Nothing Special   »   [go: up one dir, main page]

WO2016035490A1 - Throwaway tip - Google Patents

Throwaway tip Download PDF

Info

Publication number
WO2016035490A1
WO2016035490A1 PCT/JP2015/071765 JP2015071765W WO2016035490A1 WO 2016035490 A1 WO2016035490 A1 WO 2016035490A1 JP 2015071765 W JP2015071765 W JP 2015071765W WO 2016035490 A1 WO2016035490 A1 WO 2016035490A1
Authority
WO
WIPO (PCT)
Prior art keywords
throw
range
away tip
chip
cutting
Prior art date
Application number
PCT/JP2015/071765
Other languages
French (fr)
Japanese (ja)
Inventor
裕士 友田
泰幸 金田
邦茂 田中
Original Assignee
住友電工ハードメタル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工ハードメタル株式会社 filed Critical 住友電工ハードメタル株式会社
Priority to MX2016004989A priority Critical patent/MX2016004989A/en
Priority to EP15838053.5A priority patent/EP3189917B1/en
Priority to KR1020167010583A priority patent/KR20170047190A/en
Priority to JP2016518788A priority patent/JP6603955B2/en
Priority to US15/027,394 priority patent/US10286455B2/en
Priority to CN201580002409.XA priority patent/CN105682833B/en
Publication of WO2016035490A1 publication Critical patent/WO2016035490A1/en
Priority to PH12016500616A priority patent/PH12016500616B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/18Cutting tools of which the bits or tips or cutting inserts are of special material with cutting bits or tips or cutting inserts rigidly mounted, e.g. by brazing
    • B23B27/20Cutting tools of which the bits or tips or cutting inserts are of special material with cutting bits or tips or cutting inserts rigidly mounted, e.g. by brazing with diamond bits or cutting inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/141Specially shaped plate-like cutting inserts, i.e. length greater or equal to width, width greater than or equal to thickness
    • B23B27/143Specially shaped plate-like cutting inserts, i.e. length greater or equal to width, width greater than or equal to thickness characterised by having chip-breakers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/22Cutting tools with chip-breaking equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2200/00Details of cutting inserts
    • B23B2200/04Overall shape
    • B23B2200/0447Parallelogram
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2200/00Details of cutting inserts
    • B23B2200/08Rake or top surfaces
    • B23B2200/086Rake or top surfaces with one or more grooves
    • B23B2200/087Rake or top surfaces with one or more grooves for chip breaking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2226/00Materials of tools or workpieces not comprising a metal
    • B23B2226/31Diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2226/00Materials of tools or workpieces not comprising a metal
    • B23B2226/31Diamond
    • B23B2226/315Diamond polycrystalline [PCD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/04Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner applied by chemical vapour deposition [CVD]

Definitions

  • the present invention relates to a throw-away tip, and more particularly, to a throw-away tip having a blade portion containing diamond.
  • a chip breaker such as a breaker groove or a breaker wall is formed in order to improve chip disposal during cutting.
  • Patent Document 1 Japanese Patent Laid-Open No. 4-217404 (Patent Document 1), Japanese Patent Laid-Open No. 4-217405 (Patent Document 2) and Japanese Patent Laid-Open No. 4-217406 (Patent Document 3), the surface roughness of a chip breaker is defined to provide a chip.
  • Patent Document 2 Japanese Patent Laid-Open No. 4-217404
  • Patent Document 3 Japanese Patent Laid-Open No. 4-217405
  • Patent Document 3 Japanese Patent Laid-Open No. 4-217406
  • Patent Documents 1 to 3 since the chip breaker is formed by electric discharge machining or polishing, the shape of the chip breaker is a simple groove shape. For this reason, depending on the processing conditions, the chips cannot be curled in a spiral shape, and a desired chip disposal property cannot be obtained. Further, when the chip breaker is formed by electric discharge machining, the rake face of the blade part of the chip breaker becomes the electric discharge machining surface, and therefore the cutting edge of the blade part cannot be formed sharply. Therefore, when the throw-away inserts disclosed in Patent Documents 1 to 3 are used, there is a problem that the finished surface roughness of the work material deteriorates.
  • diamond is used for the blade to improve the strength and wear resistance of the throw-away tip.
  • diamond has high hardness, there is a problem that it is difficult to process and it is difficult to form a chip breaker excellent in chip disposal.
  • an object of the present invention is to provide a throw-away tip having a cutting edge containing diamond and having excellent chip disposal.
  • a throw-away tip includes a main body and a blade portion having a cutting edge provided in the main body, the blade portion including 80% by volume or more of diamond, A land surface extending along the cutting edge; and a chip breaker having a recess positioned on the opposite side of the cutting edge when viewed from the land surface, and the side surface of the recess has a distance from the land surface. It has a rake face that has the same shape as a part of the side face of the rotating body shape that continuously retreats with its size.
  • FIG. 4 is a cross-sectional view taken along line A-A ′ of FIG. 3.
  • FIG. 4 is a sectional view taken along line B-B ′ of FIG. 3.
  • a throw-away tip includes (1) a main body and a blade portion having a cutting edge provided in the main body, the blade portion including 80% by volume or more of diamond, and the blade The portion includes a land surface extending along the cutting edge, and a chip breaker having a recess positioned on the opposite side of the cutting edge when viewed from the land surface, and the side surface of the recess is formed from the land surface. It is a throw-away tip having an inclined surface having the same shape as a part of the side surface of the rotating body, which continuously retreats with the size of the distance.
  • the throw-away tip according to an aspect of the present invention includes a tip breaker having a recessed portion as a blade portion, and the side surface of the recessed portion is continuously retracted according to the distance from the land surface.
  • a tip breaker having a rake face that has the same shape as a part of the chip, chips flow out toward the bottom of the rake face along the rake face of the chip breaker when cutting the work material. it can. Therefore, the throw-away tip according to one aspect of the present invention can exhibit excellent chip disposal under various cutting conditions.
  • the throw-away tip according to one embodiment of the present invention has excellent strength and wear resistance of the blade portion because the blade portion contains 80% by volume or more of diamond.
  • the inclination angle of the rake face with respect to the land face is preferably in the range of 15 ° to 50 °. According to this, since chips are likely to flow out along the rake face during cutting, the chip disposal of the throw-away tip is improved. Furthermore, since the strength of the blade edge of the blade portion can be maintained, the tool life of the throw-away tip is also increased.
  • the angle of inclination of the rake face with respect to the land surface is defined as the rake face between the surface assumed when the land surface is extended to the upper part of the recess (hereinafter also referred to as “the top surface of the recess”). It means the sharp corner.
  • the land surface preferably has a width in a direction perpendicular to the cutting edge in a range of 10 ⁇ m to 100 ⁇ m. According to this, since it is possible to prevent chips from running on the land surface during cutting, chip disposal of the throw-away tip is improved. Furthermore, since the strength of the blade edge of the blade portion can be maintained, the tool life of the throw-away tip is also increased.
  • the direction perpendicular to the cutting edge means a direction perpendicular to the cutting edge and along a straight line located on the land surface. When the cutting edge is a curve, it means a direction that is perpendicular to the tangent to the curve and along a straight line located on the land surface.
  • the recess preferably has a maximum depth in the range of 60 ⁇ m to 300 ⁇ m. According to this, since the distortion can be effectively applied to the chips during cutting, the chip disposability of the throw-away tip is improved.
  • the said recessed part is the range whose width of a perpendicular direction is 0.2 mm or more and 1.0 mm or less with respect to the said cutting edge. According to this, chips that have flowed out during cutting rise on the upper surface of the blade part from the rear end of the rake face of the recess of the chip breaker without climbing on the upper surface of the blade part (hereinafter also referred to as “breaker wall surface”). ) And the chips are easily shredded, so that the chip disposal of the throw-away tip is improved.
  • the blade portion has a corner
  • the concave portion has a convex portion formed along a bisector of the corner angle on a side surface of the concave portion
  • the height of the convex portion is The range is preferably 20% or more and 80% or less with respect to the maximum depth of the recess. According to this, the chips that have flowed out during cutting collide with the protrusions without riding on the protrusions, and the chips are easily shredded, so that the chip disposal of the throw-away tip is improved.
  • the convex portion has a cross-sectional shape in which the width increases in the depth direction of the concave portion when viewed in a cross section having a bisector of the corner angle as a normal line.
  • the minimum value in the width direction is preferably in the range of 5 ⁇ m to 40 ⁇ m. According to this, the chips that have flowed out during cutting collide with the protrusions without riding on the protrusions, and the chips are easily shredded, so that the chip disposal of the throw-away tip is improved.
  • the convex portion has a length in a direction along a bisector of the corner angle in a range of 0.2 mm to 1.0 mm. According to this, the chips that have flowed out during the cutting easily collide with the convex portion, and the chips are easily shredded, so that the chip disposal of the throw-away tip is improved.
  • the land surface has a surface roughness in the range of 0.05 ⁇ m to 0.2 ⁇ m
  • the rake surface has a surface roughness in the range of 2 ⁇ m to 7 ⁇ m.
  • the diamond is preferably a single crystal diamond synthesized by a gas phase synthesis method. Since single crystal diamond is excellent in strength and wear resistance, the throw-away tip can have excellent wear resistance and sharpness of the cutting edge (sharpness).
  • the single crystal diamond is preferably a wavelength in the range absorption coefficient of 2 cm -1 or more 90cm -1 or less with respect to 11000nm following laser light over 190 nm.
  • the absorption coefficient of single crystal diamond is in the range of 2 cm ⁇ 1 or more and 90 cm ⁇ 1 or less, single crystal diamond easily absorbs laser light. Therefore, laser processing of single crystal diamond is easy, a chip breaker having a desired shape can be formed on the blade, and chip throwability of the throw-away chip is improved.
  • FIG. 1 is a perspective view of a throw-away tip 1 according to an embodiment of the present invention.
  • FIG. 2 is an enlarged perspective view of the blade portion 3 of the throw-away tip 1 shown in FIG.
  • FIG. 3 is an enlarged top view of the blade portion 3 of the throw-away tip 1 shown in FIG. 4 is a cross-sectional view taken along the line A-A ′ of FIG.
  • FIG. 5 is a cross-sectional view taken along line B-B ′ of FIG.
  • the throw-away tip 1 of the present embodiment includes a main body 2 and a blade portion 3 provided on the main body 2. 1 has a parallelogram shape in plan view, but the shape is not particularly limited.
  • the blade portion 3 is provided at one corner among the plurality of corners of the main body 2, but the blade portion 3 may be provided at two or more corners.
  • the corner on the upper surface of the main body 2 has a notch for fixing the blade 3.
  • the notch is formed by opening the upper side and the side of the corner.
  • the notch has a bottom surface having a triangular shape in top view and a side wall that rises vertically from the bottom surface.
  • the blade 3 is fixed to the notch of the main body 2.
  • the blade portion 3 connects the substantially triangular upper surface 31 having the same top view shape as the bottom surface of the cutout portion, the bottom surface having the same shape as the upper surface 31 facing the upper surface 31, and the outer periphery of the upper surface 31 and the outer periphery of the bottom surface 31.
  • Side surface 32 Of the side surfaces 32, the surface located above the corner of the main body constitutes a relief surface 33 of the throw-away tip.
  • the side formed by the ridge line at the position where the upper surface 31 and the side surface 32 of the blade part 3 intersect constitutes the cutting edge 4.
  • the chip breaker 9 is formed on the blade portion 3 so as to extend along the ridge line at the position where the upper surface 31 and the side surface 32 of the blade portion 3 intersect.
  • the chip breaker 9 includes a recess 7 formed along the cutting edge 4.
  • the blade part 3 contains 80% by volume or more of diamond. Since diamond is excellent in strength and wear resistance, the blade portion containing diamond has excellent strength and wear resistance, and can improve the tool life of the chip breaker.
  • the diamond content of the blade part 3 is preferably 90% by volume or more, and more preferably 95% by volume or more.
  • a diamond sintered body obtained by sintering diamond powder or a single crystal diamond synthesized by a vapor phase synthesis method can be used.
  • CVD Chemical Vapor Deposition
  • the blade portion has excellent wear resistance particularly in processing of a non-ferrous metal, and a good finished surface can be obtained.
  • the single crystal diamond synthesized by the gas phase synthesis method is used for the blade portion 3, the blade portion can have excellent wear resistance and sharpness of the blade edge (sharpness).
  • the laser wavelength at 11000nm a wavelength range of not less than 190 nm, the absorption coefficient in the range of 2 cm -1 or more 90cm -1 or less.
  • the absorption coefficient of the single crystal diamond is within the above range, the laser beam can be easily absorbed, so that the laser processing of the blade portion 3 is easy. Therefore, the outer shape of the blade portion 3 can be processed into a desired shape, and the chip breaker can be accurately formed on the blade portion 3.
  • the absorption coefficient of the single crystal diamond is more preferably in the range of 5 cm ⁇ 1 to 20 cm ⁇ 1 .
  • the absorption coefficient of single crystal diamond is more preferably in the range of 30 cm ⁇ 1 to 70 cm ⁇ 1 .
  • the absorption coefficient of single crystal diamond is more preferably in the range of 60 cm ⁇ 1 to 90 cm ⁇ 1 .
  • a land surface 5 extending along the cutting edge 4 is formed on the upper surface 31 of the blade portion 3.
  • land surface 5 has a constant width W ⁇ b> 1 perpendicular to cutting edge 4 and in the center direction of upper surface 31.
  • the width W1 of the land surface 5 is preferably in the range of 10 ⁇ m to 100 ⁇ m. When the width W1 of the land surface 5 is 10 ⁇ m or more, the strength of the blade edge of the blade portion can be maintained, so that chipping (chipping) of the blade edge can be prevented and the tool life of the throw-away tip is increased.
  • the width W1 of the land surface 5 is 100 ⁇ m or less, it is possible to prevent chips from riding on the land surface during cutting and to increase the length of the chips, so that the chip disposal of the throw-away tip is improved.
  • the width W1 of the land surface 5 is more preferably 10 ⁇ m or more and 70 ⁇ m or less.
  • the land surface 5 preferably has a surface roughness in the range of 0.05 ⁇ m to 0.2 ⁇ m. According to this, since the cutting edge of a blade part can be formed sharply, the finished surface roughness of a work material becomes favorable.
  • the surface roughness is a ten-point average height (Rz). Specifically, in the part where only the reference length is extracted from the cross-sectional curve, the value of the difference between the average value of the highest altitude at the top from the fifth and the average value of the altitude at the bottom from the deepest to the fifth is obtained. It is a value expressed in micrometers ( ⁇ m).
  • the surface roughness of the land surface 5 is more preferably in the range of 0.08 ⁇ m to 0.15 ⁇ m.
  • a chip breaker 9 having a concave portion 7 is formed on the upper surface 31 of the blade portion 3 on the side opposite to the cutting edge 4 when viewed from the land surface 5.
  • the concave portion 7 indicates a portion of the chip breaker 9 formed along the cutting edge 4 near the corner.
  • the side surface forming the outer extension of the recess 7 includes a rake face 6 that continuously retreats from the land surface 5 in accordance with the distance from the land face 3 toward the center, and the rake face 6 from the rear end of the rake face 6. And a breaker wall surface 16 rising toward the upper surface 31. According to this, the chips that have flowed out during cutting of the work material first flow out along the rake face 6 toward the bottom of the rake face 6.
  • the chips are distorted and the chips are easily shredded. Thereafter, the chips that have reached the bottom of the rake face 6 collide with the breaker wall surface 16. At this time, the chips are shredded by collision. Or it is shredded by being distorted by chips.
  • the rake face 6 has the same shape as a part of the side face of the rotating body shape. According to this, in the concave portion 7 of the blade portion 3, when cutting the work material, the chip flows out along the rake face 6 of the chip breaker toward the bottom of the rake face 6, which may give large distortion to the chip. it can.
  • the rotator shape means a solid formed by rotating a plane figure around a straight line on the plane as an axis. Examples of the shape of the rotating body include a sphere and a cone. When the axis of the rotating body is on the bisector of the corner angle of the blade part 3, the chips flow out in the maximum depth direction at the bottom located below the bisector of the corner angle, and therefore the larger the chips. Can be distorted.
  • the shape of the rake face 6 is preferably the same shape as a part of the side face of the cone. According to this, the strength of the cutting edge can be maintained.
  • the inclination angle ⁇ of the rake face 6 with respect to the land face 5 is preferably in the range of 15 ° to 50 °. According to this, since chips are likely to flow out along the rake face during cutting, the chip disposal of the throw-away tip is improved. Furthermore, since the strength of the blade edge of the blade portion can be maintained, the tool life of the throw-away tip is also increased.
  • the inclination angle ⁇ of the rake face 6 with respect to the land surface 5 refers to a face 15 assumed when the land face 5 is extended to the top of the recess (hereinafter also referred to as “the top surface of the recess”), and the rake face. Among the angles formed with 6, it means an acute angle.
  • the inclination angle ⁇ of the rake face 6 with respect to the land face 5 is more preferably 20 ° or more and 40 ° or less.
  • the surface roughness of the rake face 6 is preferably in the range of 2 ⁇ m to 7 ⁇ m. According to this, since the resistance when the chips that flow out during cutting scrape the surface of the rake face increases, the chips are likely to curl and the chip disposal of the throw-away tip is improved.
  • the surface roughness is a ten-point average height (Rz).
  • the surface roughness of the rake face 6 is more preferably in the range of not less than 3.0 ⁇ m and not more than 6.0 ⁇ m.
  • the recess 7 has a maximum depth D in the range of 60 ⁇ m to 300 ⁇ m. According to this, since the distortion can be effectively applied to the chips during cutting, the chip disposability of the throw-away tip is improved.
  • the maximum depth D of the recess 7 means the maximum value of the distance from the surface 15 (the top surface of the recess) assumed when the land surface 5 is extended to the top of the recess to the bottom of the recess. .
  • the maximum depth D of the recess 7 is more preferably in the range of 60 ⁇ m to 200 ⁇ m.
  • the recess 7 has a width W2 in the direction perpendicular to the cutting edge 4 (hereinafter also referred to as “the width of the recess”) W2 in the range of 0.2 mm to 1.0 mm. .
  • the width W2 in the direction perpendicular to the cutting edge 4 is the land surface side of the opening of the recess in the direction perpendicular to the cutting edge 4 and along a straight line located on the top surface of the recess.
  • vertical direction with respect to the cutting edge 4 has the more preferable range which is 0.25 mm or more and 0.7 mm or less.
  • a convex portion 8 is formed on the side surface of the concave portion 7 along the bisector (BB ′) of the corner angle of the blade portion 3. .
  • tip which flowed away at the time of cutting of a workpiece collides with the convex part 8, and a chip
  • the convex part 8 is formed along the bisector of the corner angle of the blade part 3, the convex part 8 exists on the path through which the chip flows out, so that the chips can be shredded more effectively. can do.
  • the height H of the convex portion 8 is preferably in the range of 20% to 80% with respect to the maximum depth D of the concave portion. According to this, the chips that have flowed out during cutting collide with the projections without riding on the projections 8, and the chips are easily shredded. Moreover, since the wear of the convex part 8 at the time of cutting can be prevented as the height H of the convex part 8 is 80% or less with respect to the maximum depth D of a recessed part, the tool life of a throw-away insert is reduced. become longer.
  • the height H of the convex portion 8 is a cross section in which the convex portion is a normal line with a bisector (BB ′) of the corner angle, and the concave portion passes through a position indicating the maximum depth D.
  • BB ′ bisector
  • the convex portion 8 preferably has a cross-sectional shape in which the width increases in the depth direction of the concave portion when viewed in a cross section having a bisector of the corner angle as a normal line.
  • the cross-sectional shape of the convex portion 8 can be, for example, a triangle or a trapezoid.
  • the minimum value in the width direction W3 of the cross-sectional shape of the convex portion (hereinafter also referred to as “minimum width of the convex portion”) is preferably in the range of 5 ⁇ m to 40 ⁇ m.
  • the minimum value in the width direction W3 of the cross-sectional shape of the protrusion is more preferably 10 ⁇ m or more and 20 ⁇ m or less.
  • the convex portion 8 preferably has a length W5 in the direction along the bisector of the corner angle in the range of 0.2 mm to 1.0 mm. According to this, the chips that have flowed out during the cutting easily collide with the convex portion, and the chips are easily shredded, so that the chip disposal of the throw-away tip is improved.
  • the length W5 in the direction along the bisector of the corner angle of the convex portion 8 is more preferably 0.25 mm or more and 0.7 mm or less.
  • a main body 2 having a notch and a blade 3 containing 80% by volume or more of diamond are prepared.
  • the blade is brazed to the notch of the main body, and the blade is polished with a diamond grindstone.
  • the surface of the blade portion 3 is processed with a high-power pulse laser to form the chip breaker 9.
  • the shape of the chip breaker has been limited to a simple shape.
  • the shape of the chip breaker can be set to a desired shape.
  • the shape of the recess 7 of the chip breaker existing along the cutting edge 4 can be adjusted precisely, the chip disposal performance of the throw-away chip can be improved.
  • Example 1 In this example, the influence of the shape of the rake face of the recess on the chip disposal and the flank wear amount during cutting was examined.
  • a blade portion made of a polycrystalline hard sintered body containing 90% by volume of diamond having an average particle diameter of 0.5 ⁇ m or less is brazed to the corner of the main body as shown in FIG. The surface was polished.
  • Samples 1A did not have a chip breaker on the rake face, and the chips were not divided and the chips were wound around the work material.
  • Samples 1B to 1G had a rake face shape that was part of a ball shape (spherical) or a conical shape, and had a chip length of 300 mm or less, resulting in good chip disposal.
  • Samples 1D to 1F have a conical rake face shape, an inclination angle of the rake face with respect to the land surface of 15 ° to 50 °, a chip length of 30 to 50 mm, and particularly good chip disposal. Met.
  • the rake face has a conical shape, the inclination angle of the rake face with respect to the land face is 60 °, and the chip length is as good as 30 to 50 mm. However, when the cutting distance is 10 km, chipping occurs at the cutting edge. Occurred.
  • the rake face has a ball shape and the chip length is as good as 50 to 100 mm, but chipping occurred at the cutting edge at a cutting distance of 10 km.
  • the chip length is 300 mm or less, and good chip disposal is obtained.
  • the chip length is 30 to 50 mm.
  • Example 2 The effect of the width W1 of the land surface on the chip disposability and the flank wear amount during cutting was investigated.
  • the tool was produced in the same manner as in Example 1.
  • Various samples with the land surface width changed as shown in Table 2 were prepared, and chip disposal was evaluated. Cutting conditions and tool shapes are shown below. In this evaluation, chips having a length in the range of 5 mm to 300 mm were determined to be good.
  • Samples 2B to 2F had chip breakers, and the chips were divided to a length of 300 mm or less.
  • Sample 2B to Sample 2E had a land surface width in the range of 5 to 100 ⁇ m, a chip length of 50 to 150 mm, and chip disposal was particularly good.
  • Sample 2B had a land surface width of 5 ⁇ m, and chipping occurred at the cutting edge at a cutting distance of 10 km.
  • the rake face has a chip breaker, so that the chips are divided to a length of 300 mm or less.
  • the width of the land surface is in the range of 10 to 100 ⁇ m, it has been found that the throw-away tip exhibits good chip disposal and stable durability.
  • Example 3 The effects of the maximum depth (D) of the recess and the width (W2) of the recess on the chip disposal and the flank wear amount during the cutting process were examined.
  • Each sample shown in Table 3 was produced in the same manner as in Example 1.
  • the recess shape of the chip breaker of each sample was made similar.
  • Various samples in which the maximum depth and width of the recesses were changed as shown in Table 3 were prepared, and chip disposal was evaluated. Cutting conditions and tool shapes are shown below. In this evaluation, chips having a length in the range of 5 mm to 300 mm were determined to be good.
  • Samples 3A did not have a chip breaker on the rake face, and the chips were not divided.
  • Samples 3B to 3G had a chip breaker, and the chip length was 300 mm or less.
  • samples 3C to 3F have a maximum recess depth of 0.06 mm to 0.30 mm, a recess width of 0.20 mm to 1.00 mm, a chip length of 200 mm or less, and particularly good chip disposal. Met.
  • Example 4 The influence which the height (H) of the convex part 8 has on the chip disposability at the time of cutting was investigated. Each sample shown in Table 4 was produced in the same manner as in Example 1. Performance evaluation was performed under the following cutting conditions and tool shape.
  • Sample 4A did not have a chip breaker on the rake face, and the chips were not divided.
  • Samples 4B to 4F had a chip breaker and had a chip length of 300 mm or less.
  • Samples 4C to 4F had a protrusion height (H) of 0.02 to 0.10 mm, a chip length of 200 mm or less, and the chip disposal was particularly good.
  • H protrusion height
  • Example 5 The effect of the cross-sectional shape of the convex portion on the chip disposal during cutting was investigated. Each sample shown in Table 5 was produced in the same manner as in Example 1. Performance evaluation was performed under the following cutting conditions and tool shape.
  • Sample 5A did not have a chip breaker on the rake face, and the chips were not divided.
  • Samples 5B to 5G had a chip breaker, and the chip length was 300 mm or less.
  • Samples 5D to 5F had a trapezoidal cross-sectional shape, a top surface width (W3) of 5 ⁇ m to 40 ⁇ m, chips of 50 to 150 mm in length, and chip disposal was particularly good.
  • the shape of the convex part has the same cross-sectional shape in the direction of the bisector of the tool corner angle.
  • the recess width (W2) needs to be in the range of 0.20 to 1.0 mm in order to exhibit good chip disposal, and is shown in Example 4.
  • the height (H) of the convex portion needs to be 20 to 80% of the maximum depth (D) of the concave portion. Therefore, the length (W5) in the direction of the bisector of the corner of the convex portion needs to be equal to or less than the width (W2) of the concave portion.
  • the convex portion has a trapezoidal cross-sectional shape
  • the width direction minimum value (W3) is in the range of 5 ⁇ m to 40 ⁇ m
  • the length (W5) of the convex portion in the bisector direction is 0.2 mm. It has been found that particularly good chip treatment is exhibited when the thickness is in the range of 20 to 1.0 mm.
  • Example 6 The effect of the surface roughness (Rz1) of the rake face on the chip disposal during cutting was investigated. As shown in Table 6, each sample was processed with a chip breaker under various laser processing conditions to change the surface roughness of the rake face. Performance evaluation was performed under the following cutting conditions and tool shape.
  • Sample 6A did not have a chip breaker on the rake face, and the chips were not divided.
  • Samples 6B to 6G had a chip breaker, and the chip length was 300 mm or less.
  • Samples 6C to 6G had a rake face roughness Rz1 of Rz 2.0 ⁇ m or more, a chip length of 50 to 150 mm, and particularly excellent chip disposal. This is because as the surface roughness Rz1 of the rake face becomes rougher, the resistance when the chips are scraped increases, and the chips curl smaller. However, if the surface roughness of the rake face is too large, the welding of the work material to the rake face also increases. Therefore, although the chip disposal is good as in the sample 6G, the finished surface roughness is deteriorated in some cases. .
  • Example 7 The influence of the surface roughness (Rz2) of the land surface on the chip disposal and the finished surface roughness during cutting was investigated. As shown in Table 7, the surface roughness of the processed surface of the land surface was changed by forming the land surface with various lapping times as shown in Table 7. Performance evaluation was performed under the following cutting conditions and tool shape.
  • Samples 7A to 7E had a chip breaker and had a chip length of 100 mm or less. However, if the surface roughness of the land surface is too large, the sharpness of the cutting edge is deteriorated. Therefore, although the chip treatment is good like the sample 7E, the finished surface roughness is deteriorated depending on the case. On the other hand, if the land surface roughness Rz2 is to be set to about Rz 0.01 ⁇ m like the sample 7A, lapping is required for 10 hours or more, which is not economical.
  • the chip length is 150 mm or less. It turned out to be particularly good.
  • Example 8 The effects of tool material on chip disposal and flank wear during cutting were investigated. Three types of materials shown in Table 8 were used as the tool material.
  • the chip breaker was produced by laser processing under the following processing conditions. Performance evaluation was performed under the following cutting conditions and tool shape.
  • the polycrystalline hard sintered body used for Samples 8A and 8B and the single crystal diamond synthesized by CVD used for Sample 8C have an absorptance of 2 cm ⁇ 1 or more, and can be laser processed.
  • the absorption coefficient of the single crystal diamond of Sample 8D was 0.01 cm ⁇ 1 or less, and laser processing was not possible.
  • Sample 8A did not have a chip breaker on the rake face, and chips were not divided.
  • Samples 8B and 8C had a chip breaker, had a chip length of 50 to 150 ⁇ m, and had good chip disposal.
  • Sample 8C uses CVD single crystal diamond, the flank wear amount when cutting 10 km is 0.008 mm, and the wear amount is significantly smaller than those of Sample 8A and Sample 8B using a polycrystalline hard sintered body. As a result.
  • the throw-away tip of the present embodiment is useful when used for tools for turning aluminum alloys and non-ferrous metals and for milling.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Milling Processes (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Crushing And Pulverization Processes (AREA)

