory diagnostic device for diagnosing whether or not a failure has occurred in a memory, and divides the memory into a plurality of areas, Select two or more base areas to be diagnosed from the above areas, execute memory diagnosis including read test and write test for all groups, and at the second and subsequent memory diagnosis for the same base area It has a diagnostic execution unit that performs only a writing test.
  • the memory diagnostic device has an effect that the processing time required for memory diagnosis can be shortened without lowering the diagnostic rate.
  • FIG. 1 is a diagram illustrating a functional configuration of a memory diagnostic device according to a first embodiment
  • 1 is a diagram illustrating a hardware configuration of a programmable logic controller that realizes a memory diagnostic device according to a first embodiment
  • FIG. 1 is a flowchart showing an operation flow of the memory diagnostic apparatus according to the first embodiment
  • FIG. 3 is a diagram schematically illustrating an example of the operation of the memory diagnostic device according to the first embodiment
  • FIG. 5 is a diagram schematically illustrating another example of the operation of the memory diagnostic device according to the first embodiment
  • FIG. 1 is a diagram illustrating a functional configuration of the memory diagnostic apparatus according to the first embodiment.
  • the memory diagnostic device 10 receives a notification from the diagnosis execution unit 13 (to be described later) that the memory diagnosis has been completed for one of the divided areas of the memory, and performs memory diagnosis for each of the divided areas. And a base region diagnosis management unit 11 that replies to the diagnosis execution unit 13 whether the region inquired from the diagnosis execution unit 13 has executed the memory diagnosis.
  • the memory diagnostic device 10 is a part of the memory divided into a plurality of areas, and selects a base area that is a basic unit for executing the memory diagnosis and transmits the base area to the diagnosis executing unit 13 12 is provided.
  • the memory diagnostic device 10 inquires of the base region diagnosis management unit 11 whether or not the base region transmitted from the base region selection unit 12 has been diagnosed, and performs a read test and a test on the base region transmitted from the base region selection unit 12.
  • a diagnosis execution unit 13 that performs a memory test by executing a write test is provided.
  • the diagnosis execution unit 13 performs a read test and a write test for each cell in the base region.
  • FIG. 2 is a diagram illustrating a hardware configuration of a programmable logic controller that implements the memory diagnostic device according to the first embodiment.
  • the programmable logic controller is referred to as PLC (Programmable Logic Controller).
  • the PLC 50 is a device that controls the control target device 80.
  • the PLC 50 is a processing circuit 51 that executes a memory diagnostic program to perform software processing, a memory 52 that the computing device 51 uses as a work area, a storage device 53 that stores information, and a communication target device 80.
  • a communication device 54 is provided.
  • arithmetic device 51 a central processing unit (CPU) or a system LSI (Large Scale Integration) can be used.
  • the memory 52 a random access memory (RAM) can be used.
  • the storage device 53 can be a hard disk drive or a solid state drive.
  • FIG. 3 is a diagram illustrating a configuration of the memory diagnostic apparatus according to the first embodiment.
  • the memory diagnostic device 10 is realized by the PLC 50 executing a memory diagnostic program and performing software processing. That is, the PLC that is executing the installed memory diagnostic program 60 by the arithmetic device 51 is the memory diagnostic device 10.
  • the base area diagnosis management unit 11, the base area selection unit 12, and the diagnosis execution unit 13 are realized by an arithmetic device 51 that is a processing circuit that executes the memory diagnosis program 60 stored in the storage device 53.
  • a plurality of processing circuits may cooperate to execute the above function.
  • the memory diagnostic program 60 is executed in the background of the control program 70 that the PLC 50 executes to control the control target device 80. That is, the arithmetic unit 51 executes the memory diagnosis program 60 to perform the memory diagnosis of the memory 52 while executing the control program 70 to control the control target device.
  • the memory diagnostic apparatus 10 divides the memory 52 to be diagnosed into a plurality of areas, selects two or more areas to be diagnosed from the divided areas, and executes a known memory diagnosis .
  • an area to be diagnosed among a plurality of divided areas of the memory 52 is referred to as a “base area”.
