Nothing Special   »   [go: up one dir, main page]

WO2016035762A1 - バランスシャフト用フリクションダンパー - Google Patents

バランスシャフト用フリクションダンパー Download PDF

Info

Publication number
WO2016035762A1
WO2016035762A1 PCT/JP2015/074746 JP2015074746W WO2016035762A1 WO 2016035762 A1 WO2016035762 A1 WO 2016035762A1 JP 2015074746 W JP2015074746 W JP 2015074746W WO 2016035762 A1 WO2016035762 A1 WO 2016035762A1
Authority
WO
WIPO (PCT)
Prior art keywords
friction damper
balance shaft
shaft
mounting ring
sliding surface
Prior art date
Application number
PCT/JP2015/074746
Other languages
English (en)
French (fr)
Inventor
新井 秀徳
Original Assignee
Nok株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok株式会社 filed Critical Nok株式会社
Priority to EP15838148.3A priority Critical patent/EP3190309A4/en
Priority to CN201580047774.2A priority patent/CN106662205A/zh
Priority to JP2016510527A priority patent/JPWO2016035762A1/ja
Priority to US15/508,336 priority patent/US20170292585A1/en
Publication of WO2016035762A1 publication Critical patent/WO2016035762A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/129Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon characterised by friction-damping means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/02Vibration-dampers; Shock-absorbers with relatively-rotatable friction surfaces that are pressed together
    • F16F7/04Vibration-dampers; Shock-absorbers with relatively-rotatable friction surfaces that are pressed together in the direction of the axis of rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/14Construction providing resilience or vibration-damping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/22Compensation of inertia forces
    • F16F15/26Compensation of inertia forces of crankshaft systems using solid masses, other than the ordinary pistons, moving with the system, i.e. masses connected through a kinematic mechanism or gear system
    • F16F15/264Rotating balancer shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2224/00Materials; Material properties
    • F16F2224/02Materials; Material properties solids
    • F16F2224/025Elastomers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2230/00Purpose; Design features
    • F16F2230/04Lubrication