Abstract

Provided is a throwaway tip equipped with a diamond-containing blade section and excellent chip-processability. The throwaway tip is provided with a main body and a blade section provided on the main body and having a cutting edge. The blade section comprises at least 80 volume% of diamond. The blade section comprises a land surface extending along the cutting edge and a chip breaker with a recess located on the side opposite the cutting edge when viewed from the land surface. The side surface of the recess has a slanted surface that recedes continuously as distance from the land surface increases and has the same shape as a portion of the side surface of a solid of revolution.

Description

スローアウェイチップThrowaway tip
 本発明は、スローアウェイチップに関し、より特定的には、ダイヤモンドを含む刃部を備えるスローアウェイチップに関する。 The present invention relates to a throw-away tip, and more particularly, to a throw-away tip having a blade portion containing diamond.
 スローアウェイチップには、切削時の切屑処理性を高めるために、ブレーカ溝やブレーカ壁などのチップブレーカが形成されている。 In the throw-away tip, a chip breaker such as a breaker groove or a breaker wall is formed in order to improve chip disposal during cutting.
 たとえば、特開平4-217404(特許文献1)、特開平4-217405(特許文献2)及び特開平4-217406(特許文献3)には、チップブレーカの表面粗さを規定することにより、切屑を渦巻き状にカールさせる技術が開示されている。 For example, in Japanese Patent Laid-Open No. 4-217404 (Patent Document 1), Japanese Patent Laid-Open No. 4-217405 (Patent Document 2) and Japanese Patent Laid-Open No. 4-217406 (Patent Document 3), the surface roughness of a chip breaker is defined to provide a chip. A technique for curling the material in a spiral shape is disclosed.
特開平4-217404JP-A-4-217404 特開平4-217405JP-A-4-217405 特開平4-217406JP-A-4-217406
 特許文献1~3では、チップブレーカを放電加工あるいは研磨加工により形成するため、チップブレーカの形状は単純な溝状の形状となる。このため、加工条件によっては、切屑を渦巻き状にカールさせることができず、所望の切屑処理性を得ることができない。また、チップブレーカを放電加工で形成した場合、チップブレーカの刃部のすくい面が放電加工面となるため、刃部の切れ刃をシャープに形成することができない。したがって、特許文献1~3に開示されたスローアウェイチップを用いた場合、被削材の仕上げ面粗さが悪化するという問題があった。 In Patent Documents 1 to 3, since the chip breaker is formed by electric discharge machining or polishing, the shape of the chip breaker is a simple groove shape. For this reason, depending on the processing conditions, the chips cannot be curled in a spiral shape, and a desired chip disposal property cannot be obtained. Further, when the chip breaker is formed by electric discharge machining, the rake face of the blade part of the chip breaker becomes the electric discharge machining surface, and therefore the cutting edge of the blade part cannot be formed sharply. Therefore, when the throw-away inserts disclosed in Patent Documents 1 to 3 are used, there is a problem that the finished surface roughness of the work material deteriorates.
 また、スローアウェイチップの強度と耐摩耗性の向上のために、刃部にダイヤモンドを用いる。しかし、ダイヤモンドは高硬度であるため、加工が難しく、切屑処理性に優れたチップブレーカを形成することが困難であるという問題がある。 Also, diamond is used for the blade to improve the strength and wear resistance of the throw-away tip. However, since diamond has high hardness, there is a problem that it is difficult to process and it is difficult to form a chip breaker excellent in chip disposal.
 そこで、本目的は、ダイヤモンドを含む刃部を備え、切屑処理性の優れたスローアウェイチップを提供することを目的とする。 Therefore, an object of the present invention is to provide a throw-away tip having a cutting edge containing diamond and having excellent chip disposal.
 本発明の一態様に係るスローアウェイチップは、本体と、前記本体に設けられた、切れ刃を有する刃部とを備え、前記刃部は、ダイヤモンドを80体積%以上含み、前記刃部は、前記切れ刃に沿って延在するランド面と、前記ランド面から見て前記切れ刃と反対側に位置する凹部を有するチップブレーカとを含み、前記凹部の側面は、前記ランド面からの距離の大きさに伴って連続的に後退する、回転体形状の側面の一部と同一形状のすくい面を有する。 A throw-away tip according to an aspect of the present invention includes a main body and a blade portion having a cutting edge provided in the main body, the blade portion including 80% by volume or more of diamond, A land surface extending along the cutting edge; and a chip breaker having a recess positioned on the opposite side of the cutting edge when viewed from the land surface, and the side surface of the recess has a distance from the land surface. It has a rake face that has the same shape as a part of the side face of the rotating body shape that continuously retreats with its size.
 上記態様によれば、ダイヤモンドを含む刃部を備え、切屑処理性の優れたスローアウェイチップを提供することが可能となる。 According to the above aspect, it is possible to provide a throw-away tip having a blade portion containing diamond and having excellent chip disposal.
本発明の一態様にかかるスローアウェイチップの代表的な構成例を説明する図である。It is a figure explaining the typical structural example of the throw-away tip concerning 1 aspect of this invention. 図1に示すスローアウェイチップの刃部の拡大図である。It is an enlarged view of the blade part of the throw away tip shown in FIG. 図1に示すスローアウェイチップの刃部の上面図である。It is a top view of the blade part of the throw away tip shown in FIG. 図3のA-A’線における断面図である。FIG. 4 is a cross-sectional view taken along line A-A ′ of FIG. 3. 図3のB-B’線における断面図である。FIG. 4 is a sectional view taken along line B-B ′ of FIG. 3.
 [本発明の実施形態の説明]
 最初に本発明の実施態様を列記して説明する。
[Description of Embodiment of the Present Invention]
First, embodiments of the present invention will be listed and described.
 本発明の一態様に係るスローアウェイチップは、(1)本体と、前記本体に設けられた、切れ刃を有する刃部とを備え、前記刃部は、ダイヤモンドを80体積%以上含み、前記刃部は、前記切れ刃に沿って延在するランド面と、前記ランド面から見て前記切れ刃と反対側に位置する凹部を有するチップブレーカとを含み、前記凹部の側面は、前記ランド面からの距離の大きさに伴って連続的に後退する、回転体形状の側面の一部と同一形状の傾斜面を有する、スローアウェイチップである。 A throw-away tip according to an aspect of the present invention includes (1) a main body and a blade portion having a cutting edge provided in the main body, the blade portion including 80% by volume or more of diamond, and the blade The portion includes a land surface extending along the cutting edge, and a chip breaker having a recess positioned on the opposite side of the cutting edge when viewed from the land surface, and the side surface of the recess is formed from the land surface. It is a throw-away tip having an inclined surface having the same shape as a part of the side surface of the rotating body, which continuously retreats with the size of the distance.
 本発明の一態様に係るスローアウェイチップは、刃部が凹部を有するチップブレーカを含み、凹部の側面が、ランド面からの距離の大きさに伴って連続的に後退する、回転体形状の側面の一部と同一形状のすくい面を有することにより、被削材の切削時に、切屑がチップブレーカのすくい面に沿ってすくい面の底部に向かって流出するため、切屑に大きな歪を与えることができる。したがって、本発明の一態様に係るスローアウェイチップは、様々な切削条件下において、優れた切屑処理性を発揮することが可能となる。また、本発明の一態様に係るスローアウェイチップは、刃部がダイヤモンドを80体積%以上含むため、刃部の強度および耐摩耗性が優れている。 The throw-away tip according to an aspect of the present invention includes a tip breaker having a recessed portion as a blade portion, and the side surface of the recessed portion is continuously retracted according to the distance from the land surface. By having a rake face that has the same shape as a part of the chip, chips flow out toward the bottom of the rake face along the rake face of the chip breaker when cutting the work material. it can. Therefore, the throw-away tip according to one aspect of the present invention can exhibit excellent chip disposal under various cutting conditions. In addition, the throw-away tip according to one embodiment of the present invention has excellent strength and wear resistance of the blade portion because the blade portion contains 80% by volume or more of diamond.
 (2)前記ランド面に対する前記すくい面の傾斜角は15°以上50°以下の範囲であることが好ましい。これによると、切削時に切屑がすくい面に沿って流出しやすいため、スローアウェイチップの切屑処理性が向上する。さらに、刃部の刃先の強度を維持することができるため、スローアウェイチップの工具寿命も長くなる。本明細書において、ランド面に対するすくい面の傾斜角とは、ランド面を凹部の上部まで延長した場合に想定される面(以下、「凹部の天面」ともいう)と、すくい面とのなす角のうち、鋭角のものを意味する。 (2) The inclination angle of the rake face with respect to the land face is preferably in the range of 15 ° to 50 °. According to this, since chips are likely to flow out along the rake face during cutting, the chip disposal of the throw-away tip is improved. Furthermore, since the strength of the blade edge of the blade portion can be maintained, the tool life of the throw-away tip is also increased. In this specification, the angle of inclination of the rake face with respect to the land surface is defined as the rake face between the surface assumed when the land surface is extended to the upper part of the recess (hereinafter also referred to as “the top surface of the recess”). It means the sharp corner.
 (3)前記ランド面は、前記切れ刃に対して垂直方向の幅が、10μm以上100μm以下の範囲であることが好ましい。これによると、切削時に切屑がランド面に乗り上げることを防止できるため、スローアウェイチップの切屑処理性が向上する。さらに、刃部の刃先の強度を維持することができるため、スローアウェイチップの工具寿命も長くなる。ここで、切れ刃に対して垂直方向とは、切れ刃に対して垂直、かつ、ランド面上に位置する直線に沿う方向を意味する。なお、切れ刃が曲線の場合は、曲線の接線に対して垂直で、かつ、ランド面上に位置する直線に沿う方向を意味する。 (3) The land surface preferably has a width in a direction perpendicular to the cutting edge in a range of 10 μm to 100 μm. According to this, since it is possible to prevent chips from running on the land surface during cutting, chip disposal of the throw-away tip is improved. Furthermore, since the strength of the blade edge of the blade portion can be maintained, the tool life of the throw-away tip is also increased. Here, the direction perpendicular to the cutting edge means a direction perpendicular to the cutting edge and along a straight line located on the land surface. When the cutting edge is a curve, it means a direction that is perpendicular to the tangent to the curve and along a straight line located on the land surface.
 (4)前記凹部は、最大深さが60μm以上300μm以下の範囲であることが好ましい。これによると、切削時に切屑に効果的に歪を与えることができるため、スローアウェイチップの切屑処理性が向上する。 (4) The recess preferably has a maximum depth in the range of 60 μm to 300 μm. According to this, since the distortion can be effectively applied to the chips during cutting, the chip disposability of the throw-away tip is improved.
 (5)前記凹部は、前記切れ刃に対して垂直方向の幅が、0.2mm以上1.0mm以下の範囲であることが好ましい。これによると、切削時に流出した切屑が、刃部の上面に乗り上げることなく、チップブレーカの凹部のすくい面の後端から刃部の上面に向かって立ち上がる傾斜面(以下、「ブレーカ壁面」ともいう)に衝突し、切屑が細断されやすくなるため、スローアウェイチップの切屑処理性が向上する。 (5) It is preferable that the said recessed part is the range whose width of a perpendicular direction is 0.2 mm or more and 1.0 mm or less with respect to the said cutting edge. According to this, chips that have flowed out during cutting rise on the upper surface of the blade part from the rear end of the rake face of the recess of the chip breaker without climbing on the upper surface of the blade part (hereinafter also referred to as “breaker wall surface”). ) And the chips are easily shredded, so that the chip disposal of the throw-away tip is improved.
 (6)前記刃部はコーナを有し、前記凹部は、前記凹部の側面に、前記コーナ角の二等分線に沿って形成された凸部を有し、前記凸部の高さは、前記凹部の最大深さに対して20%以上80%以下の範囲であることが好ましい。これによると、切削時に流出した切屑が、凸部に乗り上げることなく凸部に衝突し、切屑が細断されやすくなるため、スローアウェイチップの切屑処理性が向上する。 (6) The blade portion has a corner, the concave portion has a convex portion formed along a bisector of the corner angle on a side surface of the concave portion, and the height of the convex portion is The range is preferably 20% or more and 80% or less with respect to the maximum depth of the recess. According to this, the chips that have flowed out during cutting collide with the protrusions without riding on the protrusions, and the chips are easily shredded, so that the chip disposal of the throw-away tip is improved.
 (7)前記凸部は、前記コーナ角の二等分線を法線とする断面で見た場合に、前記凹部の深さ方向に伴って幅が広がる断面形状を有し、前記断面形状の幅方向の最小値は、5μm以上40μm以下の範囲であることが好ましい。これによると、切削時に流出した切屑が、凸部に乗り上げることなく凸部に衝突し、切屑が細断されやすくなるため、スローアウェイチップの切屑処理性が向上する。 (7) The convex portion has a cross-sectional shape in which the width increases in the depth direction of the concave portion when viewed in a cross section having a bisector of the corner angle as a normal line. The minimum value in the width direction is preferably in the range of 5 μm to 40 μm. According to this, the chips that have flowed out during cutting collide with the protrusions without riding on the protrusions, and the chips are easily shredded, so that the chip disposal of the throw-away tip is improved.
 (8)前記凸部は、前記コーナ角の二等分線に沿う方向の長さが、0.2mm以上1.0mm以下の範囲であることが好ましい。これによると、切削時に流出した切屑が、凸部に衝突しやすく、切屑が細断されやすくなるため、スローアウェイチップの切屑処理性が向上する。 (8) It is preferable that the convex portion has a length in a direction along a bisector of the corner angle in a range of 0.2 mm to 1.0 mm. According to this, the chips that have flowed out during the cutting easily collide with the convex portion, and the chips are easily shredded, so that the chip disposal of the throw-away tip is improved.
 (9)前記ランド面の表面粗さは、0.05μm以上0.2μm以下の範囲であり、前記すくい面の表面粗さは、2μm以上7μm以下の範囲であることが好ましい。ランド面の表面粗さを0.05μm以上0.2μm以下の範囲とすることで、刃部の切れ刃をシャープに形成することができるため、被削材の仕上げ面粗さが良好となる。また、すくい面の表面粗さを2μm以上7μm以下の範囲とすることで、切削時に流出した切屑が、すくい面の表面を擦過する際の抵抗が増大するため、切屑がカールしやすくなり、スローアウェイチップの切屑処理性が向上する。 (9) The land surface has a surface roughness in the range of 0.05 μm to 0.2 μm, and the rake surface has a surface roughness in the range of 2 μm to 7 μm. By setting the surface roughness of the land surface in the range of 0.05 μm or more and 0.2 μm or less, the cutting edge of the blade portion can be formed sharply, and thus the finished surface roughness of the work material becomes good. Also, by setting the surface roughness of the rake face to be in the range of 2 μm or more and 7 μm or less, chips flowing out during cutting increase the resistance when rubbing the surface of the rake face, so that the chips are likely to curl and slow. Chip disposal of away chips is improved.
