Nothing Special   »   [go: up one dir, main page]

WO2016038836A1 - 硬化性シリコーン組成物、その硬化物、および光半導体装置 - Google Patents

硬化性シリコーン組成物、その硬化物、および光半導体装置 Download PDF

Info

Publication number
WO2016038836A1
WO2016038836A1 PCT/JP2015/004355 JP2015004355W WO2016038836A1 WO 2016038836 A1 WO2016038836 A1 WO 2016038836A1 JP 2015004355 W JP2015004355 W JP 2015004355W WO 2016038836 A1 WO2016038836 A1 WO 2016038836A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
mass
formula
composition
curable silicone
Prior art date
Application number
PCT/JP2015/004355
Other languages
English (en)
French (fr)
Inventor
亮介 山▲崎▼
数也 市川
宏明 吉田
Original Assignee
東レ・ダウコーニング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ・ダウコーニング株式会社 filed Critical 東レ・ダウコーニング株式会社
Priority to KR1020177009581A priority Critical patent/KR20170052649A/ko
Priority to CN201580047531.9A priority patent/CN106661329B/zh
Priority to JP2016547680A priority patent/JP6590445B2/ja
Publication of WO2016038836A1 publication Critical patent/WO2016038836A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • C08G77/08Preparatory processes characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48237Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a curable silicone composition, a cured product thereof, and an optical semiconductor device.
  • the optical semiconductor device is provided with a light reflecting material in order to efficiently reflect light emitted from the optical semiconductor element.
  • a light reflecting material examples include a hydrosilylation reactive silicone having a structure in which one of a vinyl group and an allyl group and a hydrogen atom are directly bonded to a silicon atom.
  • a curable silicone composition comprising a resin, a platinum-based catalyst, and a white pigment (see Patent Document 1), a vinyl group-containing organopolysiloxane having a weight average molecular weight (Mw) of 30,000 or more, and a silicon atom bond in one molecule
  • Curable silicone composition comprising organohydrogenpolysiloxane having at least two hydrogen atoms, white pigment, inorganic filler other than white pigment, platinum metal catalyst, and reaction control agent (see Patent Document 2), silicon atom bond Branched chain in which 30 to 80 mol% of all organic groups are phenyl groups and 5 to 20 mol% are alkenyl groups
  • Organopolysiloxane in the form of a molecule, organopolysiloxane having 10 or less silicon atoms, in which 30 to 60 mol% of all silicon-bonded organic groups are alkenyl groups, and having at least two silicon-bonded hydrogen atoms in one molecule
  • a curable silicone composition comprising an
  • the present invention has thixotropy, good handling workability, cured, low thermal expansion coefficient, high concealment ratio, high mechanical strength, and good adhesion to various substrates. It is an object of the present invention to provide a curable silicone composition that forms a cured product, a cured product that has a low coefficient of thermal expansion, a high concealment rate, a high mechanical strength, and an optical semiconductor device that is excellent in reliability.
  • the curable silicone composition of the present invention contains a titanium oxide powder having an average particle size of 0.05 to 10 ⁇ m and an inorganic powder other than titanium oxide having an average particle size of 0.1 to 20 ⁇ m, and the content of the titanium oxide powder is A thermosetting silicone composition having a content of 50 to 90% by mass in the present composition and a content of the inorganic powder of 5 to 40% by mass in the present composition, wherein the titanium oxide powder and the inorganic powder But the general formula: R 1 (4-a) Si (OR 2 ) a Wherein R 1 is an unsubstituted or halogen-substituted monovalent hydrocarbon group having 6 to 20 carbon atoms, R 2 is an alkyl group, an alkoxyalkyl group, an alkenyl group, or an acyl group, and a is an integer of 1 to 3.
  • R 3 is an unsubstituted or halogen-substituted monovalent hydrocarbon group
  • R 4 is a monovalent hydrocarbon group having no same or different aliphatic unsaturated bond
  • R 5 is an oxygen atom or a divalent hydrocarbon group.
  • a hydrogen group R 6 is an alkyl group, an alkoxyalkyl group, an alkenyl group, or an acyl group
  • b is an integer of 1 to 3
  • p is an integer of 1 or more.
  • the cured product of the present invention is characterized by curing the above curable silicone composition.
  • the optical semiconductor device of the present invention is characterized by having a light reflecting material made of a cured product of the curable silicone composition.
  • the curable silicone composition of the present invention has thixotropy, good handling workability, is cured, has a low coefficient of thermal expansion, a high concealment rate, a high mechanical strength, and various substrates. It has the characteristic of forming a cured product with good adhesion to the substrate. Further, the cured product of the present invention is characterized by a low coefficient of thermal expansion, a high concealment rate, and a high mechanical strength. Furthermore, the optical semiconductor device of the present invention is characterized by excellent reliability.
  • the curable silicone composition of the present invention contains a titanium oxide powder having an average particle size of 0.05 to 10 ⁇ m and an inorganic powder other than titanium oxide having an average particle size of 0.1 to 20 ⁇ m, and the content of the titanium oxide powder is It is 50 to 90% by mass in the present composition, and the content of the inorganic powder is 5 to 40% by mass in the present composition.
  • This titanium oxide powder is a white pigment for imparting light reflection performance to the cured product of the present composition.
  • examples of such titanium oxide powder include anatase-type titanium oxide powder and rutile-type titanium oxide powder, and rutile-type titanium oxide powder is preferable because the light reflection performance and hiding power of the cured product are high.
  • the average particle diameter of the titanium oxide is in the range of 0.05 to 10 ⁇ m, preferably in the range of 0.01 to 5 ⁇ m, or in the range of 0.01 to 3 ⁇ m.
  • This titanium oxide may have a surface that has been surface-treated with a silane coupling agent, silica, alumina, zirconia or the like in advance.
  • the content of the titanium oxide powder is in the range of 50 to 90% by mass in the present composition, preferably in the range of 50 to 85% by mass, in the range of 50 to 80% by mass, and 55 to 90% by mass. %, 55-85% by weight, or 55-80% by weight.
  • the content of the titanium oxide powder is not less than the lower limit of the above range, the resulting curable silicone composition has good thixotropy, and the concealability and strength of the obtained cured product.
  • operativity of the curable silicone composition obtained as it is below the upper limit of the said range is favorable.
  • the content of titanium oxide powder is 10 to 30% by mass with respect to the curable silicone composition.
  • the content of 50% by mass or more not only improves the concealability of the resulting cured product. Also, the mechanical strength can be improved. Moreover, in this composition, even if it does not mix
  • the inorganic powder other than titanium oxide is a component for reducing the linear expansion coefficient of the cured product and improving the dimensional stability when used in combination with the above titanium oxide powder.
  • examples of such inorganic powders include spherical silica, non-spherical silica, and glass fiber, and spherical silica is preferred because the viscosity increase of the resulting curable silicone composition is small.
  • examples of the spherical silica include dry silica, wet silica, fused silica, and deflagration silica, but fused silica is preferred because the filling property of the present composition is good.
  • the average particle size of the inorganic powder is in the range of 0.1 to 20 ⁇ m, and preferably 0.1 to 15 ⁇ m because of the ease of passing through the mesh and the ease of forming a thin film when using a coating process by screen printing.
  • 0.1 to 10 ⁇ m within a range of 0.1 to 10 ⁇ m, within a range of 0.2 to 20 ⁇ m, within a range of 0.2 to 15 ⁇ m, or within a range of 0.2 to 10 ⁇ m.
  • the content of the inorganic powder is in the range of 5 to 40% by mass in the present composition, preferably in the range of 5 to 35% by mass, or in the range of 5 to 30% by mass. This is because when the content of the inorganic powder is not less than the lower limit of the above range, the resulting cured product has a low coefficient of linear expansion and good dimensional stability, while it is not more than the upper limit of the above range. This is because the viscosity of the resulting curable silicone composition does not become too high and the handling workability is good.
  • the titanium oxide powder and the inorganic powder have the general formula: R 1 (4-a) Si (OR 2 ) a
  • R 1 is an unsubstituted or halogen-substituted monovalent hydrocarbon group having 6 to 20 carbon atoms
  • R 2 is an alkyl group, an alkoxyalkyl group, an alkenyl group, or an acyl group
  • a is an integer of 1 to 3.
  • R 3 is an unsubstituted or halogen-substituted monovalent hydrocarbon group
  • R 4 is a monovalent hydrocarbon group having no same or different aliphatic unsaturated bond
  • R 5 is an oxygen atom or a divalent hydrocarbon group.
  • a hydrogen group R 6 is an alkyl group, an alkoxyalkyl group, an alkenyl group, or an acyl group
  • b is an integer of 1 to 3
  • p is an integer of 1 or more.
  • R 1 is an unsubstituted or halogen-substituted monovalent hydrocarbon group having 6 to 20 carbon atoms. This is because when R 1 has less than 6 carbon atoms, the effect of lowering the viscosity of the resulting curable silicone composition is poor. On the other hand, when the number of carbon atoms exceeds 20, the compatibility with the organopolysiloxane component decreases. Because it does.
  • R 1 monovalent hydrocarbon group includes hexyl group, octyl group, dodecyl group, tetradecyl group, hexadecyl group, octadecyl group and other alkyl groups; benzyl group, phenylethyl group and other aralkyl groups; these alkyl groups and aralkyl groups. Examples thereof include groups in which part or all of the hydrogen atoms in the group are substituted with halogen atoms such as fluorine and chlorine, and alkyl groups having 6 to 20 carbon atoms are preferred.
  • R 2 is an alkyl group, an alkoxyalkyl group, an alkenyl group, or an acyl group.
  • an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group; an alkoxyalkyl group such as a methoxymethyl group, an ethoxymethyl group, and a methoxyethyl group;
  • Illustrative examples include alkenyl groups such as isopropylene group and isobutenyl group; acyl groups such as acetoxy group, preferably an alkyl group, and particularly a methyl group and an ethyl group.
  • a is an integer of 1 to 3, preferably 3.
  • organosilanes include the following compounds. C 6 H 13 Si (OCH 3 ) 3 C 8 H 17 Si (OC 2 H 5 ) 3 C 10 H 21 Si (OCH 3 ) 3 C 12 H 25 Si (OCH 3 ) 3 C 14 H 29 Si (OC 2 H 5 ) 3 C 6 H 5 —CH 2 CH 2 Si (OCH 3 ) 3
  • the amount of the organosilane blended is in the range of 0.1 to 10 parts by weight, preferably in the range of 0.1 to 5 parts by weight, and 0.5 to 5 parts by weight with respect to 100 parts by weight of the present composition. In the range of 0.5 part by weight or in the range of 0.5 to 10 parts by weight. This is because the surface of titanium oxide and inorganic powder can be sufficiently treated when the compounding amount of organosilane is at least the lower limit of the above range, and on the other hand, when the amount is less than the upper limit of the above range, This is because the mechanical strength and adhesive strength can be improved.
  • R 3 is an unsubstituted or halogen-substituted monovalent hydrocarbon group, for example, a linear alkyl group, a branched alkyl group, a cyclic alkyl group, an alkenyl group, an aryl Group, aralkyl group and halogenated alkyl group.
  • the linear alkyl group include a methyl group, an ethyl group, a propyl group, a hexyl group, and an octyl group.
  • Examples of the branched alkyl group include isopropyl group, isobutyl group, tert-butyl group, and 2-ethylhexyl group.
  • Examples of the cyclic alkyl group include a cyclopentyl group and a cyclohexyl group.
  • Examples of the alkenyl group include a vinyl group and an allyl group.
  • Examples of the aryl group include a phenyl group and a tolyl group.
  • Examples of the aralkyl group include 2-phenylethyl group and 2-methyl-2-phenylethyl group.
  • halogenated alkyl group examples include a 3,3,3-trifluoropropyl group, a 2- (nonafluorobutyl) ethyl group, and a 2- (heptadecafluorooctyl) ethyl group.
  • R 3 is preferably a methyl group or a vinyl group.
  • R 4 is a monovalent hydrocarbon group having no same or different aliphatic unsaturated bond, for example, a linear alkyl group, a branched alkyl group, a cyclic alkyl group, an aryl group, Examples include aralkyl groups and halogenated alkyl groups.
  • Examples of the linear alkyl group include a methyl group, an ethyl group, a propyl group, a hexyl group, and an octyl group.
  • Examples of the branched alkyl group include isopropyl group, isobutyl group, tert-butyl group, and 2-ethylhexyl group.
  • Examples of the cyclic alkyl group include a cyclopentyl group and a cyclohexyl group.
  • Examples of the aryl group include a phenyl group and a tolyl group.
  • Examples of the aralkyl group include 2-phenylethyl group and 2-methyl-2-phenylethyl group.
  • Examples of the halogenated alkyl group include a 3,3,3-trifluoropropyl group, a 2- (nonafluorobutyl) ethyl group, and a 2- (heptadecafluorooctyl) ethyl group.
  • R 4 is preferably a methyl group or a phenyl group.
  • R 5 is an oxygen atom or a divalent hydrocarbon group.
  • the divalent hydrocarbon group for R 5 include alkylene groups such as ethylene group, propylene group, and butylene group; and alkylenearylene alkylene groups such as ethylenephenyleneethylene group and ethylenephenylenepropylene group.
  • R 6 represents an alkyl group, an alkoxyalkyl group, an alkenyl group, or an acyl group.
  • an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group; an alkoxyalkyl group such as a methoxymethyl group, an ethoxymethyl group, and a methoxyethyl group;
  • Illustrative examples include alkenyl groups such as isopropylene group and isobutenyl group; acyl groups such as acetoxy group, preferably an alkyl group, and particularly a methyl group and an ethyl group.
  • b is an integer of 1 to 3, preferably 3.
  • p is an integer of 1 or more, preferably an integer in the range of 1 to 200, an integer in the range of 5 to 200, or
  • Examples of such an organosiloxane include the following compounds.
  • Me, Ph, and Vi represent a methyl group, a phenyl group, and a vinyl group, respectively.
  • the amount of the organosiloxane blended is in the range of 0.1 to 10 parts by weight, preferably in the range of 0.1 to 5 parts by weight, and 0.5 to 5 parts by weight with respect to 100 parts by weight of the composition. In the range of 0.5 part by weight or in the range of 0.5 to 10 parts by weight. This is because the surface of titanium oxide and inorganic powder can be sufficiently treated when the amount of the organosiloxane is not less than the lower limit of the above range, and on the other hand, if the amount is less than the upper limit of the above range, This is because a decrease in hardness can be suppressed, an increase in linear expansion coefficient can be suppressed, and mechanical strength and adhesive strength can be improved.
  • the above organosilane or the above organosiloxane may be used alone or in combination. By using these together, it is possible to efficiently perform the surface treatment of the titanium oxide powder and the inorganic powder, and simultaneously impart high mechanical strength, low linear expansion coefficient, and high adhesive ability to the resulting cured product. it can.
  • the mass ratio of the organosilane to the organosiloxane is preferably in the range of 3: 7 to 7: 3, particularly 1: 1.
  • This composition is thermosetting, and its curing mechanism is not particularly limited. Examples thereof include hydrosilylation reactions, radical reactions with organic peroxides, and condensation reactions, and hydrosilylation reactions are preferred.
  • Examples of the hydrosilylation reaction-curable silicone composition include: (A) an organopolysiloxane having at least two alkenyl groups in one molecule; (B) Organopolysiloxane having at least two silicon-bonded hydrogen atoms in one molecule ⁇ the amount of silicon-bonded hydrogen atoms in this component is 0.1 to 0.1 mol per 1 mole of alkenyl groups in component (A) Amount to be 10 moles ⁇ , (C) Titanium oxide powder having an average particle size of 0.05 to 10 ⁇ m (in the present composition, an amount of 50 to 90% by mass), (D) Inorganic powder other than titanium oxide having an average particle size of 0.1 to 20 ⁇ m (amount of 5 to 40% by mass in the present composition), (E) (E-1) General formula: R 1 (4-a)
  • a hydrogen group R 6 is an alkyl group, an alkoxyalkyl group, an alkenyl group, or an acyl group, b is an integer of 1 to 3, and p is an integer of 1 or more.
  • Hydrosilylation catalyst (amount for promoting the hydrosilylation reaction of the composition) represented by the formula (0.1 to 10 parts by mass with respect to 100 parts by mass of the composition)
  • a curable silicone composition comprising at least
  • the organopolysiloxane of the component has at least two alkenyl groups in one molecule.
  • alkenyl group include alkenyl groups having 2 to 10 carbon atoms such as vinyl group, allyl group, butenyl group, pentenyl group, and hexenyl group.
  • the group bonded to the silicon atom other than the alkenyl group in the component (A) has 1 to 6 carbon atoms such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, cyclopentyl group, cyclohexyl group and the like.
  • alkyl group having 6 to 12 carbon atoms such as a phenyl group, a tolyl group or a xylyl group; an aralkyl group having 7 to 12 carbon atoms such as a benzyl group or a phenethyl group; a part of hydrogen atoms of these groups Or the group which substituted all with halogen atoms, such as a fluorine atom and a chlorine atom, is illustrated.
  • Component organopolysiloxane has at least two silicon-bonded hydrogen atoms in one molecule.
  • the group bonded to the silicon atom other than the hydrogen atom in the component (B) has 1 to 6 carbon atoms such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a cyclopentyl group, and a cyclohexyl group.
  • alkyl group having 6 to 12 carbon atoms such as a phenyl group, a tolyl group or a xylyl group; an aralkyl group having 7 to 12 carbon atoms such as a benzyl group or a phenethyl group; a part of hydrogen atoms of these groups Or the group which substituted all with halogen atoms, such as a fluorine atom and a chlorine atom, is illustrated.
  • the component (A) is represented by the formula (A-1): -(R 7 R 8 SiO 2/2 ) m-
  • R 7 is an alkyl group having 1 to 6 carbon atoms or a phenyl group.
  • alkyl group for R 7 include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a cyclopentyl group, and a cyclohexyl group.
  • R 8 is an alkenyl group having 2 to 10 carbon atoms, and examples thereof include a vinyl group, an allyl group, a butenyl group, a pentenyl group, and a hexenyl group.
  • m is an integer in the range of 5 to 50, preferably an integer in the range of 5 to 30. This is because when m is not less than the lower limit of the above range, the thermal expansion coefficient of the obtained cured product is remarkably reduced, and when it is not more than the upper limit of the above range, the mechanical strength of the obtained cured product is improved. It is.
  • the component (A-1) is a linear organopolysiloxane composed of only the above-mentioned linear siloxane block and having both molecular chain ends blocked.
  • Examples of the group at the end of the molecular chain include hydroxyl groups; alkoxy groups such as methoxy group, ethoxy group, and propoxy group; and organosiloxy groups such as trimethylsiloxy group, dimethylvinylsiloxy group, dimethylphenylsiloxy group, and methylphenylvinylsiloxy group. Is done.
  • the component (A-1) may be a block copolymer in which the linear siloxane block (X) and another siloxane block (Y) are linked.
  • a block copolymer As such a block copolymer, an XY copolymer in which X and Y are connected one by one, an XYX copolymer in which X is connected to both ends of Y, and X and Y are alternately connected z times repeatedly ( XY) z copolymers are exemplified.
  • the siloxane block (Y) has a general formula: -(R 7 c SiO (4-c) / 2 )- (Wherein R 7 is the same as above, and c is a number from 0.5 to 2). Or a polysiloxane composed of a repetition thereof.
  • the group at the end of the molecular chain of this block copolymer is exemplified by a hydroxyl group, an alkoxy group similar to the above, or an organosiloxy group similar to the above.
  • the organopolysiloxane is generally prepared by polymerizing a cyclic diorganosiloxane by a re-equilibration reaction in the presence of a base catalyst or an acid catalyst. In such a method, the linear siloxane block is retained. It is difficult to prepare a block copolymer. Therefore, as a method for preparing the block copolymer as described above, the polysiloxane having the linear siloxane block (X) and the siloxane or polysiloxane having another siloxane block (Y) are subjected to a condensation reaction. A method is illustrated.
  • the content of the component (A-1) is such that the content of the linear siloxane block is 20 to 60% by mass of the total of the organopolysiloxanes in the present composition, preferably 30 to 50% by mass. This is because when the content of the linear siloxane block is equal to or higher than the lower limit of the above range, the thermal expansion coefficient of the resulting cured product is remarkably lowered, whereas when the content is equal to or lower than the upper limit of the above range, the obtained curing is obtained. This is because the flexibility and mechanical strength of the object are improved.