  • the memory diagnosis device 10 repeatedly performs memory diagnosis by changing the combination of areas to be base areas, and sets all combinations of the divided areas as base areas. As described above, the memory diagnostic device 10 detects a coupling failure between all the cells of the memory 52.
  • the diagnosis execution unit 13 if the diagnosis execution unit 13 has executed the memory diagnosis for the base area, the read test for the base area in which the memory diagnosis has been executed is omitted.
  • the diagnostic procedure that can detect the regenerative failure and the coupling failure is determined as disclosed in Non-Patent Document 1, and even if the read test for the area where the memory diagnosis has been executed is omitted, all the cells are detected. Necessary procedures that can detect regression faults and coupling faults are satisfied. By omitting the read test for the area where the memory diagnosis has been executed, the memory diagnosis that can detect the coupling failure can be completed in a shorter time than when the read test is not omitted.
  • FIG. 4 is a flowchart of an operation flow of the memory diagnostic apparatus according to the first embodiment.
  • the memory diagnostic device 10 selects two areas as base areas to be diagnosed from among the divided areas of the memory.
  • the diagnosis execution unit 13 inquires of the base region selection unit 12 about a base region to be subjected to memory diagnosis.
  • the base region selection unit 12 selects a base region to be diagnosed and notifies the diagnosis execution unit 13 of the base region. Note that the selection order of the base areas is not limited to a specific order, and any order may be used as long as all combinations of the divided areas of the memory 52 are finally selected. Absent.
  • step S102 the memory diagnosis device 10 determines whether or not memory diagnosis has been performed on the selected base region. Specifically, the diagnosis execution unit 13 inquires of the base region diagnosis management unit 11 whether the base region transmitted from the base region selection unit 12 has been subjected to memory diagnosis, and the selected base region has been diagnosed. Check if it exists.
  • step S102 If the memory diagnosis has not been executed on the base area selected by the base area selection unit 12 before, “No” is determined in step S102, and in step S103, the diagnosis execution unit 13 is based on the answer from the base area diagnosis management unit 11.
  • the memory diagnosis is executed on the base area selected by the base area selection unit 12.
  • the memory diagnosis here is a general memory diagnosis for performing a read diagnosis and a write diagnosis.
  • step S104 the diagnosis execution unit 13 is based on the answer from the base area diagnosis management unit 11. Only the write test is executed on the base area where the memory diagnosis has been executed.
  • step S104 ends, the process proceeds to step S105.
  • step S105 the memory diagnostic device 10 sets the base area in which the memory diagnosis has been performed as diagnosed. Specifically, the diagnosis execution unit 13 notifies the base region diagnosis management unit 11 of the base region that has been diagnosed after the completion of the memory diagnosis for the base region. The base area diagnosis management unit 11 stores that the base area transmitted from the diagnosis execution unit 13 has been diagnosed.
  • step S106 the memory diagnostic device 10 determines whether there is an area to be diagnosed next. Specifically, the diagnosis execution unit 13 inquires of the base region diagnosis management unit 11 about the next region to be diagnosed among the divided regions of the memory 52. If the base region to be diagnosed next is not returned from the base region diagnosis management unit 11, the diagnosis execution unit 13 executes memory diagnosis for all combinations of the divided regions of the memory 52, and then performs the diagnosis. It is determined that there should be no base area (No in step S106), and the memory diagnosis is terminated. When the region to be diagnosed next is returned from the base region diagnosis management unit 11, the diagnosis executing unit 13 determines that there is a base region to be diagnosed next (Yes in step S106), and proceeds to step S101.
  • FIG. 5 is a diagram schematically illustrating an example of the operation of the memory diagnostic device according to the first embodiment.
  • the memory 52 is divided into three areas, areas m 1 , m 2 and m 3 .
  • a region surrounded by a broken line is a base region.
  • the memory diagnostic device 10 performs a known memory diagnosis using the areas m 1 and m 2 as the base area.
  • the memory diagnostic device 10 performs a known memory diagnosis using the areas m 1 and m 3 as the base area.
  • the memory diagnostic device 10 performs a known memory diagnosis using the areas m 2 and m 3 as the base area.
  • the known memory diagnosis here is a memory diagnosis in which a memory failure is detected by executing a read test and a write test on the cells of the memory 52 and determining whether or not the values match the expected value.