 (10)前記ダイヤモンドは、気相合成法により合成された単結晶ダイヤモンドであることが好ましい。単結晶ダイヤモンドは強度および耐摩耗性に優れているため、スローアウェイチップは優れた耐摩耗性および刃先の鋭利さ(刃立性)を有することができる。 (10) The diamond is preferably a single crystal diamond synthesized by a gas phase synthesis method. Since single crystal diamond is excellent in strength and wear resistance, the throw-away tip can have excellent wear resistance and sharpness of the cutting edge (sharpness).
 (11)前記単結晶ダイヤモンドは、波長が190nm以上11000nm以下のレーザ光に対する吸収係数が2cm-1以上90cm-1以下の範囲であることが好ましい。単結晶ダイヤモンドの吸収係数が2cm-1以上90cm-1以下の範囲であると、単結晶ダイヤモンドがレーザ光を吸収しやすい。したがって、単結晶ダイヤモンドのレーザ加工が容易であり、刃部に所望の形状のチップブレーカを形成することができ、スローアウェイチップの切屑処理性が向上する。 (11) the single crystal diamond is preferably a wavelength in the range absorption coefficient of 2 cm -1 or more 90cm -1 or less with respect to 11000nm following laser light over 190 nm. When the absorption coefficient of single crystal diamond is in the range of 2 cm −1 or more and 90 cm −1 or less, single crystal diamond easily absorbs laser light. Therefore, laser processing of single crystal diamond is easy, a chip breaker having a desired shape can be formed on the blade, and chip throwability of the throw-away chip is improved.
 [本発明の実施形態の詳細]
 本発明の実施形態にかかるスローアウェイチップの具体例を、以下に図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
[Details of the embodiment of the present invention]
A specific example of the throw-away tip according to the embodiment of the present invention will be described below with reference to the drawings. In addition, this invention is not limited to these illustrations, is shown by the claim, and it is intended that all the changes within the meaning and range equivalent to a claim are included.
 図1は、本発明の一実施形態のスローアウェイチップ1の斜視図である。図2は、図1に示すスローアウェイチップ1の刃部3の拡大斜視図である。図3は、図1に示すスローアウェイチップ1の刃部3の拡大上面図である。図4は、図3のA-A’線における断面図である。図5は、図3のB-B’線における断面図である。 FIG. 1 is a perspective view of a throw-away tip 1 according to an embodiment of the present invention. FIG. 2 is an enlarged perspective view of the blade portion 3 of the throw-away tip 1 shown in FIG. FIG. 3 is an enlarged top view of the blade portion 3 of the throw-away tip 1 shown in FIG. 4 is a cross-sectional view taken along the line A-A ′ of FIG. FIG. 5 is a cross-sectional view taken along line B-B ′ of FIG.
 図1を参照して、本実施形態のスローアウェイチップ1は、本体2と、本体2に設けられた刃部3とを備える。図1のスローアウェイチップ1は、平面視形状が平行四辺形であるが、形状は特に限定されない。図1のスローアウェイチップでは、本体2の複数のコーナのうち、1つのコーナに刃部3が設けられているが、2つ以上のコーナに刃部3を設けてもよい。本体2の材質は、たとえば鋼や超硬合金を用いることができる。本体2の上面のコーナには、刃部3を固着するための切欠き部が形成されている。切欠き部は、コーナの上方および側方を開口させて形成されている。切欠き部は、上面視形状が三角形の底面と、底面から垂直に立ち上がる側壁を有している。 Referring to FIG. 1, the throw-away tip 1 of the present embodiment includes a main body 2 and a blade portion 3 provided on the main body 2. 1 has a parallelogram shape in plan view, but the shape is not particularly limited. In the throw-away tip of FIG. 1, the blade portion 3 is provided at one corner among the plurality of corners of the main body 2, but the blade portion 3 may be provided at two or more corners. As the material of the main body 2, for example, steel or cemented carbide can be used. The corner on the upper surface of the main body 2 has a notch for fixing the blade 3. The notch is formed by opening the upper side and the side of the corner. The notch has a bottom surface having a triangular shape in top view and a side wall that rises vertically from the bottom surface.
 本体2の切欠き部には、刃部3が固着されている。刃部3は、上面視形状が切欠き部の底面と同一の略三角形の上面31と、上面31に対向する上面31と同一形状の底面と、上面31の外周と底面31の外周とをつなぐ側面32とを有する。側面32のうち、本体のコーナの上方に位置する面は、スローアウェイチップの逃げ面33を構成する。 The blade 3 is fixed to the notch of the main body 2. The blade portion 3 connects the substantially triangular upper surface 31 having the same top view shape as the bottom surface of the cutout portion, the bottom surface having the same shape as the upper surface 31 facing the upper surface 31, and the outer periphery of the upper surface 31 and the outer periphery of the bottom surface 31. Side surface 32. Of the side surfaces 32, the surface located above the corner of the main body constitutes a relief surface 33 of the throw-away tip.
 刃部3の上面31の外周を構成する辺のうち、刃部3の上面31と側面32とが交差した位置の稜線によって形成された辺は、切れ刃4を構成する。 Of the sides constituting the outer periphery of the upper surface 31 of the blade part 3, the side formed by the ridge line at the position where the upper surface 31 and the side surface 32 of the blade part 3 intersect constitutes the cutting edge 4.
 刃部3には、チップブレーカ9が、刃部3の上面31と側面32とが交差した位置の稜線に沿って延在して形成されている。チップブレーカ9は、切れ刃4に沿って形成された凹部7を含む。 The chip breaker 9 is formed on the blade portion 3 so as to extend along the ridge line at the position where the upper surface 31 and the side surface 32 of the blade portion 3 intersect. The chip breaker 9 includes a recess 7 formed along the cutting edge 4.
 刃部3は、ダイヤモンドを80体積%以上含む。ダイヤモンドは強度および耐摩耗性に優れているため、ダイヤモンドを含む刃部は、強度および耐摩耗性が優れ、チップブレーカの工具寿命を向上させることができる。刃部3のダイヤモンドの含有量は、90体積%以上が好ましく95体積%以上がさらに好ましい。 The blade part 3 contains 80% by volume or more of diamond. Since diamond is excellent in strength and wear resistance, the blade portion containing diamond has excellent strength and wear resistance, and can improve the tool life of the chip breaker. The diamond content of the blade part 3 is preferably 90% by volume or more, and more preferably 95% by volume or more.
 ダイヤモンドとしては、ダイヤモンド粉末を焼結させたダイヤモンド焼結体や、気相合成法(CVD:Chemincal Vapor Deposition)により合成された単結晶ダイヤモンドを用いることができる。ダイヤモンド焼結体を刃部3に用いると、特に非鉄金属の加工において、刃部は優れた耐摩耗性を有し、良好な仕上げ面を得ることができる。一方、気相合成法により合成された単結晶ダイヤモンドを刃部3に用いると、刃部は優れた耐摩耗性および刃先の鋭利さ(刃立性)を有することができる。 As the diamond, a diamond sintered body obtained by sintering diamond powder or a single crystal diamond synthesized by a vapor phase synthesis method (CVD: Chemical Vapor Deposition) can be used. When a diamond sintered body is used for the blade portion 3, the blade portion has excellent wear resistance particularly in processing of a non-ferrous metal, and a good finished surface can be obtained. On the other hand, when the single crystal diamond synthesized by the gas phase synthesis method is used for the blade portion 3, the blade portion can have excellent wear resistance and sharpness of the blade edge (sharpness).
 単結晶ダイヤモンドは、レーザ波長が190nm以上11000nm以下の波長領域において、吸収係数が2cm-1以上90cm-1以下の範囲であることが好ましい。単結晶ダイヤモンドの吸収係数が前記の範囲であると、レーザ光を吸収しやすいため、刃部3のレーザ加工が容易である。したがって、刃部3の外形を所望の形状に加工したり、刃部3にチップブレーカを精度よく成形することができる。レーザ波長が1064nmの場合、単結晶ダイヤモンドの吸収係数は、5cm-1以上20cm-1以下の範囲がさらに好ましい。レーザ波長が532nmの場合、単結晶ダイヤモンドの吸収係数は、30cm-1以上70cm-1以下の範囲がさらに好ましい。レーザ波長が355nmの場合、単結晶ダイヤモンドの吸収係数は、60cm-1以上90cm-1以下の範囲がさらに好ましい。 Monocrystalline diamond, it is preferable laser wavelength at 11000nm a wavelength range of not less than 190 nm, the absorption coefficient in the range of 2 cm -1 or more 90cm -1 or less. When the absorption coefficient of the single crystal diamond is within the above range, the laser beam can be easily absorbed, so that the laser processing of the blade portion 3 is easy. Therefore, the outer shape of the blade portion 3 can be processed into a desired shape, and the chip breaker can be accurately formed on the blade portion 3. When the laser wavelength is 1064 nm, the absorption coefficient of the single crystal diamond is more preferably in the range of 5 cm −1 to 20 cm −1 . When the laser wavelength is 532 nm, the absorption coefficient of single crystal diamond is more preferably in the range of 30 cm −1 to 70 cm −1 . When the laser wavelength is 355 nm, the absorption coefficient of single crystal diamond is more preferably in the range of 60 cm −1 to 90 cm −1 .
 刃部3の上面31には、切れ刃4に沿って延在するランド面5が形成されている。図5を参照して、ランド面5は、切れ刃4に対して垂直かつ上面31の中央方向へ、一定の幅W1を有している。ランド面5の幅W1は、10μm以上100μm以下の範囲であることが好ましい。ランド面5の幅W1が10μm以上であると、刃部の刃先の強度を維持することができるため、刃先の欠け(チッピング)を防止でき、スローアウェイチップの工具寿命が長くなる。ランド面5の幅W1が100μm以下であると、切削時に切屑がランド面に乗り上げ、切屑が長くなることを防止できるため、スローアウェイチップの切屑処理性が向上する。ランド面5の幅W1は、10μm以上70μm以下がさらに好ましい。 A land surface 5 extending along the cutting edge 4 is formed on the upper surface 31 of the blade portion 3. Referring to FIG. 5, land surface 5 has a constant width W <b> 1 perpendicular to cutting edge 4 and in the center direction of upper surface 31. The width W1 of the land surface 5 is preferably in the range of 10 μm to 100 μm. When the width W1 of the land surface 5 is 10 μm or more, the strength of the blade edge of the blade portion can be maintained, so that chipping (chipping) of the blade edge can be prevented and the tool life of the throw-away tip is increased. When the width W1 of the land surface 5 is 100 μm or less, it is possible to prevent chips from riding on the land surface during cutting and to increase the length of the chips, so that the chip disposal of the throw-away tip is improved. The width W1 of the land surface 5 is more preferably 10 μm or more and 70 μm or less.
 ランド面5は、表面粗さが、0.05μm以上0.2μm以下の範囲であることが好ましい。これによると、刃部の切れ刃をシャープに形成することができるため、被削材の仕上げ面粗さが良好となる。ここで、表面粗さとは、十点平均高さ(Rz)である。具体的には、断面曲線から基準長さだけを抜き取った部分において、最高から5番目までの山頂の標高の平均値と、最深から5番目までの谷底の標高の平均値との差の値をマイクロメートル(μm)で表わした値である。ランド面5の表面粗さは、0.08μm以上0.15μm以下の範囲がさらに好ましい。 The land surface 5 preferably has a surface roughness in the range of 0.05 μm to 0.2 μm. According to this, since the cutting edge of a blade part can be formed sharply, the finished surface roughness of a work material becomes favorable. Here, the surface roughness is a ten-point average height (Rz). Specifically, in the part where only the reference length is extracted from the cross-sectional curve, the value of the difference between the average value of the highest altitude at the top from the fifth and the average value of the altitude at the bottom from the deepest to the fifth is obtained. It is a value expressed in micrometers (μm). The surface roughness of the land surface 5 is more preferably in the range of 0.08 μm to 0.15 μm.
 刃部3の上面31には、ランド面5から見て切れ刃4と反対側に、凹部7を有するチップブレーカ9が形成されている。ここで、凹部7とは、チップブレーカ9のうち、コーナ付近の切れ刃4に沿って形成された部分のことを示す。凹部7の外延を形成する側面は、ランド面5から、刃部3の中央方向に向かう距離の大きさに伴って連続的に後退するすくい面6と、すくい面6の後端から刃部3の上面31に向けて立ち上がるブレーカ壁面16とを含む。これによると、被削材の切削時に流出した切屑は、初めにすくい面6に沿ってすくい面6の底部に向かって流出する。この時、切屑に歪が与えられ、切屑は細断されやすくなる。その後、すくい面6の底部に到達した切屑は、ブレーカ壁面16に衝突する。この時、切屑は衝突により、細断される。または、切り屑により歪が与えられることにより細断される。 A chip breaker 9 having a concave portion 7 is formed on the upper surface 31 of the blade portion 3 on the side opposite to the cutting edge 4 when viewed from the land surface 5. Here, the concave portion 7 indicates a portion of the chip breaker 9 formed along the cutting edge 4 near the corner. The side surface forming the outer extension of the recess 7 includes a rake face 6 that continuously retreats from the land surface 5 in accordance with the distance from the land face 3 toward the center, and the rake face 6 from the rear end of the rake face 6. And a breaker wall surface 16 rising toward the upper surface 31. According to this, the chips that have flowed out during cutting of the work material first flow out along the rake face 6 toward the bottom of the rake face 6. At this time, the chips are distorted and the chips are easily shredded. Thereafter, the chips that have reached the bottom of the rake face 6 collide with the breaker wall surface 16. At this time, the chips are shredded by collision. Or it is shredded by being distorted by chips.
 すくい面6は、回転体形状の側面の一部と同一形状である。これによると、刃部3の凹部7において、被削材の切削時に、切屑がチップブレーカのすくい面6に沿ってすくい面6の底部に向かって流出するため、切屑に大きな歪を与えることができる。ここで、回転体形状とは、平面図形をその平面上の一直線を軸として、その周りに一回転してできる立体のことを意味する。回転体形状としては、たとえば、球、円錐などが挙げられる。回転体形状の軸は、刃部3のコーナ角の二等分線上にあると、切屑がコーナ角の二等分線の下方に位置する底部の最大深さ方向に流出するため、切屑により大きな歪を与えることができる。すくい面6の形状は、円錐の側面の一部と同一形状であることが好ましい。これによると、刃先の強度を維持することができる。 The rake face 6 has the same shape as a part of the side face of the rotating body shape. According to this, in the concave portion 7 of the blade portion 3, when cutting the work material, the chip flows out along the rake face 6 of the chip breaker toward the bottom of the rake face 6, which may give large distortion to the chip. it can. Here, the rotator shape means a solid formed by rotating a plane figure around a straight line on the plane as an axis. Examples of the shape of the rotating body include a sphere and a cone. When the axis of the rotating body is on the bisector of the corner angle of the blade part 3, the chips flow out in the maximum depth direction at the bottom located below the bisector of the corner angle, and therefore the larger the chips. Can be distorted. The shape of the rake face 6 is preferably the same shape as a part of the side face of the cone. According to this, the strength of the cutting edge can be maintained.
 図5を参照して、ランド面5に対するすくい面6の傾斜角αは15°以上50°以下の範囲であることが好ましい。これによると、切削時に切屑がすくい面に沿って流出しやすいため、スローアウェイチップの切屑処理性が向上する。さらに、刃部の刃先の強度を維持することができるため、スローアウェイチップの工具寿命も長くなる。ここで、ランド面5に対するすくい面6の傾斜角αとは、ランド面5を凹部の上部まで延長した場合に想定される面15(以下、「凹部の天面」ともいう)と、すくい面6とのなす角のうち、鋭角のものを意味する。ランド面5に対するすくい面6の傾斜角αは、20°以上40°以下がさらに好ましい。 Referring to FIG. 5, the inclination angle α of the rake face 6 with respect to the land face 5 is preferably in the range of 15 ° to 50 °. According to this, since chips are likely to flow out along the rake face during cutting, the chip disposal of the throw-away tip is improved. Furthermore, since the strength of the blade edge of the blade portion can be maintained, the tool life of the throw-away tip is also increased. Here, the inclination angle α of the rake face 6 with respect to the land surface 5 refers to a face 15 assumed when the land face 5 is extended to the top of the recess (hereinafter also referred to as “the top surface of the recess”), and the rake face. Among the angles formed with 6, it means an acute angle. The inclination angle α of the rake face 6 with respect to the land face 5 is more preferably 20 ° or more and 40 ° or less.