Definitions

  • the present invention relates to a friction damper for a balance shaft of an internal combustion engine, and more particularly to a friction damper for a balance shaft that can maintain a high rotational torque without hindering the flow of lubricating oil.
  • a friction damper for a balance shaft of an internal combustion engine is a rubber component having a high rotational torque that connects a shaft portion of a balance shaft that suppresses vibration of a reciprocating engine and a gear portion provided on the outer periphery of the shaft portion.
  • the friction damper maintains high torque to absorb vibrations, and when the shaft part of the balance shaft swings with respect to the gear part, it operates suddenly to attenuate the torque and is provided on the gear part side.
  • the shock-absorbing rubber bumper part is prevented from being damaged.
  • FIG. 6 and FIG. 7 show examples of conventional friction dampers for balance shafts.
  • FIG. 6 is a partially cutaway overhead view of the friction damper
  • FIG. 7 is a sectional view taken along the line CC of FIG.
  • This conventional friction damper is provided with a metal mounting ring 50 fitted on and fixed to the inner peripheral surface of the gear portion on the outer peripheral side, and an elastic ring integrally formed with the mounting ring 50 by a rubber-like elastic material.
  • the material 60 is provided on the inner peripheral side.
  • a lip portion 61 is provided on the inner peripheral side of the elastic ring material 60, and the inner peripheral surface of the lip portion 61 is a lip sliding surface 61a that is in close contact with the outer peripheral surface of the shaft portion of the balance shaft. ing.
  • the lip sliding surface 61a of the elastic ring member 60 is formed with a plurality of notches 70 for circulating the lubricating oil around the gear portion in the axial direction.
  • Patent Document 1 discloses a friction damper having an elastic ring material integrally provided on the outer peripheral side of a core metal, and protrudes radially outward at a plurality of locations in the circumferential direction of the elastic ring material.
  • the sliding contact part is integrally formed, and a space is provided inside the sliding contact part, so that the sliding contact part can be easily compressed and deformed at the time of mounting so that a large friction can be obtained with a slight tightening allowance. Is described.
  • an object of the present invention is to provide a friction damper for a balance shaft capable of ensuring a flow path in the axial direction of the lubricating oil and stably flowing while preventing a decrease in torque on the lip sliding surface. To do.
  • a metal mounting ring having a fitting surface to be worn;
  • An annular elastic ring material having a lip sliding surface that is formed of a rubber-like elastic material on the mounting ring and is pressed against either the outer peripheral surface of the shaft portion or the inner peripheral surface of the gear portion.
  • An oil flow path portion that is a position excluding the lip sliding surface and that extends between the attachment ring and the elastic ring material and / or allows the lubricating oil to flow axially through the attachment ring.
  • Friction damper for balance shaft characterized by being formed.
  • the mounting ring includes a cylindrical portion that extends in the axial direction that forms the fitting surface, and an annular flange portion that is integrally formed so as to extend in the radial direction from one axial end of the cylindrical portion, 2.
  • the oil channel hole according to claim 1 wherein the oil channel portion is an oil channel hole formed so as to penetrate through the elastic ring material excluding the lip sliding surface and the flange portion in the axial direction. Friction damper for balance shaft.
  • Friction damper for balance shaft 3.
  • a friction damper for a balance shaft capable of ensuring a flow path in the axial direction of the lubricating oil and stably flowing while preventing a reduction in torque on the lip sliding surface.
  • FIG. 3 is a partially cutaway overhead view showing an example of a friction damper for a balance shaft according to the present invention.
  • FIG. 4 is a partially cutaway overhead view showing another example of the friction damper for a balance shaft according to the present invention.
  • FIG. 1 is a partially cutaway overhead view showing an example of a friction damper according to the present invention
  • FIG. 2 is a sectional view taken along line AA of FIG. 1
  • FIG. 3 is a friction damper shown in FIGS. It is a fragmentary sectional view of the balance shaft which shows the state which mounted
  • the friction damper 1 shown in FIGS. 1 and 2 has an annular elastic ring material 20 formed of a rubber-like elastic material on the inner peripheral side of a metal mounting ring 10.
  • the mounting ring 10 is manufactured by press-molding a metal plate such as a steel plate, for example, and includes a cylindrical portion 11 extending in the axial direction and a flange portion 12 formed integrally with the cylindrical portion 11.
  • the flange portion 12 is formed to be bent so as to extend radially inward from one axial end of the cylindrical portion 11.
  • the outer peripheral surface of the cylindrical portion 11 forms a fitting surface 11a that is fitted to the inner peripheral surface 201 (see FIG. 3) of the gear portion 200 provided on the outer periphery of the shaft portion 100 of the balance shaft. Yes.
  • the elastic ring material 20 is integrally formed of a rubber-like elastic material from the flange portion 12 to the inner peripheral surface of the cylindrical portion 11. Further, the rubber-like elastic material is not particularly limited, but a material having a small compression set and excellent wear resistance is preferable.
  • the inner circumferential surface located on the opposite side to the fitting surface 11 a of the mounting ring 10 is inclined toward the inner side in the radial direction from the flange 12 side toward the distal end side.
  • the lip portion 21 is provided.
  • the inner peripheral surface of the lip portion 21 forms a lip sliding surface 21a that is pressed against the outer peripheral surface 101 (see FIG. 3) of the shaft portion 100 of the balance shaft.
  • the oil flow passage portion 30 that allows the lubricating oil to flow in the axial direction is provided between the fitting surface 11a of the mounting ring 10 and the lip sliding surface 21a of the elastic ring member 20. It is formed so as to penetrate in the direction.
  • the oil flow path portion 30 in the present embodiment is formed between the elastic ring material 20 and the flange portion 12 between the fitting surface 11a of the mounting ring 10 and the lip sliding surface 21a of the elastic ring material 20. It is comprised by the oil flow path hole 31 formed so that it might penetrate in an axial direction over it.
  • the oil passage hole 31 shown in the present embodiment has the flange portion 12 cut out in a substantially semicircular shape from the inner peripheral end thereof, and the elastic ring material 20 between the fitting surface 11a and the lip sliding surface 21a. Is penetrated in the axial direction.
  • the oil passage hole 31 does not reach the lip sliding surface 21a, the lubricating oil does not enter the lip sliding surface 21a from the oil passage hole 31. As a result, there is no risk of torque reduction due to the penetration of the lubricating oil into the lip sliding surface 21a.