  • Known memory diagnostics can include Abraham and March. These known memory diagnostics are: “Write and read values to and from memory cells, and the read values match the written values.
  • a diagnostic method is shown in which the process of “confirm whether or not to perform” is performed with various algorithms in which the order of cells to be processed and the combination thereof are different in accordance with the diagnosis processing time and the diagnosis rate.
  • the diagnosis execution unit 13 performs a read test and a write test on the areas m 1 and m 2 that are the base areas.
  • the diagnosis execution unit 13 omits the read test for the area m 1 and performs only the write test. On the other hand, the diagnosis execution unit 13 performs the read test and write tests on the region m 3 is the base region.
  • the diagnosis execution unit 13 targets the areas m 2 and m 3 .
  • the read test is omitted and only the write test is performed.
  • FIG. 6 is a diagram schematically illustrating another example of the operation of the memory diagnostic device according to the first embodiment.
  • the memory 52 is divided into five areas m 1 to m 5 .
  • the memory diagnostic device 10 selects three of the divided areas as the base area.
  • a region surrounded by a broken line is a base region.
  • the memory diagnostic device 10 performs a known memory diagnosis using the areas m 1 , m 2 and m 3 as base areas.
  • the memory diagnostic device 10 performs a known memory diagnosis using the areas m 1 , m 2, and m 4 as base areas.
  • the memory diagnostic device 10 performs a known memory diagnosis using the areas m 1 , m 2 and m 5 as the base area.
  • the memory diagnostic device 10 performs a known memory diagnosis using the areas m 1 , m 3, and m 4 as the base area.
  • the memory diagnostic device 10 performs a known memory diagnosis using the areas m 1 , m 3 and m 5 as the base area.
  • the memory diagnostic device 10 performs a known memory diagnosis using the areas m 1 , m 4 and m 5 as the base area.
  • the memory diagnostic apparatus 10 performs a known memory diagnosis using the areas m 2 , m 3, and m 4 as the base area.
  • the memory diagnostic device 10 performs a known memory diagnosis using the areas m 2 , m 3 and m 5 as the base area.
  • the memory diagnostic device 10 performs a known memory diagnosis using the areas m 2 , m 4 and m 5 as the base area.
  • the cycle t + 9 the memory diagnostic device 10 performs a known memory diagnosis using the areas m 3 , m 4 and m 5 as the base area.
  • the diagnosis execution unit 13 performs a read test and a write test on the areas m 1 , m 2, and m 3 that are the base areas.
  • the diagnosis execution unit 13 omits the read test for the areas m 1 and m 2 and performs only the write test. I do.
  • the diagnosis execution unit 13 reads a test intended for the region m 1 and m 2 are omitted, writing test only I do.
  • the diagnosis execution unit 13 performs the areas m 1 , m 3, and m 4.
  • the read test for the target is omitted, and only the write test is performed.
  • the diagnosis execution unit 13 performs the areas m 1 , m 3 and m 5.
  • the read test for the target is omitted, and only the write test is performed.
  • the diagnosis execution unit 13 determines that the area m 1 The read test for 1 , m 4 and m 5 is omitted, and only the write test is performed.
  • the diagnosis execution unit 13 performs the areas m 2 , m 3, and m 4.
  • the read test for the target is omitted, and only the write test is performed.
  • the diagnosis execution unit 13 performs the areas m 2 , m 3, and m 5.
  • the read test for the target is omitted, and only the write test is performed.
  • the memory diagnosis apparatus 10 performs redundant processing by omitting the read test for the base area for which the read test has been executed, in the memory diagnosis in which the area for which the read test has been executed is used as the base area. Omit. Thereby, the memory diagnostic apparatus 10 according to the first embodiment can shorten the processing time without lowering the diagnosis rate.
  • the arithmetic unit 51 of the PLC 50 executes the memory diagnosis program 60 in the background of the control program 70 to execute the memory diagnosis of the memory 52 has been described as an example, but a computer is connected to the outside of the PLC 50. It is also possible to perform a memory diagnosis by causing a computer to execute a memory diagnosis program. By performing a memory diagnosis by causing a computer connected to the outside of the PLC 50 to execute a memory diagnosis program, the load on the computing device 51 of the PLC 50 can be reduced, and the control operation of the control target device 80 by the PLC 50 can be reliably performed. Is possible.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
  • 10 memory diagnosis device 11 base region diagnosis management unit, 12 base region selection unit, 13 diagnosis execution unit, 50 PLC, 51 arithmetic device, 52 memory, 53 storage device, 60 memory diagnosis program, 70 control program, 80 control target device .

