Nothing Special   »   [go: up one dir, main page]

WO2016036204A1 - Olefin-based polymer with excellent processability - Google Patents

Olefin-based polymer with excellent processability Download PDF

Info

Publication number
WO2016036204A1
WO2016036204A1 PCT/KR2015/009371 KR2015009371W WO2016036204A1 WO 2016036204 A1 WO2016036204 A1 WO 2016036204A1 KR 2015009371 W KR2015009371 W KR 2015009371W WO 2016036204 A1 WO2016036204 A1 WO 2016036204A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
olefin
molecular weight
substituted
Prior art date
Application number
PCT/KR2015/009371
Other languages
French (fr)
Korean (ko)
Inventor
김중수
승유택
이기수
홍대식
송기헌
송은경
권헌용
이용호
정동훈
선순호
김선미
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150125131A external-priority patent/KR101617870B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201580047597.8A priority Critical patent/CN106687487B/en
Priority to JP2017506994A priority patent/JP6488002B2/en
Priority to US15/504,269 priority patent/US10344102B2/en
Priority to RU2017111040A priority patent/RU2670752C9/en
Priority to EP15838802.5A priority patent/EP3168243B1/en
Publication of WO2016036204A1 publication Critical patent/WO2016036204A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/02Cp or analog bridged to a non-Cp X anionic donor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/07Heteroatom-substituted Cp, i.e. Cp or analog where at least one of the substituent of the Cp or analog ring is or contains a heteroatom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/10Heteroatom-substituted bridge, i.e. Cp or analog where the bridge linking the two Cps or analogs is substituted by at least one group that contains a heteroatom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer

Definitions

  • the present invention relates to an olefin polymer having excellent processability.
  • Olefin polymerization catalyst systems can be classified into Ziegler-Natta and metallocene catalyst systems, and these two highly active catalyst systems have been developed for their respective characteristics.
  • the Ziegler-Natta catalyst has been widely applied to the existing commercial processes since the invention in the 50s, but is characterized by a wide molecular weight distribution of the polymer due to its multi-site catalyst having many active sites. There is a problem that there is a limit in securing the desired physical properties because the composition distribution is not uniform.
  • the metallocene catalyst is composed of a combination of a main catalyst composed mainly of transition metal compounds and a cocatalyst composed of organometallic compounds composed mainly of aluminum.
  • a catalyst is a homogeneous complex catalyst and is a single site catalyst.
  • the polymer has a narrow molecular weight distribution according to the characteristics of a single active site and a homogeneous composition of the comonomer, and the stereoregularity, copolymerization characteristics, molecular weight, It has the property to change the crystallinity.
  • U.S. Patent No. 5,914,289 describes a method for controlling the molecular weight and molecular weight distribution of a polymer using a metallocene catalyst supported on each carrier, but the amount of solvent used and the time required for preparing the supported catalyst are high. There was a hassle of supporting the metallocene catalyst to be used on the carrier, respectively.
  • Korean Patent Application No. 2003-12308 discloses a binuclear metallocene in a carrier A method of controlling the molecular weight distribution by supporting a catalyst and a mononuclear metallocene catalyst together with an activator to change and polymerize the combination of catalysts in a reaction vessel is disclosed.
  • this method has a limitation in realizing the characteristics of each catalyst at the same time, and also has a disadvantage in that the metallocene catalyst portion is liberated in the carrier component of the finished catalyst, causing fouling. Therefore, in order to solve the above disadvantages, there is a continuous need for a method for preparing a common supported metallocene catalyst having excellent activity to prepare a lelpene polymer having a desired physical property.
  • linear low density polyethylene is prepared by copolymerizing ethylene and alpha olefins at low pressure using a polymerization catalyst, and has a narrow molecular weight distribution, a short chain branch of a constant length, and a long chain branch.
  • Linear low density polyethylene film has the characteristics of general polyethylene, and has high breaking strength and elongation, and excellent tear strength and falling layer stratification strength. Therefore, the use of stretch film and overlap film, which is difficult to apply to existing low density polyethylene or high density polyethylene, has increased. Doing.
  • linear low density polyethylene using 1-butene or 1-nuxene as comonomer is mostly produced in a single gas phase reactor or a single loop slurry reactor, and the productivity is high compared to a process using 1-octene comonomer, but these products are also used.
  • Due to the limitations of catalyst technology and process technology physical properties are inferior to those of using 1-octene comonomers, and molecular weight distribution is narrow, resulting in poor processability. Many efforts are being made to improve these issues.
  • US Pat. No. 4,935,474 reports on the preparation of polyethylene having a wide molecular weight distribution using two or more metallocene compounds.
  • U. S. Patent No. 6,828, 394 reports a method for producing polyethylene that has a good comonomer binding property and a good combination thereof, which has good processability and is particularly suitable for films.
  • US Pat. No. 6,841,631 and US Pat. No. 6,894,128 prepare polyethylene having bimodal or polycrystalline molecular weight distribution with a metallocene catalyst using at least two metal compounds, for use in films, blow molding, pipes, and the like. It is reported to be applicable.
  • these products have improved processability, but the molecular weight in the unit particles Since the dispersion state is not uniform, the extrusion appearance is rough and the physical properties are not stable even under relatively good extrusion conditions.
  • the present invention is to provide an olefin-based polymer having excellent processability and improved mechanical properties.
  • the present invention has a molecular weight distribution (Mw / Mn) of 5 to 30;
  • Melt flow rate ratio was measured by the ASTM1238 at 190 ° C (. MFR 2 L6 / MFR 2 16) values of 35 to 200, and;
  • the olefin-based polymer according to the present invention is excellent in workability and mechanical properties, and can be usefully used for applications such as films and pipes.
  • 1 is a graph showing a relationship between frequency-complex viscosity of olefin polymers according to Examples and Comparative Examples of the present invention.
  • 2 is a van Gurp-Palmen graph of the olefin-based polymer according to the Examples and Comparative Examples of the present invention.
  • Figure 3 is a GPC graph of the olefin resin according to the Examples and Comparative Examples of the present invention.
  • FIG. 4 is a graph showing an example of a method of measuring CI Index using a molecular weight distribution curve.
  • Eulre pingye polymer according to the present invention is a molecular weight distribution (Mw / Mn) 5 to 30, measured by the ASTM1238 at 190 ° C.
  • the melt flow rate ratio (MFR 21 .6 / MFR 2 16 ) has a value between 35 and 200, and the slope on the graph of complex visicosity (* [Pa.s]) according to frequency (o, [rad / s]) -0.8 to -0.2, CI (Q) -monomer Incorporation) Index is characterized in that 0.5 to 5.
  • the olefinic polymer of the present invention exhibits a broad molecular weight distribution (Mw / Mn, PDI) of about 5 to about 30, preferably about 6 to about 20, and can exhibit excellent processability.
  • the weight average molecular weight (Mw) of the olefin polymer may be about 100,000 to about 300,000 g / mol, preferably about 100,000 to about 250,000 g / mol, but is not limited thereto. no.
  • the leulevine-based polymer of the present invention has a high molecular weight and a wide molecular weight distribution and has excellent physical properties and processability.
  • the olefin copolymer of the present invention has a wider molecular weight distribution and a melt flow rate ratio (MFRR) than the known olefin copolymer, and thus the fluidity is remarkably improved, and thus, excellent workability can be exhibited.
  • MFRR melt flow rate ratio
  • Eulre pingye notary polymer of the invention has a melt flow rate ratio (MFRR, MFR 21.6 / MFR 2 . 16) is about 35 to about 200, preferably from about 80 to about 150 range.
  • MFRR melt flow rate ratio
  • MFR 21.6 / MFR 2 . 16 melt flow rate ratio
  • MFR 2 . 16 (melt flow index measured at 190 ° C, 2.16 kg load according to ASTM D-1238) may range from about 0.1 to about 3 g / 10 min, preferably in the range of about 0.1 to about 0.8 g / 10 min. Can be.
  • MFR 21 . 6 (melt flow index measured at 190 ° C., 21.6 kg load according to ASTM D-1238) can range from about 5 to about 100 g / lOmin, preferably in the range from about 7 to about 60 g / lOmin. Can be.
  • Such MFR 2 16 , MFR 21 . The range of 6 refers to the use or application of the olefinic polymer Can be adjusted appropriately.
  • the olefinic polymer of the present invention has a slope of about -0.8 to about -0.2, or about in the complex viscosity (ri * [Pa.s]) graph according to frequency ( ⁇ [rad / s]). It ranges from -0.6 to -0.4.
  • the graph of complex viscosity according to frequency is related to fluidity, which means that the fluidity is higher as it has a high complex viscosity at low frequency and a low complex viscosity at high frequency. That is, it has a negative inclination value, and as the absolute value of the inclination value increases, it can be said that it shows high fluidity.
  • the leulevine-based polymer of the present invention exhibits significantly higher fluidity compared to the conventional leulevine-based polymer having a similar density and weight average molecular weight in a range of about -0.8 to about -2 in a complex viscosity graph with frequency. Therefore, despite the high melt index, the shear thinning effect is much better, indicating excellent fluidity and processability.
  • the olefin polymer of the present invention may have a Co-monomer Incorporation (CI) Index of about 0.5 to 5, or about 1 to 3, or about 1 to 1.5.
  • CI Co-monomer Incorporation
  • the CI structure is a structure in which the content of comonomers such as alpha olefins is concentrated in the high molecular weight main chain, that is, a new structure in which short chain branch (SCB) content increases toward higher molecular weight. it means.
  • CI Index is the logarithm of the molecular weight (M) (log M) X-axis, the molecular weight distribution for the log value
  • SCB Short Chain Branch
  • To 7 branch content (unit: 1,000 / c) can be measured and calculated by the following formula (1).
  • the high molecular weight side SCB content and the low molecular weight side SCB content mean SCB content values at the right and left boundaries of the middle 60% range, respectively. Such .
  • An example of a method of measuring a Co-monomer Incorporation (CI) Index is shown in FIG. 4.
  • the CI Index is 0 or less, it is not a polymer of CI structure, but if it is larger than 0, it can be regarded as a polymer of CI structure.
  • the density of the leupin-based polymer may be 0.930 to 0.950 g / cm 3 , but is not limited thereto.
  • the olefin polymer may have a long chain branch (LCB).
  • the long chain branch (LCB) refers to branches having 8 or more carbon atoms attached to the main ' chain of the olefin-based polymer, and is usually a comonomer of 1-butene, 1-nuxene, 1 -Refers to the defects produced when using an alpha olefin such as octene.
  • the presence of LCB in an olefin polymer can be determined by whether it has an inflection point in the van Gurp-Palmen graph measured by rheometer equipment or whether it tends to diverge toward lower complex modulus.
  • the x-axis of the van Gurp-Palmen graph is the absolute value of the complex modulus
  • the y-axis is the phase angle.
  • FIG. 2 which shows a van Gurp-Palmen graph of an ellepin-based polymer according to an embodiment of the present invention
  • Examples 1 and 2 show a tendency for phase angle to diverge as the value of a complex modulus decreases, and a high complex modulus point. It is characterized by having an inflection point at.
  • the characteristic of the graph is represented by the LCB of the olefin-based polymer.
  • the olephine-based polymer including the LCB has excellent swell, bubble stability, melt fracture, sagging time, and can be applied to various applications. It is possible to provide a pipe having physical properties.
  • the olefin-based polymer of the present invention may have an LCB content of 0.001 to 1, preferably 0.01 to 1 per 1,000 carbons of the olefin-based polymer, the maximum value of the LCB content per 1,000 carbons is 0.001 to 1 Dogs, preferably 0.01 to 0.1 dogs.
  • the olefin polymer according to the present invention is a homo of ethylene which is an olefin monomer. Or a copolymer of ethylene and an alpha olefin comonomer.
  • Alpha olefin having 4 or more carbon atoms may be used as the alpha olepin-based comonomer.
  • alpha olefins having 4 or more carbon atoms include 1-butene, 1-pentene, 1-nuxene, 4-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene and 1-nuxadecene 1-octadecene, 1-eicosene, and the like, but is not limited thereto.
  • alpha olefins having 4 to 10 carbon atoms are preferable, and one or several kinds of alpha olefins may be used together as a comonomer.
  • the content of the alpha olefinic comonomer may be about 5 to about 10 weight 0 /., Preferably about 1 to about 5 weight%, but is not limited thereto. It doesn't happen.
  • the olefinic polymer as described above can be prepared using a hybrid supported metallocene catalyst.
  • the hybrid supported metallocene catalyst may include at least one first metallocene compound represented by Formula 1 below; At least one second metallocene compound selected from compounds represented by Formulas 3 to 5; Cocatalyst compounds; And a hybrid supported metallocene catalyst including a carrier.
  • A is hydrogen, halogen, C1 to C20 alkyl group, C2 to C20 alkenyl group, C6 to C20 aryl group, C7 to C20 alkylaryl group, C7 to C20 arylalkyl group, C1 to C20 alkoxy group, C2 to C20 A C20 alkoxyalkyl group, a C3 to C20 heterocycloalkyl group, or a C5 to C20 heteroaryl group;
  • D is -0-, -S-, -N (R)-or -Si (R) (R ')-, wherein R and R' are the same as or different from each other, and are each independently hydrogen, halogen, C1 to C20 alkyl group, An alkenyl group of C2 to C20 or an aryl group of C6 to C20;
  • L is a C1 to C10 straight or branched chain alkylene group
  • B is carbon, silicon or germanium
  • Q is hydrogen, halogen, C1 to C20 alkyl group, C2 to C20 alkenyl group, C6 to C20 aryl group, C7 to C20 alkylaryl group, or C7 to C20 arylalkyl group;
  • M is a Group 4 transition metal
  • X 1 and X 2 are the same as or different from each other, and each independently halogen, C1 to C20 alkyl group, C2 to C20 alkenyl group, C6 to C20 aryl group, nitro group, amido group, C1 to C20 alkylsilyl group , A C1 to C20 alkoxy group, or a C1 to C20 sulfonate group;
  • C 1 and C 2 are the same as or different from each other, and are each independently represented by one of the following Chemical Formula 2a, Chemical Formula 2b, or Chemical Formula 2c, except that C 1 and C 2 are both Chemical Formula 2c; '
  • Rl to R17 and Rl 'to R9' are the same as or different from each other, and each independently hydrogen, halogen, C1 to C20 alkyl group, C2 to C20 alkenyl group, C1 to C20 alkyl Silyl group, C1 to C20 silylalkyl group, C1 to C20 alkoxysilyl group, C1 to C20 alkoxy group, C6 to C20 aryl group, C7 to C20 alkylaryl group, or C7 to C20 arylalkyl group, Two or more adjacent to each other of R10 to R17 may be linked to each other to form a substituted or unsubstituted aliphatic or aromatic ring;
  • M 1 is a Group 4 transition metal
  • Cp 1 and ' Cp 2 are the same as or different from each other, and each independently selected from the group consisting of cyclopentadienyl, indenyl, 4,5,6,7-tetrahydro-1-indenyl, and fluorenyl radicals Which may be substituted with hydrocarbons having 1 to 20 carbon atoms;
  • R a and R b are the same as or different from each other, and each independently hydrogen, C1 to C20 alkyl, C1 to C10 alkoxy, C2 to C20 alkoxyalkyl, C6 to C20 aryl, C6 to C10 aryloxy, C2 Alkenyl to C20, alkylaryl of C7 to C40, arylalkyl of C7 to C40, arylalkenyl of C8 to C40, or alkynyl of C2 to C10;
  • Z 1 is a halogen atom, C1 to C20 alkyl, C2 to C10 alkenyl, C7 to C40 alkylaryl, C7 to C40 arylalkyl, C6 to C20 aryl, substituted or unsubstituted C1 to C20 alkylidene , A substituted or unsubstituted amino group, C2 to C20 alkylalkoxy, or C7 to C40 arylalkoxy; n is 1 or 0;
  • M 2 is a Group 4 transition metal
  • Cp 3 and Cp 4 are the same as or different from each other, and each independently one selected from the group consisting of cyclopentadienyl, indenyl, 4,5,6,7-tetrahydro-1-intenyl and fluorenyl radicals They may be substituted with a hydrocarbon having 1 to 20 carbon atoms;
  • R c and R d are the same as or different from each other, and each independently hydrogen, C1 to C20 alkyl, C1 to C10 alkoxy, C2 to C20 alkoxyalkyl, C6 to C20 aryl, C6 to C10 aryloxy, C2 Alkenyl to C20, alkylaryl of C7 to C40, arylalkyl of C7 to C40, arylalkenyl of C8 to C40, or alkynyl of C2 to C10;
  • Z 2 is a halogen atom, C1 to C20 alkyl, C2 to C10 alkenyl, C7 to C40 alkylaryl, C7 to C40 arylalkyl, C6 to C20 aryl, substituted or unsubstituted C1 to C20 alkylidene , Substituted or unsubstituted amino group, C2 to C20 alkylalkoxy, or C7 to C40 arylalkoxy;
  • B 1 is one or more of a carbon, germanium, silicon, phosphorus or nitrogen atom containing radical which crosslinks the Cp 3 R c ring with the Cp 4 R d ring or crosslinks one Cp 4 R d ring with M 2 Or a combination thereof;
  • n 1 or 0;
  • M 3 is a Group 4 transition metal
  • Cp 5 is any one selected from the group consisting of cyclopentadienyl, indenyl, 4,5,6,7-tetrahydro-1-indenyl and fluorenyl radicals, which may be substituted with hydrocarbons having 1 to 20 carbon atoms Can be;
  • R e is hydrogen, alkyl of C1 to C20, alkoxy of C1 to C10, alkoxyalkyl of C2 to C20, aryl of C6 to C20, aryloxy of C6 to C10, alkenyl of C2 to C20, alkylaryl of C7 to C40 C7 to C40 arylalkyl, C8 to C40 arylalkenyl, or C2 to C10 alkynyl;
  • Z 3 is a halogen atom, C1 to C20 alkyl, C2 to C10 alkenyl, C7 to C40 alkylaryl, C7 to C40 arylalkyl, C6 to C20 aryl, substituted or unsubstituted C1 to C20 alkylidene , A substituted or unsubstituted amino group, C2 to C20 alkylalkoxy, or C7 to C40 arylalkoxy.
  • B 2 is one or more or a combination of carbon, germanium, silicon, phosphorus or nitrogen atom containing radicals which crosslink the Cp 5 R e ring and J;
  • J is any one selected from the group consisting of NR f , O, PR f and S, wherein R f is C1 to C20 alkyl, aryl, substituted alkyl or substituted aryl.
  • the C1 to C20 alkyl group includes a linear or branched alkyl group, specifically, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, tert-butyl group, pentyl group, nucleosil group, heptyl group, An octyl group etc. are mentioned, but it is not limited to this.
  • the alkenyl group of C2 to C20 includes a straight or branched alkenyl group, and specifically, may include an allyl group, ethenyl group, propenyl group, butenyl group, pentenyl group, and the like, but is not limited thereto.
  • the C6 to C20 aryl group includes a monocyclic or condensed aryl group, and specifically includes a phenyl group, a biphenyl group, a naphthyl group, a phenanthrenyl group, a fluorenyl group, and the like, but is not limited thereto.
  • the C5 to C20 heteroaryl group includes a monocyclic or condensed heteroaryl group, and includes a carbazolyl group, a pyridyl group, a quinoline group, an isoquinoline group, a thiophenyl group, a furanyl group, an imidazole group, an oxazolyl group, a thiazolyl group , Triazine group, tetrahydropyranyl group, tetrahydrofuranyl group and the like, but are not limited thereto.
  • Examples of the alkoxy group for CI to C20 include a mesophilic group, an ethoxy group, a phenyloxy group, a cyclonuxyloxy group, and the like, but are not limited thereto.
  • Group 4 transition metal examples include titanium, zirconium, and hafnium, but are not limited thereto.
  • R1 to R17 and R1 'to R9 of 2b and 2c are each independently hydrogen, methyl group, ethyl group, propyl group, isopropyl group, ⁇ -butyl group, tert-butyl group, pentyl group, nuclear group, heptyl group : octa More preferably, they are a methyl group, a phenyl group, a halogen group, a trimethylsilyl group, a triethylsilyl group, a tripropylsilyl group, a tributylsilyl group, a triisopropylsilyl group, a trimethylsilylmethyl group, a methoxy group, or an ethoxy group. It is not limited.
  • L of Formula 1 is more preferably a straight or branched chain alkylene group of C4 to C8, but is not limited thereto.
  • the alkylene group is more preferably a straight or branched chain alkylene group of C4 to C8, but is not limited thereto.
  • the alkylene group is more preferably a straight or branched chain alkylene group of C4 to C8, but is not limited thereto.
  • the alkylene group is more preferably a straight or branched chain alkylene group of C4 to C8, but is not limited thereto.
  • the alkylene group is more preferably a straight or branched chain alkylene group of C4 to C8, but is not limited thereto.
  • the alkylene group is more preferably a straight or branched chain alkylene group of C4 to C8, but is not limited thereto.
  • the alkylene group is more preferably a straight or branched chain alkylene group of C4 to C8, but is not limited thereto.
  • It may be substituted or unsubstituted with an alkyl group of C1 to C20, an alkenyl group of C2 to C20, or an aryl group of C6 to C20.
  • a of Formula 1 is hydrogen, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, tert-butyl group, methoxymethyl group, tert-subspecific methyl group, 1-ethoxyethyl group, i_methyl It is preferable that it is a hydroxyethyl group, a tetrahydropyranyl group, or a tetrahydrofuranyl group, but it is not limited only to this.