  • a plurality of oil passage holes 31 are formed at predetermined intervals in the circumferential direction of the friction damper 1.
  • the diameter of the oil passage hole 31 is appropriately determined according to the size of the flange portion 12, the relationship between the number formed in the friction damper 1 and the flow rate of the lubricating oil, and the like.
  • the oil passage hole 31 can be formed by penetrating in parallel with the axial direction of the friction damper 1 as shown in FIGS. 1 and 2, but is not limited thereto.
  • the friction damper 1 may be formed by being penetrated at an angle so as to be slightly inclined in the circumferential direction with respect to the axial direction of the friction damper 1.
  • the friction damper 1 is mounted in an annular gap 300 between a shaft portion 100 of an engine balance shaft and a gear portion 200 provided on the outer periphery of the shaft portion 100.
  • the fitting surface 11 a of the mounting ring 10 is fitted and fixed to the inner peripheral surface 201 of the gear portion 200, and the lip portion 21 of the elastic ring material 20 is attached to the outer peripheral surface 101 of the shaft portion 100 of the balance shaft.
  • the lip sliding surface 21a is brought into close contact with the outer peripheral surface 101 by being compressed in the radial direction.
  • the oil flow path hole 31 is formed as the oil flow path part 30, and the notch part used as the flow path of lubricating oil is formed in the lip sliding surface 21a of the elastic ring material 20 like the past. Not. Therefore, the lip sliding surface 21a can be in close contact with the outer peripheral surface 101 of the shaft portion 100 of the balance shaft over the entire surface. At this time, the lubricating oil flows in the axial direction through the oil passage hole 31, but since the oil passage hole 31 does not pass through the lip sliding surface 21a, the lip sliding surface 21a is the shaft portion of the balance shaft. Even when sliding is performed with respect to the outer peripheral surface 101 of 100, the lubricating oil does not enter between the lip sliding surface 21a and the outer peripheral surface 101.
  • the friction damper 1 can prevent a reduction in the torque of the lip sliding surface 21a due to the intrusion of the lubricating oil, and can obtain a large friction with respect to the shaft portion 100 of the balance shaft.
  • the rotational torque can be properly transmitted to the shaft portion 100.
  • the oil passage hole 31 is formed across the elastic ring material 20 and the flange portion 12 of the mounting ring 10, even if the lip portion 21 is compressed and deformed in the radial direction by being attached to the annular gap 300.
  • the opening shape of the oil passage hole 31 is held by the metal flange 12, and the oil passage hole 31 is not deformed and completely crushed. Accordingly, in the mounted state, the oil flow passage hole 31 can secure the axial flow passage of the lubricating oil, and the lubricating oil can be circulated stably.
  • FIG. 4 is a partially cutaway overhead view showing another example of the friction damper according to the present invention
  • FIG. 5 is a sectional view taken along line BB of FIG.
  • the parts denoted by the same reference numerals as those in FIG. 1 to FIG. 3 indicate the parts having the same configuration, and therefore, the explanation for them is referred to the explanation for FIG. 1 to FIG.
  • the oil passage portion 30 that allows the lubricating oil to flow in the axial direction is formed in the mounting ring 10. Therefore, also in this embodiment, the flow path of the lubricating oil is not formed on the lip sliding surface 21a.
  • the oil passage portion 30 in the present embodiment is configured by an oil passage groove 32 formed in the fitting surface 11 a of the mounting ring 10.
  • the oil passage groove 32 is formed on the fitting surface 11 a of the cylindrical portion 11 of the mounting ring 10 so as to cross the cylindrical portion 11 over the entire axial length of the cylindrical portion 11.
  • a plurality of oil passage grooves 32 are formed at a predetermined interval in the circumferential direction of the friction damper 1.
  • the groove width is appropriately determined according to the relationship between the number of friction dampers 1 formed and the flow rate of the lubricating oil.
  • the groove depth is formed shallower than the thickness of the cylindrical portion 11 of the mounting ring 10. For this reason, the strength of the cylindrical portion 11 of the mounting ring 10 is not significantly impaired.
  • the oil passage groove 32 is generally formed by grinding the groove with respect to the fitting surface 11a of the cylindrical portion 11 of the mounting ring 10, but is not limited thereto.
  • a plurality of plates divided in the circumferential direction are bonded or welded to the outer peripheral surface of the cylindrical portion 11 at intervals in the circumferential direction, so that the groove portion between the plates adjacent in the circumferential direction is formed as an oil flow channel groove. It may be set to 32.
  • the fitting surface 11a is formed by the outer peripheral surface of each plate.
  • the oil passage groove 32 can be formed so as to extend in parallel with the axial direction of the friction damper 1 as shown in FIGS. 4 and 5, but is not limited thereto.
  • it may be formed at an angle so as to be slightly inclined in the circumferential direction with respect to the axial direction of the friction damper 1.
  • the friction damper 1 is also mounted in the annular gap 300 between the shaft portion 100 of the balance shaft of the engine shown in FIG. 3 and the gear portion 200 provided on the outer periphery of the shaft portion 100. Similarly to the above, the torque drop of the lip sliding surface 21a due to the intrusion of the lubricating oil is prevented, and the axial flow path of the lubricating oil can be secured by the oil flow path groove 32, so that the lubricating oil is stable. The effect which can be distributed to can be acquired.
  • the oil passage groove 32 is formed in the fitting surface 11a of the metal mounting ring 10 that does not slide with respect to the inner peripheral surface 201 of the gear portion 200, lubrication flowing through the oil passage groove 32 is performed. Oil does not enter the fitting surface 11a. Moreover, as shown in FIG. 3, the oil passage groove 32 formed in the fitting surface 11 a of the mounting ring 10 is fixed by fitting the fitting surface 11 a to the inner peripheral surface 201 of the gear portion 200. There is no deformation at all. For this reason, the flow path of the lubricating oil in the axial direction can be secured more stably.
  • the oil flow path portion 30 may form both the oil flow path hole 31 and the oil flow path groove 32 described above in one friction damper 1. Thereby, a larger flow path of lubricating oil can be secured.
  • the outer peripheral side of the friction damper 1 was used as the attachment ring 10 and the inner peripheral side was used as the elastic ring material 20
  • the outer peripheral side of the friction damper 1 was used as the elastic ring material 20
  • the inner ring surface of the mounting ring 10 may be used as the fitting surface 11 a and may be fitted and fixed to the outer peripheral surface 101 of the balance shaft 100.
  • Friction damper for balance shaft 10 Mounting ring 11: Cylindrical portion 11a: Fitting surface 12: Gutter portion 20: Elastic ring material 21: Lip portion 21a: Lip sliding surface 30: Oil passage portion 31: Oil passage portion Hole 32: Oil channel groove