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Techniques For Improving Reliability Of Storages (AREA)
  • For Increasing The Reliability Of Semiconductor Memories (AREA)

Abstract

 メモリに故障が発生しているか否かを診断するメモリ診断装置(10)であって、メモリを複数の領域に分割し、分割した複数の領域の中から診断対象とするベース領域を二つ以上選んで読み出しテスト及び書き込みテストを含むメモリ診断を実行し、同じベース領域に対する2回目以降のメモリ診断時には書き込みテストのみを行う診断実行部(13)を有する。診断実行部(13)は、記憶装置に記憶されたメモリ診断プログラムを実行する処理回路である演算装置により、実現される。

Description

メモリ診断装置及びメモリ診断プログラム
 本発明は、メモリの故障を検出するメモリ診断装置及びメモリ診断プログラムに関する。
 従来、特許文献1に開示されるように、診断対象となるメモリを複数の領域に分割して、分割された領域の組合せに対して、公知の2種類のメモリ診断を組み合わせて実行することで、メモリの故障を検出する技術が知られている。
 一般に、安全機器に適用されるメモリの診断では、カップリング故障及び退縮故障と呼ばれる二種類の故障を検出することが求められる。カップリング故障とは、メモリ中のあるセルの値によって、他のセルが勝手に変化する故障である。退縮故障は、メモリ中のあるセルの値が0又は1に固定されてしまい、変化しなくなる故障である。
 カップリング故障及び退縮故障を検出するために必要な手順は、非特許文献1に開示されている。
特開平10-154105号公報
RAVINDRA NAIR, SATISH. M. THATTE, AND JACOB A. ABRAHAM: Efficient Algorithms for Testing Semiconductor Random-Access Memories. IEEE TRANSACTIONS ON COMPUTERS, VOL. c-27, No.6,JUNE 1978 pp.572-576
 しかしながら、上記特許文献1に開示される発明は、メモリを複数の領域に分割し、分割した領域の組合せに対して同じ処理を行って故障を診断しているため、メモリの故障を検出する上で省略可能な手順が繰り返し行われ、処理時間が長くなってしまうという問題があった。
 本発明は、上記に鑑みてなされたものであって、診断率を下げずにメモリ診断に要する処理時間を短縮するメモリ診断装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、メモリに故障が発生しているか否かを診断するメモリ診断装置であって、メモリを複数の領域に分割し、分割した複数の領域の中から診断対象とするベース領域を二つ以上選んで読み出しテスト及び書き込みテストを含むメモリ診断を全ての組に対して実行し、同じベース領域に対しての2回目以降のメモリ診断時には書き込みテストのみを行う診断実行部を有することを特徴とする。
 本発明にかかるメモリ診断装置は、診断率を下げずにメモリ診断に要する処理時間を短縮できるという効果を奏する。
実施の形態1にかかるメモリ診断装置の機能構成を示す図 実施の形態1にかかるメモリ診断装置を実現するプログラマブルロジックコントローラのハードウェア構成を示す図 実施の形態1にかかるメモリ診断装置の構成を示す図 実施の形態1にかかるメモリ診断装置の動作の流れを示すフローチャート 実施の形態1にかかるメモリ診断装置の動作の一例を模式的に示す図 実施の形態1にかかるメモリ診断装置の動作の別の一例を模式的に示す図
 以下に、本発明の実施の形態にかかるメモリ診断装置及びメモリ診断プログラムを図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、実施の形態1にかかるメモリ診断装置の機能構成を示す図である。メモリ診断装置10は、メモリの複数に分割された領域のいずれかに対してメモリ診断が完了したことの通知を、後述する診断実行部13から受け取り、分割された領域の各々に対してメモリ診断を実行済か否かを管理し、かつ診断実行部13から問い合わせをされた領域がメモリ診断を実行済かを診断実行部13に回答するベース領域診断管理部11を備える。また、メモリ診断装置10は、複数の領域に分割されたメモリの一部であり、メモリ診断を実行する基本単位となる領域であるベース領域を選択して診断実行部13に伝えるベース領域選択部12を備える。また、メモリ診断装置10は、ベース領域選択部12から伝えられたベース領域が診断済か否かをベース領域診断管理部11に問い合わせ、ベース領域選択部12から伝えられたベース領域に読み出しテスト及び書き込みテストを実行してメモリ診断を行う診断実行部13を備える。診断実行部13は、ベース領域内のセルごとに読み出しテスト及び書き込みテストを行う。
 図2は、実施の形態1にかかるメモリ診断装置を実現するプログラマブルロジックコントローラのハードウェア構成を示す図である。以下、プログラマブルロジックコントローラをPLC(Programmable Logic Controller)と表記する。PLC50は、制御対象機器80を制御する装置である。PLC50は、メモリ診断プログラムを実行してソフトウェア処理を行う処理回路である演算装置51、演算装置51がワークエリアに用いるメモリ52、情報を記憶する記憶装置53及び制御対象機器80との通信用の通信装置54を備えている。演算装置51には、中央処理装置(Central Processing Unit: CPU)又はシステムLSI(Large Scale Integration)を用いることができる。メモリ52は、ランダムアクセスメモリ(Random access memory: RAM)を用いることができる。記憶装置53は、ハードディスクドライブ又はソリッドステートドライブを用いることができる。