  • B of Formula 1 is preferably silicon, but is not limited thereto.
  • the first metallocene compound of Formula 1 is a non-covalent electron pair which forms a structure in which an indeno indole derivative and / or a fluorene derivative are crosslinked by a bridge, and can act as a Lewis base on the ligand structure.
  • a supported on the surface having the Lewis acid characteristics of the carrier it shows a high polymerization activity even when supported.
  • the activity is high, and due to the proper steric hindrance and the electronic effect of the ligand, the reaction is not only low but also maintains high activity even in the presence of hydrogen. .
  • the beta-hydrogen of the polymer chain in which the nitrogen atom of the indeno indole derivative is grown is stabilized by hydrogen bonds. It is possible to polymerize ultra high molecular weight olefin polymers by suppressing hydrogen elimination.
  • specific examples of the compound represented by Chemical Formula 2a may include a compound represented by one of the following structural formulas, but the present invention is not limited thereto.
  • specific examples of the compound represented by Formula 2c may include a compound represented by one of the following structural formulas, but the present invention is not limited thereto.
  • specific examples of the first metallocene compound represented by Chemical Formula 1 may include a compound represented by one of the following structural formulas, but is not limited thereto. 9 ⁇
  • the first metallocene compound of formula i is excellent in activity It is possible to polymerize a high molecular weight olepin-based polymer. In particular, even when used on a carrier, it exhibits high polymerization activity, and thus an ultrahigh molecular weight polyolefin polymer can be prepared.
  • the first metallocene compound of Formula 1 according to the present invention exhibits low hydrogen reaction properties. It is still possible to polymerize ultra high molecular weight olepin-based polymers with high activity. Therefore, even when used in combination with a catalyst having different properties, it is possible to produce an olefinic polymer that satisfies high molecular weight properties without degrading activity, and thus an olefinic polymer having a broad molecular weight distribution while containing a olefinic polymer of the polymer. It can be manufactured easily.
  • the first metallocene compound of Chemical Formula 1 may be prepared by connecting an indenoindole derivative and / or polorene derivative as a bridge compound to prepare a ligand compound, and then performing metallation by introducing a metal precursor compound. Can be.
  • the manufacturing method of the said 1st metallocene compound is concretely demonstrated to the Example mentioned later.
  • the second metallocene compound may be at least one selected from compounds represented by the following Chemical Formulas 3 to 5.
  • M 1 is a Group 4 transition metal
  • Cp 1 and Cp 2 are the same as or different from each other, and each independently selected from the group consisting of cyclopentadienyl, indenyl, 4,5,6,7-tetrahydro-1-indenyl, and fluorenyl radicals One, they may be substituted with a hydrocarbon of 1 to 20 carbon atoms;
  • R a and R b are the same as or different from each other, and each independently hydrogen, C1 to C20 alkyl, C1 to C10 alkoxy, C2 to C20 alkoxyalkyl, C6 to C20 aryl, C6 to C10 aryloxy, C2 Alkenyl to C20, alkylaryl of C7 to C40, arylalkyl of C7 to C40, arylalkenyl of C8 to C40, or Alkynyl of C2 to CIO;
  • Z 1 is a halogen atom, C1 to C20 alkyl, C2 to C10 alkenyl, C7 to C40 alkylaryl, C7 to C40 arylalkyl, C6 to C20 aryl, substituted or unsubstituted C1 to C20 alkylidene , A substituted or unsubstituted amino group, C2 to C20 alkylalkoxy, or C7 to C40 arylalkoxy;
  • n 1 or 0;
  • M 2 is a Group 4 transition metal
  • Cp 3 and Cp 4 are the same as or different from each other, and are each independently selected from the group consisting of cyclopentadienyl, indenyl, 4,5,6,7-tetrahydro-1-indenyl and fluorenyl radicals They may be substituted with a hydrocarbon having 1 to 20 carbon atoms;
  • R c and R d are the same as or different from each other, and each independently hydrogen, C1 to C20 alkyl, C1 to C10 alkoxy, C2 to C20 alkoxyalkyl, C6 to C20 aryl, C6 to C10 aryloxy, C2 Alkenyl to C20, alkylaryl of C7 to C40, arylalkyl of C7 to C40, arylalkenyl of C8 to C40, or alkynyl of C2 to C10;
  • Z 2 is a halogen atom, C1 to C20 alkyl, C2 to C10 alkenyl, C7 to C40 alkylaryl, C7 to C40 arylalkyl, C6 to C20 aryl, substituted or unsubstituted C 1 to C20 alkyl Lidene, a substituted or unsubstituted amino group, C2 to C20 alkylalkoxy, or C7 to C40 arylalkoxy;
  • B 1 is one or more of a carbon, germanium, silicon, phosphorus or nitrogen atom containing radical which crosslinks the Cp 3 R c ring and the Cp 4 R d ring or crosslinks one Cp 4 R d ring with M 2 Or a combination thereof;
  • n 1 or 0;
  • M 3 is a Group 4 transition metal
  • Cp 5 is any one selected from the group consisting of cyclopentadienyl, indenyl, 4,5,6,7-tetrahydro-1-indenyl and fluorenyl radicals, which may be substituted with hydrocarbons having 1 to 20 carbon atoms Can be;
  • R e is hydrogen, C1 to C20 alkyl, C1 to C10 alkoxy, C2 to C20 alkoxyalkyl, C6 to C20 aryl, C6 to C10 aryloxy, C2 to C20 alkenyl, C7 to C40 alkylaryl C7-C40 arylalkyl, C8-C40 arylalkenyl, or C2-C10 alkynyl;
  • Z 3 is a halogen atom, C1 to C20 alkyl, C2 to C10 alkenyl, C7 to C40 alkylaryl, C7 to C40 arylalkyl, C6 to C20 aryl, substituted or unsubstituted C1 to C20 alkylidene Or a substituted or unsubstituted amino group, C1 to C20 alkylalkoxy, or C7 to C40 arylalkoxy;
  • B 2 is one or more or a combination of carbon, germanium, silicon, phosphorus or nitrogen atom containing radicals which crosslink the Cp 5 R e ring and J;
  • J is any one selected from the group consisting of NR f , O, PR f and S, wherein R f is C1 to C20 alkyl, aryl, substituted alkyl or substituted aryl.
  • Cp 4 R d ring and M 2 is a bridge compound structure cross-linked by B 1 , and when m is 0, it means a non-crosslinked compound structure.
  • Examples of the compound represented by Formula 3 include the following structural formulas
  • the compound represented by Chemical Formula 4 may be, for example, a compound represented by one of the following structural formulas, but is not limited thereto.
  • the compound represented by Formula 5 may be, for example, a compound represented by the following structural formula, but is not limited thereto.
  • the hybrid supported metallocene catalyst according to the present invention may include at least one of the first metallocene compound represented by Chemical Formula 1 and one of the second metallocene compound selected from the compounds represented by Chemical Formulas 3 to 5. At least one species is hybridly supported on a carrier together with a promoter compound.
  • the first metallocene compound represented by Formula 1 of the hybrid supported metallocene catalyst mainly contributes to making a high molecular weight co-polymer
  • the second metallocene compound represented by Formulas 3 to 5 is mainly a low molecular weight It can contribute to making a copolymer of.
  • the common supported metallocene catalyst may induce the formation of a long chain branch (LCB) in the olefin-based polymer prepared, It is possible to prepare an olefin polymer including a long chain branch (LCB) having a branch of 8 or more carbon atoms in the main chain.
  • LCB long chain branch
  • the common supported metallocene catalyst may include at least one first metallocene compound of Formula 1 and at least one second metallocene compound of Formula 3.
  • the common supported metallocene catalyst may include at least one first metallocene compound of Formula 1 and at least one second metallocene compound of Formula 3, It may include one or more second metallocene compound of formula (5).
  • the first metallocene compound may form a ligand structure in which an indeno indole derivative and a fluorene derivative are crosslinked by a bridge compound, and may act as a Lewis base to the ligand structure.
  • a non-covalent electron pair present, it is supported on the surface having the Lewis acid characteristics of the carrier and shows high polymerization activity even when supported.
  • the electron-rich indeno indole group and / or fluorene group contains a high activity, due to the proper steric hindrance and the electronic effect of the ligand is not only low hydrogen reactivity but also maintains high activity in the presence of hydrogen.
  • beta-hydrogen of the polymer chain in which the nitrogen atom of the indeno indole derivative grows can be stabilized by hydrogen bonding to polymerize an ultrahigh molecular weight olepin-based polymer. have ⁇ .
  • the common supported metallocene catalyst of the present invention includes a first metallocene compound represented by Chemical Formula 1 and a second metallocene compound selected from the compounds represented by Chemical Formulas 3 to 5,
  • a first metallocene compound represented by Chemical Formula 1 and a second metallocene compound selected from the compounds represented by Chemical Formulas 3 to 5
  • an olefin polymer having a long chain branch (LCB) By including at least two metallocene compounds, an olefin polymer having a long chain branch (LCB), a high molecular weight olefin copolymer and a wide molecular weight distribution and having excellent physical properties and excellent processability can be prepared.
  • LCB long chain branch
  • a co-catalyst supported on a carrier for activating the metallocene compound is a Group 13 metal.
  • the organometallic compound to be included is not particularly limited as long as it can be used when polymerizing olefins under a general metallocene catalyst.
  • the cocatalyst compound may include at least one of an aluminum-containing first cocatalyst of Formula 6, and a borate-based second cocatalyst of Formula 7 below.
  • each R 18 is independently a halogen, halogen substituted or unsubstituted hydrocarbyl group having 1 to 20 carbon atoms, k is an integer of 2 or more, 7]
  • T + is a + monovalent polyatomic ion
  • B is boron in +3 oxidation state
  • G is independently a hydride group, a dialkylamido group, a halide group : an alkoxide group, an aryloxide group, hydro Selected from the group consisting of a carbyl group, a halocarbyl group and a halo-substituted hydrocarbyl group, wherein G has up to 20 carbons, but at less than one position G is a halide group.
  • the polymerization activity can be improved while the molecular weight distribution of the finally produced polyolefin becomes more uniform.
  • the first cocatalyst of Chemical Formula 6 may be an alkylaluminoxane compound having a repeating unit bonded in a linear, circular, or reticular form.
  • Specific examples of the first cocatalyst include methylaluminoxane (MAO) and ethylalumina. Noxic acid, isobutyl aluminoxane, or butyl aluminoxane etc. are mentioned.
  • the second cocatalyst of Formula 7 may be a borate-based compound in the form of a trisubstituted ammonium salt, or a dialkyl ammonium salt, a trisubstituted phosphonium salt.
  • the mass ratio of the total transition metal to the carrier included in the first metallocene compound represented and the second metallocene compound represented by Formulas 3 to 5 may be 1:10 to 1: 1,000.
  • the carrier and the metallocene compound are included in the mass ratio, an optimal shape can be exhibited.
  • the mass ratio of the promoter compound to the carrier may be 1: 1 to 1: 100.
  • the mass ratio of the first metallocene compound represented by the formula (1) to the second metallocene compound represented by the formulas (3) to 5 is 10: 1 to 1:10, preferably 5: 1 to 1: 5 days. have.
  • a carrier containing a hydroxyl group on the surface may be used, and preferably a highly reactive hydroxyl group and a siloxane group which are dried to remove moisture on the surface.
  • silica, silica-alumina, silica-magnesia, etc., dried at a high temperature can be used, and these are usually oxides, carbonates, such as Na 2 O, K 2 C0 3 , BaS0 4 , and Mg (N0 3 ) 2 , Sulfate, and nitrate components.
  • the drying temperature of the carrier is preferably 200 to 800 ° C., more preferably 300 to 600 ° C., most preferably 300 to 400 ° C.
  • the drying temperature of the carrier is less than 200 ° C, the moisture is too much and the surface of the carrier reacts with it, and when it exceeds 800 ° C, the pores on the surface of the carrier are combined to enjoy the surface area, It is not preferable because a lot of oxy groups are lost and only siloxane groups remain to decrease the reaction space with the promoter.
  • the amount of hydroxy groups on the surface of the carrier is preferably 0.1 to 10 mmol / g, more preferably 0.5 to 5 mmol / g.
  • the amount of hydroxyl groups on the surface of the carrier can be controlled by the method and conditions for preparing the carrier or by drying conditions such as temperature, time, vacuum or spray drying.
  • the common supported metallocene catalyst according to the present invention may include, for example, supporting a cocatalyst compound on a carrier, supporting a first metallocene compound represented by Formula 1 on the carrier, and on the carrier. It may be prepared, including the step of supporting a second metallocene compound selected from the compounds represented by Formulas 3 to 5.
  • the order of the step of supporting the first metallocene compound and the step of supporting the second metallocene compound may be changed as necessary. That is, the first metallocene compound is first supported on the carrier, and then the second metallocene compound is further supported to prepare a common supported metallocene catalyst, or the second metallocene compound is supported on the carrier. After supporting first, the common metallocene catalyst may be prepared by further supporting the first metallocene compound.
  • a hydrocarbon solvent such as pentane, nucleic acid, heptane, or the like, or an aromatic solvent such as benzene, toluene, or the like may be used.
  • a metallocene compound and a promoter compound may be used.
  • Silver can also be used in the form supported on silica or alumina.
  • the common supported metallocene catalyst according to the invention can be used by itself for the polymerization of olefinic monomers.
  • the common supported metallocene catalyst according to the present invention may be prepared by being used as a prepolymerized catalyst by reaction with an olefinic monomer.
  • the catalyst may be separately used for ethylene, propylene, 1-butene, 1-nuxene, and 1_octene. It can also be prepared and used as a prepolymerized catalyst by contacting with an olefinic monomer such as the like.
  • the olefin polymer according to the present invention can be produced by polymerizing an olefinic monomer in the presence of the above-mentioned common supported metallocene catalyst.
  • the olefinic monomers may be ethylene, alpha-olefins, cyclic olefins, diene olefins or triene olefins having two or more double bonds, and more specifically, ethylene, propylene, 1-butene, 1-pentene, 4 -Methyl-1-pentene, 1-nuxene, 1-heptene, 1-octene, 1-decene, 1-undecene, 1-dodecene, 1-tetradecene, 1-nuxadecene, 1-aitosen, norbornene, norbornadiene, ethylidene-norbornene, phenyl Norbornene, vinylnorbornene, dicyclopentadiene
  • the olefin polymer is more preferably an ethylene / alpha olefin copolymer, but is not limited thereto.
  • the olefin polymer is an ethylene / alpha olefin co-polymer
  • the content of alpha-olefin, which is the comonomer is not particularly limited, and may be appropriately selected according to the use, purpose, and the like of the olefin polymer. More specifically, it may be more than 0 and 99 mol% or less.
  • the polymerization reaction can be carried out by homopolymerization with one leupin-based monomer or copolymerization with two or more monomers using one continuous slurry polymerization reaction, loop slurry reaction, gas phase reaction or solution reaction.
  • the polymerization temperature may be about 25 to about 500 ° C, preferably about 25 to about 200 ° C, more preferably about 50 to about 150 ° C.
  • the polymerization pressure may be about 1 to about 100 Kgf / cm 2 , preferably about 1 to about 50 Kgf / cm 2 , more preferably about 5 to about 30 Kgf / cm 2 .
  • the common supported metallocene catalyst is an aliphatic hydrocarbon solvent having 5 to 12 carbon atoms, for example, pentane, nucleic acid, heptane, nonane, decane, and isomers thereof and aromatic hydrocarbon solvents such as toluene and benzene, dichloromethane and chlorobenzene. It may be dissolved or diluted and injected into a hydrocarbon solvent substituted with a chlorine atom such as.
  • the solvent used herein is preferably used by removing a small amount of water, air, or the like acting as a catalyst poison by treating a small amount of alkyl aluminum, and may be carried out by further using a promoter.
  • the hybrid supported metallocene catalyst By using the hybrid supported metallocene catalyst, an olefin copolymer having a molecular weight distribution curve of two or more tablets may be prepared.
  • a relatively high molecular weight olepin-based polymer can be prepared by the first metallocene compound, and the second metallocene Relatively low molecular weight olepin-based polymers can be prepared by the compound.
  • the hybrid supported metallocene catalyst may include at least one crab 1 metallocene compound of Formula 1, at least one second metallocene compound of Formula 2, and at least one of Formula 3 and a second metallocene compound.
  • a high molecular weight, low molecular weight, medium molecular weight olefin polymer is produced to have a long molecular weight distribution, but containing a LCB (Long Chain Branch) having a branch of 8 or more carbon atoms in the main chain of the olefin-based polymer Ellepin-based polymers can be prepared.
  • LCB Long Chain Branch
  • Such olefin-based polymers not only have excellent physical properties but also have excellent workability.
  • the solution was changed to violet color at room temperature overnight.
  • the reaction solution was filtered to remove LiCl.
  • the toluene of the filtrate was removed by vacuum drying, and the nucleic acid was added and sonicated for 1 hour.
  • the slurry was filtered to give 6 g (Mw 758.02, 7.92 mmol, yield 66 mol%) of a dark violet metallocene compound as a filtered solid. Two isomers were observed on 1 H-NMR.
  • 6-Chlorosananol was used to prepare t-Butyl-0- (CH 2 ) 6 -Cl using the method shown in Tetrahedron Lett. 2951 0 9 88), to which NaCp was reacted.
  • T-Butyl-0- (CH 2 ) 6 -C 5 H 5 yield 60%, bp 80 ° C / Ol mmHg).
  • 6-t-butoxynucleic acid (6-t-buthoxyhexane) was confirmed by 1 H-NMR. From the 6-t-subnucleic acid, it was found that the Gringanrd reaction proceeded well. Thus 6-t-butoxyhexyl magnesium chloride was synthesized.
  • the reaction mixture was stirred for 12 hours while slowly warming to room temperature. After 12 hours of reaction, THF was removed and 4 L of nucleic acid was added to obtain a filter solution from which salts were removed through labdori. After adding the filter solution back to the reactor, nucleic acid was added. Removal at 70 ° C gave a yellow solution.
  • the yellow solution obtained was identified to be a methyl (6-t-subspecific nucleus) (tetramethyl CpH) t-butylaminosilane (Methyl (6-t-buthoxyhexyl) (tetramethylCpH) t-Butylaminosilane) compound by 1 H-NMR. .
  • nucleic acid was added to filter the product. After removing the nucleic acid from the filter solution obtained, the desired ([methyl (6-t-buthoxyhexyl) silyl 5-tetramethylCp) (t-Butylamido)] TiCy (tBu-O- (CH 2 ) 6 ) (CH 3 It was confirmed that the Si (C 5 (CH 3 ) 4 ) (tBu-N) TiCl 2 .
  • the supported catalyst was prepared in the same manner as in Example 1, except that 157 mL of the metallocene compound / luluene solution of Preparation Example 4 was prepared in Example 1, and 40 g of the metallocene compound of Preparation Example 1 was added. Was prepared.
  • Example 3
  • Each of the common supported metallocene catalysts prepared in Examples 1 to 3 and Comparative Example 1 was introduced into an isobutene slurry loop process continuous polymerizer (a semi-agitator volume 140L, a counterung flow rate of 7 m / s) to prepare an olefin polymer. .
  • a semi-agitator volume 140L As a comonomer, 1-nuxene was used, and the reaction temperature was maintained at 40 bar and the polymerization temperature at 90 ° C.
  • the polymerization conditions using the common supported metallocene catalysts of Examples 1 to 3 and Comparative Example 1 are collectively shown in Table 1 below.
  • Melt Index (MFR, 2.16 kg / 21.6 kg): Measuring Temperature 190 ° C, ASTM 1238 3) MFRR (MFR 2I 6 / MFR 2. i 6): MFR 21. 6 Melt index (MI, 21.6kg hajeung) is the ratio obtained by dividing the MFR 2 .i 6 (MI, 2.16kg load).
  • PL-SP260 by using a BHT 0.0125% comprising a 1, 2, 4-Trichlorobenzene pre-dissolved in over 160 ° C, 10 hours, and PL-GPC220 the number of the measurement silver is 160 ° C Average molecular weight and weight average molecular weight were measured. The molecular weight distribution was expressed as the ratio of weight average molecular weight and number average molecular weight.
  • the high molecular weight side SCB content and the low molecular weight side SCB content mean SCB content values at the right and left boundaries of 60% range, respectively, and the sample contains BHT 0.0125% using PL-SP260.
  • the sample contains BHT 0.0125% using PL-SP260.
  • Example 1 Example 2 Example 3 Comparative Example 1 Density (g / cm 3 ) 0.941 0.941 0.941 0.941 0.941 0.941
  • the olefinic copolymers of Examples 1 to 3 prepared using the common supported metallocene catalyst had high molecular weight, low molecular weight, and medium molecular weight olefin polymers. while having a broad molecular weight distribution is produced, because of the high melt flow rate ratio (MFR 21. 6 / MFR 2 . 16), it was confirmed that can exhibit high fluidity and good processability.
  • the olefinic copolymers of Examples 1 to 3 include a long chain branch (LCB) from FIG. 2 and the like shown in the van Gurp-Palmen graph.
  • the olefin-based polymers having such characteristics include swell, Excellent bubble stability, melt fracture, sagging time, etc., can be applied to various applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