  • (A) in addition to the component (A-1), (A-2) a linear or branched organopolysiloxane having at least two alkenyl groups in one molecule May be used in combination.
  • alkenyl group in the component (A-2) include alkenyl groups having 2 to 6 carbon atoms such as vinyl group, allyl group, isopropenyl group, butenyl group, hexenyl group, and cyclohexenyl group.
  • the group bonded to the silicon atom other than the alkenyl group in the component (A-2) includes an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, and a propyl group; a phenyl group, a tolyl group, and a xylyl group.
  • Aryl groups having 6 to 12 carbon atoms such as benzyl groups, phenethyl groups and other aralkyl groups having 7 to 12 carbon atoms; halogenated alkyl groups such as 3-chloropropyl groups and 3,3,3-trifluoropropyl groups; Illustrated.
  • molecular chain both ends dimethylvinylsiloxy group-capped dimethylpolysiloxane
  • Examples include dimethylsiloxane / methylphenylsiloxane copolymers blocked with dimethylvinylsiloxy groups blocked at both molecular chains, and dimethylsiloxane / methylvinylsiloxane random copolymers blocked with trimethylsiloxy groups blocked at both molecular chains.
  • the branched chain organopolysiloxane (A-2) includes a siloxane unit represented by the formula: SiO 4/2 and a siloxane unit represented by the general formula: R 7 2 R 8 SiO 1/2. And those composed of siloxane units represented by the general formula: R 7 3 SiO 1/2 .
  • R 7 is an alkyl group having 1 to 6 carbon atoms or a phenyl group, and examples thereof are the same groups as described above.
  • R 8 is an alkenyl group having 2 to 10 carbon atoms, and examples thereof are the same groups as described above.
  • the total of the siloxane units represented by 2 is preferably in the range of 0.5 to 1.5.
  • the organopolysiloxane may have a very small amount of hydroxyl groups, alkoxy groups, etc. bonded to silicon atoms in the molecule.
  • the content of the component (A-2) is not particularly limited, but the alkenyl group in this component is at most 10 mol% with respect to the total of the alkenyl group in component (A-1) and the alkenyl group in this component. It is preferable that the amount is as follows. This is because the thermal expansion coefficient of the resulting cured product is significantly reduced when the content of this component is not more than the upper limit of the above range.
  • R 9 is an alkyl group having 1 to 6 carbon atoms or a phenyl group, and examples thereof include the same groups as R 7 .
  • n is an integer in the range of 10 to 100, preferably an integer in the range of 20 to 80. This is because when n is not less than the lower limit of the above range, the coefficient of thermal expansion of the obtained cured product is remarkably reduced, while when it is not more than the upper limit of the above range, the mechanical strength of the obtained cured product is improved. It is.
  • an organopolysiloxane composed only of the above-mentioned linear siloxane block and blocked at both ends of the molecular chain is exemplified.
  • the group at the end of this molecular chain is a hydroxyl group; an alkoxy group such as a methoxy group, an ethoxy group, or a propoxy group; an organosiloxy group such as a trimethylsiloxy group, a dimethylhydrogensiloxy group, a dimethylphenylsiloxy group, or a methylphenylhydrogensiloxy group Is exemplified.
  • the component (B) may be a block copolymer in which the linear siloxane block (X ′) and another siloxane block (Y ′) are linked.
  • a block copolymer an X′Y copolymer in which X ′ and Y are linked one by one, an X′YX ′ copolymer in which X ′ is linked to both ends of Y, and X ′ and Y are alternated And (X′Y) z copolymer linked repeatedly z times.
  • Examples of the siloxane block (Y) are the same as those described above.
  • the group at the end of the molecular chain of this block copolymer is exemplified by a hydroxyl group, an alkoxy group similar to the above, or an organosiloxy group similar to the above.
  • the content of component (B) is such that the silicon-bonded hydrogen atoms in this component are within the range of 0.1 to 10 mol per mol of alkenyl groups in component (A), preferably , An amount in the range of 0.5 to 10 mol, an amount in the range of 0.5 to 5 mol, or an amount in the range of 0.7 to 2 mol.
  • the content of the component (B) is not less than the lower limit of the above range, the thermal expansion coefficient of the resulting cured product is remarkably reduced, whereas when it is not more than the upper limit of the above range, the resulting cured product is a machine. This is because the mechanical strength is improved.
  • Tianium oxide powder of component (C) and inorganic powder of component (D) are as described above. Further, the organosilane and organosiloxane of the component (E) are as described above.
  • the component (C) and the component (D) are mixed with part or all of the component (A), Next, a method of mixing the component (E) with this and heating as necessary, mixing the component (C) with a part of the component (A), and then mixing a part of the component (E) with this Then, the component (D) was mixed with part of the component (A) that was heated as necessary, and then part of the component (E) was mixed with this and heated as necessary.
  • the method of mixing things is illustrated. Moreover, you may mix
  • the component (F) is a hydrosilylation reaction catalyst for promoting the curing reaction of the composition.
  • the component (F) include platinum-based catalysts, rhodium-based catalysts, and palladium-based catalysts.
  • the component (F) is preferably a platinum-based catalyst because curing of the composition can be remarkably accelerated.
  • the platinum catalyst include platinum fine powder, chloroplatinic acid, an alcohol solution of chloroplatinic acid, a platinum-alkenylsiloxane complex, a platinum-olefin complex, and a platinum-carbonyl complex.
  • alkenylsiloxane examples include 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane, Examples thereof include alkenyl siloxanes in which part of the methyl groups of these alkenyl siloxanes are substituted with ethyl groups, phenyl groups, and the like, and alkenyl siloxanes in which the vinyl groups of these alkenyl siloxanes are substituted with allyl groups, hexenyl groups, and the like.
  • the content of the component (F) is not particularly limited as long as it is an amount sufficient to promote the hydrosilylation reaction of the present composition.
  • the metal atom in the present component is in mass units relative to the present composition. In an amount in the range of 0.01 to 500 ppm, an amount in the range of 0.01 to 100 ppm, or an amount in the range of 0.01 to 50 ppm.
  • the content of the component (F) is not less than the lower limit of the above range, the resulting composition is cured well.
  • the content is not more than the upper limit of the above range, the resulting cured product is colored. It is difficult.
  • the composition may contain (G) a reaction inhibitor in order to appropriately control the curing rate of the composition.
  • a reaction inhibitor in order to appropriately control the curing rate of the composition.
  • Examples of such component (G) include 1-ethynylcyclohexanol, 2-methyl-3-butyn-2-ol, 3,5-dimethyl-1-hexyn-3-ol, 2-phenyl-3-butyne- Alkyne alcohols such as 2-ol; Enyne compounds such as 3-methyl-3-penten-1-yne, 3,5-dimethyl-3-hexen-1-yne; 1,3,5,7-tetramethyl-1 1,3,5,7-tetravinylcyclotetrasiloxane, 1,3,5,7-tetramethyl-1,3,5,7-tetrahexenylcyclotetrasiloxane and benzotriazole.
  • the content of the component (G) is not limited, but is preferably in the range of 1 to 5,000 ppm by
  • the composition may contain (H) an adhesion promoter in order to further improve the adhesion to the substrate that is in contact with the curing process.
  • a trialkoxysiloxy group for example, trimethoxysiloxy group, triethoxysiloxy group
  • a trialkoxysilylalkyl group for example, trimethoxysilylethyl group, triethoxysilylethyl group
  • a hydrosilyl group or Organosilane having an alkenyl group for example, vinyl group, allyl group
  • Organosilane having a roxyalkyl group for example, 3-methacryloxypropyl group
  • the viscosity at 25 ° C. at a shear rate of 1 s ⁇ 1 is preferably 1000 Pa ⁇ s or less, and the viscosity at 25 ° C. at a shear rate of 10 s ⁇ 1 is preferably 100 Pa ⁇ s or less. This is because when the viscosity is as described above, it is easy to cope with various production processes when a cured product is formed. Further, since the liquid does not easily drip at the time of use, the value of the thixo index determined by the following formula is preferably 5.0 or more.
  • the present composition may be mixed with a diluent such as an organic solvent or silicone oil to adjust the viscosity.
  • a diluent such as an organic solvent or silicone oil to adjust the viscosity.
  • This diluent preferably has a boiling point within the range of 150 to 250 ° C. because it is easily volatilized in the curing or post-cure process of the present composition and hardly remains in the cured product.
  • examples of such diluents include isoparaffinic organic solvents such as IP solvent manufactured by Idemitsu Kosan Co., Ltd., glycol ether organic solvents such as diethylene glycol monomethyl ether, or OS-20 manufactured by Toray Dow Corning Co., Ltd. Silicone solvents are exemplified.
  • the content of this diluent is not particularly limited, but it is easily volatilized in the curing or post-curing process of the present composition and hardly remains in the cured product. Therefore, 0.1 to 10 parts per 100 parts by mass of the present composition. It is preferably within the range of parts by mass.
  • the cured product of the present invention is obtained by curing the above curable silicone composition.
  • the linear expansion coefficient of the cured product of the present invention is not particularly limited, but the average linear expansion coefficient at 25 to 200 ° C. is preferably 100 ppm / ° C. or less, and more preferably 50 ppm / ° C. or less.
  • JIS K 7375: 2008 “Plastic total light transmittance and total light reflectance calculation method” when it is a 100 ⁇ m film cured product
  • the total light reflectance in is preferably 90% or more.
  • the shape of the cured product of the present invention is not particularly limited, but may be a plate or film formed on the support. Since the thermal expansion coefficient of the cured product of the present invention is extremely low, it is suitable as a coating film or film for coating the support.
  • a method for forming such a cured product of the present invention a method of forming a film-like or plate-like cured product on a support by a molding process of the above curable silicone composition, or the above curable silicone composition The method of forming a film-like or plate-like cured product on a support by an application step is mentioned.
  • imide resin bismaleimide / triazine resin
  • glass fiber-containing epoxy resin paper phenol resin, bakelite, polyethylene terephthalate resin, polybutylene terephthalate resin, polyacrylonitrile resin, polycarbonate resin, fluororesin, polyimide resin, polyphenylene Sulfide resin, aramid resin, polyether ether resin, polyether imide resin, liquid crystal polymer, polyether sulfone resin, cycloolefin resin, silicone rubber, silicone resin and other resin supports; aluminum foil, copper foil, nickel foil, Or metal supports, such as aluminum nitride foil, are illustrated.
  • Examples of methods for forming a cured product on the support include a molding process and a coating process.
  • Examples of the molding process include press molding and compression molding using a mold.
  • Examples of the coating process include screen printing and bar coater. , Roll coater, reverse coater, gravure coater, air knife coater, spray coater, curtain coater are exemplified, and in particular, when coating on a thin film, a known coating method such as a high-precision offset coater or a multi-stage roll coater is used. be able to.
  • the cured product of the present invention is preferably formed on the support in the form of a plate or film by the method as described above. Since the hardened
  • COB chip-on-board type
  • the optical semiconductor device of the present invention has a light reflecting material made of a cured product of the above composition. Such an optical semiconductor device of the present invention will be described in detail with reference to FIGS.
  • FIG. 1 shows a cross-sectional view of a chip-on-board (COB) type optical semiconductor device which is an example of the optical semiconductor device of the present invention.
  • COB chip-on-board
  • an optical semiconductor element 1 is mounted on a COB substrate 2 by die bonding, and the optical semiconductor element 1 and circuits 3 and 4 are electrically connected by a bonding wire 5.
  • a light reflecting material 6 is formed around the optical semiconductor element 1 on the substrate 2 so as to efficiently reflect light emitted from the optical semiconductor element 1.
  • FIG. 2 shows a sectional view of another chip-on-board (COB) type optical semiconductor device which is an example of the optical semiconductor device of the present invention.
  • COB chip-on-board
  • the optical semiconductor element 1 is electrically connected to the circuits 3 and 4 on the COB substrate 2 by bonding pads.
  • a light reflecting material 6 is formed around the optical semiconductor element 1 on the substrate 2 so as to efficiently reflect light emitted from the optical semiconductor element 1.
  • the substrate 2 may be a metal substrate such as aluminum or copper, and the circuits 3 and 4 are formed on the surface of the metal substrate via an insulating layer (not shown). Is formed.
  • a non-metallic substrate is used as the substrate 2, it is not necessary to form an insulating layer.
  • Such non-metallic substrates include glass epoxy substrates, polybutylene terephthalate (PBT) substrates, polyimide substrates, polyester substrates, aluminum nitride substrates, boron nitride substrates, silicon nitride substrates, alumina ceramic substrates, glass substrates, flexible glass substrates. Is illustrated.
  • a hybrid substrate made of an aluminum substrate or a copper substrate having an insulating resin layer, a printed wiring silicon substrate, a silicon carbide substrate, or a sapphire substrate can be used as the substrate 2.
  • the circuits 3 and 4 are made of at least one metal selected from the group consisting of silver, copper, and aluminum having high electrical conductivity, or an alloy containing at least one selected from the group consisting of silver, copper, and aluminum. Used. Further, it is preferable that a light reflecting material 6 is formed on the substrate 2 so as to expose a portion on which the optical semiconductor element 1 is mounted.
  • the optical semiconductor element 1 and the light reflecting material 6 are sealed with the sealing material 7, but only the optical semiconductor element 1 may be sealed with the sealing material 7 in a dome shape.
  • FIG. 1 and FIG. 2 only one optical semiconductor element 1 is shown on the substrate 2, but a plurality of optical semiconductor elements 1 may be mounted on the substrate 2.
  • a viscosity is a value in each share rate in 25 degreeC.
  • Me, Ph, and Vi represent a methyl group, a phenyl group, and a vinyl group, respectively.
  • the hardness, bending strength, linear expansion coefficient, adhesion to metal, and total light reflectance of the cured product were measured as follows.
  • the curable silicone composition was heated at 150 ° C. for 2 hours to prepare a cured product.
  • the hardness of the cured product was measured with a type D durometer specified in JIS K 7215-1986 “Method for testing the durometer hardness of plastics”.
  • Total light reflectance of cured product The curable silicone composition was heated at 150 ° C. for 2 hours to prepare a cured product having a thickness of 100 ⁇ m. The total light reflectance of this cured product was measured by the method defined in JIS K 7375: 2008 “Plastic Total Light Transmittance and Total Light Reflectance Determination Method”.
  • Example 1 formula: - (MeViSiO 2/2) 20 - 4.4 parts by mass of methyl vinyl polysiloxane having a linear methyl vinyl siloxane block represented by the formula and having both ends of the molecular chain blocked with hydroxyl groups, the formula: Me 2 ViSiO (Me 2 SiO) 160 SiMe 2 Vi Dimethylpolysiloxane blocked with dimethylvinylsiloxy group at both ends of the molecular chain represented by: 4.1 parts by mass, titanium oxide having an average primary particle size of 0.2 ⁇ m (SX-3103 manufactured by Sakai Chemical Industry), and an average particle size of 15 ⁇ m 21.8 parts by weight of spherical silica (HS-202 manufactured by Nippon Steel Materials Micron Co., Ltd.) and 4 parts by weight of n-octyltriethoxysilane were put into a loss mixer, mixed at room temperature, and then heated to 150 ° C. under reduced pressure.
  • a silicone base was prepared by
  • a curable silicone composition (I) is prepared by mixing a 3-divinyl-1,1,3,3-tetramethyldisiloxane solution (the amount of platinum atoms with respect to the present composition is 3.5 ppm by mass). ) was prepared. In addition, content of said linear methylvinylsiloxane block is 32.4 mass% of the sum total of the organopolysiloxane in this composition.
  • the curable silicone composition and the properties of the cured product are shown in Table 1.
  • Me 3 SiO (Me 2 SiO) 110 Si (OMe) 3 After putting 3 parts by mass of dimethylpolysiloxane blocked with a trimethylsiloxy group at one end of the molecular chain represented by the following formula, and mixing at room temperature with 3 parts by mass of dimethylpolysiloxane blocked with a trimethoxysiloxy group at the other end, A silicone base was prepared by kneading while heating to 150 ° C. under reduced pressure.
  • a silicone base was prepared by kneading while heating to 150 ° C. under reduced pressure.
  • Silicone composition (VII) was prepared.
  • content of said linear methylvinylsiloxane block is 32.4 mass% of the sum total of the organopolysiloxane in this composition.
  • the curable silicone composition and the properties of the cured product are shown in Table 1.
  • Example 8 formula: - (MeViSiO 2/2) 20 - 5.8 parts by mass of a methylvinylpolysiloxane having a linear methylvinylsiloxane block represented by the formula and having both ends of the molecular chain blocked with hydroxyl groups, the formula: Me 2 ViSiO (Me 2 SiO) 160 SiMe 2 Vi 5.9 parts by mass of dimethylpolysiloxane blocked with dimethylvinylsiloxy group at both ends of the molecular chain represented by the formula: 72 parts by mass of titanium oxide having an average primary particle size of 0.24 ⁇ m (Taipaque R-630 manufactured by Ishihara Sangyo), an average particle size of 15 ⁇ m Of spherical silica (HS-202 manufactured by Nippon Steel Materials Micron), 6 parts by mass, 1 part by mass of n-decyltrimethoxysilane, and a viscosity of 125 mPa ⁇
  • Me 3 SiO (Me 2 SiO) 110 Si (OMe) 3 After putting 3 parts by mass of dimethylpolysiloxane blocked with a trimethylsiloxy group at one end of the molecular chain represented by the following formula, and mixing at room temperature with 3 parts by mass of dimethylpolysiloxane blocked with a trimethoxysiloxy group at the other end, A silicone base was prepared by kneading while heating to 150 ° C. under reduced pressure.
  • a curable silicone composition (XI) was prepared by mixing a 3-divinyl-1,1,3,3-tetramethyldisiloxane solution (with respect to the present composition, an amount in which platinum atoms are 3.5 ppm by mass). ) was prepared. In addition, content of said linear methylvinylsiloxane block is 32.4 mass% of the sum total of the organopolysiloxane in this composition. Table 2 shows the properties of the curable silicone composition and the cured product.
  • a curable silicone composition (XV) is prepared by mixing a 3-divinyl-1,1,3,3-tetramethyldisiloxane solution (amount in which platinum atoms are 3 ppm by mass with respect to the present composition). Prepared. In addition, content of said linear methylvinylsiloxane block is 34.7 mass% of the sum total of the organopolysiloxane in this composition. Table 2 shows the properties of the curable silicone composition and the cured product.
  • Example 10 to 12 Inside the support of either PET film, aluminum plate, or copper plate, a spacer with a thickness of 100 ⁇ m is installed so that a space of 5 cm ⁇ 5 cm can be taken, and the curability prepared above within the range surrounded by the spacer 0.8 g of the silicone composition was injected. Next, a release film is placed on the curable silicone composition and heated at 150 ° C. and a press pressure of 5 kg for 15 minutes to produce an integrally molded product of the light reflecting material comprising the cured product and the support. did. The appearance of the cured product was visually observed, and the results are shown in Table 3.
  • Examples 13 to 15, Comparative Examples 13 to 15 Using a film coater (PI-1210) manufactured by Tester Sangyo Co., Ltd., the curable silicone composition prepared above was applied to any one of an aluminum plate, a copper plate, a PET film, and a glass plate with a gap size of 100 ⁇ m. And applied. The state of application was visually observed. Then, it heated in 150 degreeC oven for 1 hour, and produced the integral molded product of the light reflection material which consists of hardened
  • PI-1210 manufactured by Tester Sangyo Co., Ltd.
  • the adhesiveness to the support is good and the cured product does not have cracks or the like. I understood.
  • the curable silicone composition of the present invention has thixotropy, dripping hardly occurs between the coating process and heat curing, and no change in shape was observed.
  • the curable silicone composition of the present invention has a low coefficient of thermal expansion of a cured product obtained by curing, and has high light reflectivity in a thin film. Therefore, the curable silicone composition is suitable as a composite light reflecting material to be used integrally with other members. is there.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Led Device Packages (AREA)