 図3は、実施の形態1にかかるメモリ診断装置の構成を示す図である。メモリ診断装置10は、PLC50がメモリ診断プログラムを実行してソフトウェア処理を行うことによって実現されている。すなわち、インストールされたメモリ診断プログラム60を演算装置51で実行中のPLCは、メモリ診断装置10となっている。ベース領域診断管理部11、ベース領域選択部12及び診断実行部13は、記憶装置53に記憶されたメモリ診断プログラム60を実行する処理回路である演算装置51により、実現される。また、複数の処理回路が連携して上記機能を実行してもよい。
 メモリ診断プログラム60は、PLC50が制御対象機器80を制御するために実行する制御プログラム70のバックグラウンドで実行される。すなわち、演算装置51は、制御プログラム70を実行して制御対象機器の制御を行いつつ、メモリ診断プログラム60を実行してメモリ52のメモリ診断を行う。
 実施の形態1にかかるメモリ診断装置10は、診断対象となるメモリ52を複数の領域に分割し、分割した領域の中から診断対象とする領域を二つ以上選び、公知のメモリ診断を実行する。なお、以下の説明では、メモリ52の分割された複数の領域のうち、診断対象とする領域を「ベース領域」と言う。メモリ診断装置10は、ベース領域にする領域の組合せを変えてメモリ診断を繰り返し行い、分割された領域の全ての組合せをベース領域とする。上記のようにして、メモリ診断装置10は、メモリ52の全てのセル間でのカップリング故障を検出する。
 メモリ診断の際には、診断実行部13は、ベース領域に対してメモリ診断を実行したことがあれば、メモリ診断を実行したことのあるベース領域内に対する読み出しテストは省略する。退縮故障及びカップリング故障を検出できる診断手順は非特許文献1に開示されているように決まっており、メモリ診断を実行済の領域に対しての読み出しテストを省略しても、全てのセルを対象にして退縮故障及びカップリング故障を検出できる必要手順は満たされる。メモリ診断を実行済の領域に対しての読み出しテストを省略することにより、読み出しテストを省略しない場合と比較して短い時間でカップリング故障を検出可能なメモリ診断を完了できる。
 なお、以下の動作の説明では、メモリの分割された領域から二つを選んでベース領域とする場合を例にするが、後述するように分割された領域の三つ以上を選んでベース領域にしても良い。
 図4は、実施の形態1にかかるメモリ診断装置の動作の流れを示すフローチャートである。ステップS101において、メモリ診断装置10は、メモリの分割された領域の中から診断対象であるベース領域とする領域を二つ選択する。具体的には、診断実行部13は、ベース領域選択部12にメモリ診断の対象とするベース領域を問い合わせる。ベース領域選択部12は、診断対象とするベース領域を選択し、診断実行部13に伝える。なお、ベース領域の選択の順序は特定の順序に限定されることはなく、メモリ52の分割された領域の全ての組合せが最終的に選択されるのであればどのような順序であっても構わない。
 ステップS102において、メモリ診断装置10は、選択したベース領域に対してメモリ診断を実行したことがあるかを判定する。具体的には、診断実行部13は、ベース領域選択部12から伝えられたベース領域がメモリ診断を実行済であるかをベース領域診断管理部11に問い合わせて、選択したベース領域が診断済であるかを確認する。
 ベース領域選択部12が選択したベース領域に以前にメモリ診断を実行していなければ、ステップS102でNoとなり、ステップS103において、診断実行部13は、ベース領域診断管理部11からの回答に基づいて、ベース領域選択部12が選択したベース領域に対してメモリ診断を実行する。ここでのメモリ診断は、読み出し診断及び書き込み診断を行う一般的なメモリ診断である。ステップS103が終了したら、ステップS105に進む。
 ベース領域選択部12が選択したベース領域に以前にメモリ診断を実行していれば、ステップS102でYesとなり、ステップS104において、診断実行部13は、ベース領域診断管理部11からの回答に基づいて、メモリ診断を実行したことのあるベース領域に対して書き込みテストのみを実行する。ステップS104が終了したら、ステップS105に進む。
 ステップS105において、メモリ診断装置10は、メモリ診断を実行したベース領域を診断済みに設定する。具体的には、診断実行部13は、ベース領域に対してのメモリ診断の実行完了後、診断を終えたベース領域をベース領域診断管理部11に伝える。ベース領域診断管理部11は、診断実行部13から伝えられたベース領域が診断実行済であることを記憶する。
 ステップS106において、メモリ診断装置10は、次に診断すべき領域があるか否かを判断する。具体的には、診断実行部13は、ベース領域診断管理部11に対してメモリ52の分割された領域の中で次に診断すべき領域を問い合わせる。ベース領域診断管理部11から次に診断するベース領域が返ってこなければ、診断実行部13は分割されたメモリ52の全ての領域の組合せに対してメモリ診断を実行しており、次に診断すべきベース領域は無いと判断し(ステップS106でNo)、メモリ診断を終了する。診断実行部13は、次に診断すべき領域がベース領域診断管理部11から返ってきた場合は、次に診断すべきベース領域はあると判断し(ステップS106でYes)、ステップS101に進む。
 図5は、実施の形態1にかかるメモリ診断装置の動作の一例を模式的に示す図である。本例では、メモリ52を領域m、m及びmの三つの領域に分割している。図5において、破線で囲まれた領域がベース領域である。
 メモリ診断装置10は、周期tでは、領域m及びmをベース領域にして公知のメモリ診断を行う。メモリ診断装置10は、周期t+1では、領域m及びmをベース領域にして公知のメモリ診断を行う。メモリ診断装置10は、周期t+2では、領域m及びmをベース領域にして公知のメモリ診断を行う。ここでの公知のメモリ診断とは、メモリ52のセルに対して読み出しテスト及び書き込みテストを実行し、期待値と一致するかを判定することによってメモリの故障を検出するメモリ診断である。公知のメモリ診断には、Abraham及びMarchを挙げることができ、これらの公知のメモリ診断とは、「メモリのセルに対して値を書き込み及び読み出しを実施し、読み出した値が書き込んだ値と一致するかどうか確認する」という処理を、診断の処理時間及び診断率にあわせて、処理を実施するセルの順序及びその組合せが異なる様々なアルゴリズムで実施する診断手法を示す。