The present invention relates to an olefin-based polymer with excellent processability. The olefin-based polymer according to the present invention has excellent processability and exhibits improved mechanical properties due to having a high molecular weight and a wide distribution of molecular weight, and thus can be useful for a required use.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
가공성이 우수한 을레핀계 중합체  Elevin polymer with excellent processability
【관련 출원 (들)과의 상호 인용】  [Cross Citation with Related Application (s)]
본 출원은 2014년 9월 5일자 한국 특허 출원 제 10-2014-0119258호 및 2015 년 9 월 3 일자 한국 특허 출원 제 10-2015-0125131 호 에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.  This application claims the benefit of priority based on Korean Patent Application No. 10-2014-0119258 filed on September 5, 2014 and Korean Patent Application No. 10-2015-0125131 filed on September 3, 2015. All content disclosed in the literature is included as part of this specification.
[기술분야】  [Technical Field]
본 발명은 가공성이 우수한 올레핀계 중합체에 관한 것이다.  The present invention relates to an olefin polymer having excellent processability.
【발명의 배경이 되는 기술】  [Technique to become background of invention]
올레핀 중합 촉매계는지글러 나타 및 메탈로센 촉매계로 분류할 수 있으며, 이 두 가지의 고활성 촉매계는 각각의 특징에 맞게 발전되어 왔다. 지글러 나타 촉매는 50년대 발명된 이래 기존의 상업 프로세스에 널리 적용되어 왔으나, 활성점이 여러 개 흔재하는 다활성점 촉매 (multi site catalyst)이기 때문에, 중합체의 분자량 분포가 넓은 것이 특징이며, 공단량체의 조성 분포가 균일하지 않아 원하는 물성 확보에 한계가 있다는 문제점이 있다.  Olefin polymerization catalyst systems can be classified into Ziegler-Natta and metallocene catalyst systems, and these two highly active catalyst systems have been developed for their respective characteristics. The Ziegler-Natta catalyst has been widely applied to the existing commercial processes since the invention in the 50s, but is characterized by a wide molecular weight distribution of the polymer due to its multi-site catalyst having many active sites. There is a problem that there is a limit in securing the desired physical properties because the composition distribution is not uniform.
한편, 메탈로센 촉매는 전이금속 화합물이 주성분인 주촉매와 알루미늄이 주성분인 유기 금속 화합물인 조촉매의 조합으로 이루어지며, 이와 같은 촉매는 균일계 착체 촉매로 단일 활성점 촉매 (single site catalyst)이며, 단일 활성점 특성에 따라 분자량 분포가 좁으며, 공단량체의 조성 분포가 균일한 고분자가 얻어지며, 촉매의 리간드 구조 변형 및 중합 조건의 변경에 따라 고분자의 입체 규칙도, 공중합 특성, 분자량, 결정화도 등을 변화시킬 수 있는 특성을 가지고 있다.  Meanwhile, the metallocene catalyst is composed of a combination of a main catalyst composed mainly of transition metal compounds and a cocatalyst composed of organometallic compounds composed mainly of aluminum. Such a catalyst is a homogeneous complex catalyst and is a single site catalyst. The polymer has a narrow molecular weight distribution according to the characteristics of a single active site and a homogeneous composition of the comonomer, and the stereoregularity, copolymerization characteristics, molecular weight, It has the property to change the crystallinity.
미국 특허 제 5,914,289호에는 각각의 담체에 담지된 메탈로센 촉매를 이용하여 고분자의 분자량 및 분자량 분포를 제어하는 방법이 기재되어 있으나, 담지촉매 제조시 사용된 용매의 양 및 제조시간이 많이 소요되고, 사용되는 메탈로센 촉매를 담체에 각각 담지시켜야 하는 번거로움이 따랐다. 대한민국 특허 출원 제 2003-12308호에는 담체에 이중핵 메탈로센 촉매와 단일핵 메탈로센 촉매를 활성화제와 함께 담지하여 반웅기 내 촉매의 조합을 변화시키며 중합함으로써 분자량 분포를 제어하는 방안을 개시하고 있다. 그러나, 이러한 방법은 각각의 촉매의 특성을 동시에 구현하기에 한계가 있으며 , 또한 완성된 촉매의 담체 성분에서 메탈로센 촉매 부분이 유리되어 반웅기에 파울링 (fouling)을 유발하는 단점이 있다. 따라서, 상기한 단점들을 해결하기 위해서 간편하게 활성이 우수한 흔성 담지 메탈로센 촉매를 제조하여 원하는 물성의 을레핀계 중합체를 제조하는 방법에 대한 요구가 계속되고 있다. U.S. Patent No. 5,914,289 describes a method for controlling the molecular weight and molecular weight distribution of a polymer using a metallocene catalyst supported on each carrier, but the amount of solvent used and the time required for preparing the supported catalyst are high. There was a hassle of supporting the metallocene catalyst to be used on the carrier, respectively. Korean Patent Application No. 2003-12308 discloses a binuclear metallocene in a carrier A method of controlling the molecular weight distribution by supporting a catalyst and a mononuclear metallocene catalyst together with an activator to change and polymerize the combination of catalysts in a reaction vessel is disclosed. However, this method has a limitation in realizing the characteristics of each catalyst at the same time, and also has a disadvantage in that the metallocene catalyst portion is liberated in the carrier component of the finished catalyst, causing fouling. Therefore, in order to solve the above disadvantages, there is a continuous need for a method for preparing a common supported metallocene catalyst having excellent activity to prepare a lelpene polymer having a desired physical property.
한편, 선형 저밀도 폴리에틸렌은 중합촉매를 사용하여 저압에서 에틸렌과 알파 을레핀을 공중합하여 제조되어, 분자량 분포가 좁고 일정한 길이의 단쇄분지를 가지며, 장쇄분지가 없는 수지이다. 선형 저밀도 폴리에틸렌 필름은 일반 폴리에틸렌의 특성과 더불어 파단강도와 신율이 높고, 인열강도, 낙추층격강도 등이 우수하여 기존의 저밀도 폴리에틸렌이나 고밀도 폴리에틸렌의 적용이 어려운 스트레치 필름, 오버랩 필름 등에의 사용이 증가하고 있다.  On the other hand, linear low density polyethylene is prepared by copolymerizing ethylene and alpha olefins at low pressure using a polymerization catalyst, and has a narrow molecular weight distribution, a short chain branch of a constant length, and a long chain branch. Linear low density polyethylene film has the characteristics of general polyethylene, and has high breaking strength and elongation, and excellent tear strength and falling layer stratification strength. Therefore, the use of stretch film and overlap film, which is difficult to apply to existing low density polyethylene or high density polyethylene, has increased. Doing.
그런데, 1-부텐 또는 1-핵센을 공단량체로 사용하는 선형 저밀도 폴리에틸렌은 대부분 단일 기상반응기 또는 단일 루프 슬러리 반응기에서 제조되며, 1-옥텐 공단량체를 사용하는 공정 대비 생산성은 높으나, 이러한 제품 역시 사용 촉매기술 및 공정기술의 한계로 물성이 1-옥텐 공단량체 사용시보다 크게 열세하고, 분자량 분포가 좁아 가공성이 불량한 문제가 있다. 이러한 문제의 개선을 위해 많은 노력이 진행되고 있으며,  By the way, linear low density polyethylene using 1-butene or 1-nuxene as comonomer is mostly produced in a single gas phase reactor or a single loop slurry reactor, and the productivity is high compared to a process using 1-octene comonomer, but these products are also used. Due to the limitations of catalyst technology and process technology, physical properties are inferior to those of using 1-octene comonomers, and molecular weight distribution is narrow, resulting in poor processability. Many efforts are being made to improve these issues.
미국 특허 제 4,935,474호에는 2종 또는 그 이상의 메탈로센 화합물이 사용되어 넓은 분자량 분포를 갖는 폴리에틸렌 제조법에 대해 보고되어 있다. 미국 특허 제 6,828,394호에는 공단량체 결합성이 좋은 것과 그렇지 않은 것을 흔합사용해 가공성이 우수하고 특히 필름용에 적합한 폴리에틸렌 제조방법에 대해 보고되어 있다. 또한, 미국 특허 제 6,841,631호, 미국 특허 게 6,894,128호에는 적어도 2종의 메탈 컴파운드가 사용된 메탈로센계 촉매로 이정 또는 다정 분자량분포를 갖는 폴리에틸렌을 제조하여, 필름, 블로우몰딩, 파이프 등의 용도에 적용이 가능하다고 보고되어 있다. 하지만 이러한 제품들은 가공성은 개선되었으나 단위 입자 내의 분자량별 분산상태가 균일하지 못해 비교적 양호한 압출조건에서도 압출외관이 거칠고 물성이 안정적이지 못한 문제가 있다. US Pat. No. 4,935,474 reports on the preparation of polyethylene having a wide molecular weight distribution using two or more metallocene compounds. U. S. Patent No. 6,828, 394 reports a method for producing polyethylene that has a good comonomer binding property and a good combination thereof, which has good processability and is particularly suitable for films. In addition, US Pat. No. 6,841,631 and US Pat. No. 6,894,128 prepare polyethylene having bimodal or polycrystalline molecular weight distribution with a metallocene catalyst using at least two metal compounds, for use in films, blow molding, pipes, and the like. It is reported to be applicable. However, these products have improved processability, but the molecular weight in the unit particles Since the dispersion state is not uniform, the extrusion appearance is rough and the physical properties are not stable even under relatively good extrusion conditions.
이러한 배경에서 물성과 가공성 간의 균형이 이루어진 보다 우수한 제품의 제조가 끊임없이 요구되고 있으며 이에 대한 개선이 더욱 필요한 상태이다.  Against this background, there is a constant demand for manufacturing a better product having a balance between physical properties and processability, and further improvement is required.
【발명의 내용】  [Content of invention]
【해결하려는 과제】  [Problem to solve]
상기 종래기술의 문제점을 해결하기 위해, 본 발명은 가공성이 우수하고 향상된 기계적 물성을 갖는 올레핀계 증합체를 제공하고자 한다. 【과제 해결 수단】  In order to solve the problems of the prior art, the present invention is to provide an olefin-based polymer having excellent processability and improved mechanical properties. [Task solution]
본 발명은 분자량 분포 (Mw/Mn)가 5 내지 30이고;  The present invention has a molecular weight distribution (Mw / Mn) of 5 to 30;
190°C에서 ASTM1238에 의하여 측정한 용융 유동율비 (MFR2 L6/MFR2.16) 값이 35 내지 200이며; Melt flow rate ratio was measured by the ASTM1238 at 190 ° C (. MFR 2 L6 / MFR 2 16) values of 35 to 200, and;
주파수 (frequency, ω [rad/s])에 따른 복소점도 (complex visicosity, n *[Pa.s]) 그래프에서 기을기가 -0.8 내지 -0.2이고,  In the graph of complex viscosity (n * [Pa.s]) according to frequency (ω [rad / s]), the gradient is -0.8 to -0.2,
CI(Co-monomer Incorporation) Index 가 0.5 내지 5인 을레핀계 중합체를 제공한다.  It provides an olefinic polymer having a Co-monomer Incorporation (CI) Index of 0.5 to 5.
【발명의 효과】  【Effects of the Invention】
본 발명에 따른 올레핀계 증합체는 가공성, 기계적 물성이 우수하여, 필름, 파이프 등의 용도로 유용하게 사용될 수 있다.  The olefin-based polymer according to the present invention is excellent in workability and mechanical properties, and can be usefully used for applications such as films and pipes.
【도면의 간단한 설명】  [Brief Description of Drawings]
도 1은 본 발명의 실시예 및 비교예에 따른 올레핀계 중합체의 주파 (frequency)-복소점도 (complex visicosity)의 관계를 나타내는 그래프이다. 도 2는 본 발명의 실시예 및 비교예에 따른 올레핀계 증합체의 van Gurp-Palmen 그래프이다.  1 is a graph showing a relationship between frequency-complex viscosity of olefin polymers according to Examples and Comparative Examples of the present invention. 2 is a van Gurp-Palmen graph of the olefin-based polymer according to the Examples and Comparative Examples of the present invention.
도 3은 본 발명의 실시예 및 비교예에 따른 을레핀계 중합체의 GPC 그래프이다.  Figure 3 is a GPC graph of the olefin resin according to the Examples and Comparative Examples of the present invention.
도 4는 분자량 분포곡선을 이용한 CI Index의 측정방법의 일 예를 나타내는 그래프이다.  4 is a graph showing an example of a method of measuring CI Index using a molecular weight distribution curve.
【발명을 실시하기 위한 구체적인 내용】 이하, 본 발명을 더욱 상세하게 설명한다. [Specific contents to carry out invention] Hereinafter, the present invention will be described in more detail.
본 발명에 따른 을레핀계 중합체는 분자량 분포 (Mw/Mn)가 5 내지 30이고, 190°C에서 ASTM1238에 의하여 측정한 . 용융 유동율비 (MFR21.6/MFR2 16) 값이 35 내지 200이며, 주파수 (frequency, o [rad/s])에 따른 복소점도 (complex visicosity, *[Pa.s]) 그래프에서 기울기가 -0.8 내지 -0.2이고, CI(Q)-monomer Incorporation) Index 가 0.5 내지 5인 것을 특징으로 한다. Eulre pingye polymer according to the present invention is a molecular weight distribution (Mw / Mn) 5 to 30, measured by the ASTM1238 at 190 ° C. The melt flow rate ratio (MFR 21 .6 / MFR 2 16 ) has a value between 35 and 200, and the slope on the graph of complex visicosity (* [Pa.s]) according to frequency (o, [rad / s]) -0.8 to -0.2, CI (Q) -monomer Incorporation) Index is characterized in that 0.5 to 5.
본 발명의 올레핀계 중합체는 약 5 내지 약 30, 바람직하게는 약 6 내지 약 20 의 넓은 분자량 분포 (Mw/Mn, PDI)를 보여 우수한 가공성을 나타낼 수 있다.  The olefinic polymer of the present invention exhibits a broad molecular weight distribution (Mw / Mn, PDI) of about 5 to about 30, preferably about 6 to about 20, and can exhibit excellent processability.
본 발명의 일 실시예에 따르면, 상기 올레핀계 중합체의 중량 평균 분자량 (Mw)은 약 100,000 내지 약 300,000 g/mol, 바람직하게는 약 100,000 내지 약 250,000 g/mol 일 수 있으나, 이에만 한정되는 것은 아니다.  According to an embodiment of the present invention, the weight average molecular weight (Mw) of the olefin polymer may be about 100,000 to about 300,000 g / mol, preferably about 100,000 to about 250,000 g / mol, but is not limited thereto. no.
상기 본 발명의 을레핀계 중합체는 고분자량 및 넓은 분자량 분포를 가지며 물성 및 가공성이 우수한 효과가 있다.  The leulevine-based polymer of the present invention has a high molecular weight and a wide molecular weight distribution and has excellent physical properties and processability.
즉, 본 발명의 올레핀계 공중합체는, 알려진 올레핀계 공중합체에 비해 넓은 분자량 분포와 용융 유동률비 (MFRR)를 가져 유동성이 현저히 향상되어 보다 우수한 가공성을 나타낼 수 있다.  That is, the olefin copolymer of the present invention has a wider molecular weight distribution and a melt flow rate ratio (MFRR) than the known olefin copolymer, and thus the fluidity is remarkably improved, and thus, excellent workability can be exhibited.
본 발명의 을레핀계 공증합체는, 용융 유동율비 (MFRR, MFR21.6/MFR2.16) 가 약 35 내지 약 200, 바람직하게는 약 80 내지 약 150인 범위를 갖는다. 상기와 같은 범위의 용융 유동율비를 가짐으로써 각 하중에서의 흐름성이 적절히 조절되어, 가공성 및 기계적 물성이 동시에 향상될 수 있다. Eulre pingye notary polymer of the invention has a melt flow rate ratio (MFRR, MFR 21.6 / MFR 2 . 16) is about 35 to about 200, preferably from about 80 to about 150 range. By having the melt flow rate ratio in the above range, the flowability at each load can be appropriately adjusted, thereby improving workability and mechanical properties at the same time.
본 발명의 일 실시예에 따르면, MFR2.16(ASTM D-1238에 의거하여 190 °C , 2.16kg하중에서 측정된 용융 유동 지수)는 약 0.1 내지 약 3 g/10min일 수 있고, 바람직하게는 약 0.1 내지 약 0.8 g/10min의 범위일 수 있다. 또한, 본 발명의 일 실시예에 따르면, MFR21.6(ASTM D-1238에 의거하여 190°C , 21.6kg 하중에서 측정된 용융 유동 지수)은 약 5 내지 약 100 g/lOmin일 수 있고, 바람직하게는 약 7 내지 약 60 g/lOmin의 범위일 수 있다. 이러한 MFR2 16, MFR21.6의 범위는 상기 을레핀계 중합체의 용도 또는 적용 분야를 고려하여 적절히 조절될 수 있다. According to one embodiment of the invention, MFR 2 . 16 (melt flow index measured at 190 ° C, 2.16 kg load according to ASTM D-1238) may range from about 0.1 to about 3 g / 10 min, preferably in the range of about 0.1 to about 0.8 g / 10 min. Can be. Further, according to one embodiment of the present invention, MFR 21 . 6 (melt flow index measured at 190 ° C., 21.6 kg load according to ASTM D-1238) can range from about 5 to about 100 g / lOmin, preferably in the range from about 7 to about 60 g / lOmin. Can be. Such MFR 2 16 , MFR 21 . The range of 6 refers to the use or application of the olefinic polymer Can be adjusted appropriately.
또한, 본 발명의 올레핀계 중합체는 주파수 (frequency, ω [rad/s])에 따른 복소점도 (complex visicosity, ri *[Pa.s]) 그래프에서 기울기가 약 -0.8 내지 약 -0.2, 또는 약 -0.6 내지 -0.4인 범위를 갖는다. 주파수에 따른 복소점도 그래프는 유동성과 관련된 것으로, 낮은 주파수에서 높은 복소점도를 갖고 높은 주파수에서는 낮은 복소점도를 가질수록 유동성이 높은 것을 의미한다. 즉, 음의 기울기값을 가지며, 상기 기울기값의 절대값이 클수록 높은 유동성을 나타내는 것이라 할 수 있다. 본 발명의 을레핀계 중합체는 주파수에 따른 복소점도 그래프에서 기울기가 약 -0.8 내지 약 -으2인 범위로, 유사한 밀도 및 중량 평균 분자량을 갖는 종래의 을레핀계 중합체에 대비하여 현저히 높은 유동성을 보인다. 이에 딴라 높은 용융지수에도 불구하고 shear thinning 효과가 훨씬 뛰어나 우수한 유동성 및 가공성을 나타냄을 알 수 있다ᅳ  In addition, the olefinic polymer of the present invention has a slope of about -0.8 to about -0.2, or about in the complex viscosity (ri * [Pa.s]) graph according to frequency (ω [rad / s]). It ranges from -0.6 to -0.4. The graph of complex viscosity according to frequency is related to fluidity, which means that the fluidity is higher as it has a high complex viscosity at low frequency and a low complex viscosity at high frequency. That is, it has a negative inclination value, and as the absolute value of the inclination value increases, it can be said that it shows high fluidity. The leulevine-based polymer of the present invention exhibits significantly higher fluidity compared to the conventional leulevine-based polymer having a similar density and weight average molecular weight in a range of about -0.8 to about -2 in a complex viscosity graph with frequency. Therefore, despite the high melt index, the shear thinning effect is much better, indicating excellent fluidity and processability.
또, 본 발명의 올레핀계 중합체는 CI(Co-monomer Incorporation) Index 가 약 0.5 내지 5, 또는 약 1 내지 3, 또는 약 1 내지 1.5일 수 있다. 본 명세서에서 사용되는 CI 구조란, 알파 올레핀과 같은 공단량체의 함량이 고분자량 주쇄에 집중되어 있는 구조, 즉, 짧은 사슬 가지 (Short Chain Branch, SCB) 함량이 고분자량 쪽으로 갈수록 많아지는 새로운 구조를 의미한다. GPC-FTIR 장치를 이용하여 분자량, 분자량 분포 및 SCB 함량을 동시에 연속적으로 측정할 수 있으며, CI Index 는 분자량 (M)의 로그값 (log M)을 X축으로 하고, 상기 로그값에 대한 분자량 분포 (dwt/dlog M)를 y축으로 하여 분자량 분포 곡선을 그렸을 때, 전체 면적 대비 좌우 끝 20%를 제외한 가운데 60%의 좌측 및 우측 경계에서 SCB(Short Chain Branch) 함량 (탄소 1,000 개당의 탄소수 2 내지 7개의 결가지 (branch) 함량, 단위: 개 /1,000C)을 측정하여 하기 식 1로 그 값을 계산하여 구할 수 있다. 이 때, 고분자량쪽 SCB 함량과, 저분자량쪽 SCB 함량은 각각 가운데 60% 범위의 우측 및 좌측의 경계에서의 SCB 함량값을 의미한다. 이러한 . CI(Co-monomer Incorporation) Index 의 측정방법의 일 예는 도 4에 도시된 바와 같다.  In addition, the olefin polymer of the present invention may have a Co-monomer Incorporation (CI) Index of about 0.5 to 5, or about 1 to 3, or about 1 to 1.5. As used herein, the CI structure is a structure in which the content of comonomers such as alpha olefins is concentrated in the high molecular weight main chain, that is, a new structure in which short chain branch (SCB) content increases toward higher molecular weight. it means. Molecular weight, molecular weight distribution and SCB content can be measured simultaneously using the GPC-FTIR apparatus, CI Index is the logarithm of the molecular weight (M) (log M) X-axis, the molecular weight distribution for the log value When the molecular weight distribution curve is drawn with (dwt / dlog M) as the y-axis, SCB (Short Chain Branch) content (the number of carbons per 1,000 carbons) at the left and right boundaries of 60%, except for the left and right ends of 20% of the total area. To 7 branch content (unit: 1,000 / c) can be measured and calculated by the following formula (1). In this case, the high molecular weight side SCB content and the low molecular weight side SCB content mean SCB content values at the right and left boundaries of the middle 60% range, respectively. Such . An example of a method of measuring a Co-monomer Incorporation (CI) Index is shown in FIG. 4.
[식 1] (Ά ^ SC B ¾ ¾CS: ¾ ¾.) [Equation 1] (Ά ^ SC B ¾ ¾CS : ¾ ¾.)
CI Index = (i*¥¾ ¾¥scF¥f" CI Index = (i * ¥ ¾ ¾ ¥ scF ¥ f "
이때, CI Index 가 0 이하인 경우 CI 구조의 고분자가 아니고, 0 보다 큰 경우 CI 구조의 고분자라고 볼 수 있는데, 그 값이 클수록 CI 특성이 우수한 것으로 평가할 수 있다.  At this time, if the CI Index is 0 or less, it is not a polymer of CI structure, but if it is larger than 0, it can be regarded as a polymer of CI structure.
본 발명의 일 실시예에 따르면, 상기 을레핀계 증합체의 밀도는 0.930 내지 0.950 g/cm3일 수 있으나, 이에만 한정되는 것은 아니다. According to one embodiment of the present invention, the density of the leupin-based polymer may be 0.930 to 0.950 g / cm 3 , but is not limited thereto.
또한 본 발명의 일 실시예에 따르면, 상기 올레핀계 중합체는 LCB(Long Chain Branch)를 가질 수 있다. 상기 LCB(Long Chain Branch)란, 올레핀계 증합체의 주 '사슬에 붙어 있는 8개 이상의 탄소수를 가지는 가지 (branch)들을 의미하며, 보통 공단량체 (comonomer)로서 1-부텐, 1-핵센, 1- 옥텐과 같은 알파 올레핀을 사용할 경우 만들어지는 결가지들을 의미한다. 일반적으로 올레핀계 중합체에서 LCB의 존재 여부는 rheometer 장비를 이용하여 측정한 van Gurp-Palmen 그래프에서 변곡점을 갖는지의 여부 또는 낮은 complex modulus로 갈수록 발산하는 경향을 나타내는지 여부 등으로 판단할 수 있다. 상기 van Gurp-Palmen 그래프의 x-축은 complex modulus의 절대값이며, y-축은 phase angle이다. In addition, according to an embodiment of the present invention, the olefin polymer may have a long chain branch (LCB). The long chain branch (LCB) refers to branches having 8 or more carbon atoms attached to the main ' chain of the olefin-based polymer, and is usually a comonomer of 1-butene, 1-nuxene, 1 -Refers to the defects produced when using an alpha olefin such as octene. In general, the presence of LCB in an olefin polymer can be determined by whether it has an inflection point in the van Gurp-Palmen graph measured by rheometer equipment or whether it tends to diverge toward lower complex modulus. The x-axis of the van Gurp-Palmen graph is the absolute value of the complex modulus, and the y-axis is the phase angle.
본 발명의 일 실시예 따른 을레핀계 중합체의 van Gurp-Palmen 그래프를 나타낸 도 2를 참조하면, 실시예 1 및 2는 complex modulus의 값이 낮아질수록 phase angle이 발산하는 경향을 나타내고, 높은 complex modulus 지점에서 변곡점을 가지는 특징이 있다. 이러한 그래프의 특징은 을레핀계 증합체의 LCB에 의해 나타나는 것으로, LCB를 포함하는 을레핀계 중합체는 swell, bubble stability, melt fracture, sagging time 등이 우수하여 , 용도에 따라 다양하게 적용될 수 있으며, 특히 향상된 물성을 갖는 pipe 등을 제공할 수 있다.  Referring to FIG. 2, which shows a van Gurp-Palmen graph of an ellepin-based polymer according to an embodiment of the present invention, Examples 1 and 2 show a tendency for phase angle to diverge as the value of a complex modulus decreases, and a high complex modulus point. It is characterized by having an inflection point at. The characteristic of the graph is represented by the LCB of the olefin-based polymer. The olephine-based polymer including the LCB has excellent swell, bubble stability, melt fracture, sagging time, and can be applied to various applications. It is possible to provide a pipe having physical properties.
또한, 본 발명의 올레핀계 증합체는 올레핀계 중합체의 1,000개 탄소당 LCB 함량이 0.001 내지 1개, 바람직하게는 0.01 내지 으 1개일 수 있으며, 1,000개 탄소당 LCB 함량의 최대값은 0.001 내지 1개, 바람직하게는 0.01 내지 0.1개일 수 있다.  In addition, the olefin-based polymer of the present invention may have an LCB content of 0.001 to 1, preferably 0.01 to 1 per 1,000 carbons of the olefin-based polymer, the maximum value of the LCB content per 1,000 carbons is 0.001 to 1 Dogs, preferably 0.01 to 0.1 dogs.