Abstract

 平均粒子径0.05~10μmの酸化チタン粉末および平均粒子径0.1~20μmの酸化チタン以外の無機粉末を含有し、前記酸化チタン粉末の含有量が本組成物中の50~90質量%であり、前記無機粉末の含有量が本組成物中の5~40質量%である熱硬化性シリコーン組成物であって、前記酸化チタン粉末および前記無機粉末が特定のオルガノシランおよび/または特定のオルガノシロキサンにより表面処理されていることを特徴とする硬化性シリコーン組成物。この硬化性シリコーン組成物は、チキソ性を有し、取り扱い作業性が良好であり、硬化して、熱膨張率が低く、隠蔽率が高く、機械的強度が高く、さらには各種基材に対する接着性が良好な硬化物を形成する。

Description

硬化性シリコーン組成物、その硬化物、および光半導体装置
 本発明は、硬化性シリコーン組成物、その硬化物、および光半導体装置に関する。
 光半導体装置には、光半導体素子から出る光を効率よく反射するために光反射材が設けられている。この光反射材を形成するための硬化性シリコーン組成物としては、例えば、ビニル基およびアリル基のいずれか一方と、水素原子が、直接ケイ素原子に結合してなる構造を有するヒドロシリル化反応性シリコーン樹脂、白金系触媒、および白色顔料からなる硬化性シリコーン組成物(特許文献1参照)、重量平均分子量(Mw)が30,000以上であるビニル基含有オルガノポリシロキサン、一分子中にケイ素原子結合水素原子を少なくとも2個有するオルガノハイドロジェンポリシロキサン、白色顔料、白色顔料以外の無機充填剤、白金金属系触媒、および反応制御剤からなる硬化性シリコーン組成物(特許文献2参照)、ケイ素原子結合全有機基の30~80モル%がフェニル基であり、かつ5~20モル%がアルケニル基である分岐鎖状のオルガノポリシロキサン、ケイ素原子結合全有機基の30~60モル%がアルケニル基である、ケイ素原子数が10以下のオルガノポリシロキサン、一分子中に少なくとも2個のケイ素原子結合水素原子を有し、ケイ素原子結合全有機基の20~70モル%がフェニル基であるオルガノポリシロキサン、白色顔料、非球状シリカまたはガラスファイバー、球状シリカ、およびヒドロシリル化反応用触媒からなる硬化性シリコーン組成物(特許文献3参照)が挙げられる。
 近年、光半導体装置において、光反射材が基板上に薄膜で使用される場合には、光反射材と基板の熱膨張率の差によるクラックが発生しにくく、また、基板から剥離しにくいことが求められている。また、このような光反射材には、十分な光反射性能の他、薄膜でも光を透過させない十分な隠蔽性能も求められている。
 しかし、光反射性能に優れ、薄膜における遮蔽性能を向上させるため、白色顔料を硬化性シリコーン組成物中に多量に配合すると、得られる組成物の取り扱い作業性が低下し、また、基板に対する接着性が低下するという課題がある。
特開2009-021394号公報 特開2011-140550号公報 特開2013-076050号公報
 本発明は、チキソ性を有し、取り扱い作業性が良好であり、硬化して、熱膨張率が低く、隠蔽率が高く、機械的強度が高く、さらには各種基材に対する接着性が良好な硬化物を形成する硬化性シリコーン組成物、熱膨張率が低く、隠蔽率が高く、機械的強度が高い硬化物、および信頼性に優れる光半導体装置を提供することを目的とする。
 本発明の硬化性シリコーン組成物は、平均粒子径0.05~10μmの酸化チタン粉末および平均粒子径0.1~20μmの酸化チタン以外の無機粉末を含有し、前記酸化チタン粉末の含有量が本組成物中の50~90質量%であり、前記無機粉末の含有量が本組成物中の5~40質量%である熱硬化性シリコーン組成物であって、前記酸化チタン粉末および前記無機粉末が、一般式:
(4-a)Si(OR)
(式中、Rは炭素数6~20の非置換またはハロゲン置換の一価炭化水素基、Rはアルキル基、アルコキシアルキル基、アルケニル基、またはアシル基、aは1~3の整数である。)
で表されるオルガノシランおよび/または一般式:
Figure JPOXMLDOC01-appb-C000001
(式中、Rは非置換またはハロゲン置換の一価炭化水素基、Rは同種または異種の脂肪族不飽和結合を有さない一価炭化水素基、Rは酸素原子または二価炭化水素基、Rはアルキル基、アルコキシアルキル基、アルケニル基、またはアシル基、bは1~3の整数、pは1以上の整数である。)
で表されるオルガノシロキサンにより表面処理されていることを特徴とする。
 また、本発明の硬化物は、上記の硬化性シリコーン組成物を硬化してなることを特徴とする。
 さらに、本発明の光半導体装置は、上記の硬化性シリコーン組成物の硬化物からなる光反射材を有することを特徴とする。
 本発明の硬化性シリコーン組成物は、チキソ性を有し、取り扱い作業性が良好であり、硬化して、熱膨張率が低く、隠蔽率が高く、機械的強度が高く、さらには各種基材に対する接着性が良好な硬化物を形成するという特徴がある。また、本発明の硬化物は、熱膨張率が低く、隠蔽率が高く、機械的強度が高いという特徴がある。さらに、本発明の光半導体装置は、信頼性が優れるという特徴がある。
本発明の光半導体装置の一例であるチップオンボード(COB)型の光半導体装置の断面図である。 本発明の光半導体装置の一例である他のチップオンボード(COB)型の光半導体装置の断面図である。
 はじめに、本発明の硬化性シリコーン組成物を説明する。
 本発明の硬化性シリコーン組成物は、平均粒子径0.05~10μmの酸化チタン粉末および平均粒子径0.1~20μmの酸化チタン以外の無機粉末を含有し、前記酸化チタン粉末の含有量が本組成物中の50~90質量%であり、前記無機粉末の含有量が本組成物中の5~40質量%である。
 この酸化チタン粉末は本組成物の硬化物に光反射性能を付与するための白色顔料である。このような酸化チタン粉末としては、アナタース型酸化チタン粉末、ルチル型酸化チタン粉末が例示され、硬化物の光反射性能及び隠蔽力が高いことから、ルチル型酸化チタン粉末が好ましい。この酸化チタンの平均粒子径は0.05~10μmの範囲内であり、好ましくは、0.01~5μmの範囲内、または0.01~3μmの範囲内である。この酸化チタンは、予めその表面をシランカップリング剤、シリカ、アルミナ、ジルコニア等で表面処理したものを使用してもよい。
 この酸化チタン粉末の含有量は、本組成物中の50~90質量%の範囲内であり、好ましくは、50~85質量%の範囲内、50~80質量%の範囲内、55~90質量%の範囲内、55~85質量%の範囲内、または55~80質量%の範囲内である。これは、本組成物において、酸化チタン粉末の含有量が、上記範囲の下限以上であると、得られる硬化性シリコーン組成物のチキソ性が良好で、また、得られる硬化物の隠蔽性や強度が良好であり、一方、上記範囲の上限以下であると、得られる硬化性シリコーン組成物の取り扱い作業性が良好であるからである。一般に、酸化チタン粉末の含有量は硬化性シリコーン組成物に対して10~30質量%であるが、本発明では50質量%以上含有することにより、得られる硬化物の隠蔽性を向上させるばかりか、機械的強度も向上することができる。また、本組成物では、煙霧状シリカ等のチキソ性付与成分を配合しなくても、本組成物に適度なチキソ性を付与することができる。
 酸化チタン以外の無機粉末は、上記の酸化チタン粉末と併用することで、硬化物の線膨張率を小さくし、寸法安定性を改善するための成分である。このような無機粉末としては、球状シリカ、非球状シリカ、もしくはガラスファイバーが例示されるが、得られる硬化性シリコーン組成物の粘度上昇が少ないことから、球状シリカが好ましい。球状シリカとしては、乾式シリカ、湿式シリカ、溶融シリカ、爆燃シリカが例示されるが、本組成物への充填性が良好であることから、溶融シリカが好ましい。この無機粉末の平均粒子径は0.1~20μmの範囲内であり、スクリーン印刷による塗布工程を用いたときのメッシュの通りやすさや薄膜の形成しやすさから、好ましくは、0.1~15μmの範囲内、0.1~10μmの範囲内、0.2~20μmの範囲内、0.2~15μmの範囲内、または0.2~10μmの範囲内である。
 この無機粉末の含有量は、本組成物中の5~40質量%の範囲内であり、好ましくは、5~35質量%の範囲内、または5~30質量%の範囲内である。これは、無機粉末の含有量が、上記範囲の下限以上であると、得られる硬化物の線膨張率が低く、寸法安定性が良好であり、一方、上記範囲の上限以下であると、得られる硬化性シリコーン組成物の粘度が高くなりすぎず、取り扱い作業性が良好であるからである。
 本組成物では、前記酸化チタン粉末および前記無機粉末が、一般式:
(4-a)Si(OR)
(式中、Rは炭素数6~20の非置換またはハロゲン置換の一価炭化水素基、Rはアルキル基、アルコキシアルキル基、アルケニル基、またはアシル基、aは1~3の整数である。)
で表されるオルガノシランおよび/または一般式:
Figure JPOXMLDOC01-appb-C000002
(式中、Rは非置換またはハロゲン置換の一価炭化水素基、Rは同種または異種の脂肪族不飽和結合を有さない一価炭化水素基、Rは酸素原子または二価炭化水素基、Rはアルキル基、アルコキシアルキル基、アルケニル基、またはアシル基、bは1~3の整数、pは1以上の整数である。)
で表されるオルガノシロキサンにより表面処理されていることを特徴とする。
 上記オルガノシランにおいて、式中、Rは炭素数6~20の非置換またはハロゲン置換の一価炭化水素基である。これは、Rの炭素数が6未満である場合、得られる硬化性シリコーン組成物の粘度を低下させる効果が乏しく、一方、炭素数が20を超えるとオルガノポリシロキサン成分との相溶性が低下するからである。Rの一価炭化水素基としては、ヘキシル基、オクチル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基等のアルキル基;ベンジル基、フェニルエチル基等のアラルキル基;これらのアルキル基またはアラルキル基中の水素原子の一部または全部をフッ素、塩素等のハロゲン原子で置換した基が例示され、好ましくは、炭素数6~20のアルキル基である。
 また、式中、Rはアルキル基、アルコキシアルキル基、アルケニル基、またはアシル基である。具体的には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等の炭素数1~6のアルキル基;メトキシメチル基、エトキシメチル基、メトキシエチル基等のアルコキシアルキル基;イソプロピレン基、イソブテニル基等のアルケニル基;アセトキシ基等のアシル基が例示され、好ましくは、アルキル基であり、特には、メチル基、エチル基である。また、式中、aは1~3の整数であり、好ましくは、3である。
 このようなオルガノシランとしては、次の化合物が例示される。
13Si(OCH)
17Si(OC)
1021Si(OCH)
1225Si(OCH)
1429Si(OC)
-CHCHSi(OCH)
 このオルガノシランの配合量は、本組成物100質量部に対して0.1~10質量部の範囲内であり、好ましくは、0.1~5質量部の範囲内、0.5~5質量部の範囲内、または0.5~10質量部の範囲内である。これは、オルガノシランの配合量が上記範囲の下限以上であると、酸化チタンおよび無機粉末の表面を十分に処理できるからであり、一方、上記範囲の上限以下であると、得られる硬化物の機械的強度や接着力を向上できるからである。
 一方、上記のオルガノシロキサンにおいて、式中、Rは非置換またはハロゲン置換の一価炭化水素基であり、例えば、直鎖状アルキル基、分岐鎖状アルキル基、環状アルキル基、アルケニル基、アリール基、アラルキル基、ハロゲン化アルキル基が挙げられる。直鎖状アルキル基としては、メチル基、エチル基、プロピル基、ヘキシル基、オクチル基が例示される。分岐鎖状アルキル基としては、イソプロピル基、イソブチル基、tert-ブチル基、2-エチルヘキシル基が例示される。環状アルキル基としては、シクロペンチル基、シクロヘキシル基が例示される。アルケニル基としては、ビニル基、アリル基が例示される。アリール基としては、フェニル基、トリル基が例示される。アラルキル基としては、2-フェニルエチル基、2-メチル-2-フェニルエチル基が例示される。ハロゲン化アルキル基としては、例えば、3,3,3-トリフルオロプロピル基、2-(ノナフルオロブチル)エチル基、2-(ヘプタデカフルオロオクチル)エチル基が例示される。Rとしては、メチル基、ビニル基が好ましい。
 また、式中、Rは同種または異種の脂肪族不飽和結合を有さない一価炭化水素基であり、例えば、直鎖状アルキル基、分岐鎖状アルキル基、環状アルキル基、アリール基、アラルキル基、ハロゲン化アルキル基が挙げられる。直鎖状アルキル基としては、メチル基、エチル基、プロピル基、ヘキシル基、オクチル基が例示される。分岐鎖状アルキル基としては、イソプロピル基、イソブチル基、tert-ブチル基、2-エチルヘキシル基が例示される。環状アルキル基としては、シクロペンチル基、シクロヘキシル基が例示される。アリール基としては、フェニル基、トリル基が例示される。アラルキル基としては、2-フェニルエチル基、2-メチル-2-フェニルエチル基が例示される。ハロゲン化アルキル基としては、3,3,3-トリフルオロプロピル基、2-(ノナフルオロブチル)エチル基、2-(ヘプタデカフルオロオクチル)エチル基が例示される。Rとしては、メチル基、フェニル基が好ましい。
 また、式中、Rは酸素原子または二価炭化水素基である。Rの二価炭化水素基としては、エチレン基、プロピレン基、ブチレン基等のアルキレン基;エチレンフェニレンエチレン基、エチレンフェニレンプロピレン基等のアルキレンアリーレンアルキレン基が例示される。
 また、式中、Rはアルキル基、アルコキシアルキル基、アルケニル基、またはアシル基である。具体的には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等の炭素数1~6のアルキル基;メトキシメチル基、エトキシメチル基、メトキシエチル基等のアルコキシアルキル基;イソプロピレン基、イソブテニル基等のアルケニル基;アセトキシ基等のアシル基が例示され、好ましくは、アルキル基であり、特には、メチル基、エチル基である。また、式中、bは1~3の整数であり、好ましくは、3である。また、式中、pは1以上の整数であり、好ましくは、1~200の範囲内の整数、5~200の範囲内の整数、または5~150の範囲内の整数である。
 このようなオルガノシロキサンとしては、次の化合物が例示される。なお、式中、Me、Ph、Viは、それぞれメチル基、フェニル基、ビニル基を表す。
MeSiO(MeSiO)15Si(OMe)
MeSiO(MeSiO)23Si(OMe)
MeSiO(MeSiO)110Si(OMe)
ViMeSiO(MeSiO)29Si(OMe)
ViMeSiO(MeSiO)10Si(OMe)
ViMeSiO(MeSiO)Si(OMe)
MeSiO(MePhSiO)10Si(OMe)
 このオルガノシロキサンの配合量は、本組成物100質量部に対して0.1~10質量部の範囲内であり、好ましくは、0.1~5質量部の範囲内、0.5~5質量部の範囲内、または0.5~10質量部の範囲内である。これは、オルガノシロキサンの配合量が上記範囲の下限以上であると、酸化チタンおよび無機粉末の表面を十分に処理できるからであり、一方、上記範囲の上限以下であると、得られる硬化物の硬度の低下を抑制したり、線膨張係数の増加を抑制したり、機械的強度や接着力を向上できるからである。
 本組成物においては、上記オルガノシランまたは上記オルガノシロキサンを単独で使用してもよく、また、これらを併用してもよい。これらを併用することにより、上記酸化チタン粉末および無機粉末の表面処理を効率良く行うことができ、得られる硬化物に高い機械的強度、低い線膨張率、および高い接着能力を同時に付与することができる。上記オルガノシランと上記オルガノシロキサンの質量比は、好ましくは、3:7~7:3の範囲内であり、特には、1:1である。
 本組成物は熱硬化性であって、その硬化機構は特に限定されず、例えば、ヒドロシリル化反応、有機過酸化物によるラジカル反応、縮合反応が例示され、好ましくは、ヒドロシリル化反応である。ヒドロシリル化反応硬化性シリコーン組成物としては、例えば、
(A)一分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサン、
(B)一分子中に少なくとも2個のケイ素原子結合水素原子を有するオルガノポリシロキサン{(A)成分中のアルケニル基1モルに対して、本成分中のケイ素原子結合水素原子が0.1~10モルとなる量}、
(C)平均粒子径0.05~10μmの酸化チタン粉末(本組成物中、50~90質量%となる量)、
(D)平均粒子径0.1~20μmの酸化チタン以外の無機粉末(本組成物中、5~40質量%となる量)、
(E)(E-1)一般式:
(4-a)Si(OR)
(式中、Rは炭素数6~20の非置換またはハロゲン置換の一価炭化水素基、Rはアルキル基、アルコキシアルキル基、アルケニル基、またはアシル基、aは1~3の整数である。)
で表されるオルガノシラン(本組成物100質量部に対して0.1~10質量部)および/または(E-2)一般式:
Figure JPOXMLDOC01-appb-C000003
(式中、Rは非置換またはハロゲン置換の一価炭化水素基、Rは同種または異種の脂肪族不飽和結合を有さない一価炭化水素基、Rは酸素原子または二価炭化水素基、Rはアルキル基、アルコキシアルキル基、アルケニル基、またはアシル基、bは1~3の整数、pは1以上の整数である。)
で表されるオルガノシロキサン(本組成物100質量部に対して0.1~10質量部)、および
(F)ヒドロシリル化反応用触媒(本組成物のヒドロシリル化反応を促進する量)
から少なくともなる硬化性シリコーン組成物が好ましい。
 (A)成分のオルガノポリシロキサンは一分子中に少なくとも2個のアルケニル基を有する。このアルケニル基としては、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基等の炭素原子数2~10のアルケニル基が例示される。(A)成分中のアルケニル基以外のケイ素原子に結合する基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、シクロペンチル基、シクロヘキシル基等の炭素原子数1~6のアルキル基;フェニル基、トリル基、キシリル基等の炭素原子数6~12のアリール基;ベンジル基、フェネチル基等の炭素原子数7~12のアラルキル基;これらの基の水素原子の一部または全部をフッ素原子、塩素原子等のハロゲン原子で置換した基が例示される。
 (B)成分のオルガノポリシロキサンは一分子中に少なくとも2個のケイ素原子結合水素原子を有する。(B)成分中の水素原子以外のケイ素原子に結合する基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、シクロペンチル基、シクロヘキシル基等の炭素原子数1~6のアルキル基;フェニル基、トリル基、キシリル基等の炭素原子数6~12のアリール基;ベンジル基、フェネチル基等の炭素原子数7~12のアラルキル基;これらの基の水素原子の一部または全部をフッ素原子、塩素原子等のハロゲン原子で置換した基が例示される。
 本組成物では、得られる硬化物の熱膨張率を著しく低下できることから、(A)成分は、(A-1)一般式:
-(RSiO2/2)
で表される直鎖状シロキサンブロックを少なくとも有するオルガノポリシロキサンであり、(B)成分は、(B-1)一般式:
-(RHSiO2/2)
で表される直鎖状シロキサンブロックを少なくとも有するオルガノポリシロキサンであることが好ましい。
 (A-1)成分において、式中、Rは炭素原子数1~6のアルキル基またはフェニル基である。Rのアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、シクロペンチル基、シクロヘキシル基が例示される。また、式中、Rは炭素原子数2~10のアルケニル基であり、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基が例示される。
 また、式中、mは5~50の範囲内の整数であり、好ましくは、5~30の範囲内の整数である。これは、mが上記範囲の下限以上であると、得られる硬化物の熱膨張率が著しく低下し、一方、上記範囲の上限以下であると、得られる硬化物の機械的強度が向上するからである。
 (A-1)成分は、上記の直鎖状シロキサンブロックのみからなり、その分子鎖両末端が封鎖された鎖状のオルガノポリシロキサンが例示される。この分子鎖末端の基としては、水酸基;メトキシ基、エトキシ基、プロポキシ基等のアルコキシ基;トリメチルシロキシ基、ジメチルビニルシロキシ基、ジメチルフェニルシロキシ基、メチルフェニルビニルシロキシ基等のオルガノシロキシ基が例示される。また、(A-1)成分は、上記直鎖状シロキサンブロック(X)と他のシロキサンブロック(Y)とが連結したブロック共重合体であってもよい。このようなブロック共重合体としては、X、Yが1個ずつ連結したXY共重合体、Yの両端にXを連結したXYX共重合体、X、Yが交互にz回繰り返して連結した(XY)z共重合体が例示される。このシロキサンブロック(Y)としては、一般式:
-(R SiO(4-c)/2)-
(式中、Rは前記と同じであり、cは0.5~2の数である。)
で表されるシロキサンもしくはその繰り返しからなるポリシロキサンが例示される。なお、このブロック共重合体の分子鎖末端の基としては、水酸基、上記と同様のアルコキシ基、または上記と同様のオルガノシロキシ基が例示される。
 オルガノポリシロキサンは、一般には、環状ジオルガノシロキサンを、塩基触媒もしくは酸触媒の存在下、再平衡化反応により重合して調製するが、このような方法では、上記直鎖状シロキサンブロックを保持したブロック共重合体を調製することは難しい。このため、上記のようなブロック共重合体を調製する方法としては、上記直鎖状シロキサンブロック(X)を有するポリシロキサンと、他のシロキサンブロック(Y)を有するシロキサンもしくはポリシロキサンを縮合反応する方法が例示される。
 本組成物において、(A-1)成分の含有量は、上記直鎖状シロキサンブロックの含有量が本組成物中のオルガノポリシロキサンの合計の20~60質量%となる量であり、好ましくは、30~50質量%となる量である。これは、上記の直鎖状シロキサンブロックの含有量が上記範囲の下限以上であると、得られる硬化物の熱膨張率が著しく低下し、一方、上記範囲の上限以下であると、得られる硬化物の柔軟性と機械的強度が向上するからである。