 すくい面6の表面粗さは、2μm以上7μm以下の範囲であることが好ましい。これによると、切削時に流出した切屑が、すくい面の表面を擦過する際の抵抗が増大するため、切屑がカールしやすくなり、スローアウェイチップの切屑処理性が向上する。ここで、表面粗さとは、十点平均高さ(Rz)である。すくい面6の表面粗さは、3.0μm以上6.0μm以下の範囲であることがさらに好ましい。 The surface roughness of the rake face 6 is preferably in the range of 2 μm to 7 μm. According to this, since the resistance when the chips that flow out during cutting scrape the surface of the rake face increases, the chips are likely to curl and the chip disposal of the throw-away tip is improved. Here, the surface roughness is a ten-point average height (Rz). The surface roughness of the rake face 6 is more preferably in the range of not less than 3.0 μm and not more than 6.0 μm.
 図4を参照して、凹部7は最大深さDが60μm以上300μm以下の範囲であることが好ましい。これによると、切削時に切屑に効果的に歪を与えることができるため、スローアウェイチップの切屑処理性が向上する。ここで、凹部7の最大深さDとは、ランド面5を凹部の上部まで延長した場合に想定される面15(凹部の天面)から、凹部の底部までの距離の最大値を意味する。凹部7の最大深さDは、60μm以上200μm以下の範囲がさらに好ましい。 Referring to FIG. 4, it is preferable that the recess 7 has a maximum depth D in the range of 60 μm to 300 μm. According to this, since the distortion can be effectively applied to the chips during cutting, the chip disposability of the throw-away tip is improved. Here, the maximum depth D of the recess 7 means the maximum value of the distance from the surface 15 (the top surface of the recess) assumed when the land surface 5 is extended to the top of the recess to the bottom of the recess. . The maximum depth D of the recess 7 is more preferably in the range of 60 μm to 200 μm.
 図5を参照して、凹部7は、切れ刃4に対して垂直方向の幅(以下、「凹部の幅」ともいう)W2が、0.2mm以上1.0mm以下の範囲であることが好ましい。これによると、切削時に流出した切屑が、刃部3の上面31に乗り上げることなく、ブレーカ壁面16に衝突し、切屑が細断されやすくなるため、スローアウェイチップの切屑処理性が向上する。ここで、切れ刃4に対して垂直方向の幅W2とは、切れ刃4に対して垂直で、かつ、凹部の天面上に位置する直線に沿う方向における、凹部の開口部のランド面側の端部から刃部の中央側の端部の間の距離を意味する。なお、切れ刃が曲線の場合は、曲線の接線に対して垂直で、かつ、凹部の天面上に位置する直線に沿う方向における、凹部の開口部のランド面側の端部から刃部の中央側の端部の間の距離を意味する。凹部7は、切れ刃4に対して垂直方向の幅W2が、0.25mm以上0.7mm以下の範囲がさらに好ましい。 Referring to FIG. 5, it is preferable that the recess 7 has a width W2 in the direction perpendicular to the cutting edge 4 (hereinafter also referred to as “the width of the recess”) W2 in the range of 0.2 mm to 1.0 mm. . According to this, the chips that have flowed out during cutting collide with the breaker wall surface 16 without climbing on the upper surface 31 of the blade portion 3, and the chips are easily shredded, so that the chip disposal of the throw-away tip is improved. Here, the width W2 in the direction perpendicular to the cutting edge 4 is the land surface side of the opening of the recess in the direction perpendicular to the cutting edge 4 and along a straight line located on the top surface of the recess. Means the distance between the end of the blade and the end on the center side of the blade. When the cutting edge is a curve, the edge of the blade portion from the end on the land surface side of the opening of the recess in the direction perpendicular to the tangent line of the curve and along the straight line located on the top surface of the recess. It means the distance between the ends on the center side. As for the recessed part 7, the width | variety W2 of the orthogonal | vertical direction with respect to the cutting edge 4 has the more preferable range which is 0.25 mm or more and 0.7 mm or less.
 図3~図5を参照して、凹部7の側面上には、刃部3のコーナ角の二等分線(B-B’)に沿って、凸部8が形成されていることが好ましい。これにより、被削材の切削時に流失した切屑が凸部8に衝突して切屑が細断されたり、切屑により歪が与えられて細断される。凸部8が刃部3のコーナ角の二等分線に沿って形成されていると、切屑が流出する経路上に凸部8が存在することになるため、より効果的に切屑を細断することができる。凸部8の高さHは、凹部の最大深さDに対して20%以上80%以下の範囲であることが好ましい。これによると、切削時に流出した切屑が、凸部8に乗り上げることなく凸部に衝突し、切屑が細断されやすくなる。また、凸部8の高さHが、凹部の最大深さDに対して80%以下であると、切削時の凸部8の摩耗を防止することができるため、スローアウェイチップの工具寿命が長くなる。なお、凸部8の高さHとは、凸部を、コーナ角の二等分線(B-B’)を法線とする断面であって、凹部が最大深さDを示す位置を通る断面で見た場合の、凸部の高さを意味する。 With reference to FIGS. 3 to 5, it is preferable that a convex portion 8 is formed on the side surface of the concave portion 7 along the bisector (BB ′) of the corner angle of the blade portion 3. . Thereby, the chip | tip which flowed away at the time of cutting of a workpiece collides with the convex part 8, and a chip | tip is shredded, or distortion is given by a chip | tip and it is shredded. When the convex part 8 is formed along the bisector of the corner angle of the blade part 3, the convex part 8 exists on the path through which the chip flows out, so that the chips can be shredded more effectively. can do. The height H of the convex portion 8 is preferably in the range of 20% to 80% with respect to the maximum depth D of the concave portion. According to this, the chips that have flowed out during cutting collide with the projections without riding on the projections 8, and the chips are easily shredded. Moreover, since the wear of the convex part 8 at the time of cutting can be prevented as the height H of the convex part 8 is 80% or less with respect to the maximum depth D of a recessed part, the tool life of a throw-away insert is reduced. become longer. The height H of the convex portion 8 is a cross section in which the convex portion is a normal line with a bisector (BB ′) of the corner angle, and the concave portion passes through a position indicating the maximum depth D. The height of a convex part when it sees in a cross section is meant.
 凸部8は、コーナ角の二等分線を法線とする断面で見た場合に、凹部の深さ方向に伴って幅が広がる断面形状を有することが好ましい。凸部8の断面形状は、たとえば、三角形や台形とすることができる。凸部の断面形状の幅方向W3の最小値(以下、「凸部の最小幅」ともいう)は、5μm以上40μm以下の範囲であることが好ましい。これによると、切削時に流出した切屑が、凸部に乗り上げることなく凸部に衝突し、切屑が細断されやすくなるため、スローアウェイチップの切屑処理性が向上する。凸部の断面形状の幅方向W3の最小値は、10μm以上20μm以下がさらに好ましい。 The convex portion 8 preferably has a cross-sectional shape in which the width increases in the depth direction of the concave portion when viewed in a cross section having a bisector of the corner angle as a normal line. The cross-sectional shape of the convex portion 8 can be, for example, a triangle or a trapezoid. The minimum value in the width direction W3 of the cross-sectional shape of the convex portion (hereinafter also referred to as “minimum width of the convex portion”) is preferably in the range of 5 μm to 40 μm. According to this, the chips that have flowed out during cutting collide with the protrusions without riding on the protrusions, and the chips are easily shredded, so that the chip disposal of the throw-away tip is improved. The minimum value in the width direction W3 of the cross-sectional shape of the protrusion is more preferably 10 μm or more and 20 μm or less.
 凸部8は、コーナ角の二等分線に沿う方向の長さW5が、0.2mm以上1.0mm以下の範囲であることが好ましい。これによると、切削時に流出した切屑が、凸部に衝突しやすく、切屑が細断されやすくなるため、スローアウェイチップの切屑処理性が向上する。凸部8のコーナ角の二等分線に沿う方向の長さW5は、0.25mm以上0.7mm以下がさらに好ましい。 The convex portion 8 preferably has a length W5 in the direction along the bisector of the corner angle in the range of 0.2 mm to 1.0 mm. According to this, the chips that have flowed out during the cutting easily collide with the convex portion, and the chips are easily shredded, so that the chip disposal of the throw-away tip is improved. The length W5 in the direction along the bisector of the corner angle of the convex portion 8 is more preferably 0.25 mm or more and 0.7 mm or less.
 本実施の形態のスローアウェイチップの製造方法の一例を説明する。切欠き部を有する本体2と、ダイヤモンドを80体積%以上含む刃部3とを準備する。本体の切欠き部に刃部をロウ付けし、ダイヤモンド砥石により刃付け研磨を行う。その後、高出力パルスレーザにて、刃部3の表面を加工して、チップブレーカ9を形成する。従来は、ダイヤモンドを含む刃部の加工を放電加工や研磨により行っていたため、チップブレーカの形状は、単純な形状に限られていた。一方、本実施の形態では刃部3の加工をレーザ照射により正確に位置決めをして行うため、チップブレーカの形状を所望の形状とすることが可能である。特に、切れ刃に4沿って存在するチップブレーカの凹部7の形状を精密に調整できるため、スローアウェイチップの切屑処理性能を向上させることができる。 An example of a method for manufacturing the throw-away chip according to the present embodiment will be described. A main body 2 having a notch and a blade 3 containing 80% by volume or more of diamond are prepared. The blade is brazed to the notch of the main body, and the blade is polished with a diamond grindstone. Thereafter, the surface of the blade portion 3 is processed with a high-power pulse laser to form the chip breaker 9. Conventionally, since the blade portion containing diamond has been processed by electric discharge machining or polishing, the shape of the chip breaker has been limited to a simple shape. On the other hand, in the present embodiment, since the cutting of the blade portion 3 is performed by accurately positioning by laser irradiation, the shape of the chip breaker can be set to a desired shape. In particular, since the shape of the recess 7 of the chip breaker existing along the cutting edge 4 can be adjusted precisely, the chip disposal performance of the throw-away chip can be improved.
 本発明を実施例によりさらに具体的に説明する。ただし、これらの実施例により本発明が限定されるものではない。 The present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
 [実施例1]
 本実施例では、凹部のすくい面の形状が、切削加工時における切屑処理性と逃げ面摩耗量に及ぼす影響を調べた。
[Example 1]
In this example, the influence of the shape of the rake face of the recess on the chip disposal and the flank wear amount during cutting was examined.
 平均粒子径0.5μm以下のダイヤモンドを90体積%含有する多結晶硬質焼結体からなる刃部を、図1に示すように本体のコーナーにロウ付けし、その後、#1500のダイヤモンド砥石により刃付け研磨を行った。 A blade portion made of a polycrystalline hard sintered body containing 90% by volume of diamond having an average particle diameter of 0.5 μm or less is brazed to the corner of the main body as shown in FIG. The surface was polished.
 その後、ガルバノメータミラーにより集光性を高めた高出力パルスYVO:Ndレーザ(波長1,064nm)を用い、出力1.5W、発振周波数22kHz、加工ピッチ1μmの条件にて等高線状に一定の加工量で彫り進むことにより、刃部のすくい面上面に3次元形状の凹凸形状を有するチップブレーカ形状を形成した。すくい面形状を表1のように変化させた種々の試料を作製し、切屑処理性を評価した。切削条件および工具形状を以下に示す。この評価では、長さ5mm以上300mm以下の範囲の切屑を良好と判断した。 After that, using a high-power pulse YVO 4 : Nd laser (wavelength: 1064 nm) whose condensing property is enhanced by a galvanometer mirror, processing is performed in a contour line with a power of 1.5 W, an oscillation frequency of 22 kHz, and a processing pitch of 1 μm. The chip breaker shape which has a three-dimensional uneven | corrugated shape was formed in the rake face upper surface of the blade part by engraving by quantity. Various samples with the rake face shape changed as shown in Table 1 were prepared, and the chip disposal was evaluated. Cutting conditions and tool shapes are shown below. In this evaluation, chips having a length in the range of 5 mm to 300 mm were determined to be good.
 (切削条件)
被削材:円柱形状のアルミニウム合金(ADC12)
切削方法:直径100~95(mm)×長さ500(mm)の外径旋削
切削形態:湿式切削
切削距離:10km
被削材の周表面速度:400(m/min)
工具の切り込み深さ:0.30(mm)
工具の送り速さ:0.10(mm/rev)
 (工具形状)
使用工具型番:DCMT11T304
工具材質:平均粒径0.5μmのダイヤモンドを90体積%含有する多結晶硬質焼結体ホルダー型番:SDJCL2525M11
すくい面形状:表1のすくい面形状に示す形状の一部と同一
ランド面の幅(W1):0.03(mm)
凹部の最大深さ(D):0.1(mm)
凹部の幅(W2):0.3(mm)
凸部の高さ(H):0.05(mm)
凸部の最小幅(W3):0.020(mm)
すくい面粗さ(Rz1):Rz3.2(μm)
ランド面粗さ(Rz2):Rz0.06(μm)
ブレーカ加工条件:YVO:Ndレーザ(波長1,064nm)、周波数22kHz、出力1.5W、加工ピッチ1μm
 評価結果を表1に示す。
(Cutting conditions)
Work material: Columnar aluminum alloy (ADC12)
Cutting method: diameter 100 to 95 (mm) x length 500 (mm) outer diameter turning Cutting form: wet cutting distance: 10 km
Circumferential surface speed of work material: 400 (m / min)
Tool cutting depth: 0.30 (mm)
Tool feed rate: 0.10 (mm / rev)
(Tool shape)
Tool used: DCMT11T304
Tool material: Polycrystalline hard sintered body holder containing 90% by volume of diamond having an average particle diameter of 0.5 μm Model number: SDJCL2525M11
Rake face shape: Same land surface width as part of the rake face shape shown in Table 1 (W1): 0.03 (mm)
Maximum depth of recess (D): 0.1 (mm)
Recess width (W2): 0.3 (mm)
Height of convex part (H): 0.05 (mm)
Minimum width of protrusion (W3): 0.020 (mm)
Rake surface roughness (Rz1): Rz3.2 (μm)
Land surface roughness (Rz2): Rz0.06 (μm)
Breaker processing conditions: YVO 4 : Nd laser (wavelength 1,064 nm), frequency 22 kHz, output 1.5 W, processing pitch 1 μm
The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 試料1Aはすくい面にチップブレーカを有さず、切屑が分断せず被削材に切屑が巻き付いた。一方、試料1B~1Gは、すくい面の形状がボール形状(球状)または円錐形状の一部であり、切屑長さが300mm以下となり、良好な切屑処理性が得られた。中でも、試料1D~1Fは、すくい面の形状が円錐形状で、ランド面に対するすくい面の傾斜角が15°以上50°以下であり、切屑長さが30~50mmとなり、切屑処理性が特に良好であった。試料1Gは、すくい面の形状が円錐形状で、ランド面に対するすくい面の傾斜角が60°であり、切屑長さが30~50mmと良好であるが、切削距離10km時点において、刃先にチッピングが発生した。試料1Bは、すくい面の形状がボール形状であり、切屑長さが50~100mmと良好であるが、切削距離10km時点において、刃先にチッピングが発生した。 Specimen 1A did not have a chip breaker on the rake face, and the chips were not divided and the chips were wound around the work material. On the other hand, Samples 1B to 1G had a rake face shape that was part of a ball shape (spherical) or a conical shape, and had a chip length of 300 mm or less, resulting in good chip disposal. In particular, Samples 1D to 1F have a conical rake face shape, an inclination angle of the rake face with respect to the land surface of 15 ° to 50 °, a chip length of 30 to 50 mm, and particularly good chip disposal. Met. In the sample 1G, the rake face has a conical shape, the inclination angle of the rake face with respect to the land face is 60 °, and the chip length is as good as 30 to 50 mm. However, when the cutting distance is 10 km, chipping occurs at the cutting edge. Occurred. In Sample 1B, the rake face has a ball shape and the chip length is as good as 50 to 100 mm, but chipping occurred at the cutting edge at a cutting distance of 10 km.