본 발명에 따른 올레핀계 중합체는 올레핀계 단량체인 에틸렌의 호모 증합체이거나, 바람직하게는 에틸렌과 알파 올레핀계 공단량체의 공중합체일 수 있다. The olefin polymer according to the present invention is a homo of ethylene which is an olefin monomer. Or a copolymer of ethylene and an alpha olefin comonomer.
상기 알파 을레핀계 공단량체로는 탄소수 4 이상인 알파 올레핀이 사용될 수 있다. 탄소수 4 이상의 알파 을레핀으로는 1-부텐, 1-펜텐, 1-핵센, 4-메틸 -1-펜텐, 1-옥텐, 1-데센, 1-도데센, 1-테트라데센, 1-핵사데센, 1-옥타데센, 또는 1-에이코센 등이 있으나, 이에만 한정되는 것은 아니다. 이 중 탄소수 4 ~ 10의 알파 올레핀이 바람직하며, 1종 또는 여러 종류의 알파 올레핀이 함께 공단량체로 사용될 수도 있다.  Alpha olefin having 4 or more carbon atoms may be used as the alpha olepin-based comonomer. Examples of alpha olefins having 4 or more carbon atoms include 1-butene, 1-pentene, 1-nuxene, 4-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene and 1-nuxadecene 1-octadecene, 1-eicosene, and the like, but is not limited thereto. Of these, alpha olefins having 4 to 10 carbon atoms are preferable, and one or several kinds of alpha olefins may be used together as a comonomer.
상기 에틸렌 및 알파 올레핀계 공단량체의 공증합체에 있어서, 상기 알파 올레핀계 공단량체의 함량은 약 으5 내지 약 10 중량0 /。, 바람직하게는 약 1 내지 약 5 증량 %일 수 있으나, 이에 한정되는 것은 아니다. 상기와 같은 을레핀계 중합체는 혼성 담지 메탈로센 촉매를 이용하여 제조할 수 있다. In the co-polymer of the ethylene and alpha olefinic comonomer, the content of the alpha olefinic comonomer may be about 5 to about 10 weight 0 /., Preferably about 1 to about 5 weight%, but is not limited thereto. It doesn't happen. The olefinic polymer as described above can be prepared using a hybrid supported metallocene catalyst.
상기 혼성 담지 메탈로센 촉매는 하기 화학식 1로 표시되는 제 1 메탈로센 화합물 1종 이상; 하기 화학식 3 내지 5로 표시되는 화합물 중에서 선택되는 제 2 메탈로센 화합물 1종 이상; 조촉매 화합물; 및 담체를 포함하는 혼성 담지 메탈로센 촉매일 수 있다.  The hybrid supported metallocene catalyst may include at least one first metallocene compound represented by Formula 1 below; At least one second metallocene compound selected from compounds represented by Formulas 3 to 5; Cocatalyst compounds; And a hybrid supported metallocene catalyst including a carrier.
[화학식 1]  [Formula 1]
Figure imgf000009_0001
Figure imgf000009_0001
상기 화학식 1에서,  In Chemical Formula 1,
A는 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, C7 내지 C20의 아릴알킬기, C1 내지 C20의 알콕시기, C2 내지 C20의 알콕시알킬기, C3 내지 C20의 헤테로시클로알킬기, 또는 C5 내지 C20의 헤테로아릴기이고;  A is hydrogen, halogen, C1 to C20 alkyl group, C2 to C20 alkenyl group, C6 to C20 aryl group, C7 to C20 alkylaryl group, C7 to C20 arylalkyl group, C1 to C20 alkoxy group, C2 to C20 A C20 alkoxyalkyl group, a C3 to C20 heterocycloalkyl group, or a C5 to C20 heteroaryl group;
D는 -0-, -S-, -N(R)- 또는 -Si(R)(R')- 이고, 여기서 R 및 R'은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, 또는 C6 내지 C20의 아릴기이고; D is -0-, -S-, -N (R)-or -Si (R) (R ')-, wherein R and R' are the same as or different from each other, and are each independently hydrogen, halogen, C1 to C20 alkyl group, An alkenyl group of C2 to C20 or an aryl group of C6 to C20;
L은 C1 내지 C10의 직쇄 또는 분지쇄 알킬렌기이고;  L is a C1 to C10 straight or branched chain alkylene group;
B는 탄소, 실리콘 또는 게르마늄이고;  B is carbon, silicon or germanium;
Q는 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, 또는 C7 내지 C20의 아릴알킬기이고;  Q is hydrogen, halogen, C1 to C20 alkyl group, C2 to C20 alkenyl group, C6 to C20 aryl group, C7 to C20 alkylaryl group, or C7 to C20 arylalkyl group;
M은 4족 전이금속이며;  M is a Group 4 transition metal;
X1 및 X2는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, 니트로기, 아미도기, C1 내지 C20의 알킬실릴기, C1 내지 C20의 알콕시기, 또는 C1 내지 C20의 술폰네이트기이고; X 1 and X 2 are the same as or different from each other, and each independently halogen, C1 to C20 alkyl group, C2 to C20 alkenyl group, C6 to C20 aryl group, nitro group, amido group, C1 to C20 alkylsilyl group , A C1 to C20 alkoxy group, or a C1 to C20 sulfonate group;
C1 및 C2는 서로 동일하거나 상이하고, 각각 독립적으로 하기 화학식 2a, 화학식 2b 또는 하기 화학식 2c 중 하나로 표시되고, 단, C1및 C2가 모두 화학식 2c인 경우는 제외하며; ' C 1 and C 2 are the same as or different from each other, and are each independently represented by one of the following Chemical Formula 2a, Chemical Formula 2b, or Chemical Formula 2c, except that C 1 and C 2 are both Chemical Formula 2c; '
[화학식 2a]  [Formula 2a]
Figure imgf000010_0001
Figure imgf000010_0001
[화학식 2c] [Formula 2c]
Figure imgf000011_0001
Figure imgf000011_0001
상기 화학식 2a, 2b 및 2c에서, Rl 내지 R17 및 Rl' 내지 R9'는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C1 내지 C20의 알킬실릴기, C1 내지 C20의 실릴알킬기, C1 내지 C20의 알콕시실릴기, C1 내지 C20의 알콕시기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, 또는 C7 내지 C20의 아릴알킬기이며, 상기 R10 내지 R17 중 서로 인접하는 2개 이상이 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성할 수 있고;  In Formulas 2a, 2b and 2c, Rl to R17 and Rl 'to R9' are the same as or different from each other, and each independently hydrogen, halogen, C1 to C20 alkyl group, C2 to C20 alkenyl group, C1 to C20 alkyl Silyl group, C1 to C20 silylalkyl group, C1 to C20 alkoxysilyl group, C1 to C20 alkoxy group, C6 to C20 aryl group, C7 to C20 alkylaryl group, or C7 to C20 arylalkyl group, Two or more adjacent to each other of R10 to R17 may be linked to each other to form a substituted or unsubstituted aliphatic or aromatic ring;
[화학식 3] · [Formula 3] ·
Figure imgf000011_0002
Figure imgf000011_0002
상기 화학식 3에서,  In Chemical Formula 3,
M1은 4족 전이금속이고; ᅳ M 1 is a Group 4 transition metal; ᅳ
Cp1' Cp2는 서로 동일하거나 상이하고, 각각 독립적으로 시클로펜타디엔닐, 인데닐, 4,5,6,7-테트라하이드로 -1-인데닐, 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며; Cp 1 and ' Cp 2 are the same as or different from each other, and each independently selected from the group consisting of cyclopentadienyl, indenyl, 4,5,6,7-tetrahydro-1-indenyl, and fluorenyl radicals Which may be substituted with hydrocarbons having 1 to 20 carbon atoms;
Ra 및 Rb는 서로 동일하거나 상이하고, 각각 독립적으로 수소, C1 내지 C20의 알킬, C1 내지 C10의 알콕시 , C2 내지 C20의 알콕시알킬, C6 내지 C20의 아릴, C6 내지 C10의 아릴옥시, C2 내지 C20의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C8 내지 C40의 아릴알케닐, 또는 C2 내지 C10의 알키닐이고; R a and R b are the same as or different from each other, and each independently hydrogen, C1 to C20 alkyl, C1 to C10 alkoxy, C2 to C20 alkoxyalkyl, C6 to C20 aryl, C6 to C10 aryloxy, C2 Alkenyl to C20, alkylaryl of C7 to C40, arylalkyl of C7 to C40, arylalkenyl of C8 to C40, or alkynyl of C2 to C10;
Z1은 할로겐 원자, C1 내지 C20의 알킬, C2 내지 C10의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C6 내지 C20의 아릴, 치환되거나 치환되지 않은 C1 내지 C20의 알킬리덴, 치환되거나 치환되지 않은 아미노기 , C2 내지 C20의 알킬알콕시, 또는 C7 내지 C40의 아릴알콕시이고; n은 1 또는 0 이고; Z 1 is a halogen atom, C1 to C20 alkyl, C2 to C10 alkenyl, C7 to C40 alkylaryl, C7 to C40 arylalkyl, C6 to C20 aryl, substituted or unsubstituted C1 to C20 alkylidene , A substituted or unsubstituted amino group, C2 to C20 alkylalkoxy, or C7 to C40 arylalkoxy; n is 1 or 0;
[화학식 4]  [Formula 4]
(Cp'R^ ^'iCp'R^M'Z2,^ (Cp'R ^ ^ 'iCp'R ^ M'Z 2 , ^
상기 화학식 4에서,  In Chemical Formula 4,
M2는 4족 전이 금속이고; M 2 is a Group 4 transition metal;
Cp3 및 Cp4는 서로 동일하거나 상이하고, 각각 독립적으로 시클로펜타디에닐, 인데닐, 4,5,6,7-테트라하이드로 -1-인테닐 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며; Cp 3 and Cp 4 are the same as or different from each other, and each independently one selected from the group consisting of cyclopentadienyl, indenyl, 4,5,6,7-tetrahydro-1-intenyl and fluorenyl radicals They may be substituted with a hydrocarbon having 1 to 20 carbon atoms;
Rc 및 Rd는 서로 동일하거나 상이하고, 각각 독립적으로 수소, C1 내지 C20의 알킬, C1 내지 C10의 알콕시 , C2 내지 C20의 알콕시알킬, C6 내지 C20의 아릴, C6 내지 C10의 아릴옥시, C2 내지 C20의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C8 내지 C40의 아릴알케닐, 또는 C2 내지 C10의 알키닐이고; R c and R d are the same as or different from each other, and each independently hydrogen, C1 to C20 alkyl, C1 to C10 alkoxy, C2 to C20 alkoxyalkyl, C6 to C20 aryl, C6 to C10 aryloxy, C2 Alkenyl to C20, alkylaryl of C7 to C40, arylalkyl of C7 to C40, arylalkenyl of C8 to C40, or alkynyl of C2 to C10;
Z2는 할로겐 원자, C1 내지 C20의 알킬, C2 내지 C10의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C6 내지 C20의 아릴, 치환되거나 치환되지 않은 C1 내지 C20의 알킬리덴, 치환되거나 치환되지 않은 아미노기 , C2 내지 C20의 알킬알콕시 , 또는 C7 내지 C40의 아릴알콕시이고; Z 2 is a halogen atom, C1 to C20 alkyl, C2 to C10 alkenyl, C7 to C40 alkylaryl, C7 to C40 arylalkyl, C6 to C20 aryl, substituted or unsubstituted C1 to C20 alkylidene , Substituted or unsubstituted amino group, C2 to C20 alkylalkoxy, or C7 to C40 arylalkoxy;
B1은 Cp3Rc 고리와 Cp4Rd 고리를 가교 결합시키거나, 하나의 Cp4Rd 고리를 M2에 가교 결합시키는, 탄소, 게르마늄, 규소, 인 또는 질소 원자 함유 라디칼 중 하나 이상 또는 이들의 조합이고; B 1 is one or more of a carbon, germanium, silicon, phosphorus or nitrogen atom containing radical which crosslinks the Cp 3 R c ring with the Cp 4 R d ring or crosslinks one Cp 4 R d ring with M 2 Or a combination thereof;
m은 1 또는 0 이고;  m is 1 or 0;
[화학식 5] [Formula 5 ]
(Cp5Re)B2(J)M3Z3 2 (Cp 5 R e ) B 2 (J) M 3 Z 3 2
상기 화학식 5에서,  In Chemical Formula 5,
M3은 4족 전이 금속이고; M 3 is a Group 4 transition metal;
Cp5는 시클로펜타디에닐, 인데닐, 4,5,6,7-테트라하이드로 -1-인데닐 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며; Re는 수소, CI 내지 C20의 알킬, C1 내지 C10의 알콕시, C2 내지 C20의 알콕시알킬, C6 내지 C20의 아릴, C6 내지 C10의 아릴옥시, C2 내지 C20의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C8 내지 C40의 아릴알케닐, 또는 C2 내지 C10의 알키닐이고; Cp 5 is any one selected from the group consisting of cyclopentadienyl, indenyl, 4,5,6,7-tetrahydro-1-indenyl and fluorenyl radicals, which may be substituted with hydrocarbons having 1 to 20 carbon atoms Can be; R e is hydrogen, alkyl of C1 to C20, alkoxy of C1 to C10, alkoxyalkyl of C2 to C20, aryl of C6 to C20, aryloxy of C6 to C10, alkenyl of C2 to C20, alkylaryl of C7 to C40 C7 to C40 arylalkyl, C8 to C40 arylalkenyl, or C2 to C10 alkynyl;
Z3은 할로겐 원자, C1 내지 C20의 알킬, C2 내지 C10의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C6 내지 C20의 아릴, 치환되거나 치환되지 않은 C1 내지 C20의 알킬리덴, 치환되거나 치환되지 않은 아미노기, C2 내지 C20의 알킬알콕시, 또는 C7 내지 C40의 아릴알콕시이고. Z 3 is a halogen atom, C1 to C20 alkyl, C2 to C10 alkenyl, C7 to C40 alkylaryl, C7 to C40 arylalkyl, C6 to C20 aryl, substituted or unsubstituted C1 to C20 alkylidene , A substituted or unsubstituted amino group, C2 to C20 alkylalkoxy, or C7 to C40 arylalkoxy.
B2는 Cp5Re 고리와 J를 가교 결합시키는 탄소, 게르마늄, 규소, 인 또는 질소 원자 함유 라디칼중 하나 이상 또는 이들의 조합이고; B 2 is one or more or a combination of carbon, germanium, silicon, phosphorus or nitrogen atom containing radicals which crosslink the Cp 5 R e ring and J;
J는 NRf, O, PRf 및 S로 이루어진 군에서 선택된 어느 하나이고, 상기 Rf는 C1 내지 C20의 알킬, 아릴, 치환된 알킬 또는 치환된 아릴이다. J is any one selected from the group consisting of NR f , O, PR f and S, wherein R f is C1 to C20 alkyl, aryl, substituted alkyl or substituted aryl.
본 발명에 따른 흔성 담지 메탈로센 촉매에 있어서, 상기 화학식 1, 3, 4 및 5의 치환기들을 보다 구체적으로 설명하면 하기와 같다.  In the common supported metallocene catalyst according to the present invention, the substituents of Chemical Formulas 1, 3, 4 and 5 will be described in more detail.
상기 C1 내지 C20의 알킬기로는 직쇄 또는 분지쇄의 알킬기를 포함하고, 구체적으로 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, tert- 부틸기, 펜틸기, 핵실기, 헵틸기, 옥틸기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.  The C1 to C20 alkyl group includes a linear or branched alkyl group, specifically, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, tert-butyl group, pentyl group, nucleosil group, heptyl group, An octyl group etc. are mentioned, but it is not limited to this.
상기 C2 내지 C20의 알케닐기로는 직쇄 또는 분지쇄의 알케닐기를 포함하고, 구체적으로 알릴기, 에테닐기, 프로페닐기, 부테닐기, 펜테닐기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.  The alkenyl group of C2 to C20 includes a straight or branched alkenyl group, and specifically, may include an allyl group, ethenyl group, propenyl group, butenyl group, pentenyl group, and the like, but is not limited thereto.
상기 C6 내지 C20의 아릴기로는 단환 또는 축합환의 아릴기를 포함하고, 구체적으로 페닐기, 비페닐기, 나프틸기, 페난트레닐기, 플루오레닐기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.  The C6 to C20 aryl group includes a monocyclic or condensed aryl group, and specifically includes a phenyl group, a biphenyl group, a naphthyl group, a phenanthrenyl group, a fluorenyl group, and the like, but is not limited thereto.
상기 C5 내지 C20의 헤테로아릴기로는 단환 또는 축합환의 헤테로아릴기를 포함하고, 카바졸릴기, 피리딜기, 퀴놀린기, 이소퀴놀린기, 티오페닐기, 퓨라닐기, 이미다졸기, 옥사졸릴기, 티아졸릴기, 트리아진기, 테트라하이드로피라닐기, 테트라하이드로퓨라닐기 등을 들 수 있으나, 이에만 한정되는 것은 아니다. 상기 CI 내지 C20의 알콕시기로는 메특시기, 에톡시기, 페닐옥시기, 시클로핵실옥시기 등을 들 수 있으나, 이에만 한정되는 것은 아니다. The C5 to C20 heteroaryl group includes a monocyclic or condensed heteroaryl group, and includes a carbazolyl group, a pyridyl group, a quinoline group, an isoquinoline group, a thiophenyl group, a furanyl group, an imidazole group, an oxazolyl group, a thiazolyl group , Triazine group, tetrahydropyranyl group, tetrahydrofuranyl group and the like, but are not limited thereto. Examples of the alkoxy group for CI to C20 include a mesophilic group, an ethoxy group, a phenyloxy group, a cyclonuxyloxy group, and the like, but are not limited thereto.
상기 4족 전이금속으로는 티타늄, 지르코늄, 하프늄 등을 들 수 있으나, 이에만 한정되는 것은 아니다.  Examples of the Group 4 transition metal include titanium, zirconium, and hafnium, but are not limited thereto.
본 발명에 따른 흔성 담지 메탈로센 촉매에 있어서, 상기 화학식 2a, In the common supported metallocene catalyst according to the present invention, the formula (2a),
2b 및 2c의 R1 내지 R17 및 R1 ' 내지 R9'는 각각 독립적으로 수소, 메틸기, 에틸기, 프로필기, 이소프로필기 , η-부틸기, tert-부틸기, 펜틸기, 핵실기, 헵틸기 : 옥틸기, 페닐기, 할로겐기, 트리메틸실릴기, 트리에틸실릴기, 트리프로필실릴기, 트리부틸실릴기, 트리이소프로필실릴기, 트리메틸실릴메틸기, 메톡시기, 또는 에톡시기인 것이 더욱 바람직하나, 이에만 한정되는 것은 아니다. R1 to R17 and R1 'to R9 of 2b and 2c are each independently hydrogen, methyl group, ethyl group, propyl group, isopropyl group, η-butyl group, tert-butyl group, pentyl group, nuclear group, heptyl group : octa More preferably, they are a methyl group, a phenyl group, a halogen group, a trimethylsilyl group, a triethylsilyl group, a tripropylsilyl group, a tributylsilyl group, a triisopropylsilyl group, a trimethylsilylmethyl group, a methoxy group, or an ethoxy group. It is not limited.
상기 화학식 1의 L은 C4 내지 C8의 직쇄 또는 분지쇄 알킬렌기인 것이 더욱 바람직하나, 이에만 한정되는 것은 아니다. 또한, 상기 알킬렌기는 L of Formula 1 is more preferably a straight or branched chain alkylene group of C4 to C8, but is not limited thereto. In addition, the alkylene group
C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, 또는 C6 내지 C20의 아릴기로 치환 또는 비치환될 수 있다. It may be substituted or unsubstituted with an alkyl group of C1 to C20, an alkenyl group of C2 to C20, or an aryl group of C6 to C20.
또한, 상기 화학식 1의 A는 수소, 메틸기, 에틸기 , 프로필기, 이소프로필기, n-부틸기, tert-부틸기, 메톡시메틸기, tert-부특시메틸기, 1- 에톡시에틸기, i_메틸 ᅳ메록시에틸기, 테트라하이드로피라닐기, 또는 테트라하이드로퓨라닐기인 것이 바람직하나, 이에만 한정되는 것은 아니다. 또한, 상기 화학식 1의 B는 실리콘인 것이 바람직하나, 이에만 한정되는 것은 아니다.  In addition, A of Formula 1 is hydrogen, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, tert-butyl group, methoxymethyl group, tert-subspecific methyl group, 1-ethoxyethyl group, i_methyl It is preferable that it is a hydroxyethyl group, a tetrahydropyranyl group, or a tetrahydrofuranyl group, but it is not limited only to this. In addition, B of Formula 1 is preferably silicon, but is not limited thereto.
상기 화학식 1의 제 1 메탈로센 화합물은 인데노 인돌 (indeno indole) 유도체 및 /또는 플루오렌 (fluorene) 유도체가 브릿지에 의해 가교된 구조를 형성하며, 리간드 구조에 루이스 염기로 작용할 수 있는 비공유 전자쌍을 가짐으로써 담체의 루이스 산 특성을 지니는 표면에 담지되어 담지 시에도 높은 중합 활성을 나타낸다. 또한 전자적으로 풍부한 인데노 인돌기 및 /또는 플루오렌기를 포함함에 따라 활성이 높고, 적절한 입체 장애와 리간드의 전자적인 효과로 인해 수소 반웅성이 낮을 뿐 아니라 수소가 존재하는 상황에서도 높은 활성이 유지된다. 또한 인데노 인돌 유도체의 질소 원자가 자라나는 고분자 사슬의 beta-hydrogen을 수소결합에 의해 안정화시켜 beta- hydrogen elimination을 억제하여 초고분자량의 올레핀계 중합체를 중합할 수 있다. The first metallocene compound of Formula 1 is a non-covalent electron pair which forms a structure in which an indeno indole derivative and / or a fluorene derivative are crosslinked by a bridge, and can act as a Lewis base on the ligand structure. By having a supported on the surface having the Lewis acid characteristics of the carrier it shows a high polymerization activity even when supported. In addition, due to the electronically rich indeno indole and / or fluorene group, the activity is high, and due to the proper steric hindrance and the electronic effect of the ligand, the reaction is not only low but also maintains high activity even in the presence of hydrogen. . In addition, the beta-hydrogen of the polymer chain in which the nitrogen atom of the indeno indole derivative is grown is stabilized by hydrogen bonds. It is possible to polymerize ultra high molecular weight olefin polymers by suppressing hydrogen elimination.
본 발명의 일 실시예에 따르면, 상기 화학식 2a로 표시되는 화합물의 구체적인 예로는 하기 구조식들 중 하나로 표시되는 화합물을 들 수 있으나, 본 발명이 이에만 한정되는 것은 아니다.  According to one embodiment of the present invention, specific examples of the compound represented by Chemical Formula 2a may include a compound represented by one of the following structural formulas, but the present invention is not limited thereto.
Figure imgf000015_0001
있으나, 본 발명이 이에만 한정되는 것은 아니다
Figure imgf000016_0001
Figure imgf000015_0001
However, the present invention is not limited thereto.
Figure imgf000016_0001
Figure imgf000016_0002
Figure imgf000016_0002
Figure imgf000017_0001
Figure imgf000017_0001
본 발명의 일 실시예에 따르면, 상기 화학식 2c로 표시되는 화합물의 구체적인 예로는 하기 구조식 들 중 하나로 표시되는 화합물을 들 수 있으나, 본 발명이 이에만 한정되는 것은 아니다.  According to an embodiment of the present invention, specific examples of the compound represented by Formula 2c may include a compound represented by one of the following structural formulas, but the present invention is not limited thereto.
Figure imgf000017_0002
Figure imgf000017_0002
본 발명의 일 실시예에 따르면, 상기 화학식 1로 표시되는 제 1 메탈로센 화합물의 구체적인 예로는 하기 구조식들 중 하나로 표시되는 화합물을 들 수 있으나, 이에만 한정되는 것은 아니다. 9ΐ According to an embodiment of the present invention, specific examples of the first metallocene compound represented by Chemical Formula 1 may include a compound represented by one of the following structural formulas, but is not limited thereto. 9ΐ
Figure imgf000018_0001
Figure imgf000018_0001
T.C600/SlOZaM/X3d )Z9£0/9I0Z OAV ΐ T.C600 / SlOZaM / X3d) Z9 £ 0 / 9I0Z OAV ΐ
Figure imgf000019_0001
Figure imgf000019_0001
T.C600/SlOZaM/X3d )Z9£0/9I0Z OAV 8ΐ T.C600 / SlOZaM / X3d) Z9 £ 0 / 9I0Z OAV 8ΐ
Figure imgf000020_0001
Figure imgf000020_0001
T.C600/SlOZaM/X3d )Z9£0/9I0Z OAV T.C600 / SlOZaM / X3d) Z9 £ 0 / 9I0Z OAV
Figure imgf000021_0001
Figure imgf000021_0001
화학식 i의 제 1 메탈로센 화합물은 활성이 우수하고 고분자량의 을레핀계 증합체를 중합할 수 있다. 특히, 담체에 담지하여 사용할 경우에도 높은 중합 활성을 나타내어, 초고분자량의 폴리을레핀계 중합체를 제조할 수 있다. The first metallocene compound of formula i is excellent in activity It is possible to polymerize a high molecular weight olepin-based polymer. In particular, even when used on a carrier, it exhibits high polymerization activity, and thus an ultrahigh molecular weight polyolefin polymer can be prepared.
또한, 고분자량과 동시에 넓은 분자량 분포를 갖는 을레핀계 중합체를 제조하기 위해 수소를 포함하여 중합 반웅을 진행하는 경우에도, 본 발명에 따른 화학식 1의 제 1 메탈로센 화합물은 낮은 수소 반웅성을 나타내어 여전히 높은 활성으로 초고분자량의 을레핀계 중합체의 중합이 가능하다. 따라서, 다른 특성을 갖는 촉매와 흔성으로 사용하는 경우에도 활성의 저하없이 고분자량의 특성을 만족시키는 을레핀계 중합체를 제조할 수 있어, 고분자의 을레핀계 중합체를 포함하면서 넓은 분자량 분포를 갖는 올레핀계 중합체를 용이하게 제조할 수 있다.  In addition, even when the polymerization reaction is performed including hydrogen in order to prepare an ellepin-based polymer having a high molecular weight and a wide molecular weight distribution, the first metallocene compound of Formula 1 according to the present invention exhibits low hydrogen reaction properties. It is still possible to polymerize ultra high molecular weight olepin-based polymers with high activity. Therefore, even when used in combination with a catalyst having different properties, it is possible to produce an olefinic polymer that satisfies high molecular weight properties without degrading activity, and thus an olefinic polymer having a broad molecular weight distribution while containing a olefinic polymer of the polymer. It can be manufactured easily.
상기 화학식 1의 제 1 메탈로센 화합물은 인데노인돌 유도체 및 /또는 폴루오렌 유도체를 브릿지 화합물로 연결하여 리간드 화합물로 제조한 다음, 금속 전구체 화합물을 투입하여 메탈레이션 (metallation)을 수행함으로써 수득될 수 있다. 상기 제 1 메탈로센 화합물의 제조방법은 후술하는 실시예에 구체화하여 설명한다.  The first metallocene compound of Chemical Formula 1 may be prepared by connecting an indenoindole derivative and / or polorene derivative as a bridge compound to prepare a ligand compound, and then performing metallation by introducing a metal precursor compound. Can be. The manufacturing method of the said 1st metallocene compound is concretely demonstrated to the Example mentioned later.
본 발명의 담지 촉매에 있어서, 상기 제 2 메탈로센 화합물은 하기 화학식 3 내지 5로 표시되는 화합물 중 선택되는 1종 이상일 수 있다.  In the supported catalyst of the present invention, the second metallocene compound may be at least one selected from compounds represented by the following Chemical Formulas 3 to 5.
[화학식 3] [Formula 3]
Figure imgf000022_0001
Figure imgf000022_0001
상기 화학식 3에서,  In Chemical Formula 3,
M1은 4족 전이금속이고; M 1 is a Group 4 transition metal;
Cp1 및 Cp2는 서로 동일하거나 상이하고, 각각 독립적으로 시클로펜타디엔닐, 인데닐, 4,5,6,7-테트라하이드로 -1-인데닐, 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며; Cp 1 and Cp 2 are the same as or different from each other, and each independently selected from the group consisting of cyclopentadienyl, indenyl, 4,5,6,7-tetrahydro-1-indenyl, and fluorenyl radicals One, they may be substituted with a hydrocarbon of 1 to 20 carbon atoms;