 本組成物には、(A)成分として、上記(A-1)成分以外に、(A-2)一分子中に少なくとも2個のアルケニル基を有する直鎖状あるいは分岐鎖状のオルガノポリシロキサンを併用してもよい。(A-2)成分中のアルケニル基としては、ビニル基、アリル基、イソプロペニル基、ブテニル基、ヘキセニル基、シクロヘキセニル基等の炭素数2~6のアルケニル基が例示される。また、(A-2)成分中のアルケニル基以外のケイ素原子に結合する基としては、メチル基、エチル基、プロピル基等の炭素数1~6のアルキル基;フェニル基、トリル基、キシリル基等の炭素数6~12のアリール基;ベンジル基、フェネチル基等の炭素数7~12のアラルキル基;3-クロロプロピル基、3,3,3-トリフロロプロピル基等のハロゲン化アルキル基が例示される。
 (A-2)成分の直鎖状のオルガノポリシロキサンとしては、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサンランダム共重合体、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサンランダム共重合体が例示される。
 また、(A-2)成分の分岐鎖状のオルガノポリシロキサンとしては、式:SiO4/2で表されるシロキサン単位、一般式:R SiO1/2で表されるシロキサン単位、および一般式:R SiO1/2で表されるシロキサン単位からなるものが挙げられる。式中、Rは炭素原子数1~6のアルキル基またはフェニル基であり、前記と同様の基が例示される。また、Rは炭素原子数2~10のアルケニル基であり、前記と同様の基が例示される。このオルガノポリシロキサンにおいて、式:SiO4/2で表されるシロキサン単位1個に対する、一般式:R SiO1/2で表されるシロキサン単位および一般式:R SiO1/2で表されるシロキサン単位の合計は、0.5~1.5の範囲内であることが好ましい。また、このオルガノポリシロキサンには、分子中のケイ素原子にごく少量の水酸基、アルコキシ基等を結合していてもよい。
 (A-2)成分の含有量は特に限定されないが、(A-1)成分中のアルケニル基と本成分中のアルケニル基の合計に対して、本成分中のアルケニル基が多くとも10モル%となる量であることが好ましい。これは、本成分の含有量が上記範囲の上限以下であると、得られる硬化物の熱膨張率が著しく低下するからである。
 また、(B-1)成分において、式中、Rは炭素原子数1~6のアルキル基またはフェニル基であり、前記Rと同様の基が例示される。また、式中、nは10~100の範囲内の整数であり、好ましくは、20~80の範囲内の整数である。これは、nが上記範囲の下限以上であると、得られる硬化物の熱膨張率が著しく低下し、一方、上記範囲の上限以下であると、得られる硬化物の機械的強度が向上するからである。
 (B-1)成分としては、上記直鎖状シロキサンブロックのみからなり、その分子鎖両末端が封鎖されたオルガノポリシロキサンが例示される。この分子鎖末端の基としては、水酸基;メトキシ基、エトキシ基、プロポキシ基等のアルコキシ基;トリメチルシロキシ基、ジメチルハイドロジェンシロキシ基、ジメチルフェニルシロキシ基、メチルフェニルハイドロジェンシロキシ基等のオルガノシロキシ基が例示される。また、(B)成分は、上記直鎖状シロキサンブロック(X')と他のシロキサンブロック(Y')とが連結したブロック共重合体であってもよい。このようなブロック共重合体としては、X'、Yが1個ずつ連結したX'Y共重合体、Yの両端にX'を連結したX'YX'共重合体、X'、Yが交互にz回繰り返して連結した(X'Y)z共重合体が例示される。このシロキサンブロック(Y)としては、前記と同様のものが例示される。なお、このブロック共重合体の分子鎖末端の基としては、水酸基、上記と同様のアルコキシ基、または上記と同様のオルガノシロキシ基が例示される。
 (B)成分の含有量は、(A)成分中のアルケニル基1モルに対して、本成分中のケイ素原子結合水素原子が0.1~10モルの範囲内となる量であり、好ましくは、0.5~10モルの範囲内となる量、0.5~5モルの範囲内となる量、または、0.7~2モルの範囲内となる量である。これは、(B)成分の含有量が上記範囲の下限以上であると、得られる硬化物の熱膨張率が著しく低下し、一方、上記範囲の上限以下であると、得られる硬化物の機械的強度が向上するからである。
 (C)成分の酸化チタン粉末および(D)成分の無機粉末については前記の通りである。また、(E)成分のオルガノシランおよびオルガノシロキサンについても前記の通りである。
 本組成物において、(C)成分および(D)成分の表面処理をin-situ処理する場合には、(A)成分の一部または全部に(C)成分および(D)成分を混合し、次いで、これに(E)成分を混合して、必要に応じて加熱する方法、(A)成分の一部に(C)成分を混合し、次いで、これに(E)成分の一部を混合して、必要に応じて加熱したものと、(A)成分の一部に(D)成分を混合し、次いで、これに(E)成分の一部を混合して、必要に応じて加熱したものとを混合する方法が例示される。また、(E)成分を(C)成分および(D)成分と共に本組成物中に単に配合させてもよい。
 (F)成分は、本組成物の硬化反応を促進するためのヒドロシリル化反応用触媒である。(F)成分としては、白金系触媒、ロジウム系触媒、パラジウム系触媒が例示される。本組成物の硬化を著しく促進できることから、(F)成分は白金系触媒であることが好ましい。この白金系触媒としては、白金微粉末、塩化白金酸、塩化白金酸のアルコール溶液、白金-アルケニルシロキサン錯体、白金-オレフィン錯体、白金-カルボニル錯体が例示される。このアルケニルシロキサンとしては、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン、1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサン、これらのアルケニルシロキサンのメチル基の一部をエチル基、フェニル基等で置換したアルケニルシロキサン、これらのアルケニルシロキサンのビニル基をアリル基、ヘキセニル基等で置換したアルケニルシロキサンが例示される。
 また、この白金-アルケニルシロキサン錯体の安定性を向上できることから、この錯体に1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン、1,3-ジアリル-1,1,3,3-テトラメチルジシロキサン、1,3-ジビニル-1,3-ジメチル-1,3-ジフェニルジシロキサン、1,3-ジビニル-1,1,3,3-テトラフェニルジシロキサン、1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサン等のアルケニルシロキサンやジメチルシロキサンオリゴマー等のオルガノシロキサンオリゴマーを添加することが好ましい。
 (F)成分の含有量は、本組成物のヒドロシリル化反応を促進するに十分な量であれば特に限定されないが、好ましくは、本組成物に対して、本成分中の金属原子が質量単位で0.01~500ppmの範囲内となる量、0.01~100ppmの範囲内となる量、または0.01~50ppmの範囲内となる量である。これは、(F)成分の含有量が上記範囲の下限以上であると、得られる組成物の硬化が良好であり、一方、上記範囲の上限以下であると、得られる硬化物に着色を生じ難くいからである。
 また、本組成物には、本組成物の硬化速度を適切に制御するために(G)反応抑制剤を含有してもよい。このような(G)成分としては、1-エチニルシクロヘキサノール、2-メチル-3-ブチン-2-オール、3,5-ジメチル-1-ヘキシン-3-オール、2-フェニル-3-ブチン-2-オール等のアルキンアルコール;3-メチル-3-ペンテン-1-イン、3,5-ジメチル-3-ヘキセン-1-イン等のエンイン化合物;1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサン、1,3,5,7-テトラメチル-1,3,5,7-テトラヘキセニルシクロテトラシロキサン、ベンゾトリアゾールが例示される。(G)成分の含有量は限定されないが、本組成物に対して、質量単位で1~5,000ppmの範囲内であることが好ましい。
 また、本組成物には、硬化途上で接触している基材への接着性を更に向上させるために(H)接着促進剤を含有してもよい。(H)成分としては、トリアルコキシシロキシ基(例えば、トリメトキシシロキシ基、トリエトキシシロキシ基)もしくはトリアルコキシシリルアルキル基(例えば、トリメトキシシリルエチル基、トリエトキシシリルエチル基)と、ヒドロシリル基もしくはアルケニル基(例えば、ビニル基、アリル基)を有するオルガノシランまたはケイ素原子数4~20程度の直鎖状、分岐鎖状または環状のオルガノシロキサンオリゴマー;トリアルコキシシロキシ基もしくはトリアルコキシシリルアルキル基とメタクリロキシアルキル基(例えば、3-メタクリロキシプロピル基)を有するオルガノシランまたはケイ素原子数4~20程度の直鎖状、分岐鎖状または環状のオルガノシロキサンオリゴマー;トリアルコキシシロキシ基もしくはトリアルコキシシリルアルキル基とエポキシ基結合アルキル基(例えば、3-グリシドキシプロピル基、4-グリシドキシブチル基、2-(3,4-エポキシシクロヘキシル)エチル基、3-(3,4-エポキシシクロヘキシル)プロピル基)を有するオルガノシランまたはケイ素原子数4~20程度の直鎖状、分岐鎖状または環状のオルガノシロキサンオリゴマー;アミノアルキルトリアルコキシシランとエポキシ基結合アルキルトリアルコキシシランの反応物、エポキシ基含有エチルポリシリケートが例示される。具体的には、ビニルトリメトキシシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、ハイドロジェントリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-グリシドキシプロピルトリエトキシシランと3-アミノプロピルトリエトキシシランの反応物、分子鎖両末端水酸基封鎖メチルビニルシロキサンオリゴマーと3-グリシドキシプロピルトリメトキシシランの縮合反応物、分子鎖両末端水酸基封鎖メチルビニルシロキサンオリゴマーと3-メタクリロキシプロピルトリエトキシシランの縮合反応物、トリス(3-トリメトキシシリルプロピル)イソシアヌレートが例示される。(H)成分の含有量は限定されないが、(A)成分100質量部に対して、0.1~10質量部の範囲内であることが好ましい。
 本組成物は酸化チタンを高充填するため、他の無機充填剤を用いた時には見られないような高いチキソ性を示す。せん断速度1s-1における25℃の粘度は1000Pa・s以下であることが好ましく、せん断速10s-1における25℃の粘度は100Pa・s以下であることが好ましい。これは、上記のような粘度であると、硬化物を形成する際に、様々な生産プロセスに対応しやすいためである。また、使用時に液だれしにくいことから、下記式により求められるチキソ指数の値が5.0以上であることが好ましい。
Figure JPOXMLDOC01-appb-M000001
 また、本組成物には、その塗布作業性を向上させるために、有機溶剤やシリコーンオイル等の希釈剤を配合して、粘度を調整してもよい。この希釈剤は、本組成物の硬化あるいはポストキュア工程において揮発しやすく、硬化物に残存しにくいことから、沸点が150~250℃の範囲内であるものが好ましい。このような希釈剤としては、出光興産株式会社製のIPソルベント等のイソパラフィン系の有機溶剤、ジエチレングリコールモノメチルエーテル等のグリコールエーテル系の有機溶剤、あるいは東レ・ダウコーニング株式会社製のOS-20等のシリコーン系の溶剤が例示される。この希釈剤の含有量は特に限定されないが、本組成物の硬化あるいはポストキュア工程において揮発しやすく、硬化物に残存しにくいことから、本組成物100質量部に対して、0.1~10質量部の範囲内であることが好ましい。
 次に、本発明の硬化物について詳細に説明する。
 本発明の硬化物は、上記の硬化性シリコーン組成物を硬化してなることを特徴とする。本発明の硬化物の線膨張率は特に限定されないが、25~200℃における平均線膨張率が100ppm/℃以下であることが好ましく、さらには50ppm/℃以下であることが好ましい。また、本発明の硬化物は薄膜状でも隠蔽性能が優れることから、それを100μmのフィルム状硬化物とした場合のJIS K 7375:2008「プラスチック 全光線透過率及び全光線反射率の求め方」における全光線反射率が90%以上であることが好ましい。
 本発明の硬化物の形状は特に限定されないが、支持体上に板状または膜状に形成されたものであってもよい。本発明の硬化物は熱膨張率が極めて低いため、支持体を被覆する塗膜やフィルムとして好適である。
 このような本発明の硬化物の形成方法としては、上記の硬化性シリコーン組成物を成型工程により、支持体上に膜状又は板状の硬化物を形成する方法や、上記の硬化性シリコーン組成物を塗布工程により、支持体上に膜状又は板状の硬化物を形成する方法が挙げられる。
 この支持体としては、イミド樹脂、ビスマレイミド・トリアジン樹脂、ガラス繊維含有エポキシ樹脂、紙フェノール樹脂、ベークライト、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリアクリロニトリル樹脂、ポリカーボネート樹脂、フッ素樹脂、ポリイミド樹脂、ポリフェニレンサルファイド樹脂、アラミド樹脂、ポリエーテルエーテル樹脂、ポリエーテルイミド樹脂、液晶ポリマー、ポリエーテルサルフォン樹脂、シクロオレフィン樹脂、シリコーンゴム、シリコーン樹脂等の樹脂製支持体;アルミニウム箔、銅箔、ニッケル箔、又は窒化アルミニウム箔等の金属製支持体が例示される。
 支持体上に硬化物を形成する方法としては、成型工程、塗布工程が例示され、成型工程としては金型を用いたプレス成型や圧縮成型が例示され、塗布工程としては、スクリーン印刷、バーコーター、ロールコーター、リバースコーター、グラビアコーター、エアナイフコーター、スプレーコーター、カーテンコーターが例示され、特に、薄膜に塗工する場合には、高精度のオフセットコーター、多段ロールコーター等の公知の塗布方法を用いることができる。
 本発明の硬化物は前記の様な方法により支持体上に板状又は膜状で形成されることが好ましい。本発明の硬化物は高い光反射性を示すため、光半導体装置に用いられる光反射材として利用できる。特に、本発明の材料を光半導体装置に用いる場合、チップオンボードタイプ(COB)の光半導体装置に使用するのが好適である。
 次に、本発明の光半導体装置について詳細に説明する。
 本発明の光半導体装置は、上記組成物の硬化物からなる光反射材を有することを特徴とする。このような本発明の光半導体装置を図1および図2を用いて詳細に説明する。
 図1は、本発明の光半導体装置の一例であるチップオンボード(COB)型の光半導体装置の断面図を示す。図1のCOB型光半導体装置では、光半導体素子1がCOB用の基板2にダイボンドにより搭載され、この光半導体素子1と回路3、4とをボンディングワイヤ5により電気的に接続している。また、基板2上の光半導体素子1周囲には、光半導体素子1から出る光を効率よく反射するように光反射材6が形成されている。
 図2は、本発明の光半導体装置の一例である他のチップオンボード(COB)型の光半導体装置の断面図を示す。図2のCOB型光半導体装置では、光半導体素子1がCOB用の基板2上の回路3、4とボンディングパッドにより電気的に接続されている。また、基板2上の光半導体素子1周囲には、光半導体素子1から出る光を効率よく反射するように光反射材6が形成されている。
 図1および図2の光半導体装置において、基板2はアルミニウムや銅等の金属製基板であってもよい、その金属製基板の表面に絶縁層(図示せず)を介して回路3、4が形成されている。また、基板2として非金属製基板を用いる場合には、絶縁層を形成する必要はない。このような非金属製基板としては、ガラスエポキシ基板、ポリブチレンテレフタレート(PBT)基板、ポリイミド基板、ポリエステル基板、窒化アルミニウム基板、窒化ホウ素基板、窒化ケイ素基板、アルミナセラミックス基板、ガラス基板、フレキシブルガラス基板が例示され。さらには、この基板2として、絶縁樹脂層を有するアルミニウム製基板または銅製基板からなるハイブリッド基板や、プリント配線したシリコン基板、炭化ケイ素基板、サファイア基板を用いることもできる。
 この回路3、4は、電気伝導性の高い、銀、銅、およびアルミニウムからなる群から選ばれる少なくとも一種の金属、または、銀、銅、およびアルミニウムからなる群から選ばれる少なくとも一種を含む合金が用いられる。さらに、この基板2には、光半導体素子1を搭載する部分を露出するように光反射材6が形成されていることが好ましい。
 図1および図2では、光半導体素子1および光反射材6が封止材7により封止されているが、光半導体素子1のみを封止材7でドーム状に封止してもよい。なお、図1および図2では、光半導体素子1が基板2上に1個のみ図示されているが、この光半導体素子1を基板2上に複数搭載してもよい。
 本発明の硬化性シリコーン組成物、硬化物、および光半導体装置を実施例により詳細に説明する。なお、実施例中、粘度は25℃における各シェアレートでの値である。また、式中、Me、Ph、およびViは、それぞれメチル基、フェニル基、およびビニル基を表す。
 また、硬化物の硬さ、曲げ強さ、線膨張率、金属に対する接着力、および全光線反射率を次のようにして測定した。
[硬化物の硬さ]
 硬化性シリコーン組成物を150℃で2時間加熱して硬化物を作製した。この硬化物の硬さを、JIS K 7215-1986「プラスチックのデュロメータ硬さ試験方法」に規定のタイプDデュロメータにより測定した。
[硬化物の曲げ強度]
 硬化性シリコーン組成物を150℃で2時間加熱して硬化物を作製した。この硬化物の曲げ強度を、JIS K 6911-1995「熱硬化性プラスチック一般試験方法」に規定の方法により測定した。
[硬化物の線膨張率]
 硬化性シリコーン組成物を150℃で2時間加熱して硬化物を作製した。この硬化物の線膨張率を、JIS K 7197-1991「プラスチックの熱機械分析による線膨張率の試験方法」に規定の方法により測定した。
[硬化物の全光線反射率]
 硬化性シリコーン組成物を150℃で2時間加熱して、厚さ100μmの硬化物を作製した。この硬化物の全光線反射率を、JIS K 7375:2008「プラスチック 全光線透過率及び全光線反射率の求め方」に規定の方法により測定した。
[硬化物の金属に対する接着力]
 25mm×75mmのアルミニウム板上に、硬化性シリコーン組成物をディスペンサーにより約100mgづつを5ヶ所に塗布した。次に、この組成物に厚さ1mmの6mm角のアルミニウム製チップを被せ、1kgの板により圧着した状態で、150℃で2時間加熱して硬化させた。その後、室温に冷却し、シェア強度測定装置(西進商事株式会社製のボンドテスターSS-100KP)によりダイシェア強度を測定した。また、上記と同様にして、銅板に対する銅板製チップのダイシェア強度についても測定した。
[実施例1]
 式:
-(MeViSiO2/2)20
で表される直鎖状メチルビニルシロキサンブロックを有し、分子鎖両末端が水酸基で封鎖されたメチルビニルポリシロキサン 4.4質量部、式:
MeViSiO(MeSiO)160SiMeVi
で表される分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン 4.1質量部、平均一次粒子径0.2μmの酸化チタン(堺化学工業製のSX-3103) 60質量部、平均粒子径15μmの球状シリカ(新日鉄マテリアルズ マイクロン社製のHS-202) 21.8質量部、およびn-オクチルトリエトキシシラン 4質量部をロスミキサーに投入し、室温で混合した後、減圧下、150℃に加熱しながら混練して、シリコーンベースを調製した。
 次に、室温下、このシリコーンベースに、式:
-(MeHSiO2/2)50
で表される直鎖状メチルハイドロジェンシロキサンブロックを有し、分子鎖両末端がトリメチルシロシキ基で封鎖されたメチルハイドロジェンポリシロキサン 4.7質量部(シリコーンベース中のメチルビニルポリシロキサンとジメチルポリシロキサン中のビニル基の合計1モルに対して、本成分中のケイ素原子結合水素原子が1.5モルとなる量)、粘度20mPa・sの分子鎖両末端水酸基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合オリゴマーと3-グリシドキシプロピルトリメトキシシランとの質量比1:2の縮合反応物 1質量部、および1-エチニル-1-シクロヘキサノール(本組成物に対して、質量単位で200ppmとなる量)を混合した後、白金の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサンの1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン溶液(本組成物に対して、白金原子が質量単位で3.5ppmとなる量)を混合して、硬化性シリコーン組成物(I)を調製した。なお、上記の直鎖状メチルビニルシロキサンブロックの含有量は本組成物中のオルガノポリシロキサンの合計の32.4質量%である。この硬化性シリコーン組成物、およびその硬化物の特性を表1に示した。
[実施例2]
 式:
-(MeViSiO2/2)20
で表される直鎖状メチルビニルシロキサンブロックを有し、分子鎖両末端が水酸基で封鎖されたメチルビニルポリシロキサン 4.4質量部、式:
MeViSiO(MeSiO)160SiMeVi
で表される分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン 4.1質量部、平均一次粒子径0.2μmの酸化チタン(堺化学工業製のSX-3103) 51.8質量部、平均粒子径15μmの球状シリカ(新日鉄マテリアルズ マイクロン社製のHS-202) 30質量部、および粘度24mPa・sである、式:
MeViSiO(MeSiO)29Si(OMe)