 周期tでは、メモリ診断を実行済の領域はないため、診断実行部13は、ベース領域である領域m及びmに対して読み出しテスト及び書き込みテストを行う。
 周期t+1では、周期tにて領域mに対してメモリ診断を実行済であるため、診断実行部13は、領域mを対象とした読み出しテストは省略し、書き込みテストのみを行う。一方、診断実行部13は、ベース領域である領域mに対して読み出しテスト及び書き込みテストを行う。
 周期t+2では、周期tにて領域mに対して、周期t+1にて領域mに対してメモリ診断を実行済であるため、診断実行部13は、領域m及びmを対象とした読み出しテストは省略し、書き込みテストのみを行う。
 図6は、実施の形態1にかかるメモリ診断装置の動作の別の一例を模式的に示す図である。本例では、メモリ52をmからmの五つの領域に分割している。また、本例では、メモリ診断装置10は、分割された領域のうちの三つを選択してベース領域とする。図6において、破線で囲まれた領域がベース領域である。
 メモリ診断装置10は、周期tでは、領域m、m及びmをベース領域にして公知のメモリ診断を行う。メモリ診断装置10は、周期t+1では、領域m、m及びmをベース領域にして公知のメモリ診断を行う。メモリ診断装置10は、周期t+2では、領域m、m及びmをベース領域にして公知のメモリ診断を行う。メモリ診断装置10は、周期t+3では、領域m、m及びmをベース領域にして公知のメモリ診断を行う。メモリ診断装置10は、周期t+4では、領域m、m及びmをベース領域にして公知のメモリ診断を行う。メモリ診断装置10は、周期t+5では、領域m、m及びmをベース領域にして公知のメモリ診断を行う。メモリ診断装置10は、周期t+6では、領域m、m及びmをベース領域にして公知のメモリ診断を行う。メモリ診断装置10は、周期t+7では、領域m、m及びmをベース領域にして公知のメモリ診断を行う。メモリ診断装置10は、周期t+8では、領域m、m及びmをベース領域にして公知のメモリ診断を行う。メモリ診断装置10は、周期t+9では、領域m、m及びmをベース領域にして公知のメモリ診断を行う。
 周期tでは、メモリ診断を実行済の領域はないため、診断実行部13は、ベース領域である領域m、m及びmに対して読み出しテスト及び書き込みテストを行う。
 周期t+1では、周期tで領域m及びmに対してメモリ診断を実行済であるため、診断実行部13は、領域m及びmを対象とした読み出しテストは省略し、書き込みテストのみを行う。
 周期t+2では、周期tで領域m及びmに対してメモリ診断を実行済であるため、診断実行部13は、領域m及びmを対象とした読み出しテストは省略し、書き込みテストのみを行う。
 周期t+3では、周期tで領域m及びmに対して、周期t+1で領域mに対してメモリ診断を実行済であるため、診断実行部13は、領域m、m及びmを対象とした読み出しテストは省略し、書き込みテストのみを行う。
 周期t+4では、周期tで領域m及びmに対して、周期t+2で領域mに対してメモリ診断を実行済であるため、診断実行部13は、領域m、m及びmを対象とした読み出しテストは省略し、書き込みテストのみを行う。
 周期t+5では、周期tで領域mに対して、周期t+1で領域mに対して、周期t+2で領域mに対してメモリ診断を実行済であるため、診断実行部13は、領域m、m及びmを対象とした読み出しテストは省略し、書き込みテストのみを行う。
 周期t+6では、周期tで領域m及びmに対して、周期t+1で領域mに対してメモリ診断を実行済であるため、診断実行部13は、領域m、m及びmを対象とした読み出しテストは省略し、書き込みテストのみを行う。
 周期t+7では、周期tで領域m及びmに対して、周期t+2で領域mに対してメモリ診断を実行済であるため、診断実行部13は、領域m、m及びmを対象とした読み出しテストは省略し、書き込みテストのみを行う。
 周期t+8では、周期tで領域mに対して、周期t+1で領域mに対して、周期t+2で領域mに対してメモリ診断を実行済であるため、診断実行部13は、領域m、m及びmを対象とした読み出しテストは省略し、書き込みテストのみを行う。
 周期t+9では、周期tでmに対して、周期t+1で領域mに対して、周期t+2で領域mに対してメモリ診断を実行済であるため、診断実行部13は、領域m、m及びmを対象とした読み出しテストは省略し、書き込みテストのみを行う。
 実施の形態1にかかるメモリ診断装置10は、読み出しテストを実行済の領域をベース領域とするメモリ診断時には、読み出しテストを実行済のベース領域に対しての読み出しテストを省略することにより冗長な処理を省く。これにより、実施の形態1にかかるメモリ診断装置10は、診断率を下げずに処理時間を短縮することができる。
 上記の説明においては、PLC50の演算装置51が制御プログラム70のバックグラウンドでメモリ診断プログラム60を実行してメモリ52のメモリ診断を実行する場合を例に説明したが、PLC50の外部にコンピュータを接続し、コンピュータにメモリ診断プログラムを実行させてメモリ診断を行うこともできる。PLC50の外部に接続したコンピュータにメモリ診断プログラムを実行させてメモリ診断を行うことにより、PLC50の演算装置51の負荷を低減することができ、PLC50による制御対象機器80の制御動作を確実に行うことが可能となる。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 10 メモリ診断装置、11 ベース領域診断管理部、12 ベース領域選択部、13 診断実行部、50 PLC、51 演算装置、52 メモリ、53 記憶装置、60 メモリ診断プログラム、70 制御プログラム、80 制御対象機器。