Ra 및 Rb는 서로 동일하거나 상이하고, 각각 독립적으로 수소, C1 내지 C20의 알킬, C1 내지 C10의 알콕시, C2 내지 C20의 알콕시알킬, C6 내지 C20의 아릴, C6 내지 C10의 아릴옥시, C2 내지 C20의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C8 내지 C40의 아릴알케닐, 또는 C2 내지 CIO의 알키닐이고; R a and R b are the same as or different from each other, and each independently hydrogen, C1 to C20 alkyl, C1 to C10 alkoxy, C2 to C20 alkoxyalkyl, C6 to C20 aryl, C6 to C10 aryloxy, C2 Alkenyl to C20, alkylaryl of C7 to C40, arylalkyl of C7 to C40, arylalkenyl of C8 to C40, or Alkynyl of C2 to CIO;
Z1은 할로겐 원자, C1 내지 C20의 알킬, C2 내지 C10의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C6 내지 C20의 아릴, 치환되거나 치환되지 않은 C1 내지 C20의 알킬리덴, 치환되거나 치환되지 않은 아미노기, C2 내지 C20의 알킬알콕시, 또는 C7 내지 C40의 아릴알콕시이고; Z 1 is a halogen atom, C1 to C20 alkyl, C2 to C10 alkenyl, C7 to C40 alkylaryl, C7 to C40 arylalkyl, C6 to C20 aryl, substituted or unsubstituted C1 to C20 alkylidene , A substituted or unsubstituted amino group, C2 to C20 alkylalkoxy, or C7 to C40 arylalkoxy;
n은 1 또는 0 이고;  n is 1 or 0;
[화학식 4] [Formula 4]
Figure imgf000023_0001
Figure imgf000023_0001
상기 화학식 4에서,  In Chemical Formula 4,
M2는 4족 전이 금속이고; M 2 is a Group 4 transition metal;
Cp3 및 Cp4는 서로 동일하거나 상이하고, 각각 독립적으로 시클로펜타디에닐, 인데닐, 4,5,6,7-테트라하이드로 -1-인데닐 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며; Cp 3 and Cp 4 are the same as or different from each other, and are each independently selected from the group consisting of cyclopentadienyl, indenyl, 4,5,6,7-tetrahydro-1-indenyl and fluorenyl radicals They may be substituted with a hydrocarbon having 1 to 20 carbon atoms;
Rc 및 Rd는 서로 동일하거나 상이하고, 각각 독립적으로 수소, C1 내지 C20의 알킬, C1 내지 C10의 알콕시 , C2 내지 C20의 알콕시알킬, C6 내지 C20의 아릴, C6 내지 C10의 아릴옥시, C2 내지 C20의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C8 내지 C40의 아릴알케닐, 또는 C2 내지 C10의 알키닐이고; R c and R d are the same as or different from each other, and each independently hydrogen, C1 to C20 alkyl, C1 to C10 alkoxy, C2 to C20 alkoxyalkyl, C6 to C20 aryl, C6 to C10 aryloxy, C2 Alkenyl to C20, alkylaryl of C7 to C40, arylalkyl of C7 to C40, arylalkenyl of C8 to C40, or alkynyl of C2 to C10;
Z2는 할로겐 원자, C1 내지 C20의 알킬, C2 내지 C10의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C6 내지 C20의 아릴, 치환되거나 치환되지 않은 C 1 내지 C20의 알킬리덴, 치환되거나 치환되지 않은 아미노기, C2 내지 C20의 알킬알콕시, 또는 C7 내지 C40의 아릴알콕시이고; Z 2 is a halogen atom, C1 to C20 alkyl, C2 to C10 alkenyl, C7 to C40 alkylaryl, C7 to C40 arylalkyl, C6 to C20 aryl, substituted or unsubstituted C 1 to C20 alkyl Lidene, a substituted or unsubstituted amino group, C2 to C20 alkylalkoxy, or C7 to C40 arylalkoxy;
B1은 Cp3Rc 고리와 Cp4Rd 고리를 가교 결합시키거나, 하나의 Cp4Rd 고리를 M2에 가교 결합시키는, 탄소, 게르마늄, 규소, 인 또는 질소 원자 함유 라디칼 중 하나 이상 또는 이들의 조합이고; B 1 is one or more of a carbon, germanium, silicon, phosphorus or nitrogen atom containing radical which crosslinks the Cp 3 R c ring and the Cp 4 R d ring or crosslinks one Cp 4 R d ring with M 2 Or a combination thereof;
m은 1 또는 0 이고;  m is 1 or 0;
[화학식 5] (Cp5Re)B2(J)M3Z 2 [Formula 5] (Cp 5 R e ) B 2 (J) M 3 Z 2
상기 화학식 5에서,  In Chemical Formula 5,
M3은 4족 전이 금속이고; M 3 is a Group 4 transition metal;
Cp5는 시클로펜타디에닐, 인데닐, 4,5,6,7-테트라하이드로 -1-인데닐 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며; Cp 5 is any one selected from the group consisting of cyclopentadienyl, indenyl, 4,5,6,7-tetrahydro-1-indenyl and fluorenyl radicals, which may be substituted with hydrocarbons having 1 to 20 carbon atoms Can be;
Re는 수소, C1 내지 C20의 알킬, C1 내지 C10의 알콕시, C2 내지 C20의 알콕시알킬, C6 내지 C20의 아릴, C6 내지 C10의 아릴옥시, C2 내지 C20의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C8 내지 C40의 아릴알케닐, 또는 C2 내지 C10의 알키닐이고; R e is hydrogen, C1 to C20 alkyl, C1 to C10 alkoxy, C2 to C20 alkoxyalkyl, C6 to C20 aryl, C6 to C10 aryloxy, C2 to C20 alkenyl, C7 to C40 alkylaryl C7-C40 arylalkyl, C8-C40 arylalkenyl, or C2-C10 alkynyl;
Z3은 할로겐 원자, C1 내지 C20의 알킬, C2 내지 C10의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C6 내지 C20의 아릴, 치환되거나 치환되지 않은 C1 내지 C20의 알킬리덴, 치환되거나 치환되지 않은 아미노기, C1 내지 C20의 알킬알콕시, 또는 C7 내지 C40의 아릴알콕시이고; Z 3 is a halogen atom, C1 to C20 alkyl, C2 to C10 alkenyl, C7 to C40 alkylaryl, C7 to C40 arylalkyl, C6 to C20 aryl, substituted or unsubstituted C1 to C20 alkylidene Or a substituted or unsubstituted amino group, C1 to C20 alkylalkoxy, or C7 to C40 arylalkoxy;
B2는 Cp5Re 고리와 J를 가교 결합시키는 탄소, 게르마늄, 규소, 인 또는 질소 원자 함유 라디칼중 하나 이상 또는 이들의 조합이고; B 2 is one or more or a combination of carbon, germanium, silicon, phosphorus or nitrogen atom containing radicals which crosslink the Cp 5 R e ring and J;
J는 NRf, O, PRf 및 S로 이루어진 군에서 선택된 어느 하나이고, 상기 Rf는 C1 내지 C20의 알킬, 아릴, 치환된 알킬 또는 치환된 아릴이다. J is any one selected from the group consisting of NR f , O, PR f and S, wherein R f is C1 to C20 alkyl, aryl, substituted alkyl or substituted aryl.
상기 화학식 4에서, m이 1인 경우는 Cp3Rc 고리와 Cp4Rd 고리 또는In Formula 4, when m is 1, a Cp 3 R c ring and a Cp 4 R d ring or
Cp4Rd 고리와 M2가 B1에 의해 가교 결합된 브릿지 화합물 구조인 것을 의미하며 , m이 0인 경우는 비가교 화합물 구조를 의미한다. It means that the Cp 4 R d ring and M 2 is a bridge compound structure cross-linked by B 1 , and when m is 0, it means a non-crosslinked compound structure.
상기 화학식 3으로 표시되는 화합물로는 예를 들어 하기 구조식들 중  Examples of the compound represented by Formula 3 include the following structural formulas
Figure imgf000024_0001
Figure imgf000024_0001
Figure imgf000025_0001
그리고, 상기 화학식 4로 표시되는 화합물로는 예를 들어 하기 구조식들 중 하나로 표시되는 화합물일 수 있으나, 이에만 한정되는 것은 아니다.
Figure imgf000025_0001
The compound represented by Chemical Formula 4 may be, for example, a compound represented by one of the following structural formulas, but is not limited thereto.
Figure imgf000026_0001
Figure imgf000026_0001
또한, 화학식 5로 표시되는 화합물로는 예를 들어 하기 구조식으로 표시되는 화합물일 수 있으나, 이에만 한정되는 것은 아니다. In addition, the compound represented by Formula 5 may be, for example, a compound represented by the following structural formula, but is not limited thereto.
Figure imgf000027_0001
Figure imgf000027_0001
Figure imgf000027_0002
본 발명에 따른 혼성 담지 메탈로센 촉매는 상기 화학식 1로 표시되는 제 1 메탈로센 화합물의 1종 이상과, 상기 화학식 3 내지 화학식 5로 표시되는 화합물 중 선택되는 제 2 메탈로센 화합물의 1종 이상을 조촉매 화합물과 함께 담체에 혼성 담지한 것이다.
Figure imgf000027_0002
The hybrid supported metallocene catalyst according to the present invention may include at least one of the first metallocene compound represented by Chemical Formula 1 and one of the second metallocene compound selected from the compounds represented by Chemical Formulas 3 to 5. At least one species is hybridly supported on a carrier together with a promoter compound.
특히, 상기 혼성 담지 메탈로센 촉매의 화학식 1로 표시되는 제 1 메탈로센 화합물은 주로 고분자량의 공증합체를 만드는데 기여하고, 화학식 3 내지 5로 표시되는 제 2 메탈로센 화합물은 주로 저분자량의 공중합체를 만드는데 기여할 수 있다. 이에 따라, 이와 같이 2종 이상의 메탈로센 화합물의 흔성 담지 촉매를 사용하여 올레핀계 중합체를 제조하는 경우 고분자량과 저분자량의 공중합체 모두를 제조할 수 있어, 보다 넓은 분자량 분포를 갖는 가공성이 우수한 을레핀계 공중합체를 제조할 수 있다.  In particular, the first metallocene compound represented by Formula 1 of the hybrid supported metallocene catalyst mainly contributes to making a high molecular weight co-polymer, and the second metallocene compound represented by Formulas 3 to 5 is mainly a low molecular weight It can contribute to making a copolymer of. As a result, when the olefin polymer is prepared using the common supported catalyst of two or more metallocene compounds, both high molecular weight and low molecular weight copolymers can be produced, thereby providing excellent processability with a wider molecular weight distribution. An olefinic copolymer can be prepared.
또한, 상기 흔성 담지 메탈로센 촉매는 제조되는 올레핀계 중합체에서 LCB(Long Chain Branch)의 생성을 유도할 수 있으며, 이에 따라 주 사슬에 탄소수 8 이상의 결가지를 갖는 LCB(Long Chain Branch)를 포함하는 을레핀계 중합체를 제조할 수 있다. In addition, the common supported metallocene catalyst may induce the formation of a long chain branch (LCB) in the olefin-based polymer prepared, It is possible to prepare an olefin polymer including a long chain branch (LCB) having a branch of 8 or more carbon atoms in the main chain.
본 발명의 일 실시예에 따르면, 상기 흔성 담지 메탈로센 촉매는 화학식 1의 제 1 메탈로센 화합물 1종 이상과, 화학식 3의 제 2 메탈로센 화합물 1종 이상을 포함할 수 있다.  According to one embodiment of the present invention, the common supported metallocene catalyst may include at least one first metallocene compound of Formula 1 and at least one second metallocene compound of Formula 3.
본 발명의 다른 일 실시예에 따르면, 상기 흔성 담지 메탈로센 촉매는 화학식 1의 제 1 메탈로센 화합물 1종 이상과, 화학식 3의 제 2 메탈로센 화합물 1종 이상에 더하여, 화학식 4 또는 화학식 5의 제 2 메탈로센 화합물을 1종 이상 포함할 수 있다.  According to another embodiment of the present invention, the common supported metallocene catalyst may include at least one first metallocene compound of Formula 1 and at least one second metallocene compound of Formula 3, It may include one or more second metallocene compound of formula (5).
본 발명에 따른 흔성 담지 메탈로센 촉매에 있어서, 상기 제 1 메탈로센 화합물은 인데노 인돌 유도체와 플루오렌 유도체가 브릿지 화합물에 의해 가교된 리간드 구조를 형성하며, 리간드 구조에 루이스 염기로 작용할 수 있는 비공유 전자쌍을 가짐으로써 담체의 루이스 산 특성을 지니는 표면에 담지되어 담지 시에도 높은 중합 활성을 나타낸다. 또한 전자적으로 풍부한 인데노 인돌기 및 /또는 플루오렌기를 포함함에 따라 활성이 높고, 적절한 입체 장애와 리간드의 전자적인 효과로 인해 수소 반응성이 낮을 뿐 아니라 수소가 존재하는 상황에서도 높은 활성이 유지된다. 따라서, 이러한 전이금속 화합물을 이용하여 흔성 담지 메탈로센 촉매를 만드는 경우, 인데노인돌 유도체의 질소 원자가 자라나는 고분자 사슬의 베타-수소를 수소결합에 의해 안정화시켜 초고분자량의 을레핀계 중합체를 중합할 수 있다 ·.  In the common supported metallocene catalyst according to the present invention, the first metallocene compound may form a ligand structure in which an indeno indole derivative and a fluorene derivative are crosslinked by a bridge compound, and may act as a Lewis base to the ligand structure. By having a non-covalent electron pair present, it is supported on the surface having the Lewis acid characteristics of the carrier and shows high polymerization activity even when supported. In addition, the electron-rich indeno indole group and / or fluorene group contains a high activity, due to the proper steric hindrance and the electronic effect of the ligand is not only low hydrogen reactivity but also maintains high activity in the presence of hydrogen. Therefore, in the case of making a common supported metallocene catalyst using such a transition metal compound, beta-hydrogen of the polymer chain in which the nitrogen atom of the indeno indole derivative grows can be stabilized by hydrogen bonding to polymerize an ultrahigh molecular weight olepin-based polymer. have ·.
또한, 발명의 흔성 담지 메탈로센 촉매에서는 상기 화학식 1로 표시되는 제 1 메탈로센 화합물 및 상기 화학식 3 내지 5로 표시되는 화합물 중 선택되는 제 2 메탈로센 화합물을 포함하여, 서로 다른 종류의 메탈로센 화합물을 적어도 2종 이상 포함함으로써 LCB(Long Chain Branch)를 가지고, 고분자량의 올레핀계 공중합체이면서, 동시에 분자량 분포가 넓어 물성이 우수할 뿐만 아니라 가공성도 우수한 올레핀 중합체를 제조할 수 있다.  In addition, the common supported metallocene catalyst of the present invention includes a first metallocene compound represented by Chemical Formula 1 and a second metallocene compound selected from the compounds represented by Chemical Formulas 3 to 5, By including at least two metallocene compounds, an olefin polymer having a long chain branch (LCB), a high molecular weight olefin copolymer and a wide molecular weight distribution and having excellent physical properties and excellent processability can be prepared. .
본 발명에 따른 흔성 담지 메탈로센 촉매에 있어서, 상기 메탈로센 화합물을 활성화하기 위하여 담체에 함께 담지되는 조촉매로는 13족 금속을 포함하는 유기 금속 화합물로서, 일반적인 메탈로센 촉매 하에 올레핀을 중합할 때 사용될 수 있는 것이라면 특별히 한정되는 것은 아니다. In the common supported metallocene catalyst according to the present invention, a co-catalyst supported on a carrier for activating the metallocene compound is a Group 13 metal. The organometallic compound to be included is not particularly limited as long as it can be used when polymerizing olefins under a general metallocene catalyst.
구체적으로, 상기 조촉매 화합물은 하기 화학식 6의 알루미늄 함유 제 1 조촉매, 및 하기 화학식 7의 보레이트계 제 2 조촉매 중 하나 이상을 포함할 수 있다.  Specifically, the cocatalyst compound may include at least one of an aluminum-containing first cocatalyst of Formula 6, and a borate-based second cocatalyst of Formula 7 below.
[화학식 6]  [Formula 6]
-[Al(R18)-0-]k- 화학식 6에서, R18은 각각 독립적으로 할로겐, 할로겐 치환 또는 비치환된 탄소수 1 내지 20의 하이드로카빌기이고, k는 2 이상의 정수이고, [화학식 7] -[Al (R 18 ) -0-] k -In formula (6), each R 18 is independently a halogen, halogen substituted or unsubstituted hydrocarbyl group having 1 to 20 carbon atoms, k is an integer of 2 or more, 7]
T+[BG4]" T + [BG 4 ] "
화학식 7에서, T+은 +1가의 다원자 이온이고, B는 +3 산화 상태의 붕소이고, G는 각각 독립적으로 하이드라이드기, 디알킬아미도기, 할라이드기 : 알콕사이드기, 아릴옥사이드기, 하이드로카빌기, 할로카빌기 및 할로-치환된 하이드로카빌기로 이루어진 군에서 선택되고, 상기 G는 20개 이하의 탄소를 가지나, 단 하나 이하의 위치에서 G는 할라이드기이다. In formula (7), T + is a + monovalent polyatomic ion, B is boron in +3 oxidation state, G is independently a hydride group, a dialkylamido group, a halide group : an alkoxide group, an aryloxide group, hydro Selected from the group consisting of a carbyl group, a halocarbyl group and a halo-substituted hydrocarbyl group, wherein G has up to 20 carbons, but at less than one position G is a halide group.
이러한 제 1 및 제 2 조촉매의 사용에 의해, 최종 제조된 폴리올레핀의 분자량 분포가 보다 균일하게 되면서, 증합 활성이 향상될 수 있다.  By using these first and second cocatalysts, the polymerization activity can be improved while the molecular weight distribution of the finally produced polyolefin becomes more uniform.
상기 화학식 6의 제 1 조촉매는 선형, 원형 또는 망상형으로 반복단위가 결합된 알킬알루미녹산계 화합물로 될 수 있고, 이러한 제 1 조촉매의 구체적인 예로는, 메틸알루미녹산 (MAO), 에틸알루미녹산, 이소부틸알루미녹산 또는 부틸알루미녹산 등을 들 수 있다.  The first cocatalyst of Chemical Formula 6 may be an alkylaluminoxane compound having a repeating unit bonded in a linear, circular, or reticular form. Specific examples of the first cocatalyst include methylaluminoxane (MAO) and ethylalumina. Noxic acid, isobutyl aluminoxane, or butyl aluminoxane etc. are mentioned.
또한, 상기 화학식 7의 제 2 조촉매는 삼치환된 암모늄염, 또는 디알킬 암모늄염, 삼치환된 포스포늄염 형태의 보레이트계 화합물로 될 수 있다. 이러한 제 2 조촉매의 구체적인 예로는, 트리메탈암모늄 테트라페닐보레이트, 메틸디옥타데실암모늄 테트라페닐보레이트, 트리에틸암모늄 테트라페닐보레이트, 트리프로필암모늄 테트라페닐보레이트, 트리 (n-부틸)암모늄 테트라페닐보레이트, 메틸테트라데사이클로옥타데실암모늄 테트라페닐보레이트, Ν,Ν-디메틸아닐늄 테트라페닐보레이트, Ν,Ν-디에틸아닐늄 테트라페닐보레이트, Ν, Ν-디메틸 (2,4,6- 트리메틸아닐늄)테트라페닐보레이트, 트리메틸암모늄 테트라키스 (펜타플로오로페닐)보레이트, 메틸디테트라데실암모늄 테트라키스 (펜타페닐)보레이트, 메틸디옥타데실암모늄 테트라키스 (펜타플루오로페닐)보레이트, 트리에틸암모늄, 테트라키스 (펜타플루오로페닐)보레이트, In addition, the second cocatalyst of Formula 7 may be a borate-based compound in the form of a trisubstituted ammonium salt, or a dialkyl ammonium salt, a trisubstituted phosphonium salt. Specific examples of such a second cocatalyst include trimetalammonium tetraphenylborate, methyldioctadecylammonium tetraphenylborate, triethylammonium tetraphenylborate, tripropylammonium tetraphenylborate, tri (n-butyl) ammonium tetraphenylborate , Methyltetracyclocyclodecylammonium tetraphenylborate, Ν, Ν-dimethylaninynium Tetraphenylborate, Ν, Ν-diethylaninynium Tetraphenylborate, Ν, Ν-dimethyl (2,4,6-trimethylaninynium) tetraphenylborate, trimethylammonium tetrakis (pentafluorophenyl) borate, methyldi Tetradecylammonium tetrakis (pentaphenyl) borate, methyldioctadecylammonium tetrakis (pentafluorophenyl) borate, triethylammonium, tetrakis (pentafluorophenyl) borate,
트리프로필암모늄테트라키스 (펜타프루오로페닐)보레이트, 트리 (η-부틸)암모늄 테트라키스 (펜타플루오로페닐)보레이트, 트리 (2급- 부틸)암모늄테트라키스 (펜타플루오로페닐)보레이트, Ν,Νᅳ디메틸아닐늄 테트라키스 (펜타플루오로페닐)보레이트, Ν,Ν- 디에틸아닐늄테트라키스 (펜타플루오로페닐)보레이트, Ν,Ν-디메틸 (2,4,6- 트리메틸아닐늄)테트라키스 (펜타플루오로페닐)보레이트, Tripropylammonium tetrakis (pentafluorophenyl) borate, tri (η-butyl) ammonium tetrakis (pentafluorophenyl) borate, tri (secondary-butyl) ammonium tetrakis (pentafluorophenyl) borate, N , Ν ᅳ dimethylaninium tetrakis (pentafluorophenyl) borate, Ν, Ν-diethylaninium tetrakis (pentafluorophenyl) borate, Ν, Ν-dimethyl (2,4,6-trimethylaninynium) Tetrakis (pentafluorophenyl) borate,
트리메틸암모늄테트라키스 (2,3,4,6-테트라플루오로페닐)보레이트, Trimethylammonium tetrakis (2,3,4,6-tetrafluorophenyl) borate
트리에틸암모늄 테트라키스 (2,3,4,6-테트라플루오로페닐)보레이트, 트리프로필암모늄 테트라키스 (2,3,4,6-테트라플루오로페닐)보레이트, 트리 (η- 부틸)암모늄 테트라키스 (2,3,4,6-,테트라플루오로페닐)보레이트, 디메틸 (t- 부틸)암모늄 테트라키스 (2,3,4,6-테트라플루오로페닐)보레이트, Ν,Ν- 디메틸아닐늄 테트라키스 (2,3,4,6-테트라플루오로페닐)보레이트, Ν,Ν- 디에틸아닐늄 테트라키스 (2,3,4,6-테트라플루오로페닐)보레이트 또는 Ν,Ν- 디메틸 -(2,4,6-트리메틸아닐늄)테트라키스 -(2,3,4,6-테트라플루오로페닐)보레이트 등의 삼치환된 암모늄염 형태의 보레이트계 화합물; 디옥타데실암모늄 테트라키스 (펜타폴루오로페닐)보레이트, 디테트라데실암모늄 테트라키스 (펜타플루오로페닐)보레이트 디사이클로핵실암모늄 테트라키스 (펜타플루오로페닐)보레이트 디알킬암모늄염 형태의 보레이트계 화합물; 트리페닐포스포늄 테트라키스 (펜타플루오로페닐)보레이트 메틸디옥타데실포스포늄 테트라키스 (펜타플루오로페닐)보레이트 또는 트리 (2,6ᅳ, 디메틸페.닐)포스포늄 테트라키스 (펜타플루오로페닐)보레이트 등의 삼치환된 포스포늄염 형태의 보레이트계 화합물 등을 들 수 있다. Triethylammonium tetrakis (2,3,4,6-tetrafluorophenyl) borate, tripropylammonium tetrakis (2,3,4,6-tetrafluorophenyl) borate, tri (η-butyl) ammonium tetra Keith (2,3,4,6-, tetrafluorophenyl) borate, dimethyl (t-butyl) ammonium tetrakis (2,3,4,6-tetrafluorophenyl) borate, Ν, Ν-dimethylaninynium Tetrakis (2,3,4,6-tetrafluorophenyl) borate, Ν, Ν-diethylaninium tetrakis (2,3,4,6-tetrafluorophenyl) borate or Ν, Ν-dimethyl- Borate compounds in the form of trisubstituted ammonium salts such as (2,4,6-trimethylaninynium) tetrakis- (2,3,4,6-tetrafluorophenyl) borate; Borate compounds in the form of dioctadecylammonium tetrakis (pentafluorofluorophenyl) borate, ditetradecylammonium tetrakis (pentafluorophenyl) borate dicyclonucleosilammonium tetrakis (pentafluorophenyl) borate dialkylammonium salt; Triphenylphosphonium tetrakis (pentafluorophenyl) borate methyl dioctadecyl phosphonium tetrakis (pentafluorophenyl) borate or tri (2,6 eu, dimethyl page. Carbonyl) phosphonium tetrakis (pentafluorophenyl And a borate compound in the form of a trisubstituted phosphonium salt such as) borate.
본 발명에 따른 흔성 담지 메탈로센 촉매에 있어서, 화학식 1로 표시되는 제 1 메탈로센 화합물 및 화학식 3 내지 5로 표시되는 제 2 메탈로센 화합물에 포함되는 전체 전이금속 대 담체의 질량비는 1 : 10 내지 1 : 1,000 일 수 있다. 상기 질량비로 담체 및 메탈로센 화합물을 포함할 때, 최적의 형상을 나타낼 수 있다. In the common supported metallocene catalyst according to the present invention, The mass ratio of the total transition metal to the carrier included in the first metallocene compound represented and the second metallocene compound represented by Formulas 3 to 5 may be 1:10 to 1: 1,000. When the carrier and the metallocene compound are included in the mass ratio, an optimal shape can be exhibited.
또한, 조촉매 화합물 대 담체의 질량비는 1 : 1 내지 1 : 100 일 수 있다. 또한, 화학식 1로 표시되는 제 1 메탈로센 화합물 대 화학식 3 내지 5로 표시되는 제 2 메탈로센 화합물의 질량비는 10 : 1 내지 1 : 10, 바람직하게는 5: 1 내지 1: 5 일 수 있다. 상기 질량비로 조촉매 및 메탈로센 화합물을 포함할 때, 활성 및 고분자 미세구조를 최적화할 수 있다.  In addition, the mass ratio of the promoter compound to the carrier may be 1: 1 to 1: 100. Further, the mass ratio of the first metallocene compound represented by the formula (1) to the second metallocene compound represented by the formulas (3) to 5 is 10: 1 to 1:10, preferably 5: 1 to 1: 5 days. have. When the cocatalyst and the metallocene compound are included in the mass ratio, the active and polymer microstructures can be optimized.
본 발명에 따른 흔성 담지 메탈로센 촉매에 있어서, 상기 담체로는 표면에 하이드록시기를 함유하는 담체를 사용할 수 있으며, 바람직하게는 건조되어 표면에 수분이 제거된, 반응성이 큰 하이드록시기와 실록산기를 가지고 있는 담체를 사용할 수 있다.  In the common supported metallocene catalyst according to the present invention, a carrier containing a hydroxyl group on the surface may be used, and preferably a highly reactive hydroxyl group and a siloxane group which are dried to remove moisture on the surface. The carrier which has is used.
예컨대, 고온에서 건조된 실리카, 실리카 -알루미나, 및 실리카- 마그네시아 등이 사용될 수 있고, 이들은 통상적으로 Na20, K2C03, BaS04, 및 Mg(N03)2 등의 산화물, 탄산염, 황산염, 및 질산염 성분을 함유할 수 있다. 상기 담체의 건조 온도는 200 내지 800°C가 바람직하고, 300 내지 600°C가 더욱 바람직하며, 300 내지 400°C가 가장 바람직하다. 상기 담체의 건조 온도가 200 °C 미만인 경우 수분이 너무 많아서 표면의 수분과 조촉매가 반웅하게 되고, 800 °C를 초과하는 경우에는 담체 표면의 기공들이 합쳐지면서 표면적이 즐어들며, 또한 표면에 하이드톡시기가 많이 없어지고 실록산기만 남게 되어 조촉매와의 반웅자리가 감소하기 때문에 바람직하지 않다. For example, silica, silica-alumina, silica-magnesia, etc., dried at a high temperature can be used, and these are usually oxides, carbonates, such as Na 2 O, K 2 C0 3 , BaS0 4 , and Mg (N0 3 ) 2 , Sulfate, and nitrate components. The drying temperature of the carrier is preferably 200 to 800 ° C., more preferably 300 to 600 ° C., most preferably 300 to 400 ° C. When the drying temperature of the carrier is less than 200 ° C, the moisture is too much and the surface of the carrier reacts with it, and when it exceeds 800 ° C, the pores on the surface of the carrier are combined to enjoy the surface area, It is not preferable because a lot of oxy groups are lost and only siloxane groups remain to decrease the reaction space with the promoter.
상기 담체 표면의 하이드록시기 양은 0.1 내지 10 mmol/g이 바람직하며, 0.5 내지 5 mmol/g일 때 더욱 바람직하다. 상기 담체 표면에 있는 하이드록시기의 양은 담체의 제조방법 및 조건 또는 건조 조건, 예컨대 온도, 시간, 진공 또는 스프레이 건조 등에 의해 조절할 수 있다.  The amount of hydroxy groups on the surface of the carrier is preferably 0.1 to 10 mmol / g, more preferably 0.5 to 5 mmol / g. The amount of hydroxyl groups on the surface of the carrier can be controlled by the method and conditions for preparing the carrier or by drying conditions such as temperature, time, vacuum or spray drying.