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Gears, Cams (AREA)
  • Sealing With Elastic Sealing Lips (AREA)
  • Vibration Dampers (AREA)

Abstract

本発明は、リップ摺動面のトルク低下を防止しつつ、潤滑油の軸方向の流路を確保して安定的に流通させることができるバランスシャフト用フリクションダンパー(1)を提供することを課題とし、その課題は、エンジンのバランスシャフトの軸部(100)と該軸部(100)の外周に設けられたギア部(200)との間の環状隙間(300)に装着され、軸部(100)の外周面(101)とギア部(200)の内周面(201)とのいずれか一方に嵌着されて固定される嵌合面(11a)を有する金属製の取付環(10)と、取付環(10)にゴム状弾性材料で成形され、軸部(100)の外周面(101)とギア部(200)の内周面(201)とのいずれか他方に対して密接されるリップ摺動面(21a)を有する環状の弾性リング材(20)とを備え、リップ摺動面(21a)を除く位置であって、且つ、取付環(10)と弾性リング材(20)とに亘る位置及び又は取付環(10)に、潤滑油が軸方向に流通することを許容する油流路部(30)を形成することによって解決される。

Description

バランスシャフト用フリクションダンパー
 本発明は、内燃機関のバランスシャフト用フリクションダンパーに関し、詳しくは、潤滑油の流通を妨げることなく、高い回転トルクを維持することができるバランスシャフト用フリクションダンパーに関する。
 内燃機関のバランスシャフト用フリクションダンパーは、レシプロエンジンの振動を抑制するバランスシャフトの軸部と、この軸部の外周に設けられたギア部とを接続する高い回転トルクを持つゴム部品である。フリクションダンパーが高いトルクを維持することにより、振動を吸収し、且つ、バランスシャフトの軸部がギア部に対して揺動する際は急激に作動してトルクを減衰させ、ギア部側に設けられている衝撃緩衝用のゴムバンパー部が破損することを防止している。
 逆にフリクションダンパーのトルクがゴムの劣化等により不足すると、ゴムダンパー部の破損、若しくはギア部が破損する不具合が発生することになるため、フリクションダンパーは、高いトルクを維持する必要がある。
 従来のバランスシャフト用フリクションダンパーの一例として、図6、図7を示す。図6はフリクションダンパーの一部切欠き俯瞰説明図、図7は図6のC-C線断面図である。
 この従来のフリクションダンパーは、ギア部の内周面に嵌着されて固定される金属製の取付環50を外周側に備え、この取付環50にゴム状弾性材料によって一体に成形された弾性リング材60を内周側に備えている。弾性リング材60の内周側にはリップ部61を有しており、そのリップ部61の内周面は、バランスシャフトの軸部の外周面に対して密接されるリップ摺動面61aとなっている。そして、弾性リング材60のリップ摺動面61aには、ギア部周囲の潤滑油を軸方向に流通させるための複数の切欠き部70が形成されている。
 また、特許文献1には、芯金の外周側に一体に設けられた弾性リング材を有するフリクションダンパーであって、弾性リング材の周方向複数個所に互いに間隔をおいて径方向外方へ突出する摺接部を一体に形成し、この摺接部の内部に空間を設けることにより、装着時に摺接部が容易に圧縮変形して、僅かな締め代で大きなフリクションが得られるようにすることが記載されている。
実開昭63-187748号公報
 フリクションダンパーは潤滑油を封止してはならない。このため、図6、図7に示したフリクションダンパーでは、弾性リング材60のリップ摺動面61aに、軸方向に潤滑油が流通することを許容する切欠き部70を形成している。また、特許文献1では、径方向外方に突出する複数の摺接部の間が、軸方向に連通するため、この摺接部間によって潤滑油が軸方向に流通することが許容されるようになっている。
 しかしながら、従来のフリクションダンパーでは、潤滑油が弾性リング材に形成された切欠き部や摺接部の間の溝部を流れるため、フリクションダンパーに大きな回転トルクが加わって弾性リング材が相手部材に対して摺動した場合、潤滑油が切欠き部や溝部に介在する。従って、この潤滑油が、フリクションダンパーが摺動することで、切欠き部以外のリップ摺動面にも侵入するおそれがある。そして、弾性リング材のリップ摺動面に潤滑油が侵入すると、リップ摺動面とこれに密接される相手部材との間のフリクションが減少してトルクが低下してしまい、ギア部の回転トルクをバランスシャフトの軸部に、適正に伝達できなくなる問題がある。
 また、リップ摺動面は、相手部材に対して径方向に圧縮変形されることで所定のフリクションを得るようにしているため、圧縮変形時にリップ摺動面に形成された切欠き部や、溝部も同様に変形することで流路を狭めてしまい、潤滑油を軸方向に安定的に流通させることが困難となる問題もある。
 なお、特許文献1記載のフリクションダンパーは、隣り合う摺接部間の空間で、弾性リング材外周の軸方向の空間を潤滑油が流通する。この状態でフリクションダンパーを摺接部を圧縮変形させて装着しているが、摺接部の接触面積が少ないので、嵌合面とこれに密接される相手部材との間のフリクションが減少してトルクが低下してしまい、ギア部の回転トルクをバランスシャフトの軸部に、適正に伝達できなくなる可能性がある。