で表される分子鎖片末端がジメチルビニルシロキシ基で封鎖され、他の分子鎖片末端がトリメトキシシロキシ基で封鎖されたジメチルポリシロキサン 4質量部をロスミキサーに投入し、室温で混合した後、減圧下、150℃に加熱しながら混練して、シリコーンベースを調製した。
 次に、室温下、このシリコーンベースに、式:
-(MeHSiO2/2)50
で表される直鎖状メチルハイドロジェンシロキサンブロックを有し、分子鎖両末端がトリメチルシロシキ基で封鎖されたメチルハイドロジェンポリシロキサン 4.7質量部(シリコーンベース中のメチルビニルポリシロキサンと分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン中のビニル基の合計1モルに対して、本成分中のケイ素原子結合水素原子が1.5モルとなる量)、粘度20mPa・sの分子鎖両末端水酸基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合オリゴマーと3-グリシドキシプロピルトリメトキシシランとの質量比1:2の縮合反応物 1質量部、および1-エチニル-1-シクロヘキサノール(本組成物に対して、質量単位で200ppmとなる量)を混合した後、白金の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサンの1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン溶液(本組成物に対して、白金原子が質量単位で3.5ppmとなる量)を混合して、硬化性シリコーン組成物(II)を調製した。なお、上記の直鎖状メチルビニルシロキサンブロックの含有量は本組成物中のオルガノポリシロキサンの合計の32.4質量%である。この硬化性シリコーン組成物、およびその硬化物の特性を表1に示した。
[実施例3]
 式:
-(MeViSiO2/2)20
で表される直鎖状メチルビニルシロキサンブロックを有し、分子鎖両末端が水酸基で封鎖されたメチルビニルポリシロキサン 5.8質量部、式:
MeViSiO(MeSiO)160SiMeVi
で表される分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン 5.9質量部、平均一次粒子径0.24μmの酸化チタン(石原産業製のタイペークR-630) 72質量部、平均粒子径15μmの球状シリカ(新日鉄マテリアルズ マイクロン社製のHS-202) 6質量部、n-デシルトリメトキシシラン 1質量部、および粘度125mPa・sである、式:
MeSiO(MeSiO)110Si(OMe)
で表される分子鎖片末端がトリメチルシロキシ基で封鎖され、他の分子鎖片末端がトリメトキシシロキシ基で封鎖されたジメチルポリシロキサン 3質量部をロスミキサーに投入し、室温で混合した後、減圧下、150℃に加熱しながら混練して、シリコーンベースを調製した。
 次に、室温下、このシリコーンベースに、式:
-(MeHSiO2/2)50
で表される直鎖状メチルハイドロジェンシロキサンブロックを有し、分子鎖両末端がトリメチルシロシキ基で封鎖されたメチルハイドロジェンポリシロキサン 5.9質量部(シリコーンベース中のメチルビニルポリシロキサンと分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン中のビニル基の合計1モルに対して、本成分中のケイ素原子結合水素原子が1.4モルとなる量)、粘度20mPa・sの分子鎖両末端水酸基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合オリゴマーと3-グリシドキシプロピルトリメトキシシランとの質量比1:2の縮合反応物 1質量部、および1-エチニル-1-シクロヘキサノール(本組成物に対して、質量単位で200ppmとなる量)を混合した後、白金の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサンの1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン溶液(本組成物に対して、白金原子が質量単位で3.5ppmとなる量)を混合して、硬化性シリコーン組成物(III)を調製した。なお、上記の直鎖状メチルビニルシロキサンブロックの含有量は本組成物中のオルガノポリシロキサンの合計の34.4質量%である。この硬化性シリコーン組成物、およびその硬化物の特性を表1に示した。
[実施例4]
 式:
-(MeViSiO2/2)
で表される直鎖状メチルビニルシロキサンブロックを有し、分子鎖両末端が水酸基で封鎖されたメチルビニルポリシロキサン 4.2質量部、式:
MeViSiO(MeSiO)160SiMeVi
で表される分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン 4.0質量部、平均一次粒子径0.2μmの酸化チタン(堺化学工業製のSX-3103) 72質量部、平均粒子径15μmの球状シリカ(新日鉄マテリアルズ マイクロン社製のHS-202) 10質量部、n-オクチルトリエトキシシラン 3質量部、および粘度22mPa・sである、式:
MeSiO(MeSiO)23Si(OMe)
で表される分子鎖片末端がトリメチルシロキシ基で封鎖され、他の分子鎖片末端がトリメトキシシロキシ基で封鎖されたジメチルポリシロキサン 1質量部をロスミキサーに投入し、室温で混合した後、減圧下、150℃に加熱しながら混練して、シリコーンベースを調製した。
 次に、室温下、このシリコーンベースに、式:
-(MeHSiO2/2)20
で表される直鎖状メチルハイドロジェンシロキサンブロックを有し、分子鎖両末端がトリメチルシロキシ基で封鎖されたメチルハイドロジェンポリシロキサン 4.5質量部(シリコーンベース中のメチルビニルポリシロキサンと分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン中のビニル基の合計1モルに対して、本成分中のケイ素原子結合水素原子が1.3モルとなる量)、粘度20mPa・sの分子鎖両末端水酸基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合オリゴマーと3-グリシドキシプロピルトリメトキシシランとの質量比1:2の縮合反応物 1.5質量部、および1-エチニル-1-シクロヘキサノール(本組成物に対して、質量単位で300ppmとなる量)を混合した後、白金の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサンの1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン溶液(本組成物に対して、白金原子が質量単位で5ppmとなる量)を混合して、硬化性シリコーン組成物(IV)を調製した。なお、上記の直鎖状メチルビニルシロキサンブロックの含有量は本組成物中のオルガノポリシロキサンの合計の34.5質量%である。この硬化性シリコーン組成物、およびその硬化物の特性を表1に示した。
[実施例5]
 式:
-(MeViSiO2/2)
で表される直鎖状メチルビニルシロキサンブロックを有し、分子鎖両末端が水酸基で封鎖されたメチルビニルポリシロキサン 4.4質量部、式:
MeViSiO(MeSiO)46SiMeVi
で表される分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン 4.1質量部、平均一次粒子径0.2μmの酸化チタン(堺化学工業製のSX-3103) 65質量部、平均粒子径15μmの球状シリカ(新日鉄マテリアルズ マイクロン社製のHS-202) 17質量部、n-オクチルトリエトキシシラン 2質量部、および粘度125mPa・sである、式:
MeSiO(MeSiO)110Si(OMe)
で表される分子鎖片末端がトリメチルシロキシ基で封鎖され、他の分子鎖片末端がトリメトキシシロキシ基で封鎖されたジメチルポリシロキサン 2質量部をロスミキサーに投入し、室温で混合した後、減圧下、150℃に加熱しながら混練して、シリコーンベースを調製した。
 次に、室温下、このシリコーンベースに、式:
-(MeHSiO2/2)50
で表される直鎖状メチルハイドロジェンシロキサンブロックを有し、分子鎖両末端がトリメチルシロシキ基で封鎖されたメチルハイドロジェンポリシロキサン 4.7質量部(シリコーンベース中のメチルビニルポリシロキサンと分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン中のビニル基の合計1モルに対して、本成分中のケイ素原子結合水素原子が1.5モルとなる量)、粘度20mPa・sの分子鎖両末端水酸基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合オリゴマーと3-グリシドキシプロピルトリメトキシシランとの質量比1:2の縮合反応物 1質量部、および1-エチニル-1-シクロヘキサノール(本組成物に対して、質量単位で200ppmとなる量)を混合した後、白金の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサンの1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン溶液(本組成物に対して、白金原子が質量単位で3ppmとなる量)を混合して、硬化性シリコーン組成物(V)を調製した。なお、上記の直鎖状メチルビニルシロキサンブロックの含有量は本組成物中のオルガノポリシロキサンの合計の34.7質量%である。この硬化性シリコーン組成物、およびその硬化物の特性を表1に示した。
[実施例6]
 式:
-(MeViSiO2/2)
で表される直鎖状メチルビニルシロキサンブロック5個と式:
-(MePhSiO)
で表される直鎖状メチルフェニルシロキサンブロック5個が交互に連結し、分子鎖両末端がトリメチルシロキシ基で封鎖されたメチルビニルシロキサン・メチルフェニルシロキサンブロック共重合体 5.8質量部、式:
MeViSiO(MeSiO)160SiMeVi
で表される分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン 5.9質量部、平均一次粒子径0.24μmの酸化チタン(石原産業製のタイペークR-630) 70質量部、平均粒子径15μmの球状シリカ(新日鉄マテリアルズ マイクロン社製のHS-202) 8質量部、n-デシルトリメトキシシラン 2質量部、および粘度22mPa・sである、式:
MeSiO(MeSiO)23Si(OMe)
で表される分子鎖片末端がトリメチルシロキシ基で封鎖され、他の分子鎖片末端がトリメトキシシロキシ基で封鎖されたジメチルポリシロキサン 2質量部をロスミキサーに投入し、室温で混合した後、減圧下、150℃に加熱しながら混練して、シリコーンベースを調製した。
 次に、室温下、このシリコーンベースに、式:
-(MeHSiO2/2)20
で表される直鎖状メチルハイドロジェンシロキサンブロックを有し、分子鎖両末端がトリメチルシロキシ基で封鎖されたメチルハイドロジェンポリシロキサン 5.9質量部(シリコーンベース中のメチルビニルシロキサン・メチルフェニルシロキサンブロック共重合体と分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン中のビニル基の合計1モルに対して、本成分中のケイ素原子結合水素原子が1.5モルとなる量)、粘度20mPa・sの分子鎖両末端水酸基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合オリゴマーと3-グリシドキシプロピルトリメトキシシランとの質量比1:2の縮合反応物 1質量部、および1-エチニル-1-シクロヘキサノール(本組成物に対して、質量単位で200ppmとなる量)を混合した後、白金の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサンの1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン溶液(本組成物に対して、白金原子が質量単位で3ppmとなる量)を混合して、硬化性シリコーン組成物(VI)を調製した。なお、上記の直鎖状メチルビニルシロキサンブロックの含有量は本組成物中のオルガノポリシロキサンの合計の34.4質量%である。この硬化性シリコーン組成物、およびその硬化物の特性を表1に示した。
[実施例7]
 式:
-(MeViSiO2/2)20
で表される直鎖状メチルビニルシロキサンブロックを有し、分子鎖両末端が水酸基で封鎖されたメチルビニルポリシロキサン 4.4質量部、式:
MeViSiO(MeSiO)160SiMeVi
で表される分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン 4.1質量部、平均一次粒子径0.2μmの酸化チタン(堺化学工業製のSX-3103) 60質量部、平均粒子径15μmの球状シリカ(新日鉄マテリアルズ マイクロン社製のHS-202) 21.8質量部、およびn-オクチルトリエトキシシラン 4質量部をロスミキサーに投入し、室温で混合した後、減圧下、150℃に加熱しながら混練して、シリコーンベースを調製した。
 次に、室温下、このシリコーンベースに、式:
-(MeHSiO2/2)50
で表される直鎖状メチルハイドロジェンシロキサンブロックを有し、分子鎖両末端がトリメチルシロシキ基で封鎖されたメチルハイドロジェンポリシロキサン 4.7質量部(シリコーンベース中のメチルビニルポリシロキサンと分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン中のビニル基の合計1モルに対して、本成分中のケイ素原子結合水素原子が1.5モルとなる量)、粘度20mPa・sの分子鎖両末端水酸基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合オリゴマーと3-グリシドキシプロピルトリメトキシシランとの質量比1:2の縮合反応物 1質量部、および1-エチニル-1-シクロヘキサノール(本組成物に対して、質量単位で200ppmとなる量)を混合した後、白金の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサンの1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン溶液(本組成物に対して、白金原子が質量単位で3.5ppmとなる量)を混合し、最後に、イソパラフィン系溶剤(出光興産社製のIPソルベント1620、沸点=162~202℃)を本組成物の固形分量が95質量%となるように混合して、硬化性シリコーン組成物(VII)を調製した。なお、上記の直鎖状メチルビニルシロキサンブロックの含有量は本組成物中のオルガノポリシロキサンの合計の32.4質量%である。この硬化性シリコーン組成物、およびその硬化物の特性を表1に示した。
[実施例8]
 式:
-(MeViSiO2/2)20
で表される直鎖状メチルビニルシロキサンブロックを有し、分子鎖両末端が水酸基で封鎖されたメチルビニルポリシロキサン 5.8質量部、式:
MeViSiO(MeSiO)160SiMeVi
で表される分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン 5.9質量部、平均一次粒子径0.24μmの酸化チタン(石原産業製のタイペークR-630) 72質量部、平均粒子径15μmの球状シリカ(新日鉄マテリアルズ マイクロン社製のHS-202) 6質量部、n-デシルトリメトキシシラン 1質量部、および粘度125mPa・sである、式:
MeSiO(MeSiO)110Si(OMe)
で表される分子鎖片末端がトリメチルシロキシ基で封鎖され、他の分子鎖片末端がトリメトキシシロキシ基で封鎖されたジメチルポリシロキサン 3質量部をロスミキサーに投入し、室温で混合した後、減圧下、150℃に加熱しながら混練して、シリコーンベースを調製した。
 次に、室温下、このシリコーンベースに、式:
-(MeHSiO2/2)50
で表される直鎖状メチルハイドロジェンシロキサンブロックを有し、分子鎖両末端がトリメチルシロシキ基で封鎖されたメチルハイドロジェンポリシロキサン 5.9質量部(シリコーンベース中のメチルビニルポリシロキサンと分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン中のビニル基の合計1モルに対して、本成分中のケイ素原子結合水素原子が1.4モルとなる量)、粘度20mPa・sの分子鎖両末端水酸基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合オリゴマーと3-グリシドキシプロピルトリメトキシシランとの質量比1:2の縮合反応物 1質量部、および1-エチニル-1-シクロヘキサノール(本組成物に対して、質量単位で200ppmとなる量)を混合した後、白金の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサンの1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン溶液(本組成物に対して、白金原子が質量単位で3.5ppmとなる量)を混合し、最後に、シリコーン系溶剤(東レ・ダウコーング社製のOS-20、沸点=152℃)を本組成物の固形分量が95質量%となるように混合して、硬化性シリコーン組成物(VIII)を調製した。なお、上記の直鎖状メチルビニルシロキサンブロックの含有量は本組成物中のオルガノポリシロキサンの合計の34.4質量%である。この硬化性シリコーン組成物、およびその硬化物の特性を表1に示した。
[実施例9]
 式:
-(MeViSiO2/2)20
で表される直鎖状メチルビニルシロキサンブロックを有し、分子鎖両末端が水酸基で封鎖されたメチルビニルポリシロキサン 7.2質量部、式:
MeViSiO(MeSiO)160SiMeVi
で表される分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン 16.6質量部、平均一次粒子径0.2μmの酸化チタン(堺化学工業製のSX-3103) 55.0質量部、平均粒子径15μmの球状シリカ(新日鉄マテリアルズ マイクロン社製のHS-202) 7質量部、および粘度24mPa・sである、式:
MeViSiO(MeSiO)29Si(OMe)
で表される分子鎖片末端がジメチルビニルシロキシ基で封鎖され、他の分子鎖片末端がトリメトキシシロキシ基で封鎖されたジメチルポリシロキサン 4質量部をロスミキサーに投入し、室温で混合した後、減圧下、150℃に加熱しながら混練して、シリコーンベースを調製した。
 次に、室温下、このシリコーンベースに、式:
-(MeHSiO2/2)50
で表される直鎖状メチルハイドロジェンシロキサンブロックを有し、分子鎖両末端がトリメチルシロシキ基で封鎖されたメチルハイドロジェンポリシロキサン 8.2質量部(シリコーンベース中のメチルビニルポリシロキサンと分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン中のビニル基の合計1モルに対して、本成分中のケイ素原子結合水素原子が1.5モルとなる量)、粘度20mPa・sの分子鎖両末端水酸基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合オリゴマーと3-グリシドキシプロピルトリメトキシシランとの質量比1:2の縮合反応物 2質量部、および1-エチニル-1-シクロヘキサノール(本組成物に対して、質量単位で200ppmとなる量)を混合した後、白金の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサンの1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン溶液(本組成物に対して、白金原子が質量単位で3.5ppmとなる量)を混合して、硬化性シリコーン組成物(IX)を調製した。なお、上記の直鎖状メチルビニルシロキサンブロックの含有量は本組成物中のオルガノポリシロキサンの合計の23.4質量%である。この硬化性シリコーン組成物、およびその硬化物の特性を表1に示した。
Figure JPOXMLDOC01-appb-T000001
[比較例1]
 式:
-(MeViSiO2/2)20
で表される直鎖状メチルビニルシロキサンブロックを有し、分子鎖両末端が水酸基で封鎖されたメチルビニルポリシロキサン 4.4質量部、式:
MeViSiO(MeSiO)160SiMeVi
で表される分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン 4.1質量部、平均一次粒子径0.2μmの酸化チタン(堺化学工業製のSX-3103) 25質量部、平均粒子径15μmの球状シリカ(新日鉄マテリアルズ マイクロン社製のHS-202) 56.3質量部、およびn-オクチルトリエトキシシラン 4質量部をロスミキサーに投入し、室温で混合した後、減圧下、150℃に加熱しながら混練して、シリコーンベースを調製した。
 次に、室温下、このシリコーンベースに、式:
-(MeHSiO2/2)50
で表される直鎖状メチルハイドロジェンシロキサンブロックを有し、分子鎖両末端がトリメチルシロシキ基で封鎖されたメチルハイドロジェンポリシロキサン 4.7質量部(シリコーンベース中のメチルビニルポリシロキサンとジメチルポリシロキサン中のビニル基の合計1モルに対して、本成分中のケイ素原子結合水素原子が1.5モルとなる量)、粘度20mPa・sの分子鎖両末端水酸基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合オリゴマーと3-グリシドキシプロピルトリメトキシシランとの質量比1:2の縮合反応物 1質量部、および1-エチニル-1-シクロヘキサノール(本組成物に対して、質量単位で200ppmとなる量)を混合した後、白金の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサンの1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン溶液(本組成物に対して、白金原子が質量単位で3.5ppmとなる量)を混合して、硬化性シリコーン組成物(X)を調製した。なお、上記の直鎖状メチルビニルシロキサンブロックの含有量は本組成物中のオルガノポリシロキサンの合計の32.4質量%である。この硬化性シリコーン組成物、およびその硬化物の特性を表2に示した。