상기 하이드록시기의 양이 0.1 mmol/g 미만이면 조촉매와의 반응자리가 적고, 10 mmol/g을 초과하면 담체 입자 표면에 존재하는 하이드록시기 이외에 수분에서 기인한 것일 가능성이 있기 때문에 바람직하지 않다. 본 발명에 따른 흔성 담지 메탈로센 촉매는, 예를 들어, 담체에 조촉매 화합물을 담지시키는 단계, 상기 담체에 상기 화학식 1로 표시되는 제 1 메탈로센 화합물을 담지시키는 단계, 및 상기 담체에 상기 화학식 3 내지 5로 표시되는 화합물 중 선택되는 제 2 메탈로센 화합물을 담지시키는 단계를 포함하여 제조될 수 있다. If the amount of the hydroxy group is less than 0.1 mmol / g, the reaction site with the promoter is small. If the amount of the hydroxy group is more than 10 mmol / g, it may be due to moisture other than the hydroxyl group present on the surface of the carrier particle. Not desirable The common supported metallocene catalyst according to the present invention may include, for example, supporting a cocatalyst compound on a carrier, supporting a first metallocene compound represented by Formula 1 on the carrier, and on the carrier. It may be prepared, including the step of supporting a second metallocene compound selected from the compounds represented by Formulas 3 to 5.
그리고, 상기 흔성 담지 메탈로센 촉매의 제조방법에 있어서, 상기 제 1 메탈로센 화합물을 담지시키는 단계 및 상기 제 2 메탈로센 화합물을 담지시키는 단계의 순서는 필요에 따라 바뀔 수 있다. 즉, 상기 제 1 메탈로센 화합물을 담체에 먼저 담지시킨 후, 상기 제 2 메탈로센 화합물을 추가로 담지하여 흔성 담지 메탈로센 촉매를 제조하거나, 또는 상기 제 2 메탈로센 화합물을 담체에 먼저 담지시킨 후, 상기 제 1 메탈로센 화합물을 추가로 담지하여 흔성 담지 메탈로센 촉매를 제조할 수도 있다.  In the method for preparing the common supported metallocene catalyst, the order of the step of supporting the first metallocene compound and the step of supporting the second metallocene compound may be changed as necessary. That is, the first metallocene compound is first supported on the carrier, and then the second metallocene compound is further supported to prepare a common supported metallocene catalyst, or the second metallocene compound is supported on the carrier. After supporting first, the common metallocene catalyst may be prepared by further supporting the first metallocene compound.
상기 흔성 담지 메탈로센 촉매의 제조시에 반응 용매로서 펜탄, 핵산, 헵탄 등과 같은 탄화수소계 용매, 또는 벤젠, 를루엔 등과 같은 방향족계 용매가 사용될 수 있다ᅳ 또한, 메탈로센 화합물과 조촉매 화합물은 실리카나 알루미나에 담지된 형태로도 이용할 수 있다.  In preparing the common supported metallocene catalyst, a hydrocarbon solvent such as pentane, nucleic acid, heptane, or the like, or an aromatic solvent such as benzene, toluene, or the like may be used. In addition, a metallocene compound and a promoter compound may be used. Silver can also be used in the form supported on silica or alumina.
본 발명에 따른 흔성 담지 메탈로센 촉매는 그 자체로서 올레핀계 단량체의 중합에 사용될 수 있다. 또한, 본 발명에 따른 흔성 담지 메탈로센 촉매는 을레핀계 단량체와 접촉 반웅되어 예비 중합된 촉매로 제조하여 사용할 수도 있으며, 예컨대 촉매를 별도로 에틸렌, 프로필렌, 1-부텐, 1-핵센, 1_옥텐 등과 같은 올레핀계 단량체와 접촉시켜 예비 중합된 촉매로 제조하여 사용할 수도 있다. 한편, 본 발명에 따른 올레핀계 중합체는, 상술한 흔성 담지 메탈로센 촉매의 존재 하에서, 을레핀계 단량체를 중합시킴으로써 제조할 수 있다. 상기 을레핀계 단량체는 에틸렌, 알파-올레핀, 사이클릭 올레핀, 이중 결합을 2개 이상 가지고 있는 디엔 올레핀 또는 트리엔 을레핀일 수 있고, 보다 구체적인 예로는 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 4-메틸 -1-펜텐, 1-핵센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-핵사데센, 1-아이토센, 노보넨, 노보나디엔, 에틸리덴노보넨, 페닐노보넨, 비닐노보넨, 디사이클로펜타디엔, 1,4-부타디엔, 1,5-펜타디엔, 1,6-핵사디엔, 스티렌, 알파- 메틸스티렌, 디비닐벤젠, 3-클로로메틸스티렌 등을 들 수 있으며, 이들 단량체를 2종 이상 흔합하여 공중합할 수도 있다. The common supported metallocene catalyst according to the invention can be used by itself for the polymerization of olefinic monomers. In addition, the common supported metallocene catalyst according to the present invention may be prepared by being used as a prepolymerized catalyst by reaction with an olefinic monomer. For example, the catalyst may be separately used for ethylene, propylene, 1-butene, 1-nuxene, and 1_octene. It can also be prepared and used as a prepolymerized catalyst by contacting with an olefinic monomer such as the like. On the other hand, the olefin polymer according to the present invention can be produced by polymerizing an olefinic monomer in the presence of the above-mentioned common supported metallocene catalyst. The olefinic monomers may be ethylene, alpha-olefins, cyclic olefins, diene olefins or triene olefins having two or more double bonds, and more specifically, ethylene, propylene, 1-butene, 1-pentene, 4 -Methyl-1-pentene, 1-nuxene, 1-heptene, 1-octene, 1-decene, 1-undecene, 1-dodecene, 1-tetradecene, 1-nuxadecene, 1-aitosen, norbornene, norbornadiene, ethylidene-norbornene, phenyl Norbornene, vinylnorbornene, dicyclopentadiene, 1,4-butadiene, 1,5-pentadiene, 1,6-nuxadiene, styrene, alpha-methylstyrene, divinylbenzene, 3-chloromethylstyrene, etc. These monomers can also be mixed and copolymerized 2 or more types.
상기 을레핀계 중합체는 에틸렌 /알파올레핀 공중합체인 것이 보다 바람직하나, 이에만 한정되는 것은 아니다.  The olefin polymer is more preferably an ethylene / alpha olefin copolymer, but is not limited thereto.
상기 올레핀계 중합체가 에틸렌 /알파올레핀 공증합체인 경우에 있어서, 상기 공단량체인 알파을레핀의 함량은 특별히 제한되는 것은 아니며, 올레핀계 중합체의 용도, 목적 등에 따라 적절하게 선택할 수 있다. 보다 구체적으로는 0 초과 99 몰% 이하일 수 있다.  In the case where the olefin polymer is an ethylene / alpha olefin co-polymer, the content of alpha-olefin, which is the comonomer, is not particularly limited, and may be appropriately selected according to the use, purpose, and the like of the olefin polymer. More specifically, it may be more than 0 and 99 mol% or less.
상기 중합 반웅은 하나의 연속식 슬러리 중합 반웅기, 루프 슬러리 반웅기, 기상 반웅기 또는 용액 반웅기를 이용하여 하나의 을레핀계 단량체로 호모중합하거나 또는 2종 이상의 단량체로 공중합여 진행할 수 있다.  The polymerization reaction can be carried out by homopolymerization with one leupin-based monomer or copolymerization with two or more monomers using one continuous slurry polymerization reaction, loop slurry reaction, gas phase reaction or solution reaction.
그리고, 상기 중합 온도는 약 25 내지 약 500°C , 바람직하게는 약 25 내지 약 200 °C , 보다 바람직하게는 약 50 내지 약 150°C일 수 있다. 또한, 중합 압력은 약 1 내지 약 100 Kgf/cm2, 바람직하게는 약 1 내지 약 50 Kgf/cm2, 보다 바람직하게는 약 5 내지 약 30 Kgf/cm2일 수 있다. And, the polymerization temperature may be about 25 to about 500 ° C, preferably about 25 to about 200 ° C, more preferably about 50 to about 150 ° C. In addition, the polymerization pressure may be about 1 to about 100 Kgf / cm 2 , preferably about 1 to about 50 Kgf / cm 2 , more preferably about 5 to about 30 Kgf / cm 2 .
상기 흔성 담지 메탈로센 촉매는 탄소수 5 내지 12의 지방족 탄화수소 용매, 예를 들면 펜탄, 핵산, 헵탄, 노난, 데칸, 및 이들의 이성질체와 를루엔, 벤젠과 같은 방향족 탄화수소 용매, 디클로로메탄, 클로로벤젠과 같은 염소원자로 치환된 탄화수소 용매 등에 용해하거나 희석하여 주입할 수 있다. 여기에 사용되는 용매는 소량의 알킬 알루미늄 처리함으로써 촉매 독으로 작용하는 소량의 물 또는 공기 등을 제거하여 사용하는 것이 바람직하며, 조촉매를 더 사용하여 실시하는 것도 가능하다. 상기 혼성 담지 메탈로센 촉매를 이용하여 이정 이상의 분자량 분포 곡선을 갖는 올레핀계 공중합체를 제조할 수 있다. 상기 흔성 담지 메탈로센 촉매를 이용시, 상기 제 1 메탈로센 화합물에 의해서는 상대적으로 고분자량의 을레핀계 중합체가 제조될 수 있고, 상기 제 2 메탈로센 화합물에 의해서는 상대적으로 저분자량의 을레핀계 증합체가 제조될 수 있다. 특히 상기 혼성 담지 메탈로센 촉매가 화학식 1의 게 1 메탈로센 화합물 1종 이상과, 화학식 2의 제 2 메탈로센 화합물 1종 이상, 및 화학식 3와 제 2 메탈로센 화합물을 1종 이상 포함할 때, 고분자량, 저분자량, 중분자량의 올레핀계 중합체가 생성되어 넓은 분자량 분포를 가지면서도, 올레핀계 증합체의 주 사슬에 탄소수 8 이상의 결가지를 갖는 LCB(Long Chain Branch)를 포함하는 을레핀계 증합체를 제조할 수 있다. 이러한 올레핀계 증합체는 물성이 우수할 뿐만 아니라, 가공성 또한 우수한 효과가 있다. The common supported metallocene catalyst is an aliphatic hydrocarbon solvent having 5 to 12 carbon atoms, for example, pentane, nucleic acid, heptane, nonane, decane, and isomers thereof and aromatic hydrocarbon solvents such as toluene and benzene, dichloromethane and chlorobenzene. It may be dissolved or diluted and injected into a hydrocarbon solvent substituted with a chlorine atom such as. The solvent used herein is preferably used by removing a small amount of water, air, or the like acting as a catalyst poison by treating a small amount of alkyl aluminum, and may be carried out by further using a promoter. By using the hybrid supported metallocene catalyst, an olefin copolymer having a molecular weight distribution curve of two or more tablets may be prepared. When using the common supported metallocene catalyst, a relatively high molecular weight olepin-based polymer can be prepared by the first metallocene compound, and the second metallocene Relatively low molecular weight olepin-based polymers can be prepared by the compound. In particular, the hybrid supported metallocene catalyst may include at least one crab 1 metallocene compound of Formula 1, at least one second metallocene compound of Formula 2, and at least one of Formula 3 and a second metallocene compound. When included, a high molecular weight, low molecular weight, medium molecular weight olefin polymer is produced to have a long molecular weight distribution, but containing a LCB (Long Chain Branch) having a branch of 8 or more carbon atoms in the main chain of the olefin-based polymer Ellepin-based polymers can be prepared. Such olefin-based polymers not only have excellent physical properties but also have excellent workability.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 이에 의해 본 발명의 내용이 한정되는 것은 아니다. <실시예 >  Hereinafter, preferred embodiments of the present invention are provided to aid in understanding the present invention. However, the following examples are merely provided to more easily understand the present invention, and the contents of the present invention are not limited thereto. <Example>
f제 1 메탈로센 화합물의 제조 실시예 1  f Preparation Example 1 of First Metallocene Compound
제조예 1  Preparation Example 1
Figure imgf000034_0001
Figure imgf000034_0001
1-1 리간드 화합물의 제조 Preparation of 1-1 Ligand Compound
fluorene 2 g을 5 mL MTBE, hexane 100 mL어 1 녹여 2.5 M n-BuLi hexane solution 5.5 mL를 dry ice/acetone bath에서 적가하여 상온에서 밤새 교반하였다. (6-(tert-butoxy)hexyl)dichloro(methyl)silane 3.6 g을 핵산 (hexane) 50 mL에 녹여 dry ice/acetone bath하에서 fluorene-Li 슬러리를 30분 동안 transfer하여 상온에서 밤새 교반하였다. 이와 동시에 ^S-dimethyl-^lO-diliydromdenotl -Windole (12 mmol, 2.8 g) 또한 THF 60 mL에 녹여 2.5M n-BuLi hexane solution 5.5 mL를 dry ice/acetone bath에서 적가하여 상온에서 밤새 교반하였다. fluorene과 (6-(tert- butoxy)hexyl)dichloro(methyl)silane 과의 반응 용액을 NMR 샘플링하여 반응 완료를 확인한 후 5,8-dimethyl-5, 10-dihydroindeno[ 1 ,2-b]indole-Li solution을 dry ice/acetone bath하에서 transfer하였다. 상온에서 밤새 교반하였다. 반웅 후 ether/water로 추출 (extraction)하여 유기층의 잔류수분을 MgS04로 제거 후 리간드 화합물 (Mw 597.90, 12 mmol)을 얻었으며 이성질체 (isomer) 두 개가 생성되었음을 1H-NMR에서 확인할 수 있었다. 2 g of fluorene was dissolved in 5 mL MTBE, 100 mL of hexane, and 1 mL of 2.5 M n-BuLi hexane solution was added dropwise in a dry ice / acetone bath, followed by stirring at room temperature overnight. 3.6 g of (6- (tert-butoxy) hexyl) dichloro (methyl) silane was dissolved in 50 mL of nucleic acid (hexane), and the fluorene-Li slurry was transferred for 30 minutes in a dry ice / acetone bath and stirred at room temperature overnight. At the same time ^ S-dimethyl- ^ lO-diliydromdenotl -Windole (12 mmol, 2.8 g) was further dissolved in 60 mL of THF and 5.5 mL of 2.5M n-BuLi hexane solution was added dropwise in a dry ice / acetone bath, followed by stirring at room temperature overnight. NMR sampling the reaction solution of fluorene with (6- (tert-butoxy) hexyl) dichloro (methyl) silane to confirm the completion of the reaction, followed by 5,8-dimethyl-5, 10-dihydroindeno [1, 2-b] indole- Li solution was transferred under dry ice / acetone bath. Stir overnight at room temperature. After reaction, the organic layer was extracted with ether / water, and the remaining moisture of the organic layer was removed with MgS0 4 to obtain a ligand compound (Mw 597.90, 12 mmol), and two isomers were formed in 1H-NMR.
1H NMR (500 MHz, d6-benzene): -0.30 - -0.18 (3H, d), 0.40 (2H, m), 0.65 ~ 1.45 (8H, m), 1.12 (9H, d), 2.36〜 2.40 (3H, d), 3.17 (2H, m), 3.41 ~ 3.43 (3H, d), 4.17 ~ 4.21 (1H, d), 4.34 ~ 4.38 (1H, d), 6.90 ~ 7.80 (15H, m)  1 H NMR (500 MHz, d6-benzene): -0.30--0.18 (3H, d), 0.40 (2H, m), 0.65-1.45 (8H, m), 1.12 (9H, d), 2.36-2.40 (3H , d), 3.17 (2H, m), 3.41-3.43 (3H, d), 4.17-4.21 (1H, d), 4.34-4.38 (1H, d), 6.90-7.80 (15H, m)
1-2 메탈로센 화합물의 제조 Preparation of 1-2 metallocene compound
상기 1-1에서 합성한 리간드 화합물 7.2 g (12 mmol)을 diethylether 50 mL에 녹여 2.5 M n-BuLi hexane solution 11.5 mL를 dry ice/acetone bath에서 적가하여 상온에서 밤새 교반하였다. 진공 건조하여 갈색 (brown color)의 sticky oil을 얻었다. 를루엔에 녹여 슬러리를 얻었다. ZrCl4(THF)2를 준비하고 틀루엔 50 mL를 넣어 슬러리로 준비하였다. ZrCl4(THF)2의 50 mL 를루엔 슬러리를 dry ice/acetone bath에서 transfer하였다. 상온에서 밤새 교반함에 따라 보라색 (violet color)으로 변화하였다. 반응 용액을 필터하여 LiCl을 제거하였다. 여과액 (filtrate)의 를루엔을 진공 건조하여 제거한 후 핵산을 넣고 1시간 동안 sonication하였다. 슬러리를 필터하여 여과된 고체 (filtered solid)인 짙은 보라색 (dark violet)의 메탈로센 화합물 6 g (Mw 758.02, 7.92 mmol, yield 66mol%)을 얻었다 . 1H-NMR상에서 두 개의 isomer가 관찰되었다. 7.2 g (12 mmol) of the ligand compound synthesized in 1-1 was dissolved in 50 mL of diethylether, and 11.5 mL of 2.5 M n-BuLi hexane solution was added dropwise in a dry ice / acetone bath, followed by stirring at room temperature overnight. Drying in vacuo gave a brown colored sticky oil. It was dissolved in toluene to obtain a slurry. ZrCl 4 (THF) 2 was prepared, and 50 mL of toluene was added to prepare a slurry. 50 mL of ZrCl 4 (THF) 2 was transferred to a luene slurry in a dry ice / acetone bath. The solution was changed to violet color at room temperature overnight. The reaction solution was filtered to remove LiCl. The toluene of the filtrate was removed by vacuum drying, and the nucleic acid was added and sonicated for 1 hour. The slurry was filtered to give 6 g (Mw 758.02, 7.92 mmol, yield 66 mol%) of a dark violet metallocene compound as a filtered solid. Two isomers were observed on 1 H-NMR.
Ή NMR (500 MHz, CDC13): 1.19 (9H, d), 1.71 (3H, d), 1.50 ~ 1.70(4H, m),NMR (500 MHz, CDC1 3 ): 1.19 (9H, d), 1.71 (3H, d), 1.50-1.70 (4H, m),
1.79(2H, m), 1.98 ~ 2.19(4H, m), 2.58(3H, s), 3.38 (2H, m), 3.91 (3H, d), 6.66 ~ 7.88 (15H, m) 제조예 2 1.79 (2H, m), 1.98-2.19 (4H, m), 2.58 (3H, s), 3.38 (2H, m), 3.91 (3H, d), 6.66-7.88 (15H, m) Preparation Example 2
Figure imgf000036_0001
Figure imgf000036_0001
2-1 리간드화합물의 제조  2-1 Preparation of Ligand Compound
250 mL flask에 5-methyl-5,10-dihydroindeno[l,2-b]indole 2.63 g (12 mmol)을 넣고 THF 50 mL에 녹인 후 2.5M n-BuLi hexane solution 6 mL를 dr yice/acetone bath에서 적가하여 상온에서 밤새 교반하였다. 또 다른 250 mL flask어 1 (6-(tert-butoxy)hexyl)dichloro(methyl)silane 1.62 g(6 mnu l)을 hexane 100 mL에 녹여 준비한 후 dry ice/acetone bath 하에서5- 1 1-5,10- dihydroindeno[l,2-b]indole의 lithiated solution에 천천히 적가하여 상온에서 밤새 교반하였다. 반웅 후 ether/water로 추출하여 유기층의 잔류수분을 MgS04로 제거 후 진공 건조하여 리간드 화합물 3.82 g (6 mmol)을 얻었으며 이를 1H- NMR에서 확인하였다. A 250 mL flask 5-methyl- 5, 10-dihydroindeno [l, 2-b] indole 2.63 g and then put into a (12 mmol) was dissolved in THF 50 mL 2.5M n-BuLi hexane solution 6 mL of dr yice / acetone bath It was added dropwise at and stirred at room temperature overnight. Another 250 mL flask 1 (6- (tert-butoxy) hexyl) dichloro (methyl) silane 1.62 g (6 mnu l) was prepared by dissolving in 100 mL of hexane and then dried under a dry ice / acetone bath 5- 1 1-5 , The mixture was slowly added dropwise to a lithiated solution of 10-dihydroindeno [l, 2-b] indole and stirred overnight at room temperature. After reaction, extraction was performed with ether / water to remove residual moisture of the organic layer with MgS0 4 , followed by vacuum drying to obtain 3.82 g (6 mmol) of the ligand compound, which was confirmed by 1H-NMR.
1H NMR (500 MHz, CDC13): -0.33 (3H, m), 0.86- 1.53 (10H, m), 1.16 (9H, d), 3.18 (2H, m), 4.07 (3H, d), 4.12 (3H, d), 4.17 (IH, d), 4.25 (IH, d), 6.95- 7.92 (16H, m) 2-2 메탈로센 화합물의 제조 1 H NMR (500 MHz, CDC1 3 ): -0.33 (3H, m), 0.86- 1.53 (10H, m), 1.16 (9H, d), 3.18 (2H, m), 4.07 (3H, d), 4.12 ( Preparation of 3H, d), 4.17 (IH, d), 4.25 (IH, d), 6.95-7.92 (16H, m) 2-2 metallocene compound
상기 2-1에서 합성한 리간드 화합물 3.82 g (6 mmol)을 toluene 100 mL와 MTBE 5 mL에 녹인 후 2.5M n-BuLi hexane solution 5.6 mL(14 mmol)를 dryice/acetone bath에서 적가하여 상온에서 밤새 교반하였다. 또 다른 flask에 ZrCl4(THF)2 2.26 g (6 mmol)을 준비하고 toluene 100ml를 넣어 슬러리로 준비하였다. ZrCl4(THF)2의 toluene slurry를 litiation된 리간드에 dry ice/acetone bath에서 transfer하였다. 상온에서 밤새 교반하였고 violet color로 변화하였다. 반웅 용액을 필터하여 LiCl을 제거한 후 얻어진 여액을 진공 건조하여 hexane을 넣고 sonication하였다. 슬러리를 필터하여 filtered solid인 dark violet 의 메탈로센 화합물 3.40 g (yield 71.1mol%)을 얻었다. Ή NMR (500 MHz, CDC13): 1.74 (3H, d), 0.85~2.33(10H, m), 1.29(9H, d), 3.87 (3H, s), 3.92 (3H, s), 3.36(2H, m), 6.48- 8.10 (16H, m) 3.82 g (6 mmol) of the ligand compound synthesized in 2-1 above was dissolved in 100 mL of toluene and 5 mL of MTBE, and then 5.6 mL (14 mmol) of 2.5M n-BuLi hexane solution was added dropwise in a dryice / acetone bath overnight at room temperature. Stirred. In another flask, 2.26 g (6 mmol) of ZrCl 4 (THF) 2 was prepared, and 100 ml of toluene was added to prepare a slurry. Toluene slurry of ZrCl 4 (THF) 2 was transferred to litiated ligand in a dry ice / acetone bath. It stirred at room temperature overnight and it changed into violet color. The reaction solution was filtered to remove LiCl, and the filtrate was dried in vacuo, and hexane was added to sonication. The slurry was filtered to obtain 3.40 g (yield 71.1 mol%) of a metal violet compound of dark violet as a filtered solid. NMR (500 MHz, CDC1 3 ): 1.74 (3H, d), 0.85-2.23 (10H, m), 1.29 (9H, d), 3.87 (3H, s), 3.92 (3H, s), 3.36 (2H , m), 6.48-8.10 (16H, m)
Γ제 2 메탈로센 화합물의 제조 실시예 1 Preparation Example 1 of the Second Metallocene Compound
제조예 3  Preparation Example 3
rtBu-C C CsH4bZrCb의 제조  Preparation of rtBu-C C CsH4bZrCb
6-클로로핵사놀 (6-chlorohexanol)을 사용하여 문헌 (Tetrahedron Lett. 2951 0988))에 제시된 방법으로 t-Butyl-0-(CH2)6-Cl을 제조하고, 여기에 NaCp를 반웅시켜 t-Butyl-0-(CH2)6-C5H5를 얻었다 (수율 60%, b.p. 80°C / O.l mmHg). 6-Chlorosananol was used to prepare t-Butyl-0- (CH 2 ) 6 -Cl using the method shown in Tetrahedron Lett. 2951 0 9 88), to which NaCp was reacted. T-Butyl-0- (CH 2 ) 6 -C 5 H 5 (yield 60%, bp 80 ° C / Ol mmHg).
또한, -78 °C에서 t-Butyl-0-(CH2)6-C5H5를 THF에 녹이고, 노르말 부틸리튬 (n-BuLi)을 천천히 가한 후, 실온으로 승은시킨 후, 8시간 반웅시켰다. 그 용액을 다시 -78 °C에서 ZrCl4(THF)2(1.70g, 4.50mmol)/THF(30 £)의 서스펜견 (suspension) 용액에 기 합성된 리튬염 (lithium salt) 용액을 천천히 가하고 실온에서 6시간 동안 더 반응시켰다. In addition, dissolve t-Butyl-0- (CH 2 ) 6 -C 5 H 5 in THF at -78 ° C, slowly add normal butyllithium (n-BuLi), and then warm to room temperature, and then react for 8 hours. I was. The solution was slowly added to a pre-synthesized lithium salt solution at -78 ° C to a suspension solution of ZrCl 4 (THF) 2 (1.70 g, 4.50 mmol) / THF (30 £). The reaction was further reacted at room temperature for 6 hours.
모든 휘발성 물질을 진공 건조하고, 얻어진 오일성 액체 물질에 핵산 (hexane) 용매를 가하여 걸러내었다. 걸러낸 용액을 진공 건조한 후, 핵산을 가해 저은 (-20°C)에서 침전물을 유도하였다. 얻어진 침전물을 저온에서 걸러내어 흰색 고체 형태의 [tBu-0-(CH2)6-C5H4]2ZrCl2 화합물을 얻었다 (수율 92%). All volatiles were dried in vacuo and the resulting oily liquid material was filtered off by addition of a hexane solvent. After the filtered solution was dried in vacuo, nucleic acid was added to induce precipitate at low temperature (-20 ° C.). The obtained precipitate was filtered at low temperature to give a [tBu-0- (CH 2 ) 6 -C 5 H 4 ] 2 ZrCl 2 compound as a white solid (yield 92%).
1H NMR (300 MHz, CDC13): 6.28 (t, J = 2.6 Hz, 2 H), 6.19 (t, J = 2.6 Hz, 2 H),1 H NMR (300 MHz, CDC1 3 ): 6.28 (t, J = 2.6 Hz, 2H), 6.19 (t, J = 2.6 Hz, 2H),
3.31 (t, 6.6 Hz, 2 H), 2.62 (t, J = 8 Hz), 1.7 - 1.3 (m, 8 H), 1.17 (s, 9 H). 3.31 (t, 6.6 Hz, 2H), 2.62 (t, J = 8 Hz), 1.7-1.3 (m, 8H), 1.17 (s, 9H).
13C NMR (CDC13): 135.09, 116.66, 112.28, 72.42, 61.52, 30.66, 30.61, 30.14, 29.18, 27.58, 26.00. 제조예 4 13 C NMR (CDC1 3 ): 135.09, 116.66, 112.28, 72.42, 61.52, 30.66, 30.61, 30.14, 29.18, 27.58, 26.00. Preparation Example 4
(tBu-0-(CH7 6 (CHQSirCs(CH3 4)(tBu-N)TiCl? 의 ^조 (tBu-0- (CH 7 6 (CHQSirCs (CH 3 4) (tBu-N) TiCl ?
상온에서 50 g의 Mg(s)를 10 L 반웅기에 가한 후, THF 300 mL을 가하였다 . I2 0.5 g 정도를 가한 후, 반응기 온도를 50 °C로 유지하였다. 반웅기 온도가 안정화된 후 250 g의 6-t-부톡시핵실 클로라이드 (6-t-buthoxyhexyl chloride)를 피딩펌프 (feeding pump)를 이용하여 5 mL/min의 속도로 반응기에 가하였다. 6-t-부특시핵실 클로라이드를 가함에 따라 반웅기 온도가 4 내지 5 °C정도 상승하는 것을 관찰하였다. 계속적으로 6-t-부록시핵실 클로라이드을 가하면서 12 시간 교반하였다ᅳ 반웅 12시간 후 검은색의 반웅용액을 얻었다. 생성된 검은색의 용액 2 mL 취한 뒤 물을 가하여 유기층을 얻어 1H-NMR을 통해 6-t-부톡시핵산 (6-t-buthoxyhexane)을 확인하였다. 상기 6-t- 부특시핵산으로부터 그리냐드 (Gringanrd) 반응이 잘 진행되었음을 알 수 있었다. 그리하여 6-t-부톡시핵실 마그네슘 클로라이드 (6-t-buthoxyhexyl magnesium chloride)를 합성하였다. 50 g of Mg (s) was added to a 10 L reaction vessel at room temperature, followed by 300 mL of THF. After adding 0.5 g of I 2 , the reactor temperature was maintained at 50 ° C. After the reaction was stabilized, 250 g of 6-t-butthoxyhexyl chloride was added to the reactor at a rate of 5 mL / min using a feeding pump. As the 6-t-subnuclear chloride is added, the reaction temperature is between 4 and It was observed to rise by 5 ° C. Subsequently, the mixture was stirred for 12 hours while adding 6-t-butoxynuxyl chloride. After 12 hours, a black semi-aqueous solution was obtained. 2 mL of the resulting black solution was taken and water was added thereto to obtain an organic layer. 6-t-butoxynucleic acid (6-t-buthoxyhexane) was confirmed by 1 H-NMR. From the 6-t-subnucleic acid, it was found that the Gringanrd reaction proceeded well. Thus 6-t-butoxyhexyl magnesium chloride was synthesized.