 以上より、すくい面が形状がボール形状や円錐形状のような回転体形状の一部と同一であると、切屑長さが300mm以下となり、良好な切屑処理性が得られることが分かった。中でも、スローアウェイチップのすくい面形状が円錐形状の一部と同一であり、ランド面に対するすくい面の傾斜角が15°~50°の範囲であると、切屑長さが30~50mmの長さになり、良好な切屑処理性を示し、切削距離10km時点でもチッピングが発生することなく、工具寿命が長くなることが分かった。 From the above, it has been found that when the rake face has the same shape as that of a part of a rotating body such as a ball shape or a conical shape, the chip length is 300 mm or less, and good chip disposal is obtained. In particular, when the rake face shape of the throw-away tip is the same as a part of the conical shape and the inclination angle of the rake face with respect to the land surface is in the range of 15 ° to 50 °, the chip length is 30 to 50 mm. Thus, it was found that good chip disposability was exhibited and the tool life was extended without occurrence of chipping even at a cutting distance of 10 km.
 [実施例2]
 ランド面の幅W1が、切削加工時における切屑処理性および逃げ面摩耗量に及ぼす影響を調べた。工具の作製は実施例1と同様の方法で作製した。ランド面の幅を表2のように変化させた種々の試料を作製し、切屑処理性を評価した。切削条件および工具形状を以下に示す。この評価では、長さ5mm以上300mm以下の範囲の切屑を良好と判断した。
[Example 2]
The effect of the width W1 of the land surface on the chip disposability and the flank wear amount during cutting was investigated. The tool was produced in the same manner as in Example 1. Various samples with the land surface width changed as shown in Table 2 were prepared, and chip disposal was evaluated. Cutting conditions and tool shapes are shown below. In this evaluation, chips having a length in the range of 5 mm to 300 mm were determined to be good.
 (切削条件)
被削材:円柱形状のアルミ材(A6061)
切削方法:直径100~95(mm)×長さ500(mm)の外径旋削
切削形態:湿式切削
切削距離:10km
被削材の周表面速度:400(m/min)
工具の切り込み深さ:0.30(mm)
工具の送り速さ:0.10(mm/rev)
 (工具形状)
使用工具型番:DCMT11T304
工具材質:平均粒径0.5μm以下のダイヤモンドを90体積%以上含有する多結晶硬質焼結体
ホルダー型番:SDJCL2525M11
すくい面形状:円錐形状の側面の一部と同一、ランド面に対するすくい面の傾斜角25°ランド面の幅(W1):表2凹部の最大深さ(D):0.1(mm)
凹部の幅(W2):0.4(mm)
凸部の高さ(H):0.05(mm)
凸部の最小幅(W3):0.020(mm)
すくい面粗さ(Rz1):Rz 3.5(μm)
ランド面粗さ(Rz2):Rz 0.09(μm)
ブレーカ加工条件:YAGレーザ(波長1,064nm)、周波数20kHz、出力1.5W、加工ピッチ1μm
 評価結果を表2に示す。
(Cutting conditions)
Work material: Columnar aluminum material (A6061)
Cutting method: diameter 100 to 95 (mm) x length 500 (mm) outer diameter turning Cutting form: wet cutting distance: 10 km
Circumferential surface speed of work material: 400 (m / min)
Tool cutting depth: 0.30 (mm)
Tool feed rate: 0.10 (mm / rev)
(Tool shape)
Tool used: DCMT11T304
Tool material: polycrystalline hard sintered body holder containing 90% by volume or more of diamond having an average particle size of 0.5 μm or less Model number: SDJCL2525M11
Rake face shape: the same as part of the conical side face, inclination angle of the rake face with respect to the land face 25 ° Land face width (W1): Table 2 Maximum depth of recess (D): 0.1 (mm)
Recess width (W2): 0.4 (mm)
Height of convex part (H): 0.05 (mm)
Minimum width of protrusion (W3): 0.020 (mm)
Rake surface roughness (Rz1): Rz 3.5 (μm)
Land surface roughness (Rz2): Rz 0.09 (μm)
Breaker processing conditions: YAG laser (wavelength 1,064 nm), frequency 20 kHz, output 1.5 W, processing pitch 1 μm
The evaluation results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 試料2Aはすくい面にチップブレーカを有さず、切屑が分断せず被削材に切屑が巻き付いた。一方、試料2B~2Fは、チップブレーカを有し、切屑は長さ300mm以下に分断された。中でも、試料2B~試料2Eは、ランド面の幅が5~100μmの範囲であり、切屑長さが50~150mmとなり、切屑処理性が特に良好であった。しかし、試料2Bは、ランド面の幅が5μmであり、切削距離10km時点で、刃先にチッピングが発生した。 Specimen 2A did not have a chip breaker on the rake face, and the chips were not divided and the chips were wound around the work material. On the other hand, Samples 2B to 2F had chip breakers, and the chips were divided to a length of 300 mm or less. In particular, Sample 2B to Sample 2E had a land surface width in the range of 5 to 100 μm, a chip length of 50 to 150 mm, and chip disposal was particularly good. However, Sample 2B had a land surface width of 5 μm, and chipping occurred at the cutting edge at a cutting distance of 10 km.
 以上より、すくい面がチップブレーカを有することで切屑は長さ300mm以下に分断されることが分かった。特にランド面の幅が10~100μmの範囲であると、スローアウェイチップは良好な切屑処理性と安定した耐久性を発揮することが分かった。 From the above, it was found that the rake face has a chip breaker, so that the chips are divided to a length of 300 mm or less. In particular, when the width of the land surface is in the range of 10 to 100 μm, it has been found that the throw-away tip exhibits good chip disposal and stable durability.
 [実施例3]
 凹部の最大深さ(D)および凹部の幅(W2)が、切削加工時における切屑処理性と逃げ面摩耗量に及ぼす影響を調べた。表3に示す各試料を実施例1と同様の方法で作製した。凹部の最大深さと幅の影響のみを調査するため、各試料のチップブレーカの凹部形状は相似形とした。凹部の最大深さと幅を表3のように変化させた種々の試料を作製し、切屑処理性を評価した。切削条件および工具形状を以下に示す。この評価では、長さ5mm以上300mm以下の範囲の切屑を良好と判断した。
[Example 3]
The effects of the maximum depth (D) of the recess and the width (W2) of the recess on the chip disposal and the flank wear amount during the cutting process were examined. Each sample shown in Table 3 was produced in the same manner as in Example 1. In order to investigate only the influence of the maximum depth and width of the recess, the recess shape of the chip breaker of each sample was made similar. Various samples in which the maximum depth and width of the recesses were changed as shown in Table 3 were prepared, and chip disposal was evaluated. Cutting conditions and tool shapes are shown below. In this evaluation, chips having a length in the range of 5 mm to 300 mm were determined to be good.
 (切削条件)
被削材:円柱形状のアルミ材(A5052)
切削方法:直径100~95(mm)×長さ500(mm)の外径旋削
切削形態:湿式切削
切削距離:10km
被削材の周表面速度:400(m/min)
工具の切り込み深さ:0.6(mm)
工具の送り速さ:0.15(mm/rev)
 (工具形状)
使用工具型番:DCMT11T308
工具材質:平均粒径0.5μm以下のダイヤモンドを90体積%含有する多結晶硬質焼結体
ホルダー型番:SDJCL2525M11
すくい面形状:円錐形状の側面の一部と同一、ランド面に対するすくい面の傾斜角25°ランド面の幅(W1):0.030(mm)
凹部の最大深さ(D):表3
凹部の幅(W2):表3
凸部の高さ(H):0.05(mm)
凸部の最小幅(W3):0.020(mm)
すくい面粗さ(Rz1):Rz3.1(μm)
ランド面粗さ(Rz2):Rz0.10(μm)
ブレーカ加工条件:YAG(波長532nm)、周波数60kHz、出力2.5W、加工ピッチ1.8μm
 評価結果を表3に示す。
(Cutting conditions)
Work material: Columnar aluminum material (A5052)
Cutting method: diameter 100 to 95 (mm) x length 500 (mm) outer diameter turning Cutting form: wet cutting distance: 10 km
Circumferential surface speed of work material: 400 (m / min)
Cutting depth of tool: 0.6 (mm)
Tool feed rate: 0.15 (mm / rev)
(Tool shape)
Tool used: DCMT11T308
Tool material: polycrystalline hard sintered body holder containing 90% by volume of diamond having an average particle size of 0.5 μm or less Model number: SDJCL2525M11
Rake face shape: the same as part of the side surface of the conical shape, the inclination angle of the rake face with respect to the land face is 25 °, the width of the land face (W1): 0.030 (mm)
Maximum depth of recess (D): Table 3
Recess width (W2): Table 3
Height of convex part (H): 0.05 (mm)
Minimum width of protrusion (W3): 0.020 (mm)
Rake surface roughness (Rz1): Rz3.1 (μm)
Land surface roughness (Rz2): Rz0.10 (μm)
Breaker processing conditions: YAG (wavelength 532 nm), frequency 60 kHz, output 2.5 W, processing pitch 1.8 μm
The evaluation results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 試料3Aはすくい面にチップブレーカを有さず、切屑が分断しなかった。一方、試料3B~3Gは、チップブレーカを有し、切屑長さは300mm以下であった。中でも、試料3C~3Fは、凹部の最大深さが0.06mm~0.30mm、凹部の幅が0.20mm~1.00mmであり、切屑長さは200mm以下となり、切屑処理性が特に良好であった。 Specimen 3A did not have a chip breaker on the rake face, and the chips were not divided. On the other hand, Samples 3B to 3G had a chip breaker, and the chip length was 300 mm or less. In particular, samples 3C to 3F have a maximum recess depth of 0.06 mm to 0.30 mm, a recess width of 0.20 mm to 1.00 mm, a chip length of 200 mm or less, and particularly good chip disposal. Met.
 以上より、凹部の最大深さが0.06mm~0.30mm、凹部の幅が0.20mm~1.00mmの範囲のとき、切屑処理性が特に良好となることが分かった。 From the above, it has been found that when the maximum depth of the recess is in the range of 0.06 mm to 0.30 mm and the width of the recess is in the range of 0.20 mm to 1.00 mm, the chip disposal is particularly good.
 [実施例4]
 凸部8の高さ(H)が、切削加工時における切屑処理性に及ぼす影響を調べた。表4に示す各試料を実施例1と同様の方法で作製した。下記の切削条件および工具形状で性能評価を実施した。
[Example 4]
The influence which the height (H) of the convex part 8 has on the chip disposability at the time of cutting was investigated. Each sample shown in Table 4 was produced in the same manner as in Example 1. Performance evaluation was performed under the following cutting conditions and tool shape.
 (切削条件)
被削材:円柱形状のアルミ材(A6063)
切削方法:直径50(mm)×長さ100(mm)の外径旋削
切削形態:乾式切削
切削距離:10(km)
被削材の周表面速度:250(m/min)
工具の切り込み深さ:0.10(mm)
工具の送り速さ:0.10(mm/rev)
 (工具形状)
使用工具型番:VCMT160404
工具材質:平均粒径0.5μm以下のダイヤモンドを90体積%含有する多結晶硬質焼結体
ホルダー型番:SVJCL2525M16
すくい面形状:円錐形状の側面の一部と同一、ランド面に対するすくい面の傾斜角25°ランド面の幅(W1):0.030(mm)
凹部の最大深さ(D):0.1(mm)
凹部の幅(W2):0.4(mm)
凸部の高さ(H):表4
凸部の最小幅(W3):0.020(mm)
すくい面粗さ(Rz1):Rz 4.0(μm)
ランド面粗さ(Rz2):Rz 0.1(μm)
ブレーカ加工条件:YAG(波長532nm)、周波数50kHz、出力3.0W、加工ピッチ2μm
 評価結果を表4に示す。
(Cutting conditions)
Work material: Columnar aluminum material (A6063)
Cutting method: outer diameter turning of diameter 50 (mm) × length 100 (mm) Cutting form: dry cutting distance: 10 (km)
Circumferential surface speed of work material: 250 (m / min)
Cutting depth of tool: 0.10 (mm)
Tool feed rate: 0.10 (mm / rev)
(Tool shape)
Tool number used: VCMT160404
Tool material: polycrystalline hard sintered body holder containing 90% by volume of diamond having an average particle size of 0.5 μm or less Model number: SVJCL2525M16
Rake face shape: the same as part of the side surface of the conical shape, the inclination angle of the rake face with respect to the land face is 25 °, the width of the land face (W1): 0.030 (mm)
Maximum depth of recess (D): 0.1 (mm)
Recess width (W2): 0.4 (mm)
Height of convex part (H): Table 4
Minimum width of protrusion (W3): 0.020 (mm)
Rake surface roughness (Rz1): Rz 4.0 (μm)
Land surface roughness (Rz2): Rz 0.1 (μm)
Breaker processing conditions: YAG (wavelength 532 nm), frequency 50 kHz, output 3.0 W, processing pitch 2 μm
The evaluation results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 試料4Aはすくい面にチップブレーカを有さず、切屑が分断しなかった。一方、試料4B~4Fは、チップブレーカを有し、切屑長さは300mm以下であった。中でも、試料4C~4Fは、凸部の高さ(H)が0.02~0.10mmであり、切屑長さは200mm以下となり、切屑処理性が特に良好であった。しかし、4Fは切削距離10km時点で凸部が磨滅した。 Sample 4A did not have a chip breaker on the rake face, and the chips were not divided. On the other hand, Samples 4B to 4F had a chip breaker and had a chip length of 300 mm or less. In particular, Samples 4C to 4F had a protrusion height (H) of 0.02 to 0.10 mm, a chip length of 200 mm or less, and the chip disposal was particularly good. However, in 4F, the convex portion was worn away at the cutting distance of 10 km.
 以上より、凹部の最大深さ(D)が0.1mmのとき、凸部の高さ(H)が0.02~0.08mmの範囲において特に良好な切屑処理性が得られたことから、凸部の高さ(H)が凹部の最大深さ(D)に対して20~80%の範囲にあるとき切屑処理性は良好になることが分かった。 From the above, when the maximum depth (D) of the concave portion is 0.1 mm, particularly good chip disposal was obtained when the height (H) of the convex portion was in the range of 0.02 to 0.08 mm. It was found that when the height (H) of the convex portion is in the range of 20 to 80% with respect to the maximum depth (D) of the concave portion, the chip disposal is good.
 [実施例5]
 凸部の断面形状が、切削加工時における切屑処理性に及ぼす影響を調べた。表5に示す各試料を実施例1と同様の方法で作製した。下記の切削条件および工具形状で性能評価を実施した。
[Example 5]
The effect of the cross-sectional shape of the convex portion on the chip disposal during cutting was investigated. Each sample shown in Table 5 was produced in the same manner as in Example 1. Performance evaluation was performed under the following cutting conditions and tool shape.
 (切削条件)
被削材:円柱形状のアルミ材(A6063)
切削方法:直径50(mm)×長さ100(mm)の外径旋削
切削形態:湿式切削
切削距離:150(m)
被削材の周表面速度:250(m/min)
工具の切り込み深さ:0.80(mm)
工具の送り速さ:0.15(mm/rev)
 (工具形状)
使用工具型番:CCMT09T308
工具材質:平均粒径0.5μm以下のダイヤモンドを90体積%含有する多結晶硬質焼結体
ホルダー型番:SCLCL2525M09
すくい面形状:円錐形状の側面の一部と同一、ランド面に対するすくい面の傾斜角25°ランド面の幅(W1):0.06(mm)
凹部の最大深さ(D):0.12(mm)
凹部の幅(W2):0.6(mm)
凸部の高さ(H):0.05(mm)
凸部の最小幅(W3):表5
すくい面粗さ(Rz1):Rz 4.5(μm)
ランド面粗さ(Rz2):Rz 0.12(μm)
ブレーカ加工条件:YVOレーザ(波長1064nm)周波数75kHz、出力1.2W、加工ピッチ0.7μm
 評価結果を表5に示す。
(Cutting conditions)
Work material: Columnar aluminum material (A6063)
Cutting method: outer diameter turning of diameter 50 (mm) × length 100 (mm) Form: wet cutting distance: 150 (m)
Circumferential surface speed of work material: 250 (m / min)
Tool cutting depth: 0.80 (mm)
Tool feed rate: 0.15 (mm / rev)
(Tool shape)
Tool model: CCMT09T308
Tool material: Polycrystalline hard sintered body holder containing 90% by volume of diamond having an average particle size of 0.5 μm or less Model number: SCLCL2525M09
Rake face shape: the same as part of the side surface of the conical shape, the inclination angle of the rake face with respect to the land face is 25 °, the width of the land face (W1): 0.06 (mm)
Maximum depth of recess (D): 0.12 (mm)
Recess width (W2): 0.6 (mm)
Height of convex part (H): 0.05 (mm)
Minimum width of protrusion (W3): Table 5
Rake surface roughness (Rz1): Rz 4.5 (μm)
Land surface roughness (Rz2): Rz 0.12 (μm)