[比較例2]
 式:
-(MeViSiO2/2)20
で表される直鎖状メチルビニルシロキサンブロックを有し、分子鎖両末端が水酸基で封鎖されたメチルビニルポリシロキサン 4.4質量部、式:
MeViSiO(MeSiO)160SiMeVi
で表される分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン 4.1質量部、平均一次粒子径0.44μmのアルミナ(住友化学製のAES-12) 60質量部、平均粒子径15μmの球状シリカ(新日鉄マテリアルズ マイクロン社製のHS-202) 21.8質量部、およびn-オクチルトリエトキシシラン 4質量部をロスミキサーに投入し、室温で混合した後、減圧下、150℃に加熱しながら混練して、シリコーンベースを調製した。
 次に、室温下、このシリコーンベースに、式:
-(MeHSiO2/2)50
で表される直鎖状メチルハイドロジェンシロキサンブロックを有し、分子鎖両末端がトリメチルシロシキ基で封鎖されたメチルハイドロジェンポリシロキサン 4.7質量部(シリコーンベース中のメチルビニルポリシロキサンとジメチルポリシロキサン中のビニル基の合計1モルに対して、本成分中のケイ素原子結合水素原子が1.5モルとなる量)、粘度20mPa・sの分子鎖両末端水酸基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合オリゴマーと3-グリシドキシプロピルトリメトキシシランとの質量比1:2の縮合反応物 1質量部、および1-エチニル-1-シクロヘキサノール(本組成物に対して、質量単位で200ppmとなる量)を混合した後、白金の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサンの1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン溶液(本組成物に対して、白金原子が質量単位で3.5ppmとなる量)を混合して、硬化性シリコーン組成物(XI)を調製した。なお、上記の直鎖状メチルビニルシロキサンブロックの含有量は本組成物中のオルガノポリシロキサンの合計の32.4質量%である。この硬化性シリコーン組成物、およびその硬化物の特性を表2に示した。
[比較例3]
 式:
-(MeViSiO2/2)20
で表される直鎖状メチルビニルシロキサンブロックを有し、分子鎖両末端が水酸基で封鎖されたメチルビニルポリシロキサン 5.8質量部、式:
MeViSiO(MeSiO)160SiMeVi
で表される分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン 5.9質量部、平均一次粒子径0.24μmの酸化チタン(石原産業製のタイペークR-630) 78質量部、および粘度24mPa・sである、式:
MeViSiO(MeSiO)29Si(OMe)
で表される分子鎖片末端がジメチルビニルシロキシ基で封鎖され、他の分子鎖片末端がトリメトキシシロキシ基で封鎖されたジメチルポリシロキサン 4質量部をロスミキサーに投入し、室温で混合した後、減圧下、150℃に加熱しながら混練して、シリコーンベースを調製した。
 次に、室温下、このシリコーンベースに、式:
-(MeHSiO2/2)50
で表される直鎖状メチルハイドロジェンシロキサンブロックを有し、分子鎖両末端がトリメチルシロシキ基で封鎖されたメチルハイドロジェンポリシロキサン 5.9質量部(シリコーンベース中のメチルビニルポリシロキサンと分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン中のビニル基の合計1モルに対して、本成分中のケイ素原子結合水素原子が1.4モルとなる量)、粘度20mPa・sの分子鎖両末端水酸基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合オリゴマーと3-グリシドキシプロピルトリメトキシシランとの質量比1:2の縮合反応物 1質量部、および1-エチニル-1-シクロヘキサノール(本組成物に対して、質量単位で200ppmとなる量)を混合した後、白金の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサンの1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン溶液(本組成物に対して、白金原子が質量単位で3.5ppmとなる量)を混合して、硬化性シリコーン組成物(XII)を調製した。なお、上記の直鎖状メチルビニルシロキサンブロックの含有量は本組成物中のオルガノポリシロキサンの合計の34.4質量%である。この硬化性シリコーン組成物、およびその硬化物の特性を表2に示した。
[比較例4]
 式:
-(MeViSiO2/2)20
で表される直鎖状メチルビニルシロキサンブロックを有し、分子鎖両末端が水酸基で封鎖されたメチルビニルポリシロキサン 7.6質量部、式:
MeViSiO(MeSiO)160SiMeVi
で表される分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン 7.7質量部、平均一次粒子径0.2μmの酸化チタン(堺化学工業製のSX-3103) 56質量部、平均粒子径15μmの球状シリカ(新日鉄マテリアルズ マイクロン社製のHS-202) 4質量部、および粘度24mPa・sである、式:
MeSiO(MeSiO)110Si(OMe)
で表される分子鎖片末端がトリメチルシロキシ基で封鎖され、他の分子鎖片末端がトリメトキシシロキシ基で封鎖されたジメチルポリシロキサン 5.2質量部をロスミキサーに投入し、室温で混合した後、減圧下、150℃に加熱しながら混練して、シリコーンベースを調製した。
 次に、室温下、このシリコーンベースに、式:
-(MeHSiO2/2)50
で表される直鎖状メチルハイドロジェンシロキサンブロックを有し、分子鎖両末端がトリメチルシロシキ基で封鎖されたメチルハイドロジェンポリシロキサン 7.7質量部(シリコーンベース中のメチルビニルポリシロキサンと分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン中のビニル基の合計1モルに対して、本成分中のケイ素原子結合水素原子が1.4モルとなる量)、粘度20mPa・sの分子鎖両末端水酸基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合オリゴマーと3-グリシドキシプロピルトリメトキシシランとの質量比1:2の縮合反応物 1.3質量部、および1-エチニル-1-シクロヘキサノール(本組成物に対して、質量単位で200ppmとなる量)を混合した後、白金の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサンの1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン溶液(本組成物に対して、白金原子が質量単位で3.5ppmとなる量)を混合して、硬化性シリコーン組成物(XIII)を調製した。なお、上記の直鎖状メチルビニルシロキサンブロックの含有量は本組成物中のオルガノポリシロキサンの合計の34.4質量%である。この硬化性シリコーン組成物、およびその硬化物の特性を表2に示した。
[比較例5]
 式:
-(MeViSiO2/2)
で表される直鎖状メチルビニルシロキサンブロックを有し、分子鎖両末端が水酸基で封鎖されたメチルビニルポリシロキサン 4.2質量部、式:
MeViSiO(MeSiO)160SiMeVi
で表される分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン 4質量部、平均一次粒子径0.2μmの酸化チタン(堺化学工業製のSX-3103) 72質量部、平均粒子径15μmの球状シリカ(新日鉄マテリアルズ マイクロン社製のHS-202) 10質量部、およびメチルトリメトキシシラン 4質量部をロスミキサーに投入し、室温で混合した後、減圧下、150℃に加熱しながら混練して、シリコーンベースを調製した。
 次に、室温下、このシリコーンベースに、式:
-(MeHSiO2/2)20
で表される直鎖状メチルハイドロジェンシロキサンブロックを有し、分子鎖両末端がトリメチルシロキシ基で封鎖されたメチルハイドロジェンポリシロキサン 4.5質量部(シリコーンベース中のメチルビニルポリシロキサンとジメチルポリシロキサン中のビニル基の合計1モルに対して、本成分中のケイ素原子結合水素原子が1.3モルとなる量)、粘度20mPa・sの分子鎖両末端水酸基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合オリゴマーと3-グリシドキシプロピルトリメトキシシランとの質量比1:2の縮合反応物 1.5質量部、および1-エチニル-1-シクロヘキサノール(本組成物に対して、質量単位で300ppmとなる量)を混合した後、白金の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサンの1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン溶液(本組成物に対して、白金原子が質量単位で5ppmとなる量)を混合して、硬化性シリコーン組成物(XIV)を調製した。なお、上記の直鎖状メチルビニルシロキサンブロックの含有量は本組成物中のオルガノポリシロキサンの合計の34.5質量%である。この硬化性シリコーン組成物、およびその硬化物の特性を表2に示した。
[比較例6]
 式:
-(MeViSiO2/2)
で表される直鎖状メチルビニルシロキサンブロックを有し、分子鎖両末端が水酸基で封鎖されたメチルビニルポリシロキサン 4.4質量部、式:
MeViSiO(MeSiO)46SiMeVi
で表される分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン 4.1質量部、平均一次粒子径0.2μmの酸化チタン(堺化学工業製のSX-3103) 65質量部、平均粒子径15μmの球状シリカ(新日鉄マテリアルズ マイクロン社製のHS-202) 17質量部、メチルトリメトキシシラン 2質量部、およびフェニルトリメトキシシラン 2質量部をロスミキサーに投入し、室温で混合した後、減圧下、150℃に加熱しながら混練して、シリコーンベースを調製した。
 次に、室温下、このシリコーンベースに、式:
-(MeHSiO2/2)50
で表される直鎖状メチルハイドロジェンシロキサンブロックを有し、分子鎖両末端がトリメチルシロシキ基で封鎖されたメチルハイドロジェンポリシロキサン 4.7質量部(シリコーンベース中のメチルビニルポリシロキサンとジメチルポリシロキサン中のビニル基の合計1モルに対して、本成分中のケイ素原子結合水素原子が1.2モルとなる量)、粘度20mPa・sの分子鎖両末端水酸基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合オリゴマーと3-グリシドキシプロピルトリメトキシシランとの質量比1:2の縮合反応物 1質量部、および1-エチニル-1-シクロヘキサノール(本組成物に対して、質量単位で200ppmとなる量)を混合した後、白金の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサンの1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン溶液(本組成物に対して、白金原子が質量単位で3ppmとなる量)を混合して、硬化性シリコーン組成物(XV)を調製した。なお、上記の直鎖状メチルビニルシロキサンブロックの含有量は本組成物中のオルガノポリシロキサンの合計の34.7質量%である。この硬化性シリコーン組成物、およびその硬化物の特性を表2に示した。
[比較例7]
 式:
-(MeViSiO2/2)-
で表されるメチルビニルシロキサン3個と式:
-(MeSiO2/2)-
で表されるジメチルシロキサン6個がランダムに連結し、分子鎖両末端が水酸基で封鎖されたジメチルシロキサン・メチルビニルシロキサンランダム共重合体 8.5質量部、式:
MeViSiO(MeSiO)160SiMeVi
で表される分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン 5.9質量部、平均一次粒子径0.2μmの酸化チタン(堺化学工業製のSX-3103) 65質量部、および平均粒子径15μmの球状シリカ(新日鉄マテリアルズ マイクロン社製のHS-202) 16.3質量部をロスミキサーに投入し、室温で混合した後、減圧下、150℃に加熱しながら混練して、シリコーンベースを調製した。
 次に、室温下、このシリコーンベースに、式:
-(MeHSiO2/2)50
で表される直鎖状メチルハイドロジェンシロキサンブロックを有し、分子鎖両末端がトリメチルシロシキ基で封鎖されたメチルハイドロジェンポリシロキサン 5.7質量部(シリコーンベース中のジメチルシロキサン・メチルビニルシロキサンランダム共重合体とジメチルポリシロキサン中のビニル基の合計1モルに対して、本成分中のケイ素原子結合水素原子が2.6モルとなる量)、粘度20mPa・sの分子鎖両末端水酸基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合オリゴマーと3-グリシドキシプロピルトリメトキシシランとの質量比1:2の縮合反応物 1.1質量部、および1-エチニル-1-シクロヘキサノール(本組成物に対して、質量単位で200ppmとなる量)を混合した後、白金の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサンの1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン溶液(本組成物に対して、白金原子が質量単位で3.5ppmとなる量)を混合して、硬化性シリコーン組成物(XVI)を調製した。なお、上記の直鎖状メチルビニルシロキサンブロックの含有量は本組成物中のオルガノポリシロキサンの合計の15.1質量%である。この硬化性シリコーン組成物、およびその硬化物の特性を表2に示した。
[比較例8]
 式:
-(MeViSiO2/2)20
で表される直鎖状メチルビニルシロキサンブロックを有し、分子鎖両末端が水酸基で封鎖されたメチルビニルポリシロキサン 3.7質量部、式:
MeViSiO(MeSiO)160SiMeVi
で表される分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン 5.9質量部、平均一次粒子径0.2μmの酸化チタン(堺化学工業製のSX-3103) 65質量部、および平均粒子径15μmの球状シリカ(新日鉄マテリアルズ マイクロン社製のHS-202) 16.3質量部をロスミキサーに投入し、室温で混合した後、減圧下、150℃に加熱しながら混練して、シリコーンベースを調製した。
 次に、室温下、このシリコーンベースに、式:
-(MeSiO2/2)-
で表されるジメチルシロキサン3個と式:
-(MeHSiO2/2)-
で表されるメチルハイドロジェンシロキサン7個とがランダムに連結し、分子鎖両末端がトリメチルシロキシ基で封鎖されたメチルハイドロジェンシロキサン・ジメチルシロキサンランダム共重合体 8.1質量部(シリコーンベース中のメチルビニルポリシロキサンとジメチルポリシロキサン中のビニル基の合計1モルに対して、本成分中のケイ素原子結合水素原子が1.7モルとなる量)、粘度20mPa・sの分子鎖両末端水酸基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合オリゴマーと3-グリシドキシプロピルトリメトキシシランとの質量比1:2の縮合反応物 1.1質量部、および1-エチニル-1-シクロヘキサノール(本組成物に対して、質量単位で200ppmとなる量)を混合した後、白金の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサンの1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン溶液(本組成物に対して、白金原子が質量単位で3.5ppmとなる量)を混合して、硬化性シリコーン組成物(XVII)を調製した。なお、上記の直鎖状メチルビニルシロキサンブロックの含有量は本組成物中のオルガノポリシロキサンの合計の20.6質量%である。この硬化性シリコーン組成物、およびその硬化物の特性を表2に示した。
[比較例9]
 式:
-(MeViSiO2/2)20
で表される直鎖状メチルビニルシロキサンブロックを有し、分子鎖両末端が水酸基で封鎖されたメチルビニルポリシロキサン 7.2質量部、式:
MeViSiO(MeSiO)160SiMeVi
で表される分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン 16.6質量部、平均一次粒子径0.44μmのアルミナ(住友化学製のAES-12) 55.0質量部、平均粒子径15μmの球状シリカ(新日鉄マテリアルズ マイクロン社製のHS-202) 7質量部、および粘度24mPa・sである、式:
MeViSiO(MeSiO)29Si(OMe)
で表される分子鎖片末端がジメチルビニルシロキシ基で封鎖され、他の分子鎖片末端がトリメトキシシロキシ基で封鎖されたジメチルポリシロキサン 4質量部をロスミキサーに投入し、室温で混合した後、減圧下、150℃に加熱しながら混練して、シリコーンベースを調製した。
 次に、室温下、このシリコーンベースに、式:
-(MeHSiO2/2)50
で表される直鎖状メチルハイドロジェンシロキサンブロックを有し、分子鎖両末端がトリメチルシロシキ基で封鎖されたメチルハイドロジェンポリシロキサン 8.2質量部(シリコーンベース中のメチルビニルポリシロキサンと分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン中のビニル基の合計1モルに対して、本成分中のケイ素原子結合水素原子が1.5モルとなる量)、粘度20mPa・sの分子鎖両末端水酸基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合オリゴマーと3-グリシドキシプロピルトリメトキシシランとの質量比1:2の縮合反応物 2質量部、および1-エチニル-1-シクロヘキサノール(本組成物に対して、質量単位で200ppmとなる量)を混合した後、白金の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサンの1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン溶液(本組成物に対して、白金原子が質量単位で3.5ppmとなる量)を混合して、硬化性シリコーン組成物(XVIII)を調製した。なお、上記の直鎖状メチルビニルシロキサンブロックの含有量は本組成物中のオルガノポリシロキサンの合計の23.4質量%である。この硬化性シリコーン組成物、およびその硬化物の特性を表2に示した。
Figure JPOXMLDOC01-appb-T000002
 表1および表2の結果から、酸化チタンの含有量が多いと、硬化性シリコーン組成物のチキソ性が高くなり、また、硬化物の強度が高くなることが分かった。また、特定のオルガノポリシロキサン成分を用いることで、硬化物の線膨張係数を低下させることができ、さらに、特定のフィラー処理剤を用いることで、硬化性シリコーン組成物の粘度を効果的に低下させ、硬化物の強度、線膨張係数、金属への接着力の全ての物性を改善できることが分かった。
[実施例10~12、比較例10~12]
 PETフィルム、アルミニウム板、または銅板のいずれかの支持体の内側に、厚みが100μmのスペーサーを5cm×5cmの空間が取れるように設置し、スペーサーで囲まれた範囲内に上記で調製した硬化性シリコーン組成物0.8gを注入した。次に、硬化性シリコーン組成物の上に離型フィルムを被せ、150℃、プレス圧5Kgにて、15分間加熱して、硬化物からなる光反射材と前記支持体との一体成形物を作製した。硬化物の外観を目視により観察し、その結果を表3に示した。
Figure JPOXMLDOC01-appb-T000003
[実施例13~15、比較例13~15]
 テスター産業社製のフィルムコーター(PI-1210)を用いて、アルミニウム板、銅板、PETフィルム、またはガラス板のいずれかの支持体上に、上記で調製した硬化性シリコーン組成物をギャップサイズ100μmにて塗布した。塗布の状態を目視により観察した。その後、150℃のオーブンで1時間加熱して、硬化物からなる光反射材と前記支持体との一体成形物を作製した。硬化物の外観を目視により観察し、その結果を表4に示した。
Figure JPOXMLDOC01-appb-T000004
[実施例16~18、比較例16~18]
 ニューロング精密工業社製の自動スクリーン印刷機(DP-320)を用いて、PETフィルムを支持体として、上記で調製した硬化性シリコーン組成物をスクリーン印刷した。スクリーン板としてSUS製のメッシュサイズ#100、線径が40μmのものを用いた。スクリーン印刷の状態を目視により観察した。その後、150℃のオーブンで1時間加熱して、硬化物からなる光反射材と前記支持体との一体成形物を作製した。硬化物の外観を目視により観察し、その結果を表5に示した。
Figure JPOXMLDOC01-appb-T000005
 プレス成型、フィルムコーター、スクリーン印刷のいずれの方法を用いても、本発明の硬化性シリコーン組成物を用いると、支持体との接着性が良好で、硬化物にクラック等の発生がないことが分かった。また、本発明の硬化性シリコーン組成物はチキソ性を有するので、塗布工程から熱硬化までの間に液だれを起こしにくく、形状の変化は観察されなかった。
 本発明の硬化性シリコーン組成物は、硬化して得られる硬化物の熱膨張率が小さく、薄膜での光反射性が高いので、他部材と一体化して使用する複合用光反射材料として好適である。
 1 光半導体素子
 2 基板
 3 回路
 4 回路
 5 ボンディングワイヤ
 6 光反射材
 7 封止材