 そこで、本発明は、リップ摺動面のトルク低下を防止しつつ、潤滑油の軸方向の流路を確保して安定的に流通させることができるバランスシャフト用フリクションダンパーを提供することを課題とする。
 本発明の他の課題は、以下の記載により明らかとなる。
 上記課題は、以下の各発明によって解決される。
 1.エンジンのバランスシャフトの軸部と該軸部の外周に設けられたギア部との間の環状隙間に装着され、前記軸部の外周面と前記ギア部の内周面とのいずれか一方に嵌着される嵌合面を有する金属製の取付環と、
 前記取付環にゴム状弾性材料で成形され、前記軸部の外周面と前記ギア部の内周面とのいずれか他方に対して圧接されるリップ摺動面を有する環状の弾性リング材とを備えるバランスシャフト用フリクションダンパーにおいて、
 前記リップ摺動面を除く位置であって、且つ、前記取付環と前記弾性リング材とに亘る位置及び又は前記取付環に、潤滑油が軸方向に流通することを許容する油流路部を形成したことを特徴とするバランスシャフト用フリクションダンパー。
 2.前記取付環は、前記嵌合面を形成する軸方向に延びる円筒部と、前記円筒部の軸方向の一端から径方向に延びるように一体に形成された環状の鍔部とを有し、
 前記油流路部は、前記リップ摺動面を除く前記弾性リング材と前記鍔部とに亘って軸方向に貫通するように形成された油流路孔であることを特徴とする前記1記載のバランスシャフト用フリクションダンパー。
 3.前記油流路部は、前記取付環の前記嵌合面に形成された油流路溝であることを特徴とする前記1記載のバランスシャフト用フリクションダンパー。
 本発明によれば、リップ摺動面のトルク低下を防止しつつ、潤滑油の軸方向の流路を確保して安定的に流通させることができるバランスシャフト用フリクションダンパーを提供することができる。
本発明に係るバランスシャフト用フリクションダンパーの一例を示す一部切欠き俯瞰説明図 図1のA-A線断面説明図 図1、図2に示すフリクションダンパーを装着した状態を示すバランスシャフトの部分断面図 本発明に係るバランスシャフト用フリクションダンパーの他の一例を示す一部切欠き俯瞰説明図 図4のB-B線断面説明図 従来例に係るバランスシャフト用フリクションダンパーを示す一部切欠き俯瞰説明図 図6のC-C線断面説明図
 以下、本発明に係るバランスシャフト用フリクションダンパー(以下、単にフリクションダンパーと称す。)の実施の形態について、図面を参照しながら説明する。
 図1は、本発明に係るフリクションダンパーの一例を示す一部切欠き俯瞰説明図、図2は、図1のA-A線断面説明図、図3は、図1、図2に示すフリクションダンパーを装着した状態を示すバランスシャフトの部分断面図である。
 図1及び図2に示されるフリクションダンパー1は、金属製の取付環10の内周側に、ゴム状弾性材料で成形された環状の弾性リング材20を有している。
 取付環10は、例えば鋼板などの金属板をプレス成形することにより製作されたものであり、軸方向に延びる円筒部11と、その円筒部11に一体に形成された鍔部12とからなる。鍔部12は、円筒部11の軸方向の一端から径方向内側に延びるように屈曲形成されている。本実施形態において、円筒部11の外周面は、バランスシャフトの軸部100の外周に設けられるギア部200の内周面201(図3参照)に嵌着される嵌合面11aを形成している。
 弾性リング材20は、鍔部12から円筒部11の内周面にかけて、ゴム状弾性材料によって一体に成形されることが好ましい。またゴム状弾性材料は特に限定されないが、圧縮永久歪が小さく、かつ耐摩耗性に優れたものが好ましい。
 弾性リング材20において、取付環10の嵌合面11aと軸方向の反対側に位置する内周面側には、鍔部12側から先端側に行くに従って径方向の内側に向けて傾斜した形状のリップ部21を有している。本実施形態において、このリップ部21の内周面は、バランスシャフトの軸部100の外周面101(図3参照)に対して圧密接されるリップ摺動面21aを形成している。
 そして、本実施形態において、潤滑油が軸方向に流通することを許容する油流路部30が、取付環10の嵌合面11aと弾性リング材20のリップ摺動面21aとの間を軸方向に貫通するように形成されている。具体的には、本実施形態における油流路部30は、取付環10の嵌合面11aと弾性リング材20のリップ摺動面21aとの間において、弾性リング材20と鍔部12とに亘って軸方向に貫通するように形成された油流路孔31によって構成されている。
 本実施形態に示す油流路孔31は、鍔部12をその内周端からほぼ半円形状に切り欠いていると共に、嵌合面11aとリップ摺動面21aとの間の弾性リング材20を軸方向に貫通している。ここで、油流路孔31は、リップ摺動面21aには差し掛かっていないため、潤滑油が油流路孔31からリップ摺動面21aに侵入することはない。これにより、リップ摺動面21aにおける潤滑油の侵入に起因するトルク低下のおそれはない。
 油流路孔31は、フリクションダンパー1の周方向に所定の間隔をおいて複数個形成される。油流路孔31の径は、鍔部12の大きさやフリクションダンパー1に形成される個数と潤滑油の流通量との関係等に応じて適宜決められる。
 油流路孔31は、図1、図2に示すように、フリクションダンパー1の軸方向と平行に貫通させることによって形成することができるが、これに限定されない。例えば、図示しないが、フリクションダンパー1の軸方向に対して周方向に僅かに傾斜するように角度をつけて貫通させることによって形成してもよい。
 かかるフリクションダンパー1は、図3に示すように、エンジンのバランスシャフトの軸部100と該軸部100の外周に設けられたギア部200との間の環状隙間300に装着される。具体的には、取付環10の嵌合面11aがギア部200の内周面201に嵌着して固定され、弾性リング材20のリップ部21がバランスシャフトの軸部100の外周面101に対して径方向に圧縮され、リップ摺動面21aが外周面101に密接される。
 そして、本実施形態において、油流路部30として油流路孔31を形成し、従来のように弾性リング材20のリップ摺動面21aに潤滑油の流路となる切欠き部を形成していない。従って、リップ摺動面21aは、その全面でバランスシャフトの軸部100の外周面101に対して密接することができる。このとき、潤滑油は油流路孔31を通って軸方向に流通するが、油流路孔31はリップ摺動面21aを通っていないため、たとえリップ摺動面21aがバランスシャフトの軸部100の外周面101に対して摺動しても、リップ摺動面21aと外周面101との間に潤滑油が侵入することはない。
 これらのことにより、フリクションダンパー1は、潤滑油の侵入に起因するリップ摺動面21aのトルク低下は防止され、バランスシャフトの軸部100に対して大きなフリクションを得ることができ、ギア部200の回転トルクを軸部100に対して適正に伝達させることができる。
 しかも、油流路孔31は、弾性リング材20と取付環10の鍔部12とに亘って形成されているため、環状隙間300への装着によってリップ部21が径方向に圧縮変形されても、油流路孔31の開口形状は金属製の鍔部12によって保持され、油流路孔31が変形して完全に潰れてしまうようなことはない。従って、装着状態において、油流路孔31によって潤滑油の軸方向の流路を確保でき、潤滑油を安定的に流通させることができる。
 次に、本発明に係るフリクションダンパーの他の一例について説明する。
 図4は、本発明に係るフリクションダンパーの他の一例を示す一部切欠き俯瞰説明図、図5は、図4のB-B線断面説明図である。図1~図3と同一符号の部位は同一構成の部位を示しているため、それらについての説明は図1~図3についての説明を援用し、ここでは省略する。
 本実施形態において、潤滑油が軸方向に流通することを許容する油流路部30は、取付環10に形成されている。従って、この実施形態においても、リップ摺動面21aには潤滑油の流路は形成されない。具体的には、本実施形態における油流路部30は、取付環10の嵌合面11aに形成された油流路溝32によって構成されている。油流路溝32は、取付環10の円筒部11の嵌合面11aに、該円筒部11の軸方向の全長に亘って該円筒部11を横断するように形成されている。
 油流路溝32は、フリクションダンパー1の周方向に所定の間隔をおいて複数個形成される。溝幅は、フリクションダンパー1に形成される個数と潤滑油の流通量との関係等に応じて適宜決められる。また、溝深さは、取付環10の円筒部11の厚みよりも浅く形成される。このため、取付環10の円筒部11の強度が大きく損なわれるようなことがない。
 油流路溝32は、一般に、取付環10の円筒部11の嵌合面11aに対して溝を研削加工することによって形成されるが、これに限定されない。例えば、円筒部11の外周面に、周方向に分断された複数枚のプレートを、周方向に間隔をあけて接着又は溶接することによって、周方向に隣り合うプレート間の溝部を油流路溝32とするようにしてもよい。なお、この場合、各プレートの外周面によって嵌合面11aが形成される。
 また、油流路溝32は、図4、図5に示すように、フリクションダンパー1の軸方向と平行に延びるように形成することができるが、これに限定されない。例えば、フリクションダンパー1の軸方向に対して周方向に僅かに傾斜するように角度をつけて形成してもよい。
 本実施形態に係るフリクションダンパー1も、図3に示したエンジンのバランスシャフトの軸部100と該軸部100の外周に設けられたギア部200との間の環状隙間300に装着されることで、上記と同様に、潤滑油の侵入に起因するリップ摺動面21aのトルク低下が防止されると共に、油流路溝32によって潤滑油の軸方向の流路を確保でき、潤滑油を安定的に流通させることができる効果を得ることができる。
 油流路溝32は、ギア部200の内周面201に対して摺動することがない金属製の取付環10の嵌合面11aに形成されているので、油流路溝32を流れる潤滑油が嵌合面11aに侵入することはない。しかも、取付環10の嵌合面11aに形成された油流路溝32は、図3に示したように、嵌合面11aがギア部200の内周面201に嵌着されて固定された際でも変形することは全くない。このため、潤滑油の軸方向の流路をより安定的に確保することができる。
 なお、図示しないが、油流路部30は、以上説明した油流路孔31と油流路溝32との両方を、1つのフリクションダンパー1に形成してもよい。これにより、潤滑油のより大きな流路を確保することができる。
 また、上述した各実施形態では、フリクションダンパー1の外周側を取付環10とし、内周側を弾性リング材20としたものを例示したが、フリクションダンパー1の外周側を弾性リング材20とし、内周側を取付環10とすることにより、取付環10の内周面を嵌合面11aとして、バランスシャフト100の外周面101に嵌着されて固定される構成としても良い。
 1:バランスシャフト用フリクションダンパー
  10:取付環
   11:円筒部
   11a:嵌合面
   12:鍔部
  20:弾性リング材
   21:リップ部
   21a:リップ摺動面
  30:油流路部
   31:油流路孔
   32:油流路溝 