Breaker processing conditions: YVO 4 laser (wavelength 1064 nm) frequency 75 kHz, output 1.2 W, processing pitch 0.7 μm
The evaluation results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 試料5Aはすくい面にチップブレーカを有さず、切屑が分断しなかった。一方、試料5B~5Gは、チップブレーカを有し、切屑長さは300mm以下であった。中でも、試料5D~5Fは、凸部断面形状が台形で、その上面の幅(W3)が5μm~40μmであり、切屑は長さ50~150mmとなり、切屑処理性が特に良好であった。 Sample 5A did not have a chip breaker on the rake face, and the chips were not divided. On the other hand, Samples 5B to 5G had a chip breaker, and the chip length was 300 mm or less. In particular, Samples 5D to 5F had a trapezoidal cross-sectional shape, a top surface width (W3) of 5 μm to 40 μm, chips of 50 to 150 mm in length, and chip disposal was particularly good.
 凸部の形状は工具コーナー角2等分線方向に同一の断面形状となる。実施例3に示したように、良好な切屑処理性を発揮するためには、凹部の幅(W2)は0.20~1.0mmの範囲にある必要があり、かつ実施例4に示したように、凸部の高さ(H)は凹部の最大深さ(D)に対して、20~80%の高さとなる必要がある。よって、凸部のコーナー角2等分線方向の長さ(W5)は凹部の幅(W2)と同等もしくはそれ以下となる必要がある。 The shape of the convex part has the same cross-sectional shape in the direction of the bisector of the tool corner angle. As shown in Example 3, the recess width (W2) needs to be in the range of 0.20 to 1.0 mm in order to exhibit good chip disposal, and is shown in Example 4. Thus, the height (H) of the convex portion needs to be 20 to 80% of the maximum depth (D) of the concave portion. Therefore, the length (W5) in the direction of the bisector of the corner of the convex portion needs to be equal to or less than the width (W2) of the concave portion.
 以上より、凸部は断面形状が台形形状となり、その幅方向最小値(W3)が5μm~40μmの範囲にあり、さらに凸部のコーナー角2等分線方向の長さ(W5)は0.20~1.0mmの範囲のとき特に良好な切屑処理を発揮することが分かった。 As described above, the convex portion has a trapezoidal cross-sectional shape, the width direction minimum value (W3) is in the range of 5 μm to 40 μm, and the length (W5) of the convex portion in the bisector direction is 0.2 mm. It has been found that particularly good chip treatment is exhibited when the thickness is in the range of 20 to 1.0 mm.
 [実施例6]
 すくい面の表面粗さ(Rz1)が切削加工時における切屑処理性に及ぼす影響を調べた。各試料は表6に示すように、種々のレーザ加工条件でチップブレーカを加工することで、すくい面の加工面の面粗度を変化させた。下記の切削条件および工具形状で性能評価を実施した。
[Example 6]
The effect of the surface roughness (Rz1) of the rake face on the chip disposal during cutting was investigated. As shown in Table 6, each sample was processed with a chip breaker under various laser processing conditions to change the surface roughness of the rake face. Performance evaluation was performed under the following cutting conditions and tool shape.
 (切削条件)
被削材:円柱形状のアルミ材(A5052)
切削方法:直径100~95(mm)×長さ500(mm)の外径旋削
切削形態:湿式切削
切削距離:10km
被削材の周表面速度:400(m/min)
工具の切り込み深さ:0.30(mm)
工具の送り速さ:0.10(mm/rev)
 (工具形状)
使用工具型番:DCMT11T304
工具材質:平均粒径0.5μm以下のダイヤモンドを90体積%含有する多結晶硬質焼結体
ホルダー型番:SDJCL2525M11
すくい面形状:円錐形状の側面の一部と同一、ランド面に対するすくい面の傾斜角25°ランド面の幅(W1):0.01(mm)
凹部の最大深さ(D):0.1(mm)
凹部の幅(W2):0.4(mm)
凸部の高さ(H):0.05(mm)
凸部の最小幅(W3):0.020(mm)
すくい面粗さ(Rz1):表6
ランド面粗さ(Rz2):Rz0.08μm
加工条件:YVO(波長1064nm)、および表6
 評価結果を表6に示す。
(Cutting conditions)
Work material: Columnar aluminum material (A5052)
Cutting method: diameter 100 to 95 (mm) x length 500 (mm) outer diameter turning Cutting form: wet cutting distance: 10 km
Circumferential surface speed of work material: 400 (m / min)
Tool cutting depth: 0.30 (mm)
Tool feed rate: 0.10 (mm / rev)
(Tool shape)
Tool used: DCMT11T304
Tool material: polycrystalline hard sintered body holder containing 90% by volume of diamond having an average particle size of 0.5 μm or less Model number: SDJCL2525M11
Rake face shape: the same as part of the conical side face, the inclination angle of the rake face with respect to the land face is 25 °, the width of the land face (W1): 0.01 (mm)
Maximum depth of recess (D): 0.1 (mm)
Recess width (W2): 0.4 (mm)
Height of convex part (H): 0.05 (mm)
Minimum width of protrusion (W3): 0.020 (mm)
Rake surface roughness (Rz1): Table 6
Land surface roughness (Rz2): Rz 0.08 μm
Processing conditions: YVO 4 (wavelength 1064 nm) and Table 6
The evaluation results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 試料6Aはすくい面にチップブレーカを有さず、切屑が分断しなかった。一方、試料6B~6Gは、チップブレーカを有し、切屑長さは300mm以下であった。中でも、試料6C~6Gは、すくい面粗さRz1がRz2.0μm以上であり、切屑長さは50~150mmとなり、切屑処理性が特に良好であった。これはすくい面の面粗さRz1が粗くなるほど、切屑が擦過する際の抵抗が増大し、切屑が小さくカールするためである。しかしながら、すくい面の面粗さが大きすぎると、すくい面への被削材溶着も増大するため、試料6Gのように、切屑処理性は良好なものの、場合によっては仕上げ面粗さが悪化する。 Sample 6A did not have a chip breaker on the rake face, and the chips were not divided. On the other hand, Samples 6B to 6G had a chip breaker, and the chip length was 300 mm or less. In particular, Samples 6C to 6G had a rake face roughness Rz1 of Rz 2.0 μm or more, a chip length of 50 to 150 mm, and particularly excellent chip disposal. This is because as the surface roughness Rz1 of the rake face becomes rougher, the resistance when the chips are scraped increases, and the chips curl smaller. However, if the surface roughness of the rake face is too large, the welding of the work material to the rake face also increases. Therefore, although the chip disposal is good as in the sample 6G, the finished surface roughness is deteriorated in some cases. .
 [実施例7]
 ランド面の表面粗さ(Rz2)が切削加工時における切屑処理性および仕上げ面粗さに及ぼす影響を調べた。各試料は表7に示すように、種々のラップ加工時間でランド面を形成することで、ランド面の加工面の面粗度を変化させた。下記の切削条件および工具形状で性能評価を実施した。
[Example 7]
The influence of the surface roughness (Rz2) of the land surface on the chip disposal and the finished surface roughness during cutting was investigated. As shown in Table 7, the surface roughness of the processed surface of the land surface was changed by forming the land surface with various lapping times as shown in Table 7. Performance evaluation was performed under the following cutting conditions and tool shape.
 (切削条件)
被削材:円柱形状のアルミ材(A5052)
切削方法:直径100~95(mm)×長さ500(mm)の外径旋削
切削形態:湿式切削
切削距離:10km
被削材の周表面速度:400(m/min)
工具の切り込み深さ:0.30(mm)
工具の送り速さ:0.10(mm/rev)
 (工具形状)
使用工具型番:DCMT11T304
工具材質:平均粒径0.5μm以下のダイヤモンドを90体積%含有する多結晶硬質焼結体
ホルダー型番:SDJCL2525M11
すくい面形状:円錐形状の側面の一部と同一、ランド面に対するすくい面の傾斜角25°ランド面の幅(W1):0.01(mm)
凹部の最大深さ(D):0.1(mm)
凹部の幅(W2):0.4(mm)
凸部の高さ(H):0.05(mm)
凸部の最小幅(W3):0.020(mm)
すくい面粗さ(Rz1):Rz4.0μm
ランド面粗さ(Rz2):表7
加工条件:YVO(波長1064nm)、周波数20kHz、出力5.5W、加工ピッチ1μm
 評価結果を表7に示す。
(Cutting conditions)
Work material: Columnar aluminum material (A5052)
Cutting method: diameter 100 to 95 (mm) x length 500 (mm) outer diameter turning Cutting form: wet cutting distance: 10 km
Circumferential surface speed of work material: 400 (m / min)
Tool cutting depth: 0.30 (mm)
Tool feed rate: 0.10 (mm / rev)
(Tool shape)
Tool used: DCMT11T304
Tool material: polycrystalline hard sintered body holder containing 90% by volume of diamond having an average particle size of 0.5 μm or less Model number: SDJCL2525M11
Rake face shape: the same as part of the conical side face, the inclination angle of the rake face with respect to the land face is 25 °, the width of the land face (W1): 0.01 (mm)
Maximum depth of recess (D): 0.1 (mm)
Recess width (W2): 0.4 (mm)
Height of convex part (H): 0.05 (mm)
Minimum width of protrusion (W3): 0.020 (mm)
Rake surface roughness (Rz1): Rz4.0 μm
Land surface roughness (Rz2): Table 7
Processing conditions: YVO 4 (wavelength 1064 nm), frequency 20 kHz, output 5.5 W, processing pitch 1 μm
Table 7 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 試料7A~7Eは、チップブレーカを有し、切屑長さは100mm以下であった。しかしながら、ランド面の面粗さが大きすぎると、切れ刃の刃立性が悪くなるため、試料7Eのように、切りくず処理は良好なものの、場合によっては仕上げ面粗さが悪化する。一方、試料7Aのようにランド面粗さRz2をRz0.01μm程度にしようとすると10時間以上のラップ加工が必要となり経済的でない。 Samples 7A to 7E had a chip breaker and had a chip length of 100 mm or less. However, if the surface roughness of the land surface is too large, the sharpness of the cutting edge is deteriorated. Therefore, although the chip treatment is good like the sample 7E, the finished surface roughness is deteriorated depending on the case. On the other hand, if the land surface roughness Rz2 is to be set to about Rz 0.01 μm like the sample 7A, lapping is required for 10 hours or more, which is not economical.
 以上より、すくい面の面粗さRz1がRz2.0~7.0μmの範囲で、ランド面の面粗さRz2がRz0.05~0.20μmの範囲であると、切屑長さは150mm以下となり特に良好となることが分かった。 From the above, when the surface roughness Rz1 of the rake face is in the range of Rz 2.0 to 7.0 μm and the surface roughness Rz2 of the land face is in the range of Rz 0.05 to 0.20 μm, the chip length is 150 mm or less. It turned out to be particularly good.
 [実施例8]
 工具材質が切削加工時における切屑処理性および逃げ面摩耗に及ぼす影響を調べた。工具材質には表8に示す3種類の材質を用いた。チップブレーカはレーザ加工により下記加工条件にて作製した。下記の切削条件および工具形状で性能評価を実施した。
[Example 8]
The effects of tool material on chip disposal and flank wear during cutting were investigated. Three types of materials shown in Table 8 were used as the tool material. The chip breaker was produced by laser processing under the following processing conditions. Performance evaluation was performed under the following cutting conditions and tool shape.
 (切削条件)
被削材:円柱形状のアルミ材(A390)
切削方法:直径100~95(mm)×長さ500(mm)の外径旋削
切削形態:湿式切削
切削距離:10km
被削材の周表面速度:800(m/min)
工具の切り込み深さ:0.50(mm)
工具の送り速さ:0.15(mm/rev)
 (工具形状)
使用工具型番:DCMT11T304
工具材質:
試料8A・・・平均粒径0.5μm以下のダイヤモンドを90体積%含有する多結晶硬質焼結体
試料8B・・・平均粒径0.5μm以下のダイヤモンドを90体積%含有する多結晶硬質焼結体
試料8C・・・気相合成法(CVD)により合成された単結晶ダイヤモンド
試料8D・・・高圧高温合成法により合成された単結晶ダイヤモンド
ホルダー型番:SDJCL2525M11
すくい面形状:円錐形状の側面の一部と同一、ランド面に対するすくい面の傾斜角25°ランド面の幅(W1):0.03(mm)
凹部の最大深さ(D):0.1(mm)
凹部の幅(W2):0.4(mm)
凸部の高さ(H):0.05(mm)
凸部の最小幅(W3):0.020(mm)
ブレーカすくい面粗さ(Rz1):Rz 2.0~6.5μm
ブレーカランド面粗さ(Rz2):Rz 0.08~0.12(μm)
ブレーカ加工条件:
試料8B・・・YAGレーザ、波長1064nm、周波数30kHz、出力1.5W、加工ピッチ1μm
試料8C・・・YAGレーザ、波長1064nm、周波数50kHz、出力5.5W、加工ピッチ5μm
試料8D・・・加工不可
 表8に評価結果を示す。
(Cutting conditions)
Work material: Columnar aluminum material (A390)
Cutting method: diameter 100 to 95 (mm) x length 500 (mm) outer diameter turning Cutting form: wet cutting distance: 10 km
Circumferential surface speed of work material: 800 (m / min)
Tool cutting depth: 0.50 (mm)
Tool feed rate: 0.15 (mm / rev)
(Tool shape)
Tool used: DCMT11T304
Tool material:
Sample 8A: Polycrystalline hard sintered body containing 90% by volume of diamond having an average particle size of 0.5 μm or less Sample 8B: Polycrystalline hard sintered containing 90% by volume of diamond having an average particle size of 0.5 μm or less Consolidation sample 8C: Single crystal diamond sample synthesized by vapor phase synthesis (CVD) 8D: Single crystal diamond holder synthesized by high pressure and high temperature synthesis Model: SDJCL2525M11
Rake face shape: the same as part of the side surface of the conical shape, the inclination angle of the rake face with respect to the land face is 25 °, the width of the land face (W1): 0.03 (mm)
Maximum depth of recess (D): 0.1 (mm)
Recess width (W2): 0.4 (mm)
Height of convex part (H): 0.05 (mm)
Minimum width of protrusion (W3): 0.020 (mm)
Breaker rake face roughness (Rz1): Rz 2.0 to 6.5 μm
Breaker land surface roughness (Rz2): Rz 0.08 to 0.12 (μm)
Breaker processing conditions:
Sample 8B: YAG laser, wavelength 1064 nm, frequency 30 kHz, output 1.5 W, processing pitch 1 μm
Sample 8C: YAG laser, wavelength 1064 nm, frequency 50 kHz, output 5.5 W, processing pitch 5 μm
Sample 8D: Processing impossible Table 8 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 試料8Aおよび8Bに用いた多結晶硬質焼結体、ならびに試料8Cに用いたCVDにより合成された単結晶ダイヤモンドは吸収率が2cm-1以上となるためレーザ加工が可能であった。一方、試料8Dの単結晶ダイヤモンドの吸収係数は0.01cm-1以下でありレーザ加工ができなかった。 The polycrystalline hard sintered body used for Samples 8A and 8B and the single crystal diamond synthesized by CVD used for Sample 8C have an absorptance of 2 cm −1 or more, and can be laser processed. On the other hand, the absorption coefficient of the single crystal diamond of Sample 8D was 0.01 cm −1 or less, and laser processing was not possible.
 切削評価の結果、試料8Aはすくい面にチップブレーカを有さず、切屑が分断しなかった。一方、試料8Bおよび8Cは、チップブレーカを有し、切屑長さは50~150μmであり、切屑処理性が良好であった。また、試料8CはCVD単結晶ダイヤモンドを用い、10km切削時の逃げ面摩耗量は0.008mmとなり、多結晶硬質焼結体を用いた試料8Aおよび試料8Bと比較して摩耗量は大幅に小さい結果となった。 As a result of cutting evaluation, Sample 8A did not have a chip breaker on the rake face, and chips were not divided. On the other hand, Samples 8B and 8C had a chip breaker, had a chip length of 50 to 150 μm, and had good chip disposal. Sample 8C uses CVD single crystal diamond, the flank wear amount when cutting 10 km is 0.008 mm, and the wear amount is significantly smaller than those of Sample 8A and Sample 8B using a polycrystalline hard sintered body. As a result.
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiments and examples disclosed this time are examples in all respects and are not restrictive. The scope of the present invention is shown not by the above-described embodiment but by the scope of claims, and is intended to include meanings equivalent to the scope of claims and all modifications within the scope.
 本実施の形態のスローアウェイチップは、アルミ合金や非鉄金属の旋削用途およびフライス用途の工具等に用いると有益である。 The throw-away tip of the present embodiment is useful when used for tools for turning aluminum alloys and non-ferrous metals and for milling.
1 スローアウェイチップ、2 本体、3 刃部、4 切れ刃、5 ランド面、6 すくい面、7 凹部、8 凸部、16 ブレーカ壁面、31 刃部の上面、32 刃部の側面、33 逃げ面。 1 throwaway tip, 2 body, 3 blade part, 4 cutting edge, 5 land surface, 6 rake face, 7 concave part, 8 convex part, 16 breaker wall surface, 31 blade top face, 32 blade side face, 33 relief face .