Claims (11)

  1.  平均粒子径0.05~10μmの酸化チタン粉末および平均粒子径0.1~20μmの酸化チタン以外の無機粉末を含有し、前記酸化チタン粉末の含有量が本組成物中の50~90質量%であり、前記無機粉末の含有量が本組成物中の5~40質量%である熱硬化性シリコーン組成物であって、前記酸化チタン粉末および前記無機粉末が、一般式:
    Si(OR)(4-a)
    (式中、Rは炭素数6~20の非置換またはハロゲン置換の一価炭化水素基、Rはアルキル基、アルコキシアルキル基、アルケニル基、またはアシル基、aは1~3の整数である。)
    で表されるオルガノシランおよび/または一般式:
    Figure JPOXMLDOC01-appb-C000004
    (式中、Rは非置換またはハロゲン置換の一価炭化水素基、Rは同種または異種の脂肪族不飽和結合を有さない一価炭化水素基、Rは酸素原子または二価炭化水素基、Rはアルキル基、アルコキシアルキル基、アルケニル基、またはアシル基、bは1~3の整数、pは1以上の整数である。)
    で表されるオルガノシロキサンにより表面処理されていることを特徴とする硬化性シリコーン組成物。
  2.  硬化性シリコーン組成物が、
    (A)一分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサン、
    (B)一分子中に少なくとも2個のケイ素原子結合水素原子を有するオルガノポリシロキサン{(A)成分中のアルケニル基1モルに対して、本成分中のケイ素原子結合水素原子が0.1~10モルとなる量}、
    (C)平均粒子径0.05~10μmの酸化チタン粉末(本組成物中、50~90質量%となる量)、
    (D)平均粒子径0.1~20μmの酸化チタン以外の無機粉末(本組成物中、5~40質量%となる量)、
    (E)(E-1)一般式:
    (4-a)Si(OR)
    (式中、Rは炭素数6~20の非置換またはハロゲン置換の一価炭化水素基、Rはアルキル基、アルコキシアルキル基、アルケニル基、またはアシル基、aは1~3の整数である。)
    で表されるオルガノシラン(本組成物100質量部に対して0.1~10質量部)および/または(E-2)一般式:
    Figure JPOXMLDOC01-appb-C000005
    (式中、Rは非置換またはハロゲン置換の一価炭化水素基、Rは同種または異種の脂肪族不飽和結合を有さない一価炭化水素基、Rは酸素原子または二価炭化水素基、Rはアルキル基、アルコキシアルキル基、アルケニル基、またはアシル基、bは1~3の整数、pは1以上の整数である。)
    で表されるオルガノシロキサン(本組成物100質量部に対して0.1~10質量部)、および
    (F)ヒドロシリル化反応用触媒(本組成物のヒドロシリル化反応を促進する量)
    から少なくともなるヒドロリル化反応硬化性シリコーン組成物である、請求項1に記載の硬化性シリコーン組成物。
  3.  (A)成分が、(A-1)一般式:
    -(RSiO2/2)
    (式中、Rは炭素原子数1~6のアルキル基またはフェニル基、Rは炭素原子数2~10のアルケニル基、mは5~50の整数である。)
    で表される直鎖状ポリシロキサンブロックを少なくとも有するオルガノポリシロキサン{ただし、上記直鎖状ポリシロキサンブロックの含有量が本組成物中のオルガノポリシロキサンの合計の20~60質量%}であり、(B)成分が、(B-1)一般式:
    -(RHSiO2/2)
    (式中、Rは炭素原子数1~6のアルキル基またはフェニル基、nは10~100の整数である。)
    で表される直鎖状ポリシロキサンブロックを少なくとも有するオルガノポリシロキサンである、請求項2に記載の硬化性シリコーン組成物。
  4.  さらに、(A)成分として(A-2)一分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサン{ただし、(A-1)成分を除く}を、(A-1)成分中のアルケニル基と本成分中のアルケニル基の合計に対して、本成分中のアルケニル基が多くとも10モル%となる量を含有する、請求項3に記載の硬化性シリコーン組成物。
  5.  下記式により求められるチキソ指数の値が5.0以上である、請求項1乃至4のいずれか1項に記載の硬化性シリコーン組成物。
    Figure JPOXMLDOC01-appb-M000002
  6.  請求項1乃至5のいずれか1項に記載の硬化性シリコーン組成物を硬化してなる硬化物。
  7.  25~200℃における平均線膨張率が100ppm/℃以下である、請求項6に記載の硬化物。
  8.  100μmのフィルム状硬化物における全光線反射率が90%以上である、請求項6に記載の硬化物。
  9.  請求項1乃至5のいずれか1項に記載の硬化性シリコーン組成物を成型工程により、支持体上に膜状又は板状の硬化物を形成する方法。
  10.  請求項1乃至5のいずれか1項に記載の硬化性シリコーン組成物を塗布工程により、支持体上に膜状又は板状の硬化物を形成する方法。
  11.  請求項6乃至8のいずれか1項に記載の硬化物からなる光反射材を有する光半導体装置。
PCT/JP2015/004355 2014-09-10 2015-08-28 硬化性シリコーン組成物、その硬化物、および光半導体装置 WO2016038836A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020177009581A KR20170052649A (ko) 2014-09-10 2015-08-28 경화성 실리콘 조성물, 그 경화물 및 광 반도체 장치
CN201580047531.9A CN106661329B (zh) 2014-09-10 2015-08-28 固化性有机硅组合物、其固化物以及光半导体装置
JP2016547680A JP6590445B2 (ja) 2014-09-10 2015-08-28 硬化性シリコーン組成物、その硬化物、および光半導体装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014183912 2014-09-10
JP2014-183912 2014-09-10

Publications (1)

Publication Number Publication Date
WO2016038836A1 true WO2016038836A1 (ja) 2016-03-17

Family

ID=55458610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004355 WO2016038836A1 (ja) 2014-09-10 2015-08-28 硬化性シリコーン組成物、その硬化物、および光半導体装置

Country Status (5)

Country Link
JP (1) JP6590445B2 (ja)
KR (1) KR20170052649A (ja)
CN (1) CN106661329B (ja)
TW (1) TWI690553B (ja)
WO (1) WO2016038836A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018030287A1 (ja) 2016-08-08 2018-02-15 東レ・ダウコーニング株式会社 硬化性粒状シリコーン組成物、それからなる半導体用部材、およびその成型方法
WO2018043270A1 (ja) * 2016-09-01 2018-03-08 東レ・ダウコーニング株式会社 硬化性オルガノポリシロキサン組成物および電気・電子部品の保護剤または接着剤組成物
KR20190039962A (ko) 2016-08-08 2019-04-16 다우 코닝 도레이 캄파니 리미티드 경화성 입상 실리콘 조성물, 이것으로 이루어지는 광반사재 및 이의 제조 방법
WO2019181713A1 (ja) * 2018-03-23 2019-09-26 信越化学工業株式会社 シリコーン組成物
JP2020132824A (ja) * 2019-02-25 2020-08-31 信越化学工業株式会社 付加硬化型シリコーン組成物、光反射材用シリコーン硬化物、光反射材及び光半導体装置
EP3684078A4 (en) * 2017-09-11 2020-11-04 FUJIFILM Corporation SOUND WAVE PROBE COMPOSITION, SOUND WAVE PROBE SILICONE RESIN, SOUND WAVE PROBE, ULTRASONIC PROBE, SOUND WAVE MEASURING DEVICE, ULTRASOUND DIAGNOSTIC DEVICE, PHOTOACOUSTIC WAVE MEASURING DEVICE AND ULTRASONIC ENOSCOPE
WO2020241368A1 (ja) * 2019-05-31 2020-12-03 ダウ・東レ株式会社 硬化性オルガノポリシロキサン組成物、及びその硬化物からなる光学部材
KR20210108990A (ko) 2018-12-27 2021-09-03 다우 도레이 캄파니 리미티드 경화성 실리콘 조성물, 그의 경화물 및 그의 제조 방법
CN113396188A (zh) * 2018-12-27 2021-09-14 陶氏东丽株式会社 传递成型用固化性有机硅组合物、其固化物及其制造方法
WO2022038888A1 (ja) * 2020-08-21 2022-02-24 ダウ・東レ株式会社 硬化性オルガノポリシロキサン組成物、熱伝導性部材および放熱構造体
US11555119B2 (en) 2017-06-19 2023-01-17 Dow Toray Co., Ltd. Curable granular silicone composition, semiconductor member comprising same, and forming method thereof
WO2023164019A1 (en) * 2022-02-24 2023-08-31 Dow Silicones Corporation Curable silicone composition
WO2023164018A1 (en) * 2022-02-24 2023-08-31 Dow Silicones Corporation Curable silicone composition and cured product thereof
US11845869B2 (en) 2019-06-21 2023-12-19 Dow Silicones Corporation Method for producing thixotropic curable silicone composition
US12134697B2 (en) 2019-12-27 2024-11-05 Dow Toray Co., Ltd. Curable hot-melt silicone composition, cured material thereof, and laminate containing curable hot-melt silicone composition or cured material thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7529424B2 (ja) * 2020-03-31 2024-08-06 住友化学株式会社 粒子、粉体組成物、固体組成物、液体組成物及び成形体
JP2023044473A (ja) 2021-09-17 2023-03-30 デュポン・東レ・スペシャルティ・マテリアル株式会社 熱伝導性シリコーン組成物
JP2023062628A (ja) 2021-10-21 2023-05-08 デュポン・東レ・スペシャルティ・マテリアル株式会社 熱伝導性シリコーン組成物

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012021137A (ja) * 2010-06-18 2012-02-02 Kaneka Corp 熱硬化性樹脂組成物タブレットおよびそれを用いた半導体のパッケージ
JP2013076050A (ja) * 2011-09-16 2013-04-25 Dow Corning Toray Co Ltd 硬化性シリコーン組成物、その硬化物、および光半導体装置
JP2013159670A (ja) * 2012-02-02 2013-08-19 Dow Corning Toray Co Ltd 硬化性シリコーン組成物、その硬化物、および光半導体装置
JP2013159671A (ja) * 2012-02-02 2013-08-19 Dow Corning Toray Co Ltd 硬化性シリコーン組成物、その硬化物、および光半導体装置
JP2013175762A (ja) * 2013-04-17 2013-09-05 Kaneka Corp 半導体のパッケージ用硬化性樹脂組成物および半導体
JP2014009322A (ja) * 2012-06-29 2014-01-20 Dow Corning Toray Co Ltd 反応性シリコーン組成物、反応性熱可塑体、硬化物、および光半導体装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4788897B2 (ja) * 2006-03-02 2011-10-05 信越化学工業株式会社 室温硬化性ポリオルガノシロキサン組成物
KR20120123242A (ko) * 2009-06-26 2012-11-08 가부시키가이샤 아사히 러버 백색 반사재 및 그 제조방법
WO2011118109A1 (ja) * 2010-03-23 2011-09-29 株式会社朝日ラバー 可撓性反射基材、その製造方法及びその反射基材に用いる原材料組成物
CN102844383B (zh) * 2010-04-02 2016-01-20 株式会社钟化 固化性树脂组合物、固化性树脂组合物片、成型体、半导体封装材料、半导体部件及发光二极管
WO2013047898A1 (en) * 2011-09-29 2013-04-04 Dow Corning Toray Co., Ltd. Curable silicone composition and cured product thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012021137A (ja) * 2010-06-18 2012-02-02 Kaneka Corp 熱硬化性樹脂組成物タブレットおよびそれを用いた半導体のパッケージ
JP2013076050A (ja) * 2011-09-16 2013-04-25 Dow Corning Toray Co Ltd 硬化性シリコーン組成物、その硬化物、および光半導体装置
JP2013159670A (ja) * 2012-02-02 2013-08-19 Dow Corning Toray Co Ltd 硬化性シリコーン組成物、その硬化物、および光半導体装置
JP2013159671A (ja) * 2012-02-02 2013-08-19 Dow Corning Toray Co Ltd 硬化性シリコーン組成物、その硬化物、および光半導体装置
JP2014009322A (ja) * 2012-06-29 2014-01-20 Dow Corning Toray Co Ltd 反応性シリコーン組成物、反応性熱可塑体、硬化物、および光半導体装置
JP2013175762A (ja) * 2013-04-17 2013-09-05 Kaneka Corp 半導体のパッケージ用硬化性樹脂組成物および半導体

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11136437B2 (en) 2016-08-08 2021-10-05 Dow Toray Co., Ltd. Curable particulate silicone composition, semiconductor member comprising curable particulate silicone composition, and method for molding semiconductor member
WO2018030287A1 (ja) 2016-08-08 2018-02-15 東レ・ダウコーニング株式会社 硬化性粒状シリコーン組成物、それからなる半導体用部材、およびその成型方法
KR20190039162A (ko) 2016-08-08 2019-04-10 다우 코닝 도레이 캄파니 리미티드 경화성 입상 실리콘 조성물, 이것으로 이루어지는 반도체용 부재 및 이의 성형 방법
KR20190039962A (ko) 2016-08-08 2019-04-16 다우 코닝 도레이 캄파니 리미티드 경화성 입상 실리콘 조성물, 이것으로 이루어지는 광반사재 및 이의 제조 방법
US11555118B2 (en) 2016-09-01 2023-01-17 Dow Toray Co., Ltd. Curable organopolysiloxane composition and a protectant or adhesive composition of electric/electronic parts
KR102208498B1 (ko) 2016-09-01 2021-01-27 다우 도레이 캄파니 리미티드 경화성 오가노폴리실록산 조성물 및 전기·전자 부품의 보호제 또는 접착제 조성물
CN110088206A (zh) * 2016-09-01 2019-08-02 陶氏东丽株式会社 固化性有机聚硅氧烷组合物以及电气电子零部件的保护剂或粘合剂组合物
JPWO2018043270A1 (ja) * 2016-09-01 2019-07-11 ダウ・東レ株式会社 硬化性オルガノポリシロキサン組成物および電気・電子部品の保護剤または接着剤組成物
WO2018043270A1 (ja) * 2016-09-01 2018-03-08 東レ・ダウコーニング株式会社 硬化性オルガノポリシロキサン組成物および電気・電子部品の保護剤または接着剤組成物
KR20190075047A (ko) * 2016-09-01 2019-06-28 다우 도레이 캄파니 리미티드 경화성 오가노폴리실록산 조성물 및 전기·전자 부품의 보호제 또는 접착제 조성물
CN110088206B (zh) * 2016-09-01 2021-08-20 陶氏东丽株式会社 固化性有机聚硅氧烷组合物以及电气电子零部件的保护剂或粘合剂组合物
US11555119B2 (en) 2017-06-19 2023-01-17 Dow Toray Co., Ltd. Curable granular silicone composition, semiconductor member comprising same, and forming method thereof
EP3684078A4 (en) * 2017-09-11 2020-11-04 FUJIFILM Corporation SOUND WAVE PROBE COMPOSITION, SOUND WAVE PROBE SILICONE RESIN, SOUND WAVE PROBE, ULTRASONIC PROBE, SOUND WAVE MEASURING DEVICE, ULTRASOUND DIAGNOSTIC DEVICE, PHOTOACOUSTIC WAVE MEASURING DEVICE AND ULTRASONIC ENOSCOPE
US12109335B2 (en) 2017-09-11 2024-10-08 Fujifilm Corporation Composition for acoustic wave probe, silicone resin for acoustic wave probe, acoustic wave probe, ultrasound probe, acoustic wave measurement apparatus, ultrasound diagnostic apparatus, photoacoustic wave measurement apparatus, and ultrasound endoscope
JPWO2019181713A1 (ja) * 2018-03-23 2021-02-25 信越化学工業株式会社 シリコーン組成物
US11773264B2 (en) 2018-03-23 2023-10-03 Shin-Etsu Chemical Co., Ltd. Silicone composition
WO2019181713A1 (ja) * 2018-03-23 2019-09-26 信越化学工業株式会社 シリコーン組成物
CN113396188B (zh) * 2018-12-27 2023-01-17 陶氏东丽株式会社 传递成型用固化性有机硅组合物、其固化物及其制造方法
KR20210108990A (ko) 2018-12-27 2021-09-03 다우 도레이 캄파니 리미티드 경화성 실리콘 조성물, 그의 경화물 및 그의 제조 방법
CN113396188A (zh) * 2018-12-27 2021-09-14 陶氏东丽株式会社 传递成型用固化性有机硅组合物、其固化物及其制造方法
JP7103974B2 (ja) 2019-02-25 2022-07-20 信越化学工業株式会社 付加硬化型シリコーン組成物、光反射材用シリコーン硬化物、光反射材及び光半導体装置
JP2020132824A (ja) * 2019-02-25 2020-08-31 信越化学工業株式会社 付加硬化型シリコーン組成物、光反射材用シリコーン硬化物、光反射材及び光半導体装置
CN111607231B (zh) * 2019-02-25 2022-04-22 信越化学工业株式会社 加成固化型硅酮组合物、光反射材料用硅酮固化物、光反射材料及光半导体装置
CN111607231A (zh) * 2019-02-25 2020-09-01 信越化学工业株式会社 加成固化型硅酮组合物、光反射材料用硅酮固化物、光反射材料及光半导体装置
WO2020241368A1 (ja) * 2019-05-31 2020-12-03 ダウ・東レ株式会社 硬化性オルガノポリシロキサン組成物、及びその硬化物からなる光学部材
US11845869B2 (en) 2019-06-21 2023-12-19 Dow Silicones Corporation Method for producing thixotropic curable silicone composition
US12134697B2 (en) 2019-12-27 2024-11-05 Dow Toray Co., Ltd. Curable hot-melt silicone composition, cured material thereof, and laminate containing curable hot-melt silicone composition or cured material thereof
WO2022038888A1 (ja) * 2020-08-21 2022-02-24 ダウ・東レ株式会社 硬化性オルガノポリシロキサン組成物、熱伝導性部材および放熱構造体
WO2023164019A1 (en) * 2022-02-24 2023-08-31 Dow Silicones Corporation Curable silicone composition
WO2023164018A1 (en) * 2022-02-24 2023-08-31 Dow Silicones Corporation Curable silicone composition and cured product thereof

Also Published As

Publication number Publication date
CN106661329B (zh) 2020-06-23
CN106661329A (zh) 2017-05-10
TW201615714A (zh) 2016-05-01
KR20170052649A (ko) 2017-05-12
JP6590445B2 (ja) 2019-10-16
JPWO2016038836A1 (ja) 2017-06-22
TWI690553B (zh) 2020-04-11

Similar Documents

Publication Publication Date Title
JP6590445B2 (ja) 硬化性シリコーン組成物、その硬化物、および光半導体装置
JP5769622B2 (ja) 硬化性オルガノポリシロキサン組成物、光半導体素子封止剤および光半導体装置
JP5534977B2 (ja) 硬化性オルガノポリシロキサン組成物および光半導体装置
JP6652917B2 (ja) ホットメルト性シリコーンおよび硬化性ホットメルト組成物
US9068049B2 (en) Curable silicone composition and cured product thereof
EP2721108B1 (en) Cross-linkable silicone composition and cross-linked product thereof
JP5972511B2 (ja) 硬化性オルガノポリシロキサン組成物およびその硬化物
JP5922463B2 (ja) 硬化性シリコーン組成物、その硬化物、および光半導体装置
KR20110053470A (ko) 경화성 오가노폴리실록산 조성물, 광반도체 소자 봉지제 및 광반도체 장치
TW201817815A (zh) 固化性粒狀聚矽氧組合物、由其構成之半導體用構件及其成型方法
KR20120105528A (ko) 실리콘 엘라스토머 조성물
JP2018119167A (ja) 硬化性シリコーン組成物
TWI765925B (zh) 填充有反應性熱熔聚矽氧之容器及反應性熱熔聚矽氧之製造方法
TWI843786B (zh) 固化性聚矽氧組合物、其固化物及其製造方法
CN110382625B (zh) 可固化的有机聚硅氧烷组合物和半导体器件
JP6707369B2 (ja) シリコーン材料、硬化性シリコーン組成物、および光デバイス
WO2015093329A1 (ja) シリコーン接着性フィルム、および半導体装置
CN114196375A (zh) 热固化性有机硅组合物
CN114106770A (zh) 固化性有机硅组合物、密封材料以及光半导体装置
CN115315487A (zh) 固化性液态有机硅组合物、其固化物、包含该组合物的光学填充剂、以及包含由该固化物形成的层的显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15840887

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016547680

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177009581

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15840887

Country of ref document: EP

Kind code of ref document: A1