Claims (3)

  1.  エンジンのバランスシャフトの軸部と該軸部の外周に設けられたギア部との間の環状隙間に装着され、前記軸部の外周面と前記ギア部の内周面とのいずれか一方に嵌着される嵌合面を有する金属製の取付環と、
     前記取付環にゴム状弾性材料で成形され、前記軸部の外周面と前記ギア部の内周面とのいずれか他方に対して圧接されるリップ摺動面を有する環状の弾性リング材とを備えるバランスシャフト用フリクションダンパーにおいて、
     前記リップ摺動面を除く位置であって、且つ、前記取付環と前記弾性リング材とに亘る位置、及び又は前記取付環に、潤滑油が軸方向に流通することを許容する油流路部を形成したことを特徴とするバランスシャフト用フリクションダンパー。
  2.  前記取付環は、前記嵌合面を形成する軸方向に延びる円筒部と、前記円筒部の軸方向の一端から径方向に延びるように一体に形成された環状の鍔部とを有し、
     前記油流路部は、前記リップ摺動面を除く前記弾性リング材と前記鍔部とに亘って軸方向に貫通するように形成された油流路孔であることを特徴とする請求項1記載のバランスシャフト用フリクションダンパー。
  3.  前記油流路部は、前記取付環の前記嵌合面に形成された油流路溝であることを特徴とする請求項1記載のバランスシャフト用フリクションダンパー。
PCT/JP2015/074746 2014-09-03 2015-08-31 バランスシャフト用フリクションダンパー WO2016035762A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15838148.3A EP3190309A4 (en) 2014-09-03 2015-08-31 Balance shaft friction damper
CN201580047774.2A CN106662205A (zh) 2014-09-03 2015-08-31 平衡轴用摩擦阻尼器
JP2016510527A JPWO2016035762A1 (ja) 2014-09-03 2015-08-31 バランスシャフト用フリクションダンパー
US15/508,336 US20170292585A1 (en) 2014-09-03 2015-08-31 Balance shaft friction damper

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-179430 2014-09-03
JP2014179430 2014-09-03

Publications (1)

Publication Number Publication Date
WO2016035762A1 true WO2016035762A1 (ja) 2016-03-10

Family

ID=55439823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074746 WO2016035762A1 (ja) 2014-09-03 2015-08-31 バランスシャフト用フリクションダンパー

Country Status (5)

Country Link
US (1) US20170292585A1 (ja)
EP (1) EP3190309A4 (ja)
JP (1) JPWO2016035762A1 (ja)
CN (1) CN106662205A (ja)
WO (1) WO2016035762A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019143741A (ja) * 2018-02-22 2019-08-29 トヨタ自動車株式会社 バランサシャフト
JP2021032352A (ja) * 2019-08-26 2021-03-01 光洋シーリングテクノ株式会社 フリクションダンパ

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110822002B (zh) * 2019-12-12 2022-03-11 重庆隆鑫通航发动机制造有限公司 阻尼型防触底减震器及三轮摩托车
CN110925343B (zh) * 2019-12-12 2022-03-11 重庆隆鑫通航发动机制造有限公司 舒适形阻尼防触底减震器及三轮摩托车

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63187747U (ja) * 1987-05-26 1988-12-01
JPH06147296A (ja) * 1992-11-12 1994-05-27 Koyo Shikagoroohaido Kk 歯車伝動装置の噛合打音発生防止装置
JP2000002259A (ja) * 1998-06-16 2000-01-07 Koyo Seiko Co Ltd フリクションダンパ
JP2004204882A (ja) * 2002-12-24 2004-07-22 Koyo Sealing Techno Co Ltd フリクションダンパおよびこれを用いた歯車伝動装置
JP2013217480A (ja) * 2012-04-12 2013-10-24 Nok Corp フリクションダンパ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63187748U (ja) * 1987-05-26 1988-12-01
DE19833525A1 (de) * 1998-07-25 2000-02-17 Bruss Dichtungstechnik Schaltgetriebe
JP3729006B2 (ja) * 1999-11-01 2005-12-21 トヨタ自動車株式会社 動力伝達系のギヤ機構
JP2004162778A (ja) * 2002-11-12 2004-06-10 Koyo Sealing Techno Co Ltd フリクションダンパおよびこれを用いた歯車伝動装置
JP2005299861A (ja) * 2004-04-14 2005-10-27 Tokai Rubber Ind Ltd 液体封入式筒型防振装置
US7862460B2 (en) * 2006-01-25 2011-01-04 Borgwarner Inc. Chain noise damping device
CN102705427B (zh) * 2012-06-12 2013-12-04 中国科学院工程热物理研究所 一种挤压油膜阻尼器
JP5656950B2 (ja) * 2012-10-05 2015-01-21 トヨタ自動車株式会社 ギヤ装置のダンパ構造

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63187747U (ja) * 1987-05-26 1988-12-01
JPH06147296A (ja) * 1992-11-12 1994-05-27 Koyo Shikagoroohaido Kk 歯車伝動装置の噛合打音発生防止装置
JP2000002259A (ja) * 1998-06-16 2000-01-07 Koyo Seiko Co Ltd フリクションダンパ
JP2004204882A (ja) * 2002-12-24 2004-07-22 Koyo Sealing Techno Co Ltd フリクションダンパおよびこれを用いた歯車伝動装置
JP2013217480A (ja) * 2012-04-12 2013-10-24 Nok Corp フリクションダンパ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3190309A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019143741A (ja) * 2018-02-22 2019-08-29 トヨタ自動車株式会社 バランサシャフト
JP7024491B2 (ja) 2018-02-22 2022-02-24 トヨタ自動車株式会社 バランサシャフト
JP2021032352A (ja) * 2019-08-26 2021-03-01 光洋シーリングテクノ株式会社 フリクションダンパ

Also Published As

Publication number Publication date
CN106662205A (zh) 2017-05-10
JPWO2016035762A1 (ja) 2017-07-13
EP3190309A4 (en) 2018-05-30
US20170292585A1 (en) 2017-10-12
EP3190309A1 (en) 2017-07-12

Similar Documents

Publication Publication Date Title
WO2016035762A1 (ja) バランスシャフト用フリクションダンパー
JP6290944B2 (ja) プーリ構造体
JP2017207124A (ja) 車輪用軸受装置
US8770854B2 (en) Rolling element cage
US9062759B2 (en) Pulley device with a damping element
US20130337953A1 (en) Pulley device for an air conditioning compressor
JP2017526883A5 (ja)
JP6490348B2 (ja) プーリユニット
JP2012202471A (ja) ダンパ付プーリ
US8973464B2 (en) Housing with a direct flow path for hardware lubrication
KR102490203B1 (ko) 밀봉 플랜지를 포함한 구름 베어링
US20170370415A1 (en) Rolling-element bearing unit
WO2017169976A1 (ja) シール付軸受
JP2014173733A (ja) スリップヨークアセンブリ
JP2018123846A (ja) カムフォロア
WO2016133148A1 (ja) プーリ構造体
JP2017053367A (ja) 動力伝達構造
JP2015094376A (ja) ローラ型ワンウェイクラッチ及び側板
US9689461B2 (en) Damper assebmly sealing arrangement
US9765820B2 (en) High speed two-piece deep groove ball bearing cage with integral lubricant reservoir
WO2011142217A1 (ja) 両シール付き玉軸受
WO2016147881A1 (ja) 保持器および転がり軸受
CN105526265A (zh) 一种防尘的深沟球轴承
JP4893997B2 (ja) 一方向クラッチ
US11193542B2 (en) Sealed universal joint bearing and universal joint bearing assembly

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016510527

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15838148

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15508336

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015838148

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015838148

Country of ref document: EP