Claims (11)

  1.  本体と、前記本体に設けられた、切れ刃を有する刃部とを備え、
     前記刃部は、ダイヤモンドを80体積%以上含み、
     前記刃部は、前記切れ刃に沿って延在するランド面と、前記ランド面から見て前記切れ刃と反対側に位置する凹部を有するチップブレーカとを含み、
     前記凹部の側面は、前記ランド面からの距離の大きさに伴って連続的に後退する、回転体形状の側面の一部と同一形状のすくい面を有する、
     スローアウェイチップ。
    A main body and a blade portion provided on the main body and having a cutting edge;
    The blade portion contains 80% by volume or more of diamond,
    The blade portion includes a land surface extending along the cutting edge, and a chip breaker having a recess located on the opposite side of the cutting edge as viewed from the land surface,
    The side surface of the concave portion has a rake surface having the same shape as a part of the side surface of the rotating body, which continuously retreats with the distance from the land surface.
    Throw away tip.
  2.  前記ランド面に対する前記すくい面の傾斜角は15°以上50°以下の範囲である、
     請求項1に記載のスローアウェイチップ。
    The inclination angle of the rake face with respect to the land surface is in a range of 15 ° or more and 50 ° or less.
    The throw-away tip according to claim 1.
  3.  前記ランド面は、前記切れ刃に対して垂直方向の幅が、10μm以上100μm以下の範囲である、
     請求項1または請求項2に記載のスローアウェイチップ。
    The land surface has a width in a direction perpendicular to the cutting edge in a range of 10 μm to 100 μm.
    The throw-away tip according to claim 1 or 2.
  4.  前記凹部は、最大深さが60μm以上300μm以下の範囲である、
     請求項1~請求項3のいずれか1項に記載のスローアウェイチップ。
    The concave portion has a maximum depth in a range of 60 μm to 300 μm.
    The throw-away tip according to any one of claims 1 to 3.
  5.  前記凹部は、前記切れ刃に対して垂直方向の幅が、0.2mm以上1.0mm以下の範囲である、
     請求項1~請求項4のいずれか1項に記載のスローアウェイチップ。
    The concave portion has a width in a direction perpendicular to the cutting edge in a range of 0.2 mm to 1.0 mm.
    The throw-away tip according to any one of claims 1 to 4.
  6.  前記刃部はコーナを有し、
     前記凹部は、前記凹部側面上に、コーナ角の二等分線に沿って形成された凸部を有し、
     前記凸部の高さは、前記凹部の最大深さに対して20%以上80%以下の範囲である、
     請求項1~請求項5のいずれか1項に記載のスローアウェイチップ。
    The blade has a corner;
    The concave portion has a convex portion formed along a bisector of a corner angle on the side surface of the concave portion,
    The height of the convex portion is in the range of 20% to 80% with respect to the maximum depth of the concave portion.
    The throw-away tip according to any one of claims 1 to 5.
  7.  前記凸部は、前記コーナ角の二等分線を法線とする断面で見た場合に、前記凹部の深さ方向に伴って幅が広がる断面形状を有し、
     前記断面形状の幅方向の最小値は、5μm以上40μm以下の範囲である、
     請求項6に記載のスローアウェイチップ。
    The convex portion has a cross-sectional shape in which the width increases in the depth direction of the concave portion when viewed in a cross section having the bisector of the corner angle as a normal line,
    The minimum value in the width direction of the cross-sectional shape is in the range of 5 μm to 40 μm.
    The throw-away tip according to claim 6.
  8.  前記凸部は、前記コーナ角の二等分線に沿う方向の長さが、0.2mm以上1.0mm以下の範囲である、
     請求項6または請求項7のに記載のスローアウェイチップ。
    The convex portion has a length in a direction along a bisector of the corner angle in a range of 0.2 mm to 1.0 mm.
    The throw-away tip according to claim 6 or 7.
  9.  前記ランド面の表面粗さは、0.05μm以上0.2μm以下の範囲であり、
     前記すくい面の表面粗さは、2μm以上7μm以下の範囲である、
     請求項1~請求項8のいずれか1項に記載のスローアウェイチップ。
    The land surface has a surface roughness in a range from 0.05 μm to 0.2 μm,
    The surface roughness of the rake face is in the range of 2 μm to 7 μm,
    The throw-away tip according to any one of claims 1 to 8.
  10.  前記ダイヤモンドは、気相合成法により合成された単結晶ダイヤモンドである、
     請求項1~請求項9のいずれか1項に記載のスローアウェイチップ。
    The diamond is a single crystal diamond synthesized by a vapor phase synthesis method.
    The throw-away tip according to any one of claims 1 to 9.
  11.  前記単結晶ダイヤモンドは、波長が190nm以上11000nm以下のレーザ光に対する吸収係数が2cm-1以上90cm-1以下の範囲である、
     請求項10に記載のスローアウェイチップ。
    The single crystal diamond has a wavelength in the range absorption coefficient of 2 cm -1 or more 90cm -1 or less for the following of the laser beam 11000nm than 190 nm,
    The throw-away tip according to claim 10.
PCT/JP2015/071765 2014-09-05 2015-07-31 Throwaway tip WO2016035490A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
MX2016004989A MX2016004989A (en) 2014-09-05 2015-07-31 Throwaway tip.
EP15838053.5A EP3189917B1 (en) 2014-09-05 2015-07-31 Throw-away tip
KR1020167010583A KR20170047190A (en) 2014-09-05 2015-07-31 Throwaway tip
JP2016518788A JP6603955B2 (en) 2014-09-05 2015-07-31 Throwaway tip
US15/027,394 US10286455B2 (en) 2014-09-05 2015-07-31 Throw-away tip
CN201580002409.XA CN105682833B (en) 2014-09-05 2015-07-31 Disposable cutter
PH12016500616A PH12016500616B1 (en) 2014-09-05 2016-04-05 Throw-away tip