Claims (4)

  1.  メモリに故障が発生しているか否かを診断するメモリ診断装置であって、
     前記メモリを複数の領域に分割し、該分割した複数の領域の中から診断対象とするベース領域を二つ以上選んで読み出しテスト及び書き込みテストを含むメモリ診断を実行し、同じベース領域に対する2回目以降のメモリ診断時には前記書き込みテストのみを行う診断実行部を有することを特徴とするメモリ診断装置。
  2.  前記診断実行部から前記ベース領域に対しての前記メモリ診断が完了したことの通知を受け取り、前記メモリの分割された複数の領域の各々に対してメモリ診断が実行されたか否かを管理し、かつ、前記診断実行部から問い合わせをされた領域がメモリ診断を実行済みか否かを前記診断実行部に回答するベース領域診断管理部と、
     前記メモリ診断を実行する領域であるベース領域を選択して前記診断実行部に伝えるベース領域選択部と、
     を有し、
     前記診断実行部は、前記ベース領域選択部から伝えられたベース領域に対してメモリ診断が実行されたか否かを前記ベース領域診断管理部に問い合わせ、該問い合わせに対する回答に基づいて、前記ベース領域選択部から伝えられたベース領域にメモリ診断を行うことを特徴とする請求項1に記載のメモリ診断装置。
  3.  メモリに故障が発生しているか否かを診断する処理をプログラマブルロジックコントローラに実行させるメモリ診断プログラムであって、
     前記プログラマブルロジックコントローラに、
     前記メモリを複数の領域に分割する処理と、
     前記分割した複数の領域の中から診断対象とするベース領域を二つ以上選んで読み出しテスト及び書き込みテストを含むメモリ診断を実行し、同じベース領域に対する2回目以降のメモリ診断時には前記書き込みテストのみを行う処理とを行わせることを特徴とするメモリ診断プログラム。
  4.  前記プログラマブルロジックコントローラを、
     前記ベース領域に対して前記メモリ診断を行う診断実行部と、
     前記診断実行部から前記ベース領域に対しての前記メモリ診断が完了したことの通知を受け取り、前記メモリの分割された複数の領域の各々に対してメモリ診断が実行されたか否かを管理し、かつ、前記診断実行部から問い合わせをされた領域がメモリ診断を実行済みか否かを前記診断実行部に回答するベース領域診断管理部と、
     前記メモリ診断を実行する領域であるベース領域を選択して前記診断実行部に伝えるベース領域選択部と、
     として機能させ、
     前記診断実行部は、前記ベース領域選択部から伝えられたベース領域に対してメモリ診断が実行されたか否かを前記ベース領域診断管理部に問い合わせ、該問い合わせに対する回答に基づいて、前記ベース領域選択部から伝えられたベース領域にメモリ診断を行うことを特徴とする請求項3に記載のメモリ診断プログラム。
PCT/JP2015/057050 2015-03-10 2015-03-10 メモリ診断装置及びメモリ診断プログラム WO2016143077A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2015/057050 WO2016143077A1 (ja) 2015-03-10 2015-03-10 メモリ診断装置及びメモリ診断プログラム
US15/554,751 US10438679B2 (en) 2015-03-10 2015-03-10 Memory diagnosis apparatus and memory diagnosis program
JP2016554513A JP6042046B1 (ja) 2015-03-10 2015-03-10 メモリ診断装置及びメモリ診断プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/057050 WO2016143077A1 (ja) 2015-03-10 2015-03-10 メモリ診断装置及びメモリ診断プログラム

Publications (1)

Publication Number Publication Date
WO2016143077A1 true WO2016143077A1 (ja) 2016-09-15

Family

ID=56878663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057050 WO2016143077A1 (ja) 2015-03-10 2015-03-10 メモリ診断装置及びメモリ診断プログラム

Country Status (3)

Country Link
US (1) US10438679B2 (ja)
JP (1) JP6042046B1 (ja)
WO (1) WO2016143077A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111135A1 (ja) * 2011-02-18 2012-08-23 三菱電機株式会社 メモリ診断装置及びメモリ診断方法及びプログラム
JP2014071770A (ja) * 2012-09-28 2014-04-21 Toshiba Corp メモリ故障診断装置、メモリ故障診断方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19647159A1 (de) 1996-11-14 1998-06-04 Siemens Ag Verfahren zum Testen eines in Zellenfelder unterteilten Speicherchips im laufenden Betrieb eines Rechners unter Einhaltung von Echtzeitbedingungen
CN101310343B (zh) * 2005-11-14 2014-04-30 三菱电机株式会社 存储器诊断装置
JP5453984B2 (ja) 2009-07-28 2014-03-26 富士電機株式会社 Ram診断装置、そのプログラム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111135A1 (ja) * 2011-02-18 2012-08-23 三菱電機株式会社 メモリ診断装置及びメモリ診断方法及びプログラム
JP2014071770A (ja) * 2012-09-28 2014-04-21 Toshiba Corp メモリ故障診断装置、メモリ故障診断方法

Also Published As

Publication number Publication date
US20180240532A1 (en) 2018-08-23
JP6042046B1 (ja) 2016-12-14
JPWO2016143077A1 (ja) 2017-04-27
US10438679B2 (en) 2019-10-08

Similar Documents

Publication Publication Date Title
US8176365B2 (en) Computer apparatus and processor diagnostic method
US9009549B2 (en) Memory diagnostic apparatus and memory diagnostic method and program
JP2017097633A (ja) 車両制御装置
US8510611B2 (en) Computer apparatus
WO2019184612A1 (zh) 一种终端及电子设备
US9009548B2 (en) Memory testing of three dimensional (3D) stacked memory
KR102584651B1 (ko) 데이터 처리
JP6786448B2 (ja) 半導体装置
US8762926B2 (en) Method and apparatus for diagnosing a fault of a memory using interim time after execution of an application
JP6042046B1 (ja) メモリ診断装置及びメモリ診断プログラム
JP2015106594A (ja) 診断装置、診断装置の制御方法、および診断装置の制御プログラム
JP6654230B2 (ja) 車両制御装置
JP2013025632A (ja) ディスク制御装置、ディスク装置異常検出方法、及びプログラム
JP2012027544A (ja) ライトバックキャッシュを備える情報処理装置、及びその主メモリ診断方法
US20210042178A1 (en) Health characteristics of a memory device
TWI733964B (zh) 記憶體整體測試之系統及其方法
JP7332204B1 (ja) 情報処理システム、情報処理システムが実行する処理方法、およびプログラム
JP2014191389A (ja) 情報処理装置、メモリ検査/ロード方法、およびbootプログラム
JP2020030507A (ja) マルチコア制御装置
JP6914430B2 (ja) メモリ診断装置及びメモリ診断方法
JP2024041080A (ja) メモリ故障データの保存方法、これを行う装置、およびコンピュータプログラム
WO2015147829A1 (en) System and method of run-time continuous memory check for embedded systems
CN117312022A (zh) 故障信息存储方法、装置、计算机设备和存储介质
JP2008242592A (ja) メモリ監視回路、情報処理装置、及びメモリ監視方法
JP2012103874A (ja) ソフトウェアテスト装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016554513

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15884569

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15554751

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15884569

Country of ref document: EP

Kind code of ref document: A1