MeSiCl3 500 g과 1 L의 THF를 반웅기에 가한 후 반웅기 온도를 ― 20°C까지 냉각하였다. 합성한 6-t-부톡시핵실 마그네슴 클로라이드 중 560 g을 피딩펌프를 이용하여 5 mL/min의 속도로 반웅기에 가하였다. 그리냐드 시약 (Grignard reagent)의 피딩 (feeding)이 끝난 후 반응기 온도를 천천히 상은으로 을리면서 12시간 교반하였다. 반웅 12시간 후 흰색의 MgCl2염이 생성되는 것을 확인하였다. 핵산 4 L을 가하여 랩도리 (labdori)을 통해 염을 제거하여 필터용액을 얻었다ᅳ 얻은 필터용액을 반웅기에 가한 후 70°C에서 핵산을 제거하여 엷은 노란색의 액체를 얻었다. 얻은 액체를 1H-NMR을 통해 원하는 메틸 (6-t-부톡시 핵실)디클로로실란 {Methyl(6-t-buthoxy hexyl)dichlorosilane} 화합물임을 확인하였다. 500 g of MeSiCl 3 and 1 L of THF were added to the reaction vessel and the reaction temperature was cooled to -20 ° C. 560 g of the synthesized 6-t-butoxynuclear magnesium chloride was added to the reaction vessel at a rate of 5 mL / min using a feeding pump. After the feeding of the Grignard reagent was completed, the reactor temperature was stirred for 12 hours while slowly quenching with silver. After 12 hours of reaction, white MgCl 2 salt was produced. 4 L of nucleic acid was added to remove the salt through a labdori to obtain a filter solution. The obtained filter solution was added to the reaction vessel and the nucleic acid was removed at 70 ° C. to obtain a pale yellow liquid. The obtained liquid was confirmed to be a desired methyl (6-t-butoxy hexyl) dichlorosilane} compound through 1 H-NMR.
1H-NMR (CDC13): 3.3 (t, 2H), 1.5 (m, 3H), 1.3 (m, 5H), 1.2 (s, 9H), 1.1 (m, 2H), 0.7 (s, 3H) 1 H-NMR (CDC1 3 ): 3.3 (t, 2H), 1.5 (m, 3H), 1.3 (m, 5H), 1.2 (s, 9H), 1.1 (m, 2H), 0.7 (s, 3H)
테트라메틸시클로펜타디엔 (tetramethylcyclopentadiene) 1.2 mol (150 g)와 1.2 mol (150 g) of tetramethylcyclopentadiene and
2.4 L의 THF를 반응기에 가한 후 반응기 온도를 -20°C로 넁각하였다. n-BuLi 480 mL 피딩펌프를 이용하여 5 mL/min의 속도로 반웅기에 가하였다. n- BuLi을 가한 후 반웅기 은도를 천천히 상온으로 올리면서 12시간 교반하였다. 반웅 12시간 후, 당량의 메틸 (6-t-부특시 헥실)디클로로실란 (Methyl(6-t-buthoxy hexyl)dichlorosilane) (326 g, 350 mL)을 빠르게 반웅기에 가하였다. 반웅기 온도를 천천히 상온으로 올리면서 12시간 교반한 후 다시 반웅기 온도를 0°C로 넁각시킨 후 2당량의 t-BuNH2을 가하였다. 반웅기 온도를 천천히 상온으로 을리면서 12시간 교반하였다. 반웅 12시간 후 THF을 제거하고 4 L의 핵산을 가하여 랩도리를 통해 염을 제거한 필터용액을 얻었다. 필터용액을 다시 반웅기에 가한 후, 핵산을 70°C에서 제거하여 노란색의 용액을 얻었다. 얻을 노란색의 용액을 1H- NMR을 통해 메틸 (6-t-부특시핵실) (테트라메틸 CpH)t-부틸아미노실란 (Methyl(6- t-buthoxyhexyl)(tetramethylCpH)t-Butylaminosilane) 화합물임을 확인하였다. 2.4 L of THF was added to the reactor followed by cooling the reactor temperature to -20 ° C. The reaction was added at a rate of 5 mL / min using an n-BuLi 480 mL feeding pump. After n-BuLi was added, the mixture was stirred for 12 hours while slowly raising the temperature to room temperature. After 12 hours of reaction, an equivalent of methyl (6-t-buthoxy hexyl) dichlorosilane (326 g, 350 mL) was added quickly to the reactor. After stirring for 12 hours while slowly raising the reaction temperature to room temperature, the reaction mixture was again cooled to 0 ° C., and then 2 equivalents of t-BuNH 2 was added thereto. The reaction mixture was stirred for 12 hours while slowly warming to room temperature. After 12 hours of reaction, THF was removed and 4 L of nucleic acid was added to obtain a filter solution from which salts were removed through labdori. After adding the filter solution back to the reactor, nucleic acid was added. Removal at 70 ° C gave a yellow solution. The yellow solution obtained was identified to be a methyl (6-t-subspecific nucleus) (tetramethyl CpH) t-butylaminosilane (Methyl (6-t-buthoxyhexyl) (tetramethylCpH) t-Butylaminosilane) compound by 1 H-NMR. .
n-BuLi과 리간드 디메틸 (테트라메틸 CpH)t-부틸아민실란 (Dimethyl(tetramethylCpH)t— Butylaminosilane)로부터 THF용액에서 합성한 ― 78 °C의 리간드의 디리튬염에 TiCl3(THF)3(10 mmol)을 빠르게 가하였다. 반웅용액을 천천히 ᅳ 78 °C에서 상온으로 올리면서 12시간 교반하였다. 12시간 교반 후, 상온에서 당량의 PbCl2(10mmol)를 반웅용액에 가한 후 12시간 교반하볐다. 12시간 교반 후, 푸른색을 띠는 질은 검은색의 용액을 얻었다. 생성된 반웅용액에서 THF를 제거한 후 핵산을 가하여 생성물을 필터하였다. 얻을 필터용액에서 핵산을 제거한 후, ^-NMR로부터 원하는 ([methyl(6-t- buthoxyhexyl)silyl 5-tetramethylCp)(t-Butylamido)]TiCy (tBu-O- (CH2)6)(CH3)Si(C5(CH3)4)(tBu-N)TiCl2 임을 확인하였다. TiCl 3 (THF) 3 (10) to a dilithium salt of -78 ° C ligand synthesized in THF solution from n-BuLi and ligand dimethyl (tetramethyl CpH) t-butylaminesilane (Dimethyl (tetramethylCpH) t— Butylaminosilane) mmol) was added rapidly. The reaction solution was stirred for 12 hours while slowly raising the temperature to 으로 78 ° C. After stirring for 12 hours, an equivalent amount of PbCl 2 (10 mmol) was added to the semi-aqueous solution at room temperature, followed by stirring for 12 hours. After stirring for 12 hours, the blue vagina obtained a black solution. After removing THF from the resulting semi-aqueous solution, nucleic acid was added to filter the product. After removing the nucleic acid from the filter solution obtained, the desired ([methyl (6-t-buthoxyhexyl) silyl 5-tetramethylCp) (t-Butylamido)] TiCy (tBu-O- (CH 2 ) 6 ) (CH 3 It was confirmed that the Si (C 5 (CH 3 ) 4 ) (tBu-N) TiCl 2 .
1H-NMR (CDC13): 3.3 (s, 4H), 2.2 (s, 6H), 2.1 (s, 6H), 1.8 ~ 0.8 (m), 1.4 (s, 9H), 1.2(s, 9H), 0.7 (s, 3H) 1 H-NMR (CDC1 3 ): 3.3 (s, 4H), 2.2 (s, 6H), 2.1 (s, 6H), 1.8 to 0.8 (m), 1.4 (s, 9H), 1.2 (s, 9H), 0.7 (s, 3 H)
[흔성 담지 촉매의 제조실시예 1 [Example 1 of Preparation of Supported Catalysts
실시예 1  Example 1
20L sus 고압 반응기에 를루엔 용액 6.0 kg을 넣고 반웅기 온도를 40°C로 유지하였다. 600 °C의 온도에서 12시간 동안 진공을 가해 탈수시킨 실리카 (Grace Davison사 제조, SYLOPOL 948) 1,000 g을 반웅기에 투입하고 실리카를 층분히 분산시킨 후, 제조예 3의 메탈로센 화합물 80 g을 를루엔에 녹여 투입하고 40°C에서 2시간 동안 교반하여 반웅시켰다. 이후 교반을 중지하고 30분 동안 sett l ing시킨 후 반웅 용액을 decant at ion하였다. 6.0 kg of toluene solution was added to a 20 L sus high pressure reactor, and the reaction temperature was maintained at 40 ° C. 1,000 g of dehydrated silica (SYLOPOL 948, manufactured by Grace Davison, Inc.) was applied to the reactor after vacuum was applied at a temperature of 600 ° C. for 12 hours, and the silica was dispersed in a small amount, 80 g of the metallocene compound of Preparation Example 3 Dissolved in toluene was added and stirred at 40 ° C. for 2 hours to react. After the stirring was stopped and sett l ing for 30 minutes, the reaction solution was decant at ion.
반웅기에- 를루엔 2.5 kg을 투입하고, 10 wt% 메틸알루미녹산 (MA0)/를루엔 용액 9.4 kg을 투입한 후, 40°C에서 200rpm으로 12시간 동안 교반하였다. 반웅 후, 교반을 중지하고 30분 동안 set t l ing 시킨 후 반웅 용액을 decantat ion 하였다. 를루엔 3.0 kg을 투입하고 10분간 교반한 후, 교반을 중지하고 30분 동안 sett l ing 시키고 를루엔 용액을 decant at ion하였다. 반웅기에 를루엔 3.0 kg을 투입하고, 29.2 ¾)의 제조예 4의 메탈로센 화합물 /를루엔 용액 314mL를 반응기에 투입한 후, 4C C에서 200rpm으로 12시간 동안 교반하였다. In the reaction, 2.5 kg of toluene was added, 9.4 kg of 10 wt% methylaluminoxane (MA0) / luene solution was added thereto, followed by stirring at 40 ° C. at 200 rpm for 12 hours. After the reaction, the stirring was stopped and set tling for 30 minutes was followed by decantat ion of the reaction solution. 3.0 kg of toluene was added thereto, stirred for 10 minutes, the stirring was stopped, settling for 30 minutes, and the toluene solution was decant at ion. 3.0 kg of toluene was added to the reaction vessel, and 314 mL of the metallocene compound / luene solution of Preparation Example 4 of Preparation Example 4 was added to the reactor, followed by stirring at 200 rpm at 4 C C for 12 hours.
제조예 1 의 메탈로센 화합물 80g과 를루엔 l , 000mL를 플라스크에 담아서 용액을 준비하고, 30분간 soni cat ion을 실시하였다. 이와 같이 준비된 제조예 1의 메탈로센 화합물 /를루엔 용액을 반웅기에 투입하고 40°C에서 200rpm으로 2시간 동안 교반하여 반웅시켰다. 반웅기 온도를 상온으로 낮춘 후, 교반을 중지하고 30분 동안 sett l ing 시킨 후 반웅 용액을 decantat ion 하였다. 80 g of the metallocene compound of Preparation Example 1 and 1, 000 mL of toluene were put in a flask to prepare a solution, and soni cat ion was performed for 30 minutes. In this way the metallocene compound / the metallocene prepared in Example 1, a toluene solution prepared in the half unggi banung and allowed to stir for 2 hours with 200rpm at 40 ° C. After the reaction temperature was lowered to room temperature, the stirring was stopped, settling for 30 minutes, and the reaction solution was decantat ion.
반응기에 를루엔 2.0 kg을 투입하고 10분간 교반한 후, 교반을 중지하고 30분 동안 sett l ing 시키고 를루엔 용액을 decant at ion하였다. 반웅기에 핵산 3.0 kg을 투입하고 핵산 슬러리를 f i l ter dryer로 이송하고 핵산 용액을 필터하였다. 40 °C에서 4시간 동안 감압 하에 건조하여 890g-Si02 흔성 담지 촉매를 제조하였다. 실시예 2 2.0 kg of toluene was added to the reactor, the mixture was stirred for 10 minutes, the stirring was stopped, settling for 30 minutes, and the toluene solution was decant at ion. 3.0 kg of nucleic acid was added to the reaction vessel, the nucleic acid slurry was transferred to a fil ter dryer, and the nucleic acid solution was filtered. Drying under reduced pressure at 40 ° C. for 4 hours to prepare a 890g-Si0 2 common supported catalyst. Example 2
실시예 1에서 제조예 4의 메탈로센 화합물 /를루엔 용액을 157 mL로 하고, 제조예 1의 메탈로센 화합물을 40 g으로 투입한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 담지 촉매를 제조하였다. 실시예 3  The supported catalyst was prepared in the same manner as in Example 1, except that 157 mL of the metallocene compound / luluene solution of Preparation Example 4 was prepared in Example 1, and 40 g of the metallocene compound of Preparation Example 1 was added. Was prepared. Example 3
20L sus 고압 반웅기에 를루엔 용액 6.0 kg을 넣고 반응기 온도를 40°C로 유지하였다. 600°C의 온도에서 12시간 동안 진공을 가해 탈수시킨 실리카 (Grace Davison사 제조, SYLOPOL 948) 1,000 g을 반응기에 투입하고 실리카를 층분히 분산시킨 후, 제조예 3의 메탈로센 화합물 80 g을 를루엔에 녹여 투입하고 40°C에서 2시간 동안 교반하여 반웅시켰다. 이후 교반을 중지하고 30분 동안 sett l ing시킨 후 반응 용액을 decant at ion하였다. 6.0 kg of toluene solution was added to a 20 L sus high pressure reactor and the reactor temperature was maintained at 40 ° C. 1,000 g of dehydrated silica (SYLOPOL 948, manufactured by Grace Davison, Inc.) was applied to the reactor by vacuum at a temperature of 600 ° C. for 12 hours, and the silica was dispersed well, 80 g of the metallocene compound of Preparation Example 3 was prepared. Dissolved in toluene and added and stirred at 40 ° C. for 2 hours to react. After the stirring was stopped and sett l ing for 30 minutes, the reaction solution was decant at ion.
반응기에 를루엔 2.5 kg올 투입하고, 10 wt% 메틸알루미녹산 (MA0)/를루엔 용액 9.4 kg을 투입한 후, 40°C에서 200rpm으로 12시간 동안 교반하였다. 반응 후, 교반을 중지하고 30분 동안 settling 시킨 후 반웅 용액을 decantation 하였다. 를루엔 3.0 kg을 투입하고 10분간 교반한 후, 교반을 중지하고 30분 동안 settling 시키고 를루엔 용액을 decant at ion하였다. 2.5 kg of toluene was added to the reactor, 9.4 kg of 10 wt% methylaluminoxane (MA0) / luene solution was added thereto, and the mixture was stirred at 40 ° C. at 200 rpm for 12 hours. After the reaction, the stirring was stopped and for 30 minutes After settling, the reaction solution was decantation. 3.0 kg of toluene was added thereto, stirred for 10 minutes, the stirring was stopped, settling for 30 minutes, and the toluene solution was decant at ion.
제조예 1 의 메탈로센 화합물 80g과 를루엔 l,000mL를 '플라스크에 담아서 용액을 준비하고, 30분간 sonication을 실시하였다. 이와 같이 준비된 제조예 1의 메탈로센 화합물 /를루엔 용액을 반웅기에 투입하고 4CTC에서 200rpiri으로 2시간 동안 교반하여 반웅시켰다. 반응기 온도를 상온으로 낮춘 후, 교반을 중지하고 30분 동안 settling 시킨 후 반웅 용액을 decantation 하였다. Preparing a solution of a metallocene compound platter 80g and a metal of Preparation Example 1 in toluene l, a 000mL flask ', which was carried out for 30 minutes sonication. The metallocene compound / luene solution of Preparation Example 1 thus prepared was added to the reaction vessel and stirred for 2 hours at 200 rpm at 4 CTC. After the reactor temperature was lowered to room temperature, the stirring was stopped, settling for 30 minutes, and the reaction solution was decantation.
반웅기에 를루엔 2.0 kg을 투입하고 10분간 교반한 후, 교반을 중지하고 30분 동안 settling 시키고 를루엔 용액을 decant at ion하였다. 반웅기에 핵산 3.0 kg을 투입하고 핵산 슬러리를 filter dryer로 이송하고 핵산 용액을 필터하였다. 40°C에서 4시간 동안 감압 하에 건조하여 890g-Si02 흔성 담지 촉매를 제조하였다. 비교예 1 2.0 kg of toluene was added to the reaction vessel, stirred for 10 minutes, the stirring was stopped, settling for 30 minutes, and the toluene solution was decant at ion. 3.0 kg of nucleic acid was added to the reaction vessel, the nucleic acid slurry was transferred to a filter dryer, and the nucleic acid solution was filtered. Drying under reduced pressure at 40 ° C. for 4 hours to prepare a 890g-Si0 2 common supported catalyst. Comparative Example 1
20L sus 고압 반웅기에 를루엔 용액 5.0 kg을 넣고 반웅기 온도를 40°C로 유지하였다. 600°C의 온도에서 12시간 동안 진공을 가해 탈수시킨 실리카 (Grace Davison사 제조, SYLOPOL 948) 1,000 g을 반웅기에 투입하고 실리카를 충분히 분산시킨 후, 제조예 3의 메탈로센 화합물 80 g을 를루엔에 녹여 투입하고 40°C에서 200rpm으로 2시간 동안 교반하여 반응시켰다. 이후 교반을 중지하고 30분 동안 settling시킨 후 반응 용액을 decant at ion하였다. In a 20 L sus high pressure reaction vessel, 5.0 kg of a toluene solution was added and the reaction temperature was maintained at 40 ° C. 1000 g of dehydrated silica (Grace Davison, SYLOPOL 948) was added to the reaction vessel at a temperature of 600 ° C. for 12 hours, and after the silica was sufficiently dispersed, 80 g of the metallocene compound of Preparation Example 3 was added. Dissolved in toluene and added and stirred at 200 rpm at 40 ° C. for 2 hours to react. After the stirring was stopped and settling for 30 minutes, the reaction solution was decant at ion.
반웅기에 를루엔 2.5 kg을 투입하고, 10 wt% 메틸알루미녹산 (MA0)/를루엔 용액 9.4 kg을 투입한 후, 40°C에서 200rpm으로 12시간 동안 교반하였다. 반웅 후, 교반을 중지하고 30분 동안 settling 시킨 후 반응 용액을 decantation 하였다. 틀루엔 3.0 kg을 투입하고 10분간 교반한 후, 교반을 중지하고 30분 동안 settling 시키고 를루엔 용액을 decant at ion하였다. 2.5 kg of toluene was added to the reaction vessel, 9.4 kg of 10 wt% methylaluminoxane (MA0) / luene solution was added thereto, followed by stirring at 40 ° C. at 200 rpm for 12 hours. After reaction, stirring was stopped and settling for 30 minutes, followed by decantation of the reaction solution. 3.0 kg of toluene was added thereto, stirred for 10 minutes, the stirring was stopped, settling for 30 minutes, and the toluene solution was decant at ion.
반웅기에 를루엔 3.0 kg을 투입하고, 29.2 )의 제조예 4의 메탈로센 화합물 /를루엔 용액 236 mL를 반웅기에 투입하였다. 이와 같이 준비된 제조예 4의 메탈로센 화합물 /를루엔 용액을 반웅기에 투입하고 40°C에서 200 rpm으로 2시간 동안 교반하여 반웅시켰다. 반웅기 온도를 상온으로 낮춘 후, 교반을 중지하고 30분 동안 sett l ing 시킨 후 반응 용액을 decant at ion하였다. Into the reaction, 3.0 kg of toluene was added and 29.2) of Preparation Example 4 236 mL of the metallocene compound / luluene solution was added to the reactor. In this way the metallocene compound / the metallocene prepared in Preparation Example 4 for toluene solution to anti-unggi banung and allowed to stir for two hours at 200 rpm at 40 ° C. After the reaction temperature was lowered to room temperature, stirring was stopped, settling for 30 minutes, and the reaction solution was decant at ion.
반웅기에 를루엔 2.0 kg을 투입하고 10분간 교반한 후, 교반을 중지하고 30분 동안 sett l ing 시키고 틀루엔 용액을 decant at i on하였다. 반웅기에 핵산 3.0 kg을 투입하고 핵산 슬러리를 f i l ter dryer로 이송하고 핵산 용액을 필터하였다. 40 °C에서 4시간 동안 감압 하에 건조하여 910g-Si02 흔성 담지 촉매를 제조하였다. 2.0 kg of toluene was added to the reaction vessel, stirred for 10 minutes, the stirring was stopped, sett ling for 30 minutes, and the toluene solution was decant at i on. 3.0 kg of nucleic acid was added to the reaction vessel, the nucleic acid slurry was transferred to a fil ter dryer, and the nucleic acid solution was filtered. Drying under reduced pressure at 40 ° C. for 4 hours to prepare a 910g-Si0 2 common supported catalyst.
<실험예 > Experimental Example
에틸렌 -1-핵센 공중합  Ethylene-1-Nexene Copolymerization
상기 실시예 1 내지 3 및 비교예 1 에서 제조한 각각의 흔성 담지 메탈로센 촉매를 isobutene slurry loop process 연속 중합기 (반웅기 부피 140L, 반웅 유속 7m/s)에 투입하여 을레핀 중합체를 제조하였다. 공단량체로는 1- 핵센을 사용하였고, 반웅기 압력은 40 bar로 중합 온도는 90°C로 유지하였다. 상기 실시예 1 내지 3 및 비교예 1의 각각의 흔성 담지 메탈로센 촉매를 이용한 중합 조건을 하기 표 1에 정리하여 나타내었다. Each of the common supported metallocene catalysts prepared in Examples 1 to 3 and Comparative Example 1 was introduced into an isobutene slurry loop process continuous polymerizer (a semi-agitator volume 140L, a counterung flow rate of 7 m / s) to prepare an olefin polymer. . As a comonomer, 1-nuxene was used, and the reaction temperature was maintained at 40 bar and the polymerization temperature at 90 ° C. The polymerization conditions using the common supported metallocene catalysts of Examples 1 to 3 and Comparative Example 1 are collectively shown in Table 1 below.
【표 1】Table 1
Figure imgf000042_0001
중합체의 물성 평가
Figure imgf000042_0001
Evaluation of Physical Properties of Polymers
1) 밀도: ASTM 1505  1) Density: ASTM 1505
2) 용융지수 (MFR, 2.16 kg/21.6 kg): 측정 온도 190 °C , ASTM 1238 3) MFRR(MFR2I 6/MFR2.i6): MFR21.6 용융지수 (MI, 21.6kg 하증)를 MFR2.i6(MI, 2.16kg 하중)으로 나눈 비율이다. 2) Melt Index (MFR, 2.16 kg / 21.6 kg): Measuring Temperature 190 ° C, ASTM 1238 3) MFRR (MFR 2I 6 / MFR 2. i 6): MFR 21. 6 Melt index (MI, 21.6kg hajeung) is the ratio obtained by dividing the MFR 2 .i 6 (MI, 2.16kg load).
4) 분자량, 분자량 분포: PL-SP260을 이용하여 BHT 0.0125% 포함된 1, 2, 4-Trichlorobenzene에서 160°C , 10시간 동안 녹여 전처리하고, PL-GPC220을 이용하여 측정 은도 160°C에서 수 평균분자량, 중량 평균분자량을 측정하였다. 분자량 분포는 중량 평균분자량과 수 평균분자량의 비로 나타내었다. 4) Molecular weight, molecular weight distribution: PL-SP260 by using a BHT 0.0125% comprising a 1, 2, 4-Trichlorobenzene pre-dissolved in over 160 ° C, 10 hours, and PL-GPC220 the number of the measurement silver is 160 ° C Average molecular weight and weight average molecular weight were measured. The molecular weight distribution was expressed as the ratio of weight average molecular weight and number average molecular weight.
5) 주파수 (frequency, ω [rad/s])에 따른 복소점도 (complex visicosity, H *[Pa.s]) 그래프의 기울기 : log scale의 ii *[Pa.s] vs. ω [rad/s] 그래프를 power law(ClX c2)로 fitting 했을 때 C2의 값을 주파수에 따른 복소점도 그래프의 기울기 값으로 나타내었다. 5) slope of the graph (complex visicosity, H * [Pa.s]) versus frequency (ω, [rad / s]): ii * [Pa.s] vs. log scale When the ω [rad / s] graph was fitted with the power law (C lX c2 ), the value of C 2 was expressed as the slope value of the complex viscosity graph with frequency.
6) CI Index: 분자량 (M)의 로그값 (log M)을 x축으로 하고, 상기 로그값에 대한 분자량 분포 (dwt/dlog M)를 y축으로 하여 분자량 분포 곡선을 그렸을 때, 전체 면적 대비 좌우 끝 20%를 제외한 가운데 60%의 좌측 및 우측 경계에서 SCB(Short Chain Branch) 함량 (탄소 1,000 개당의 탄소수 2 내지 7개의 결가지 (branch) 함량, 단위: 개 /1,000C)을 측정하여 하기 식 1을 바탕으로 CI Index 를 산출하였다.  6) CI Index: When the molecular weight distribution curve is drawn with the log value (log M) of the molecular weight (M) as the x axis and the molecular weight distribution (dwt / dlog M) with respect to the log value as the y axis, Short chain branch (SCB) content (2 to 7 carbon atoms per 1,000 carbons, unit: 1,000 C) at the left and right boundaries of 60% except for the left and right ends of 20% CI Index was calculated based on Equation 1.
이 때, 고분자량쪽 SCB 함량과, 저분자량쪽 SCB 함량은 각각 가운데 60% 범위의 우측 및 좌측의 경계에서의 SCB 함량값을 의미하고, 시료를 PL-SP260을 이용하여 BHT 0.0125%가 포함된 1, 2, 4-Trichlorobenzene에서 160°C , 10시간 동안 녹여 전처리한 후, 고은 GPC(PL-GPC220)와 연결된 PerkinElmer Spectrum 100 FT-IR을 이용하여 160°C에서 측정하였다. At this time, the high molecular weight side SCB content and the low molecular weight side SCB content mean SCB content values at the right and left boundaries of 60% range, respectively, and the sample contains BHT 0.0125% using PL-SP260. After pretreatment with 1, 2 and 4-Trichlorobenzene at 160 ° C. for 10 hours, it was measured at 160 ° C. using PerkinElmer Spectrum 100 FT-IR connected to high silver GPC (PL-GPC220).
[식 1]  [Equation 1]
ίΆ ¾¾ SCS ¾ SCB f ¾)  ίΆ ¾¾ SCS ¾ SCB f ¾)
CI Index =ᅳ {^ #?} l#sci f 1}  CI Index = ᅳ {^ #?} L # sci f 1}
【표 2】 Table 2
실시예 1 실시예 2 실시예 3 비교예 1 밀도 (g/cm3) 0.941 0.941 0.941 0.941 Example 1 Example 2 Example 3 Comparative Example 1 Density (g / cm 3 ) 0.941 0.941 0.941 0.941
MF 2.16 0.41 0.55 0.42 0.63 MF 2 . 16 0.41 0.55 0.42 0.63
MFR21.6 49.4 50.1 58.3 20.7 MFRR 120 91 138 33 수평균 분자량 14,169 17,954 12,296 30,905 중량평균 분자량 128,244 111,175 157,391 128,782 분자량분포 9.05 6.19 12.8 4.17 주파수에 따른 복소점도 -0.4909 -0.4577 -0.4707 -0.3284 MFR 21 . 6 49.4 50.1 58.3 20.7 MFRR 120 91 138 33 Number average molecular weight 14,169 17,954 12,296 30,905 Weight average molecular weight 128,244 111,175 157,391 128,782 Molecular weight distribution 9.05 6.19 12.8 4.17 Complex viscosity with frequency -0.4909 -0.4577 -0.4707 -0.3284
그래프의 기울기  Slope of graph
CI Index 1.054 1.1516 1.189 0.917 상기 표 2에 나타난 바와 같이, 흔성 담지 메탈로센 촉매를 이용하여 제조한 상기 실시예 1 내지 3의 을레핀계 공중합체는 고분자량, 저분자량, 중분자량의 올레핀계 중합체가 생성되어 넓은 분자량 분포를 가지면서도, 높은 용융 유동율비 (MFR21.6/MFR2.16)를 가지므로, 높은 유동성 및 우수한 가공성을 나타낼 수 있음을 확인하였다. CI Index 1.054 1.1516 1.189 0.917 As shown in Table 2, the olefinic copolymers of Examples 1 to 3 prepared using the common supported metallocene catalyst had high molecular weight, low molecular weight, and medium molecular weight olefin polymers. while having a broad molecular weight distribution is produced, because of the high melt flow rate ratio (MFR 21. 6 / MFR 2 . 16), it was confirmed that can exhibit high fluidity and good processability.
또한, 상기 실시예 1 내지 3의 을레핀계 공중합체는 van Gurp-Palmen 그래프를 나타낸 도 2 등으로부터 LCB(Long Chain Branch)를 포함하는 것을 확인할 수 있는데, 이러한 특징을 갖는 올레핀계 증합체는 swell, bubble stability, melt fracture, sagging time 등이 우수하여, 용도에 따라 다양하게 적용될 수 있다.  In addition, it can be seen that the olefinic copolymers of Examples 1 to 3 include a long chain branch (LCB) from FIG. 2 and the like shown in the van Gurp-Palmen graph. The olefin-based polymers having such characteristics include swell, Excellent bubble stability, melt fracture, sagging time, etc., can be applied to various applications.

Claims

【특허청구범위】 【청구항 1】 분자량 분포 (Mw/Mn)가 5 내지 30이고; 190°C에서 ASTM1238에 의하여 측정한 용융 유동율비 (MFR21.6/MFR2.16) 값이 35 내지 200이며; 주파수 (frequency, ω [rad/s])에 따른 복소점도 (complex visicosity, Π *[Pa.s]) 그래프에서 기울기가 -0.8 내지 -0.2이고, 하기 식 1로 표시되는 CI(Co-monomer Incorporation) Index 가 0.5 내지 5인 올레핀계 중합체: 【Patent Claims】 【Claim 1】 Molecular weight distribution (Mw/Mn) is 5 to 30; The melt flow rate ratio (MFR21.6/MFR2.16) measured by ASTM1238 at 190°C is 35 to 200; In the complex viscosity (Π *[Pa.s]) graph according to frequency (ω [rad/s]), the slope is -0.8 to -0.2, and CI (Co-monomer Incorporation) expressed in Equation 1 below ) Olefin-based polymer with an Index of 0.5 to 5:
[식 1] [Equation 1]
CI Index = ^ t¾ l¾ scB ¾«) CI Index = ^t¾ l¾ scB ¾« )
식 1에서, In equation 1,
SCB(Short Chain Branch) 함량은 탄소 1,000 개당의 탄소수 2 내지 7개의 결가지 (branch) 함량 (단위: 개 /1,000C)을 뜻하고, SCB (Short Chain Branch) content refers to the content of branches with 2 to 7 carbon atoms per 1,000 carbons (unit: branch / 1,000C),
저분자량쪽 SCB 함량 및 고분자량쪽 SCB 함량은, 올레핀계 중합체의 분자량 (M)의 로그값 (log M)을 X축으로 하고, 상기 로그값에 대한 분자량 분포 (dwt/dlog M)를 y축으로 하여 분자량 분포 곡선을 그렸을 때, 전체 면적 대비 좌우 끝 20%를 제외한 가운데 60%의 좌측 경계 (저분자량쪽 SCB함량) 및 우측 경계 (고분자량쪽 SCB함량)에서의 SCB 함량을 각각 의미한다. For the SCB content at the low molecular weight side and the SCB content at the high molecular weight side, the logarithmic value (log M) of the molecular weight (M) of the olefin polymer is taken as the X-axis, and the molecular weight distribution (dwt/dlog M) for the log value is taken as the y-axis When the molecular weight distribution curve is drawn, it means the SCB content at the left border (SCB content on the low molecular weight side) and the right border (SCB content on the high molecular weight side) of 60% of the center excluding the 20% at the left and right ends of the total area.
【청구항 2】 【Claim 2】
거 11항에 있어서, 밀도가 0.930 내지 0.950 g/cm3인 올레핀계 중합체 . The olefin-based polymer according to claim 11, wherein the olefin-based polymer has a density of 0.930 to 0.950 g/cm 3 .
【청구항 3】 【Claim 3】
제 1항에 있어서, LCB(Long Chain Branch)를 갖는 올레핀계 중합체. The olefin-based polymer according to claim 1, which has a long chain branch (LCB).
【청구항 4】 【Claim 4】
제 1항에 있어서, 중량 평균 분자량이 100,000 내지 약 300,000 g/m이인 올레핀계 중합체. 2. The olefinic polymer of claim 1, wherein the olefinic polymer has a weight average molecular weight of 100,000 to about 300,000 g/m.
【청구항 5】 【Claim 5】
거 U항에 있어서, 에틸렌과 알파 올레핀계 공단량체의 공증합체인 을레핀계 중합체. The olefin-based polymer according to item U, which is a copolymer of ethylene and an alpha-olefin-based comonomer.
【청구항 6] [Claim 6]
게 1항에 있어서, 하기 화학식 1로 표시되는 제 1 메탈로센 화합물 1종 이상; 하기 화학식 3 내지 5로 표시되는 화합물 중에서 선택되는 제 2 메탈로센 화합물 1종 이상; 조촉매 화합물; 및 담체를 포함하는 흔성 담지 메탈로센 촉매의 존재 하에 올레핀계 단량체를 중합시킴으로써 제조되는, 올레핀계 중합체: The method of claim 1, comprising: at least one first metallocene compound represented by the following formula (1); At least one second metallocene compound selected from compounds represented by the following formulas 3 to 5; co-catalyst compound; An olefin-based polymer prepared by polymerizing an olefin-based monomer in the presence of a common supported metallocene catalyst comprising a carrier:
[화학식 1] [Formula 1]
Figure imgf000046_0001
Figure imgf000046_0001
상기 화학식 1에서, In Formula 1,
A는 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기 A is hydrogen, halogen, C1 to C20 alkyl group, C2 to C20 alkenyl group
C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, C7 내지 C20의 아릴알킬기, C1 내지 C20의 알콕시기, C2 내지 C20의 알콕시알킬기, C3 내지 C20의 헤테로시클로알킬기, 또는 C5 내지 C20의 헤테로아릴기이고; C6 to C20 aryl group, C7 to C20 alkylaryl group, C7 to C20 arylalkyl group, C1 to C20 alkoxy group, C2 to C20 alkoxyalkyl group, C3 to C20 heterocycloalkyl group, or C5 to C20 hetero It is an aryl group;
D는 -0-, -S-, -N(R)- 또는 -Si(R)(R')- 이고, 여기서 R 및 R'은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, 또는 C6 내지 C20의 아릴기이고; D is -0-, -S-, -N(R)- or -Si(R)(R')-, where R and R' are the same or different from each other, and are each independently hydrogen, halogen, C1 to C20 alkyl group, C2 to C20 alkenyl group, or C6 to C20 aryl group;
L은 C1 내지 C10의 직쇄 또는 분지쇄 알킬렌기이고; L is a straight or branched C1 to C10 alkylene group;
B는 탄소, 실리콘 또는 게르마늄이고; B is carbon, silicon or germanium;
Q는 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기 C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, 또는 C7 내지 C20의 아릴알킬기이고; Q is hydrogen, halogen, C1 to C20 alkyl group, C2 to C20 alkenyl group, C6 to C20 aryl group, C7 to C20 alkylaryl group, or C7 to C20 arylalkyl group;
M은 4족 전0 속이며; X1 및 X2는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, 니트로기, 아미도기, C1 내지 C20의 알킬실릴기, C1 내지 C20의 알콕시기, 또는 C1 내지 C20의 술폰네이트기이고; M is a genus of pre-quadruple 0 ; X 1 and , a C1 to C20 alkoxy group, or a C1 to C20 sulfonate group;
C1 및 C2는 서로 동일하거나 상이하고, 각각 독립적으로 하기 화학식 2a, 화학식 2b 또는 하기 화학식 2c 중 하나로 표시되고, 단, C1및 C2가 모두 화학식 2c인 경우는 제외하며; C 1 and C 2 are the same as or different from each other, and are each independently represented by one of Formula 2a, Formula 2b, or Formula 2c below, except for the case where C 1 and C 2 are both Formula 2c;
2a] 2a]
Figure imgf000047_0001
상기 화학식 2a, 2b 및 2c에서, Rl 내지 R17 및 R1' 내지 R9'는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C1 내지 C20의 알킬실릴기, C1 내지 C20의 실릴알킬기, CI 내지 C20의 알콕시실릴기, C1 내지 C20의 알콕시기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, 또는 C7 내지 C20의 아릴알킬기이며, 상기 R10 내지 R17 중 서로 인접하는 2개 이상이 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성할 수 있고;
Figure imgf000047_0001
In Formulas 2a, 2b, and 2c, Rl to R17 and R1' to R9' are the same or different from each other, and are each independently hydrogen, halogen, C1 to C20 alkyl group, C2 to C20 alkenyl group, C1 to C20 alkyl Silyl group, C1 to C20 Silylalkyl group, CI to C20 alkoxysilyl group, C1 to C20 alkoxy group, C6 to C20 aryl group, C7 to C20 alkylaryl group, or C7 to C20 arylalkyl group, which of R10 to R17 are adjacent to each other. Two or more may be connected to each other to form a substituted or unsubstituted aliphatic or aromatic ring;
[화학식 3] [Formula 3]
Figure imgf000048_0001
Figure imgf000048_0001
상기 화학식 3에서, In Formula 3 above,
M1은 4족 전이금속이고; M 1 is a Group 4 transition metal;
Cp1 및 Cp2는 서로 동일하거나 상이하고, 각각 독립적으로 시클로펜타디엔닐, 인데닐, 4,5,6,7-테트라하이드로 -1-인데닐, 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며; Cp 1 and Cp 2 are the same or different from each other, and are each independently selected from the group consisting of cyclopentadienyl, indenyl, 4,5,6,7-tetrahydro-1-indenyl, and fluorenyl radical. one, and they may be substituted with hydrocarbons having 1 to 20 carbon atoms;
Ra 및 Rb는 서로 동일하거나 상이하고, 각각 독립적으로 수소, C1 내지 C20의 알킬, C1 내지 C10의 알콕시, C2 내지 C20의 알콕시알킬, C6 내지 C20의 아릴, C6 내지 C10의 아릴옥시, C2 내지 C20의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C8 내지 C40의 아릴알케닐, 또는 C2 내지 C10의 알키닐이고; R a and R b are the same or different from each other, and are each independently hydrogen, C1 to C20 alkyl, C1 to C10 alkoxy, C2 to C20 alkoxyalkyl, C6 to C20 aryl, C6 to C10 aryloxy, C2 to C20 alkenyl, C7 to C40 alkylaryl, C7 to C40 arylalkyl, C8 to C40 arylalkenyl, or C2 to C10 alkynyl;
Z1은 할로겐 원자, C1 내지 C20의 알킬, C2 내지 C10의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C6 내지 C20의 아릴, 치환되거나 치환되지 않은 C1 내지 C20의 알킬리덴, 치환되거나 치환되지 않은 아미노기 , C2 내지 C20의 알킬알콕시 , 또는 C7 내지 C40의 아릴알콕시이고; Z 1 is a halogen atom, C1 to C20 alkyl, C2 to C10 alkenyl, C7 to C40 alkylaryl, C7 to C40 arylalkyl, C6 to C20 aryl, substituted or unsubstituted C1 to C20 alkylidene. , a substituted or unsubstituted amino group, C2 to C20 alkylalkoxy, or C7 to C40 arylalkoxy;
n은 1 또는 0 이고; n is 1 or 0;
[화학식 4] [Formula 4]
Figure imgf000048_0002
Figure imgf000048_0002
상기 화학식 4에서, In Formula 4 above,
Μ2는 4족 전이 금속이고; Μ 2 is a Group 4 transition metal;
Cp3 및 Cp4는 서로 동일하거나 상이하고, 각각 독립적으로 시클로펜타디에닐, 인데닐, 4,5,6,7-테트라하이드로 -1-인데닐 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 .치환될 수 있으며; Cp 3 and Cp 4 are the same or different from each other, and are each independently selected from the group consisting of cyclopentadienyl, indenyl, 4,5,6,7-tetrahydro-1-indenyl and fluorenyl radicals. and these have carbon atoms of 1 to 1. With 20 hydrocarbons . may be substituted;
Rc 및 Rd는 서로 동일하거나 상이하고, 각각 독립적으로 수소, C1 내지 C20의 알킬, C1 내지 C10의 알콕시, C2 내지 C20의 알콕시알킬, C6 내지 C20의 아릴, C6 내지 C10의 아릴옥시, C2 내지 C20의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C8 내지 C40의 아릴알케닐, 또는 C2 내지 C10의 알키닐이고; R c and R d are the same or different from each other, and are each independently hydrogen, C1 to C20 alkyl, C1 to C10 alkoxy, C2 to C20 alkoxyalkyl, C6 to C20 aryl, C6 to C10 aryloxy, C2 to C20 alkenyl, C7 to C40 alkylaryl, C7 to C40 arylalkyl, C8 to C40 arylalkenyl, or C2 to C10 alkynyl;
Z2는 할로겐 원자, C1 내지 C20의 알킬, C2 내지 C10의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C6 내지 C20의 아릴, 치환되거나 치환되지 않은 C1 내지 C20의 알킬리덴, 치환되거나 치환되지 않은 아미노기, C2 내지 C20의 알킬알콕시, 또는 C7 내지 C40의 아릴알콕시이고; Z 2 is a halogen atom, C1 to C20 alkyl, C2 to C10 alkenyl, C7 to C40 alkylaryl, C7 to C40 arylalkyl, C6 to C20 aryl, substituted or unsubstituted C1 to C20 alkylidene. , a substituted or unsubstituted amino group, C2 to C20 alkylalkoxy, or C7 to C40 arylalkoxy;
B1은 Cp3Rc 고리와 Cp4Rd 고리를 가교 결합시키거나, 하나의 Cp4Rd 고리를 M2에 가교 결합시키는, 탄소, 게르마늄, 규소, 인 또는 질소 원자 함유 라디칼 중 하나 이상 또는 이들의 조합이고; B 1 is one or more radicals containing carbon, germanium, silicon, phosphorus or nitrogen atoms that crosslink the Cp 3 R c ring and the Cp 4 R d ring, or crosslink one Cp 4 R d ring to M 2 or a combination thereof;
m은 1 또는 0 이고; m is 1 or 0;
[화학식 5] [Formula 5]
(Cp5Re)B2(J)M3Z3 2 (Cp 5 R e )B 2 (J)M 3 Z 3 2
상기 화학식 5에서, In Formula 5 above,
M3은 4족 전이 금속이고; M 3 is a Group 4 transition metal;
Cp5는 시클로펜타디에닐, 인데닐, 4,5,6,7-테트라하이드로 -1-인데닐 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며; Cp 5 is any one selected from the group consisting of cyclopentadienyl, indenyl, 4,5,6,7-tetrahydro-1-indenyl and fluorenyl radicals, which may be substituted with hydrocarbons having 1 to 20 carbon atoms. can;
Re는 수소, C1 내지 C20의 알킬, C1 내지 C10의 알콕시, C2 내지 C20의 알콕시알킬, C6 내지 C20의 아릴, C6 내지 C10의 아릴옥시, C2 내지 C20의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C8 내지 C40의 아릴알케닐, 또는 C2 내지 C10의 알키닐이고; R e is hydrogen, C1 to C20 alkyl, C1 to C10 alkoxy, C2 to C20 alkoxyalkyl, C6 to C20 aryl, C6 to C10 aryloxy, C2 to C20 alkenyl, C7 to C40 alkylaryl. , C7 to C40 arylalkyl, C8 to C40 arylalkenyl, or C2 to C10 alkynyl;
Z3은 할로겐 원자, C1 내지 C20의 알킬, C2 내지 C10의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C6 내지 C20의 아릴, 치환되거나 치환되지 않은 C1 내지 C20의 알킬리덴, 치환되거나 치환되지 않은 아미노기, C2 내지 C20의 알킬알콕시, 또는 C7 내지 C40의 아릴알콕시이고; Z 3 is a halogen atom, C1 to C20 alkyl, C2 to C10 alkenyl, C7 to C40 alkylaryl, C7 to C40 arylalkyl, C6 to C20 aryl, substituted or unsubstituted C1 to C20 alkylidene. , substituted or unsubstituted amino group, C2 to C20 alkylalkoxy, or C7 to C40 is arylalkoxy;
B2는 Cp5Re 고리와 J를 가교 결합시키는 탄소, 게르마늄, 규소, 인 또는 질소 원자 함유 라디칼중 하나 이상 또는 이들의 조합이고; B 2 is one or more of a radical containing a carbon, germanium, silicon, phosphorus or nitrogen atom or a combination thereof that crosslinks the Cp 5 R e ring and J;
J는 NRf, 0, PRf 및 S로 이루어진 군에서 선택된 어느 하나이고, 상기 Rf는 C1 내지 C20의 알킬, 아릴, 치환된 알킬 또는 치환된 아릴이다. J is any one selected from the group consisting of NR f , 0, PR f and S, and R f is C1 to C20 alkyl, aryl, substituted alkyl or substituted aryl.
【청구항 7】 【Claim 7】
제 6항에 있어서, 상기 화학식 2a, 2b 및 2c의 R1 내지 R17 및 R1' 내지 R9'는 각각 독립적으로 수소, 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, tert-부틸기, 펜틸기, 핵실기, 헵틸기, 옥틸기, 페닐기, 할로겐기, 트리메틸실릴기, 트리에틸실릴기, 트리프로필실릴기, 트리부틸실릴기, 트리이소프로필실릴기, 트리메틸실릴메틸기, 메톡시기, 또는 에특시기인 올레핀계 중합체. The method of claim 6, wherein R1 to R17 and R1' to R9' in Formulas 2a, 2b and 2c are each independently hydrogen, methyl group, ethyl group, propyl group, isopropyl group, n -butyl group, tert-butyl group, Pentyl group, nucleosyl group, heptyl group, octyl group, phenyl group, halogen group, trimethylsilyl group, triethylsilyl group, tripropylsilyl group, tributylsilyl group, triisopropylsilyl group, trimethylsilylmethyl group, methoxy group, or An olefin-based polymer with a special group.
【청구항 8】 【Claim 8】
제 6항에 있어서, 상기 화학식 1의 L은 C4 내지 C8의 직쇄 또는 분지쇄 알킬렌기인 올레핀계 중합체. The olefin-based polymer according to claim 6, wherein L in Formula 1 is a straight or branched C4 to C8 alkylene group.
【청구항 9】 【Claim 9】
제 6항에 있어서, 상기 화학식 1의 A는 수소, 메틸기, 에틸기, 프로필기, 이소프로필기 , n-부틸기, tert-부틸기, 메톡시메틸기, tert-부특시메틸기, 1-에록시에틸기, 1-메틸 메톡시에틸기, 테트라하이드로피라닐기, 또는 테트라하이드로퓨라닐기인 올레핀계 중합체. The method of claim 6, wherein A in Formula 1 is hydrogen, methyl group, ethyl group, propyl group, isopropyl group, n -butyl group, tert-butyl group, methoxymethyl group, tert-butoxymethyl group, 1-eroxyethyl group. , an olefin-based polymer having a 1-methyl methoxyethyl group, a tetrahydropyranyl group, or a tetrahydrofuranyl group.
【청구항 10】 【Claim 10】
제 6항에 있어서, 상기 화학식 1로 표시되는 제 1 메탈로센 화합물은 하기 구조식들 중 하나인 올레핀계 중합체: 6f The method of claim 6, wherein the first metallocene compound represented by Formula 1 is an olefin-based polymer having one of the following structural formulas: 6f
Figure imgf000051_0001
Figure imgf000051_0001
T.C600/SlOZaM/X3d )Z9£0/9I0Z OAV OS T.C600/SlOZaM/X3d )Z9£0/9I0Z OAV OS
Figure imgf000052_0001
Figure imgf000052_0001
T.C600/SlOZaM/X3d )Z9£0/9I0Z OAV ΐ9 T.C600/SlOZaM/X3d )Z9£0/9I0Z OAV ΐ9
Figure imgf000053_0001
Figure imgf000053_0001
T.C600/SlOZaM/X3d )Z9£0/9I0Z OAV Z T.C600/SlOZaM/X3d )Z9£0/9I0Z OAV Z
Figure imgf000054_0001
Figure imgf000054_0001
T.C600/SlOZaM/X3d )Z9£0/9I0Z OAV T.C600/SlOZaM/X3d )Z9£0/9I0Z OAV
【청구항 1 1】 【Claim 1 1】
제 6항에 있어서, 상기 화학식 3으로 표시되는 제 2 메탈로센 화합물은 구조식들 중 하나인 을레핀계 중합체: The method of claim 6, wherein the second metallocene compound represented by Formula 3 is an olefin-based polymer having one of the structural formulas:
Figure imgf000055_0001
Figure imgf000055_0001
【청구항 12】 【Claim 12】
제 6항에 있어서, 상기 화학식 4로 표시되는 제 2 메탈로센 화합물은 하기 구조식들 중 하나인 을레핀계 중합체: The method of claim 6, wherein the second metallocene compound represented by Chemical Formula 4 is an olefin-based polymer having one of the following structural formulas:
Figure imgf000056_0001
Figure imgf000056_0001
Figure imgf000057_0001
Figure imgf000057_0001
【청구항 13】 【Claim 13】
제 6항에 있어서, 상기 화학식 5로 표시되는 제 2 메탈로센 화합물은 하기 구조식들 중 하나인 올레핀계 증합체: The method of claim 6, wherein the second metallocene compound represented by Chemical Formula 5 is an olefin-based polymer having one of the following structural formulas:
Figure imgf000057_0002
Figure imgf000057_0002
【청구항 14】 【Claim 14】
게 6항에 있어서, 상기 조촉매 화합물은 하기 화학식 6의 게 1 조촉매, 및 하기 화학식 7의 제 2 조촉매로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 을레핀계 중합체: The method of claim 6, wherein the cocatalyst compound is one selected from the group consisting of a cocatalyst 1 of the following formula (6) and a second cocatalyst of the formula (7): Elefin-based polymer containing the above:
[화학식 6] [Formula 6]
-[Al(R18)-0-]k- 화학식 6에서, 8은 각각 독립적으로 할로겐, 할로겐 치환 또는 비치환된 탄소수 1 내지 20의 하이드로카빌기이고, k는 2 이상의 정수이고, [화학식 7] -[Al(R 18 )-0-] k - In Formula 6, 8 is each independently halogen, halogen-substituted or unsubstituted hydrocarbyl group having 1 to 20 carbon atoms, k is an integer of 2 or more, [Formula 7 ]
T+[BG4]" T + [BG 4 ] "
화학식 7에서, T+은 +1가의 다원자 이은이고, B는 +3 산화 상태의 붕소이고, G는 각각 독립적으로 하이드라이드기, 디알킬아미도기, 할라이드기 : 알콕사이드기, 아릴옥사이드기, 하이드로카빌기, 할로카빌기 및 할로-치환된 하이드로카빌기로 이루어진 군에서 선택되고, 상기 G는 20개 이하의 탄소를 가지나, 단 하나 이하의 위치에서 G는 할라이드기이다. In Formula 7, T + is +1 valent polyatomic silver, B is boron in +3 oxidation state, and G is each independently a hydride group, dialkylamido group, halide group : alkoxide group, aryloxide group, hydro It is selected from the group consisting of a carbyl group, a halocarbyl group, and a halo-substituted hydrocarbyl group, and G has 20 or less carbons, but G is a halide group at only one or less positions.
【청구항 15] [Claim 15]
제 6항에 있어서, 상기 제 1 메탈로센 화합물 및 제 2 메탈로센 화합물의 전이금속 대 담체의 질량비는 1 :10 내지 1 :1,000 인 올레핀계 중합체. The olefin-based polymer according to claim 6, wherein the mass ratio of the transition metal to the carrier of the first metallocene compound and the second metallocene compound is 1:10 to 1:1,000.
【청구항 16】 【Claim 16】
제 6항에 있어서, 상기 조촉매 화합물 대 담체의 질량비는 1 :1 내지 The method of claim 6, wherein the mass ratio of the co-catalyst compound to the carrier is 1:1 to
1 :100 인 올레핀계 중합체. 1:100 phosphorus olefinic polymer.
PCT/KR2015/009371 2014-09-05 2015-09-04 Olefin-based polymer with excellent processability WO2016036204A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580047597.8A CN106687487B (en) 2014-09-05 2015-09-04 Olefin-based polymer having excellent processability
JP2017506994A JP6488002B2 (en) 2014-09-05 2015-09-04 Olefin polymer excellent in processability
US15/504,269 US10344102B2 (en) 2014-09-05 2015-09-04 Olefin-based polymer with excellent processability
RU2017111040A RU2670752C9 (en) 2014-09-05 2015-09-04 Olefin based polymer with excellent processing ability
EP15838802.5A EP3168243B1 (en) 2014-09-05 2015-09-04 Olefin-based polymer with excellent processability

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0119258 2014-09-05
KR20140119258 2014-09-05
KR1020150125131A KR101617870B1 (en) 2014-09-05 2015-09-03 Olefin based polymer having excellent processibility
KR10-2015-0125131 2015-09-03

Publications (1)

Publication Number Publication Date
WO2016036204A1 true WO2016036204A1 (en) 2016-03-10

Family

ID=55440148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/009371 WO2016036204A1 (en) 2014-09-05 2015-09-04 Olefin-based polymer with excellent processability

Country Status (1)

Country Link
WO (1) WO2016036204A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3078682A4 (en) * 2014-12-15 2017-07-05 LG Chem, Ltd. Olefin-based polymer having excellent processability
US9732172B2 (en) 2014-10-13 2017-08-15 Lg Chem, Ltd. Ethylene/1-hexene or ethylene/1-butene copolymer having excellent processibility and environmetal stress crack resistance
WO2017155211A1 (en) * 2016-03-11 2017-09-14 주식회사 엘지화학 Supported hybrid catalyst system for slurry polymerization of ethylene, and method for preparing ethylene polymer by using same
JP2019500473A (en) * 2015-12-31 2019-01-10 ハンファ ケミカル コーポレーションHanwha Chemical Corporation Hybrid metallocene supported catalyst, method for producing olefin polymer using the same, and olefin polymer with improved melt strength
CN109496219A (en) * 2016-07-28 2019-03-19 韩华化学株式会社 Utilize the high working property high density ethylene quasi polymer and preparation method thereof of composite load type metallocene catalyst
JP2019515097A (en) * 2016-04-27 2019-06-06 ハンファ ケミカル コーポレーション High density ethylene-based polymer using hybrid supported metallocene catalyst and method of preparation
EP3421510A4 (en) * 2016-12-09 2019-06-12 LG Chem, Ltd. Ethylene/1-hexene copolymer having excellent processability and mechanical properties
WO2019124792A1 (en) * 2017-12-20 2019-06-27 주식회사 엘지화학 Catalyst composition and method for preparing olefin polymer by using same
US10774160B2 (en) 2016-03-11 2020-09-15 Lg Chem, Ltd. Supported hybrid catalyst system for ethylene slurry polymerization and method for preparing ethylene polymer with the catalyst system
CN113166322A (en) * 2019-09-30 2021-07-23 株式会社Lg化学 Ethylene/1-hexene copolymer having excellent long-term physical properties and processability
US11072670B2 (en) 2017-12-20 2021-07-27 Lg Chem, Ltd. Catalyst composition and method for preparing olefin polymer using same
US11267917B2 (en) 2016-03-09 2022-03-08 Hanwha Chemical Corporation Hybrid catalyst composition, preparation method therefor, and polyolefin prepared using same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030195306A1 (en) * 2002-04-16 2003-10-16 Tsuie Barbara M. Method for making polyolefins
KR20050024287A (en) * 2002-05-31 2005-03-10 에퀴스타 케미칼즈, 엘피 High-temperature olefin polymerisation process in solution
US20070135595A1 (en) * 2005-12-14 2007-06-14 Voskoboynikov Alexander Z Halogen substituted metallocene compounds for olefin polymerization
KR20100067627A (en) * 2008-12-11 2010-06-21 주식회사 엘지화학 Hybrid supported metallocene catalyst, method for preparing the same, and method for preparing olefin-based polymer using the same
KR20120087706A (en) * 2011-01-28 2012-08-07 주식회사 엘지화학 Metallocene compounds and olefin based polymer prepared by using the same
KR20130046408A (en) * 2013-03-27 2013-05-07 주식회사 엘지화학 Polyolefin with multi-modal molecular weight distributions and pipe comprising the same
KR20130113322A (en) * 2010-07-06 2013-10-15 셰브론 필립스 케미컬 컴퍼니 엘피 Catalysts for producing broad molecular weight distribution polyolefins in the absence of added hydrogen

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030195306A1 (en) * 2002-04-16 2003-10-16 Tsuie Barbara M. Method for making polyolefins
KR20050024287A (en) * 2002-05-31 2005-03-10 에퀴스타 케미칼즈, 엘피 High-temperature olefin polymerisation process in solution
US20070135595A1 (en) * 2005-12-14 2007-06-14 Voskoboynikov Alexander Z Halogen substituted metallocene compounds for olefin polymerization
KR20100067627A (en) * 2008-12-11 2010-06-21 주식회사 엘지화학 Hybrid supported metallocene catalyst, method for preparing the same, and method for preparing olefin-based polymer using the same
KR20130113322A (en) * 2010-07-06 2013-10-15 셰브론 필립스 케미컬 컴퍼니 엘피 Catalysts for producing broad molecular weight distribution polyolefins in the absence of added hydrogen
KR20120087706A (en) * 2011-01-28 2012-08-07 주식회사 엘지화학 Metallocene compounds and olefin based polymer prepared by using the same
KR20130046408A (en) * 2013-03-27 2013-05-07 주식회사 엘지화학 Polyolefin with multi-modal molecular weight distributions and pipe comprising the same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9732172B2 (en) 2014-10-13 2017-08-15 Lg Chem, Ltd. Ethylene/1-hexene or ethylene/1-butene copolymer having excellent processibility and environmetal stress crack resistance
EP3078682A4 (en) * 2014-12-15 2017-07-05 LG Chem, Ltd. Olefin-based polymer having excellent processability
JP2019500473A (en) * 2015-12-31 2019-01-10 ハンファ ケミカル コーポレーションHanwha Chemical Corporation Hybrid metallocene supported catalyst, method for producing olefin polymer using the same, and olefin polymer with improved melt strength
JP7004656B2 (en) 2015-12-31 2022-02-04 ハンファ ケミカル コーポレーション A hybrid metallocene-supported catalyst and a method for producing an olefin polymer using the catalyst.
US11267917B2 (en) 2016-03-09 2022-03-08 Hanwha Chemical Corporation Hybrid catalyst composition, preparation method therefor, and polyolefin prepared using same
WO2017155211A1 (en) * 2016-03-11 2017-09-14 주식회사 엘지화학 Supported hybrid catalyst system for slurry polymerization of ethylene, and method for preparing ethylene polymer by using same
US10774160B2 (en) 2016-03-11 2020-09-15 Lg Chem, Ltd. Supported hybrid catalyst system for ethylene slurry polymerization and method for preparing ethylene polymer with the catalyst system
JP2019515097A (en) * 2016-04-27 2019-06-06 ハンファ ケミカル コーポレーション High density ethylene-based polymer using hybrid supported metallocene catalyst and method of preparation
JP2019523325A (en) * 2016-07-28 2019-08-22 ハンファ ケミカル コーポレーション High processability high density ethylene polymer using hybrid supported metallocene catalyst and production method thereof
US10975173B2 (en) 2016-07-28 2021-04-13 Hanwha Chemical Corporation High-processability high-density ethylene-based polymer using hybrid supported metallocene catalyst, and preparation method therefor
CN109496219A (en) * 2016-07-28 2019-03-19 韩华化学株式会社 Utilize the high working property high density ethylene quasi polymer and preparation method thereof of composite load type metallocene catalyst
US10774163B2 (en) 2016-12-09 2020-09-15 Lg Chem, Ltd. Ethylene/1-hexene copolymer having excellent processability and mechanical properties
EP3421510A4 (en) * 2016-12-09 2019-06-12 LG Chem, Ltd. Ethylene/1-hexene copolymer having excellent processability and mechanical properties
WO2019124792A1 (en) * 2017-12-20 2019-06-27 주식회사 엘지화학 Catalyst composition and method for preparing olefin polymer by using same
US11072670B2 (en) 2017-12-20 2021-07-27 Lg Chem, Ltd. Catalyst composition and method for preparing olefin polymer using same
CN113166322A (en) * 2019-09-30 2021-07-23 株式会社Lg化学 Ethylene/1-hexene copolymer having excellent long-term physical properties and processability
CN113166322B (en) * 2019-09-30 2023-11-17 株式会社Lg化学 Ethylene/1-hexene copolymers with excellent long term physical properties and processability
US12091477B2 (en) 2019-09-30 2024-09-17 Lg Chem, Ltd. Ethylene/1-hexene copolymer having excellent long-term physical properties and processability

Similar Documents

Publication Publication Date Title
JP6488002B2 (en) Olefin polymer excellent in processability
KR101726820B1 (en) Ethylene/1-hexene or ethylene/1-butene copolymer having excellent processibility and environmental stress crack resistance
JP6470834B2 (en) Excellent processability ethylene / alpha-olefin copolymer
KR101592436B1 (en) Polyolefin having an excellent enviromental stress crack resistance
WO2016036204A1 (en) Olefin-based polymer with excellent processability
EP3037167B1 (en) Hybrid-supported metallocene catalyst
JP6247751B2 (en) Method for producing hybrid supported metallocene catalyst
KR102073252B1 (en) Catalyst composition for polymerizing olefin copolymer and preparation method of olefin copolymer
JP6482564B2 (en) Ethylene / alpha-olefin copolymer excellent in processability
KR102064990B1 (en) Supported hybrid catalyst system for ethylene slurry polymerization and method for preparing ethylene polymer with the catalyst system
KR102234944B1 (en) Olefin copolymer
CN110869399B (en) Polyethylene copolymer and preparation method thereof
EP3225638A1 (en) Ethylene/ -olefin copolymer having excellent processability and surface characteristics
KR101606825B1 (en) Method for preparing of supported hybrid metallocene catalyst
WO2015056975A1 (en) Hybrid-supported metallocene catalyst
WO2015194813A1 (en) Polyolefin having excellent environmental stress crack resistance
WO2016060445A1 (en) Ethylene/1-hexene or ethylene/1-butene copolymer having outstanding working properties and environmental stress cracking resistance
US20180251580A1 (en) Method for preparing supported hybrid metallocene catalyst, and supported hybrid metallocene catalyst using the same
KR102215024B1 (en) Method for preparing polyolfin
WO2015056974A1 (en) Method for producing hybrid-supported metallocene catalyst
KR20220043900A (en) Ethylene/1-hexene copolymer having improved flexibility and processibility

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15838802

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015838802

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015838802

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017506994

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15504269

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017111040

Country of ref document: RU

Kind code of ref document: A