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-181296 2014-09-05
JP2014181296 2014-09-05

Publications (1)

Publication Number Publication Date
WO2016035490A1 true WO2016035490A1 (en) 2016-03-10

Family

ID=55439558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071765 WO2016035490A1 (en) 2014-09-05 2015-07-31 Throwaway tip

Country Status (8)

Country Link
US (1) US10286455B2 (en)
EP (1) EP3189917B1 (en)
JP (1) JP6603955B2 (en)
KR (1) KR20170047190A (en)
CN (1) CN105682833B (en)
MX (1) MX2016004989A (en)
PH (1) PH12016500616B1 (en)
WO (1) WO2016035490A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018159499A1 (en) * 2017-02-28 2018-09-07 京セラ株式会社 Cutting insert, cutting tool, and method for manufacturing cut workpiece
JP2018183829A (en) * 2017-04-25 2018-11-22 株式会社タンガロイ Cutting insert and manufacturing method of the same
WO2019087844A1 (en) * 2017-10-30 2019-05-09 京セラ株式会社 Cutting insert, cutting tool, and method of manufacturing cut workpiece
CN110281278A (en) * 2019-06-27 2019-09-27 马鞍山市恒利达机械刀片有限公司 A kind of wear-resistant tyre production trimmer blade and its processing technology
US20200001374A1 (en) * 2018-06-29 2020-01-02 Herramientas Preziss, S.L. Cutting Insert Applicable To Machining Tools And The Tool Bearing It
WO2020090372A1 (en) * 2018-10-30 2020-05-07 兼房株式会社 Rotating tool
JP2020075295A (en) * 2018-11-05 2020-05-21 京セラ株式会社 Cutting tool and manufacturing method thereof
JP2022513824A (en) * 2018-12-12 2022-02-09 フェニックス コンタクト ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Cutting members and lathes
EP4186621A1 (en) 2021-11-30 2023-05-31 Tungaloy Corporation Cutting tool
US11772166B2 (en) 2021-02-26 2023-10-03 Tungaloy Corporation Cutting insert
WO2023195070A1 (en) * 2022-04-05 2023-10-12 住友電工ハードメタル株式会社 Cutting insert

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6356781B2 (en) * 2014-02-26 2018-07-11 京セラ株式会社 Cutting insert, cutting tool, and manufacturing method of cut workpiece
KR101838107B1 (en) * 2015-09-24 2018-03-14 한국야금 주식회사 Cutting insert
JP6315350B2 (en) * 2015-10-23 2018-04-25 住友電工ハードメタル株式会社 Rotary cutting tool
JP2017094467A (en) * 2015-11-26 2017-06-01 住友電工ハードメタル株式会社 Rotary tool
WO2017135469A1 (en) * 2016-02-05 2017-08-10 京セラ株式会社 Insert, cutting tool, and method for manufacturing cutting workpiece
JP6798663B2 (en) * 2016-04-27 2020-12-09 住友電工ハードメタル株式会社 Cutting insert
EP3260225B1 (en) * 2016-06-20 2022-11-30 Sandvik Intellectual Property AB Turning insert
JP6618025B2 (en) * 2016-12-20 2019-12-11 住友電工ハードメタル株式会社 Cutting tool and manufacturing method thereof
KR20190126780A (en) * 2017-02-09 2019-11-12 유에스 신써틱 코포레이션 Energy processed polycrystalline diamond compacts and related methods
CN106903334A (en) * 2017-03-29 2017-06-30 深圳市中天超硬工具股份有限公司 Chemical vapour deposition diamond cutter and its processing method
US11911828B2 (en) * 2018-03-27 2024-02-27 Kyocera Corporation Cutting insert, cutting tool, and method for manufacturing machined product
CN108515242A (en) * 2018-06-25 2018-09-11 廊坊西波尔钻石技术有限公司 A kind of cutter head and blade for finishing
EP3819051A4 (en) * 2018-07-03 2022-05-04 Sumitomo Electric Hardmetal Corp. Cutting insert and manufacturing method thereof
USD902966S1 (en) * 2019-05-21 2020-11-24 Christopher Lee Caliendo Rhombus negative rake wood turning blade
EP4008474B1 (en) * 2019-08-01 2024-07-17 Sumitomo Electric Hardmetal Corp. Method for manufacturing a cutting tool, and the cutting tool
US20230058175A1 (en) * 2020-01-17 2023-02-23 A.L.M.T. Corp. Single-crystal diamond cutting tool
US11413689B2 (en) * 2020-05-28 2022-08-16 Kennametal Inc. Cutting inserts with control cavities
DE102020117101A1 (en) * 2020-06-29 2021-12-30 Kennametal Inc. Cutting insert and cutting tool
CN114309682A (en) 2020-09-30 2022-04-12 肯纳金属公司 Cutting insert
JP6923854B1 (en) * 2021-02-26 2021-08-25 株式会社タンガロイ Cutting insert
JP7003388B1 (en) * 2021-04-28 2022-01-20 株式会社タンガロイ Cutting tools
KR20230046568A (en) 2021-09-30 2023-04-06 송용수 Throwaway tip
WO2023164372A1 (en) * 2022-02-23 2023-08-31 Us Synthetic Corporation Cutting tool with pcd inserts, systems incorporating same and related methods
KR102478886B1 (en) * 2022-07-11 2022-12-16 김성률 Tip structure with chip breaker

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0815681B2 (en) * 1986-01-23 1996-02-21 東芝タンガロイ株式会社 Throw-away tip
JP2523987Y2 (en) * 1989-03-14 1997-01-29 京セラ株式会社 Indexable inserts
JP2007216327A (en) * 2006-02-15 2007-08-30 Aisin Seiki Co Ltd Forming method of chip breaker
JP4583222B2 (en) * 2005-04-01 2010-11-17 株式会社タンガロイ Hard sintered body cutting tool and manufacturing method thereof
WO2014003110A1 (en) * 2012-06-29 2014-01-03 住友電気工業株式会社 Diamond single crystal and production method thereof, and single crystal diamond tool

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE354593C (en) * 1972-05-17 1975-01-20 Sandvik Ab
US4056871A (en) * 1976-10-21 1977-11-08 Kennametal Inc. Cutting insert
CA1194684A (en) * 1981-01-30 1985-10-08 Kennametal Inc. Cutting insert
CH642884A5 (en) * 1981-05-19 1984-05-15 Stellram Sa CUTTING INSERT FOR MACHINING BY CHIP REMOVAL.
FR2509209A1 (en) * 1981-07-10 1983-01-14 Feldmuehle Prod Tech France NEW PROFILE OF CUTTING PLATES AND OTHER CUTTING MATERIALS OF CERAMICS OR CERMETS
US4787784A (en) * 1987-08-03 1988-11-29 Gte Valenite Corporation Polygonal cutting insert
US4941780A (en) * 1987-11-24 1990-07-17 Sumitomo Electric Industries, Ltd. Indexable cutting insert
US4856942A (en) * 1988-07-19 1989-08-15 Gte Valenite Corporation Polygonal cutting insert
US4880338A (en) * 1988-12-07 1989-11-14 Gte Valenite Corporation Cutting insert
US4993893A (en) * 1990-01-08 1991-02-19 Kennametal Inc. Cutting insert with chip control
KR960004237B1 (en) 1990-02-27 1996-03-28 미쓰비시 긴조꾸 가부시끼가이샤 Cutting insert
CA2036930C (en) 1990-02-27 1996-01-09 Hitoshi Fukuoka Cutting insert
KR910015351A (en) 1990-02-27 1991-09-30 나가노 다께시 Drawaway tip
JP3013448B2 (en) * 1991-01-16 2000-02-28 住友電気工業株式会社 Polycrystalline diamond cutting tool and its manufacturing method
US5178645A (en) * 1990-10-08 1993-01-12 Sumitomo Electric Industries, Ltd. Cutting tool of polycrystalline diamond and method of manufacturing the same
US5141367A (en) * 1990-12-18 1992-08-25 Kennametal, Inc. Ceramic cutting tool with chip control
JP2553321Y2 (en) * 1992-04-27 1997-11-05 住友電気工業株式会社 Indexable tip
SE508452C2 (en) * 1992-07-02 1998-10-05 Sandvik Ab Cuts for chip separating processing
US5743681A (en) * 1993-04-05 1998-04-28 Sandvik Ab Cutting insert with chip control protrusion on a chip surface
SE9301811D0 (en) * 1993-05-27 1993-05-27 Sandvik Ab CUTTING INSERT
IL109054A (en) * 1994-03-21 1998-07-15 Iscar Ltd Cutting insert
DE19523128C2 (en) * 1994-08-09 1997-05-22 Valenite Inc Indexable insert
JP3371733B2 (en) * 1997-02-06 2003-01-27 住友電気工業株式会社 Indexable tip
DE19903038C2 (en) * 1999-01-26 2003-06-26 Jakob Lach Gmbh & Co Kg cutting tool
JP4228557B2 (en) * 2001-02-05 2009-02-25 三菱マテリアル株式会社 Throwaway tip
US7107594B1 (en) * 2002-06-27 2006-09-12 Siebel Systems, Inc. Method and system for providing a version-independent interface to a computer resource
JP4139171B2 (en) * 2002-09-11 2008-08-27 京セラ株式会社 Throwaway tip
US7234901B2 (en) * 2002-09-11 2007-06-26 Kyocera Corporation Throw-away tip
KR100761302B1 (en) * 2004-01-14 2007-09-27 스미또모 덴꼬오 하드메탈 가부시끼가이샤 Throw-away tip
AT8376U1 (en) * 2005-02-25 2006-07-15 Tiro Tool Werkzeugsysteme Gmbh CUTTING TOOL
JP4967721B2 (en) * 2007-03-07 2012-07-04 三菱マテリアル株式会社 Cutting insert
WO2009028687A1 (en) * 2007-08-31 2009-03-05 Kyocera Corporation Cutting insert, and cutting method
DE202007017088U1 (en) * 2007-12-05 2008-04-24 Jakob Lach Gmbh & Co. Kg Cutting tool for the machining of workpieces
JP5092865B2 (en) * 2008-04-17 2012-12-05 株式会社タンガロイ Throwaway tip
BRPI1013526A2 (en) * 2009-06-24 2016-04-05 Tungaloy Corp cutting insert
RU2532612C2 (en) * 2010-05-11 2014-11-10 Тунгалой Корпорейшн Cutter plate
SE535166C2 (en) * 2010-08-25 2012-05-08 Sandvik Intellectual Property Double-sided, indexable lathe cutter with pointed chip angle
CN202498228U (en) * 2012-03-22 2012-10-24 成都一通密封有限公司 Improved polycrystalline diamond blade
AT12934U1 (en) * 2012-03-27 2013-02-15 Ceratizit Austria Gmbh cutting insert
JP6206801B2 (en) * 2013-09-09 2017-10-04 住友電工ハードメタル株式会社 Cutting insert

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0815681B2 (en) * 1986-01-23 1996-02-21 東芝タンガロイ株式会社 Throw-away tip
JP2523987Y2 (en) * 1989-03-14 1997-01-29 京セラ株式会社 Indexable inserts
JP4583222B2 (en) * 2005-04-01 2010-11-17 株式会社タンガロイ Hard sintered body cutting tool and manufacturing method thereof
JP2007216327A (en) * 2006-02-15 2007-08-30 Aisin Seiki Co Ltd Forming method of chip breaker
WO2014003110A1 (en) * 2012-06-29 2014-01-03 住友電気工業株式会社 Diamond single crystal and production method thereof, and single crystal diamond tool

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018159499A1 (en) * 2017-02-28 2019-11-21 京セラ株式会社 Cutting insert, cutting tool, and manufacturing method of cut workpiece
JP7017553B2 (en) 2017-02-28 2022-02-08 京セラ株式会社 Manufacturing method for cutting inserts, cutting tools and cutting materials
WO2018159499A1 (en) * 2017-02-28 2018-09-07 京セラ株式会社 Cutting insert, cutting tool, and method for manufacturing cut workpiece
JP2018183829A (en) * 2017-04-25 2018-11-22 株式会社タンガロイ Cutting insert and manufacturing method of the same
JPWO2019087844A1 (en) * 2017-10-30 2020-10-22 京セラ株式会社 Manufacturing method for cutting inserts, cutting tools and cutting products
JP7304989B2 (en) 2017-10-30 2023-07-07 京セラ株式会社 Manufacturing method of cutting insert, cutting tool and cutting work
WO2019087844A1 (en) * 2017-10-30 2019-05-09 京セラ株式会社 Cutting insert, cutting tool, and method of manufacturing cut workpiece
JP7032424B2 (en) 2017-10-30 2022-03-08 京セラ株式会社 Manufacturing method for cutting inserts, cutting tools and cutting materials
JP2022065170A (en) * 2017-10-30 2022-04-26 京セラ株式会社 Cutting insert, cutting tool, and method of manufacturing cut workpiece
US20200001374A1 (en) * 2018-06-29 2020-01-02 Herramientas Preziss, S.L. Cutting Insert Applicable To Machining Tools And The Tool Bearing It
WO2020090372A1 (en) * 2018-10-30 2020-05-07 兼房株式会社 Rotating tool
JP2020075295A (en) * 2018-11-05 2020-05-21 京セラ株式会社 Cutting tool and manufacturing method thereof
JP7023214B2 (en) 2018-11-05 2022-02-21 京セラ株式会社 How to manufacture cutting tools
JP2022513824A (en) * 2018-12-12 2022-02-09 フェニックス コンタクト ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Cutting members and lathes
JP7482132B2 (en) 2018-12-12 2024-05-13 フェニックス コンタクト ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Cutting materials and lathes
CN110281278A (en) * 2019-06-27 2019-09-27 马鞍山市恒利达机械刀片有限公司 A kind of wear-resistant tyre production trimmer blade and its processing technology
US11772166B2 (en) 2021-02-26 2023-10-03 Tungaloy Corporation Cutting insert
EP4186621A1 (en) 2021-11-30 2023-05-31 Tungaloy Corporation Cutting tool
WO2023195070A1 (en) * 2022-04-05 2023-10-12 住友電工ハードメタル株式会社 Cutting insert

Also Published As

Publication number Publication date
PH12016500616A1 (en) 2016-06-13
PH12016500616B1 (en) 2016-06-13
EP3189917A4 (en) 2018-05-30
JPWO2016035490A1 (en) 2017-06-22
CN105682833B (en) 2019-05-28
US10286455B2 (en) 2019-05-14
EP3189917B1 (en) 2021-06-09
KR20170047190A (en) 2017-05-04
EP3189917A1 (en) 2017-07-12
MX2016004989A (en) 2016-08-15
JP6603955B2 (en) 2019-11-13
US20160243624A1 (en) 2016-08-25
CN105682833A (en) 2016-06-15

Similar Documents

Publication Publication Date Title
JP6603955B2 (en) Throwaway tip
WO2017090297A1 (en) Rotating tool
JP6151782B2 (en) Cutting insert, cutting tool, and method of manufacturing cut workpiece
JP6347258B2 (en) Radius end mill and cutting method
JP6798663B2 (en) Cutting insert
JP5944527B2 (en) Cutting insert, cutting tool, and method of manufacturing cut workpiece
RU2687623C2 (en) Method of making cutting tools and cutting tools
JP6191839B2 (en) Diamond sintered ball end mill and manufacturing method thereof
WO2018123133A1 (en) Cutting tool and method for manufacturing same
JP6228229B2 (en) Cutting insert, cutting tool, and manufacturing method of cut workpiece
JP6869492B2 (en) Cutting insert
JP2007290057A (en) Ultra-high pressure sintered body cutting tool
JP5612382B2 (en) Cutting insert
JP4623674B2 (en) Rotary cutting tool
JP6162544B2 (en) Throw-away tip, throw-away cutting tool, and method of manufacturing cut workpiece
JP2024142744A (en) Cutting Tools
JP2022018261A (en) Cutting tool and cutting method
JP5873345B2 (en) End mill
JP2018183829A (en) Cutting insert and manufacturing method of the same
JP2004276195A (en) Throw-away tip

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016518788

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15027394

Country of ref document: US

Ref document number: 12016500616

Country of ref document: PH

REEP Request for entry into the european phase

Ref document number: 2015838053

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IDP00201602344

Country of ref document: ID

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/004989

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20167010583

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15838053

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE